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Introduction

Occurring in all branches of natural science, the study of differential equations
is one of the main pursuits of mathematics and has been so since their inde-
pendent inventions by Newton and Leibniz. Differential equations describe the
dynamics of many systems, and in many cases the systems are too complicated
to describe in a closed-form solution. Therefore, approximative methods for
solving differential equations have an almost equally long history [13]. Spurred
by the rise of electronic computing in the 20th century, the study of numerical
solutions to differential equations has produced indispensable tools for society
in the form of algorithms which we will term numerical integrators, not to
be confused with methods for evaluating integrals. Numerical integrators are
used for the simulation of systems occurring in many fields such as physics,
chemistry, finance and biology.

Until the 1980s, research in numerical integration was geared toward pro-
ducing accurate general-purpose solvers that could be applied to a wide range of
problems with little user effort; the successes of this endeavour include Runge-
Kutta methods, multistep methods, finite difference methods and finite element
methods [44]. Over the past three decades, there has been great interest in
developing more specialized integrators tailored to smaller classes of numerical
integration problems that have geometric invariants as described by differen-
tial geometry. Examples of such invariants include energy preservation [32],
volume preservation [48], symplecticity [27], isospectrality [2], and Lie group
structure [21]. Since these properties manifest themselves in different ways,
the numerical integration schemes designed to exploit them are of an equally
diverse nature, with a specific scheme for each type of structure. The study
and use of the subset of numerical integration methods designed to preserve
geometric structure is termed geometric numerical integration [17].

The recurring theme of this thesis is the geometric numerical integration of
ordinary differential equations (ODEs) and partial differential equations (PDEs)
that exhibit conservation or dissipation of an energy, and the main tools of
geometric numerical integration we shall employ are the soon-to-be-introduced
discrete gradient methods. The discrete gradient methods are applied in various
settings, and so the thesis can be roughly considered as consisting of three
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Introduction

topics, the last two of which overlap to a certain degree.

1. Energy preserving time stepping for spatially adaptive discretizations of
PDEs.

2. The use of discrete gradient schemes in optimization methods, with ap-
plications in image analysis.

3. Generalizations of discrete gradients to dissipative and conservative prob-
lems on Riemannian manifolds, with applications in numerical optimiza-
tion.

In the following we will briefly review the concepts used in the papers that
constitute the main scientific contribution of this thesis.

1.1 Discrete gradient schemes for ODEs

An initial value problem in Rn consists of finding a curve u :R→Rn such that

u̇ = f (u), u(0) = u0 (1.1.1)

where u̇ denotes the derivative of u(t ) and f :Rn →Rn is typically assumed to
be Lipschitz continuous. A differentiable function V : Rn → R is said to be a
first integral of (1.1.1) if for any solution u(t ) of (1.1.1),

d

dt
V (u) =∇V (u)T u̇ =∇V (u)T f (u) = 0.

From the above, it is clear that if u solves (1.1.1), then V (u(t )) =V (u(0)) for all
t , and so a first integral is a conserved quantity under the flow of (1.1.1). As an
example of first integral preserving systems, many ODEs arising from physics
conserve at least one form of energy, such as the Hamiltonian in Hamiltonian
systems [28]. This kind of first integrals is so ubiquitous in the literature that
the terms first integral and energy are used interchangeably, a convention that
will be used in the following. Similar to the conservative ODEs, there exist
ODEs that dissipate an energy, i.e. where V (t ) is decreasing:

d

dt
V (u) =∇V (u)T f (u) ≤ 0.

As shown in [32], an ODE that conserves an energy V can be written on the
form

u̇ = S(u)∇V (u), (1.1.2)

2



1.1 Discrete gradient schemes for ODEs

where S(u) is a skew-symmetric matrix, under mild assumptions. The corre-
sponding form for dissipative systems is

u̇ = A(u)∇V (u), (1.1.3)

where A(u) is a symmetric negative definite matrix. Systems of type (1.1.2)
or (1.1.3) can be solved numerically by the use of discrete gradient schemes
that retain the conservation or dissipation properties of the original ODE. A
discrete gradient of an energy V is a continuous function ∇V : Rn ×Rn → Rn

satisfying the two conditions〈
∇V (u, v),u − v

〉
=V (u)−V (v)

∇V (u,u) =∇V (u),

where 〈·, ·〉 denotes the Euclidian inner product. By means of a discrete gradient,
we can construct a scheme for solving (1.1.2):

uk+1 −uk = τS(uk+1,uk )∇V (uk+1,uk ), (1.1.4)

where k ∈N is the iteration number, τ is the step size, uk denotes the numer-
ical approximation of u(kτ) and S(uk+1,uk ) is a skew-symmetric, consistent
approximation to S, meaning S(u,u) = S(u). The above scheme preserves V
since

V (uk+1)−V (uk ) =
〈
∇V (uk+1,uk ),uk+1 −uk

〉
= τ

〈
∇V (uk+1,uk ),S(uk+1,uk )∇V (uk+1,uk )

〉
= 0.

Note that the same result holds if τ is allowed to vary from iteration to iteration,
which allows for the use of adaptive time steps. Similarly, a discrete gradient
scheme for (1.1.3) of the form

uk+1 −uk = τA(uk+1,uk )∇V (uk+1,uk ), (1.1.5)

where A is a symmetric negative definite matrix approximating A, preserves
dissipativity in the sense that

V (uk+1) ≤V (uk ).

There exist a number of discrete gradient functions, the three most popular of
which are the mean value, or Average Vector Field (AVF) discrete gradient [18]

∇VAVF(u, v) =
1∫

0

∇V (ξu + (1−ξ)v)dξ,

3
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the midpoint (MP), or Gonzalez, discrete gradient [14]

∇VMP(u, v) =∇V

(
u + v

2

)
+ V (v)−V (u)−∇V ((v +u)/2)T (v −u)

‖v −u‖2 (v −u)

and the Itoh-Abe discrete gradient [22] which can be expressed coordinate-wise
as

∇VIA(u, v)l =
V (

∑l
i=1 vi ei +∑n

i=l+1 ui ei )−V (
∑l−1

i=1 vi ei +∑n
i=l ui ei )

vl −ul
el

where el denotes Euclidean unit vector number l . Discrete gradient schemes are
one-step integrators, meaning that they require knowledge of uk only to com-
pute the next step uk+1, as opposed to multistep schemes that require knowledge
of uk−r , r = 0,1, .., s, for an s-step scheme.

The AVF and MP discrete gradients give rise to symmetric schemes via
(1.1.4) and (1.1.5) provided S(u, v) = S(v,u) and A(u, v) = A(v,u), respectively.
These discrete gradients therefore yield second-order schemes, meaning that
the uk produced by (1.1.4) and (1.1.5) are O(τ2) approximations to u(kτ). The
Itoh-Abe discrete gradient is first-order accurate, providing O(τ) approxima-
tions; it can be symmetrized by composition with its adjoint, in which case one
obtains a second-order scheme. It is worth noting that discrete gradient meth-
ods can also be applied to systems with multiple preserved energies. Strategies
for doing so are detailed in [32] and [8].

Common to all the above discrete gradients is that they are implicit in the
sense that they give rise to numerical schemes of the form

uk+1 = F (uk ,uk+1), (1.1.6)

necessitating the solution of a system of, generally, non-linear equations to
obtain the iteration uk+1. This is typically not a desirable trait as it slows down
the computational speed of the scheme considerably and so it is of interest
to reduce the cost of solving this system. If F is linear, one only needs to
solve a linear system at each iteration, reducing the cost considerably from
the non-linear case; also, if the problem of solving (1.1.6) can be decomposed
into several smaller problems, one can distribute the workload over several
computers working in parallel for additional speedup.

1.2 Conservative methods for PDEs and adaptivity

A first-order-in-time partial differential equation can, in general, be stated in
the form

ut = f (x,u J ), x ∈Ω⊆Rd , t ∈ [0,T ], u ∈B ⊆ L2. (1.2.1)

4



1.2 Conservative methods for PDEs and adaptivity

Here, we use the notation u J to denote that f is dependent on u and the partial
derivatives of u with respect to the spatial coordinates x1, ..., xn up to some
order J , and we do not specify the space B since this will typically vary de-
pending on the PDE and the boundary values imposed. PDEs of this kind are
typically solved numerically using finite difference schemes or finite element
schemes. Common to these schemes is that they require that (1.2.1) be spatially
discretized, that is, the domainΩ is replaced withΩh , a discrete domain defined
by a mesh xh = {xl }n

l=1 ⊆Ω. This has the effect of reducing problem (1.2.1) to
a finite-dimensional problem

u̇h = f h(xh ,uh), (1.2.2)

where uh(t ) = (uh
1 (t ), ...,uh

m(t )) ∈Rm contains the spatially discrete degrees of
freedom uh

l (t ). The significance of the degrees of freedom depends on the
method used. In standard finite difference methods, uh

l (t ) is the approximate
value of u(xl , t ), and likewise for certain choices of basis in finite element
methods, such as the standard polynomial bases, although this is not the case
when using other bases such as spectral bases or B-spline bases [19] [6].

When spatially discretizing the PDE it is desirable that any existing struc-
ture of the PDE is inherited in the discretization (1.2.2) in a discrete sense. One
such type of structure is first integral preservation. A function I :B→R is said
to be a first integral of (1.2.1) if

d

dt
I (u(t )) =

〈
δI

δu
,ut

〉
=

〈
δI

δu
, f (x,u J ),

〉
= 0,

for all u ∈ B solving (1.2.1). Here, δI /δu denotes the variational derivative
of I with respect to u. A good discretization of the form (1.2.2) would have
a corresponding first integral I h that approximates I . In light of the previous
discussion, it is then preferable to employ a conservative scheme for time step-
ping the spatially discrete equation. This is the approach used in the first three
papers.

Producing conservative PDE solvers is the goal of the discrete variational
derivative (DVD) method, developed in a number of papers [9–11, 29, 30] and
culminating in the book [12]. The DVD method is a sophisticated system
where the first integral is discretized before the machinery of discrete variation
is used to obtain a numerical scheme that preserves the discrete energy. Discrete
variation involves summation by parts, a direct analogue to the integration by
parts used to prove first integral preservation in the continuous system. Note
that it is also possible to obtain conservative solvers by first discretizing in time
using e.g. discrete gradients, then in space as in [7]. It is also possible to reduce
the computational burden of implicitness by using linearly implicit schemes as
in [7] and [31].

5



Introduction

For any spatial discretization the choice of mesh is of high importance since
the accuracy of the numerical solution is often directly linked to the distance
between points on the grid; finer grids correspond to more accurate solutions.
This is especially the case for problems where difficult domains can cause
instabilities and for PDEs where the interesting behaviour of the solution is
localized, meaning the grid needs to be finer only in certain areas. The latter
type of PDEs includes those with soliton solutions, travelling waves that do
not change shape, such as the Sine-Gordon, Korteweg-de Vries (KdV) and
Benjamin-Bona-Mahoney (BBM) equations [25,41,42]. Due to the importance
of mesh choice, there has been much interest in adaptive strategies for tailoring
the meshes to the problem at hand, resulting in three main modes of mesh
adaptivity:

• r -adaptivity: Especially used for time-adaptive equations, one keeps the
number of mesh points constant and moves them according to some rule,
e.g. to follow wave fronts. This typically does not affect the number of
degrees of freedom in the discretization.

• h-adaptivity: A general strategy based on inserting new mesh points
and/or removing old mesh points to improve resolution in critical areas.
This has the effect of increasing the number of degrees of freedom.

• p-adaptivity: Specifically for finite element-type methods, this approach
improves accuracy by increasing the order of the basis function polynomi-
als or, more generally, by improving the choice basis functions. Similar
to h-adaptivity, this increases the number of degrees of freedom.

While adaptivity can dramatically improve the performance of a PDE solver, it
is also possible that it influences the stability properties of the solver negatively.
Hence, stabilizing properties such as energy preservation can be useful for im-
proving adaptive schemes, in particular for nonlinear problems. This is, for
instance, seen in [33], where a wavelet-based mesh adaptivity procedure is suc-
cessfully combined with the DVD method to solve the KdV and Cahn-Hilliard
equations. The first three papers of this thesis concern the amalgamation of spa-
tially adaptive methods for PDEs and first integral preserving methods, where
the temporal discretization is based on discrete gradient methods.

1.3 Optimization theory and image analysis

In the fourth and fifth papers we consider discrete gradient schemes as opti-
mization methods, with applications in image analysis. This section is meant
as a selective introduction to the concepts used in the papers, for more in-depth
sources on these matters, see e.g. [40] or [38].
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1.3 Optimization theory and image analysis

The goal of unconstrained optimization is to find a minimizer of an objective
function V : Rn → R, i.e. find a point x∗ ∈ Rn such that V (x∗) ≤ V (x) for all
x ∈ Rn . The problem of minimizing V is well-defined if V is lower semi-
continuous and coercive, where V is called lower semi-continuous if, given any
x ∈Rn , then for all sequences {xk }k∈N converging to x,

f (x) ≤ liminf
k→∞

f (xk ).

The objective function V is coercive if given a sequence {xk }k∈N ⊆ Rn such
that limk→∞ ‖xk‖ = ∞, then limk→∞V (xk ) = ∞. Being well-defined does
not necessarily mean that the problem is easy to solve; the problem may be
discontinuous or possess many local minimizers, making it hard to find a global
optimum algorithmically.

There is a close relation between numerical integration and numerical opti-
mization, stemming from the concept of gradient flows. If V is differentiable,
the typical approach for using numerical integrators to minimize V is by nu-
merically solving the gradient flow ODE

u̇(t ) =−∇V (u(t )) (1.3.1)

from a chosen starting point u0, until an approximate equilibrium is reached.
Equation (1.3.1) is dissipative since

d

dt
V (u(t )) =−‖∇V (u(t ))‖2 ≤ 0,

where ‖ ·‖ denotes the Euclidian norm. Thus, if V is bounded from below, one
may expect u(t ) to converge to a minimizer of V since the energy is constantly
decreasing. An example of an optimization scheme based on numerical integra-
tion is the well-known gradient descent algorithm. This algorithm in its basic
form is equvalent to applying a forward Euler scheme with possibly varying
time steps τk for the time-discretization of (1.3.1) to get

uk+1 = uk −τk∇V (uk ).

To work well as an optimization algorithm, it is desirable that a numerical
integrator is dissipative in the discrete sense: V (uk+1)−V (uk ) ≤ 0. As one
might expect, a Runge-Kutta integrator is dissipative if the τk are chosen small
enough, as seen in [20], but it will in general not be dissipative for all time
steps. This is one of the challenges of using numerical integration schemes for
optimization; the τk must be small to have stability and dissipation, but at the
same time one wishes to take τk as large as possible such that a stationary point
is reached quickly. Solving equation (1.3.1) exactly is of secondary importance.
Therefore, to use an ODE scheme for numerical optimization, one must pay
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special attention to stability and dissipation properties and how they relate to
the choice of τk . An interesting development is the notion of using geometric
numerical integration schemes for this purpose, an idea first considered in [15]
where discrete gradient schemes are used for large-scale problems in image
analysis, in part due to their dissipation property which holds regardless of τk .
Also, one can consider the successive over-relaxation (SOR) method for linear
systems as the Itoh–Abe discrete gradient applied to a the gradient flow of a
quadratic objective function [34].

Certain optimization problems are easier to solve than others, stemming
from properties of the objective function. One property in particular that op-
timization easier is convexity. A function V : Rn → R is said to be convex
if

V (t x + (1− t )y) ≤ tV (x)+ (1− t )V (y) for all t ∈ (0,1)

and if it is differentiable, it is said to be strongly convex with parameter σ> 0 if

V (y) ≤V (x)+〈∇V (x), y −x
〉+ σ

2
‖y −x‖2.

In the case when V is L-smooth, i.e. differentiable with Lipschitz continuous
gradient, one can often obtain similar results by considering functions satisfying
the Polyak-Łojasiewicz (PŁ) inequality

1

2
‖∇V (x)‖2 ≥σ( f (x)− f ∗)

for some σ > 0. These functions, which need not be convex, are called PŁ-
functions, and this property is the assumption under which Polyak shows linear
convergence of gradient descent methods in the [43]. The class of L-smooth,
strongly convex functions is shown to be included in the class of PŁ-functions
in [23].

One can also make sense of strong convexity for nonsmooth V , but this is
outside the scope of the later articles and hence not presented here. A convex
objective function has many additional properties that can be exploited in the
construction of numerical optimizers. For example, any minimizer of a convex
function is a global minimizer, and in the case of strong convexity it is unique,
even for non-smooth problems. One also has a well-developed duality theory
for convex problems, which we will not expand upon here but mention that it
is useful for constructing efficient optimization algorithms.

These efficient algorithms for convex problems include methods like the
interior-point methods [39] and primal-dual methods like the one presented in
[5], that work even if the objective function is nonsmooth. It is also worth noting
that convex functions are easier to minimize in the sense that convergence rates
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1.3 Optimization theory and image analysis

for standard methods are faster for convex functions than non-convex functions.
For example, the gradient descent algorithm has O(1/k) convergence, i.e.

V (uk )−V ∗ ≤ C1

k

for convex problems and linear convergence, i.e.

V (uk )−V ∗ ≤C k
2 (V (u0)−V ∗),

with C2 ∈ (0,1), for strictly convex problems [38] or when V is a PŁ-function
[23]. In the fourth paper we consider the use of a discrete gradient based op-
timization scheme to solve a non-convex optimization problem from digital
image processing and in the fifth paper we consider the theoretical underpin-
nings of discrete gradient based optimization, showing convergence rates when
the objective function is convex or a PŁ-function.

1.3.1 Variational image analysis

Digital image processing encompasses many tasks for the improvement and
analysis of images. These tasks include, for example, image restoration, seg-
mentation, classification and motion tracking. There are several ways of solv-
ing these problems such as filtering, stochastic methods and machine learning.
Another popular method is through variational image analysis, where image
analysis problems are cast as optimization problems; a typical form of this is
to consider an image as a function u : Ω→ R and to minimize an objective
function V :Rn →R given by

V (u) = d(K u, g )+αJ (u) (1.3.2)

where g : Rn → R is the damaged input image, d is a distance function, K a
forward operator relating the output image u to g (i.e. by blurring u if g is
blurred), J is a regularization function and α ∈R is the regularization strength.
Differences between u and g are enforced by the regularizer J , which acts to
punish unwanted behaviour in u. An example, popular in image denoising prob-
lems, is the Rudin-Osher-Fatemi (ROF) regularizer where J (u) is a measure
of the total variation of u, with the idea being that noise causes higher varia-
tion in a natural image [45], and that by lowering variation in g one obtains a
less noisy output image u. The choice of R as the image of u corresponds to
greyscale image processing, since u assigns a single real-valued number to each
point, which can be interpreted as a greyscale intensity. Choosing Im(V ) =R3

is typical of colour images such as RGB images, and yet other choices such
as Im(V ) = S1 ×R2, where S1 is the unit circle, exist. Image processing with
manifold-valued images is one of the examples considered in the sixth paper.
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There are several methods of minimizing (1.3.2), one of which is the PDE-
based approach where one considers its Euler-Lagrange equations, exemplified
in the lagged-diffusivity method of solving the ROF regularization problem [47].
Another method, based on the discrete nature of pixel format images is to
discretize (1.3.2) using difference methods and quadrature, then minimizing the
discretized functional, an approach that is similar to the one used for spatially
discretizing PDEs in the preceding section. The latter method is often the most
practical, provided that the solutions converge to the continuous solution for
finer discretizations. The discretization approach is used in the case of Euler’s
elastica regularization considered in the fourth paper, where we employ an
optimization algorithm based on the Itoh–Abe discrete gradient.

1.4 Generalizations to manifolds

The following discussion is meant to provide background on the Riemannian
manifolds considered in papers 6 and 7. It is based on the books of Lang and
Lee [24, 26], and the interested reader is advised to consult these books for
more details.

Some problems in optimization and ODE theory are, due to their struc-
ture, most naturally formulated on a finite-dimensional manifold M . Simple
examples of such problems include the ROF denoising problem in HSV space
mentioned above, where one component is located on the circle S1, and certain
problems in computational mechanics where it is natural to express orientations
of objects by vectors on the sphere S2. Furthermore, there is a great variety of
problems that are best formulated on Lie groups.

A fundamental question when considering computational problems on man-
ifolds is representation of the manifold. For example, if M = S2, one can either
take the extrinsic view of considering the sphere as an embedded manifold of
R3, or one can take the intrinsic view and represent it by orthogonal rotations in
SO(3). The intrinsic view has had great success, for example with the Runge-
Kutta-Munthe-Kaas methods for ODEs on Lie groups developed in [21,35–37].
When working in the intrinsic view, it is necessary to make generalizations of
concepts from calculus in Euclidean spaces. In the following, we will consider
finite-dimensional Riemannian manifolds since they possess all the necessary
structure needed to make sense of gradients, which are essential to the formu-
lation of dissipative systems in the sixth paper, and to the extension of the
Itoh–Abe discrete gradient to the manifold setting.

A smooth, finite-dimensional manifold M is a space that is locally homeo-
morphic to Rn ; n is said to be its dimension. It has a well-defined differentiable
structure based on tangent vectors; for each point p ∈ M , there is an associated
tangent space Tp M consisting of the equivalence class of curves γ : R→ M
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1.4 Generalizations to manifolds

such that γ(0) = p, with equivalence between curves γ and λ being defined by
γ≡ λ if γ̇(0) = λ̇(0). The tangent space Tp M is a vector space so that notions
of scaling and addition, which are not naturally defined on M , exist on Tp M .
The disjoint union of all tangent spaces is called the tangent bundle T M :

T M = ⋃
p∈M

{
(p, v)|v ∈ Tp M

}
.

There is a canonical projection operator π : T M → M that works with disjoint
structure of T M , given by π((p, v)) = p. This allows us to make sense of vector
fields on M ; a vector field X on M is a section of T M , i.e. a continuous function
X : M → T M such that π(X (p)) = p. With this notion at hand, we can consider
differential equations on M ,

ẋ(t ) = F (x), x(0) = x0 ∈ M , (1.4.1)

with F being a vector field. As with ODEs in Euclidean spaces it is often neces-
sary to solve these numerically. Of particular interest in numerical optimization
is the gradient flow, which is well-defined on Riemannian manifolds. A Rie-
mannian manifold is a smooth manifold equipped with a Riemannian metric g
- a symmetric, positive definite (0,2)-tensor field. The Riemannian metric intro-
duces a smoothly varying inner product on the tangent spaces Tp M , allowing
us to naturally define gradient vector fields.

A typical numerical method, be it for solving ODEs or for optimization,
requires the notion of moving in a certain direction. In Euclidean spaces, this
is achieved by following straight lines by vector addition, while on smooth
manifolds the notion of a straight line is generalized by introducing an affine
connection which in turn can be used to define geodesics. The Riemannian met-
ric g induces a natural choice of affine connection on M , called the Levi-Civita
connection, and also a metric function d : M ×M → R on M . All geodesics
with respect to the Levi-Civita connection are locally length-minimizing, which
makes them natural extensions of real lines to the manifold setting.

On a Riemannian manifold, the notion of moving along a geodesic is
encoded in the Riemannian exponential map exp : T M → M , which maps
(p, v) ∈ T M to the point expp (v) ∈ M , obtained by following the geodesic pass-
ing through p with direction v until t = 1. It is similar to the exponential map
of Lie group theory that is central to the Runge-Kutta-Munthe-Kaas methods.
In fact, if G is a compact Lie group one can define a left and right translation-
ally invariant Riemannian metric g on it, and the Lie group exponential on G
coincides with the Riemannian exponential with respect to g . Several ODE
solvers and optimization methods based on the Riemannian exponential exist
in the literature [27] [46]. A drawback is that the exponential may not exist
in closed form, and even if it does, it may be too expensive to compute with
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sufficient accuracy in many applications, e.g. if it relies on matrix exponentia-
tion. This drawback can be reduced by considering alternative tangent space
parametrizations called retractions, used for solving conservative ODEs in [4]
and for optimization in [1] [3]. The methods presented in papers 6 and 7 con-
cern dissipative and conservative ODEs on Riemannian manifolds, respectively,
using retraction mappings.

1.5 Summary of papers

The following papers constitute the scientific contribution of this thesis. To
fit the thesis format, the layout and typography of the papers has been altered,
as well as certain sentences and equations, but not beyond what should be
characterised as cosmetic. No alterations to the scientific content of the papers
have been made.

PAPER 1: Adaptive first integral preserving methods for partial
differential equations

Torbjørn Ringholm
Published in: Proceedings in Applied Mathematics and Mechanics 16 (2016)

This conference proceedings paper is a prelude to paper 2 and presents an
abridged version of the contents of the latter. A method of spatially discretizing
conservative PDEs of a certain form based on a discretized energy is shown.
The spatially discretized system conserves the discretized energy. The energy
discretization is done using quadrature on an arbitrary fixed grid, resulting in a
general finite difference discretization. Then, using discrete gradients for time
stepping and a projection step, we show how to preserve the discretized energy
when the grid is adaptive. Numerical results are shown for the Sine-Gordon
equation using a finite difference discretization and an r -adaptive moving mesh
strategy.

PAPER 2: Adaptive energy preserving methods for partial differen-
tial equations

Sølve Eidnes, Brynjulf Owren and Torbjørn Ringholm
Published in: Advances in Computational Mathematics 44 (3), 815-839 (2018)

This is the main article that the conference proceedings papers 1 and 3 are
based on. It presents a framework for generating conservative schemes for
PDEs presented in a skew-symmetric form, using both finite differences and
the partition of unity method for spatial discretization and discrete gradient
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1.5 Summary of papers

schemes for time stepping. We show an equivalence between a certain type of
DVD methods and the discrete gradient systems schemes obtained. Further-
more, we present an idea for combining the conservative methods with spatial
adaptivity, then discuss how to map solutions between grids at different step
sizes in both preserving and non-preserving manners and how results obtained
by projection methods can be considered a subclass of the discrete gradient
methods in the adaptive setting. The numerical experiments presented concern
soliton solutions of the Sine-Gordon equation and the KdV equation. The Sine-
Gordon equation is discretized with standard finite elements and uses a more
sophisticated interpolation/adaptivity method than that considered in paper 1,
while the KdV equation is discretized using the finite element method.

PAPER 3: Energy preserving moving mesh methods applied to the
BBM equation

Sølve Eidnes and Torbjørn Ringholm
Published in: Proceedings of MekIT ’17 (2017)

This conference proceedings paper is based on paper 2. It concerns energy pre-
serving integration of spatially adaptive discretizations of conservative PDEs.
We apply the methods to the numerical computation of soliton solutions of
the Benjamin-Bona-Mahoney equation, using an r -adaptive finite elements ap-
proach with third-order B-spline basis functions for the spatial discretization,
and the AVF discrete gradient for time stepping. The BBM equation has three
conservation laws; we consider two schemes that preserve different energies
and compare the results.

PAPER 4: Variational image analysis with Euler’s elastica using a
discrete gradient scheme

Torbjørn Ringholm, Jasmina Lazić and Carola-Bibiane Schönlieb
Submitted

This paper marks a change in direction from the PDE-based works of papers
1-3. Here, discrete gradient methods, and in particular the Itoh–Abe discrete
gradient, are used for numerical optimization. The Itoh–Abe discrete gradient
applied to the gradient system associated with an energy is considered as an
alternative to gradient descent and coordinate descent methods, and its conver-
gence is analysed for non-convex problems. A result shows that the number
of iterations needed for convergence does not depend on the problem size in
certain cases. A strategy for parallelization of the algorithm is presented, and
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numerical results show its use in variational image analysis problems using Eu-
ler’s elastica as a regularizing prior. Other numerical tests concern convergence
rates and execution time, compared to other standard algorithms.

PAPER 5: A geometric integration approach to smooth optimisa-
tion: Foundations of the discrete gradient method

Matthias Ehrhardt, Erlend Riis, Torbjørn Ringholm and Carola-Bibiane
Schönlieb

To be submitted

In this paper, we address several fundamental questions about the discrete
gradient method when used as an optimization scheme. We provide existence
results of the solutions to the implicit systems that define the iterates for various
discrete gradients for all time steps, under certain assumptions on the objective
function. We also analyse the dependence of the iterates on the choice of
time step. Finally, we establish convergence rates for convex functions with
Lipschitz continuous gradients, and PŁ-functions. We consider three types
of discrete gradients: the Gonzalez discrete gradient, the mean value discrete
gradient and the Itoh–Abe discrete gradient. We also consider a randomised
version of the Itoh–Abe discrete gradient based optimization method.

PAPER 6: Dissipative numerical schemes on Riemannian manifolds
with applications to gradient flows

Elena Celledoni, Sølve Eidnes, Brynjulf Owren and Torbjørn Ringholm
Submitted

This paper concerns the use of discrete Riemannian gradients for dissipative
problems on Riemannian manifolds. Building on the work in [4], we introduce
discrete Riemannian gradients, generalizing discrete gradient methods to Rie-
mannian manifolds. We also introduce the Itoh–Abe discrete gradient in this
setting, and apply it to gradient flow systems to obtain an optimization scheme.
This scheme’s convergence is analysed. We apply the method to eigenvalue
problems and to denoising problems in interferometric synthetic aperture radar
and diffusion tensor imaging.

PAPER 7: Energy preserving methods on Riemannian manifolds

Elena Celledoni, Sølve Eidnes, Brynjulf Owren and Torbjørn Ringholm
Submitted
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The final paper is related to the sixth paper in considering discrete Riemannian
gradient (DRG) methods for ODEs on Riemannian manifolds. We formulate
the AVF and Midpoint DRGs using a specialization of the discrete differen-
tials of [4] and present a convergence order result concerning all DRGs. We
then extend the DRGs to higher order methods using an energy-preserving
collocation-like method as in [16] and, in the case of the Itoh–Abe discrete
gradient, symmetrization. We apply the resulting schemes to two variants of
spin systems from physics and verify the convergence order of the methods.
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Adaptive first integral preserving methods for
partial differential equations

Abstract. We present a method for constructing first integral preserving nu-
merical schemes for time-dependent partial differential equations on non-
uniform grids, using a finite difference approach for spatial discretization and
discrete gradients for time stepping. The method is extended to accommodate
spatial adaptivity. A numerical experiment is carried out where the method is
applied to the Sine-Gordon equation with moving mesh adaptivity.

2.1 Introduction

Following the success of geometric integrators for ordinary differential equa-
tions (ODEs) [8], there has been an interest in developing similar techniques
for numerical integration of partial differential equations (PDEs) conserving
properties such as multi-symplecticity [2]. A feature of many PDEs is the con-
servation of energy-like quantities, generally called first integrals. During the
last two decades, there have been developed schemes for PDEs that conserve
first integrals numerically, such as the discrete variational derivative (DVD)
schemes of Furihata, Matsuo, Sugihara and Yaguchi [6], and schemes using
tools from the ODE literature [3, 4]. Most of these schemes use finite differ-
ences on uniform grids for spatial discretization, with some notable exceptions.

Yaguchi, Matsuo and Sugihara present in [12] and [13] two DVD schemes
on fixed, non-uniform grids. The use of non-uniform grids is important for
multidimensional problems, since using uniform grids restricts the types of
domains possible to discretize. Another reason for using non-uniform grids is
that it allows for mesh adaptivity [1, 14]. Adaptive energy preserving schemes
for the Korteweg-de Vries and Cahn-Hilliard equations have been developed
recently by Miyatake and Matsuo [11]. We shall propose a general framework
for PDE solvers combining adaptivity with first integral conservation. We have
based our methods on discrete gradient methods for ODEs, often attributed to
Gonzalez [7]. Presented here is an abridged version of our work, using finite
differences for spatial discretization and numerical experiments on the Sine-
Gordon equation. A full version including the use of variational methods and
an application to the KdV equation, can be found in [5].

2.2 Problem statement and fixed grid discretization

Consider a PDE, where u J denotes dependence on u and its partial derivatives
with respect to x1, ...., xd :

ut = f (x,u J ), x ∈Ω⊆Rd , u ∈B ⊆ L2, (2.2.1)
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where we assume B is sufficiently regular to allow all following operations. A
first integral of (2.2.1) is a functional I[u] satisfying〈

δI
δu

[u], f (x,u J )

〉
L2

= 0, ∀u ∈B,

where δI
δu is the variational derivative of I. Observe that I[u] is conserved

since dI
dt = 0. If there exists a skew-symmetric operator S(x,u J ) such that

f (x,u J ) = S(x,u J )δIδu [u], then I[u] is a first integral of (2.2.1), and we can state
(2.2.1) as

ut = S(x,u J )
δI
δu

[u]. (2.2.2)

This can be considered as the PDE analogue of an ODE with a first integral,
where we have a system

ẏ = S(y)∇I (y), (2.2.3)

with S(y) a skew-symmetric matrix [10]. Note that Hamiltonian ODEs are
contained in this class of ODEs. For ODEs of the form (2.2.3), first integral
preserving numerical methods exist, i.e. discrete gradient methods:

yn+1 −yn =∆t S̄(yn ,yn+1)∇I (yn ,yn+1),

where S̄(yn ,yn+1) is a skew-symmetric approximation to S(y) and ∇I (v,w) a
discrete gradient of I (y), satisfying

(∇I (v,w))T (w−v) = I (w)− I (v), ∇I (w,w) =∇I (w).

There are several choices of discrete gradients available, we will use the Aver-
age Vector Field (AVF) discrete gradient [3]:

∇I (v,w) =
1∫

0

∇I (ξw+ (1−ξ)v)dξ.

2.2.1 Finite difference method on fixed grid

Given grid points x0, ...,xN , we interpret them as quadrature points with quadra-
ture weights κ0, ...,κN and approximate the L2 inner product by a weighted
inner product:

〈u, v〉L2 =
∫
Ω

u(x)v(x)dx '
N∑

i=0
κi u(xi )v(xi ) = uT D(κ)v = 〈u,v〉κ ,
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2.2 Problem statement and fixed grid discretization

where D(κ) = diag(κ0, ...,κN ). Next, assuming that we have a consistent mesh
dependent approximation Ix(u) to I[u], we discretize δI

δu by asserting that〈
δIx

δu
(u),v

〉
κ

= d

dε

∣∣∣∣
ε=0

Ix(u+εv) ∀v ∈RN+1

that is, (
δIx

δu
(u)

)T

D(κ)v = (∇Ix(u))T v ∀v ∈RN+1,

from which we conclude that δIx
δu (u) = D(κ)−1∇Ix(u). Using δIx

δu as a discretiza-
tion of δI

δu and approximating S(x,u J ) by a matrix Sd (u), skew-symmetric with
respect to 〈·, ·〉κ, we obtain a discretization of (2.2.2) as:

u̇ = Sx(u)∇Ix(u), (2.2.4)

where Sx(u) = Sd (u)D(κ)−1. This ODE is of the form (2.2.3), so by using
a discrete gradient ∇Ix, and a skew-symmetric, time-discrete approximation
Sx(un ,un+1) to Sx(u), we obtain the following scheme for which Ix(un+1) =
Ix(un):

un+1 −un =∆tSx(un ,un+1)∇Ix(un ,un+1). (2.2.5)

2.2.2 Adaptive discretization

Using adaptivity, we update the location of the grid points at each time step.
Let xn and xn+1 denote the collection of grid points at the previous and next
time steps. We must transfer un to the new parameter set before advancing in
time, for example by interpolating using splines. Let û denote the values of
un transferred onto xn+1. The transfer operation called preserving if Ixn+1 (û) =
Ixn (un). If the transfer is preserving, we may take the next time step with a
preserving scheme, e.g.

un+1 − û =∆tSxn+1 (un+1, û)∇Ixn+1 (un+1, û),

for which Ixn+1 (un+1)−Ixn (un) = 0. If the transfer is non-preserving, as is the
case with spline interpolation in general, we need to add a correction term to
recover the preservation property. The scheme

un+1 − û =∆tSxn+1 (un+1, û)∇Ixn+1 (un+1, û)− (Ixn+1 (û)−Ixn (un))Φ〈
∇Ixn+1 (un+1, û),Φ

〉 (2.2.6)

is first integral preserving in the sense that Ixn+1 (un+1)− Ixn (un) = 0. The
correcting direction Φ should be chosen so the correction is minimal and
〈∇Ixn+1 (un+1, û),Φ〉 6= 0. We use Φ = ∇Ixn+1 (un+1, û) in the numerical experi-
ment.
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2.3 Numerical experiments

We applied our method to the Sine-Gordon Equation, a nonlinear hyperbolic
PDE in 1+1 dimensions which has soliton solutions and therefore is a candidate
for moving mesh adaptivity, where grid points are redistributed at each time
step to cluster in areas of large gradients. Four methods were tested: a fixed
mesh method with energy preservation by discrete gradients (DG) as in (2.2.5);
a moving mesh method with preservation by discrete gradients (DGMM) as
in (2.2.6); a non-preserving fixed grid method (MP), and a non-preserving
moving mesh method (MPMM). The latter two were included to have a basis
for comparison of our methods with standard methods. They are based on a
finite difference scheme with spatial discretization by central finite differences
and time discretization by the implicit midpoint rule. Cubic spline interpolation
was used for transferring in the adaptive methods (DGMM and MPMM).

2.3.1 Adaptivity

Concerning adaptivity of the mesh, we used a simple moving mesh method
based on an equidistribution principle which can be applied to problems in one
spatial dimension. When Ω = [a,b] is split into N intervals {[xi , xi+1]}i=N−1

i=0 ,
one requires that the x j be chosen such that

xi+1∫
xi

√
1+u2

x dx = 1

N

b∫
a

√
1+u2

x dx ∀i .

That is, we require that the arc length of u is equidistributed over each interval.
We only have an approximation of u, so a finite difference approximation was
used to obtain approximately equidistributing grids with de Boor’s method as
in [9, pp. 36-38].

2.3.2 Sine-Gordon Equation

The Sine-Gordon Equation is stated in initial value problem form as:

ut t −uxx + sin(u) = 0, (x, t ) ∈R× [0,T ], u(x,0) = f (x), ut (x,0) = g (x).
(2.3.1)

We considered a finite domain [−L,L]×[0,T ] with boundary conditions u(−L) =
u(L) and ut (−L) = ut (L). One of the first integrals of the equation is then

I[u] =
L∫

−L

1

2
u2

t +
1

2
u2

x +1−cos(u)dx.
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2.3 Numerical experiments

Introducing v = ut to get a first order in time PDE,[
ut

vt

]
=

[
v

uxx − sin(u)

]
,

we have the first integral

I[u, v] =
∫
R

1

2
v2 + 1

2
u2

x +1−cos(u)dx.

Finding the variational derivative of this, one can interpret the equation in the
form (2.2.2) with S and δI

δu as follows:

S =
[

0 1
−1 0

]
,

δI
δu

[u, v] =
[

sin(u)−uxx

v

]
.

Next, we approximate I by quadrature with points {xi }N
i=0 and weights {κi }N

i=0,
then applying central differences δ to approximate spatial derivatives. Periodic
expansions are used at the endpoints.

I[u, v] '
N∑

i=0
κi

(
1

2
v2

i +
1

2
u2

x,i +1−cos(ui )

)

'
N∑

i=0
κi

1

2
v2

i +
1

2

(
δui

δxi

)2

+1−cos(ui )

 := Ix(u).

The periodic boundary conditions are enforced by setting u0 = uN and v0 = vN .
The κi were chosen as the quadrature weights associated with the composite
trapezoidal rule, i.e.

κ0 = x1 −x0

2
, κN = xN −xN−1

2
, κi = xi+1 −xi−1

2
, i = 1, ..., N −1.

Furthermore, S was approximated by the matrix

Sd =
[

0 I
−I 0

]
,

where the I are N ×N identity matrices. The exact solution considered was

u(x, t ) = 4tan−1


sinh

(
ctp

1− c2

)

c cosh

(
xp

1− c2

)
 .
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This is a kink-antikink system, an interaction between two solitons, each mov-
ing in different directions with speed c, resulting in two wave fronts traveling
in opposite directions. The wave fronts become steeper as c → 1; in this test,
we chose c = 0.99. The left hand plot of 2.1 shows the grid point placements
over time when using DGMM. The areas of high grid point density are where
the two fronts are located. The right hand plot shows the error after 200 time
steps as a function of N . It is clear that using moving mesh methods increases
the accuracy of the DG method drastically, to the point where it provides better
solutions than the MP method. The MPMM method was unstable and did not
produce any results except when using restrictively small time steps, so results
using this are omitted here.

Figure 2.1: Left: Grid movement. Each line represents the path of one grid point in
time. Right: Error at stopping time. T = 8, ∆t = 0.04, L = 15. DG: Discrete Gradient.
MP: MidPoint. MM: Moving Mesh.
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Adaptive energy preserving methods for
partial differential equations

Abstract. A framework for constructing integral preserving numerical
schemes for time-dependent partial differential equations on non-uniform
grids is presented. The approach can be used with both finite difference and
partition of unity methods, thereby including finite element methods. The
schemes are then extended to accommodate r -, h- and p-adaptivity. To illus-
trate the ideas, the method is applied to the Korteweg–de Vries equation and
the sine-Gordon equation. Results from numerical experiments are presented.

3.1 Introduction

Difference schemes with conservation were introduced by Courant, Friedrichs
and Lewy in [8], where a discrete conservation law for a finite difference ap-
proximation of the wave equation was derived. Their methods are often called
energy methods [11] or energy-conserving methods [18], although the con-
served quantity is often not energy in the physical sense. The primary motiva-
tion for developing conservative methods was originally to devise a norm that
could guarantee global stability. This was still an objective, in addition to prov-
ing existence and uniqueness of solutions, when the energy methods garnered
newfound interest in the 1950s and 1960s, resulting in new developments such
as generalizations of the methods and more difference schemes, summarized
by Richtmyer and Morton in [26].

In the 1970s, the motivation behind studying schemes that preserve invari-
ant quantities changed, as the focus shifted to the conservation property itself.
Li and Vu-Quoc presented in [18] a historical survey of conservative methods
developed up to the early 1990s. They state that this line of work is motivated
by the fact that in some situations, the success of a numerical solution will
depend on its ability to preserve one or more of the invariant properties of the
original differential equation. In addition, as noted in [7,14], there is the general
idea that transferring more of the properties of the original continuous dynam-
ical system over to a discrete dynamical system may lead to a more accurate
numerical approximation of the solution, especially over long time intervals.

In recent years, there has been a greater interest in developing systematic
techniques applicable to larger classes of differential equations. Hairer, Lubich
and Wanner give in [14] a presentation of geometric integrators for differen-
tial equations, i.e. methods for solving ordinary differential equations (ODEs)
that preserve a geometric structure of the system. Examples of such geometric
structures are symplectic structures, symmetries, reversing symmetries, isospec-
trality, Lie group structure, orthonormality, first integrals, and other invariants,
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such as volume and invariant measure.

In this paper we will be concerned with the preservation of first integrals
of PDEs. From the ODE literature we find that the most general methods for
preserving first integrals are tailored schemes, in the sense that the vector field
of the ODE does not by itself provide sufficient information, so the schemes
make explicit use of the first integral. An obvious approach in this respect is
projection, where the solution is first advanced using any consistent numerical
scheme and then this approximation is projected onto the appropriate level
set of the invariant. In the same class of tailored methods one also has the
discrete gradient methods, usually attributed to Gonzalez [13]. For the subclass
of canonical Hamiltonian systems, the energy can be preserved by means of a
general purpose method called the averaged vector field method, see e.g. [25].

The notion of discrete gradient methods for ordinary differential equations
has a counterpart for partial differential equations called the discrete variational
derivative method. Such schemes have been developed since the late 1990s in
a number of articles by Japanese researchers such as Furihata, Matsuo, Sugi-
hara, and Yaguchi. A relatively recent account of this work can be found in
the monograph [12]. More recently, the development of integral preserving
schemes for PDEs has been systematised and eased, in particular by using the
aforementioned tools from ordinary differential equations, see for instance [6,9].
Most of the schemes one finds in the literature are based on a finite difference
approach, and usually on fixed, uniform grids. There are however some excep-
tions. Yaguchi, Matsuo and Sugihara presented in [27,28] two different discrete
variational derivative methods on fixed, non-uniform grids, specifically defined
for certain classes of PDEs. Non-uniform grids are of particular importance for
multidimensional problems, since the use of uniform grids will greatly restrict
the types of domains possible to discretize. Another important consequence of
being able to use non-uniform grids is that it allows for the use of time-adaptive
spatial meshes for solving partial differential equations. Adaptive energy pre-
serving schemes for the Korteweg–de Vries and Cahn–Hilliard equations have
been developed recently [22] by Miyatake and Matsuo. The main objective of
this paper is to propose a general framework for numerical methods for PDEs
that combine mesh adaptivity with first integral conservation.

Several forms of adaptive methods exist, and they can roughly be catego-
rized as r -, h- and p-adaptive. When applying r -adaptivity, one keeps the
number of degrees of freedom constant while modifying the mesh at each time
step to e.g. cluster in problematic areas such as boundary layers or to follow
wave fronts. When applying the Finite Difference Method (FDM) or the Finite
Element Method (FEM), moving mesh methods may be used for r -adaptivity,
some examples of which may be found in [16, 17, 29]. When using Partition of
Unity Methods (PUM) (and in particular when using FEM), h- and p-adaptivity
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relate to adjusting the number of elements and the basis functions used on the
elements, respectively. For PUM methods there exist strategies for h- and p-
adaptivity based both on a priori and a posteriori error analysis [1]. Common
to all of these strategies is that, based on estimated function values in preceding
time steps, one can suggest improved discretization parameters for the next
time step. In the FDM approach, these discretization parameters consist of the
mesh points x, while in the PUM approach the parameters encompass informa-
tion about both the mesh and the basis functions. We will, in general, denote
a collection of discretization parameters by p, and assume that the discretiza-
tion parameters are changed separately from the degrees of freedom u of the
problem when using adaptive methods. That is, starting with an initial set of
discretization parameters p0 and initial values u0, one first decides upon p1

before calculating u1, then finding p2, then u2, etc., in a decoupled fashion.
A first integral of a PDE is a functional I on an infinite-dimensional space,

yet our numerical methods will reduce the problem to a finite-dimensional
setting. Therefore, we cannot preserve the exact value of the first integral;
instead, we will preserve a consistent approximation to the first integral, Ip(u).
The approximation will be dependent on the discretization parameters p and,
since adaptivity alters the values of p, we will therefore aim to preserve the
value of the approximated first integral across all discretization parameters,
i.e. we will require that Ipn+1 (un+1) = Ipn (un). Here, and in the following,
superscripts denote time steps unless otherwise specified.

In this article, we present a method for developing adaptive numerical
schemes that conserve an approximated first integral. In Section 2, the PDE
problem is stated, and two classes of first integral preserving methods using
arbitrary, constant discretization parameters are presented; one using an FDM
approach and the other a PUM approach for spatial discretization. A connec-
tion to existing methods is then established. In Section 3, we present a way of
adding adaptivity to the methods from Section 2 and the modifications needed
to retain the first integral preservation property, before showing that certain
projection methods form a subclass of the methods thus obtained. Section 4
contains examples of the methods applied to two PDEs and numerical results as-
sessing the quality of the numerical solutions as compared to a standard implicit
method.

3.2 Spatial discretization with fixed mesh

3.2.1 Problem statement

Consider a partial differential equation

ut = f (x,u J ), x ∈Ω⊆Rd , u ∈B ⊆ L2, (3.2.1)
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where u J denotes u itself and its partial derivatives of any order with respect
to the spatial variables x1, ...., xd . We shall not specify the space B further,
but assume that it is sufficiently regular to allow all operations used in the
following. For ease of reading, all t-dependence will be suppressed in the
notation wherever it is irrelevant. Also, from here on, square brackets are used
to denote dependence on a function and its partial derivatives of any order with
respect to the independent variables t and x1, ..., xd . We recall the definition of
the variational derivative of a functional H [u] as the function δH

δu [u] satisfying〈
δH

δu
[u], v

〉
L2

= d

dε

∣∣∣∣
ε=0

H [u +εv] ∀v ∈B, (3.2.2)

and define a first integral of (3.2.1) to be a functional I[u] satisfying〈
δI
δu

[u], f (x,u J )

〉
L2

= 0, ∀u ∈B.

We may observe that I[u] is preserved over time, since this implies

dI
dt

=
〈
δI
δu

[u],
∂u

∂t

〉
L2

= 0.

Furthermore, we may observe that if there exists an operator S(x,u J ), skew-
symmetric with respect to the L2 inner product, such that

f (x,u J ) = S(x,u J )
δI
δu

[u],

then I[u] is a first integral of (3.2.1), and we can state (3.2.1) in the form

ut = S(x,u J )
δI
δu

[u]. (3.2.3)

This can be considered as the PDE analogue of an ODE with a first integral, in
which case we have a system

du

dt
= S(u)∇uI (u), (3.2.4)

where S(u) is a skew-symmetric matrix [20]. The gradient is defined as usual,
but for clarity in later use we have added a subscript to specify that it is a vector
of partial derivatives with respect to the coordinates of u. Note that Hamiltonian
equations are contained of this class of ODEs. For such differential equations,
there exist numerical methods preserving the first integral I (u), for instance the
discrete gradient methods, which are of the form

un+1 −un

∆t
= S̄(un ,un+1)∇I (un ,un+1),
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where S̄(un ,un+1) is a consistent skew-symmetric time-discrete approximation
to S(u) and ∇I (v,u) is a discrete gradient of I (u), i.e. a function satisfying

(∇I (v,u))T (u−v) = I (u)− I (v), (3.2.5)

∇I (u,u) =∇uI (u). (3.2.6)

There are several possible choices of discrete gradients available, one of which
is the Average Vector Field (AVF) discrete gradient [6], given by

∇I (v,u) =
1∫

0

∇uI (ξu+ (1−ξ)v)dξ,

which will be used for numerical experiments in the final chapter. Our approach
to solving (3.2.1) on non-uniform grids is based upon considering the PDE in
the form (3.2.3), reducing it to a system of ODEs of the form (3.2.4) and apply-
ing a discrete gradient method. This is done by finding a discrete approximation
Ip to I and using this to obtain a discretization in the spatial variables, which is
achieved through either a finite difference approach or a variational approach.

3.2.2 Finite difference method

In the finite difference approach, we restrict ourselves to obtaining approximate
values of u at the grid points x0, ...,xM , which can be interpreted as quadrature
points with some associated nonzero quadrature weights κ0, ...,κM . The grid
points constitute the discretization parameters p. We can then approximate the
L2 inner product by quadrature to arrive at a weighted inner product:

〈u, v〉L2 =
∫
Ω

u(x)v(x)dx '
M∑

i=0
κi u(xi )v(xi ) = uT D(κ)v = 〈u,v〉κ ,

where D(κ) = diag(κ0, ...,κM ). Assume that there exists a consistent approxi-
mation Ip(u) to the functional I[u], dependent on the values of u at the points
xi . Then, we can characterize the discretized variational derivative by asserting
that 〈

δIp

δu
(u),v

〉
κ

= d

dε

∣∣∣∣
ε=0

Ip(u+εv) ∀v ∈RM+1,

meaning (
δIp

δu
(u)

)T

D(κ)v = (∇uIp(u))T v ∀v ∈RM+1,
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from which we conclude that

δIp

δu
(u) = D(κ)−1∇uIp(u). (3.2.7)

Using this as a discretization of δI
δu [u] and approximating S(x,u J ) by a matrix

Sd (u), skew-symmetric with respect to 〈·, ·〉κ, we obtain a discretization of
(3.2.3) as:

du

dt
= Sp(u)∇uIp(u), (3.2.8)

where Sp(u) = Sd (u)D(κ)−1. This system of ODEs is of the form (3.2.4), since

Sp(u)T = (Sd (u)D(κ)−1)T

= D(κ)−1Sd (u)T D(κ)D(κ)−1

=−D(κ)−1D(κ)Sd (u)D(κ)−1

=−Sd (u)D(κ)−1

=−Sp(u).

This allows us to apply first integral preserving methods for systems of ODEs
to solve the spatially discretized system. For example, we may consider using
a discrete gradient ∇Ip, and a skew-symmetric, time-discrete approximation
Sp(un ,un+1) to Sp(u), where un = u(tn), tn = n∆t . Then, the following scheme
will preserve the approximated first integral Ip in the sense that Ip(un+1) =
Ip(un):

un+1 −un

∆t
= Sp(un ,un+1)∇Ip(un ,un+1). (3.2.9)

3.2.3 Partition of unity method

One may also approach the problem of spatially discretizing the PDE through
the use of variational methods such as the Partition of Unity Method (PUM)
[21], which generalizes the Finite Element Method (FEM). Here, the variational
structure of the functional derivative can be utilized in a natural way, such that
one avoids having to approximate S(x,u J ). We begin by stating a weak form of
(3.2.3). Then, the problem consists of finding u ∈B such that

〈
ut , v

〉
L2 =

〈
S(x,u J )

δI
δu

[u], v

〉
L2

=−
〈
δI
δu

[u],S(x,u J )v

〉
L2

∀v ∈B.

(3.2.10)
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3.2 Spatial discretization with fixed mesh

Employing a Galerkin formulation, we restrict the search to a finite dimensional
subspace Bh = span{ϕ0, ...ϕM } ⊆B, and approximate u by the function

uh(x, t ) =
M∑

i=0
ui (t )ϕi (x).

We denote by p the collection of discretization parameters defining Bh; this
includes information about mesh points, element types and shapes of basis
functions. Furthermore, we define the canonical mapping Φp : RM+1 → Bh

given by

Φp(u) =
M∑

i=0
uiϕi , (3.2.11)

and the discrete first integral Ip by

Ip(u) = I(Φp(u)).

The following lemma will prove useful later in the construction of the method:

Lemma 3.1. For any uh , v ∈Bh ,

d

dε

∣∣∣∣
ε=0

I(uh +εv) = (∇uIp(u))T v.

Proof.

d

dε

∣∣∣∣
ε=0

I(uh +εv) = d

dε

∣∣∣∣
ε=0

I(Φp(u+εv))

=
〈
δI
δu

[Φp(u+εv)],
d

dε
Φp(u+εv)

〉
L2

∣∣∣∣
ε=0

=
〈
δI
δu

[Φp(u+εv)], (∇uΦp(u+εv))T v

〉
L2

∣∣∣∣
ε=0

=
〈
δI
δu

[Φp(u)], (∇uΦp(u))T v

〉
L2

=
M∑

i=0
vi

〈
δI
δu

[Φp(u)],
∂

∂ui
Φp(u)

〉
L2

=
M∑

i=0
vi

∂

∂ui
I[Φp(u)] =

M∑
i=0

vi
∂

∂ui
Ip(u) = (∇uIp(u))T v.
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Adaptive energy preserving methods for partial differential equations

We observe that for u, v ∈Bh , the L2 inner product has a discrete counterpart:

〈u, v〉L2 =
M∑

i=0

M∑
j=0

ui v j

〈
ϕi ,ϕ j

〉
L2

= uT Av = 〈u,v〉A

with the symmetric positive definite matrix A given by Ai j =
〈
ϕi ,ϕ j

〉
L2

. Note

also that equation (3.2.10) is satisfied in Bh if it is satisfied for all basis functions
ϕ j . The Galerkin form of the problem therefore consists of finding ui (t ) such
that

M∑
i=0

dui

dt

〈
ϕi ,ϕ j

〉
L2

=−
〈
δI
δu

[uh],S(x,uh,J )ϕ j

〉
L2

∀ j ∈ {0, ..., M }. (3.2.12)

This weak form is rather unwieldy and does not give rise to a system of the
form (3.2.4), so in order to make further progress, we consider the projection
of δI

δu [uh] onto Bh:

δI
δu

h

[uh] =
M∑

i=0
wh

i [uh]ϕi (x) =
M∑

i=0
wi (u)ϕi (x),

where wi (u) = wh
i [Φ(u)] = wh

i [uh] are coefficients that will be characterized
later. Replacing δI

δu [uh] by its projection in (3.2.12) gives the approximate
weak form:

M∑
i=0

dui

dt

〈
ϕi ,ϕ j

〉
L2

=−
M∑

i=0
wi (u)

〈
ϕi ,S(x,uh,J )ϕ j

〉
L2

∀ j ∈ {0, ..., M }.

Thus, we obtain a system of equations for the coefficients ui :

A
du

dt
=−B(u)w(u), (3.2.13)

with the skew-symmetric matrix B(u) given by B(u) j i =
〈
ϕi ,S(x,Φ(u)J )ϕ j

〉
L2

.
Furthermore, we may characterize the vector w(u) by the following argument:

w(u)T Av =
〈
δI
δu

h

[uh], v

〉
L2

=
〈
δI
δu

[uh], v

〉
L2

= d

dε

∣∣∣∣
ε=0

I(uh +εv) = (∇uIp(u))T v,

where the last equality holds by Lemma 3.1. This holds for all v ∈ RM+1, and
thus

w(u) = A−1∇uIp(u). (3.2.14)
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3.2 Spatial discretization with fixed mesh

Inserting (3.2.14) into (3.2.13) and left-multiplying by A−1, we are left with an
ODE for the coefficients ui :

du

dt
= Sp(u)∇uIp(u). (3.2.15)

Here, Sp(u) = −A−1B(u)A−1 is a skew-symmetric matrix, and the system is
thereby of the form (3.2.4), meaning Ip can be preserved numerically using e.g.
discrete gradient methods as in equation (3.2.9).

3.2.4 Discrete variational derivative methods

Let us now define a general framework for the discrete variational derivative
methods that encompass the methods presented by Furihata, Matsuo and coau-
thors in a number of publications including [10–12, 27, 28].

Definition 3.1. Let Ip be a consistent approximation to the functional I [u]
discretized on p given by grid points xi and quadrature weights κi , i = 0, ..., M .
Then δIp

δ(v,u) (v,u) is a discrete variational derivative of Ip(u) if it is a continuous
function satisfying 〈

δIp

δ(v,u)
,u−v

〉
κ

= Ip(u)−Ip(v), (3.2.16)

δIp

δ(u,u)
= δIp

δu
(u) , (3.2.17)

and the discrete variational derivative methods for solving PDEs on the form
(3.2.3) are given by

un+1 −un

∆t
= Sd (un ,un+1)

δIp

δ(un ,un+1)
, (3.2.18)

where Sd (un ,un+1) is a time-discrete approximation to Sd (u), skew-symmetric
with respect to the inner product 〈·, ·〉κ.

Proposition 3.1. A discrete gradient method (3.2.9) applied to the system
of ODEs (3.2.8) or (3.2.15) is equivalent to a discrete variational derivative
method as given by (3.2.18), with

Sd (un ,un+1) = Sp(un ,un+1)D (κ) ,

and the discrete variational derivative

δIp

δ(v,u)
= D(κ)−1∇Ip(v,u) (3.2.19)

satisfying (3.2.16)-(3.2.17).
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Adaptive energy preserving methods for partial differential equations

Proof. Applying (3.2.5), we find, for the discrete variational derivative (3.2.19),〈
δIp

δ(v,u)
,u−v

〉
κ

=
〈

D(κ)−1∇Ip(v,u),u−v
〉
κ

=
(
D(κ)−1∇Ip

(
v,u

))T
D(κ) (u−v)

=∇Ip
(
v,u

)T (u−v) = Ip(u)−Ip(v),

and hence (3.2.16) is satisfied. Furthermore, applying (3.2.6) and (3.2.7),

δIp

δ(u,u)
= D(κ)−1∇Ip(u,u) = D(κ)−1∇uIp (u) = δIp

δu
(u)

and (3.2.17) is also satisfied.

Hence, all discrete variational derivative methods as given by (3.2.18) can
be expressed as discrete gradient methods on the system of ODEs (3.2.8) or
(3.2.15) obtained by discretizing (3.2.3) in space, and vice versa.

3.3 Adaptive discretization

3.3.1 Mapping solutions between parameter sets

Assuming that adaptive strategies are employed, one would obtain a new set of
discretization parameters p at each time step. After such a p has been found, the
solution using the previous parameters must be transferred to the new parameter
set before advancing to the next time step. This transfer procedure can be done
in either a preserving or a non-preserving manner. Let pn , un , pn+1 and un+1

denote the discretization parameters and the numerical values obtained at the
current time step and next time step, respectively. Also, let û denote the values
of un transferred onto pn+1 by whatever means. We call the transfer operation
preserving if Ipn+1 (û) = Ipn (un). If the transfer is preserving, then the next time
step can be taken with a preserving scheme, e.g.

un+1 − û

∆t
= Spn+1 (û,un+1)∇Ipn+1 (û,un+1),

which is preserving in the sense that

Ipn+1 (un+1)−Ipn (un) = Ipn+1 (un+1)−Ipn+1 (û)

=
〈
∇Ipn+1 (û,un+1),un+1 − û

〉
=∆t

〈
∇Ipn+1 (û,un+1),Spn+1 (û,un+1)∇Ipn+1 (û,un+1)

〉
= 0,
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3.3 Adaptive discretization

since Spn+1 (û,un+1) is skew-symmetric. If non-preserving transfer is used, cor-
rections are needed in order to obtain a preserving numerical method.

Proposition 3.2. The scheme

un+1 = û− (Ipn+1 (û)−Ipn (un))z〈
∇Ipn+1 (û,un+1),z

〉 +∆tSpn+1 (û,un+1)∇Ipn+1 (û,un+1), (3.3.1)

where z is an arbitrary vector chosen such that
〈
∇Ipn+1 (û,un+1),z

〉
6= 0, is first

integral preserving in the sense that Ipn+1 (un+1)−Ipn (un) = 0.

Proof.

Ipn+1 (un+1)−Ipn (un) = Ipn+1 (un+1)−Ipn+1 (û)+Ipn+1 (û)−Ipn (un)

=
〈
∇Ipn+1 (û,un+1),un+1 − û

〉
+Ipn+1 (û)−Ipn (un)

=
〈
∇Ipn+1 (û,un+1),un+1 − û+ (Ipn+1 (û)−Ipn (un))z〈

∇Ipn+1 (û,un+1),z
〉 〉

=∆t
〈
∇Ipn+1 (û,un+1),Spn+1 (û,un+1)∇Ipn+1 (û,un+1)

〉
= 0.

The second equality follows from (3.2.5), the fourth equality from the scheme
(3.3.1), and the last equality follows from the skew-symmetry of Spn+1 .

The correcting direction z should be chosen so as to obtain a minimal cor-
rection, and such that 〈∇Ipn+1 (û,un+1),z〉 6= 0. One possibility is simply tak-
ing z = ∇Ipn+1 (û,un+1). In the FDM case one may alternatively choose z =
D(κ)−1∇Ipn+1 (û,un+1), and in the PUM case, z = A−1∇Ipn+1 (û,un+1).

When using the PUM formulation, one may obtain a method for preserving
transfer in the following manner. Any changes through e.g. r - p- and/or
h-refinement between time steps will result in a change in the shape and/or
number of basis functions. Denote by Bh = span{ϕi }M

i=0 the trial space from
the current time step and by B̂h = span{ϕ̂i }M̂

i=0 the trial space for the next time
step, and note that in general, M 6= M̂ . We do not concern ourselves with how
the new basis is found, but simply acknowledge that the basis changes through
adaptivity measures as presented in e.g. [16] or [1]. Our task is now to transfer
the approximation uh from Bh to B̂h , obtaining an approximation ûh , while
conserving the first integral, i.e. I[uh] = I[ûh]. This can be formulated as a
constrained minimization problem:

min
ûh∈B̃h

||ûh −uh ||2L2 s.t. I[ûh] = I[uh].
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Adaptive energy preserving methods for partial differential equations

We observe that

||ûh −uh ||2L2 =
M̂∑

i=0

M̂∑
j=0

ûi û j Âi j −2
M̂∑

i=0

M∑
j=0

ûi un
j Ci j +

M∑
i=0

M∑
i=0

un
i un

j Ai j

= ûT Âû−2ûT C un +un Aun ,

where Ai j = 〈ϕi ,ϕ j 〉L2 , Âi j = 〈ϕ̂i ,ϕ̂ j 〉L2 and Ci j = 〈ϕ̂i ,ϕ j 〉L2 . Also observing
that

I[ûh] = Ipn+1 (û), I[uh] = Ipn (un),

the problem can be reformulated as

min
û∈RM̂+1

ûT Âû−2ûT C un +un Aun s.t. Ipn+1 (û)−Ipn (un) = 0.

This is a quadratic minimization problem with one nonlinear equality constraint.
Using the method of Lagrange multipliers, we find û as the solution of the
nonlinear system of equations

Âû−C un −λ∇ûIpn+1 (û) = 0

Ipn+1 (û)−Ipn (un) = 0,

which can be solved numerically using a suitable nonlinear solver.
In general, applicable also in the FDM case, given ū obtained by interpolat-

ing un onto pn+1 in a non-preserving manner, a preserving transfer operation
is obtained by solving the system of equations

û− ū−λ∇ûIpn+1 (û) = 0

Ipn+1 (û)−Ipn (un) = 0.

3.3.2 Projection methods

Let the function fp :RM ×RM →RM be such that

un+1 −un

∆t
= fp(un ,un+1) (3.3.2)

defines a step from time tn to time tn+1 of any one-step method applied to
(3.2.1) on the fixed grid represented by the discretization parameters p. Then
we define one step of an integral preserving linear projection method un 7→ un+1

from pn to pn+1 by

1. Interpolate un onto pn+1 by whatever means to get û,

2. Integrate û one time step by computing ũ = û+∆t fpn+1

(
û, ũ

)
,
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3.3 Adaptive discretization

3. Compute un+1 by solving the system of M +1 equations un+1 = ũ+λz
and Ipn+1 (un+1) = Ipn (un), for un+1 ∈RM and λ ∈R, where the direction
of projection z is typically an approximation to ∇uIpn+1 (un+1).

By utilizing the fact that for a method defined by (3.3.2) there exists an
implicitly defined map Ψp :RM →RM such that un+1 =Ψpun , we define

gp(un) := Ψpun −un

∆t
,

and may then write the tree points above in an equivalent, more compact form
as: Compute un+1 ∈RM and λ ∈R such that

un+1 − û−∆t gpn+1

(
û
)−λz = 0, (3.3.3)

Ipn+1 (un+1)−Ipn (un) = 0, (3.3.4)

where û is un interpolated onto pn+1 by an arbitrary procedure.
The following theorem and proof are reminiscent of Theorem 2 and its proof

in [23], whose subsequent corollary shows how linear projection methods for
solving ODEs are a subset of discrete gradient methods.

Theorem 3.1. Let gp : RM → RM be a consistent discrete approximation of f
in (3.2.1) and let ∇Ip(un ,un+1) be any discrete gradient of the consistent ap-
proximation Ip(u) of I [u] defined by (3.2.2) on the grid given by discretization
parameters p. If we set Spn+1 in (3.3.1) to be

Spn+1 (û,un+1) = gpn+1 (û)zT −zgpn+1 (û)T〈
∇Ipn+1

(
û,un+1

)
,z

〉 , (3.3.5)

then the linear projection method for solving PDEs on a moving grid, given by
(3.3.3)-(3.3.4), is equivalent to the discrete gradient method on moving grids,
as given by (3.3.1).

Proof. For better readability, take ∇I :=∇Ipn+1

(
û,un+1

)
. Assume that (3.3.3)-

(3.3.4) are satisfied. By applying (3.3.4), we get that

Ipn (un)−Ipn+1 (û) = Ipn+1 (un+1)−Ipn+1 (û)

=
〈
∇I ,un+1 − û

〉
=∆t

〈
∇I , gpn+1 (û)

〉
+λ

〈
∇I ,z

〉
,

and hence

λ= Ipn (un)−Ipn+1 (û)〈
∇I ,z

〉 −∆t

〈
∇I , gpn+1 (û)

〉
〈
∇I ,z

〉 (3.3.6)
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Adaptive energy preserving methods for partial differential equations

Substituting this into (3.3.3), we get

un+1 = û+ Ipn (un)−Ipn+1 (û)〈
∇I ,z

〉 z+∆t

gpn+1

(
û
)−

〈
∇I , gpn+1 (û)

〉
〈
∇I ,z

〉 z

 ,

where

gpn+1

(
û
)−

〈
∇I , gpn+1 (û)

〉
〈
∇I ,z

〉 z = ∇ITzgpn+1 (û)−∇ITgpn+1 (û)z〈
∇I ,z

〉
= gpn+1 (û)zT∇I−zgpn+1 (û)T∇I〈

∇I ,z
〉

and thus (3.3.1) is satisfied, with Spn+1 as given by (3.3.5). Conversely, if un+1

satisfies (3.3.1), then (3.3.4) is satisfied. Furthermore, inserting (3.3.5) into
(3.3.1) and following the above deduction backwards, we get (3.3.3), with λ
defined by (3.3.6).

Since (3.3.5) defines a particular set of choices for Spn+1 , the linear pro-
jection methods on moving grids constitute a subset of all possible discrete
gradient methods on moving grids as defined by (3.3.1). Note also that, since
the linear projection methods are independent of the discrete gradient, each
linear projection method defines an equivalence class of the methods (3.3.1),
uniquely defined by the choice of gpn+1 .

3.3.3 Family of discretized integrals

At the core of the methods considered here is the notion that an approximation
to the first integral I is preserved, and that this approximation is dependent
on the discretization parameters which may change from iteration to iteration.
That is, we have a family of discretized first integrals Ip, and at each time step
the discretized first integral is exchanged for another. For each set of discretiza-
tion parameters p, there is a corresponding set of degrees of freedom u, in
which we search for a u such that Ip(u) is preserved. This can be interpreted
as a fiber bundle with base space B as the set of all possible discretization
parameters p, and fibers Fp as the sets of all degrees of freedom such that
the discretized first integral is equal to the initial discretized first integral, i.e.
Fp = {u ∈RM |Ip(u) = Ip0 (u0)}. A similar idea, although without energy preser-
vation, has been discussed by Bauer, Joshi and Modin in [2].
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3.4 Numerical experiments

3.4 Numerical experiments

To provide examples of the application of our method and to investigate its
accuracy, we have applied it to two one-dimensional PDEs: the sine-Gordon
equation and the Korteweg–de Vries (KdV) equation. The choice of these
equations were made because they both possess traveling wave solutions in the
form of solitons, providing an ideal situation for r -adaptivity, which allows the
grid points to cluster around wave fronts. The following experiments consider
r -adaptivity only, and not p- or h-adaptivity. The sine-Gordon equation is
solved using the FDM formulation of section 3.2.2, while the KdV equation is
solved using the PUM formulation of section 3.2.3.

We wish to compare our methods to standard methods on fixed and adap-
tive meshes. This gives us four methods to consider: Fixed mesh methods
with energy preservation by discrete gradients (DG), adaptive mesh methods
with preservation by discrete gradients (DGMM), a non-preserving fixed grid
method (MP), and the same method with adaptive mesh (MPMM). The former
two methods are those described earlier in the paper, while the latter two are
made differently for the two equations. In the sine-Gordon case, we use a finite
difference scheme where spatial discretization is done using central finite differ-
ences and time discretization using the implicit midpoint rule. In the KdV case,
the spatial discretization is performed the same way as for the discrete gradi-
ent schemes, while the time discretization is done using the implicit midpoint
rule. The mesh adaptivity procedure for the DGMM and MPMM schemes is
presented in the next subsection.

The MPMM scheme for the sine-Gordon equation appeared unstable un-
less restrictively short time steps were used, and the results of those tests are
therefore omitted from the following discussion. It is difficult to analyze the
MPMM scheme and pinpoint an exact cause for this instability. However, it
is worth noting that the other three schemes have preservation properties that
should contribute to their stability; the DG and DGMM schemes have energy
preservation properties, and the semidiscretization used for the sine-Gordon
equation gives rise to a Hamiltonian system of equations which means that the
MP scheme, which is symplectic, should perform well. On the other hand, the
moving mesh strategy used breaks the symplecticity property in the MPMM
scheme; specifically, the transfer strategies as presented in the next subsection
do not preserve symplecticity. The results using MPMM for the KdV equation
were better, and are presented.

3.4.1 Adaptivity

Concerning adaptivity of the mesh, we used a simple method for r -adaptivity
which can be applied to both FDM and FEM problems in one spatial dimension.
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Adaptive energy preserving methods for partial differential equations

When applying moving mesh methods, one can either couple the evolution of
the mesh with the PDE to be solved through a Moving Mesh PDE [15] or use
the rezoning approach, where function values and grid points are calculated
in an intermittent fashion. Since our method is based on having a new set of
grid points at each time step, and not coupling the evolution of the mesh to the
PDE, the latter approach was used. It is based on an equidistribution principle,
meaning that when Ω= [a,b] is split into M intervals, one requires that

xi+1∫
xi

ω(x)dx = 1

M

b∫
a

ω(x)dx,

where the monitor function ω is a function measuring how densely grid points
should lie, based on the value of u. The choice of monitor function is problem
dependent, and choosing it optimally may require considerable research. A
variety of monitor functions have been studied for certain classes of problems,
see e.g. [3, 5]. Through numerical experiments, we found little difference in
performance when choosing between monitor functions based on arc-length
and curvature, and have in the following used the former, that is, the generalized
arc-length monitor function [5]

ω(x) =
√√√√1+k2

(
∂u

∂x
(x)

)2

.

Here, the equidistribution principle amounts to requiring that the weighted arc
length (in the case k = 1 one recovers the usual arc length) of u over each in-
terval is equal. In applications, we only have an approximation of u, meaning
ω must be approximated as well; in our case, we have applied a finite differ-
ence approximation and obtained approximately equidistributing grids using
de Boor’s method as explained in [16, pp. 36-38]. We tried different smoothing
techniques, including a direct smoothing of the monitor function and an itera-
tive procedure for the regridding by De Boor’s method (see e.g. [4, 16, 24]). In
the case of the KdV equation, there was little to no improvement using smooth-
ing, but the sine-Gordon experiments showed significant improvement with
direct smoothing; i.e., in De Boor’s algorithm, we use the smoothed discretized
monitor function

ω̄i = ωi−1 +2ωi +ωi+1

4
.

Having obtained the discretization parameters for the current time step,
the numerical solution u from the previous time step must be transferred onto
the new set of mesh points. We tested three different ways of doing this, two
of which are using linear interpolation and cubic interpolation. The linear
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3.4 Numerical experiments

interpolation consists of constructing a function û(x) which is piecewise linear
on each interval [xn

i , xn
i+1] such that û(xn

i ) = un
i , then evaluating this function

at the new mesh points, giving the interpolated values ûi = û(xn+1
i ). The cubic

interpolation consists of a similar construction, using cubic Hermite splines
through the MATLAB function pchip. Of these two transfer methods, the
cubic interpolation yielded superior results in all cases, and so only results using
cubic interpolation are presented. The third way, using preserving transfer as
presented in section 3.3.1, applies to the KdV example, where the PUM is used.
Here, we found little difference between cubic interpolation and exact transfer,
so results are presented using cubic interpolation for the transfer operation here
as well.

3.4.2 Sine-Gordon equation

The sine-Gordon equation is a nonlinear hyperbolic PDE in one spatial and one
temporal dimension exhibiting soliton solutions, with applications in predict-
ing dislocations in crystals and propagation of fluxons in junctions between
superconductors. It is stated in initial value problem form as:

ut t −uxx + sin(u) = 0, (x, t ) ∈R× [0,T ], (3.4.1)

u(x,0) = f (x), ut (x,0) = g (x).

We consider a finite domain [−L,L]× [0,T ] with periodic boundary conditions
u(−L) = u(L) and ut (−L) = ut (L). The equation has the first integral

I[u] =
∫
R

1

2
u2

t +
1

2
u2

x +1−cos(u)dx.

Introducing v = ut , (3.4.1) can be rewritten as a first-order system of PDEs:[
ut

vt

]
=

[
v

uxx − sin(u)

]
,

with first integral

I[u, v] =
∫
R

1

2
v2 + 1

2
u2

x +1−cos(u)dx. (3.4.2)

Finding the variational derivative of this, one can interpret the equation in the
form (3.2.3) with S and δI

δu as follows:

S =
[

0 1
−1 0

]
,

δI
δu

[u, v] =
[

sin(u)−uxx

v

]
.
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We will apply the FDM approach presented in section 3.2.2, approximating
(3.4.2) by some quadrature with points {xi }M

i=0 and weights {κi }M
i=0,

I[u, v] '
M∑

i=0
κi

(
1

2
v2

i +
1

2
u2

x,i +1−cos(ui )

)
.

In addition, we approximate the spatial derivatives with central differences. At
the endpoints, a periodic extension is assumed, yielding the approximation

Ip(u) =
M∑

i=0
κi

1

2
v2

i +
1

2

(
δui

δxi

)2

+1−cos(ui )

 .

Here, δwi = wi+1 −wi−1 denotes central difference, with special cases δu0 =
δuM = u1 −uM−1, and δx0 = δxM = x1 − x0 + xM − xM−1. Taking the gradient
of Ip(u) and applying the AVF discrete gradient gives

∇Ip(un ,un+1) =
1∫

0

∇uIp(ξun + (1−ξ)un+1)dξ

The periodic boundary conditions are enforced by setting u0 = uM . In the
implementation, the κi were chosen as the quadrature weights associated with
the composite trapezoidal rule, i.e.

κ0 = x1 −x0

2
, κM = xM −xM−1

2
, κi = xi+1 −xi−1

2
, i = 1, ..., M −1.

Furthermore, S was approximated by the matrix

Sd =
[

0 I
−I 0

]
,

with I an M ×M identity matrix. The exact solution considered was

u(x, t ) = 4tan−1


sinh

(
ctp

1− c2

)

c cosh

(
xp

1− c2

)
 .

This is a kink-antikink system, an interaction between two solitons, each mov-
ing in different directions with speed c ∈ (0,1), resulting in two wave fronts
traveling in opposite directions. The wave fronts become steeper as c → 1. Fig-
ure 3.1 illustrates the analytical solution and shows the time evolution of the
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3.4 Numerical experiments

Figure 3.1: Left: Illustration of kink-antikink solution. Right: Grid movement - each
line represents the path of one grid point in time.

Figure 3.2: Left: L2 error. Right: Relative error in Ip. Parameters: ∆t = 0.01, M = 300,
L = 30, c = 0.99.

mesh as obtained with the DGMM method. Note that the grid points cluster
along the wave fronts.

The left hand side of Figure 3.2 shows the time evolution of the error
E u

n = ||u I
n(x)−u(x, tn)||L2 , where u I

n is a linear interpolant created from the
pairs (un ,xn). The right hand side of Figure 3.2 shows the time evolution of
the relative error in the discretized energy, E I

n = (Ipn (un)− Ip0 (u0))/Ip0 (u0). We
can see that the long-term behaviour of the MP scheme is superior to that of
the DG scheme, but when mesh adaptivity is applied, the DGMM scheme is
clearly better. Also note that while the DG and DGMM schemes preserve Ip to
machine precision, the MP scheme does not.

Figure 3.3 shows the convergence behaviour of the three schemes with
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Figure 3.3: Left: Error at T = 8 as a function of M , with ∆t = 0.008, c = 0.99, L = 30.
Right: Error at T = 8 as a function of N = T /∆t , with M = 1000, c = 0.99, L = 30.

Figure 3.4: Error at T = 8 as a function of ε, with ∆t = 0.01, M = 600 and L = 30.

respect to the number of spatial discretization points M , and the number of
time steps N . Note that the DG and MP methods plateau at N ' 400; this
is due to the error stemming from spatial discretization dominating the time
discretization error for these methods, while the DGMM scheme has lower
spatial discretization error. The convergence order of the DGMM scheme was
measured using a first order polynomial fitting of log(E u

n ) to log(M) and log(N ).
The convergence order with respect to M was calculated as 1.518, and the
convergence order with respect to N was measured at 1.121.

Finally, to illustrate the applicability of the DGMM scheme to harder prob-
lems, Figure 3.4 shows the error at stopping time of the methods as a function
of a parameter ε representing the increasing speed of the solitons (c = 1−ε).
From this plot, it is appararent that while the non-adaptive MP scheme is com-
petitive at low speeds, the moving mesh method provides significantly more
accuracy as c → 1.
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3.4 Numerical experiments

3.4.3 Korteweg–de Vries equation

The KdV equation is a nonlinear PDE with soliton solutions modelling shallow
water surfaces, stated as

ut +uxxx +6uux = 0. (3.4.3)

It has infinitely many first integrals, one of which is the Hamiltonian

H[u] =
∫
R

1

2
u2

x −u3dx.

With this Hamiltonian, we can write (3.4.3) in the form (3.2.3) with S and δH
δu

as follows:

S = ∂

∂x
,

δH
δu

[u] =−uxx −3u2.

We will apply the PUM approach to create a numerical scheme which preserves
an approximation to H[u], splittingΩ= [−L,L] into M elements {[xi , xi+1]}M−1

i=0
and using Lagrangian basis functions ϕ j of arbitrary degree for the trial space.
Approximating u by uh as in section 3.2.3, we find

Hp(u) =H[uh] =
∫
Ω

1

2
(uh

x )2 − (uh)3dx

= 1

2

∑
j ,k

u j uk

∫
Ω
ϕ j ,xϕk,x dx − ∑

j ,k,l
u j uk ul

∫
Ω
ϕ jϕkϕl dx. (3.4.4)

The integrals can be evaluated exactly and efficiently by considering element-
wise which basis functions are supported on the element before applying Gaus-
sian quadrature to obtain exact evaluations of the polynomial integrals. We
define

Di j k =
∫
Ω
ϕiϕ jϕk dx and Ei j =

∫
Ω
ϕi ,xϕ j ,x dx.

The matrices A and B with

Ai j =
∫
Ω
ϕiϕ j dx and B j i =

∫
Ω
ϕiϕ j ,x dx

are formed in the same manner. Note that B is in this case independent of u.
Applying the AVF method yields the discrete gradient

∇Hp(un ,un+1) =
1∫

0

∇uHp(ξun + (1−ξ)un+1)dξ
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such that, with the convention of summation over repeated indices,

(∇Hp)i = 1

2
Ei j (un

j +un+1
j )−Di j k (un

j (un
k + 1

2
un+1

k )+un+1
j (

1

2
un

k +un+1
k )).

This gives us all the required terms for forming the system (3.2.15) and apply-
ing the discrete gradient method to it. During testing, the ϕ j were chosen as
piecewise linear polynomials. The exact solution considered is of the form

u(x, t ) = c

2
sech2

(p
c

2
(x − ct )

)
, (3.4.5)

which is a right-moving soliton with c as the propagation speed, chosen as c = 6
in the numerical tests. We have considered periodic boundary conditions on a
domain

[−L,L
]× [0,T ], with L = 100 in all the following results.

Our discrete gradient method on a moving mesh (DGMM) is compared
to the same method on a static, equidistributed mesh (DG), and the implicit
midpoint method on static (MP) and moving mesh (MPMM). The spatial
discretization is performed the same way in all cases. Figure 3.5 shows an
example of exact and numerical solutions at t = 15. Note that the peak in the
exact solution will be located at x = ct .

Figure 3.5: Solutions at T = 15. ∆t = 0.01, M = 400. MP and DG are almost indistin-
guishable.

To evaluate the numerical solution, it is reasonable to look at the distance error

Edist
n = ctn −x∗,

where x∗ = argmax
x

uh(x, tn), i.e. the location of the peak in the numerical
solution. Another measure of the error is the shape error

E shape
n =

∣∣∣∣∣∣∣
∣∣∣∣∣∣uh(x, tn)−u

(
x,

x∗

c

)∣∣∣∣∣∣
∣∣∣∣∣∣∣ ,
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3.4 Numerical experiments

where the peak of the exact solution is translated to match the peak of the
numerical solution, and the shapes of the solitons are compared.

Figure 3.6 confirms that the DG and DGMM methods preserve the approx-
imated Hamiltonian (3.4.4), while it is also worth noting that in the case of the
midpoint method, the error in this conserved quantity is much larger on a mov-
ing than on a static mesh. Similar behaviour is also observed for a moving-mesh

Figure 3.6: Relative error in the Hamiltonian plotted as a function of time t ∈ [
0,15

]
.

∆t = 0.01, M = 400.

method for the regularized long wave equation in the recent paper [19], where
it is concluded that a moving mesh method with a conservative property would
be an interesting research topic. Figure 3.7, where the phase and shape errors
are plotted up to T = 15, is an example of how the DGMM method performs
comparatively better with increasing time.

In figures 3.8 and 3.9 we present the phase and shape errors for the different
methods as a function of the number of elements M and the number of time
steps N , respectively. Reference lines are included to give an indication of
the rate of convergence. We also calculated this for the DGMM method by
first degree polynomial fitting of the error curve, giving a convergence order of
1.135 for the phase error and 2.311 for the shape error as a function of M . As
a function of N , we get a convergence order of 1.492 for the phase error, and
1.609 for the shape error (the latter measured up to N = 320, where it flattens
out). We observe that the DGMM scheme performs especially well, compared
to the other three schemes, for a coarse spatial discretization compared to the
discretization in time.

In figure 3.10, the phase and shape errors are plotted as a function of the
parameter c in the exact solution (3.4.5), where we note that c

2 is the height
of the wave; increasing c leads to sharper peaks and thus a harder numerical
problem. As expected, the advantages of the DGMM method is less evident
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Figure 3.7: Phase error (left) and shape error (right) as a function of time. ∆t = 0.01,
M = 400.

Figure 3.8: Phase error (left) and shape error (right) as a function of the number of
elements M , at time T = 5. ∆t = 0.01.

for small c, but we observe that the DGMM method outperforms the static grid
midpoint method already when c = 2.

3.4.4 Execution time

The code used is not optimized, so any quantitative comparison to standard
methods has not been performed; it is still possible to make some qualitative
observations. Adding adaptivity increases time per iteration slightly since the
systems become more complicated, especially in the case of the PUM approach
where the matrices A and B need to be recalculated, at each time step when
adaptivity is used. This increases runtime somewhat when compared to fixed
grid methods. However, adaptivity allows for using fewer degrees of freedom,
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3.5 Conclusion

Figure 3.9: Phase error (left) and shape error (right) at time T = 5, as a function of the
number of time steps N = T /∆t . M = 800.

Figure 3.10: Phase error (left) and shape error (right) as a function of c in the exact
solution (3.4.5), at time t = 5. ∆t = 0.01, M = 800.

and so decreases the degrees of freedom needed for a given level of accuracy.
This accuracy gain is more pronounced the harder the problem is (steeper wave
fronts etc.), and so it stands to reason that there will be situations where adaptive
energy preserving methods will outperform non-adaptive and/or non-preserving
methods.

3.5 Conclusion

In this paper, we have introduced a general framework for producing adaptive
first integral preserving methods for partial differential equations. This is done
by first providing two means of producing first integral preserving methods
on arbitrary fixed grids, then showing how to extend these methods to allow

55



Adaptive energy preserving methods for partial differential equations

for adaptivity while preserving the first integral. Numerical testing shows that
moving mesh methods coupled with discrete gradient methods provide good
solvers for the sine-Gordon and Korteweg–de Vries equations. It would be of
interest to apply the method to higher-dimensional PDEs with a more challeng-
ing geometry, preferably using the PUM approach, to investigate its accuracy as
compared to conventional methods, and to test whether h- and/or p-refinement
provides a notable improvement. It may also prove fruitful to explore the ideas
presented in [2] to make the transfer operations between sets of discretization
parameters in a more natural setting than simply interpolating, as suggested
in section 3.3.3. Furthermore, analysis of the methods considered here could
provide important insight into e.g. stability, consistency and convergence order.
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Energy preserving moving mesh methods
applied to the BBM equation

Abstract. Energy preserving numerical methods for a certain class of PDEs
are derived, applying the partition of unity method. The methods are extended
to also be applicable in combination with moving mesh methods by the re-
zoning approach. These energy preserving moving mesh methods are then
applied to the Benjamin–Bona–Mahony equation, resulting in schemes that
exactly preserve an approximation to one of the Hamiltonians of the system.
Numerical experiments that demonstrate the advantages of the methods are
presented.

4.1 Introduction

Numerical solutions of differential equations by discretization methods will
typically not inherit invariant properties from the continuous problem. Since the
energy preserving methods of Courant, Friedrichs and Lewy were introduced
in [8], conservative methods have inspired much research, surveyed in [15] up
to the early 1990s. In some cases, conservation properties can ensure numerical
stability or existence and uniqueness of the numerical solution. In other cases,
conservation of one or more invariants can be of importance in its own right. As
noted in [13], one may expect that when properties of a continuous dynamical
system are inherited by the discrete dynamical system, the numerical solution
will be more accurate, especially over large time intervals.

The discrete gradient methods for ordinary differential equations (ODEs),
usually attributed to Gonzalez [12], are methods that preserve first integrals ex-
actly. Since the late 1990s, a number of researchers have worked on extending
this theory to create a counterpart for partial differential equations (PDEs), see
e.g. [5, 11]. Such methods, called either discrete variational derivative methods
or discrete gradient methods for PDEs, preserve a discrete approximation of a
first integral. Until recently, the schemes presented have been based on a finite
difference approach, and exclusively on fixed, uniform grids. Two discrete
variational derivative methods on fixed, non-uniform grids were presented by
Yaguchi, Matsuo and Sugihara in [21, 22]. In [18], Miyatake and Matsuo intro-
duce integral preserving methods on adaptive grids for certain classes of PDEs.
Eidnes, Owren and Ringholm presented in [10] a general approach to extend-
ing the theory of discrete variational derivative methods, or discrete gradient
methods for PDEs, to adaptive grids. This is done using either finite differences
or the partition of unity method, a generalization of the finite element method.

In this paper, we present an application of the approach introduced in [10]
to the Benjamin–Bona–Mahony (BBM) equation, also called the regularized
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long wave equation in the literature. Although what we present here is a finite
element method, the theory can be easily applied in a finite difference setting.
Previously, there have been developed integral preserving methods for this equa-
tion [6], as well as adaptive moving mesh methods [16], but the schemes we
are to present here are, to our knowledge, the first combining these properties.
In fact, in [16] it is noted that combining integral preservation with adaptivity
is an interesting topic for further research.

4.2 The discrete gradient method for PDEs

We give a quick survey of the discrete gradient methods for PDEs, and present
an approach to the spatial discretization by the partition of unity method (PUM).

4.2.1 Problem statement

Consider a PDE of the form

ut = f (x,u J ), x ∈Ω⊆Rd , u ∈B ⊆ L2, (4.2.1)

where u J denotes u itself and its partial derivatives of any order with respect
to the spatial variables x1, ...., xd , and where we assume that B is sufficiently
regular to allow all operations used in the following.

We define a first integral of (4.2.1) to be a functional I[u] satisfying〈
δI
δu

[u], f (x,u J )

〉
L2

= 0, ∀u ∈B,

recalling that the variational derivative δI
δu [u] is defined as the function satisfy-

ing 〈
δI
δu

[u], v

〉
L2

= d

dε

∣∣∣∣
ε=0

I[u +εv] ∀v ∈B.

This means that I[u] is preserved over time by (4.2.1), since

dI
dt

=
〈
δI
δu

[u],
∂u

∂t

〉
L2

= 0.

Furthermore, observe that if there exists an operator S(x,u J ), skew-symmetric
with respect to the L2 inner product, such that

f (x,u J ) = S(x,u J )
δI
δu

[u],
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then I[u] is a first integral of (4.2.1), and we can state (4.2.1) on the form

ut = S(x,u J )
δI
δu

[u]. (4.2.2)

The idea behind the discrete variational derivative methods is to derive a dis-
crete version of the PDE on the form (4.2.2), by obtaining a so-called discrete
variational derivative and approximate S(x,u J ) by a skew-symmetric matrix,
see e.g. [11].

As proven in [10], all discrete variatonal derivative methods can be ex-
pressed as discrete gradient methods on a system of ODEs obtained by dis-
cretizing (4.2.2) in space, to get a system

du

dt
= S(u)∇I (u), (4.2.3)

where S(u) is a skew-symmetric matrix. The discrete gradient methods for
such a system of ODEs preserve the first integral I (u) [17]. These numerical
methods are given by

un+1 −un

∆t
= S̄(un ,un+1)∇I (un ,un+1),

where S̄(un ,un+1) is a consistent skew-symmetric time-discrete approximation
to S(u) and ∇I (v,u) is a discrete gradient of I (u), defined as a function satisfy-
ing

(∇I (v,u))T (u−v) = I (u)− I (v),

∇I (u,u) =∇I (u).

There are many possible choices of discrete gradients. For the numerical ex-
periments in this note, we will use the Average Vector Field (AVF) discrete
gradient [5], given by

∇I (v,u) =
1∫

0

∇I (ξu+ (1−ξ)v)dξ,

Note that when discretizing the system (4.2.2) in space, we do so by finding
a discrete approximation Ip to the integral I, and define an energy preserving
method to be a method preserving this approximation.

4.2.2 Partition of unity method on a fixed mesh

The partition of unity method is a generalization of the finite element method
(FEM). Stating a weak form of (4.2.2), the problem consists of finding u ∈B
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such that〈
ut , v

〉
L2 =

〈
S(x,u J )

δI
δu

[u], v

〉
L2

=−
〈
δI
δu

[u],S(x,u J )v

〉
L2

∀v ∈B.

We define an approximation to u by

uh(x, t ) =
M∑

i=0
ui (t )ϕi (x),

where the test functions ϕi (x) span a finite-dimensional subspace Bh ⊆B. Re-
ferring to [10] for details, we then obtain the Galerkin form of the problem:
Find ui (t ), i = 0, . . . , M , such that

M∑
i=0

dui

dt

〈
ϕi ,ϕ j

〉
L2

=−
M∑

i=0
wi (u)

〈
ϕi ,S(x,uh,J )ϕ j

〉
L2

∀ j ∈ {0, ..., M },

where, with Ai j =
〈
ϕi ,ϕ j

〉
L2

,

w(u) = A−1∇Ip(u).

We end up with an ODE for the coefficients ui :

du

dt
= Sp(u)∇Ip(u). (4.2.4)

Here, Sp(u) =−A−1B(u)A−1 is a skew-symmetric matrix, with B(u) given by
B(u) j i =

〈
ϕi ,S(x,uh,J )ϕ j

〉
L2

, and the system is thereby of the form (4.2.3).
Then, the scheme

un+1 −un

∆t
= Sp(un ,un+1)∇Ip(un ,un+1).

will preserve the approximated first integral Ip in the sense that Ip(un+1) =
Ip(un).

4.3 Adaptive schemes

The primary motivation for using an adaptive mesh is usually to increase accu-
racy while keeping computational cost low, by improving discretization locally.
Such methods are typically useful for problems with e.g. traveling wave solu-
tions and boundary layers. The different strategies for adaptive meshes can be
classified into two main groups [14]: The quasi-Lagrange approach involves
coupling the evolution of the mesh with the PDE, and then solving the problems
simultaneously; The rezoning approach consists of calculating the function val-
ues and mesh points in an intermittent fashion. Our method can be coupled
with any adaptive mesh strategy utilizing the latter approach.
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4.3 Adaptive schemes

4.3.1 Adaptive discrete gradient methods

Let pn , un , pn+1, and un+1 denote the discretization parameters and the numer-
ical values obtained at the current time step and next time step, respectively.
Note that we now alter the notion of a preserved first integral further, to requir-
ing that Ipn+1 (un+1) = Ipn (un). The idea behind our approach is to find pn+1

based on un and pn , transfer un to pn+1 to obtain û, and then use û to propagate
in time to get un+1. If the transfer operation between the meshes is preserving,
i.e. if Ipn+1 (û) = Ipn (un), then the next time step can be taken with the discrete
gradient method for static meshes. If, however, non-preserving transfer is used,
corrections are needed in order to get a numerical scheme. We introduce in [10]
the scheme

un+1 = û− (Ipn+1 (û)−Ipn (un))z〈
∇Ipn+1 (û,un+1),z

〉 +∆tSpn+1 (û,un+1)∇Ipn+1 (û,un+1), (4.3.1)

where z is a vector which should be chosen so as to obtain a minimal correction,
and such that 〈∇Ipn+1 (û,un+1),z〉 6= 0. In the numerical experiments to follow,
we have used z =∇Ipn+1 (û,un+1).

A preserving transfer can by obtained using the method of Lagrange multi-
pliers. Depending on whether r - p- or h-refinement (or a combination) is used
between time steps, we expect the shape and/or number of basis functions to
change. See e.g. [14] or [1] for examples of how the basis may change through
adaptivity. Denote by Bh = span{ϕi }M

i=0 the trial space from the current time
step and by B̂h = span{ϕ̂i }M̂

i=0 the trial space for the next time step, and note
that in general, M 6= M̂ . We wish to transfer the approximation uh from Bh

to B̂h , obtaining an approximation ûh , while conserving the first integral, i.e.
I[uh] = I[ûh]. This can be formulated as a constrained minimization problem:

min
ûh∈B̃h

||ûh −uh ||2L2 s.t. I[ûh] = I[uh]. (4.3.2)

Observe that

||ûh −uh ||2L2 =
M̂∑

i=0

M̂∑
j=0

ûi û j Âi j −2
M̂∑

i=0

M∑
j=0

ûi un
j Ci j +

M∑
i=0

M∑
i=0

un
i un

j Ai j

= ûT Âû−2ûT C un +un Aun ,

where Ai j = 〈ϕi ,ϕ j 〉L2 , Âi j = 〈ϕ̂i ,ϕ̂ j 〉L2 and Ci j = 〈ϕ̂i ,ϕ j 〉L2 . The problem
(4.3.2) can thus be reformulated as

min
û∈RM̂+1

ûT Âû−2ûT C un +un Aun s.t. Ipn+1 (û)−Ipn (un) = 0.
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This is a quadratic minimization problem with one nonlinear equality constraint,
for which the solution û is the solution of the nonlinear system of equations

Âû−C un −λ∇Ipn+1 (û) = 0

Ipn+1 (û)−Ipn (un) = 0,

which can be solved numerically using a suitable nonlinear solver.

4.4 Application to the BBM equation

4.4.1 The BBM equation

The BBM equation was introduced by Peregrine [19], and later studied by Ben-
jamin et al. [2] as a model for small amplitude long waves on the surface of
water in a channel. Conservative finite difference schemes for the BBM equa-
tion were proposed in [20] and [6], the latter being a discrete gradient method
on fixed grids. A moving mesh FEM scheme employing a quasi-Lagrange
approach is presented by Lu, Huang and Qiu in [16], which we also refer to for
a more extensive list of references to the existing numerical schemes for the
BBM equation.

Consider now an initial-boundary value problem of the one-dimensional
BBM equation with periodic boundary conditions,

ut −uxxt +ux +uux = 0, x ∈ [−L,L], t ∈ (0,T ] (4.4.1)

u(x,0) = u0(x), x ∈ [−L,L] (4.4.2)

u(−L, t ) = u(L, t ), t ∈ (0,T ]. (4.4.3)

By introducing the new variable m(x, t ) := u(x, t )−uxx (x, t ), equation (4.4.1)
can be rewritten on the form (4.2.2) as

mt =S(m)
δH
δm

,

for two different pairs of an antisymmetric differential operator S(m) and a
Hamiltonian H [m]:

S1(m) = −(
2

3
u +1)∂x − 1

3
ux ,

H1 [m] = 1

2

∫
(u2 +u2

x )dx,

and

S2(m) = −∂x +∂xxx ,

H2 [m] = 1

2

∫
(u2 + 1

3
u3)dx.
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4.4 Application to the BBM equation

4.4.2 Discrete schemes

We apply the PUM approach to create numerical schemes which preserve an ap-
proximation to either H1 [m] or H2 [m], splitting Ω := [−L,L] into M elements
{[xi , xi+1]}M−1

i=0 . Defining the matrices A and E by their components

Ai j =
∫
Ω
ϕiϕ j dx and Ei j =

∫
Ω
ϕi ,xϕ j ,x dx,

we set m = (A+E)u. Note that the matrices A and E depend on the mesh, and
thus will change when adaptivity is used. We will then distinguish between
matrices from different time steps by writing e.g. An and An+1.

Approximating u by uh as in section 4.2.2, we find

H1
p(m) =H1[mh] = 1

2

∫
Ω

(uh)2 + (uh
x )2dx

= 1

2

∑
i , j

ui u j

∫
Ω
ϕiϕ j dx + 1

2

∑
i , j

ui u j

∫
Ω
ϕi ,xϕ j ,x dx

= 1

2
uT(A+E)u

The integrals can be evaluated exactly and efficiently by considering element-
wise which basis functions are supported on the element before applying Gaus-
sian quadrature to obtain exact evaluations of the polynomial integrals. We
define the matrix B1(u) by

B1(u) j i =−2

3

M−1∑
k=0

uk

(
2
∫
Ω
ϕiϕ j ,xϕk dx +

∫
Ω
ϕiϕ jϕk,x dx

)
−

∫
Ω
ϕiϕ j ,x dx.

An approximation to the gradient of H1 with respect to m is found by the AVF
discrete gradient

∇H1
p(mn ,mn+1) = (A+E)−1∇H1

p(un ,un+1)

= (A+E)−1

1∫
0

∇H1
p(ξun + (1−ξ)un+1)dξ

= (A+E)−1 1

2
(A+E)

(
un +un+1

)
= 1

2

(
un +un+1

)
.

Thus we have the required terms for forming the system (4.2.4) and apply-
ing the adaptive discrete gradient method to it. Corresponding to (4.3.1), we
get the scheme

(An+1 +E n+1)
(
un+1 − û

)
=

ûT
(

An+1 +E n+1
)

û−unT (
An +E n

)
un(

û+un+1
)T (

û+un+1
) (

û+un+1
)

+ ∆t

2
B n+1

1

(
û+un+1

2

)(
û+un+1

)
,
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where vn+1 = û+un+1. Here we have chosen the skew-symmetric matrix B1 to
be a function of û and un+1, but could also have chosen e.g. B1(û), resulting in
a decreased computational cost at the expense of less precise results. During
testing, the basis functions were chosen as piecewise cubic polynomials.

In the same manner we may obtain a scheme that preserves H2 [m]. In this
case

H2
p(m) =H2[mh] = 1

2

∫
Ω

(uh)2 + 1

3
(uh)3dx

= 1

2

∑
i , j

ui u j

∫
Ω
ϕiϕ j dx + 1

6

∑
i , j ,k

ui u j uk

∫
Ω
ϕiϕ jϕk dx.

and

(B2) j i =−
∫
Ω
ϕiϕ j ,x dx +

∫
Ω
ϕiϕ j ,xxx dx.

Note that the skew-symmetric matrix B2 is independent of u.
Defining the tensor D by its elements

Di j k =
∫
Ω
ϕiϕ jϕk dx,

we get, with the convention of summation over repeated indices, the AVF dis-
crete gradient with respect to u given by the elements

∇H2
p(un ,un+1)i =

Ai j

2
(un

j +un+1
j )+Di j k

6

un
j (un

k + un+1
k

2
)+un+1

j (
un

k

2
+un+1

k )


and again the discrete gradient with respect to m by

∇H2
p(mn ,mn+1) = (A+E)−1∇H2

p(un ,un+1).

If we employ integral preserving transfer between the meshes, we get the
scheme

un+1 − û =∆t (A+E)−1B2(A+E)−1∇H2
p(û,un+1),

where we note that Sp,2 := (A+E)−1B2(A+E)−1 is a skew-symmetric matrix. If
non-preserving transfer is used, we need a correction term, as in the H1 scheme
above. The calculation of such a term is straightforward, but we omit it here
for reasons of brevity.

To approximate the third derivative in B2, we need basis functions of at
least degree three, and to guarantee skew-symmetry in B2, these basis functions
need to be C 2 on the element boundaries. This is not obtainable with regular
nodal FEM basis functions, so we have instead used third order B-spline basis
functions as described in [7] during testing.
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4.5 Numerical Results

4.5 Numerical Results

To demonstrate the performance of our methods, we have tested them on two
one-dimensional simple problems: A soliton solution, and the interaction of
two waves. We have tested our H1- and H2-preserving schemes on uniform and
moving meshes, and compared the results to those obtained using the explicit
midpoint method. For the transfer operation between meshes, we have used a
piecewise cubic interpolation method in the H1 preserving scheme, and exact
transfer in the H2 preserving scheme.

4.5.1 Mesh adaptivity

As noted in section 4.3, our methods can be coupled with any adaptive mesh
strategy using the rezoning approach. For our numerical experiments, we have
used a simple method for r -adaptivity based on the equidistribution principle:
Splitting Ω into M intervals, we require that

xi+1∫
xi

ω(x)dx = 1

M

L∫
−L

ω(x)dx,

where the monitor function ω is a function measuring how densely grid points
should lie, based on the value of u. For a general discussion on the choice of
an optimal monitor function, see e.g. [3, 4]. For the problems we have studied,
a generalized solution arc length monitor function proved to yield good results.
This is given by

ω(x) =
√√√√1+k2

(
∂u

∂x
(x)

)2

.

For k = 1, this is the usual arc length monitor function, in which case the
equidistribution principle amounts to requiring that the arc length of u over
each interval is equal. In applications, we only have an approximation of u,
and hence ω must be approximated as well. We have applied a finite differ-
ence approximation and obtained approximately equidistributing grids using
de Boor’s method as explained in [14, pp. 36-38].

4.5.2 Soliton solution

With u0(x) = 3(c −1) sech2
(

1
2

√
1− 1

c x

)
, the exact solution of (4.4.1)–(4.4.3) is

u(x, t ) = 3(c −1)sech2

(
1

2

√
1− 1

c
l (x, t )

)
,
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with l (x, t ) = min j∈Z
∣∣x − ct +2 j L

∣∣. This is a soliton solution which travels
with a constant speed c in x-direction while maintaining its initial shape.

To evaluate the numerical solutions, we have compared them to the exact
solution and calculated errors in shape and phase. The phase error is evaluated
as

Ephase
n = |ctn −x∗|,

where x∗ = argmax
x

uh(x, tn), i.e. the location of the peak of the soliton in the
numerical solution. The shape error is given by

E shape
n =

∣∣∣∣∣∣∣
∣∣∣∣∣∣uh(x, tn)−u

(
x,

x∗

c

)∣∣∣∣∣∣
∣∣∣∣∣∣∣ ,

where the peak of the exact solution is translated to match the peak of the
numerical solution, and the difference in the shapes of the solitons is calculated.

The results of the numerical tests can be seen in figures 4.1–4.3. Here, M
denotes the degrees of freedom used in the spatial approximation and ∆t the
fixed time step size. DG1 and DG1MM denotes the H1

p preserving scheme with
fixed, uniform grid and adaptive grid, respectively; similary DG2 and DG2MM
denotes the H2

p preserving scheme with uniform and adaptive grids.
In Figure 4.1 we see the relative errors in H1

p and H2
p. The DG1 and

DG1MM schemes are compared to schemes using the same 3rd order nodal
basis functions, but the trapezoidal rule for time-stepping, denoted by TR and
TRMM. Likewise, the DG2 and DG2MM schemes are compared to the IM
and IMMM schemes, using B-spline basis functions and the implicit midpoint
method for discretization in time. The error in H1

p is very small for the DG1 and
DG1MM schemes, as expected. Also the error in H2

p is very small for the DG2
and DG2MM schemes. The order of the error is not machine precision, but is
instead dictated by the precision with which the nonlinear equations in each
time step is solved. We can also see that while the TR and IM schemes, with
and without moving meshes, have poor conservation properties, the moving
mesh DG schemes seem to preserve quite well even the integrals they are not
designed to preserve.

In figures 4.2 and 4.3 we see the phase and shape errors, of our methods
compared to non-moving mesh methods and non-preserving methods, respec-
tively. The advantage of using moving meshes is clear, especially for the H2

p
preserving schemes. The usefulness on integral preservation is ambiguous in
this case. It seems that what we gain in precision in phase, we lose in precision
in shape, and vice versa.

70



4.5 Numerical Results

Figure 4.1: The soliton problem. Relative error in the approximated Hamiltonians H1
p

(left) and H2
p (right) plotted as a function of time t ∈ [

0,50
]
. c = 3,L = 200,∆t = 0.1,

M = 200.

Figure 4.2: The soliton problem. Phase error (left) and shape error (right) as a function
of time. c = 3,L = 200,∆t = 0.1, M = 200.
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Figure 4.3: The soliton problem. Phase error (left) and shape error (right) as a function
of time. c = 3,L = 200,∆t = 0.1, M = 200.

4.5.3 A small wave overtaken by a large one

A typical test problem for the BBM equation is the interaction between two
solitary waves. With the initial condition

u0(x) = 3(cr −1) sech2

√
1− 1

cr

x −xr

2

+3(cs −1) sech2

√
1− 1

cs

x −xs

2

 ,

one wave will eventually be overtaken by the other as long as cr 6= cs , i.e. if one
wave is larger than the other. There is no available analytical solution for this
problem. The two waves are not solitons, as the amplitudes will change a bit
after the waves have interacted [9].

Solutions obtained by solving the problem with our two energy preserving
schemes, giving very similar results, are plotted in Figure 4.4. Also, to illustrate
the mesh adaptivity, we have included a plot of the mesh trajectories in Figure
4.6. Each line represents the trajectory of one mesh point in time, and we can
see that the mesh points cluster nicely around the edges of the waves as they
move.

To illustrate the performance of our methods, we have in Figure 4.5 com-
pared solutions obtained by using the H2

p-preserving moving mesh method with
the solutions obtained by using a fourth order Runge–Kutta method on a static
mesh, with the same, and quite few, degrees of freedom. The DG2MM solution
is visibly closer to the solutions in Figure 4.4. The non-preserving RK scheme
does a worse job of preserving the amplitude and speed of the waves compared
to the DG2MM scheme, and we observe unwanted oscillations.
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4.5 Numerical Results

Figure 4.4: The interacting waves problem. Solutions at t = {
0,50,75,100,150

}
found

by DG1MM (left) and DG2MM (right). xr = 150, xs = 105,cr = 2,cs = 1.5,L =
200,∆t = 0.1, M = 1000.

Figure 4.5: The interacting waves problem. Solutions at t = {
0,50,75,100,150

}
found

by DG2MM (left) and RK (right). xr = 150, xs = 105,cr = 2,cs = 1.5,L = 200,∆t = 0.1,
M = 200.
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Figure 4.6: Mesh point trajectories in time. Each line represents one mesh point.

In Figure 4.7 we have plotted the Hamiltonian errors for this problem.
Again we see that the energy preserving schemes preserve both Hamiltoni-
ans better than the Runge–Kutta scheme, but we do also observe that the DG1
scheme preserves H2

p better than the DG1MM scheme, and vice versa for the
DG2 and DG2MM schemes. Note also that an increase in the errors can be
observed when the two waves interact, but that this increase is temporary.

4.6 Conclusion

In this paper, we have presented energy preserving schemes for a class of PDEs,
first on general fixed meshes, and then on adaptive meshes. These schemes are
then applied to the BBM equation, for which discrete schemes preserving two
of the Hamiltonians of the problem are explicitly given.

Numerical experiments are performed, using the energy preserving moving
mesh schemes on two different BBM problems: a soliton solution, and two
waves interacting. Plots of the phase and shape errors illustrate how, for the
given parameters, the usage of moving meshes gives improved accuracy, while
the integral preservation gives comparable results to existing methods, without
yielding a categorical improvement. We will remark, however, that in many
cases, the preservation of a quantity such as one of the Hamiltonians in itself
may be a desired property of a numerical scheme. For the two wave interaction
problem, we do not have an analytical solution to compare to, but plots of the
solution indicate that our schemes perform well compared to a Runge–Kutta
scheme.

Although only one-dimensional problems are presented as numerical ex-
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Figure 4.7: The interacting waves problem. Error in the approximated Hamiltonians
H1

p (left) and H2
p (right) plotted as a function of time t ∈ [

0,150
]
. xr = 150, xs =

105,cr = 2,cs = 1.5,L = 200,∆t = 0.1, M = 1000.

amples here, the adaptive discrete gradient methods can be applied to multi-
dimensional problems. This could be an interesting direction for further work,
since the advantages of adaptive meshes are typically more evident when in-
creasing the number of dimensions.
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Variational image analysis with Euler’s
elastica using a discrete gradient scheme

Abstract. This paper concerns an optimization algorithm for unconstrained
non-convex problems where the objective function has sparse connections
between the unknowns. The algorithm is based on applying a dissipation
preserving numerical integrator, the Itoh–Abe discrete gradient scheme, to the
gradient flow of an objective function, guaranteeing energy decrease regardless
of step size. We introduce the algorithm, prove a convergence rate estimate
for non-convex problems with Lipschitz continuous gradients, and show that
convergence rates are independent of problem size if the objective function
has sparse connections between unknowns. The algorithm is presented in
serial and parallel versions. Numerical tests show its use in Euler’s elastica
regularized imaging problems and its convergence rate, and compares the
execution time of the method to that of the iPiano algorithm and the gradient
descent and Heavy-ball algorithms.

5.1 Introduction

A classic idea for minimizing a differentiable V :Rn →R, n ≥ 1, is considering
its gradient flow

u̇(t ) =−∇V (u(t )) (5.1.1)

and numerically integrating a solution along it. For example, the gradient
descent algorithm can be easily derived from the explicit Euler scheme

uk+1 −uk =−τ∇V (uk ),

where τ is a step size and uk an approximation to the value of u(kτ). Other
schemes can be used, such as Runge-Kutta and multistep methods. A dis-
cussion on step size conditions under which algebraically stable Runge-Kutta
methods are dissipative can be found in [13]. Even though these classes of
ODE integrators are readily available, their use does not appear to have gained
much traction in the optimization community.

This disregard may be attributed to a division between the goals of nu-
merical integration and numerical optimization; whereas the ODE integration
schemes seek to approximate a solution path of (5.1.1) as accurately as pos-
sible, optimization schemes try to find a stationary point of (5.1.1) as quickly
as possible. The former task requires small time steps while the latter task is
generally completed more efficiently the larger the time steps are. Thus, using
regular ODE schemes to solve (5.1.1) is, in general, ineffective. However, in
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a recent article [27], the authors demonstrate that several well-known efficient
optimization methods can be deduced from ODE integration schemes applied
to equation (5.1.1). Examples include Polyak’s Heavy-ball method [24], which
may also be interpreted as a discretization of a gradient flow with an inertial
term, and Nesterov’s accelerated gradient method [18]. These methods are
equivalent to linear two-step methods with certain choices of step length. Also,
the proximal point and proximal gradient methods [20] are shown to correspond
to an implicit Euler method and an Implicit-Explicit scheme, respectively. This
gives credibility to the idea that ODE solvers with certain properties may indeed
be useful as optimization schemes.

In recent years, new ODE solvers with properties well suited to optimiza-
tion have emerged. In [12], building on developments in the field of geometric
integration, the authors apply discrete gradient schemes to the gradient flow of
energy functionals arising from problems in variational image analysis. Dis-
crete gradients, introduced in [11] and further studied in [17] have a property
which is interesting from an optimization viewpoint; they are dissipativity pre-
serving. When applied to a dissipative ODE such as a gradient flow, the result-
ing time steps are also dissipative in the sense that

V (uk+1) ≤V (uk ).

The schemes thus convergence monotonously toward a critical point V ∗ re-
gardless of the step size used in the numerical integration if V is continuously
differentiable [12].

While very efficient solvers exist for convex optimization problems, see
e.g. [8, 21, 29], the picture is different for non-convex optimization problems.
Considerable effort has been spent in developing efficient schemes for classes
of problems with special structure, e.g. problems with one convex but non-
differentiable term and one non-convex but differentiable term [4, 23]. We
will add to this effort by introducing a method based on the Itoh–Abe discrete
gradient method [15] that is most effective when the objective function is con-
tinuously differentiable with sparsely connected unknowns. Indeed, in [12], the
authors use discrete gradient schemes with non-convex problems in mind, so
this paper may be viewed as a continuation of their work.

A problem that fits the format of being non-convex with sparse connections
is variational image analysis using a discretized Euler’s elastica functional as
a regularizer. Introduced in [22] for de-occluding objects in images, Euler’s
elastica regularization was further analyzed and applied to inpainting problems
by Chan, Kang, and Shen in [28], who derive the Euler-Lagrange equations for
the continuous Euler’s elastica functional and solve these via finite difference
schemes. This approach is not very computationally efficient, and attempts
have been made to create more effective schemes, in particular in [30] where
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5.2 Discrete gradient methods

an augmented Lagrangian approach was considered. This approach was later
refined in [36], [34], [1] and [35]. Also of note are the approaches in [5] and [9]
where convex approximations to the objective function are considered.

The method presented in Algorithm 5.1 resembles the coordinate gradient
descent method since it uses coordinatewise updates, except that the gradient is
approximated by a discrete gradient. It is derivative free and easy to use with
only a step size parameter to choose. The discrete gradient approximation guar-
antees decrease at each iteration, at the expense of using an implicit scheme. A
recent survey of coordinate descent algorithms and their convergence can be
found in [32]. According to this survey, for coordinate descent methods one can
expect V (xk )−V ∗ ∈O(1/k) for convex problems, with linear convergence if the
problem is strongly convex. In [19], an accelerated coordinate descent method
is presented, with V (xk )−V ∗ ∈O(1/k2) for convex problems at the expense of
computing a full vector operation for each coordinate update. In the following,
we will prove a convergence rate of min1≤ j≤k

{
‖∇V (u j )‖2

}
∈ O(1/k1/2) for

nonconvex, Lipschitz continuously differentiable problems. In [10], an O(1/k)
convergence rate for convex, smooth problems and linear convergence for prob-
lems satisfying the Polyak-Łojasiewicz condition [16] are proved for several
discrete gradient algorithm, including the one considered here. In the case of
the Itoh–Abe discrete gradient, the rates have an O(n1/2) dependence on the
problem size n; in Lemma 5.1 we show that the rates are, in fact, independent
of n in the case when V has sparsely connected unknowns. We also propose
a method for adaptive time stepping that allows a certain acceleration of the
algorithm for differentiable V , using four additional parameters.

The paper is organized as follows: In the following section, we introduce
discrete gradient methods for optimization and discuss the convergence rate
and acceleration of a specific discrete gradient-type scheme. In section 3, the
Euler’s elastica regularization problem is introduced, and parallelization of the
discrete gradient algorithm is discussed together with the effect of sparsity in
the problem. Section 4 contains numerical experiments concerning the qual-
ity of denoising and inpainting, experimental convergence rates, the effect of
coordinate ordering and problem size, execution time, and dependence on the
initial condition. The final section summarizes the results.

5.2 Discrete gradient methods

The task at hand is to minimize a C1 functional V : Rn → R, also called an
energy, by solving its gradient flow

u̇ =−∇V (u), (5.2.1)
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Euler’s elastica image analysis using a discrete gradient scheme

where u(t ) ∈Rn is the unknown and u̇(t ) denotes its time derivative. The reason
for this is that V dissipates along the flow of (5.2.1); if u(t ) solves (5.2.1), then

d

dt
V (u(t )) = 〈

u̇,∇V (u(t ))
〉=−‖∇V (u(t ))‖2 ≤ 0,

where ‖ · ‖ denotes the Euclidian norm on Rn . Due to the dissipation, u(t )
approaches a critical point of V as t →∞ as long as V is bounded from below.
In general, V is nonlinear such that numerical schemes must be employed to
solve (5.2.1) until a large stopping time T . This gives rise to different optimiza-
tion algorithms depending on the scheme used. For example, a forward Euler
scheme results in the gradient descent method. The forward Euler method has
several drawbacks, one being that choosing too large step sizes results in insta-
bility. This necessitates step size selection, which may result in impractically
small steps considering that we wish to obtain a stationary point of (5.2.1). It
is therefore of interest to investigate the use of numerical schemes that have
lenient step size restrictions or none at all. One such class of schemes is called
discrete gradient methods. Discrete gradients were introduced in [11] to unite
several energy preserving and dissipative ODE solvers under a single label. A
seminal paper [17] covers their use as ODE solvers and which ODEs they are
applicable to.

Definition 5.1. Given a differentiable function V : Rn → R, we say that ∇V :
Rn ×Rn →Rn is a discrete gradient of V if it is continuous and for all u,v ∈Rn ,〈

∇V (u,v),v−u
〉
=V (v)−V (u),

lim
v→u

∇V (u,v) =∇V (u).

Discrete gradients can be used in schemes to solve (5.2.1) numerically by
computing

uk+1 = uk −τk∇V (uk ,uk+1), (5.2.2)

where τk > 0 is the step size at iteration number k. A key property is that the
scheme is dissipating; by Definition 5.1 and the scheme (5.2.2), we have

V (uk+1)−V (uk ) =
〈
∇V (uk ,uk+1),uk+1 −uk

〉
=− 1

τk
‖uk+1 −uk‖2. (5.2.3)

Note that the dissipation property holds regardless of the step size τk .
Definition 5.1 is quite broad and as a result, there exist several types of

discrete gradients. Two popular choices are the midpoint discrete gradient [11]
and the Average Vector Field (AVF) discrete gradient [14]. They give second-
order accurate schemes for (5.2.1) and are suited for solving ODEs precisely.
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5.2 Discrete gradient methods

In our case, solving (5.2.1) as exactly as possible is not the main concern,
rather, we need a scheme with cheap time steps and fast convergence toward
a minimizer. The schemes obtained using the Gonzalez and AVF discrete
gradients are fully implicit in the sense that in general, at each time step of
(5.2.2), a single n-dimensional system of nonlinear equations must be solved.
For large n, this is slow since the complexity of solving such a system is
typically O(n2). Instead, we consider the Itoh–Abe discrete gradient [15],
defined componentwise as

(∇V (u,v))l =
V

(
u+

l∑
j=1

(v j −u j )e j

)
−V

(
u+

l−1∑
j=1

(v j −u j )e j

)
vl −ul

,

where ej denotes the j ’th standard basis vector. This discrete gradient, while
still implicit, has two advantages over the Gonzales and AVF discrete gradients.
First, its use in the scheme (5.2.2) requires the solution of n scalar nonlinear
equations per time step, meaning its computational complexity scales as O(n).
Secondly, it is derivative-free and requires only computations of differences
between the objective function with variation in one variable, which may be
considerably cheaper than evaluating the objective function itself; consider for
example the optimization problem

min
u∈Rn

{
f (u) =

M∑
i=1

fi (u)

}
,

where at most N of the fi depend on a given coordinate, say, uk . Then, comput-
ing the difference f (u+ek uk )− f (u) amounts to computing at most N values
of the fi , a cost comparable to that of calculating one coordinate derivative of
f .

5.2.1 The algorithm

The algorithm based on using the Itoh–Abe discrete gradient with fixed step
size τk = τ in (5.2.2) is presented in Algorithm 5.1. As a stopping criterion
we set a tolerance tol and stop when (V (uk )−V (uk−1))/V (u0) < tol . This
criterion is economical to evaluate, requiring no evaluation of V since the
energy increments are known from the dissipation property (5.2.3).

Algorithm 5.1. DG
Choose τ> 0, tol > 0 and u0 ∈Rn . Set k = 0.
repeat

vk
0 = uk

for j = 1, ...,n do
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Solve βk
j =−τ(V (vk

j−1 +βk
j e j )−V (vk

j−1))/βk
j

vk
j = vk

j−1 +βk
j e j

end for
uk+1 = vk

n

k = k +1
until

(
V (uk )−V (uk−1)

)
/V (u0) < tol

To solve the nonlinear scalar subproblems defining the βk
j , we use the Brent-

Dekker algorithm [6]. This is a derivative free method based on a combination
of bisection and interpolation algorithms which converges superlinearly if the
function whose root is to be found is C1 near the root. It is the method of choice
for scalar root finding problems in [25].

The algorithm can be accelerated through adaptive step sizes. Unlike line
search methods, each time step is implicit and so changing τk requires a re-
computation of uk+1, which can be costly and should be avoided. One way
of adapting τk , which can be used for differentiable V , is to check conditions
similar to the Wolfe conditions [31]. We consider, with constants c1 ∈ (0,1) and
c2 ∈ (c1,1) the conditions

V (uk+1)−V (uk ) ≤ c1

〈
∇V (uk ),uk+1 −uk

〉
, (5.2.4)〈

∇V (uk+1),uk+1 −uk
〉
≥ c2

〈
∇V (uk ),uk+1 −uk

〉
. (5.2.5)

If condition (5.2.4) holds, regardless of whether (5.2.5) holds, then τk is in-
creased for the next iteration by a factor λ > 1. If (5.2.4) does not hold but
(5.2.5) does, one takes τk+1 = ρτk where ρ ∈ (0,1). If neither condition holds,
the step size is not changed. In all cases, the new value uk+1 is accepted. With
this approach one obtains step sizes that are adjusted based on prior perfor-
mance while not wasting previous computations, summed up in Algorithm
5.2.

Algorithm 5.2. DG-ADAPT
Choose τ0 > 0, tol > 0, ρ ∈ (0,1), λ> 1, c1 ∈ (0,1), c2 ∈ (c1,1), and u0 ∈Rn .
Set k = 0.
repeat

vk
0 = uk

for j = 1, ...,n do
Solve βk

j =−τk (V (vk
j−1 +βk

j e j )−V (vk
j−1))/βk

j

vk
j = vk

j−1 +βk
j e j

end for
uk+1 = vk

n

if V (uk+1)−V (uk ) ≤ c1

〈
∇V (uk ),uk+1 −uk

〉
then
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τk+1 =λτk

else if
〈
∇V (uk+1),uk+1 −uk

〉
≥ c2

〈
∇V (uk ),uk+1 −uk

〉
then

τk+1 = ρτk

end if
k = k +1

until
(
V (uk )−V (uk−1)

)
/V (u0) < tol

Condition (5.2.5) provides a lower bound on the step size when ∇V is
Lipschitz continuous. Firstly, since ∇V is Lipschitz, the descent lemma [3,
Proposition A.24], provides the estimate

V (u) ≤V (v)+〈∇V (v),u−v
〉+ L

2
‖v−u‖2 (5.2.6)

which holds for all u,v ∈ Rn . Combining (5.2.6) with (5.2.5) and (5.2.3) we
find

c2

〈
∇V (uk ),uk −uk+1

〉
≥

〈
∇V (uk+1),uk −uk+1

〉
≥V (uk )−V (uk+1)− L

2
‖uk+1 −uk‖2

=
(
1− L

2
τk

)(
V (uk )−V (uk+1)

)
.

Rearranging and applying (5.2.6) once more, we find

L

2
τk

(
V (uk )−V (uk+1)

)
≥ (1− c2)

(
V (uk )−V (uk+1)

)
− c2L

2
‖uk+1 −uk‖2.

Using (5.2.3) on the last term to eliminate V (uk )−V (uk+1) we find the lower
bound

τk ≥ 1− c2

1+ c2

2

L
.

5.2.2 Convergence

In [12], the authors prove that the iterates of Algorithm 5.1 converge toward a
critical point, but do not estimate the convergence rate. Theorem 5.1 concerns
the convergence rate of Algorithm 5.2 in the general case of a non-convex
objective V . A sublinear convergence rate of O(1/k) for convex problems
and a linear convergence rate for problems satisfying the Polyak-Łojasiewicz
inequality are given in [10]. These theorems are stated below without proof
to support the discussion of numerical results presented in section 5.4, where
better rates than the ones proved in Theorem 5.1 are observed when choosing ε
in the smoothing of the Euler’s elastica regularizer large enough. The following
assumption is common to these theorems and Lemma 5.1 in the subsequent
section.
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Assumption 5.1. The function V : Rn → R is C1, bounded from below and
coercive. Furthermore, ∇V is Lipschitz with Lipschitz constant L and coor-
dinatewise Lipschitz constants Li ∈ [Lmin,Lmax], and all time steps τ j lie in
[τmin,τmax] ⊂R+.

The following proof is inspired by that of [2, Lemma 3.3].

Theorem 5.1. If Assumption 5.1 holds, the uk produced by Algorithm 5.2
satisfy

min
1≤ j≤k

{
‖∇V (u j )‖2

}
≤ νV (u0)−V ∗

k
, ν= 2L2

max

(
τmaxn + τmax

L2
maxτ

2
min

)
where V ∗ >−∞ is a local minimum.

Proof. The coordinatewise Itoh–Abe scheme, with βk
l = uk+1

l −uk
l , reads

βk
l =−τk

V
(
vk

l

)
−V

(
vk

l−1

)
βk

l

,

with vk
l

:= uk +∑l
j=1β

k
j e j such that uk+1 = vk

n . By the triangle inequality,∣∣∣∣∣ ∂V

∂ul
(uk+1)

∣∣∣∣∣≤
∣∣∣∣∣∣ ∂V

∂ul
(uk+1)− V (vk

l )−V (vk
l−1)

βk
l

∣∣∣∣∣∣+ 1

τk

∣∣∣βk
l

∣∣∣ .

Since V ∈ C1, the mean value theorem holds, meaning

V (vk
l )−V (vk

l−1)

βk
l

= ∂V

∂ul
(vk

l−1 + sβk
l el )

for some s ∈ (0,1). Hence,∣∣∣∣∣ ∂V

∂ul
(uk+1)

∣∣∣∣∣≤
∣∣∣∣∣ ∂V

∂ul
(uk+1)− ∂V

∂ul
(vk

l−1 + sβk
l el )

∣∣∣∣∣+ 1

τk

∣∣∣βk
l

∣∣∣ . (5.2.7)

Exploiting the coordinatewise Lipschitz continuity of the gradient, we have∣∣∣∣∣ ∂V

∂ul
(uk+1)

∣∣∣∣∣≤ Ll‖uk+1 −vk
l−1 − sβk

l el‖+
1

τk

∣∣∣βk
l

∣∣∣ .

Squaring this and summing over all coordinates, we get

‖∇V (uk+1)‖2 ≤
n∑

l=1

(
Ll‖uk+1 −vk

l−1 − sβk
l el‖+

1

τk

∣∣∣βk
l

∣∣∣)2

≤ 2L2
max

(
n + 1

L2
maxτ

2
min

)
‖uk+1 −uk‖2

≤ ν
(
V (uk )−V (uk+1)

)
.
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We then find

k min
1≤ j≤k

{
‖∇V (u j )‖2

}
≤

k∑
j=1

‖∇V (u j )‖2 ≤ ν
(
V (u0)−V (uk )

)
≤ ν

(
V (u0)−V ∗

)
,

which concludes the proof.

Remark: We can choose a fixed τk = τ that minimizes ν, yielding

τ= 1

Lmax
p

n
, ν= 4Lmax

p
n.

Thus, the complexity of the above bound with respect to the problem size n
is O(n1/2). Furthermore, we can obtain bounds of the type ‖∇V (uk+1)‖2 ≤
ν

(
V (uk )−V (uk+1)

)
for the Gonzalez and AVF discrete gradients, yielding

similar convergence rates for these discrete gradients. Such estimates are shown
in [10, Lemma 5.1].

As with descent methods, the convergence rate improves with additional
assumptions on V , in particular assuming that V is convex. We state the fol-
lowing theorems, proved in [10] and inspired by those in [2], for later refer-
ence. Similarly to the proof of Theorem 5.1, they are are based on bounding
‖∇V (uk+1)‖2 ≤ ν

(
V (uk )−V (uk+1)

)
and so the factor ν appears here as well.

Theorem 5.2. If Assumption 5.1 holds and V is in addition convex, the iterates
uk produced by Algorithm 5.2 satisfy, with ν as in Theorem 5.1,

V (uk )−V ∗ ≤ νR(u0)2

k +2ν/L
.

where V ∗ is a minimum and R(u0) is the diameter of {u ∈Rn |V (u) ≤V (u0)}.

The next theorem concerns the convergence rate of Algorithm 5.2 when
V is a PŁ-function, i.e. V satisfies the Polyak-Łojasiewicz inequality with
parameter σ,

1

2
‖∇V (u)‖2 ≤σ(V (u)−V ∗).

Note that under Assumption 5.1, all strongly convex functions are PŁ-functions
[16].

Theorem 5.3. If Assumption 5.1 holds and V is a PŁ-function, the iterates of
Algorithm 5.2 satisfy, with ν as in Theorem 5.1,

V (uk )−V ∗ ≤
(
1− 2σ

ν

)k

(V (u0)−V ∗).

89



Euler’s elastica image analysis using a discrete gradient scheme

Remark: The above theorems mean that for convex problems, too, the
algorithm has a worst-case complexity of O(n1/2) with respect to the prob-
lem dimension n, compared to O(n3/2) for the cyclic coordinate descent al-
gorithm [32] and O(n) for the expected bounds of stochastic coordinate de-
scent [19]. We shall see in Lemma 5.1 that the complexity can be reduced
further depending on a sparsity property of V .

5.3 The Euler’s elastica problem

We will use Algorithm 5.1 for variational image analysis with Euler’s elas-
tica regularization. In variational image analysis one repairs a damaged input
greyscale image g :Ω→ [0,1] ,where Ω⊂R2 is often rectangular, by finding an
output image u :Ω→ [0,1] that minimizes a functional

Vc (u) = dc (Kc u, g )+αJc (u). (5.3.1)

Here, Kc is a forward operator relating u to g , dc a function measuring the
distance between Kc u and g , Jc a regularization functional and α> 0 a constant.
The subscript c emphasizes that the functions are continuous; they will later
be discretized and renamed. When Jc is the Euler’s elastica energy below, α is
included in a and b.

The forward operator Kc , which may be linear, is inherent to the problem.
For example, when considering an inpainting problem where the goal is to
interpolate g in a subset D of the image domain Ω in which there is no given
data, one would take Kc as a restriction toΩ\D. Since this leaves Kc u undefined
in Ω, the fidelity term should only compare with values of g on Ω\D. This
has the effect of maintaining fidelity only in areas where the image is known,
at the cost of generating an ill-posed problem due to non-unique solutions. In
the denoising problem, where random noise is added to an image in unknown
pixels, the usual choice is to take Kc as the identity operator since there is no
information about which pixels are damaged.

The terms that differentiate approaches to image analysis are the dc and Jc

functions, and the implementation of the Kc operator if applicable. One often
takes dc as an Lp metric, while Jc can be chosen in several ways. A popular
choice is the total variation (TV) [26] regularization which, for differentiable
u, can be stated as

JT V (u) =
∫
Ω

|∇u|dx.

In practice, one often wishes to work with a differentiable function after dis-
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cretizing J , thus using a smoothed version of JT V , with 0 < ε¿ 1, given as

JT Vε
(u) =

∫
Ω

|∇u|εdx =
∫
Ω

√
∂u

∂x

2

+ ∂u

∂y

2

+εdx.

The Euler’s elastica regularizer generalizes JT V , adding a curvature dependent
term. It is stated for C2(Ω) functions u as [28]

Jc (u) =
∫
Ω

(
a +b

(
∇· ∇u

|∇u|
)2

)
|∇u|dx,

where a,b > 0. We will consider the smoothed version

Jε(u) =
∫
Ω

C (u)g (u)dx, C (u) = a +b

(
∇· ∇u

|∇u|ε

)2

, g (u) = |∇u|ε. (5.3.2)

where C (u) and g (u) are smoothed curvature and gradient terms.

5.3.1 Discretization

In the following, we assume that Ω = [1,nx ]× [1,ny ], where nx and ny are
the numbers of columns and rows, respectively, such that n = nx ny . We also
assume that the image is in a pixel format, meaning we have input data g
indexed as gi j only at discrete points xi j = (i , j ). Thus, we must discretize
(5.3.1) as

V (u) = d(K u,g)+αJ (u), (5.3.3)

where K : Rn → Rn is a discretization of Kc , u is the output image indexed as
ui j , and d and J are discretizations of dc and Jc . If dc is an Lp norm, with Kc

a restriction to Ω\D, we discretize it as ∫
Ω\D

|Kc u − g |p dx


1/p

≈
 ∑

(i , j )∈Ω\D
|(K u)i j − gi j |p

1/p

=: d(K u,g).

If Jc is on integral form, one can use quadrature to discretize it as

Jc (u) =
∫
Ω

H(u)dx ≈∑
i , j

H(u)
∣∣

xi j
.

Since it requires derivatives of u, H(u) =C (u)g (u) in (5.3.2) must be approx-
imated at the points xi j by values Hi j (u), such that the final discretization
becomes

Jc (u) ≈∑
i , j

Hi j (u).
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For this approximation we use finite differences on a staggered grid as in [28]
and [30]. The stencil used for discretizing both g (u) and C (u) is shown in Fig-
ure 5.1. The ui j are shown as green squares, and ux and uy are approximated
by finite differences at red and blue points. With these, we approximate g (u)
and C (u). Following the standard approach for TV regularization, g (u) is ap-

(i−1, j+ 1
2 ) (i , j+ 1

2 ) (i+1, j+ 1
2 )

(i−1, j− 1
2 ) (i , j− 1

2 ) (i+1, j− 1
2 )

(i− 1
2 , j+1) (i+ 1

2 , j+1)

(i− 1
2 , j ) (i+ 1

2 , j )

(i− 1
2 , j−1) (i+ 1

2 , j−1)

(i , j )(i−1, j )

(i−1, j+1) (i , j+1) (i+1, j+1)

(i+1, j )

(i+1, j−1)(i , j−1)(i−1, j−1)

Figure 5.1: Discretization stencil. Green squares: Pixel data ui j . All red/blue circles:
approximations of ux and uy . Large red/blue circles: approximations of x and y
components of ∇u/|∇u|ε.

proximated by backward differences. Approximating C (u) requires evaluation
of the x and y components of ∇u

|∇u|ε at the large dots (red for the x component,
blue for the y component) and taking central differences of these to approxi-
mate the divergence. To evaluate |∇u|ε, we approximate values for uy at the
large red dots and ux at the large blue dots by the mean of the uy and ux ap-
proximations at the four nearest blue and red points, respectively. In total, the
discretized regularizer is

J (u) =
nx∑

i=1

ny∑
j=1

a +b

δ+x δ−x ui j

wi− 1
2 , j

+δ+y
δ−y ui j

wi , j− 1
2

2
gi j . (5.3.4)

Here, δ+x , δ−x , δ+y , and δ−y denote forward/backward differences in x and y
directions,

δ+x fi j = fi+1, j − fi j , δ−x fi j = fi j − fi−1, j ,

δ+y fi j = fi , j+1 − fi j , δ−y fi j = fi j − fi , j−1,
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and the discretization of the |∇u|ε terms depends on the point as

gi j =
√

(δ−x ui j )2 + (δ−y ui j )2 +ε,

wi− 1
2 , j =

√
(δ−x ui j )2 + (δ∗y ui j )2 +ε,

wi , j− 1
2
=

√
(δ∗x ui j )2 + (δ−y ui j )2 +ε,

where

δ∗x ui j = 1

4
(δ−x ui+1, j +δ−x ui j +δ−x ui+1, j−1 +δ−x ui , j−1)

δ∗y ui j = 1

4
(δ−y ui , j+1 +δ−y ui j +δ−y ui−1, j +δ−y ui−1, j+1).

The discrete energy (5.3.4) has a Lipschitz continuous gradient, where the
Lipschitz constant depends on ε. Thus, any energy of the form (5.3.3) using
(5.3.4) as a regularizer will satisfy Theorem 5.1 when the fidelity term has a
Lipschitz continuous gradient.

Figure 5.2: Image split into M = 8 blocks Bm , 1 ≤ m ≤ 8, with cyan border sets
Γl ,1 ≤ l ≤ 7.

5.3.2 Decoupling and parallelization

Algorithms 5.1 and 5.2 follow a cyclic ordering with elements updated column-
wise, but Theorems 5.1, 5.2 and 5.3 make no assumptions on element ordering,
so the convergence rates are unaffected by reordering updates. Also, Figure 5.1
indicates that updating ui j will only affect the Hµν(u) with (µ,ν) immediately
surrounding (i , j ). Hence, if we split the image in M parts as shown in Figure
5.2 and sweep through the cyan elements first, the blocks separated by cyan
pixels can be updated independently of each other and thus in parallel, a domain
decomposition strategy similar to that in [33].
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Algorithm 5.3. DG-PARALLEL
Choose τ> 0, tol > 0 and u0 ∈Rn . Set k = 0. Initialize M threads.
Define M index sets Bm and N index sets Γl .
repeat

parallel : N threads. Thread number l does:
vk,l

0 = uk

for j ∈ Γl do
Solve βk

j =−τ(V (vk,l
j−1 +βk

j e j )−V (vk,l
j−1))/βk

j

vk,l
j = vk,l

j−1 +βk
j e j

end for
Reduce: vk

0 = uk + ∑
j∈∪N

l=1Γl

βk
j e j

Parallel : M threads. Thread number m does:
vk,m

0 = vk
0

for j ∈ Bm do
Solve βk

j =−τ(V (vk,m
j−1 +βk

j e j )−V (vk,m
j−1))/βk

j

vk,m
j = vk,m

j−1 +βk
j e j

end for
Reduce: uk+1 = vk

0 +
∑

j∈∪M
m=1Bm

βk
j e j

k = k +1
until

(
V (uk )−V (uk−1)

)
/V (u0) < tol

This inspires Algorithm 5.3, a parallel version of Algorithm 5.1 where the
indices of the unknowns are divided into two collections of index sets, {Bm}M

m=1
and {Γl }N

l=1, based on the dependency radius of V , defined below. Note that
the acceleration procedure proposed in Algorithm 5.2 still works here. For a
rigorous discussion, we first introduce a distance measure between index sets.
Define the distance between two index pairs (i , j ) and (k, l ) by

distind
(
(i , j ), (k, l )

)= max
{|i −k|, | j − l |} ,

which is the graph distance when every index has edges to the closest indices
vertically, horizontally and diagonally. We define the distance between two
index sets as

distset(Im , In) = min
(i , j )∈Im
(k,l )∈In

distind
(
(i , j ), (k, l )

)
.

If distset(Im , In) = 0, then Im and In share at least one index; if distset(Im , In) =
1, at least one index in Im is adjacent to an index in In , horizontally, vertically or
diagonally; if distset(Im , In) = 2, there is a band of width 1 of indices separating
Im and In , et cetera. We can now define the dependency radius of a function;
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we say that V :Rn →R has dependency radius R if for all δ ∈R and (i , j ),

V (u+ (δ−ui j )ei j )−V (u) = F (uR
i j (u),δ),

where F :R(2R+1)2+1 →R is a function depending on δ and

uR
i j (u) = (uimin, jmin , ...,ui j , ...,uimax, jmax ),

where

imin = max{i −R,1}, jmin = max{ j −R,1}

imax = min{i +R,nx }, jmax = min{ j +R,ny }.

This means that computing the change in V from updating unknown number
(i , j ) requires only the unknowns with indices within a distance of R. In the
discretized Euler’s elastica problem we have R = 1. If V has dependence radius
R, then ui j can be updated using the Itoh-Abe discrete gradient independently
of ukl if distind((i , j ), (k, l )) > R. We can decouple a problem with dependency
radius R by choosing M index sets Bm ⊂Ω such that distset(Bm ,Bn) > R for
all (m,n). Then, one chooses a second collection of N index sets Γl such that
distset(Γk ,Γl ) > R and ∪N

l=1Γl = Ω/∪M
m=1 Bm . Note that in general, M 6= N

and that while this discussion has been focused on two-dimensional indexing,
generalizing distind and distset in the obvious manner to higher-dimensional
index pairs admits a similar approach in arbitrary indexing dimensions.

5.3.3 Effect of dependency radius on complexity of the algorithm

A consequence of V having dependency radius R is that ∂V /∂ui j depends on
uR

i j only. This can be used to make sharper versions of Theorems 5.1, 5.2 and
5.3 through a property presented in the following lemma for two-dimensional
indexing.

Lemma 5.1. If Assumption 5.1 holds and in addition V has dependency radius
R, the uk produced by Algorithm 5.2 satisfy

‖∇V (uk )‖2 ≤ ν
(
V (uk )−V (uk+1)

)
, (5.3.5)

with

ν= 2L2
max

(
(2R +1)2τmax + τmax

L2
maxτ

2
min

)
.
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Proof. Recall the coordinatewise formulation of the Itoh–Abe scheme, with
2D indexing where, with βk

lm = uk+1
l m −uk

l m ,

βk
lm =−τk

V
(
vk

l ,m

)
−V

(
vk

l ,m−1

)
βk

l m

.

Here, vk
l ,m

:= uk +∑l−1
i=1

∑ny

j=1(βk
i j )ei j +∑m

j=1(βk
l j )el j . We follow the proof of

Theorem 5.1 up to (5.2.7), where we exploit the dependence radius R of V . For
an s ∈ (0,1), we have∣∣∣∣∣ ∂V

∂ulm
(uk+1)

∣∣∣∣∣=
∣∣∣∣∣ ∂V

∂ulm
(uR

l m(uk+1))

∣∣∣∣∣
≤

∣∣∣∣∣ ∂V

∂ulm
(uR

l m(uk+1))− ∂V

∂ulm
(uR

lm(vk
l ,m−1)+ sβk

lmel m)

∣∣∣∣∣+
∣∣∣βk

lm

∣∣∣
τk

.

Using coordinatewise Lipschitz continuity, we have∣∣∣∣∣ ∂V

∂ulm
(uk+1)

∣∣∣∣∣≤ Ll m‖uR
lm(uk+1)−uR

lm(vk
l ,m−1)− sβk

l melm‖+

∣∣∣βk
l m

∣∣∣
τk

,

and summing up over all coordinates, we get

‖∇V (uk+1)‖2 ≤
nx∑

l=1

ny∑
m=1

Llm‖uR
l m(uk+1)−uR

lm(vk
l ,m−1)− sβk

l melm‖+

∣∣∣βk
lm

∣∣∣
τk


2

≤ 2
nx∑

l=1

ny∑
m=1

L2
lm

 lmax∑
i=lmin

mmax∑
j=mmin

βk
i j

2

+

∣∣∣βk
l m

∣∣∣2

τ2
k


≤ 2L2

max

(
(2R +1)2 + 1

L2
maxτ

2
min

)
‖uk+1 −uk‖2.

Since ‖uk+1 −uk‖2 = τk (V (uk )−V (uk+1)), this concludes the proof.

Remark: This improved estimate affects the complexity of Theorems 5.1,
5.2 and 5.3, reducing it from a worst-case of O(n1/2) to O((2R+1)2) for convex
two-dimensionally indexed problems. Indeed, choosing a constant step size τ
minimizing ν, one obtains

τ= 1

(2R +1)Lmax
, ν= 4(2R +1)Lmax,

meaning the complexity scales as O(R). This is of particular interest for prob-
lems involving discretizations such as the Euler’s elastica regularization consid-
ered here. For general D-dimensional indexing one can expect the complexity
to scale as O((2R +1)D ), with improvements from optimal step size selection.
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5.4 Numerical experiments

In this section, we first apply Euler’s elastica regularization to denoising prob-
lems and to image inpainting. The results are compared to those of TV regular-
ization to verify the qualitative improvement of Euler’s elastica regularization
with Algorithm 5.1 over TV. This is not intended as an account on the competi-
tiveness of Euler’s elastica against other regularising procedures in general but
serves as a proof of concept for the qualitative and algorithmic performance
of the discrete gradient approach for Euler elastica when compared to discrete
gradient for TV. We further investigate the convergence rate numerically, with
varying smoothing constant ε and ordering of the unknowns. We also verify
the convergence rate’s independence of n as predicted by Lemma 5.1. Next,
we compare the execution time to another state-of-the-art algorithm for non-
convex optimization, the iPiano algorithm [23], and to the gradient descent and
Heavy-ball algorithms. Finally, we evaluate the algorithm’s sensitivity to the
initial guess.

All algorithms were implemented as hybrid MATLAB and C functions us-
ing the MATLAB EXecutable (MEX) interface, where critical parts of the code
are implemented in C. The tests were executed using MATLAB (2017a release)
running on a Mid 2014 MacBook Pro with a four-core 2.5 GHz Intel Core i7
processor and 16 GB of 1600 MHz DDR3 RAM. For the Brent-Dekker algo-
rithm implementation we used the built-in MATLAB function fzero, and block
parallelization was done using MATLAB’s blockproc and parfor functions.

5.4.1 Image denoising

We first consider denoising images. The typical choice of fidelity term is an
Lp metric where p depends on the type of noise encountered. The discretized
forward operator K is the identity operator. We wish to minimize

V (u) =∑
i , j

|ui j − gi j |p + J (u). (5.4.1)

In the first example we have added Gaussian noise with a standard deviation
of 0.2, using p = 2 for the fidelity term. In the second example we have added
impulse noise, randomly setting the values of 25% of the pixels to either 0 or
1 as depicted in the top pictures in Figure 5.4. Impulse noise is removed using
p = 1 in (5.4.1). Note that the fidelity term with p = 1 is non-differentiable and
falls outside of the theoretical basis of section 5.2.2. It is still included here to
see how the method behaves beyond the smooth setting.

Figure 5.3 shows Euler’s elastica denoising with p = 2 applied to an image
corrupted by Gaussian noise in its lower right hand panel and a TV regularized
version in the lower left hand panel. For both TV and elastica denoising, we
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Figure 5.3: Denoising with p = 2. Top left: original image. Top right: noisy input
image g . Bottom left: TV denoised. PSNR: 20.9421, SSIM: 0.8398. Bottom right:
Elastica denoised. PSNR: 21.3760, SSIM: 0.8595.

chose ε = 10−4; larger values resulted in blurring and lower values showed
no visible improvement but slower convergence. For TV denoising, we set
a = 0.17, and for elastica denosing, we chose a = 0.9 and b = 0.9. These values
were chosen to maximize PSNR and SSIM.

In the lower right hand panel of Figure 5.4, the result of elastica denoising
with p = 1 on a picture of the Louvre, corrupted by impulse noise, is shown. A
TV regularized version is seen in the lower left hand panel. As above, we chose
ε= 10−4 for both TV and elastica denoising. In the TV case, we set a = 0.8, and
in the elastica case, we chose a = 0.4 and b = 0.2. These values were chosen to
maximize PSNR and SSIM.

As can be seen in both examples, the results of Euler’s elastica denoising
are slightly more visually appealing than the TV denoised versions, which is
as expected since Euler’s elastica generalizes TV regularization. In Figure 5.3,
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Figure 5.4: Denoising with p = 1. Left: TV denoised. PSNR: 25.7287, SSIM: 0.8572.
Right: Elastica denoised. PSNR: 25.9611, SSIM: 0.8628.

edges are sharper and the contrast level better in the elastica denoised image.
In Figure 5.4 the pyramids’ lines are sharper and the museum’s façade details
are clearer. One can also see that the textures are smoother and that edges are
less jagged in the elastica reconstruction.

5.4.2 Image inpainting

Inpainting is used when there is data loss in known pixels. Using p = 2 and a
discretized restriction operator K we wish to minimize

V (u) = ∑
(i , j )∈Ω\D

(ui j − gi j )2 + J (u),

where D ⊂Ω is the damaged domain. Figure 5.5 shows the result of applying
Algorithm 5.1 to an example inpainting problem. Here, the top left panel shows
the original image, the top right panel the image with 95% of the pixels removed
randomly, the bottom left panel a TV inpainted image, and the bottom right
panel an Euler’s elastica inpainted image. For both TV and elastica, we chose
ε= 10−4. In the TV case, we set a = 2.5·10−7, and in the elastica case, we chose
a = 10−6 and b = 10−5. These values were chosen to maximize SSIM. Here,
the superiority of Euler’s elastica is evident, as more details are reconstructed
and the image appears sharper than with TV regularization.
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Figure 5.5: Top left: Original image. Top right: 95 % random data loss. Bottom left:
Inpainted with TV - SSIM: 0.7512. Bottom right: Inpainted with elastica - SSIM:
0.8896.

5.4.3 Convergence rates

When denoising using p = 2 in (5.4.1), the conditions of Theorem 5.1 are ful-
filled, and so we investigate the convergence rates numerically in this case.
The two plots in Figure 5.6 show min0≤l≤k ‖∇V (ul )‖/‖∇V (u0)‖ for DG and
DG-ADAPT applied to the Euler’s elastica regularized denoising problem with
p = 2 shown in Figure 5.3 for two choices of ε. Each plot shows the result of
initializing with a τ0 chosen by trial and error to yield the best convergence rate,
and with a much smaller τ0. Both algorithms were started from the same ran-
dom initalization u0 and with the same initial time step τ0. For DG-ADAPT, the
additional parameters were chosen as ρ = 0.99, c1 = 0.7,c2 = 0.9 and γ= 1.005.
Note that the left hand plot is semilogarithmic while the right hand plot is log-
arithmic. The left hand plot shows linear convergence for the DG algorithm
when τ0 is chosen correctly and a much slower rate for the suboptimal τ0. The
linear convergence can be expected by Theorem 5.3 if the choice of ε= 10−4

means V , which is twice differentiable, becomes strongly convex in a neigh-
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bourhood of the minimize, or if it is a PŁ-function. In the right hand plot, where
ε= 10−7 leads to a more ill-conditioned problem, the convergence rate appears
closer to that predicted in Theorem 5.2, indicating that a neighborhood of strong
convexity has not yet been reached. Both plots show that using adaptive step
sizes yields faster convergence than fixed step sizes, especially when τ0 is not
carefully chosen beforehand.

Figure 5.6: Convergence rates in terms of min0≤l≤k ‖∇V (ul )‖/‖∇V (u0)‖ for the Eu-
ler’s elastica regularized denoising problem with p = 2 of illustrated in Figure 5.3. Blue
denotes τ0 = 0.38, red denotes τ0 = 0.38 ·10−4. Left: Using ε = 10−4. Right: Using
ε= 10−7.

Figure 5.7 shows convergence rates for four different element orderings.
The first ordering is the natural ordering which iterates over pixels starting
in one corner and proceeding columnwise. The second is red-black ordering
where pixels ui j with i + j even are updated first, then pixels with i + j odd.
Third is a random ordering, with the same ordering used for all time steps.
Last, we consider the block ordering of the parallelized algorithm as illustrated
in Figure 5.2. The plots of Figure 5.7 concern the same problem as Figure
5.6, but with the DG algorithm only and showing rates in terms of the relative
optimality error (V (uk )−V ∗)/(V (u0)−V ∗), where V ∗ was produced by running
the algorithm for 20 000 iterations. Step sizes were chosen individually for the
different orderings to produce the best possible convergence. The left hand plot
plateaus at a relative optimality error of ∼ 10−16, i.e. machine precision. Both
plots show that the asymptotic convergence rate, represented by the slope of the
lines, is similar for all orderings, as is to be expected from the independency of
ordering in the convergence theorems. However, the early rate of the random
and red-black orderings of the left hand plot is better than that of the natural
and block orderings, suggesting that the choice of ordering affects the constant
ν in Theorems 5.1, 5.2 and 5.3. We consider this an interesting topic for further
investigation.
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Figure 5.7: Convergence rates in terms of (V (uk )−V ∗)/(V (u0)−V ∗) for the Euler’s
elastica regularized denoising problem with p = 2 illustrated in Figure 5.3, with differ-
ent orderings. Left: Using ε= 10−4. Right: Using ε= 10−7.

Figure 5.8 shows convergence rates in terms of (V (uk )−V ∗)/(V (u0 −V ∗)
for the DG algorithm applied to the denoising problem (5.4.1) with p = 1.
Here, all parameters are fixed but the input image is rescaled to 2k ×2k , k =
4,5,6,7,8,9, before being subjected to impulse noise, randomly setting values
of 25% of the pixels to 0 or 1 before denoising. The plot verifies the conclusion
of Lemma 5.1, that the asymptotic convergence rates of Algorithms 5.1 and 5.2
are independent of the problem size n when the objective function has sparsely
connected unknowns.

Figure 5.8: Convergence rates in terms of (V (uk )−V ∗)/(V (u0)−V ∗) for the Euler’s
elastica regularized denoising problem with p = 1 illustrated in Figure 5.4, for varying
problem sizes.
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5.4.4 Execution time

As a general algorithm suited to the kind of non-convex minimization problems
that the Euler’s elastica problem poses, it is reasonable to compare the DG
algorithms to the iPiano algorithm of [23]; in particular, we use Algorithm 4
from this article. Inspired by Polyak’s Heavy-ball algorithm and the proximal
gradient algorithm, iPiano considers minimization problems of the form

min
u∈Rn

f (u)+ g (u),

where g is convex and possibly non-smooth while f is smooth and possibly
non-convex, and iterates based on the update scheme

uk+1 = (I +α∂g )−1(uk −α∇ f (uk )+β(uk −uk−1)),

where (I +α∂g )−1 denotes a proximal step by

(I +α∂g )−1(y) = argmin
z∈Rn

‖z−y‖2

2
+αg (z).

We wish to time the algorithms on a problem with non-differentiable terms, and
so we use a variation on the discrete elastica regularizer (5.3.4), taking

J (u) = a
nx∑

i=1

ny∑
j=1

ḡi j +b
nx∑

i=1

ny∑
j=1

δ+x δ−x ui j

wi− 1
2 , j

+δ+y
δ−y ui j

wi , j− 1
2

2

gi j =: aT (u)+bK (u),

where

ḡi j =
√

(δ−x ui j )2 + (δ−y ui j )2.

That is, the TV term T is not differentiable but the curvature term K is. The
choice of f and g in the iPiano algorithm depends on whether the fidelity term
is differentiable or not. We take f = K +d if d is the discrete L2 fidelity term,
but f = K if d is the discrete L1 fidelity term. Likewise, we take g = T if d is
the discrete L2 fidelity term, but g = T +d if d is the discrete L1 fidelity term. In
both cases, evaluating (I +α∂g )−1 is equivalent to solving a TV regularization
problem, which is done efficiently using the Chambolle-Pock algorithm [8].
This algorithm can be accelerated in the case of a uniformly convex fidelity
term, i.e. if d is a discrete L2 norm. If it is not, as is the case when d is a discrete
L1 norm, no acceleration is possible. The DG-ADAPT algorithm requires the
computation of gradients; they are computed using the smoothed (5.3.4); also,
when using the non-differentiable L1 fidelity term, the additional smoothing

‖u − g‖L1 =∑
i , j

|ui j − gi j | ≈
∑
i , j

√
(ui j − gi j )2 +ε := ‖u − g‖L1,ε
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was used with ε= 10−12 to compute gradients in the DG-ADAPT algorithm.
All algorithms were implemented in serial versions using MEX, and timed.

Note that the above non-smoothed TV term was used in the DG/DG-ADAPT
algorithms as well for this test. Tables 5.1 and 5.2 show timing results for
a denoising test on a 512×512 image for different values of ε using an L2

norm and an L1 norm for the fidelity term, respectively. For each ε, a reference
solution V̄ was found by running the DG algorithm for 20 000 iterations or until
a minimizer was found with machine precision. The algorithms were then tested
on the problem, running until the iterations reached a value of V (uk ) ≤ 1.0001 ·
V̄ or 4000 iterations. Both algorithms require the solution of a subproblem;
either a root finding problem for the DG algorithms, or the evaluation of a
proximal operator for the iPiano algorithm. For the DG algorithms the tolerance
of the root finding algorithm was kept at a fixed value, while for the iPiano
algorithm, the tolerance in the prox operator evaluation was adjusted to obtain
the fastest runtime while still converging. In the DG-ADAPT algorithm the
parameter choices c1 = 0.7,c2 = 0.9,ρ = 0.98 and γ = 1.005 were used for the
L2 test, and c1 = 0.2,c2 = 0.7,ρ = 0.995 and γ = 1.0025 were used for the L1

test.

Table 5.1: Results of L2 test. Format: (Iterations/CPU time (s)). Best times in bold.

ε iPiano DG DG-ADAPT
10−1 30/8.90 29/15.61 28/17.39
10−2 32/9.60 28/14.79 27/16.54
10−3 38/12.40 38/20.42 35/21.67
10−4 59/16.78 67/38.22 57/36.62
10−5 216/47.74 115/69.51 89/60.20
10−6 1684/556.11 180/115.26 131/91.19
10−7 3968/1071.37 269/196.12 204/151.71

From both tables, it is apparent that the DG and DG-ADAPT algorithms
both scale better with ε than iPiano, which reached the maximum number of
iterations at ε = 10−6 in the L1 test and hence was not timed with ε = 10−7.
However, for larger values of ε, iPiano appears to be the better choice. The time
usage per iteration increases with ε for both iPiano and DG/DG-ADAPT; for
iPiano, this is due to the precision in the prox operator evaluation increasing
which requires more time. For DG/DG-ADAPT, the slight increase can be ex-
plained by an increase in the amount of iterations needed by the Brent-Dekker
algorithm to solve the scalar subproblems. Also note that in Table 5.2, we can
see that DG-ADAPT is not noticeably faster than DG in most cases, indicat-
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Table 5.2: Results of L1 test. Format: (Iterations/CPU time (s)). Best times in bold.

ε iPiano DG DG-ADAPT
10−1 23/21.73 199/171.82 168/161.73
10−2 59/29.67 288/250.23 247/231.56
10−3 146/46.36 305/255.12 252/231.50
10−4 401/229.04 300/246.27 253/223.21
10−5 1399/2181.81 303/246.90 292/257.47
10−6 4000/18566.24 303/242.00 304/267.11
10−7 N/A 400/335.10 423/373.91

ing that using gradients of smoothed versions of the objective function is not
sufficient to accelerate convergence for non-smooth problems.

Table 5.3: Results of L2 test with smoothed TV term. Format: (Iterations/CPU time
(s)). Best times in bold.

ε Gradient Descent Heavy-ball DG DG-ADAPT
10−1 12/5.16 23/12.79 20/9.46 19/8.61
10−2 27/14.78 29/17.95 25/12.72 24/11.85
10−3 145/101.00 38/25.16 32/17.43 30/15.76
10−4 388/319.57 96/73.59 42/24.66 43/24.71
10−5 1310/1271.73 312/284.49 68/43.95 76/47.92
10−6 4001/4621.38 1018/1079.10 119/83.15 112/73.07
10−7 N/A 2922/3765.52 194/142.05 181/116.88
10−8 N/A 4001/5488.83 376/291.73 398/260.18

Table 5.3 shows timing results of denoising test problems with the smoothed
elastica regularizer (5.3.4), on a 512×512 image using a squared L2 fidelity
term, comparing the DG and DG-ADAPT algorithms to the gradient descent
and Heavy-ball algorithms with Armijo step size selection. Here, the parame-
ters of the DG-ADAPT algorithm were chosen as ρ = 0.99, c1 = 0.7, c2 = 0.9
and γ= 1.005 after experimentation. The τ parameter in the DG algorithm was
chosen to give the fastest convergence at ε = 10−4, and the same τ was used
as initial τ0 in DG-ADAPT. The table shows that the DG and DG-ADAPT
algorithms outperform the gradient descent and Heavy-ball algorithms on the
problem for all ε except ε = 10−1, with increasing difference as ε→ 0. The
gradient descent algorithm reached the maximum of 4000 iterations at ε= 10−6

and was therefore not tested with smaller ε.
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Using the DG-PARALLEL algorithm with column splitting, a speedup of
2-2.5 was observed when employing 4 cores, with larger speedup values for
larger images.

5.4.5 Dependence on starting point

To investigate the influence of the starting point on the performance of the
algorithm in the minimisation of the non-convex Euler elastica problem, we
tested the inpainting problem with DG and iPiano, comparing execution time
and reconstruction quality of the two algorithms when starting from a random
starting image, a unicolor (black) starting image, or from the original image
prior to removing pixels.

As seen in Figure 5.10, the DG algorithm produces different but acceptable
reconstructions depending on the starting guess. The iPiano algorithm works
with a random initialization and when starting from the original image, but is
worse with a unicolor starting image. It is reasonable to expect that starting
from the original image gives the best reconstruction, and so we compare recon-
structions starting from other images to this. Figure 5.9 shows the differences
between image obtained when starting from the original and the images ob-
tained when starting from either random or unicolor images. We can see that
the reconstructions are largely in agreement except in certain areas such as the
stamens of the top right flower. In Table 5.4 we see that the iPiano algorithm is
slower than the DG algorithms when it comes to inpainting, and also that the
unicolor initialization produced an answer which was pretty far from optimal
as compared to the other initializations.

Table 5.4: Results of inpainting test. Format: (Final energy/CPU time (s)). Best times
in bold.

Initialization iPiano DG DG-ADAPT
Random 0.012334/3434 0.012323/431 0.012323/460
Unicolor 0.014892/2934 0.012324/2740 0.012324/438
Original 0.012263/1131 0.012263/145 0.012263/208

5.5 Conclusion

We have introduced a novel method for solving non-convex optimization prob-
lems and tested it on Euler’s elastica regularized variational image analysis
problems. We have produced a convergence rate estimate for non-convex prob-
lems assuming that V is continuously differentiable with Lipschitz continuous
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5.5 Conclusion

Figure 5.9: Difference from optimum when inpainting with different starting values.
Left column: DG. Right column: iPiano. Top: Random initial value. Bottom: Unicolor
initial value.

gradient. This rate does not depend on the problem size n, but rather on the
dependency radius R of V. Numerical tests confirm the quality of images de-
noised and inpainted with Euler’s elastica as a regularizer, that the time step
adaptivity proposed in Algorithm 5.2 can improve execution time, and that our
algorithm performs faster than the iPiano algorithm in certain instances.

There are still open questions, two of which carry special importance.
Firstly, it should be possible to improve upon the time step adaptivity of Algo-
rithm 5.2 which, while effective in some instances, is rudimentary. It may be
possible to employ a stochastically ordered version as in [19] instead. Secondly,
one should investigate the convergence properties of Algorithm 5.1 when ap-
plied to non-differentiable problems since it is still applicable then. One may
also generalize Algorithm 5.1 to a manifold setting using the tools developed
in [7]. Finally, one may wish to apply the discrete gradient approach to other
non-convex optimization problems.
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Euler’s elastica image analysis using a discrete gradient scheme

Figure 5.10: Inpainting with different starting values. Left column: DG. Right column:
iPiano. Top: Random initial value. Middle: Unicolor (black) initial value. Bottom:
Original initial value.

108



5.5 Bibliography

Acknowledgements

CBS acknowledges the support of the Engineering and Physical Sciences Re-
search Council (EPSRC) ’EP/K009745/1’, the EPSRC grant ’EP/M00483X/1’,
the EPSRC centre ’EP/N014588/1’, the Leverhulme Trust project ’Breaking
the non-convexity barrier’, the Alan Turing Institute ’TU/B/000071’, the Isaac
Newton Institute, the Cantab Capital Institute for the Mathematics of Informa-
tion and from NoMADS (Horizon 2020 RISE project grant). This work was
supported by the European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Sklodowska-Curie grant agreement No. 691070. The
authors wish to thank Antonin Chambolle, Elena Celledoni, Brynjulf Owren,
and Reinout Quispel for their helpful discussions during this work. We also
wish to thank the anonymous referees for their thorough advice.

Bibliography

[1] E. BAE, X.-C. TAI, AND W. ZHU, Augmented Lagrangian method for an
Euler’s elastica based segmentation model that promotes convex contours,
Inverse Probl. Imag., 11 (2017), pp. 1–23.

[2] A. BECK AND L. TETRUASHVILI, On the convergence of block coordi-
nate descent type methods, SIAM J. Optimiz., 23 (2013), pp. 2037–2060.

[3] D. P. BERTSEKAS, Nonlinear programming, Athena Scientific Optimiza-
tion and Computation Series, Athena Scientific, Belmont, MA, second ed.,
1999.

[4] J. BOLTE, S. SABACH, AND M. TEBOULLE, Proximal alternating lin-
earized minimization for nonconvex and nonsmooth problems, Math. Pro-
gram., 146 (2014), pp. 459–494.

[5] K. BREDIES, T. POCK, AND B. WIRTH, A convex, lower semicontinuous
approximation of Euler’s elastica energy, SIAM J. Math. Anal., 47
(2015), pp. 566–613.

[6] R. P. BRENT, An algorithm with guaranteed convergence for finding a
zero of a function, Comput. J., 14 (1971), pp. 422–425.

[7] E. CELLEDONI AND B. OWREN, Preserving first integrals with symmet-
ric Lie group methods, Discrete Cont. Dyn. S., 34 (2014), pp. 977–990.

[8] A. CHAMBOLLE AND T. POCK, A first-order primal-dual algorithm for
convex problems with applications to imaging, J. Math. Imaging Vis., 40
(2011), pp. 120–145.

109



Euler’s elastica image analysis using a discrete gradient scheme

[9] A. CHAMBOLLE AND T. POCK, Total roto-translational variation, arXiv
preprint arXiv:1709.09953, (2017).

[10] M. J. EHRHARDT, E. S. RIIS, T. RINGHOLM, AND C.-B. SCHÖNLIEB,
A geometric integration approach to smooth optimisation: Foundations of
the discrete gradient method, arXiv preprint arXiv:1805.06444, (2018).

[11] O. GONZALEZ, Time integration and discrete Hamiltonian systems, J.
Nonlinear Sci., 6 (1996), pp. 449–467.

[12] V. GRIMM, R. I. MCLACHLAN, D. I. MCLAREN, G. QUISPEL, AND

C. SCHÖNLIEB, Discrete gradient methods for solving variational image
regularisation models, J. Phys. A: Math. Theor., 50 (2017), p. 295201.

[13] E. HAIRER AND C. LUBICH, Energy-diminishing integration of gradient
systems, IMA J. Numer. Anal., 34 (2013), pp. 452–461.

[14] A. HARTEN, P. D. LAX, AND B. VAN LEER, On upstream differencing
and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev.,
25 (1983), pp. 35–61.

[15] T. ITOH AND K. ABE, Hamiltonian-conserving discrete canonical equa-
tions based on variational difference quotients, J. Comput. Phys., 76
(1988), pp. 85–102.

[16] H. KARIMI, J. NUTINI, AND M. SCHMIDT, Linear convergence of gra-
dient and proximal-gradient methods under the Polyak–Łojasiewicz con-
dition, in ECML PKDD, Springer, 2016, pp. 795–811.

[17] R. I. MCLACHLAN, G. R. W. QUISPEL, AND N. ROBIDOUX, Geomet-
ric integration using discrete gradients, Philos. T. R. Soc. A, 357 (1999),
pp. 1021–1045.

[18] Y. NESTEROV, A method of solving a convex programming problem with
convergence rate O(1/k2), Sov. Math. Dokl., 27 (1983), pp. 372–376.

[19] Y. NESTEROV, Efficiency of coordinate descent methods on huge-scale
optimization problems, SIAM J. Optim, 22 (2012), pp. 341–362.

[20] Y. NESTEROV, Gradient methods for minimizing composite functions,
Math. Program., 140 (2013), pp. 125–161.

[21] Y. NESTEROV AND A. NEMIROVSKII, Interior-point polynomial algo-
rithms in convex programming, vol. 13, SIAM, 1994.

110



5.5 Bibliography

[22] M. NITZBERG, D. MUMFORD, AND T. SHIOTA, Filtering, Segmentation
and Depth, vol. 662 of Lecture Notes in Comput.Sci., Springer, Berlin,
1993.

[23] P. OCHS, Y. CHEN, T. BROX, AND T. POCK, iPiano: Inertial proximal
algorithm for nonconvex optimization, SIAM J. Imaging Sci., 7 (2014),
pp. 1388–1419.

[24] B. T. POLYAK, Some methods of speeding up the convergence of iteration
methods, USSR Comp. Math. Math+, 4 (1964), pp. 1–17.

[25] W. H. PRESS, Numerical recipes 3rd edition: The art of scientific com-
puting, Cambridge university press, 2007.

[26] L. I. RUDIN, S. OSHER, AND E. FATEMI, Nonlinear total variation
based noise removal algorithms, Physica D: Nonlinear Phenomena, 60
(1992), pp. 259–268.

[27] D. SCIEUR, V. ROULET, F. BACH, AND A. D’ASPREMONT, Integra-
tion methods and optimization algorithms, in Adv. Neur. In. 30, 2017,
pp. 1109–1118.

[28] J. SHEN, H. SUNG, AND T. CHAN, Euler’s elastica and curvature-based
inpainting, SIAM J. Appl. Math., 63 (2003), pp. 564–592.

[29] N. Z. SHOR, Minimization methods for non-differentiable functions,
Springer, 1985.

[30] X.-C. TAI, J. HAHN, AND G. J. CHUNG, A fast algorithm for Euler’s
elastica model using augmented Lagrangian method, SIAM J. Imaging
Sci., 4 (2011), pp. 303–344.

[31] P. WOLFE, Convergence conditions for ascent methods, SIAM Rev., 11
(1969), pp. 226–235.

[32] S. J. WRIGHT, Coordinate descent algorithms, Math. Program., 151
(2015), pp. 3–34.

[33] D. XIE AND L. ADAMS, New parallel SOR method by domain partition-
ing, SIAM J. Sci. Comput., 20 (1999), pp. 2261–2281.

[34] J. ZHANG AND K. CHEN, A new augmented Lagrangian primal dual
algorithm for elastica regularization, J. Alg. Comp. Tech., 10 (2016),
pp. 325–338.

111



Euler’s elastica image analysis using a discrete gradient scheme

[35] J. ZHANG, R. CHEN, C. DENG, AND S. WANG, Fast linearized aug-
mented Lagrangian method for Euler’s elastica model, Numer. Math. -
Theory Me., 10 (2017), pp. 98–115.

[36] W. ZHU, X.-C. TAI, AND T. CHAN, Augmented Lagrangian method for
a mean curvature based image denoising model, Inverse Probl. Imag., 7
(2013), pp. 1409–1432.

112



A geometric integration approach to smooth
optimisation: Foundations of the discrete gradient

method

Matthias Ehrhardt, Erlend Riis, Torbjørn Ringholm and Carola-Bibiane
Schönlieb

To be submitted

113



114



A geometric integration approach to smooth
optimisation: Foundations of the discrete

gradient method

Abstract. Discrete gradient methods are tools from geometric integration
which yield optimisation schemes that inherit the energy dissipation prop-
erty from continuous gradient flow. They are efficient for both convex and
nonconvex problems, and by choosing different discrete gradients, one can
obtain both zero- and first-order optimisation algorithms. In this paper, we
make a comprehensive analysis of discrete gradient methods in optimization,
answering questions about well-posedness of the iterates, convergence rates
and optimal step size selection. In particular, we prove under mild assump-
tions that the iterates are well-posed, i.e. admit a solution, for all time steps,
an unprecedented result for discrete gradients. We show that these schemes
achieve O(1/k) and linear convergence rates, under standard assumptions on
the objective function, such as smoothness, strong convexity or the Polyak-
Łojasiewicz property. Furthermore, we recover the optimal rates of classical
schemes such as explicit gradient descent and stochastic coordinate descent.
The analysis is carried out for three discrete gradients: The Gonzalez discrete
gradient, the mean value discrete gradient, the Itoh–Abe discrete gradient, and
a randomised version of the Itoh–Abe method.

6.1 Introduction

Discrete gradients are tools from geometric integration for numerically solving
first-order systems of ordinary differential equations (ODEs), while ensuring
that certain structures of the continuous system—specifically energy conserva-
tion and dissipation, and Lyapunov functions—are preserved in the numerical
solution. The use of discrete gradient methods to solve optimisation problems
has gained increasing attention in recent years, because discrete gradients ap-
plied to the gradient flow ODE preserve energy dissipation for the objective
function. This means that the iterative scheme monotonically decreases the
objective function for all time steps, and the rate of dissipation is a discretised
version of the rate of dissipation of gradient flow.

We consider the unconstrained optimisation problem

min
x∈Rn

V (x), (6.1.1)

where the function V : Rn → R is continuously differentiable. The discrete
gradient method is of the form

xk+1 = xk −τk∇V (xk , xk+1), (6.1.2)
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where τk > 0 is the time step, and ∇V is the discrete gradient, to be defined in
Section 6.2.

6.1.1 Contributions

While discrete gradient methods have existed in geometric integration since the
1980s, only recently have they been studied in the context of optimisation, leav-
ing significant gaps in our understanding of these schemes. In this paper, we
resolve fundamental questions about the discrete gradient methods, including
their well-posedness, efficiency, and optimal tuning. Specifically, we prove that
the discrete gradient method’s update formula (6.1.2) is well-posed, meaning
that for any time step τk > 0 and xk ∈ Rn , a solution xk+1 exists, under mild
assumptions on V . We also analyse the dependence of the iterates on the choice
of time step τk , which naturally lead to optimal time steps. Finally, we establish
convergence rates for functions with Lipschitz continuous gradients, and func-
tions that satisfy the Polyak–Łojasiewicz (PL) inequality [23]. We emphasise
that the majority of these results hold for nonconvex functions. Our contri-
butions to the foundations of the discrete gradient method opens the door for
future applications and research on discrete gradient methods for optimisation,
with a deeper understanding of their numerical properties.

6.1.2 Background and related work

We list some applications of discrete gradient methods for optimisation. In [16],
discrete gradient methods are used to solve variational problems in image anal-
ysis. Furthermore, it is proven that the method converges to a set of station-
ary points. In [39], a discrete gradient method is applied to nonconvex imag-
ing problems regularised with Euler’s elastica. In [27], it was shown that the
well-known Gauss-Seidel and successive-over-relaxation (SOR) methods are
instances of the Itoh–Abe discrete gradient method for solving linear systems.
In [13], the application of a derivative-free discrete gradient method for non-
convex, nonsmooth functions is studied, and the method converges to a set of
stationary points in the Clarke subdifferential framework. In [10], an extension
of the Itoh–Abe discrete gradient for the optimisation of functions defined on
Riemannian manifolds is investigated. In [20], a discrete gradient method is
combined with Hopfield networks in order to preserve a Lyapunov function for
optimisation problems.

More generally, there is a wide range of research areas that study connec-
tions between optimisation schemes and systems of ODEs. We mention two
prominent examples here. Recent papers [46, 47] study second-order differen-
tial equations that can be viewed as the continuous-time limit of Nesterov’s
accelerated gradient descent [29], in order to gain a deeper understanding of
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the well-known acceleration method. Furthermore, in [43], the authors show
that several accelerated optimisation schemes can be derived as multi-step in-
tegration schemes from numerical analysis. Another example is the study of
gradient flows in metric spaces and minimising movement schemes [2], which
studies gradient flow trajectories under other measures of distance, such as the
Wasserstein metric [41].

6.1.3 Notation

Throughout the paper, we will denote by Sn−1 the unit sphere
{

x ∈Rn : ‖x‖ = 1
}
.

The diameter of a set K ⊂Rn is defined as diam(K ) := supx,y∈K ‖x−y‖. The line
segment between two points is defined as [x, y] := {

λx + (1−λ)y : λ ∈ [0,1]
}
.

In this paper, we consider both deterministic and stochastic schemes. For
the stochastic schemes, there is a random distribution Ξ on Sn−1 such that each
iterate xk depends on a descent direction d k which is independently drawn
from Ξ. We denote by ξk the joint distribution of (d i )k

i=1. We denote by φk+1

the expectation of V (xk+1) conditioned on ξk ,

φk+1 := Eξk [V (xk+1)]. (6.1.3)

To unify notation for all the methods in this paper, we will write φk+1 instead
of V (xk+1) for the deterministic methods as well.

6.1.4 Structure

The rest of the paper is structured as follows. In Section 6.2 we define discrete
gradients and introduce the four discrete gradient methods considered in this
paper. In Section 6.3, the existence result for the discrete rgadient method
(6.1.2) is given. In Section 6.4, we analyse the dependence of the iterates on the
choice of time step, and obtain estimates for preferable time steps in the cases of
L-smoothness and strong convexity. In Section 6.5, we prove convergence rates
of the four methods for L-smooth functions, and for L-smooth PL functions—
the latter meaning functions that satisfy the PL inequality. In Section 6.6, we
briefly discuss a preconditioned extension of the discrete gradient method. In
Section 6.7, we conclude and present an outlook for future work.

6.2 Discrete gradient methods

6.2.1 Discrete gradients and gradient flow

Consider the gradient flow of V ,

ẋ =−∇V (x), x(0) = x0 ∈Rn , (6.2.1)
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where the dot is the derivative of x with respect to time. This system is funda-
mental to optimisation, and underpins many gradient-based iterative schemes.
By applying the chain rule, we obtain

d

dt
V (x(t )) = 〈∇V (x(t )), ẋ(t )〉 =−‖∇V (x(t ))‖2 =−‖ẋ(t )‖2 ≤ 0. (6.2.2)

Hence, gradient flow has an energy dissipative structure, since the function
value V (x(t )) decreases monotonically along any solution x(t ) to (6.2.1). Fur-
thermore, the rate of dissipation is given in terms of the norm of both ∇V and
ẋ.

In geometric integration, one studies methods for solving ODEs numeri-
cally while preserving certain structures of the continuous system—see [18,24]
for an introduction. Discrete gradients are tools for solving first-order ODEs
that preserve energy conservation laws, dissipation laws, and Lyapunov func-
tions [15, 22, 25, 38]. They are defined as follows.

Definition 6.1 (Discrete gradient). Let V be a continuously differentiable func-
tion. A discrete gradient is a continuous map ∇V :Rn ×Rn →Rn such that for
all x, y ∈Rn , we have

〈∇V (x, y), y −x〉 =V (y)−V (x) (Mean value property), (6.2.3)

lim
y→x

∇V (x, y) =∇V (x) (Consistency property). (6.2.4)

For a sequence of strictly positive time steps (τk )k∈N and a starting point
x0 ∈Rn , the discrete gradient method applied to (6.2.1) is given by (6.1.2), i.e.

xk+1 = xk −τk∇V (xk , xk+1).

This scheme preserves the dissipative structure of gradient flow, as can be seen
by applying the mean value property of discrete gradients.

V (xk+1)−V (xk ) = 〈∇V (xk , xk+1), xk+1 −xk〉
=−τk‖∇V (xk , xk+1)‖2 (6.2.5)

=− 1

τk
‖xk+1 −xk‖2. (6.2.6)

Similarly to the dissipation law (6.2.2) of gradient flow, the decrease of the
objective function value is given in terms of the norm of both the step xk+1−xk

and of the discrete gradient. Furthermore, the decrease holds for arbitrary τk ,
so the method imposes no restraint on the time steps.

Throughout the paper, we assume that there are bounds τmax ≥ τmin > 0
such that for all k ∈N,

τmin ≤ τk ≤ τmax.
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However, no restrictions are required on either of these bounds. In [16], it is
proven that if V is continuously differentiable and coercive—the latter meaning
that the level set

{
x ∈Rn : V (x) ≤ M

}
is bounded for each M ∈ R—and if the

time steps τk are between τmin and τmax, then the iterates (xk )k∈N of (6.1.2)
converge to a set of stationary points, i.e. points x∗ ∈Rn such that

∇V (x∗) = 0.

We may compare the discrete gradient method with explicit gradient de-
scent,

xk+1 = xk −τk∇V (xk ).

Unlike discrete gradient methods, gradient descent is only guaranteed to de-
crease the objective function value for sufficiently small time steps τk . To
ensure decrease and convergence for this scheme, the time steps must be re-
stricted based on estimates of the smoothness of the gradient of V , which might
not be available, or lead to prohibitively small time steps. We mention that
one may also consider other numerical integration methods, such as implicit
Runge-Kutta methods, where energy dissipation is ensured under mild time
step restrictions [17].

6.2.2 Four discrete gradient methods

We now introduce the four discrete gradient methods considered in this paper.
The first three methods use the well-known the Gonzalez discrete gradient,
mean value discrete gradient, and the Itoh–Abe discrete gradient. The fourth
method is a randomised generalisation of the Itoh–Abe method, from hereon
referred to as the randomised Itoh–Abe method.

1. The Gonzalez discrete gradient [15] (also known as the midpoint discrete
gradient) is given by

∇V (x, y) =∇V

(
x + y

2

)
+ V (y)−V (x)−〈∇V ( x+y

2 ), y −x〉
‖x − y‖2 (y −x), x 6= y.

2. The mean value discrete gradient [19], used for example in the average
vector field method [11], is given by

∇V (x, y) =
∫ 1

0
∇V

(
(1− s)x + s y

)
ds.

3. The Itoh–Abe discrete gradient [22] (also known as the coordinate incre-

119



A geometric integration approach to smooth optimisation

ment discrete gradient) is given by

∇V (x, y) =



V (y1,x2,...,xn)−V (x)
y1−x1

V (y1,y2,x3,...,xn)−V (y1,x2,...,xn)
y2−x2

...
V (y)−V (y1,...,yn−1,xn)

yn−xn

 ,

where 0/0 is interpreted as ∂i V (x).
While the first two discrete gradients are gradient-based and can be seen

as approximations to the midpoint gradient V
(

x+y
2

)
, the Itoh–Abe discrete gra-

dient is derivative-free, and is evaluated by computing successive, coordinate-
wise difference quotients. In an optimisation setting, the Itoh–Abe discrete
gradient is often preferable to the others, as it is relatively computationally
inexpensive. Solving the implicit equation (6.1.2) with this discrete gradient
amounts to successively solving n scalar equations of the form

xk+1
1 = xk

1 −τk
V (xk+1

1 , xk
2 , . . . , xk

n)−V (xk )

xk+1
1 −xk

1

xk+1
2 = xk

2 −τk
V (xk+1

1 , xk+1
2 , xk

3 , . . . , xk
n)−V (xk+1

1 , xk
2 , . . . , xk

n)

xk+1
2 −xk

2

...

xk+1
n = xk

n −τk
V (xk+1)−V (xk+1

1 , xk+1
2 , . . . , xk+1

n , xk
n)

xk+1
n −xk

n

.

4. The Randomised Itoh–Abe method [13] is an extension of the Itoh–Abe
discrete gradient method, wherein the directions of descent are randomly cho-
sen. We consider a sequence of independent, identically distributed directions
(d k )k∈N ⊂ Sn−1 drawn from a random distribution Ξ, and solve

xk+1 = xk −τk
V (xk+1)−V (xk )

〈xk+1 −xk ,d k+1〉d k+1,

This can be rewritten as solving

xk+1 7→ xk −τkαk d k+1, αk =−V (xk −τkαk d k+1)−V (xk )

τkαk
,

where xk+1 = xk is considered a solution whenever 〈∇V (xk ),d k+1〉 = 0.
We also define the constant

ζ := min
e∈Sn−1

Ed∼Ξ[〈d ,e〉2], (6.2.7)
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and assume that Ξ is such that ζ > 0. For example, both for the uniform ran-
dom distribution on Sn−1 and the uniform random distribution on the standard
coordinates (e i )n

i=1, we have

ζ= 1

n
.

See [44, Table 4.1] for estimates of (6.2.7) for the above cases and others.
This scheme is a generalisation of the Itoh–Abe discrete gradient method,

in that the methods are equivalent if (d k )k∈N cycle through the standard coordi-
nates with the rule

d k = e[(k−1)modn]+1, k = 1,2, . . .

However, the computational effort of one iterate of the Itoh–Abe discrete gra-
dient method is equal to n steps of the randomised method, so the efficiency of
the methods should be judged accordingly.

While this method does not retain the discrete gradient structure of the
Itoh–Abe discrete gradient, the dissipativity properties can be rewritten in the
following manner.

V (xk+1)−V (xk ) =−τk

(
V (xk+1)−V (xk )

‖xk+1 −xk‖

)2

, (6.2.8)

V (xk+1)−V (xk ) =− 1

τk
‖xk+1 −xk‖2. (6.2.9)

The motivation for introducing this randomised extension of the Itoh–Abe
method is, first, to tie in discrete gradient methods with other optimisation
methods such as stochastic coordinate descent [14, 37, 48] and random pursuit
[32,44], and, second, because this method extends to the nonsmooth, nonconvex
setting [13].

6.3 Existence of solution of discrete gradient step

In this section, we prove that the discrete gradient equation

y = x −τ∇V (x, y). (6.3.1)

admits a solution y , for all time steps τ > 0 and points x ∈ Rn , under mild
assumptions on V and ∇V . The result applies to the three discrete gradients
considered in this paper, and we expect that it also covers a vast number of
other discrete gradients. We also prove that the randomised Itoh–Abe method
admits a solution for all τ and x in a subsequent proposition. We note that these
results do not require convexity of V .
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In [35], an existence and uniqueness result for sufficiently small time steps
is given for a large class of discrete gradients. This uses the Banach fixed point
theorem, which also allows them to approximate the solution by a contraction
mapping. Furthermore, the existence of a solution for the Gonzalez discrete
gradient is established for sufficiently small time steps via the implicit function
theorem in [45, Theorem 8.5.4]. To the authors’ knowledge, the following
result is the first without a restriction on time steps.1

We use the following notation. For δ> 0, the closed ball of radius δ about
x is defined as Bδ(x) := {

y ∈Rn : ‖y −x‖ ≤ δ}
. For a set K ⊂Rn , we define the

δ-thickening, Kδ =
{

x ∈Rn : dist(K , x) ≤ δ}
. The convex hull of K is denoted

by coK .
We make the following assumption for the discrete gradient.

Assumption 6.1. There is a constant Cn that depends on the discrete gradient
but is independent of V , and a continuous, nondecreasing function δ : [0,∞] →
[0,∞], where δ(0) = 0 and δ(∞) := limr→∞δ(r ), such that the following holds.

For any V ∈ C 1(Rn ;R) and any convex set K ⊂ Rn with nonempty interior,
the two following properties are satisfied.

(i) If ‖∇V (x)‖ ≤ L for all x ∈ Kδ(diam(K )), then ‖∇V (x, y)‖ ≤ CnL for all
x, y ∈ K .

(ii) If W is another continuously differentiable function such that V (x) =
W (x) for all x ∈ Kδ(diam(K )), then ∇V (x, y) =∇W (x, y) for all x, y ∈ K .

The following result, which is proved in Appendix 6.A, shows that the
discrete gradients considered in this paper satisfy the above assumption.

Lemma 6.1. The three discrete gradients satisfy Assumption 6.1 with the fol-
lowing constants.

1. For the Gonzalez discrete gradient,

Cn =p
2, δ≡ 0.

2. For the mean value discrete gradient,

Cn = 1, δ≡ 0.

3. For the Itoh–Abe discrete gradient,

Cn =p
n, δ(r ) = r.

1Note that previous existence results were derived in the context of numerical integration,
where small time steps are necessary, in order to solve the ODE as accurately as possible. On
the other hand, for optimisation, we mainly care about the preservation of dissipation, which
holds for all time steps.
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Remark 6.1. We note that for the Gonzalez and mean value discrete gradients,
the bounds Cn are independent of the dimension, and the existence analysis
could therefore be extended to infinite dimensions, by invoking Schauder’s fixed
point theorem [42] and replacing continuity with weak continuity.

We state the well-known Brouwer fixed point theorem [7], a key argument
for many existence theorems.

Proposition 6.1 (Brouwer fixed point theorem). Let K ⊂Rn be a convex, com-
pact set and g : K → K a continuous function. Then g has a fixed point in
K .

We proceed to state and prove the existence theorem.

Theorem 6.1 (Discrete gradient existence theorem). Suppose V is continously
differentiable and that ∇ satisfies Assumption 6.1. Then there exists a solution
y to (6.3.1) for any τ > 0 and x ∈ Rn , if V satisfies either of the following
properties.

(i) The gradient of V is uniformly bounded.

(ii) V is coercive.

(iii) The function δ in Assumption 6.1 is equal to 0, and both V and the
gradient of V are uniformly bounded on the convex hull of the level set{

y : V (y) ≤V (x)
}

(the bounds may depend on x).

Proof. (i). We define the function

g (y) = x −τ∇V (x, y),

and want to show that it has a fixed point, y = g (y). There is L > 0 such that
‖∇V (y)‖ ≤ L for all y ∈Rn . Therefore, by Assumption 6.1,

‖∇V (x, y)‖ ≤CnL

for all y ∈Rn . This implies that g (y) ∈ BτCn L(x) for all y ∈Rn . Specifically, g
maps BτCn L(x) into itself. As g is continuous, it follows from Brouwer’s fixed
point theorem that there exists a point y ∈ BτCn L(x) such that g (y) = y , and we
are done.

(ii). Let σ> 0, let K be the convex hull of the level set

K = co
({

y : V (y) ≤V (x)
})
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and set δ = δ(diam(K )). Since V is coercive, Kδ and Kδ+σ are bounded. By
standard arguments [33, Corollary 2.5], there exists a cutoff function ϕ ∈
C∞

c (Rn ; [0,1]) such that

ϕ(y) =
1 if y ∈ Kδ,

0 if y ∉ Kδ+σ.

We define W :Rn →R by

W (y) :=ϕ(y)
(
V (y)−V (x)

)+V (x).

W is continuously differentiable and supp∇W ⊂ Kδ+σ. Therefore, W has
uniformly bounded gradient, so by part (i) there is a y such that

y = x −τ∇W (x, y).

By (6.2.5), W (y) < W (x) which implies that y ∈ Kδ, so W (y) = V (y). Fur-
thermore, since W (x) = V (x), we deduce that V (y) < V (x), so y ∈ K . Lastly,
since V and W coincide on Kδ, and x and y both belong to K , it follows
from Assumption 6.1, property (ii) that ∇V (x, y) =∇W (x, y). Hence a solution
y = x −τ∇V (x, y) exists.

(iii). Set K = co
({

y : V (y) ≤V (x)
})

, L = sup
{‖∇V (y)‖ : V (y) ≤ M +ε},

and M = supy∈K V (y). Furthermore let ε > 0 and set F = {
y : V (y) ≥ M +ε}.

The mean value theorem [34, Equation A.55] and the boundedness of ∇V imply
that for all y ∈ K and z ∈ F , there is λ ∈ (0,1) such that

ε≤ |V (y)−V (z)| = |〈∇V (λy + (1−λ)z), y − z〉| ≤ L‖y − z‖.

Therefore, for all y ∈ K and z ∈ F ,

‖y − z‖ ≥ ε

L
.

By Lemma 6.6, there exists a cutoff function ϕ ∈C∞(Rn ; [0,1]) with uniformly
bounded gradient, such that

ϕ(y) =
1 if y ∈ K ,

0 if y ∈ F.

Consider W :Rn →R defined by

W (y) =ϕ(y)
(
V (y)−V (x)

)+V (x).

The gradient of W is uniformly bounded, so there is a fixed point y such that

y = x −τ∇W (x, y).

By the same arguments as in case (ii), ∇V (x, y) =∇W (x, y), which implies that
y solves y = x −τ∇V (x, y).

124



6.3 Existence of solution of discrete gradient step

The third case in the above theorem covers a wide range of optimisation
problems for which the objective function does not necesssarily have bounded
level sets. This covers important optimisation problems, such as the least
squares optimisation of linear systems,

V (x) = 1

2
‖Ax − f ‖2,

where the kernel of A is nonempty.
While the above theorem holds also for the Itoh–Abe discrete gradient,

there is a much simpler existence result, which covers the randomised Itoh–
Abe method and, by extension, the Itoh–Abe discrete gradient method, and
which only requires the objective function to be bounded below—in fact, it
only requires continuity, not differentiability, of V [13]. For completeness, we
present a short proof of this, in the differentiable setting.

Proposition 6.2. Suppose V is bounded below. Then, for all τ> 0 and x ∈Rn ,
there is an α ∈R such that

y = x −ταd , where α 6= 0 solves −α= V (x −ταd)−V (x)

τα
,

where α= 0 is considered a solution if 〈∇V (x),d〉 = 0.

Proof. Suppose 〈∇V (x),d〉 6= 0, and, without loss of generality, choose ε > 0
such that 〈∇V (x),d〉 ≥ ε. Then for sufficiently small α1 > 0, we have

V (x −τα1d)−V (x)

τα1
≤−ε

2
≤−α1.

On the other hand, since V is bounded below, then either there is α > 0 such
that V (x −ταd) =V (x), or

V (x −ταd)−V (x)

τα
→ 0 as α→+∞.

In either case, there is α2 > 0 sufficiently large so that

V (x −τα2d)−V (x)

τα2
≥−α2.

By the intermediate value theorem [40, Theorem 4.23], there exists α> 0 such
that

−α= V (x −ταd)−V (x)

τα
,

which yields the desired result.
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6.4 Analysis of time steps

In this section, we study the dependence of xk 7→ xk+1 on the choice of time step
τ for the randomised Itoh–Abe method. For both L-smooth, convex functions
and strongly convex functions, we ascertain bounds on optimal time steps with
respect to the decrease in V .

We fix a starting point x, direction d ∈ Sn−1 and time step τ, and study the
solution y to

y = x −ταd , where α 6= 0 solves −α= V (x −ταd)−V (x)

τα
. (6.4.1)

By Proposition 6.2, a solution for y always exists. For convenience and to avoid
the case y = x, we assume 〈∇V (x),d〉 > 0. For notational brevity, we define the
scalar function f :R→R as

f (α) =V (x −αd)−V (x).

Solving (6.4.1) is equivalent to solving

f (α)

α2 =−1

τ
. (6.4.2)

6.4.1 Implicit dependence on the time step for Itoh–Abe methods

For optimisation schemes with a time step τ, it is common to assume that the
distance between x and y increases with the time step. For explicit schemes,
this is naturally the case. However, in implicit schemes, such as the discrete
gradient method, this is not always the case. We demonstrate this with a simple
example in one dimension.

Example 6.1. Define V (x) :=−x3 and x = 0. For τ> 0, (6.4.1) is solved by

y = 1

τ
.

Then, as τ→ 0, we have y →∞, and as τ→∞, we have y → x.

The above example illustrates that for nonconvex functions, decreasing the
time step might lead to a larger step x 7→ y and vice versa. We now show that
for convex functions, the distance ‖y −x‖ does increase monotonically with τ.

Since 〈∇V (x),d〉 > 0 by assumption, there is r > 0 such that V (x −αd) <
V (x) for α ∈ (0,r ). Set

R = sup
{
r : V (x −αd) <V (x) for all α ∈ (0,r )

}
.
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Proposition 6.3. Let V be convex. Then there is a continuous, strictly increas-
ing bijection τ 7→α(τ) from (0,∞) to (0,R), such that α(τ) solves (6.4.2) for the
time step τ.

Proof. By Proposition 6.2, there is a corresponding solution α(τ) > 0 for all τ>
0. We will show that if α1 and α2 solve (6.1.2) for τ1 and τ2 respectively, then
α2 >α1 if and only if τ2 > τ1. To do so, we use the alternative characterisation
of convex functions in one dimension, which states that

α 7→ f (α)− f (0)

α
= f (α)

α

is monotonically nondecreasing in α. If α2 >α1, then this implies

f (α1)

α1
≤ f (α2)

α2
< 0

f (α1)

α2
1

< f (α2)

α2
2

< 0, (6.4.3)

where the second inequality follows from the first inquality and that α2 > α1.
By (6.4.2), we have

f (α1)

α2
1

=− 1

τ1
,

f (α2)

α2
2

=− 1

τ2
.

Combining this with (6.4.3), we derive that τ2 > τ1. Thus α strictly increases
with τ. Furthermore, by letting τ2 ↓ τ1, we see from these equations thatα2 ↓α1.
Therefore, the dependence of α on τ is continuous.

Next, we show that α(τ) → 0 as τ→ 0. This can be seen by inspecting

f (α(τ))

α(τ)
=−α(τ)

τ
.

The left-hand side is bounded by the derivative f ′(0) =−〈∇V (x),d〉. Hence, as
τ goes to zero, α(τ) must also go to zero to prevent the right-hand side from
blowing up.

Last, we show that α(τ) → R as τ→∞. By inspecting

f (α(τ))

α(τ)2 =−1

τ
,

we see that as τ→∞, the right-hand side goes to zero, so either f (α(τ)) → 0
or α(τ)2 →∞. There are two cases to consider, R <∞ and R =∞. If R <∞,
then f (R) = 0, which implies that α(τ) → R. If R = ∞, then f (α) < −ε for
some ε> 0 and for all α> 0, from which it follows that α(τ)2 →∞= R. This
concludes the proof.

Remark 6.2. The above proposition can also be shown to hold for nondiffer-
entiable, convex functions, by replacing the derivative with a subgradient.
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6.4.2 Lipschitz continuous gradients

The remaining part of this section is devoted to deriving bounds on optimal
time steps, when the objective function has Lipschitz continuous gradients, or
is strongly convex. We start with the case of Lipschitz continuous gradients,
also referred to as L-smoothness.

Definition 6.2 (L-smooth). A function V :Rn →R is L-smooth if its gradient is
Lipschitz continuous with Lipschitz constant L, i.e. if for all x, y ∈Rn ,

‖∇V (x)−∇V (y)‖ ≤ L‖x − y‖.

We state some basic properties of L-smooth functions.

Proposition 6.4. If V is L-smooth, then the following properties also hold.

(i) V (y)−V (x) ≤ 〈∇V (x), y −x〉+ L

2
‖y −x‖2 for all x, y ∈Rn .

(ii) V (λx+(1−λ)y) ≥λV (x)+(1−λ)V (y)−λ(1−λ)L

2
‖x−y‖2 for all λ ∈ [0,1],

x, y ∈Rn .

Proof. Property (i). [6, Proposition A.24].
Property (ii). It follows from property (i) that the function

x 7→ L

2
‖x‖2 −V (x)

is convex, which in turn yields the desired inequality.

We now state and prove the first result for bounds on optimal time steps,
which states that any time step τ< 2/L is suboptimal. Recall the scalar function
f (α) =V (x −αd)−V (x).

Lemma 6.2. Let V be convex and L-smooth, and denote by α∗ the solution to
(6.4.2) for τ∗ = 2/L. If α solves (6.4.2) for τ< 2/L, then f (α) > f (α∗).

Proof. Let λ ∈ (τL/2,1), and plug in 0 and α/λ for y and x respectively in
Proposition 6.4 (ii) to get, after rearranging,

λ f (α/λ) ≤ f (α)+ (1−λ)L

2λ
α2.

Plugging in (6.4.2), we get

λ f (α/λ) ≤
(

1− (1−λ)τL

2λ

)
f (α)
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or equivalently

f (α/λ) ≤
(

1

λ
− (1−λ)τL

2λ2

)
f (α).

We want to show that f (α/λ) < f (α), i.e. that

1

λ
− (1−λ)τL

2λ2 > 1.

By rearranging and solving the quadratic expression, we see that this holds
whenever λ ∈ (τL/2,1). Thus f (α/λ) < f (α).

We recall from Proposition 6.3 that since f is convex, there is a continu-
ous, increasing bijection τ 7→ α(τ) such that f (α(τ)) < 0. Since α/λ > α and
f (α/λ) < f (α), there is τ′ > τ such thatα/λ solves (6.4.2) for τ′. In other words,
whenever τ< 2/L, there is τ′ > τ such that f (α(τ′)) < f (α). By convexity of f ,
the desired result follows.

6.4.3 Strong convexity

We now move from L-smoothness to strong convexity, for which we use the
terminology µ-convex.

Definition 6.3 (Strong convexity). A convex function V : Rn → R is strongly
convex with parameter µ, also termed µ-convex, if either of the following (equiv-
alent) conditions hold.

(i) The function V (·)− µ

2
‖ ·‖2 is convex.

(ii) V
(
λx + (1−λ)y

)≤λV (x)+ (1−λ)V (y)− µ

2
λ(1−λ)‖x− y‖2 for all x, y ∈

Rn , λ ∈ [0,1].

We now give the second result for bounds on optimal time steps, which
states that for strongly convex functions, any time step τ> 2/µ yields a subop-
timal decrease.

Lemma 6.3. Let V : Rn → R be µ-convex and denote by α∗ the solution to
(6.4.2) for τ∗ = 2/µ. If α solves (6.4.2) for τ> 2/µ, then f (α) > f (α∗).

Proof. Fix λ ∈ (2/(τµ),1), and plug in 0 and α for y and x respectively in
Definition 6.3 (ii) to get, after rearranging,

f (λα) ≤λ f (α)− µλ(1−λ)

2
α2.

Plugging in (6.4.2), we get

f (λα) ≤
(
λ+ τµλ(1−λ)

2

)
f (α).
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We want to show that f (λα) < f (α), i.e. that

λ+ τµλ(1−λ)

2
> 1.

By rearranging and solving the quadratic expression, we find that this is satisfied
if λ ∈ (2/(τµ),1). Thus f (λα) < f (α). By arguing as in the proof to Lemma 6.2,
we deduce that f (α∗) < f (α), which concludes the proof.

Remark 6.3. This result also holds for strongly convex, nondifferentiable func-
tions.

6.5 Convergence rate analysis

In the previous section, we developed a formal intuition for the dependence
of the step xk 7→ xk+1 on the time step τ, and derived suitable time steps τ
whenever we have estimates on strong convexity of the objective function or
Lipschitz continuity of its gradients. In this section we derive convergence
rates for these cases, and more generally, for functions that satisfy the Polyak–
Łojasiewicz inequality. We follow the arguments in [3, 31], on convergence
rates of coordinate descent.

We recall the notation in (6.1.3),

φk+1 := Eξk V (xk+1),

where φk+1 = V (xk+1) for deterministic methods. Central to the proofs of
convergence rates will be an estimate of the form

β
(
V (xk )−φk+1

)
≥ ‖∇V (xk )‖2,

from which a variety of useful results follow. We therefore begin by deriving
this estimate for each of the four methods. We assume throughout that the time
steps (τk )k∈N are bounded above and below by constants,

0 < τmin ≤ τk ≤ τmax, for all k ∈N.

We do not require convexity of V for these estimates.
In order to optimise the estimates of β for the Itoh–Abe discrete gradient

method and the randomised Itoh–Abe method, we consider coordinate-wise
Lipschitz constants for the gradient of V as well as a directional Lipschitz
constant. For i = 1, . . . ,n, we suppose ∂i V : Rn → Rn is Lipschitz continuous
with Lipschitz constant Li ≤ L. That is, for all x, y ∈Rn , we have

‖∂i V (x)−∂i V (y)‖ ≤ Li‖x − y‖.
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We denote by Lsum the `2-norm of the coordinate-wise Lipschitz constants,

Lsum =
(

n∑
i=1

L2
i

)1/2

∈ [L,
p

nL].

Furthermore, for a direction d ∈ Sn−1, we consider the Lipschitz continuity
constant L̃d ≤ L, such that for all x ∈Rn and α ∈R, we get

|〈∇V (x +αd),d〉−〈∇V (x),d〉| ≤ L̃d |α|.
We define L̃max ≤ L to be the supremum of L̃d over all d in the support of the
probability density function of Ξ. That is, for all d ∼Ξ, all x ∈Rn , and all α ∈R,
it holds that

|〈∇V (x +αd),d〉−〈∇V (x),d〉| ≤ L̃max|α|.
In this setting, we can refine the L-smoothness property in Proposition 6.4 (i)
to

V (x +αd)−V (x) ≤α〈∇V (x),d〉+ L̃max

2
α2, (6.5.1)

for all α ∈R and d in the support of the density of Ξ [3, Lemma 3.2].
When Ξ only draws from the standard coordinates (e i )n

i=1, for many large-
scale optimisation problems, L̃max will be significantly smaller than L [48]. In
other cases, where the density of Ξ has greater or full support in Sn−1, the gain
in considering directional Lipschitz constants might become negligible.

Lemma 6.4. Let V be L-smooth. Then, for the three discrete gradient methods
and the randomised Itoh–Abe method, the bound

β
(
V (xk )−φk+1

)
≥ ‖∇V (xk )‖2 (6.5.2)

holds for the following values of β.

1. For the Gonzalez discrete gradient,

β= 2

(
1

τk
+ 1

2
L2τk

)
.

2. For the mean value discrete gradient,

β= 2

(
1

τk
+ 1

4
L2τk

)
.

3. For the Itoh–Abe discrete gradient,

β= 2

(
1

τk
+L2

sumτk

)
.
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4. For the randomised Itoh–Abe method,

β= τk

ζ

(
1

τk
+ L̃max

2

)2

,

where ζ is defined in (6.2.7).

Proof. Part 1. By using the characterisation of the Gonzalez discrete gradient
in (6.A.1),

∇V (xk , xk+1) =
〈
∇V

(
xk +xk+1

2

)
,d⊥

〉
d⊥+〈∇V (z),d〉d ,

where 〈d ,d⊥〉 = 0 and z ∈ [xk , xk+1]. We calculate, with xk = (xk +xk+1)/2,

‖∇V (xk )‖2 = 〈∇V (xk ),d〉2 +〈∇V (xk ),d⊥〉2

≤ 2

(
‖∇V (xk , xk+1)‖2 +〈∇V (xk )−∇V (z),d〉2 +

〈
∇V (xk )−∇V (xk ),d⊥

〉2
)

≤ 2

(
‖∇V (xk , xk+1)‖2 +〈∇V (xk )−∇V (z),d〉2 + 1

4
L2‖xk −xk+1‖2

)
.

Since

〈∇V (z),d〉 = V (xk+1)−V (xk )

‖xk+1 −xk‖
and

d = xk+1 −xk

‖xk+1 −xk‖ ,

we have

〈∇V (xk )−∇V (z),d〉2 =
(
〈∇V (xk ), xk+1 −xk〉−V (xk+1)+V (xk )

)2

‖xk −xk+1‖2

≤ 1

4
L2‖xk+1 −xk‖2,

where the inequality follows from Proposition 6.4 (i). Therefore,

‖∇V (xk )‖2 ≤ 2

(
‖∇V (xk , xk+1)‖2 +〈∇V (xk )−∇V (z),d〉2 + 1

4
L2‖xk −xk+1‖2

)
≤ 2

(
1

τk
+ 1

2
L2τk

)(
V (xk )−φk+1

)
,

where we have used the discrete gradient properties (6.2.5) and (6.2.6).
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Part 2. We compute

‖∇V (xk )‖2 ≤ 2

‖∇V (xk , xk+1)‖2 +
∥∥∥∥∥
∫ 1

0
∇V (sxk + (1− s)xk+1)−∇V (xk )ds

∥∥∥∥∥
2


≤ 2

(
‖∇V (xk , xk+1)‖2 +

∫ 1

0
‖∇V (sxk + (1− s)xk+1)−∇V (xk )‖ds

)2

≤ 2‖∇V (xk , xk+1)‖2 +2L2‖xk −xk+1‖2

(∫ 1

0
s ds

)2

= 2

(
1

τk
+ 1

4
L2τk

)(
V (xk )−φk+1

)
.

Part 3. We apply the mean value theorem to

(
∇V (xk , xk+1)

)
i
= V (xk+1

1 , ..., xk+1
i , xk

i+1, ..., xk
n)−V (xk+1

1 , ..., xk+1
i−1 , xk

i , ..., xk
n)

xk+1
i −xk

i

,

to derive that (
∇V (xk , xk+1)

)
i
= ∂i V (y i ),

where y i = [xk+1
1 , . . . , xk+1

i−1 ,ci , xk
i+1, . . . , xk

n]T for some ci ∈ [xk
i , xk+1

i ]. Therefore,
we have

‖∇V (xk )‖2 =
n∑

i=1
|∂i V (xk )|2 ≤ 2

n∑
i=1

|∂i V (y i )|2 +|∂i V (y i )−∂i V (xk )|2

≤ 2
(
‖∇V (xk , xk+1)‖2 +L2

sum‖xk −xk+1‖2
)

≤ 2

(
1

τk
+L2

sumτk

)(
V (xk )−φk+1

)
.

Part 4. By (6.5.1), we have

〈∇V (xk ), xk −xk+1〉 ≤V (xk )−V (xk+1)+ Lmax

2
‖xk −xk+1‖2

=
(

1

τk
+ Lmax

2

)
‖xk −xk+1‖2,

where the second equation follows from (6.2.9).
Furthermore,

〈∇V (xk ), xk −xk+1〉 = |〈∇V (xk ),d k+1〉|‖xk −xk+1‖.
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From this, we derive

〈∇V (xk ),d k+1〉2 ≤
(

1

τk
+ Lmax

2

)2

‖xk −xk+1‖2. (6.5.3)

By the definition of ζ, we have

Ed k+1∼Ξ〈∇V (xk ),d k+1〉2 ≥ ζ‖∇V (xk )‖2. (6.5.4)

Combining (6.5.3) and (6.5.4), we derive

‖∇V (xk )‖2 ≤ τk

ζ

(
1

τk
+ Lmax

2

)2 (
V (xk )−φk+1

)
.

This concludes the proof.

6.5.1 Optimal time steps and estimates of β

In Lemma 6.4, lower values for β corresponds to better convergence rates. In
what follows, we state the time steps τk that yield minimal estimates of β, and
how these rates compare to the classical, explicit descent schemes, such as
gradient descent and coordinate descent. For the Itoh–Abe discrete gradient
method, we are also interested in how β depends on n, i.e. the dimension of
the problem.

1. The Gonzalez discrete gradient method: The optimal time step and
corresponding β are

τk =
p

2

L
, β= 2

p
2L.

In comparison, β= 2L for explicit gradient descent [30], so this bound is worse
by a factor of

p
2.

2. The mean value discrete gradient method: The optimal time step and
corresponding β are

τk = 2

L
, β= 2L,

so in this case, we recover the optimal bound for gradient descent.
3. The Itoh–Abe discrete gradient method: The optimal time step and

corresponding β are

τk = 1

Lsum
, β= 4Lsum ∈ [4L,4

p
nL].

We compare this to the optimal estimates for cyclic coordinate descent schemes
in [48, Theorem 3] and [3, Lemma 3.3],

β= 8
p

nL,
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6.5 Convergence rate analysis

where we have set their parameters Lmax and Lmin to
p

nL. The estimate for the
Itoh–Abe discrete gradient method is at most half that of the cyclic coordinate
descent scheme, even in the worst-case scenario Lsum =p

nL.
We give one motivating example for considering the parameter Lsum. If V

is a least squares problem V (x) = ‖Ax − f ‖2/2, then

Lsum ≤
√

rank(A)L,

so for low-rank system where rank(A) ¿ n, the convergence speed of the Itoh–
Abe discrete gradient method improves considerably.

To derive that Lsum ≤ p
rank(A)L, one can show that L = ‖A∗A‖2 and

Lsum = ‖A∗A‖F , where ‖ ·‖2 and ‖ ·‖F denote the operator norm and the Frobe-
nius norm respectively,

‖B‖2 = sup
‖x‖=1

‖B x‖, ‖B‖F =
 n∑

i=1

n∑
j=1

|bi j |2
1/2

,

for B = (bi j )n
i , j=1. The rest follows from the fact that ‖B‖F ≤ p

rank(B)‖B‖2

[21, Table 6.2] and that rank(A∗A) = rank(A) [26, Statement 4.5.4].
4. The randomised Itoh–Abe method: The optimal time step and corre-

sponding β are

τk = 2

L̃max
, β= 2

ζ
L̃max.

Recall that whenΞ is the random uniform distribution on the coordinates (e i )n
i=1

or on the unit sphere Sn−1, we have ζ= 1/n. This gives us β= 2nL̃max, which,
in the former case, is the optimal bound for randomised coordinate descent [48,
Equation 30].

6.5.2 Lipschitz continuous gradients

We use the notation R(x0) = diam
{

x ∈Rn : V (x) ≤V (x0)
}

throughout the re-
mainder of this section. This is bounded providing V is coercive.

Theorem 6.2. Let V be an L-smooth, convex, coercive function. Then for all
four methods, we have

φk −V ∗ ≤ βR(x0)2

k +2βL
.

where β is given in Lemma 6.4 and V ∗ is the minimum of V .
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Proof. Let x∗ be a minimizer of V . By respectively convexity, the Cauchy-
Schwarz inequality and Lemma 6.4, we have

(V (xk )−V ∗)2 ≤
〈
∇V (xk ), xk −x∗

〉2

≤ ‖∇V (xk )‖2‖xk −x∗‖2

≤βR(x0)2(V (xk )−φk+1).

Taking expectation on both sides with respect to ξk−1, we get

(φk −V ∗)2 ≤βR(x0)2(φk −φk+1).

Via the above and by monotonicity of φk we find that

1

φk+1 −V ∗ − 1

φk −V ∗ = φk −φk+1

(φk −V ∗)(φk+1 −V ∗)

≥ 1

βR(x0)2

φk −V ∗

φk+1 −V ∗

≥ 1

βR(x0)2 .

Summing terms from 0 to k −1 yields

1

φk −V ∗ − 1

V (x0)−V ∗ ≥ k

βR(x0)2 ,

and, rearranging, we derive

φk −V ∗ ≤ βR(x0)2

k +β R(x0)2

V (x0)−V ∗
.

To eliminate dependence on the starting point, we use Proposition 6.4 (i)

V (x0)−V ∗ ≤ L

2
‖x0 −x∗‖2 ≤ L

2
R(x0)2,

which gives us

φk −V ∗ ≤ βR(x0)2

k +2βL
.
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6.5.3 The Polyak–Łojasiewicz inequality

The next result shows that for L-smooth functions that satisfy the Polyak–
Łojasiewicz (PL) inequality, we achieve a linear convergence rate. The PL
inequality is known for extending convergence properties of strongly convex
functions to a larger group of functions, including some nonconvex functions.
A function is said to satisfy the PL inequality with parameter µ> 0 if, for all
x ∈Rn ,

1

2
‖∇V (x)‖2 ≥µ(

V (x)−V ∗)
. (6.5.5)

Originally formulated by Polyak in 1963 [36], it was recently shown that this
inequality is weaker than other properties commonly used to prove linear con-
vergence [12, 23, 28]. This is useful for extending linear convergence rates to
functions that are not strongly convex, including some nonconvex functions.

Proposition 6.5. Let V be µ-convex. Then V satisfies the PL inequality (6.5.5)
with parameter µ.

Proof. See [23].

We now proceed to the main result of this subsection.

Theorem 6.3. Let V be L-smooth and satisfy the PL inequality (6.5.5) with
parameter µ. Then for the three discrete gradient methods and the randomised
Itoh–Abe method, the iterates satisfy

φk −V ∗ ≤
(

1− 2µ

β

)k

(V (x0)−V ∗),

with β given in Lemma 6.4.

Proof. We combine the PL inequality (6.5.5) with the estimate in Lemma 6.4
to get

V (xk )−φk+1 ≥
2µ

β
(V (xk )−V ∗).

By taking expectation of both sides with respect to ξk−1, we obtain

φk+1 −V ∗ ≤
(

1− 2µ

β

)
(φk −V ∗),

from which the result follows.
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6.6 Preconditioned discrete gradient method

We briefly discuss the generalisation of the discrete gradient method (6.1.2) to
a preconditioned version

xk+1 = xk − Ak∇V (xk , xk+1), (6.6.1)

where (Ak )k∈N ⊂Rn×n is a sequence of positive-definite matrices. Denoting by
σ1,k and σn,k the smallest and largest singular values of Ak respectively, we
have, for all x,

σ1,k‖x‖ ≤ ‖Ak x‖ ≤σn,k‖x‖.

It is straightforward to extend the results in Section 6.3 and Section 6.5 to
this setting, under the assumption that there are σmax ≥ σmin > 0 such that
σmin ≤σ1,k ,σn,k ≤σmax for all k ∈N.

We briefly discuss possible motivations for this preconditioning. In the
context of geometric integration, it is typical to group the gradient flow system
(6.2.1) with the more general dissipative system

ẋ =−A(x)∇V (x),

where A(x) ∈Rn×n is positive-definite [38] for all x ∈Rn . This yields numerical
schemes of the form (6.6.1), where we absorb τk into Ak .

There are optimisation problems in which the time step τk should vary for
each coordinate. This is, for example, the case when one derives the SOR
method from the Itoh–Abe discrete gradient method [27]. More generally, if
one has coordinate-wise Lipschitz constants for the gradient of the objective
function, it may be beneficial to scale the coordinate-wise time steps accord-
ingly.

6.7 Conclusion

In this paper, we studied the discrete gradient method for optimisation, and
provided several fundamental results on well-posedness, convergence rates and
optimal time steps. We focused on four methods, using the Gonzalez discrete
gradient, the mean value discrete gradient, the Itoh–Abe discrete gradient, and a
randomised version of the Itoh–Abe method. Several of the proven convergence
rates match the optimal rates of classical methods such as gradient descent
and stochastic coordinate descent. For the Itoh–Abe discrete gradient method,
the proven rates are better than previously established rates for comparable
methods, i.e. cyclic coordinate-descent methods [48].

There are open problems to be addressed in future work. First, similar to
acceleration for gradient descent and coordinate descent [3, 29, 31, 48], we will
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study acceleration of the discrete gradient method to improve the convergence
rate from O(1/k) to O(1/k2). Second, we would like to consider generalisa-
tions of the discrete gradient method to discretise gradient flow with respect to
other measures of distance than the Euclidean inner product, such as Bregman
distances [4, 8] and other metrics [5, 9].

Appendix 6.A Bounds on discrete gradients

Lemma 6.5 (Lemma 6.1). The three discrete gradients satisfy Assumption 6.1
with the following constants.

1. For the Gonzalez discrete gradient,

Cn =
p

2, δ≡ 0.

2. For the mean value discrete gradient,

Cn = 1, δ≡ 0.

3. For the Itoh–Abe discrete gradient,

Cn =p
n, δ(r ) = r.

Proof. Case 1. We first consider the Gonzalez discrete gradient. The following
characterisation of the Gonzalez discrete gradient will be useful. Denote by d
the unit vector

d = y −x

‖y −x‖ .

Then there is a vector d⊥ such that 〈d ,d⊥〉 = 0, ‖d⊥‖ = 1, and

∇V

(
x + y

2

)
=

〈
∇V

(
x + y

2

)
,d

〉
d +

〈
∇V

(
x + y

2

)
,d⊥

〉
d⊥.

We rewrite the Gonzalez discrete gradient as

∇V (x, y) =
〈
∇V

(
x + y

2

)
,d⊥

〉
d⊥+ V (y)−V (x)

‖y −x‖ d .

By the mean value theorem, there is z ∈ [x, y] such that

V (y)−V (x) = 〈∇V (z), y −x〉.
Therefore, we obtain

∇V (x, y) =
〈
∇V

(
x + y

2

)
,d⊥

〉
d⊥+〈∇V (z),d〉d . (6.A.1)
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From this, we derive

‖∇V (x, y)‖2 ≤
∥∥∥∥∥∇V

(
x + y

2

)∥∥∥∥∥
2

+∥∥∇V (z)
∥∥2 .

This implies that properties (i) and (ii) hold with Cn =p
2 and δ≡ 0. To show

property (iii), it is sufficient to note that since K is convex and has nonempty
interior, ∇W

(
(x + y)/2

)=∇V
(
(x + y)/2

)
.

Case 2. Next we consider the mean value discrete gradient. It is clear that
properties (i) and (ii) hold with Cn = 1 and δ≡ 0. To show property (iii), it is
sufficient to note that since K is convex and has nonempty interior, ∇W (z) =
∇V (z) for all z ∈ [x, y].

Case 3. For the Itoh–Abe discrete gradient, we set δ(r ) = r . By applying
the mean value theorem to(

∇V (x, y)
)

i
= V (y1, . . . , yi , xi+1, . . . , xn)−V (y1, . . . , yi−1, xi , . . . , xn)

yi −xi
,

we derive that (
∇V (x, y)

)
i
= ∂i V (zi ),

where zi = [xk+1
1 , . . . , xk+1

i−1 ,ci , xk
i+1, . . . , xk

n]T for some ci ∈ [xk
i , xk+1

i ]. Further-
more, we have

‖zi −x‖ ≤ ‖y −x‖,

so z ∈ Kdiam(K ). This implies that properties (i) and (ii) hold with Cn = p
n.

Property (iii) is immediate.

Appendix 6.B Cutoff function

We provide proof of existence of an appropriate cutoff function in Theorem 6.1
part (iii). While this is based on standard arguments using mollifiers, the authors
could not find a result in the literature specifically for cutoff functions with
noncompact support and controlled derivatives. We therefore include one for
completeness.

Lemma 6.6. Let V ⊂U ⊂Rn be sets such that for some ε> 0,

dist(V ,Rn \U ) := inf
x∈V ,y∉U

‖x − y‖ ≥ ε.

Then there is a cutoff function ϕ ∈C∞(Rn ; [0,1]) such that

ϕ(x) =
1 if x ∈V ,

0 if x ∉U ,

and such that ∇ϕ is uniformly bounded on Rn .
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6.B Cutoff function

Proof. We will construct a cutoff function with a uniformly bounded gradient.
Denote by W the set Rn \U and consider the distance functions

dV (x) := inf
z∈V

‖x − z‖, dW (x) := inf
z∈W

‖x − z‖.

For any x ∈V , y ∈W and z ∈Rn ,

ε≤ ‖x − y‖ ≤ ‖x − z‖+‖y − z‖.

Taking the infimum over all z ∈V and w ∈W , we deduce that

dV (x)+dW (x) ≥ ε. (6.B.1)

Let ψ :Rn → [0,1] be defined by

ψ(x) := dW (x)

dV (x)+dW (x)
.

This function satisfies ψ(X ) = 1 for x ∈V , φ(x) = 0 for x ∈W and ψ(x) ∈ [0,1]
otherwise. We show that it is Lipschitz continuous with Lipschitz constant 1/ε.

|ψ(x)−ψ(y)| =
∣∣∣∣∣ dW (x)

dV (x)+dW (x)
− dW (y)

dV (y)+dW (y)

∣∣∣∣∣
=

∣∣∣∣∣
(
dV (y)−dV (x)

)
dW (x)+ (

dW (x)−dW (y)
)

dV (x)(
dW (x)+dV (x)

)(
dW (y)+dV (y)

) ∣∣∣∣∣
≤

∣∣∣(dV (y)−dV (x)
)

dW (x)
∣∣∣+∣∣∣(dW (x)−dW (y)

)
dV (x)

∣∣∣∣∣∣(dW (x)+dV (x)
)(

dW (y)+dV (y)
)∣∣∣

≤ 1

ε
‖x − y‖

(∣∣∣∣∣ dW (x)

dW (x)+dV (x)

∣∣∣∣∣+
∣∣∣∣∣ dV (x)

dW (x)+dV (x)

∣∣∣∣∣
)

= 1

ε
‖x − y‖.

The second inequality above follows from (6.B.1) and the Lipschitz continuity
of dV , dW ,

|dV (x)−dV (y)| ≤ ‖x − y‖, |dW (x)−dW (y)| ≤ ‖x − y‖.

So ψ is a Lipschitz continuous cutoff function for V and W with Lipschitz
constant 1/ε.

We choose an appopriate mollifier J ∈ C∞
c (Rn ; [0,∞)) such that

∫
Rn J (x)dx =

1 and J (x) = 0 whenever ‖x‖ ≥ ε/2, and convolve it with ψ. It is easy to check
that the resultant function,

ϕ(x) =
∫
Rn

J (z)ψ(x − z)dz,
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is in C∞(Rn ; [0,1]) and satisfies

ϕ(x) =
1 if x ∈V ,

0 if x ∉U .

This is a standard result, see for example [1, Theorem 2.29]. To conclude, we
show that ‖∇ϕ(x)‖ ≤ 1/ε. We do so by showing that ϕ inherits the Lipschitz
continuity of ψ with the same Lipschitz constant, being 1/ε. We have

|ϕ(x)−ϕ(y)| ≤
∫
Rn

∣∣ψ(x − z)−ψ(y − z)
∣∣ |J (z)|dz

≤ 1

ε
‖x − y‖

∫
Rn

|J (z)|dz

= 1

ε
‖x − y‖.

This concludes the proof.
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Dissipative numerical schemes on Riemannian
manifolds with applications to gradient flows

Abstract. This paper concerns an extension of discrete gradient methods to
finite-dimensional Riemannian manifolds termed discrete Riemannian gradi-
ents, and their application to dissipative ordinary differential equations. This
includes Riemannian gradient flow systems which occur naturally in optimiza-
tion problems. The Itoh–Abe discrete gradient is formulated and applied to
gradient systems, yielding a derivative-free optimization algorithm. The algo-
rithm is tested on two eigenvalue problems and two problems from manifold
valued imaging: InSAR denoising and DTI denoising.

7.1 Introduction

When designing and applying numerical schemes for solving systems of ODEs
and PDEs there are several important properties which serve to distinguish
schemes, one of which is the preservation of geometric features of the original
system. The field of geometric integration encompasses many types of numeri-
cal schemes for ODEs and PDEs specifically designed to preserve one or more
such geometric features; a non-exhaustive list of features includes symmetry,
symplecticity, first integrals (or energy), orthogonality, and manifold structures
such as Lie group structure [13]. Energy conserving methods have a successful
history in the field of numerical integration of ODEs and PDEs. In a simi-
lar vein, numerical schemes with guaranteed dissipation are useful for solving
dissipative equations such as gradient systems.

As seen in [15], any Runge–Kutta method can be dissipative when applied
to gradient systems as long as step sizes are chosen small enough; less se-
vere but still restrictive conditions for dissipation in Runge–Kutta methods are
presented in [12]. In [9], Gonzalez introduces the notion of discrete gradient
schemes with energy preserving properties, later expanded upon to include dis-
sipative systems in [19]. These articles consider ODEs in Euclidian spaces only.
Unlike the Runge–Kutta methods, discrete gradient methods are dissipative for
all step sizes, meaning one can employ adaptive time steps while retaining
convergence toward fixed points [23]. Motivated by their work on Lie group
methods, the energy conserving discrete gradient method was generalized to
ODEs on manifolds, and Lie groups particularly, in [6] where the authors in-
troduce the concept of discrete differentials. In [5], this concept is specialized
in the setting of Riemannian manifolds. To the best of our knowledge, the

This work was supported by the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No. 691070.
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discrete gradient methods have not yet been formulated for dissipative ODEs
on manifolds. Doing so is the central purpose of this article.

One of the main reasons for generalizing discrete gradient methods to dis-
sipative systems on manifolds is that gradient systems are dissipative, and
gradient flows are natural tools for optimization problems which arise in e.g.
manifold-valued image processing and eigenvalue problems. The goal is then to
find one or more stationary points of the gradient flow of a functional V : M →R,
which correspond to critical points of V . This approach is, among other opti-
mization methods, presented in [1]. Since gradient systems occur naturally on
Riemannian manifolds, it is natural to develop our schemes in a Riemannian
manifold setting.

A similarity between the optimization algorithms in [1] and the manifold
valued discrete gradient methods in [6] is their use of retraction mappings. Re-
traction mappings were introduced for numerical methods in [24], see also [2];
they are intended as computationally efficient alternatives to parallel transport
on manifolds. Our methods will be formulated as a framework using general
discrete gradients on general Riemannian manifolds with general retractions.
We will consider a number of specific examples that illustrate how to apply the
procedure in practical problems.

As detailed in [10] and [20], using the Itoh–Abe discrete gradient [16], one
can obtain an optimization scheme for n-dimensional problems with a limited
degree of implicitness. At every iteration, one needs to solve n decoupled
scalar nonlinear subequations, amounting to O(n) operations per step. In other
discrete gradient schemes a system of n coupled nonlinear equations must
be solved per iteration, amounting to O(n2) operations per step. The Itoh–
Abe discrete gradient method therefore appears to be well suited to large-scale
problems such as image analysis problems, and so it seems natural to apply
our new methods to image analysis problems on manifolds, see section 7.4.2.
In [6], the authors generalize the average vector field [14] and midpoint [9]
discrete gradients, but not the Itoh–Abe discrete gradient, to Lie groups and
homogeneous manifolds. A novelty of this article is the formulation of the
Itoh–Abe discrete gradient for problems on manifolds.

As examples we will consider two eigenvalue finding problems, in addition
to the more involved problems of denoising InSAR and DTI images using total
variation (TV) regularization [28]. The latter two problems we consider as
real applications of the algorithm. The two eigenvalue problems are included
mostly for the exposition and illustration of our methods, as well as for testing
convergence properties.

The paper is organized as follows: Below, we introduce notation and fix
some fundamental definitions used later on. In the next section, we formulate
the dissipative problems we wish to solve. In section 3, we present the discrete
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Riemannian gradient (DRG) methods, a convergence proof for the family of
optimization methods obtained by applying DRG methods to Riemannian gra-
dient flow problems, the Itoh–Abe discrete gradient generalized to manifolds,
and the optimization algorithm obtained by applying the Itoh–Abe DRG to
the gradient flow problem. In section 4, we provide numerical experiments to
illustrate the use of DRGs in optimization, and in the final section we present
conclusions and avenues for future work.

Notation and preliminaries

Some notation and definitions used in the following are summarized below. For
a more thorough introduction to the concepts, see e.g. [17] or [18].

Notation Description
M n-dimensional Riemannian manifold

Tp M tangent space at p ∈ M with zero vector 0p

T ∗
p M cotangent space at p ∈ M

T M tangent bundle of M
T ∗M cotangent bundle of M
X(M) space of vector fields on M
g (·, ·) Riemannian metric on M
‖ ·‖p Norm induced on Tp M by g

{El }n
l=1 g -orthogonal basis of Tp M

On any differentiable manifold there is a duality pairing 〈·, ·〉 : T ∗M×T M →
R which we will denote as 〈ω, v〉 =ω(v). Furthermore, the Riemannian metric
sets up an isomorphism between T M and T ∗M via the linear map v 7→ g (v, ·).
This map and its inverse, termed the musical isomorphisms, are known as the
flat map [ : T M → T ∗M and sharp map ] : T ∗M → T M , respectively. The
applications of these maps are also termed index raising and lowering when
considering the tensorial representation of the Riemannian metric. Note that
with the above notation we have the idiom x[(y) =

〈
x[, y

〉
= g (x, y).

On a Riemannian manifold, one can define gradients: For V ∈C∞(M), the
(Riemannian) gradient with respect to g , gradg V ∈X(M), is the unique vector
field such that g (gradg V , X ) = 〈

dV , X
〉

for all X ∈ X(M). In the language of
musical isomorphisms, gradg V = (dV )]. For the remainder of this article, we
will write gradV for the gradient and assume that it is clear from the context
which g is to be used.

Furthermore, the geodesic between p and q is the unique curve of mini-
mal length between p and q , providing a distance function dM : M ×M → R.
The geodesic γ passing through p with tangent v is given by the Riemannian
exponential at p, γ(t ) = expp (t v). For any p, expp is a diffeomorphism on
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a neighbourhood Np of 0p , The image expp (Sp ) of any star-shaped subset
Sp ⊂ Np is called a normal neighbourhood of p, and on this, expp is a radial
isometry, i.e. dM (expp (u),expp (v)) = g (u, v) for all u, v ∈ Sp .

7.2 The problem

We will consider ordinary differential equations (ODEs) of the form

u̇ = F (u), u(0) = u0 ∈ M , (7.2.1)

where F ∈X(M) has an associated energy V : M →R dissipating along solutions
of (7.2.1). That is, with u(t ) a solution of (7.2.1):

d

dt
V (u) = 〈

dV (u), u̇
〉= 〈

dV (u),F (u)
〉= g (gradV (u),F (u) ≤ 0.

An example of such an ODE is the gradient flow. Given an energy V , the
gradient flow of V with respect to a Riemannian metric g is

u̇ =−gradV (u), (7.2.2)

which is dissipative since if u(t ) solves (7.2.2), we have

d

dt
V (u) =−g

(
gradV (u),gradV (u)

)≤ 0.

This can be generalized slightly by an approach similar to that in [19]. Suppose
there exists a (0,2) tensor field h on M such that h(x, x) ≤ 0. We can associate
to h the (1,1) tensor field H : T M → T M given by H x = h(x, ·)]. Now, consider
the system

u̇ = HgradV (u). (7.2.3)

This system dissipates V , since

d

dt
V (u) = 〈

dV (u), u̇
〉

= 〈
dV (u), HgradV (u)

〉
= g

(
gradV (u), HgradV (u)

)
= h

(
gradV (u),gradV (u)

)≤ 0.

Any dissipative system of the form (7.2.1) can be written in this form on the
set M\{p ∈ M : g (F (p),gradV (p)) = 0} since, given F and V , we can construct
h as follows:

h = 1

g (F,gradV )
F [⊗F [.

If F =−gradV , we take h =−g such that H becomes the negative identity, and
recover (7.2.2).
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7.3 Numerical scheme

The discrete differentials in [6] are formulated such that they may be used
on non-Riemannian manifolds. Since we restrict ourselves to Riemannian
manifolds, we may define their Riemannian analogues: discrete Riemannian
gradients. As with the discrete differentials, we shall make use of retractions
as defined in [24].

Definition 7.1. Let φ : T M → M and denote by φp the restriction of φ to Tp M .
Then, φ is a retraction if the following conditions are satisfied:

• φp is smooth and defined in an open ball Brp (0p ) of radius rp around 0p ,
the zero vector in Tp M .

• φp (v) = p if and only if v = 0p .

• Identifying T0p Tp M ' Tp M , φp satisfies

dφp
∣∣
0p

= idTp M ,

where idTp M denotes the identity mapping on Tp M .

From the inverse function theorem it follows that for any p, there exists a
neighbourhood Up,φ ∈ Tp M of 0p , such that φp : Up,φ →φp (Up,φ) is a diffeo-
morphism. In general, φp is not a diffeomorphism on the entirety of Tp M and
so all the following schemes must be considered local in nature. The canoni-
cal retraction on a Riemannian manifold is the Riemannian exponential. This
may be computationally expensive to evaluate even if closed expressions for
geodesics are known, and so one often wishes to come up with less costly
retractions if possible. We are now ready to introduce the notion of discrete
Riemannian gradients.

Definition 7.2. Given a retraction φ, a function c : M×M → M where c(p, p) =
p for all p ∈ M and a continuous V : M → R, then gradV : M ×M → T M is a
discrete Riemannian gradient of V if it is continuous and, for all p, q ∈Uc(p,q),φ,

V (q)−V (p) = g
(
gradV (p, q),φ−1

c(p,q)(q)−φ−1
c(p,q)(p)

)
(7.3.1)

gradV (p, p) = gradV |p . (7.3.2)

We formulate a numerical scheme for equation (7.2.3) based on this definition.
Given times 0 = t0 < t1 < ..., let uk denote the approximation to u(tk ) and let
τk = tk+1 − tk . Then, we take

uk+1 =φck

(
W (uk ,uk+1)

)
(7.3.3)

W (uk ,uk+1) =φ−1
ck (uk )−τk H (uk ,uk+1) gradV (uk ,uk+1) (7.3.4)
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where ck = c(uk ,uk+1) and H (p,q) is the (1,1) tensor associated with a negative
semi-definite (0,2) tensor field h(p,q) : Tc(p,q)M ×Tc(p,q)M →R approximating
h|p consistently, that is:

h(p,p)(v, w) = h|p (v, w)

h(p,q)(u,u) ≤ 0.

In the above and all of the following, we assume that uk and uk+1 lie in Uck ,φ∩
Sck . The following proposition verifies that the scheme is dissipative.

Proposition 7.1. : The sequence {uk }k∈N generated by the DRG scheme (7.3.3)-
(7.3.4) satisfies V (uk+1)−V (uk ) ≤ 0 for all k ∈N.

Proof. Using property (7.3.1) and equations (7.3.3) and (7.3.4), we get

V (uk+1)−V (uk ) = g
(
gradV (uk ,uk+1),φ−1

ck (uk+1)−φ−1
ck (uk )

)
= g

(
gradV (uk ,uk+1),W (uk ,uk+1)−φ−1

ck (uk )
)

=−τk g
(
gradV (uk ,uk+1), H (uk ,uk+1)gradV (uk ,uk+1))

)
=−τk h̄(uk ,uk+1)

(
gradV (uk ,uk+1),gradV (uk ,uk+1)

)
≤ 0.

Two DRGs, the AVF DRG and the Gonzalez DRG, can be easily found by
index raising the discrete differentials defined in [6]. We will later generalize
the Itoh–Abe discrete gradient, but first we present a proof that the DRG scheme
converges to a stationary point when used as an optimization method. We will
need the following definition of coercivity:

Definition 7.3. A function V : M → R is coercive if, for all v ∈ M , every
sequence {uk }k∈N ⊂ M such that lim

k→∞
dM (uk , v) =∞, satisfies lim

k→∞
V (uk ) =∞.

We will also need the following theorem from [26], concerning the bound-
edness of the sublevel sets Mµ = {u ∈ M : V (u) ≤µ} of V :

Theorem 7.1. Assume M is unbounded. Then the sublevel sets of V : M → R

are bounded if and only if V is coercive.

Proof. See [26], Theorem 8.6, Chapter 1 and the remarks below it.

Equipped with this, we present the following theorem, the proof of which
is inspired by that of the convergence theorem in [10].
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Theorem 7.2. Assume that M is geodesically complete, that V : M → R is
coercive, bounded from below and continuously differentiable, and that gradV
is continuous. Then, the iterates {uk }k∈N produced by applying the discrete
Riemannian gradient scheme (7.3.3)-(7.3.4) with time steps 0 < τmi n ≤ τk ≤
τmax and ck = uk or ck = uk+1, to the gradient flow of V satisfy

lim
k→∞

gradV (uk ,uk+1) = lim
k→∞

gradV (uk ) = 0.

Additionally, there exists at least one accumulation point u∗ of {uk }k∈N, and
any such accumulation point satisfies gradV (u∗) = 0.

Proof. Since V is bounded from below and by Proposition 7.1, we have

C ≤V (uk+1) ≤V (uk ) ≤ ... ≤V (u0)

such that, by the monotone convergence theorem, V ∗ := limk→∞V (uk ) exists.
Furthermore, by property (7.3.1) and using the scheme (7.3.3)-(7.3.4):

1

τk

∥∥∥φ−1
ck (uk )−φ−1

ck (uk+1)
∥∥∥2

ck
= τk

∥∥∥gradV (uk ,uk+1)
∥∥∥2

ck

= g
(
gradV (uk ,uk+1),φ−1

ck (uk )−φ−1
ck (uk+1)

)
=V (uk )−V (uk+1).

From this, it is clear that for any i , j ∈N,

j−1∑
k=i

τk

∥∥∥gradV (uk ,uk+1)
∥∥∥2

ck
=V (ui )−V (u j ) ≤V (u0)−V ∗

and

j−1∑
k=i

1

τk

∥∥∥φ−1
ck (uk )−φ−1

ck (uk+1)
∥∥∥2

ck
=V (ui )−V (u j ) ≤V (u0)−V ∗.

In particular,

∞∑
k=0

∥∥∥gradV (uk ,uk+1)
∥∥∥2

ck
≤ V (u0)−V ∗

τmi n
,

and

∞∑
k=0

∥∥∥φ−1
ck (uk )−φ−1

ck (uk+1)
∥∥∥2

ck
≤ τmax

(
V (u0)−V ∗

)
,
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meaning

lim
k→∞

∥∥∥gradV (uk ,uk+1)
∥∥∥

ck
= 0,

lim
k→∞

∥∥∥φ−1
ck (uk )−φ−1

ck (uk+1)
∥∥∥

ck
= 0.

Since uk+1 is in a normal neighbourhood of ck ,

dM (ck ,uk+1) = dM (ck ,expck (exp−1
ck (uk+1))) = ‖exp−1

ck (uk+1)‖ck . (7.3.5)

Introduce ψck : Tck M → Tck M by ψck = exp−1
ck ◦φck . Since both exp and φ are

retractions,

ψck (0ck ) = 0ck ,

Dψck |0ck = idTck M .

Thus, per definition of Fréchet derivatives,

ψck (x)−ψck (0ck )−Dψck |0ck x =ψck (x)−x = o(x),

in particular: choosing x =φ−1
ck (uk+1) we get

exp−1
ck (uk+1)−φ−1

ck (uk+1) = o(‖φ−1
ck (uk+1)‖ck ),

meaning

‖exp−1
ck (uk+1)‖ck ≤ ‖φ−1

ck (uk+1)‖ck +o(‖φ−1
ck (uk+1)‖ck ). (7.3.6)

Taking ck = uk and combining (7.3.5) and (7.3.6) we find

d(uk ,uk+1) = ‖exp−1
ck (uk+1)‖ck ≤ ‖φ−1

ck (uk+1)‖ck +o(‖φ−1
ck (uk+1)‖ck ).

Hence, since
∥∥∥φ−1

ck (uk )−φ−1
ck (uk+1)

∥∥∥
ck

=
∥∥∥φ−1

ck (uk+1)
∥∥∥

ck
when ck = uk ,

lim
k→∞

d(uk ,uk+1) ≤ lim
k→∞

∥∥∥φ−1
ck (uk )−φ−1

ck (uk+1)
∥∥∥

ck
= 0. (7.3.7)

Note that we can exchange the roles of uk and uk+1 and obtain the same result.
Since V is bounded from below, the sublevel sets Mµ of V are the preim-

ages of the closed subsets [C ,µ] and are hence closed as well. Since V is
assumed to be coercive, by Theorem 7.1 the Mµ are bounded, and so since M
is geodesically complete, by the Hopf-Rinow theorem the Mµ are compact [26].
In particular, MV (u0) is compact such that gradV is uniformly continuous on
MV (u0) ×MV (u0) by the Heine-Cantor theorem. This means that for any ε> 0
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there exists δ > 0 such that if dM×M ((uk ,uk+1), (uk ,uk )) = dM (uk ,uk+1) < δ,
then∥∥∥gradV (uk ,uk+1)−gradV (uk )

∥∥∥
ck
=

∥∥∥gradV (uk ,uk+1)−gradV (uk ,uk )
∥∥∥

ck
< ε.

Since dM (uk ,uk+1) → 0, given ε> 0 there exists K such that for all k > K ,∥∥∥gradV (uk )
∥∥∥

ck
≤

∥∥∥gradV (uk,uk+1)−gradV (uk )
∥∥∥

ck
+

∥∥∥gradV (uk,uk+1)
∥∥∥

ck
≤ 2ε.

This means

lim
k→∞

gradV (uk ) = 0.

Since MV (u0) is compact, there exists a convergent subsequence {ukl } with limit
u∗. Since V is continuously differentiable,

gradV (u∗) = lim
l→∞

gradV (ukl ) = 0

Remark: In the above proof, we assumed ck = uk or ck = uk+1. Although
these choices may be desirable for practical purposes, as discussed in the next
subsection, one can also make a more general choice. Specifically, if φ= exp
and ck , let γk (t ) be the geodesic between uk and uk+1 such that

γk (t ) = expuk (t vk )

where vk = exp−1
uk (uk+1). Then, taking ck = γk (s) for some s ∈ [0,1], unique-

ness of geodesics implies that

expck (t γ̇k (s)) = expuk ((t + s)vk ).

Hence,

exp−1
ck (uk ) =−sγ̇k (s), exp−1

ck (uk+1) = (1− s)γ̇k (s),

and so, since geodesics are constant speed curves:

d(uk ,uk+1) = ‖v‖uk = ‖γ̇k (s)‖ck = ‖exp−1
ck (uk )−exp−1

ck (uk+1)‖ck .

This means that (7.3.7) holds in this case. No other arguments in Theorem 7.2
are affected.
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7.3.1 Itoh–Abe discrete Riemannian gradient

The Itoh–Abe discrete gradient [16] can be generalized to Riemannian mani-
folds.

Proposition 7.2. Given a continuously differentiable energy V : M →R and an
orthogonal basis {E j }n

j=1 for Tc(u,v)M such that

φ−1
c (v)−φ−1

c (u) =
n∑

i=1
αi Ei ,

define gradIAV : M ×M → Tc(u,v)M by

gradIAV (u, v) =
n∑

j=1
a j E j ,

where

a j =


V (w j )−V (w j−1)

α j
, α j 6= 0

g (gradV (w j−1),dφc
∣∣
η j−1

E j ), α j = 0.

w j =φc (η j ), η j =φ−1
c (u)+

j∑
i=1

αi Ei .

Then, gradIAV is a discrete Riemannian gradient.

Proof. Continuity of gradIAV can be seen from the smoothness of the local
coordinate frame {E j }n

j=1 and from the continuity of the a j (α j ):

lim
α j→0

a j (α j ) = lim
α j→0

V

(
φc

(
η j−1 +α j E j

))
−V

(
φc

(
η j−1

))
α j

= d

dα j

∣∣∣∣
α j=0

V

(
φc

(
η j−1 +α j E j

))

=
〈

dV

(
φc

(
η j−1

))
,dφc

∣∣
η j−1

E j

〉
= g (gradV (w j−1),dφc

∣∣
η j−1

E j ).
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Property (7.3.1) holds since

g
(
gradIAV (u, v),φ−1

c (v)−φ−1
c (u)

)
=

n∑
i=1

n∑
j=1

αi a j g (Ei ,E j )

=
n∑

j=1
V (w j )−V (w j−1)

=V (wn)−V (w0)

=V (v)−V (u).

Furthermore, (7.3.2) holds since when v = u, all α j = 0 and c(u, v) = u so that

gradIAV (u,u) =
n∑

j=1
g (gradV (u),E j )E j = gradV (u).

The map gradIAV is called the Itoh–Abe discrete Riemannian gradient. For the
Itoh–Abe DRG to be a computationally viable option it is important to compute
the αi efficiently. Consider for instance the gradient flow system. Applying the
Itoh–Abe DRG to this we get the scheme

uk+1 =φck

(
W (uk ,uk+1)

)
,

W (uk ,uk+1) =φ−1
ck (uk )−τk gradIAV (uk ,uk+1),

meaning

φ−1
ck (uk+1)−φ−1

ck (uk ) =−τk gradIAV (uk ,uk+1),

and in coordinates
n∑

i=1
αi Ei =−τk

n∑
j=1

V (w j )−V (w j−1)

α j
E j ,

so that the αi are found by solving the n coupled equations

αi =−τk
V (wi )−V (wi−1)

αi
.

Note that these equations in general are fully implicit in the sense that they
require knowledge of the endpoint uk+1 since the wi are dependent on ck .
However, if we take ck = uk , there is no dependency on the endpoint and all
the above equations become scalar, although one must solve them successively.
For this choice of ck we present, as Algorithm 1, a procedure for solving the
gradient flow problem on a Riemannian manifold with Riemannian metric g
using the Itoh–Abe DRG.
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Algorithm 7.1. DRG-OPTIM
Choose tol > 0 and u0 ∈ M . Set k = 0.
repeat

Choose τk and an orthogonal basis {E k
i }n

i=1 for Tuk M

vk
0 = uk

wk
0 =φ−1

uk (vk
0 )

for j = 1, ...,n do

Solve αk
j =−τk

(
V

(
φuk (wk

j−1 +αk
j E k

j )
)
−V

(
vk

j−1

))
/αk

j

wk
j = wk

j−1 +αk
j E k

j

vk
j =φuk (wk

j )
end for
uk+1 = vk

n

k = k +1
until

(
V (uk )−V (uk−1)

)
/V (u0) < tol

There is a caveat to this algorithm in that the αk
j should be easy to compute.

For example, it is important that the E j and φ are chosen such that the difference
V (φuk (wk

j−1+αk
j E k

j ))−V (vk
j−1) is cheap to evaluate. One can use any equation

solver in computing αk
j . To stay in line with the derivative-free nature of

Algorithm 1, one may wish to use a solver like the Brent–Dekker algorithm [3].
Also worth noting is that the parallelization procedure used in [20] works for
Algorithm 1 as well.

7.4 Numerical experiments

This section concerns four applications of DRG methods to gradient flow sys-
tems. In each case, we specify all details needed to implement Algorithm 1:
the manifold M , retraction φ, and basis vectors {Ek }. The first two examples
are eigenvalue problems, included to illuminate implementational issues with
examples in a familiar setting. We do not claim that our algorithm is compet-
itive with other eigenvalue solvers, but include these examples for the sake of
exposition and to have problems with readily available reference solutions. The
first of these is a simple Rayleigh quotient minimization problem, where issues
of computational efficiency are raised. The second one concerns the Brockett
flow on SO(m), the space of orthogonal m ×m matrices with unit determinant,
and serves as an example of optimization on a Lie group. The remaining two
problems are examples of manifold-valued image analysis problems concern-
ing Interferometric Synthetic Aperture Radar (InSAR) imaging and Diffusion
Tensor Imaging (DTI), respectively. Specifically, the problems concern total
variation denoising of images obtained through these techniques [28]. The
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experiments do not consider the quality of the solution paths, i.e. numerical
accuracy. For experiments of this kind, we refer to [5].

All programs used in the following were implemented as MATLAB func-
tions, with critical functions implemented in C using the MATLAB EXecutable
(MEX) interface when necessary. The code was executed using MATLAB
(2017a release) running on a Mid 2014 MacBook Pro with a four-core 2.5 GHz
Intel Core i7 processor and 16 GB of 1600 MHz DDR3 RAM. We used a C
language port of the built-in MATLAB function fzero for the Brent-Dekker
algorithm implementation.

7.4.1 Eigenvalue problems

As an expository example, our first problem consists of finding the small-
est eigenvalue/vector pair of a symmetric m ×m matrix A by minimizing its
Rayleigh quotient. We shall solve this problem using both the extrinsic and
intrinsic view of the (m −1)-sphere. In the second example we consider the
different approach to the eigenvalue problem proposed by Brockett in [4]. Here,
the gradient flow on SO(m) produces a diagonalizing matrix for a given sym-
metric matrix.

Eigenvalues via Rayleigh quotient minimization

In our first example, we wish to compute the smallest eigenvalue of a symmetric
matrix A ∈Rm×m by minimizing the Rayleigh quotient

V (u) = uT Au

with u on the (m −1)-sphere Sm−1.
Taking the extrinsic view, we regard Sm−1 as a submanifold of Rm, equipped

with the standard Euclidian metric g (x,y) = xTy . In this representation, TuSm−1

is the hyperplane tangent to u, i.e. TuSm−1 = {x ∈ Rm : xTu = 0}. A natural
choice of retraction is

φp (x) = p +x

‖p +x‖ .

There is a difficulty with this φ; it does not preserve sparsity, meaning Algo-
rithm 1 will be inefficient as discussed above. To see this, consider that at each
time step, to find the αk

j , we must compute the difference

V (zk
j )−V (zk

j−1) = (zk
j )T Azk

j − (zk
j−1)T Azk

j−1

for some zk
j−1, zk

j ∈ Sm−1. We can compute this efficiently if zk
j = zk

j−1 +δ,
where δ is sparse. Then,

V (zk
j )−V (zk

j−1) = 2(zk
j−1)T Aδ+δT Aδ,

161



Dissipative numerical schemes on Riemannian manifolds

which is efficient since one may assume Azk
j−1 to be precomputed so that the

computational cost is limited by the sparsity of δ. In our case, we have

zk
j−1 =φc (wk

j−1), zk
j =φc (wk

j−1 +αk
j E j ).

However, with φc as above, δ=φc (wk
j−1+αk

j E j )−φc (wk
j−1) is non-sparse, and

so computing the energy difference is costly.
Next, let us consider the intrinsic view of Sm−1, representing it in spherical

coordinates θ ∈Rm−1 by

u1(θ) = cos(θ1),

ur (θ) = cos(θr )
r−1∏
i=1

sin(θi ), 1 < r < m,

um(θ) =
m−1∏
i=1

sin(θi ).

Due to the simple structure of Rm−1, we take φθ(η) = θ+η. Then, we have

ur (φθ(αEl )) = ur (θ+αEl ) =


ur (θ), r < l
cos(θl +α)

cos(θl )
ur (θ), r = l

sin(θl +α)

sin(θl )
ur (θ), r > l .

Using this relation, the energy difference after a coordinate update becomes:

V (u(θ+αEl ))−V (u(θ))= 2κ1l

l−1∑
i=1

ui (θ)ul (θ)Ai l +2κ2l

l−1∑
i=1

m∑
j=l+1

ui (θ)u j (θ)Ai j

+2κ3l

m∑
j=l+1

ul (θ)u j (θ)Al j +κ4l

m∑
i=l+1

m∑
j=l+1

ui (θ)u j (θ)Ai j .

+κ5l ul (θ)ul (θ)Al l ,

with

κ1l = cl −1, κ2l = sl −1, κ3l = sl cl −1, κ4l = s2
l −1, κ5l = c2

l −1,

where

cl =
cos(θl +α)

cos(θl )
, sl =

sin(θl +α)

sin(θl )
.

With prior knowledge of V (u(θ)) (and thus the four partial sums in the differ-
ence), evaluating V (u(θ+αEl ))−V (u(θ)) amounts to five scalar multiplications
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and four scalar additions after evaluating the κl
i . With correct bookkeeping, new

sums can be evaluated from previous sums after coordinate updates, reducing
the computational complexity of the algorithm. Although not producing an algo-
rithm competitive with standard eigenvalue solvers, this example demonstrates
that the correct choice of coordinates is vital to reducing the computational
complexity of the Itoh–Abe DRG method.

Eigenvalues via Brockett flow

Among other things, the article of Brockett [4] discusses how one may find the
eigenvalues of a symmetric matrix A by solving the following gradient flow
problem on M = SO(m):

Q̇ =−Q(DQT AQ −QT AQD) (7.4.1)

Here, D is a real diagonal matrix with non-repeated entries. It can be shown
that limt→∞Q =Q∗, where (Q∗)T AQ∗ =Λ is diagonal and hence contains the
eigenvalues of A, ordered as the entries of D. Equation (7.4.1) is the gradient
flow of the energy

V (Q) = tr(AQT DQ) (7.4.2)

with respect to the trace metric on SO(m). One can check that SO(m) is a Lie
group [27], with Lie algebra

so(m) = {B ∈Rm×m : B T =−B}.

Also, since SO(m) is a matrix Lie group, the exponential coincides with the
matrix exponential. However, we may consider using some other function as a
retraction, such as the Cayley transform φ : so(m) → SO(m) given by

φ(B) = (I −B)−1(I +B).

Figure 7.1 shows the results of numerical tests with constant time step
τk = 0.1 and m = 20. In the left hand panel, the evolution of the diagonal
values of Qk AQk compared to the spectrum of A is shown; it is apparent that
the diagonal values converge to the eigenvalues. The right hand panel shows
the convergence rate of Algorithm 1 to the minimal value V ∗ as computed
with eigenvalues and eigenvectors from MATLAB’s eigen function. It would
appear that the convergence rate is linear, meaning ‖D − (Qk+1)T AQk+1‖ =
C‖D − (Qk )T AQk‖, with C < 1, which corresponds to an exponential reduction
in ‖D − (Qk )T AQk‖. No noteworthy difference was observed when using the
matrix exponential in place of the Cayley transform.
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Figure 7.1: Brockett flow with τk = 0.1 and 20 eigenvalues. Random initial matrix.
Left: Evolution of eigenvalues. Right: Optimality error (V (uk )−V ∗)/(V (u0)−V ∗).

7.4.2 Manifold valued imaging

In the following two examples we will consider problems from manifold valued
2D imaging. We will in both cases work on a product manifold M = M l×m

consisting of l ×m copies of an underlying data manifold M . An element of
M will in this case be called an atom, as opposed to the regular term pixel.
As explained in [18], product manifolds of Riemannian manifolds are again
Riemannian manifolds. The tangent spaces of product manifolds have a natural
structure as direct sums, with T(u11,u12,...,ul m )M=⊕l ,m

i , j=1 Tui j M , which induces
a natural Riemannian metric G : TM×TM→R fiberwise as

G(u11,u12,...,ulm )((x11, ..., xl m), (y11, ..., yl m)) =
l ,m∑

i , j=1
gui j (xi j , yi j ).

Also, given a retraction φ : T M → M , one can define a retraction Φ : TM→M
fiberwise as

Φ(u11,u12,...,ul m )(x11, ..., xlm) = (φu11 (x11),φu12 (x12), ...,φulm (xl m)).

Discrete gradients were first used in optimization algorithms for image anal-
ysis in [10] and [20]. As an example of a manifold-valued imaging problem,
consider Total Variation (TV) denoising of manifold valued images [28], where
one wishes to minimize, based on generalizations of the Lβ and Lγ norms:

V (u) = 1

β

l ,m∑
i , j=1

d(ui j , si j )β+λ
l−1,m∑

i , j=1
d(ui j ,ui+1, j )γ+

l ,m−1∑
i , j=1

d(ui j ,ui , j+1)γ

 .

(7.4.3)
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Here, s = (s11, ..., sl m) ∈ M is the input image, u = (u11, ...,ulm) ∈ M is the
output image, λ is a regularization strength constant, and d is a metric on M ,
which we will take to be the geodesic distance induced by g .

InSAR image denoising

We first consider Interferometric Synthetic Aperture Radar (InSAR) imaging,
used in earth observation and terrain modelling [22]. In InSAR imaging, ter-
rain elevation is measured by means of phase differences between laser pulses
reflected from a surface at different times. Thus, the atoms gi j are elements of
M = S1, represented by their phase angles: −π< gi j ≤π. After processing, the
phase data is unwrapped to form a single, continuous image of displacement
data [8]. The natural distance function in this representation is the angular
distance

d(ϕ,θ) =
|ϕ−θ|, |ϕ−θ| ≤π

2π−|ϕ−θ|, |ϕ−θ| >π.

Also, TϕM is simply R, and φ is given, with +
2π

denoting addition modulo 2π,
as:

φϕ(θϕ) = (θ +
2π

(ϕ+π))−π.

Figure 7.2: Left column: Interferogram. Right column: Phase unwrapped image. Top
row: Original image. Bottom row: Denoising with β= 2, λ= 0.3.
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Figure 7.2 shows the result of applying TV denoising to an InSAR image
of a slope of Mt. Vesuvius, Italy, with β= 2. The left column shows the phase
data, while the right hand side shows the phase unwrapped data. The input
image was taken from [21]. It is evident that the algorithm is successful in
removing noise. Computation time was 0.1 seconds per iteration on a 150×150
image.

Figure 7.3: Logarithmic plot of optimality error (V (uk )−V ∗)/(V (u0)−V ∗).

A logarithmic plot showing convergence in terms of (V (uk )−V ∗)/(V (u0)−
V ∗) is shown in Figure 7.3, where V ∗ is a near-optimal value for V , obtained
by iterating until V (uk+1)−V (uk ) ≤ 10−15. The plot shows the behaviour of
Algorithm 7.1 with constant time steps τk = τ0 = 0.002 and an ad-hoc adaptive
method with τ0 = 0.005 where τk is halved each 200 iterations; for each of these
strategies a separate V ∗ was found since they did not produce convergence to
the same minimizer. The reason for the different minimizers is that the TV
functional, and thus the minimization problem, is non-convex in S1 [25]. We
can observe that the convergence speed varies between O(1/k) and O(1/k2),
with faster convergence for the ad-hoc adaptive method. The reason for this
sublinear convergence as compared to the linear convergence observed in the
Brockett flow case may be the non-convexity.

DTI image denoising

Diffusion Tensor Imaging (DTI) is a medical imaging technique where the goal
is to make spatial samples of the tensor specifying the diffusion rates of water in
biological tissue. The tensor is assumed to be, at each point (i , j ), represented
by a matrix Ai j ∈ Sym+(3), the space of 3×3 symmetric positive definite (SPD)
matrices. Experimental measurements of DTI data are, as with other MRI tech-
niques, contaminated by Rician noise [11], which one may attempt to remove
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by minimizing (7.4.3) with an appropriate choice of Riemannian structure on
M= Sym+(3)m×l .

As above, since the manifold we are working on is a product manifold, it
suffices to define the Riemannian structure on Sym+(3). First off, one should
note that TASym+(3) can be identified with Sym(3), the space of symmetric
3×3 matrices [17]. In [28], the authors consider equipping Sym+(3) with the
affine invariant Riemannian metric given pointwise as

g A(X ,Y ) = tr(A− 1
2 X A−1Y A− 1

2 ),

and for purposes of comparison, so shall we. The space Sym+(3) equipped with
this metric is a Cartan-Hadamard manifold [17], and thus is complete, meaning
that Theorem 7.2 holds. This metric induces the explicitly computable geodesic
distance

d(A,B) =
√√√√ 3∑

i=1
log(κi )2

on Sym+(3), where κi are the eigenvalues of A− 1
2 B A− 1

2 . Furthermore, the
metric induces a Riemannian exponential given by

expA(Y ) = A1/2eA−1/2Y A−1/2
A1/2

where e denotes the matrix exponential, and A1/2 is the matrix square root
of A. We could choose the retraction as φ = exp, but there are less computa-
tionally expensive options that do not involve computing matrix exponentials.
More specifically, we will make use of the second-order approximation of the
exponential,

φA(Y ) = A+Y + 1

2
Y A−1Y .

While a first-order expansion is also a retraction, there is no guarantee that
A +Y ∈ Sym+(3), whereas the second-order expansion, which can be written
on the form

φA(Y ) = 1

2
A+ 1

2
(A

1
2 + A− 1

2 Y )T (A
1
2 + A− 1

2 Y ),

is clearly symmetric positive definite since A is so. Note that using a sparse
basis Ei j (in our example we use Ei j = ei eT

j +e j eT
i ) for the space Sym(3), eval-

uating φA(X +αEi j ) amounts to, at most, four scalar updates when φA(X ) and
A−1 is known, as is possible with proper bookkeeping in the software imple-
mentation. Also, since all matrices involved are 3×3 SPD matrices, one may
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Figure 7.4: DTI scan, axial slice. Left: Noisy image. Right: Denoised with β = 2,
λ= 0.05.

find eigenvalues and eigenvectors directly, thus allowing for fast computations
of matrix square roots and, consequently, geodesic distances.

Figure 7.4 shows an example of denoising DTI images using the TV regu-
larizer. The data is taken from the publicly available Camino data set [7]. The
DTI tensor has been calculated from underlying data using linear least-squares
fitting, and is subject to Rician noise (left hand side), which is mitigated by
TV denoising (right hand side). The denoising procedure took about 7 seconds
for 57 iterations, on a 72×73 image. The algorithm was stopped when the
relative change in energy, (V (u0)−V (uk ))/V (u0) dropped below 10−5. Each
atom A ∈ Sym+(3) is visualized by an ellipsoid with the eigenvectors of A as
principal semi-axes, scaled by the corresponding eigenvalues. The colors are
coded to correspond to the principal direction of the major axis, with red de-
noting left-right orientation, green anterior-posterior and blue inferior-superior.

Figure 7.5: Logarithmic plot of optimality error.
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Figure 7.5 shows the convergence behaviour of Algorithm 1, with three
different time steps: τ= 0.05, τ= 0.01 and a mixed strategy of using τ= 0.05
for 12 steps, then changing to τ = 0.01. Also, baseline rates of 1/k2 and 1/k
are shown. It is apparent that the choice of time step has great impact on the
convergence rate, and that simply changing the time step from τ = 0.05 to
τ= 0.01 is effective in speeding up convergence. This would suggest that time
step adaptivity is a promising route for acceleration of these methods.

7.5 Conclusion and future work

We have extended discrete gradient methods to Riemannian manifolds, and
shown how they may be applied to gradient flows. The Itoh–Abe discrete
gradient has been formulated in a manifold setting; this is, to the best of our
knowledge, the first time this has been done. In particular, we have used the
Itoh–Abe DRG on gradient systems to produce a derivative-free optimization
algorithm on Riemannian manifolds. This optimization algorithm has been
proven to converge under reasonable conditions, and shows promise when
applied to the problem of denoising manifold valued images using the total
variation approach of [28].

As with the algorithm in the Euclidian case, there are open questions. The
first question is which convergence rate estimates can be made; one should es-
pecially consider the linear convergence exhibited in the Brockett flow problem,
and the rate observed in Figure 7.5 which approaches 1/k2. A second question
is how to formulate a rule for choosing step sizes so as to accelerate conver-
gence toward minimizers. There is also the question of how the DRG methods
perform as ODE solvers for dissipative problems on Riemannian manifolds; in
particular, convergence properties, stability, and convergence order. The above
discussion is geared toward optimization applications due to the availability of
optimization problems, but it would be of interest to see how the methods work
as ODE solvers in their own right similar to the analysis and experiments done
in [5].
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manifolds

Abstract. The energy preserving discrete gradient methods are generalized
to finite-dimensional Riemannian manifolds by definition of a discrete ap-
proximation to the Riemannian gradient, a retraction, and a coordinate center
function. The resulting schemes are intrinsic and do not depend on a particular
choice of coordinates, nor on embedding of the manifold in a Euclidean space.
Generalizations of well-known discrete gradient methods, such as the average
vector field method and the Itoh–Abe method are obtained. It is shown how
methods of higher order can be constructed via a collocation-like approach.
Local and global error bounds are derived in terms of the Riemannian dis-
tance function and the Levi-Civita connection. Some numerical results on
spin system problems are presented.

8.1 Introduction
A first integral of an ordinary differential equation (ODE) is a scalar-valued
function on the phase space of the ODE that is preserved along solutions. The
potential benefit of using numerical methods that preserve one or more such
invariants is well-documented, and several energy-preserving methods have
been developed in recent years. Among these are the discrete gradient methods,
which were introduced for use in Euclidean spaces in [9], see also [19]. These
methods are based on the idea of expressing the ODE using a skew-symmetric
operator and the gradient of the first integral, and then creating a discrete coun-
terpart to this in such a way that the numerical scheme preserves the energy.

For manifolds in general, one can use the same schemes expressed in local
coordinates. A drawback is that the numerical approximation will typically
depend on the particular choice of coordinates and also on the strategy used
for transition between coordinate charts. Another alternative is to use a global
embedding of the manifold into a larger Euclidean space, but then it typically
happens that the numerical solution deviates from the manifold. Even if the
situation can be amended by using projection, it may not be desirable that the
computed approximation depends on the particular embedding chosen. Crouch
and Grossmann [7] and Munthe-Kaas [20, 21] introduced different ways of
extending existing Runge–Kutta methods to a large class of differentiable man-
ifolds. Both these approaches are generally classified as Lie group integrators,
see [12] or the more recent [4] for a survey of this class of methods. They
can also both be formulated abstractly by means of a post-Lie structure which
consists of a Lie algebra with a flat connection of constant torsion, see e.g. [22].
In the present paper we shall state the methods in a slightly different context,

This work was supported by the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No. 691070.
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using the notion of a Riemannian manifold. It is then natural to make use of
the Levi-Civita connection, which in contrast to the post-Lie setting is torsion-
free, and which in general has a non-zero curvature. For our purposes it is
also an advantage that the Riemannian metric provides an intrinsic definition
of the gradient. Taking an approach more in line with this, Leimkuhler and
Patrick [15] considered mechanical systems on the cotangent bundle of a Rie-
mannian manifold and succeeded in generalising the classical leap-frog scheme
to a symplectic integrator on Riemannian manifolds.

Some classical numerical methods in Euclidean spaces preserve certain
classes of invariants; for instance, symplectic Runge–Kutta methods preserve
all quadratic invariants. This can be useful when there is a natural way of em-
bedding a manifold into a linear space by using constraints that are expressed
by means of such invariants. An example is the 2-sphere which can be embed-
ded in R3 by adding the constraint that these vectors should have unit length.
The classical midpoint rule will automatically ensure that the numerical ap-
proximations remain on the sphere as it preserves all quadratic invariants. In
general, however, the invariants preserved by these methods are expressed in
terms of coordinates. Hence the preservation property of the method may be
lost under coordinate changes if the invariant is no longer quadratic. In [5], a
generalization of the discrete gradient method to differential equations on Lie
groups and a broad class of manifolds was presented. Here we develop this
further by introducing a Riemannian structure that can be used to provide an
intrinsic definition of the gradient as well as a means to measure numerical
errors.

The structure of this paper is as follows: In section 2, we formulate the
problem to be solved and introduce discrete Riemannian gradient methods, as
well as presenting some particular examples with special attention to a general-
ization of the Itoh–Abe discrete gradient. We also briefly discuss the Euclidean
setting as a special choice of manifold and show how the standard discrete
gradient methods are recovered in this case. In the third section, we consider
higher order energy preserving methods based on generalization of a colloca-
tion strategy introduced by Hairer [10] to Riemannian manifolds. We present
some error analysis in section 4, and show numerical results in section 5, where
the methods are applied to spin system problems.

8.2 Energy preservation on Riemannian manifolds

Consider an initial value problem on the finite-dimensional Riemannian mani-
fold (M , g ),

u̇ = F (u), u(0) = u0 ∈ M . (8.2.1)
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We denote by F (M) the space of smooth functions on M . The set of smooth
vector fields and differential one-forms are denoted Γ(T M) and Γ(T ∗M) respec-
tively, and for the duality pairing between these two spaces we use the angle
brackets 〈·, ·〉.

A first integral associated to a vector field F ∈ Γ(T M) is a function H ∈
F (M) such that 〈dH ,F 〉 vanishes identically on M . First integrals are preserved
along solutions of (8.2.1),

d

dt
H(u(t )) = 〈

dH(u(t )), u̇(t )
〉= 〈

dH(u(t )),F (u(t ))
〉= 0.

8.2.1 Preliminaries

The fact that a vector field F has a first integral H is closely related to the
existence of a tensor field Ω ∈ Γ(T M ⊗ T ∗M) =: Γ(T 1

1 M), skew-symmetric
with respect to the metric g , such that

F (u) =Ω(u)gradH(u), (8.2.2)

where gradH ∈ Γ(T M) is the Riemannian gradient, the unique vector field
satisfying 〈dH , ·〉 = g (gradH , ·). Any ODE (8.2.1) where F is of this form
preserves H , since

d

dt
H(u) = 〈

dH(u), u̇
〉=〈

dH(u),ΩgradH(u)
〉=g (gradH(u),ΩgradH(u)) = 0.

A converse result is detailed in the following proposition.

Proposition 8.1. Any system (8.2.1) with a first integral H can be written with
an F of the form (8.2.2). The skew tensor field Ω can be chosen so as to be
bounded near every nondegenerate critical point of H .

Proof. Similar to the proof of Proposition 2.1 in [19], we can write an explicit
expression for a possible choice of Ω,

Ωy = g (gradH , y)F − g (F, y)gradH

g (gradH ,gradH)
. (8.2.3)

Clearly, g (y,Ωy) = 0 for all y . Since H is a first integral, g (F,gradH) =
〈dH ,F 〉 = 0, soΩgradH = F . For a proof thatΩ is bounded near nondegenerate
critical points, see [19].

In fact, such a tensor field Ω often arises naturally from a two-form ω through
Ωy = ω(·, y)]. A well-known example is when ω is a symplectic two-form.
Note that Ω is not necessarily unique.

Retractions, viewed as maps from T M to M , will play an important role in
the methods we discuss here. Their formal definition can be found e.g. in [1]:
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Energy preserving methods on Riemannian manifolds

Definition 8.1. Let φ be a smooth map φ : T M → M and let φp denote the
restriction of φ to Tp M , with 0p being the zero-vector in Tp M . Then φ is a
retraction if it satisfies the conditions

1. φp is defined in an open ball Brp (0p ) ⊂ Tp M of radius rp about 0p ,

2. φp (x) = p if and only if x = 0p ,

3. Tφp
∣∣
0p

= IdTp M .

A generic example of a retraction on (M , g ) is obtained via the Rieman-
nian exponential, setting φp (x) = expp (x), i.e. following along the geodesic
emanating from p in the direction x.

8.2.2 The discrete Riemannian gradient method

We adapt the discrete gradients in Euclidean space to discrete Riemannian
gradients (DRG) on (M , g ) by means of a retraction map φ and a center point
function c.

Definition 8.2. A discrete Riemannian gradient is a triple (grad,φ,c)1 where

1. c : M ×M → M is a continuous map such that c(u,u) = u for all u ∈ M ,

2. grad :F (M) → Γ(c∗T M),

3. φ : T M → M is a retraction,

such that for all H ∈F (M), u ∈ M , v ∈ M , c = c(u, v) ∈ M ,

H(v)−H(u) = g (gradH(u, v),φ−1
c (v)−φ−1

c (u)), (8.2.4)

gradH(u,u) = gradH(u). (8.2.5)

The DRG gradH is a continuous section of the pullback bundle c∗T M ,
meaning that π◦gradH = c, where π : T M → M is the natural projection. We
also need to define an approximation to be used for the tensor fieldΩ ∈ Γ(T 1

1 M).
To this end we let Ω ∈ Γ(c∗T 1

1 M) be a continuous skew-symmetric tensor field
such that

Ω(u,u) =Ω(u) ∀u ∈ M .

Inspired by [3, 5], we propose the scheme

uk+1 =φck (W (uk ,uk+1)), ck = c(uk ,uk+1) (8.2.6)

W (uk ,uk+1) =φ−1
ck (uk )+hΩ(uk ,uk+1)gradH(uk ,uk+1), (8.2.7)

1To avoid cluttered notation we will just write grad for the triple (grad,φ,c) in the sequel.
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where h is the step size. The scheme (8.2.6)–(8.2.7) preserves the invariant H ,
since

H(uk+1)−H(uk ) = g (gradH(uk ,uk+1),φ−1
ck (uk+1)−φ−1

ck (uk ))

= g (gradH(uk ,uk+1),hΩ(uk ,uk+1)gradH(uk ,uk+1)) = 0.

Here and in the following we adopt the shorthand notation c = c(u, v) as long
as it is obvious what the arguments of c are.

The Average Vector Field (AVF) method has been studied extensively in
the literature; some early references are [11, 19, 23]. This is a discrete gradient
method, and we propose a corresponding DRG satisfying (8.2.4)-(8.2.5) as
follows:

gradAVFH(u, v) =
∫ 1

0
(Tγξφc )T gradH(φc (γξ))dξ, (8.2.8)

where γξ = (1−ξ)φ−1
c (u)+ξφ−1

c (v) and (Txφc )T : Tφc (x)M → Tx M is the unique
operator satisfying

g ((Txφc )Ta,b) = g (a,Txφc b), ∀x,b ∈ Tc M , a ∈ Tφc (x)M .

Furthermore, we have the generalization of Gonzalez’ midpoint discrete gradi-
ent [9],

gradMPH(u,v)=gradH(c(u,v))+H(v)−H(u)−g (gradH(c(u,v)),η)

g (η,η)
η (8.2.9)

where η=φ−1
c (v)−φ−1

c (u).
Note that both these DRGs involve the gradient of the first integral. This

may be a disadvantage if H is non-smooth or if its gradient is expensive to
compute. Also, the implicit nature of the schemes requires the solution of an
n-dimensional nonlinear system of equations at each time step. An alternative
is to consider the Itoh–Abe discrete gradient [13], also called the coordinate
increment discrete gradient [19], which in certain cases requires only the solu-
tion of n decoupled scalar equations. We now present a generalization of the
Itoh–Abe discrete gradient to finite-dimensional Riemannian manifolds.

8.2.3 Itoh–Abe discrete Riemannian gradient

Definition 8.3. For any tangent space Tc M one can choose a basis {E1, ...,En}
composed of tangent vectors Ei , i = 1, ...,n, orthonormal with respect to the
Riemannian metric g . Then, given u, v ∈ M , there exists a unique

{
αi

}n
i=1 so

that

φ−1
c (v)−φ−1

c (u) =
n∑

i=1
αi Ei .

179



Energy preserving methods on Riemannian manifolds

The Itoh–Abe DRG of the first integral H is then given by

gradIAH(u, v) =
n∑

j=1
a j E j , (8.2.10)

where

a j =


H(w j )−H(w j−1)

α j
if α j 6= 0,

g (gradH(w j−1),Tφc (η j−1)E j ) if α j = 0,

w j =φc (η j ), η j =φ−1
c (u)+

j∑
i=1
αi Ei .

We refer to [3] for proof that this is indeed a DRG satisfying (8.2.4)-(8.2.5).

8.2.4 Euclidean setting

Let M =V be an R-linear space, and let g be the Euclidean inner product. The
operator Ω is a solution dependent skew-symmetric n×n matrix Ω(u). For any
u ∈V , we have TuV ≡V . The retraction φ : V →V is defined as φp (x) = p +x,
the Riemannian exponential on V , so that φ−1

c (v)−φ−1
c (u) = v−u. The gradient

gradH is an n-vector whose i th component is ∂H
∂ui

, and the definition of the
discrete Riemannian gradient coincides with the standard discrete gradient,
since (8.2.4) now reads

H(v)−H(u) = gradH(u, v)T(v −u).

Furthermore, (8.2.6)-(8.2.7) simply becomes the discrete gradient method in-
troduced in [9], given by the scheme

uk+1 −uk = hΩ(uk ,uk+1)gradH(uk ,uk+1), (8.2.11)

where Ω is a skew-symmetric matrix approximating Ω. Typical choices are
Ω(uk ,uk+1) = Ω(uk ), or Ω(uk ,uk+1) = Ω((uk+1 +uk )/2) if one seeks a sym-
metric method.

The DRGs (8.2.8) and (8.2.9) become the standard AVF and midpoint dis-
crete gradients in this case. For the Itoh–Abe DRG, the practical choice for the
orthogonal basis would be the set of unit vectors, {e1, ...,en}, so that αi = vi −ui ,
and we get (8.2.10) with

a j =


H(w j )−H(w j−1)

v j −u j
if u j 6= v j ,

∂H
∂u j

(w j−1) if u j = v j ,

w j =
∑ j

i=1 vi ei +
∑n

i= j+1 ui ei ,
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which is a reformulation of the Itoh–Abe discrete gradient as it is given in [13],
[19] and the literature otherwise.

8.3 Methods of higher order

In the Euclidean setting, a strategy to obtain energy preserving methods of
higher order was presented in [2] and later in [10], see also [6]. This technique
is generalized to a Lie group setting in [5]. We will here formulate these
methods in the context of Riemannian manifolds.

8.3.1 Energy-preserving collocation-like methods on Riemannian
manifolds

Let c1, ...,cs be distinct real numbers. Consider the Lagrange basis polynomials,

li (ξ) =
s∏

j=1, j 6=i

ξ−c j

ci −c j
, and let bi :=

∫ 1

0
li (ξ)dξ. (8.3.1)

We assume that c1, . . . ,cs are such that bi 6= 0 for all i . A step of the energy-
preserving collocation-like method, starting at u0 ∈ M , is defined via a polyno-
mial σ :R→ Tc M of degree s satisfying

σ(0) =φ−1
c (u0), (8.3.2)

d

dξ
σ(ξh)

∣∣∣
ξ=c j

= TU jφ
−1
c

(
Ω j grad j H

)
, U j :=φc

(
σ(c j h)

)
(8.3.3)

u1 :=φc
(
σ(h)

)
, (8.3.4)

where

grad jH :=
∫ 1

0

l j (ξ)

b j

(
TU jφ

−1
c

)T
(Tσ(ξh)φc )TgradH

(
φc (σ(ξh))

)
dξ, Ω j :=Ω(U j ).

Notice that with s = 1 and independently on the choice of c1, we reproduce the
DRG method (8.2.6)-(8.2.7) with the AVF DRG (8.2.8).

Using Lagrange interpolation and (8.3.3), the derivative of σ(ξh) at every
point ξh is

d

dξ
σ(ξh) =

s∑
j=1

l j (ξ)TU jφ
−1
c

(
Ω j grad j H

)
, (8.3.5)

from which by integrating we get

σ(τh) =φ−1
c (u0)+h

s∑
j=1

∫ τ

0
l j (ξ)dξTU jφ

−1
c

(
Ω j grad j H

)
.
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The defined method is energy preserving, which we see by using

d

dξ

(
φc (σ(ξh))

)= Tσ(ξh)φc

(
d

dξ
σ(ξh)

)
,

and (8.3.5) to get

H(u1)−H(u0) =
∫ 1

0
g

(
gradH

(
φc (σ(ξh))

)
,

d

dξ
φc (σ(ξh))

)
dξ

=
∫ 1

0
g

gradH
(
φc (σ(ξh))

)
, Tσ(ξh)φc

 s∑
j=1

l j (ξ)TU jφ
−1
c

(
Ω j grad j H

)
 dξ

=
∫ 1

0
g

(
Tσ(ξh)φc

)T
gradH

(
φc (σ(ξh))

)
,

s∑
j=1

l j (ξ)TU jφ
−1
c

(
Ω j grad j H

) dξ

=
s∑

j=1
b j g

(∫ 1

0

l j (ξ)

b j

(
TU jφ

−1
c

)T (
Tσ(ξh)φc

)T
gradH

(
φc (σ(ξh))

)
dξ,Ω j grad j H

)

=
s∑

j=1
b j g

(
grad j H ,Ω j grad j H

)
= 0,

and hence repeated use of (8.3.2)-(8.3.4) ensures H(uk ) = H(u0) for all k ∈N.

8.3.2 Higher order extensions of the Itoh–Abe DRG method

From the Itoh–Abe DRG one can get a new DRG, also satisfying (8.2.4), by

gradSIAH(u, v) = 1

2

(
gradIAH(u, v)+gradIAH(v,u)

)
. (8.3.6)

We call this the symmetrized Itoh–Abe DRG. Note that we need the base point
c to be the same in the evaluation of gradIAH(u, v) and gradIAH(v,u). When
c(u, v) = c(v,u) and Ω(u,v) =Ω(v,u), we get a symmetric DRG method (8.2.6)-
(8.2.7), which is therefore of second order.

Alternatively, one can get a symmetric 2-stage method by a composition of
the Itoh–Abe DRG method and its adjoint. Furthermore, one can get energy pre-
serving methods of any order using a composition strategy. To ensure symmetry
of an s-stage composition method, one needs ci (u, v) = cs+1−i (v,u) for different
center points ci belonging to each stage and, similarly, Ωi (u, v) =Ωs+1−i (v,u).
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8.4 Error analysis

8.4 Error analysis

8.4.1 Local error

In this section, ϕt (u) is the t-flow of the ODE vector field F . The most stan-
dard discrete gradient methods have a low or moderate order of convergence,
and that is also the case for the DRG methods unless special care is taken in
designing Ω and gradH . We shall not pursue this approach here, but refer to
the collocation-like methods if high order of accuracy is required. We shall
see, however, that the methods designed here are consistent and can be made
symmetric. Analysis of the local error can be done in local coordinates, as-
suming that the step size is always chosen sufficiently small, so that within a
fixed step, uk ,uk+1,c(uk ,uk+1) and the exact local solution u(tk+1) all belong
to the same given coordinate chart. From the definition (8.2.6)-(8.2.7) it fol-
lows immediately that the representation of uk+1(h) satisfies uk+1(0) = uk and

d
dh uk+1(0) = F (uk ). Then by equivalence of local coordinate norms and the
Riemannian distance, we may conclude that the local error in DRG methods
satisfies

d(uk+1,ϕh(uk )) ≤C h2.

Similar to what was also observed in [5], the DRG methods (8.2.6)-(8.2.7)
are symmetric whenever gradH(u, v) = gradH(v,u), Ω(u, v) = Ω(v,u), and
c(u, v) = c(v,u) for all u, v ∈ M . In that case we obtain an error bound for the
local error of the form d(uk+1,ϕh(uk )) ≤C h3.

The collocation-like methods of section 8.3 have associated nodes {ci }s
i=1

and weights {bi }s
i=1 defined by (8.3.1). The order of the local error depends on

the accuracy of the underlying quadrature formula given by these nodes and
weights. The following result is a simple consequence of Theorem 4.3 in [6].

Theorem 8.1. Let ψh be the method defined by (8.3.2)-(8.3.4). The order of
the local error is at least

p = min(r,2r −2s +2)

where r is the largest integer such that
∑s

i=1 bi cq−1
i = 1

q for all 1 ≤ q ≤ r . This
means that there are positive constants C and h0 such that

d(ψh(u),ϕh(u)) ≤C hp+1 for h < h0, u ∈ M .

Proof. Choose h small enough such that the solution can be represented in the
form u(hξ) =φc (γ(ξh)),ξ ∈ [0,1], and consider the corresponding differential
equation for γ in Tc M :

d

d t
γ(t ) = (

φ∗
c F

)
(γ(t )) =

(
Tγ(t )φc

)−1
ΩgradH

(
φc (γ(t ))

)
. (8.4.1)
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Notice that
(
Tγφc

)−1 = TUφ
−1
c where U =φc ◦γ and TU (t )φ

−1
c : TU (t )M → Tc M

for every t . We obtain

d

d t
γ(t ) = TU (t )φ

−1
c Ω

(
TU (t )φ

−1
c

)T (
Tγ(t )φc

)T
gradH

(
φc (γ(t ))

)
. (8.4.2)

Considering the Hamiltonian H̃ : Tc M → R, H̃(γ) := φ∗
c H(γ) = H ◦φc (γ), we

can then rewrite (8.4.1) in the form

d

d t
γ(t ) = Ω̃(γ)gradH̃(γ), Ω̃(γ) := TU (t )φ

−1
c Ω

(
TU (t )φ

−1
c

)T
, (8.4.3)

where we have used that gradH̃ = Tγ(t )φ
T
c gradH (φc (γ(t ))), which is now a

gradient on the linear space Tc M with respect to the metric inherited from M ,
g |c . Locally in a neighborhood of c, (8.3.2)-(8.3.4) applied to (8.4.3) coincides
with the methods of Cohen and Hairer, and therefore the order result [6, Thm
4.3] can be applied. Since the Riemannian distance d(·, ·) and any norm in local
coordinates are equivalent, the result follows.

8.4.2 Global error

We prove the following result for the global error in DRG methods.

Theorem 8.2. Let u(t ) be the exact solution to (8.2.1) where F is a complete
vector field on a connected Riemannian manifold (M , g ) with flow u(t ) =ϕt (u0).
Let ψh represent a numerical method uk+1 =ψh(uk ) whose local error can be
bounded for some p ∈N as

d(ψh(u),ϕh(u)) ≤C hp+1 for all u ∈ M .

Suppose there is a constant L such that

‖∇F‖g ≤ L,

where ∇ is the Levi-Civita connection and ‖ · ‖g is the operator norm with
respect to the metric g . Then the global error is bounded as

d
(
u(kh),uk

)
≤ C

L
(ekhL −1)hp for all k > 0.

Proof. Denoting the global error as ek := d(u(kh),uk ), the triangle inequality
yields

ek+1 ≤ d
(
ϕh(u(kh)

)
,ϕh(uk ))+d

(
ϕh(uk ),ψh(uk )

)
.

The first term is the error at nh propagated over one step, the second term is the
local error. For the first term, we find via a Grönwall type inequality of [14],

d
(
ϕh(u(kh)),ϕh(uk )

)
≤ ehLd

(
u(kh),uk

)
= ehLek .
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Using the local error estimate for the second term, we get the recursion

ek+1 ≤ ehLek +C hp+1,

which yields

ek ≤C
ekhL −1

ehL −1
hp+1 ≤ C

L
(ekhL −1)hp .

Remark: Following Theorem 1.4 in [14], the condition that F is complete
can be relaxed if ϕt (u0) and {uk }k∈N lie in a relatively compact submanifold N
of M containing all the geodesics from uk to ϕkh(u0). This is the case if, for
instance, H has compact, geodesically convex sublevel sets, since both ϕt (u0)
and {uk }k∈N are restricted to the level set MH(u0) = {p ∈ M |H(p) = H(u0)} and
hence lie in the sublevel set NH(u0) = {p ∈ M |H(p) ≤ H(u0)}.

8.5 Examples and numerical results

We test our methods on two different variants of the classical spin system,
whose solution evolves on the d-fold product of two-spheres, (S2)d ,

dsi

dt
= si × ∂H

∂si
, si ∈ S2, i = 1, . . . ,d , H ∈F

((
S2

)d
)

. (8.5.1)

The Riemannian metric g on (S2)d restricts to the so-called round metric on
each copy of the sphere. This metric coincides with the Euclidean inner product
on the tangent planes of each of the spheres.

Geometric integrators for such systems are discussed widely in the litera-
ture, see e.g. [8, 16–18] and references therein. We study one or more bodies
whose orientation is represented by a vector si of unit length in R3, so that si

lies on the manifold M = S2 =
{

s ∈R3 : ‖s‖ = 1
}
. Here and in what follows, ‖·‖

denotes the 2-norm. Starting with d = 1, our choice of retraction φ is given by
its restriction to p,

φp (x) = p +x∥∥p +x
∥∥ , (8.5.2)

with the inverse
φ−1

p (u) = u

pTu
−p

defined when pTu > 0. We note that pTx = 0 for all x ∈ Tp S2. The tangent map
of the retraction and its inverse are given by

Txφp = 1∥∥p +x
∥∥

I − (p +x)⊗ (p +x)∥∥p +x
∥∥2

 , Tuφ
−1
p = 1

pTu

(
I − u ⊗p

pTu

)
, (8.5.3)
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where ⊗ denotes the outer product2 of the vectors. For d > 1, we use the retrac-
tion defined by Φp (x) = (φp1 (xi ), . . . ,φpd (xd )), where each φpi (xi ) is given by
(8.5.2).

8.5.1 Example 1: Perturbed spinning top

We consider first a nonlinear perturbation of a spinning top, see [18]. This is
a spin system with one spin s. Given the inertia tensor I = diag(I1, I2, I3), and
denoting by s2 the component-wise square of s, we can define the Hamiltonian
as

H(s) = 1

2
(I−1s)T(s + 2

3
s2).

The ODE system can be written in the form

ds

dt
=Ω(s)gradH(s), Ω(s) = ŝ,

using the hat operator defined by ŝ y = s × y . We approximate this system nu-
merically, testing the scheme (8.2.6)-(8.2.7) with different discrete Riemannian
gradients: the AVF (8.2.8), the midpoint (8.2.9), the Itoh–Abe (8.2.10) and its
symmetrized version (8.3.6). For the three symmetric methods, we have chosen
c(s, s̃) = s+s̃

‖s+s̃‖ , so that φ−1
c (s̃) =−φ−1

c (s). Using that gradH(s) = I−1(s + s2) and
considering the transpose of Tγξφc from (8.5.3), the AVF DRG becomes

gradAVFH(s, s̃) =
∫ 1

0

1

‖lξ‖

(
I − lξ⊗ lξ

‖lξ‖2

)
I−1(φc (γξ)+φc (γξ)2)dξ

=
∫ 1

0

1

‖lξ‖
(
I−1

(
φc (γξ)+φc (γξ)2

)
−φc (γξ)TI−1

(
φc (γξ)+φc (γξ)2

)
φc (γξ)

)
dξ,

with γξ = (1−ξ)φ−1
c (s)+ξφ−1

c (s̃) = (1−2ξ)φ−1
c (s) and lξ = c+γξ. Similarly, the

midpoint DRG becomes

gradMPH(s, s̃) =
I−1

(
s + s̃ + 2

3

(
s2 + ss̃ + s̃2

))
+

1
2 ‖s+s̃‖2−2
‖s̃−s‖2

(
H(s̃)−H(s)

)
(s̃ − s)

‖s + s̃‖ ,

where we have used that g (s, s) = sTs = 1 for all s ∈ S2. To obtain the basis of
Tc M for the definition of the Itoh–Abe DRG, we have used the singular-value
decomposition. For the first order scheme, noting that φ−1

s (s) = 0, we choose

2 If x and y are in R3, x ⊗ y is the matrix-matrix product of x taken as a 3×1 matrix and y
taken as a 1×3 matrix.
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c(s, s̃) = s, and get α j = φs(s̃)TE j , for j = 1,2. Then the DRG (8.2.10) can be
written as

gradIAH(s, s̃) =H
(
s′

)−H(s)

φ−1
s (s̃)TE1

E1 +
H(s̃)−H

(
s′

)
φ−1

s (s̃)TE2
E2, (8.5.4)

where s′ =φs((φ−1
s (s̃)TE1)E1).

We solve the same problem using the 4th, 6th and 8th order variants of
the collocation-like scheme (8.3.2)-(8.3.4). Choosing in the 4th order case the
Gaussian nodes c1,2 = 1

2 ∓
p

3
6 as collocation points and setting c(s, s̃) = s, we

get the nonlinear system

S1 = hφs0

1

2
TS1φ

−1
s0

(
Ω1 grad1H

)+(
1

2
−
p

3

3

)
TS2φ

−1
s0

(
Ω2 grad2H

) ,

S2 = hφs0

(
1

2
+
p

3

3

)
TS1φ

−1
s0

(
Ω1 grad1H

)+ 1

2
TS2φ

−1
s0

(
Ω2 grad2H

) ,

s1 = hφs0

(
TS1φ

−1
s0

(
Ω1 grad1H

)+TS2φ
−1
s0

(
Ω2 grad2H

))
,

where

σ(ξh) =
((

3+2
p

3
)
φ−1

s0
(S1)+

(
3−2

p
3
)
φ−1

s0
(S2)

)
ξ

+
(
3
(p

3−1
)
φ−1

s0
(S2)−3

(
1+p

3
)
φ−1

s0
(S1)

)
ξ2

and we use the transposes of (8.5.3) and gradH(s) = I−1(s+s2) in the evaluation
of grad1H and grad2H . The 6th and 8th order schemes are derived in a similar
manner, using the standard Gaussian nodes.

A second order scheme is derived by composing the Itoh–Abe DRG method
with its adjoint, and a 4th order scheme is obtained by composing this method
again with itself, as well as one by composition of the symmetrized Itoh–Abe
DRG method with itself. In all stages of these composition methods, a symmet-
ric c(u, v) is used.

Plots confirming the order of all methods can be seen in Figure 8.1, where
solutions using the different schemes are compared to a reference solution
obtained using a very small step size. See the left hand panel of Figure 8.2
for numerical confirmation that our methods do indeed preserve the energy
to machine precision, while the implicit midpoint method does not. In the
right hand panel of Figure 8.2, the solution obtained by the Itoh–Abe DRG
scheme with a step size h = 1 is plotted together with a solution obtained using
the symmetrized Itoh–Abe DRG method with a much smaller time step. We
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Figure 8.1: Error norm at t = 10 for the perturbed spinning top problem solved with
different schemes, plotted with black, dashed reference lines of order 1, 2, 4, 6 and 8.
Initial condition s = (−1,−1,1)/

p
3 and I= diag(1,2,4). Left: The AVF, midpoint (MP),

Itoh–Abe (IA) and symmetrized Itoh–Abe (SIA) DRGs and a 3-stage composition of
the IA DRG scheme (Comp-2). Right: Collocation-type schemes of order 4, 6 and 8, a
3-stage composition of the SIA DRG scheme (Comp-SIA), and a 6-stage composition
of the IA DRG scheme (Comp-4).

observe, as expected for a method that conserves both the energy and the angular
momentum, that the solution stays on the trajectories of the exact solution,
although not necessarily at the right place on the trajectory at any given time.

8.5.2 Example 2: Heisenberg spin chain

We now consider the Heisenberg spin chain of micromagnetics. This problem
is considered in [8, 17], where different geometric integrators are tested. Here,

s ∈
(
S2

)d
, and the Hamiltonian is

H(s) =
d∑

i=1
si

Tsi−1, (8.5.5)

with s0 = sd and sd+1 = s1. The system (8.5.1) becomes, for this Hamiltonian,

dsi

dt
= ŝi

(
si−1 + si+1

)
, i = 1, . . . ,d ,

and can be written in the block form
ds

dt
=Ω(s)gradH(s), where Ω(s) = diag(ŝ1, . . . , ŝd ). (8.5.6)

For such a d-particle system, we may write the DRGs as

gradH(s, s̃) =
(
grad

1
H(s, s̃), . . . ,grad

d
H(s, s̃)

)
,
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Figure 8.2: Left: Energy error with increasing time for the AVF, midpoint (MP) and
Itoh–Abe (IA) DRG methods, as well as the implicit midpoint (IMP) method, with
step size h = 1, initial condition s = (−1,−1,1)/

p
3 and I= diag(1,2,4). Right: Curves

of constant energy on the sphere, found by our method with different starting values.
The black solid line is the solution using the symmetrized Itoh–Abe DRG method with
step size h = 0.01, while the red dots are the solutions obtained by the Itoh–Abe DRG
method with step size h = 1.

where we note that grad
i
H(s, s̃) is a discrete approximation to ∂H

∂si
. We thus get

the AVF DRG defined by

grad
i
AVFH(s, s̃) =

∫ 1

0

1

‖li ,ξ‖

(
I − li ,ξ⊗ li ,ξ

‖li ,ξ‖2

)(
φci−1 (γi−1,ξ)+φci+1 (γi+1,ξ)

)
dξ

=
∫ 1

0

1

‖li ,ξ‖
(
φci−1 (γi−1,ξ)+φci+1 (γi+1,ξ)−l T

i ,ξ

(
φci−1 (γi−1,ξ)+φci+1 (γi+1,ξ)

)
li ,ξ

)
dξ,

with γi ,ξ = (1−2ξ)φ−1
ci

(si ) and li ,ξ = ci +γi ,ξ. For the midpoint DRG we get

grad
i
MPH(s, s̃) = ci−1 + ci+1 + H(s̃)−H(s)− (gradH(c(s, s̃))Tη

ηTη
ηi ,

where η= (η1, . . . ,ηd ) and ηi =−2φ−1
ci

(si ). In the numerical experiments, how-
ever, we have used a small modification of this,

grad
i
MMPH(s, s̃) = ci−1 + ci+1 +

s̃T
i s̃i−1 − si

Tsi−1 − (ci−1 + ci+1)Tηi

ηi
Tηi

ηi .

This DRG, which does indeed satisfy (8.2.4)-(8.2.5), leads to a more computa-
tionally efficient scheme than the original midpoint DRG. Each grad

i
IAH(s, s̃)

in the Itoh–Abe DRG is found as in the previous example, by (8.5.4). Higher
order schemes are also derived in the same manner as before.
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Figure 8.3: Error norm at t = 10 for the Heisenberg spin chain problem solved with
different schemes, plotted with black, dashed reference lines of order 1, 2, 4, 6 and
8. Left: The AVF, modified midpoint (MMP), Itoh–Abe (IA) and symmetrized Itoh–
Abe (SIA) DRGs and a 3-stage composition of the IA DRG scheme (Comp-2). Right:
Collocation-type schemes of order 4, 6 and 8, a 3-stage composition of the SIA DRG
scheme (Comp-SIA), and a 6-stage composition of the IA DRG scheme (Comp-4).

We test our schemes by comparing the numerical solutions with the exact
solution

s j (t ) = (a cosθ j + ã sinθ j )cosφ+ ā sinφ, θ j = j p −2(1−cos p)sinφ,

for a choice of constantsφ, p ∈R and orthogonal unit vectors a, ã, ā ∈R3, see [8].
Order plots for the methods are provided in Figure 8.3, using d = 5, φ= π/3,
p = 2π/d , a = (1,2,−1)/

p
6, ã = (2,1,4)/

p
21 and ā = a × ã. All schemes are

shown to have the expected order.

8.6 Conclusions and further work

We have presented a general framework for constructing energy preserving nu-
merical integrators on Riemannian manifolds. The main tool is to generalize
the notion of discrete gradients as known from the literature. The new methods
make use of an approximation to the Riemannian gradient coined the discrete
Riemannian gradient, as well as a retraction map and a coordinate center func-
tion. An appealing feature of the new methods is that they do not depend on
a particular choice of local coordinates or on an embedding of the manifold
into a (larger) Euclidean space, but are of an intrinsic nature. Particular exam-
ples of discrete Riemannian gradient methods are given as generalizations of
well-known schemes, such as the average vector field method, the midpoint
discrete gradient method and the Itoh–Abe method. Extensions to higher order
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are proposed via a collocation-like method. We have analysed the local and
global error behaviour of the methods, and they have been implemented and

tested for certain spin systems where the phase space is
(
S2

)d
.

Possible directions for future research include a more detailed study of the
stability and propagation of errors, taking into account particular features of
the Riemannian manifold; for instance, it may be expected that the sectional
curvature will play an important role. More examples should also be tried
out, and we belive, inspired by [3], that there is a potential for making our
implementations more efficient by tailoring them for the particular manifold,
as well as the ODE problem considered.
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