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Summary

In the last few years, the emergence of civilian unmanned aerial vehicles
(UAVs) has sparked the interest of both the industry and the academic com-
munity. However, as systems become more popular and more widespread,
the risk they represent increases as well. Today’s solutions rely heavily
on global navigation satellite systems (GNSS), which have been shown to
have several weaknesses against malicious attacks – the signal can either be
blocked through jamming, or a fake position signal can be sent, tricking the
UAV into thinking it is at another location through spoofing.

When developing a navigation and sensor solution for UAVs, there are
two main considerations that must be made. The solution must provide
accurate sensor measurements, and the UAV must be able to operate safely
and securely in the mission’s environment. This thesis first presents a re-
configurable sensor timing and synchronization solution, intended for use
in UAV payloads, with two implementations. This solution reads the time-
of-validity (TOV) from different sensors and attaches these as timestamps
to the sensor’s data messages. The solution can also be integrated with
sensors such as cameras by triggering when they should capture images and
storing the TOV through the camera’s flash output. The solution’s opera-
tion is verified through tens of experiments with beyond visual line of sight
(BVLOS) fixed-wing UAVs, and an implementation has been shown to give
1.90 µs drift per second, with a resolution of 10 ns.

To make a UAV navigation solution that is robust to the single point
of failure (SPOF) that GNSS represents, and to allow operation in GNSS
denied environments, solutions for GNSS-free navigation is discussed in the
second part of this thesis. First a camera based optical flow solution is
presented, that enables throw-and-go functionality, which is verified through
an implementation on a small multi-rotor UAV.
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vi Summary

To enable navigation without GNSS for long-range, long-duration flights,
a phased array radio system (PARS) is used as an absolute positioning
sensor. First a solution with only the PARS and a barometer is presented,
then these sensors are used to aid a nonlinear observer with an IMU and
magnetometer. A root mean squared accuracy of 27 m was achieved with
the first solution, and a root mean square accuracy of 13 m was achieved
with the second solution.

Finally, a GNSS-spoofing detector was implemented that automatically
detects spoofing and selects the best available solution of a highly accurate
real-time kinematic (RTK) GNSS solution, which is sensitive to jamming,
and a PARS NLO solution, which is highly robust, but less accurate.
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1
Introduction

1.1 Background

Up until the early 2000s, unmanned aerial vehicles (UAVs) with beyond
visual line-of-sight (BVLOS) capabilities were almost exclusively available
for military use. In recent years, advances in UAV-dependent technologies,
such as lithium-polymer batteries with reduced weight and increased capac-
ity, efficient brushless DC-motors, and availability of cheap and lightweight
sensor systems for navigation, have made UAVs increasingly more popular.
Today, you can go to an electronics store and buy a UAV with a camera, a
navigation system and a stabilizing, waypoint following controller for a few
hundred US dollars. With these advances in UAV technology we are already
seeing many interesting cases where use of UAV technology can save both
time and labor.

For example, in search-and-rescue [1, 29], where fast response time can
be life-critical, UAVs can be a very useful tool to quickly get an overview
of a large area, and to use tools such as infrared cameras to look for people
in dangerous areas. Environmental hazard monitoring, traffic management
and pollution monitoring in cites and water are other areas where UAVs
have been used [98, 149].

There is also much development in the research sector in several fields,
such as biology, where UAVs are used for example for observing seasonal
changes in freshwater marshes [85] or collection of hyperspectral images
which can be used to detect environmental changes [37], and even astronomy
with the Mars helicopter which will be used to give an overview of the area
around a Mars rover [48].

We also see development for industrial applications, such as power line
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2 Introduction

Figure 1.1: Illustration of a power-line inspection task, where a UAV is used for
monitoring the vegetation around a power line. The green frustum represents the
area visible by a camera.

inspection [25] and bridge inspection [30], which today are very tedious
tasks, with high associated costs for regularly needed maintenance. An-
other industrial application which is expected to rely on UAVs in the future
is precision agriculture. We already see development in this field, as can be
seen in [59, 132]. UAV applications in precision agriculture typically relies
on georeferencing, that is relating camera images to places in the real world.
To accurately do direct georeferencing, a high-quality position and attitude
solution is needed, along with proper time-synchronization of camera im-
ages. We also see UAV usage in civil engineering, where UAVs are used to
collect 3D point clouds from images which are used to make models for con-
struction cites [120]. To estimate the reservoirs levels in the summer, power
companies based on hydroelectric power in regions where much water are
bound up in snow are interested in the snow depth monitoring [24]. This is
also true for ski resorts and emergency personnel monitoring avalanche risks.
An illustration of a power-line inspection application is given in Figure 1.1.

These are just a few of the many applications of UAVs we see in the field
today, but a common challenge for all these applications is that to perform
the tasks, robust and accurate navigation is required. Today’s systems
rely heavily on GNSS to provide absolute position references to function
properly. Without an aiding GNSS reference, position estimates will drift
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and deteriorate over time. This is further discussed in Section 1.1.3.

1.1.1 Fixed-wing vs. multi-rotors

In this thesis we are using the two most common types of UAVs: fixed-wings
and multi-rotors. Other UAV types, such as single-rotors (helicopters), flap-
ping wing and fixed-wing hybrids are not in the scope of this thesis. Some
tasks are better performed by either fixed-wings or multi-rotors, and which
is the best choice for a specific application depends on that application’s
particular requirements. An overview of pros and cons of fixed-wings versus
multi-rotors are given in Table 1.1.

A challenge with both multi-rotors and fixed-wing UAVs is legislation
and regulations. Due to the recent developments in the field, legislation
lags behind, and in some countries, UAVs are governed under the same
regulations as manned aircrafts, some of which are impossible to fulfill on
smaller UAVs. One of these rules are the need for robustness, enforced by
for example triple-redundant systems, which often is not implementable on
a small UAV due to the payload size and weight constraints.

Multi-rotors and fixed-wing UAVs have different positive and negative
sides. Multi-rotors are typically easier to fly than fixed-wings, they need
virtually no space for take-off and landing, they can hover in place to inspect
nearby objects. They have, however, a low endurance, low payload capacity,
and can be very sensitive weather conditions, such as wind. Fixed-wings
on the other hand have a long range, high speed, and a higher payload
capacity than multi-rotors, but typically need a runway or catapult for
take-off, a landing strip or net for landing and are typically heavier than
multi-rotors, which results in a large momentum when combined with the
high speed. As the momentum increases, so does the potential damage the
UAV represents if control of the UAV is lost. Multi-rotors also tend to
have a more fragile structure than fixed-wing UAVs, and they have multiple
motors with multiple rotors, which tends to be fragile as well. Multi-rotors,
especially hexa-copters or octo-copters, can sometimes function even if a
motor has failed[111].

With both multi-rotors and fixed-wings accurate navigation is required.
Multi-rotors can have very rapid dynamics that, if handled correctly, can
be used to perform complex maneuvers, such as throw-and-go take-offs.
Without proper attitude-control, however, the UAV can behave unstable
in the air, as the pitch and roll directly influences the UAV’s acceleration
in the horizontal plane. When performing measurements with fixed-wing
UAVs, such as photogrammetry, improper navigation and timing solutions
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Table 1.1: Fixed-wing and multi-rotor pros and cons

Pros Cons Typical application

Fixed-wing

Range Take-off Power-line inspection
High speed Landing Maritime surveillance
Flight time Weight Military operations
Max payload

Multi-rotor

Hovering Endurance Building inspection
Easy to fly Payload Security
Redundant motors Sturdiness Journalism
Precision control Weather

Both
Aerial view Regulations Search and rescue

Robustness Agriculture
Communication relay

will result in inaccurate results when referencing the images to the real-world
positions.

1.1.2 Beyond visual line-of-sight operations (BVLOS)

When moving to BVLOS operations, two major challenges for UAV oper-
ations arises: navigation and communication. To be able to safely operate
a UAV when flying BVLOS, the operator needs to know UAV’s position,
its velocity and its attitude (PVA). To be able to calculate the navigation
solution, the UAV is dependent on a set of sensors, typically consisting of:
an absolute position reference, typically provided by a GNSS receiver; accel-
eration and angular rate measurements, provided by an IMU; and a heading
reference, provided by either a magnetometer or a multiple GNSS receiver
setup. In addition, other sensors such as barometers, airspeed, angle-of-
attack and optical flow sensors can be used to complement the sensors to
improve the navigation solution or replace sensors if they are not available.

When flying BVLOS, by definition, the UAV is no longer visible by
the pilot or operator. This increases the risks associated with performing
missions, as safety is strongly dependent on both navigation and communi-
cation. With communication links there exist multiple off-the-shelf solutions
with long range. Examples are tracking antennas, Iridium satellite commu-
nication (and the upcoming Iridium NEXT), phased array radio systems
and VHF and UHF solutions. For UAV safety, typically only navigation
information is needed to be transmitted, and to ensure safe operations in
a control-tower managed airspace, a telemetry update every few seconds
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is sufficient, and this does not require a high transmission capacity. By
adding multiple redundant links, reducing the risk associated with loss of
communication can be reduced. Note that the mission may require a higher
transmission capacity to for example transmit camera images.

Due to the extended range of BVLOS, the time spent returning from
the flight is increased, which might be critical in case of an emergency. If
the UAV consumes more power than expected, or some sort of error occurs,
a risk-reducing implementation would be to be able to switch off the power
of the non-critical components.

To summarize, special risk analysis containing navigation, communica-
tion and power consumption is needed when performing BVLOS opera-
tions.

1.1.3 Position sensors

Sensors used for estimation of position can primarily be divided into two
categories: absolute and inertial. Absolute position sensors measure posi-
tion directly, which results in bounded position errors. Inertial sensors, on
the other hand, measure derivatives of the position, such as velocity and ac-
celeration, and have unbounded position errors. The reason for this is that
the position must be estimate based on the previously estimated position,
and noise and other uncertainties accumulate over time. Typical inertial
sensors are accelerometers and gyroscopes, which measure acceleration and
angular velocity respectively. Typical absolute sensors are GNSS receivers
and laser altimeters.

The main advantage of inertial sensors is that they typically have a high
bandwidth, which make them able to encompass rapid-changing system
dynamics. They are also tending to be lightweight and compact, and they
do not need external components, such as antennas. In addition, they are
virtually impossible to influence from external sources, making them very
robust to malicious intents.

For absolute positional measurements in the horizontal plane, few alter-
natives to GNSS exist when considering ranges of several kilometers. Since
the 1970s the Loran-C low frequency (LF) radio-based system was the pri-
mary position solution, but as GNSS solutions have emerged, the Loran-C
network has been largely discontinued[72, 138]. Advantages with the Loran-
C system are closeness to the transmitters, making physical maintenance
and alterations easier, and that the entire system is inside the atmosphere,
making it more robust to atmospheric disruptions, such as space weather.
Incentives to re-implement Loran-C, or variants such as eLoran, have been
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proposed by the US Coast Guard[139], but these systems are not available
at the time of writing.

Another alternative for absolute positional measurements is by distribut-
ing several radios at different locations. By measuring the round-trip time
(RTT) to each of the radios, the distance to each of the radio can be esti-
mated, and a position can be calculated if the angle between the radios is
sufficiently large. Although this method can provide accurate results, it has
high infrastructural requirements as several radios need to be operative at
multiple locations.

1.1.4 Camera-based navigation

In addition to GNSS-based positioning systems and inertial navigation sys-
tem (INS)-sensors, computer vision can be used to aid position velocity
attitude (PVA)-observers. There are two main methods of camera vision:
georeferencing and optical flow. Georeferencing is the process of detect-
ing real-world objects in an image. If the position of the object is known
in the real-world, this would give heading and elevation angles toward the
observer. In addition, if the size of the real-world object is known, and
can be detected by the algorithm, the range to the object is known, and
the position of the observer can be calculated. The last step is, however,
often very difficult to properly estimate due to the quality of camera im-
ages from high altitudes. For robustness and to suppress false positives,
several objects should be detected simultaneously. As georeferencing relies
on detecting known objects, it is mostly performed in controlled environ-
ments, such as UAV laboratories, with marker-based solutions, and when
performing missions in unknown environments, optical flow algorithms are
preferred.

Optical flow relies on detecting the same features in consecutive camera
images, and thus deduce the movement of the camera between the images.
Opposed to the georeferencing approach, the observed objects do not need
to be known in advanced, and automatic detection of features that are
likely to appear in consecutive images can be performed. A commonly used
method for automatically detecting such features is the Shi-Tomasi detector,
described in the aptly named article Good Features to Track[119]. When
several such features are found in the first image, the optical flow algorithm
attempts to detect corresponding features in the next image. Detection
of features is typically done using a template matching algorithm, that is,
selecting a small patch around a feature in the first image and finding a
similar patch in the second image. A vector is then created from the feature
in the first image to the corresponding feature in the second image. This
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vector now represents the optical flow from the first to the second image,
which again represents the motion of the camera (in the opposite direction
of the features).

As finding new features to track typically is computationally expensive,
the features detected in the second image can be used to search for features
in the third image, and so on. When doing this optimization, however, the
number of tracked features will decrease over time. This can be either due
to the tracked feature is no longer visible by the camera, either that the
source of the feature is outside of the image frame or due to obstruction by
another object, or it can be that the matching algorithm is unable to find
the template in the new image. When an insufficient number of features
are tracked, the detection algorithm can be re-executed and the matching
process continues.

1.1.5 Sensor fusion

To combine all the sensor readings into one PVA solution a sensor fusion
algorithm is used. In the current state-of-the-art there are several alterna-
tives, such as the extended Kalman filter (EKF), the multiplicative extended
Kalman filter (MEKF), and non-linear observers (NLOs). The extended
Kalman filter is a nonlinear version of the Kalman filter which linearizes
the system around an operational point and solves the linearized version
optimally. A limitation with the EKF is that it typically stores the attitude
estimates as the Euler angles; roll, pitch and yaw. This representation is
problematic in two situations; when the UAV is pointing directly upwards
and when it is pointing directly downwards, as it then creates singularities
with an infinite number of solutions for the yaw/roll axes. To solve this sin-
gularity, the multiplicative Kalman filter is a modified version of the EKF
that instead of representing the attitude as Euler angles, uses a quaternion
- a rotation vector with four elements. This avoids singularities in the so-
lution, and uses quaternion multiplication to alter the attitude estimates,
ensuring a consistently valid attitude representation [86].

Another set of sensor fusion algorithms is non-linear observers (NLOs).
NLOs guarantees robustness by explicitly calculating stability properties
of the observer. They often have global stability properties, making them
robust highly to process noise and other disturbances. Opposed to (M)EKF
observers, they do not rely on linearizing around a working point but have a
global attraction area to a valid solution. They are, however, more difficult
to design for optimal results, and a stability analysis must be done for each
system - a process which is not necessary when using linearized Kalman
filter variants.
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1.2 Motivation

In advanced UAV uses such as hyperspectral imaging, photogrammetry,
and gravitometry, accurate estimation of the UAV’s position, velocity, and
attitude (PVA), in addition to the sensor measurements’ time of is essen-
tial for high-quality results. Hyperspectral cameras typically only record
a single scan line per frame, and when flying drones at high velocity, the
position changes significantly per frame. For all camera systems, the atti-
tude significantly influences the observed position. Even a small change in
the rotation of the UAV results in a relatively large change in the ground
position captured by the camera, especially when flying at high altitudes.

To achieve high-quality PVA estimates and time synchronization of cam-
era images, hardware synchronization of sensor messages is needed. As most
high-bandwidth sensors, such as IMUs, measure derivatives of the PVA
measurements needed for navigation, timing between the measurements are
essential to achieve as high accuracy as possible.

When using GNSS-receivers for positioning, the receiver typically has a
significant internal processing time. To compensate for this, the receivers
typically output a time-of-validity (TOV) pulse at every whole second in
UTC-time1. By registering the TOV and assigning this to the following sen-
sor message, an accurate measure of when the sensor was valid is recorded.
Although the sensor message may not be valid at the exact second, a field
in the sensor message typically specifies this offset.

Furthermore, when a camera is used, this needs to be synchronized with
the other sensors. This can be done either by triggering the camera, i.e.
sending a pulse when the camera should capture an image, or by capturing
an external trigger from the camera, typically the camera’s flash trigger
output. The trigger is typically synchronized with the TOV message from a
connected GNSS-receiver to simplify the synchronization with the position
estimates.

As usage of UAVs transitions into industrial use in large domains such
as precision agriculture, with more UAV usage, safe operation becomes in-
creasingly important. In the future it is likely that UAVs become more
powerful and carry more equipment than today, which makes them repre-
sent a significant danger if controlled with malicious intent. As systems
today heavily rely on GNSS for navigation, attacks on the GNSS receivers
therefore represents a high risk.

As seen in both national [61] and international media [23, 116] spoofing
1UTC time is used by GPS, other GNSS variants use different absolute time measure-

ments.
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and jamming of GNSS is not only a theoretical implementation seen in
research laboratories, but a real-life risk of public concern.

In addition, loss of GNSS due to non-malicious sources, such as hard-
ware or software errors, operation in areas with poor coverage, or operation
in areas with high noise or strong reflections, the UAV must still be able
to navigate. The same applies for unexpected space weather, where "So-
lar bursts are a potential threat to safety-critical systems based on GNSS"
according to [124]. Although not strictly GNSS denial, the selective avail-
ability feature implemented in some GNSS systems also represents a threat
to accurate navigation. Selective availability significantly reduces the ac-
curacy of GNSS systems by disrupting the available timing measurements
[151].

1.2.1 Phased array radio system (PARS)

To be able to handle loss of GNSS, be it from malicious sources, operation
in GNSS-denied environments, or from hardware or software failure, a re-
dundant system is needed. Although dead-reckoning using INS-sensors with
a magnetometer and airspeed velocity measurements are accurate for short
periods of time, absolute position measurements are required for extended
duration operations. One method for obtaining such measurements is by
using a phased array radio system (PARS), which uses an array of n by
m antenna elements in one radio to detect the direction of arrival (DOA)
of incoming radio signals. If in addition to the DOA, the RTT is mea-
sured, a simultaneous 3-degrees of freedom (DoF) position measurement
can be estimated from a single radio at a single location. Multiple methods
for estimating DOA exist in current litterature[77], perhaps most notably
Schmidt’s MUSIC [114] and Roy and Kaliath’s ESPRIT [110].

Another advantage of the PARS is that it in addition to being an abso-
lute position sensor, communication is provided through the same hardware.
By using beamforming, phased array radio systems can deliver transfer ca-
pacities of several megabytes over a range of tens of kilometers. Phased
array radio systems are thus able to simultaneously solve the two major
challenges with BVLOS UAV operations.

1.2.2 Reconfigurable sensor payloads

Due to the limited space and weight available onboard a UAVs, there is
often a need to specialize the payload for each specific mission. How-
ever, if space, weight and mission restrictions permit doing so, dividing the
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payload into flight critical equipment (avionics) and mission sensor equip-
ment (mission-payload), might reduce the risks associated with changing
the installed equipment in a UAV for research purposes. An example of
a mission-payload for bridge inspection might consist of a regular RGB-
camera, a GNSS-receiver, an IMU, and an SSD-disk for storage, while a
mission-payload for measuring changes in gravity using MEMS accelerom-
eters could consist of multiple GNSS-receivers (for position and attitude
calculation) and multiple IMUs (for gravity measurements). In some cases,
payloads must be miniaturized and optimized to minimize the weight to
allow maximal flight-time, while in other cases flight-time is less important,
but only the highest quality measurements using multiple sensors will give
sufficiently accurate results.

In addition to mission-specific payloads, rapid improvements in UAV
sensors, such as MEMS IMUs and GNSS receivers, causes static payloads
to be quickly outdated. To be able to keep up-to-date with the advances
in technology, sensors must be easily integratable with sensor solutions. By
having a reconfigurable solution, the efforts required for system integration
is greatly reduced, as redesigning and production of a new system is not
needed.

When testing an experimental payload, an important feature is being
able to power the payload on and off. This is because the mission-payload
may have to be turned off to conserve power, it may create electromagnetic
disturbances or behave unexpectedly in some other way. In addition, the
mission-payload may contain expensive equipment that, in an emergency,
must be unpowered. For example, when performing an emergency landing
in water, some electronic components may survive if depowered. A solution
for a system that does this is described in Section A.1.

1.3 Contributions
This thesis is split into two parts. The first part describes requirements,
design and implementations of hardware sensor timing solutions, while nav-
igation in GNSS denied environments is discussed in the second part.

Part 1 - Hardware Sensor Synchronization

Chapter 2. SyncBoard - A High-Accuracy Sensor Timing Board
for UAV Payloads

This chapter presents the SyncBoard, which is a reconfigurable sensor tim-
ing board that accurately records the Time of Validity (TOV) from sensors,
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while simultaneously acting as a protocol conversion tool. It is intended
to be usable by people without expertise in hardware development. To al-
low accurate timing, the SyncBoard has a high-performance microcontroller
with a 32-bit timer clock running at a maximum of 100 MHz. By capturing
the TOV signal using the Input/Interrupt Capture function of the micro-
controller, sensor triggers can be captured with an accuracy of 10 ns, which
is sufficient for most UAV applications.

The SyncBoard supports sensor input from several commonly used pro-
tocols, in addition to simple digital and analog input. Sensors of different
rates and data sizes are supported, and TOV detection can be configured
to comply with the specifications of the sensor. For usage with very high-
bandwidth sensors, such as cameras, the SyncBoard can output an external
signal to be used as a trigger for the sensor. To be compatible with most on-
board computers on UAVs, the SyncBoard primarily uses a USB interface
for configuration and sensor output, but output can also be transmitted by
any of the available protocols if needed. The SyncBoard also has function-
ality to switch on and off power to individual sensors as needed.

Chapter 3. User-Configurable Timing and Navigation for UAVs

Sensor timing using dedicated hardware is the de-facto method to achieve
optimal sensor performance, but the solutions available today have limited
flexibility and require significant effort when changing sensors. This chapter
presents requirements and suggestions for a highly accurate, reconfigurable
sensor timing system that simplifies integration of sensor systems and navi-
gation systems for UAVs. Both typical avionic sensors, like GNSS receivers
and IMUs, and more complex sensors, such as cameras, are supported. To
verify the design, an implementation named the SenTiBoard was created,
along with a software support package and a baseline sensor-suite.

With the solution presented in this paper we get a measurement resolu-
tion of 10 nanoseconds and we can transfer up to 7.6 megabytes per second.
If the sensor suite includes a GNSS receiver with a pulse-per-second (PPS)
reference, the sensor measurements can be related to an absolute time ref-
erence (UTC) with a clock drift of 1.9 microseconds per second RMS. An
experiment was carried out, using a Mini Cruiser fixed-wing UAV, where er-
rors in georeferencing infrared images were reduced with a factor of 4 when
compared to a software synchronization method.
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Part 2 - Navigation in GNSS Denied Environments

Chapter 4. Inertial Optical Flow for Throw-and-Go Micro Air
Vehicles

In this chapter, we describe a novel method using only optical flow from
a single camera and inertial information to quickly initialize, deploy, and
autonomously stabilize an inherently unstable aerial vehicle. Our approach
requires a minimal number of tracked features in only two consecutive frames
and inertial readings, eliminating the need for long feature tracks or local
maps and rendering it inherently fail-safe.

We show theoretically, in simulation, and in real experiments that we
can reliably estimate and control the vehicle velocity, full attitude, and met-
ric distance to the scene while self-calibrating inertial intrinsics and sensor
extrinsics. In fact, the fast initialization, self-calibration, and inherent fail-
safe property leads to the first visual-inertial throw-and-go capable system.

Chapter 5. Navigation of UAV Using Phased Array Radio

Navigation and communication are two of the major challenges when flying
unmanned aerial vehicles (UAVs) beyond visual line of sight (BVLOS), in
particular when Global Navigation Satellite Systems (GNSS) are unavail-
able. The phased array radio system (PARS) used in this chapter aims to
solve both communication and navigation with one system. To enable high
efficiency data transfer, the radio system uses electronic beamforming to
direct the energy from the ground radio towards the UAV, but to be able
to do this, the ground radio needs to know the bearing and elevation angles
towards the UAV. By measuring the round-trip time to compute the range
and observing the direction of the incoming signal to compute the bear-
ing and elevation angles, the phased array radio system is able to find the
position of the UAV, relative to the ground radio, in all three dimensions.

The phased array system is shown to provide absolute measurements for
UAV navigation in radio line of sight, which can be used as a redundant
system to GNSS measurements. By merging the radio measurements with
barometer altitude data, a mean accuracy of approximately 24 m with a
standard deviation of approximately 17 m compared to the real time kine-
matic (RTK) satellite navigation solution is achieved on a UAV flight at a
distance of approximately 5 km.
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Chapter 6. Phased Array Radio System Aided Inertial Navigation
for Unmanned Aerial Vehicles

This chapter uses the phased array radio system (PARS) described in Chap-
ter 5 to aid a micro-electro-mechanical inertial navigation system (INS),
estimating position, velocity and attitude. The solution is independent of
global navigation satellite system (GNSS) for positioning and highly resis-
tant to malicious sources, such as spoofing and jamming.

The state estimator presented in this chapter fuses range and bearing
measurements from the PARS with the measurements from an on-board
inertial measurement unit, a magnetometer and a barometer. By aiding the
INS with PARS position measurements, magnetometer readings and baro-
metric measurements, drift-free PVA estimates are obtained. The PARS
measurements can be used for navigation alongside today’s GNSS solutions,
or as a redundant backup system running in parallel.

To validate the observer, an experiment was carried out with a fixed
wing UAV on an approximately 35-minute flight with a maximal distance
of 5.35 km from the base station. During this flight a root-mean-square
(RMS) accuracy of 26.3 m compared to a real-time kinematic GNSS solution
was achieved. Note that the updated results chapter is not in the original
publication, which show an RMS positional accuracy of 17.6 m on a 37-
minute flight with a maximal distance of 4.75 km from the base station.

Chapter 7. Robust and Secure UAV Navigation Using GNSS,
Phased-Array Radio System and Inertial Sensor Fusion

As shown in Chapter 5 and Chapter 6, PARS equipment has the potential
to provide position measurements that are accurate within tens of meters.
As PARS solutions typically have significantly higher signal-to-noise ratio
(SNR) and strongly encrypted messages, they are robust towards typical
malicious attacks against GNSS solutions.

This chapter presents a method for an inertial navigation system which
is aided using redundant position sensors. The high-accuracy RTK GNSS
solution is the primary position reference, when it is available. The PARS is
used to detect if GNSS solution is being spoofed or jammed and is used as
the fall-back positioning solution. The proposed system is verified through
an experiment where GNSS-spoofing is added during post-processing.

1.4 Publications
This thesis is based on the following publications:



14 Introduction

1. S. M. Albrektsen and T. A. Johansen. SyncBoard - a high accuracy
sensor timing board for UAV payloads. In 2017 International Con-
ference on Unmanned Aircraft Systems (ICUAS), pages 1706–1715,
Miami, Florida, USA, June 13–16 2017. doi: 10.1109/ICUAS.2017.
7991410

2. Sigurd M. Albrektsen and Tor Arne Johansen. User-configurable
timing and navigation for UAVs. Sensors, 18(8):2468, 2018. ISSN
1424-8220. doi: 10.3390/s18082468. URL http://www.mdpi.com/
1424-8220/18/8/2468

3. S. Weiss, R. Brockers, S. M. Albrektsen, and L. Matthies. Inertial
optical flow for throw-and-go micro air vehicles. In 2015 IEEE Winter
Conference on Applications of Computer Vision (WACV), pages 262–
269, Waikoloa, Hawaii, USA, January 5–9 2015. doi: 10.1109/WACV.
2015.42

4. S. M. Albrektsen, A Sægrov, and T. A Johansen. Navigation of
UAV using phased array radio. In 2017 Workshop on Research, Ed-
ucation and Development of Unmanned Aerial Systems (RED-UAS),
pages 138–143, Linkoping, Sweden, October 3–5 2017. doi: 10.1109/
RED-UAS.2017.8101657

5. S. M. Albrektsen, T. H. Bryne, and T. A Johansen. Phased array
radio system aided inertial navigation for unmanned aerial vehicles.
In 2018 IEEE Aerospace Conference, Big Sky, Montana, USA, March
3–10 2018. doi: 10.1109/AERO.2018.8396433

6. S. M. Albrektsen, T. H. Bryne, and T. A Johansen. Robust and
secure UAV navigation using GNSS, phased-array radio system and
inertial sensor fusion. In IEEE Conference on Control Technology and
Applications (CCTA), Copenhagen, Denmark, August 21–24 2018

1.4.1 Additional publications

In addition to the publications this thesis is based on, the following publi-
cations were made during the PhD:

1. Håkon H. Helgesen, Frederik S. Leira, Torleiv H. Bryne, Sigurd M.
Albrektsen, Thor I. Fossen, and Tor Arne Johansen. Real-time geo-
referencing of thermal images using small fixed-wing UAVs in mar-
itime environments. ISPRS Journal of Photogrammetry and Remote
Sensing, 2018. (submitted)

http://www.mdpi.com/1424-8220/18/8/2468
http://www.mdpi.com/1424-8220/18/8/2468


1.4. Publications 15

2. M. Ludvigsen, S. M. Albrektsen, K. Cisek, T. A. Johansen, P. Norgren,
R. Skjetne, A. Zolich, P. Sousa Dias, S. Ferreira, J. B. de Sousa, T. O.
Fossum, Ø. Sture, T. Røbekk Krogstad, Ø. Midtgaard, V. Hovstein,
and E. Vågsholm. Network of heterogeneous autonomous vehicles
for marine research and management. In OCEANS 2016 MTS/IEEE
Monterey, pages 1–7, Sept 2016. doi: 10.1109/OCEANS.2016.7761494
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Part I

Hardware Sensor
Synchronization
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2
SyncBoard - A High-Accuracy Sensor Timing

Board for UAV Payloads

This chapter is based on S. M. Albrektsen and T. A. Johansen. Sync-
Board - a high accuracy sensor timing board for UAV payloads. In 2017
International Conference on Unmanned Aircraft Systems (ICUAS), pages
1706–1715, Miami, Florida, USA, June 13–16 2017. doi: 10.1109/ICUAS.
2017.7991410

2.1 Introduction

The SyncBoard is a configurable, small form factor, microprocessor-based
synchronization board that aims to provide a user-friendly way to read
from a variety of sensors, while assigning highly accurate timestamps to
each sensor message. To achieve accurate sensor message timestamping,
the SyncBoard uses a microprocessor with Interrupt/Input Capture (IC)
capabilities to detect and capture Time Of Validity (TOV) triggers from
sensors, and assigns the captured 32-bit timer data to each sensor data
package. To be compatible with a large variety of unmanned aerial system
(UAS) applications with different sensor packages, the SyncBoard supports
several different protocols, namely UART, RS-232, RS-422, SPI, and CAN
protocols, and can easily be reconfigured by the end user to efficiently read
from the sensors. To make the SyncBoard accessible for users, both sensor
data transfer and configuration is primarily done through a Universal Serial
Bus (USB) 2.0 interface.

High accuracy timing of data is needed in many navigation applications,
as an unknown timing delay can greatly decrease the accuracy of estima-

19
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Figure 2.1: The top side of the Syncboard v2.2

tion filters, as described in [49, p.114]: "When Kalman filter measurements
compare the outputs of two different navigation systems, it is important to
ensure that those outputs correspond to the same time of validity. Oth-
erwise, differences in the navigation system outputs due to the time lag
between them will be falsely attributed by the Kalman filter to the states,
corrupting the estimates of those states. The greater the level of dynamics
encountered, the larger the impact of a given time-synchronization error
will be."

Similarly, [122] concludes: "A large time synchronization error between
the sampling instants of the GPS receiver and the IMU sensor in a GPS-
aided INS has been observed to seriously degrade the performance of the
system."

To address the synchronization problem, multiple hardware solutions for
sensor timing have been developed. In [78] a time synchronization system
that synchronizes analog input with GPS data using a laptop and an analog
to digital converter was developed. Per the experiments done by [113] the
velocity errors rise linearly with time delays, while the root mean square
(RMS) error of the position errors did not change greatly due to the direct
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access to a positional measurement. Several other publications are using
specialized hardware solutions for synchronizing Inertial Measurement Unit
(IMU) and Global Navigation Satellite System (GNSS) data [31, 27, 28,
121, 79, 108].

Several systems for triggering imaging systems synchronized with GNSS
clock signals have also been developed. Due to its usage in stereo vision,
Light Detection And Ranging (LIDAR) 3D mapping and for photogramme-
try, an unmanned system that can capture images or point clouds with a
highly accurate attitude and camera position is very valuable. In [112], the
dedicated hardware synchronizes two cameras and an IMU to obtain depth
images from the stereo camera and ego-motion using a Gumstix Overo.
[64] uses a "parallel hardware device called SyncBox" to synchronize cam-
era and GPS data with an accuracy of 5 us, however, the SyncBox is not
further described in the article. In [45] a GlobalSat DG 100 GPS logger is
used to trigger a camera and synchronize the images with GPS position for
photogrammetry.

This chapter presents a hardware synchronization board that in addition
to providing highly accurate timestamps of sensor messages time of validity,
focuses on re-usability and user friendliness. The current state of the art in
hardware synchronization is to have a specialized board for synchronizing
a specific, limited set of sensors, typically three or less, that needs major
rework if a sensor is changed. Experiences from our unmanned vehicles
laboratory show that sensors needed for each application vary, along with
the available space and weight of the payload. In addition, sensors are re-
placed as new models with better specifications become available. Because
of the frequent change of sensors, the SyncBoard is designed to be easily
configurable to the different protocols, data formats and data rates that
the sensors use. With high reconfigurability, a small and light form factor,
external sensor triggering, and support for simultaneous recording of up to
8 accurately timed high-rate sensors, the SyncBoard surpasses both com-
mercially available alternatives and the state of the art in hardware sensor
timing boards for UAVs.

In this chapter we will first present an overview of the SyncBoard system,
with timing specifications, hardware capabilities, output specifications and
performance evaluation from a lab environment. Section 2.3 then discusses
experiments and publications where the SyncBoard was used on different
platforms and with different sensor packages. Finally, the chapter is sum-
marized and concluded in Section 2.4.
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2.2 System overview

When using a USB to RS-232 or RS-422 device to read from a sensor, on a
standard computer with a non-real-time operating system, there are several
steps that can introduce a delay from the time of validity to the message is
available to the user.

1. There might be a delay from when the sensor reading is valid until
the first bit of the data is transferred.

2. A delay is introduced due to the finite transfer speed of the data from
the sensor to the USB device.

3. Instead of sending one byte at the time, the USB device might read
several bytes at once, then send them all in one USB package.

4. Typically, USB communication is initialized by the host which polls
the connected devices to check if the device wants to send data. This
might introduce a delay when waiting for the host to poll the USB
device for new data.

5. The data needs to be transferred from the USB device to the host.
Data transferred over USB is sent in a package structure, which adds
slightly to the overall transfer time.

6. The driver on the user computer might buffer transferred data instead
of transmitting one byte as soon as it has been transferred.

7. The software that reads the data from the sensor might need time to
become ready to process the received sensor message.

8. The current timestamp is read from the system when the software has
received the data.

When using a microcontroller instead of a standard computer, and a
sensor with a Time of Validity (TOV) trigger, most of the steps above are
eliminated, and the data has a timestamp after the following steps:

1. The sensor outputs a TOV signal at the instant the measurement is
registered by the sensor.

2. On the next clock cycle, the microcontroller registers the transition
on one of the Interrupt Capture (IC) pins which registers the current
value of an internal timer.
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This second method of timing sensor messages clearly gives a much more
precise and accurate timestamp; however, it requires additional hardware in
the form of a microcontroller, and designing functional, efficient, and small
systems with microcontrollers both requires expertise and is time consum-
ing.

Although companies such as Arduino[12] aim to make microcontrollers
more accessible through their inexpensive, easy-to-use, open source plat-
form, knowledge about programming both microcontrollers and real-time
systems is needed to implement a platform that reads data and provides
accurate timestamps to sensor messages. In addition, when combining data
from several sensors it is very convenient to collect as much of the timing
data as possible on one board. During our flights, we often wanted to collect
data from a large variety of sensors: a GNSS receiver, IMUs from different
manufacturers, a laser altimeter, a magnetometer, a camera, and the au-
topilot. If all these sensors were to be attached to an Arduino, there would
not be enough Interrupt/Input Capture (IC) ports for each sensor to have
its own dedicated IC.

It is often important that the end-users can easily switch between differ-
ent sensors. Different applications require different sets of equipment, and a
timing board needs to be easily configurable to adapt to the projects’ needs.
This emphasizes the need for easy reconfigurability, as we want users with-
out experience in hardware development to be able to use the SyncBoard
efficiently and to interface sensors as needed.

To fit in a wide range of UAV payloads, the SyncBoard has been designed
with a small form factor of 87 mm by 63 mm, with a height of 13 mm. It
has four mounting holes, one in each corner, and a weight of 31 g. The
SyncBoard’s power consumption is measured to be 0.22 A at 5.0 V, but the
power consumption may increase as external sensors are powered through
the SyncBoard.

2.2.1 System clocks

On an unmanned vehicle system, there are typically several clocks that
needs to be synchronized. If we have a UAV with the following system: an
autopilot with a GPS receiver and a magnetometer, an on-board computer
with a connected camera, and a SyncBoard with a GPS receiver and tactical
grade IMUs, there are four different clocks that need to be synchronized.
An overview of this system can be seen in Figure 2.2. The first clock is the
internal clock from the autopilot, which is typically given in milliseconds
from the autopilot was powered on. The second clock is the "real-time"
clock (RTC) on the on-board computer, which typically uses a 32.768 kHz
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crystal to keep the time in seconds since midnight January 1st, 1970. The
third clock signal is the timer on the SyncBoard which is an unsigned 32-bit
timer that counts from 0 to 232, then overflows and starts counting from 0
again. The last clock is the calculated GPS time from the GPS receivers,
which is regarded as the most accurate clock, because it based on the atomic
clocks on the GPS satellites.

SyncBoard

GPS 
Receiver

IMU

On-board 
computer

Autopilot

GPS 
Receiver

Magnetometer

Camera

GPS Satellites

Figure 2.2: System clock overview. The solid lines mark wired connections, the
dashed lines mark wireless signals and the dotted lines mark optional connections.

To be able to relate the messages in one timeframe to messages in another
timeframe, single messages with timestamps two or more different sources
are used. The GPS clock and the SyncBoard are accurately synchronized
through the timestamped TOV pulse from the GPS receiver (PPS - pulse
per second) and the incoming sensor message containing the GPS timing
solution. These messages contain both the SyncBoard clock and the GPS
time at the time of recording, and consequently give a simultaneous sample
of both clocks, which is used for synchronizing timeframes. The autopilot
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also receives, timestamps and logs messages containing the GPS time, but
with a timestamp from the autopilot’s clock. Because of this the messages
logged by the autopilot, in the autopilot’s timeframe can be related in time
to the messages logged by the SyncBoard in the SyncBoard’s timeframe
through the highly accurate GPS clock. An alternative solution for this
synchronization would be to have the autopilot output data directly to the
SyncBoard.

If the on-board computer has a GPIO (General Purpose Input/Output)
pin which can be accurately triggered, this can be used as a synchronization
trigger that is sent to the SyncBoard as a TOV signal at one of the input
ports. If no such pin is available, accurately relating the measurements in
the on-board computer’s timeframe with measurements in the SyncBoard’s
timeframe is more challenging, due to the varying delay of the USB protocol.
This may not be needed in many applications, but a specialized routine can
nevertheless be executed on the SyncBoard to measure the round-trip time
USB messages, which timestamps the message as it is sent from the on-
board computer (toc,1), then when it is received by the SyncBoard (tsb,1),
before it is sent by the SyncBoard (tsb,2) and then when it is received by the
on-board computer (toc,2). By assuming that the transfer and receive time
of the USB is the same, and defining ptimer to be the period of each clock
tick of the timer (1 / 100 MHz = 10 ns), the time delay in one direction can
be estimated to be:

∆t = (toc,2 − toc,1)− (tsb,2 − tsb,1)ptimer
2

As the clocks of the SyncBoard and the on-board computer will drift
independently, this synchronization routine should be performed at regular
intervals if data is logged directly on the SyncBoard. However, as this time-
delay is only an estimation, either the SyncBoard’s TOV or external trigger
features should be used in applications that require highly accurate time
measurements. To ensure correct timing in the example above, the camera
connected to the on-board computer can either send TOV pulses to one of
the input ports of the SyncBoard, or the SyncBoard can be configured to
trigger the camera with an output-pulse at specified intervals.

Both internally on the microcontroller and in the output sensor pack-
age format presented in section 2.2.3, the TOV value is stored as a 32-bit
unsigned integer value. This data type is chosen because it is the highest
timer value that can be configured by the microcontroller. With a 32-bit
unsigned timer running at 100 MHz the system can run for approximately
42.95 s before overflowing.
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To handle timer overflow, the on-board computer should timestamp
the sensor-messages as they are received. As sensor data is continuously
transferred from the SyncBoard to the on-board computer, the number of
overflows of the TOV timer can easily be calculated if the messages are
timestamped by the by the on-board computer in its time-frame. Thereby
accurate timing of the package can be easily calculated by multiplying the
number of overflows with 232ptimer.

2.2.2 Connectors

Table 2.1: Overview of the main SyncBoard connectors

Sensor ID Protocol Power Connector IC OC
Sensor 1 RS-232 5 V 8-pin X
Sensor 2 RS-232 5 V 6-pin X
Sensor 3 RS-232 5 V 6-pin X
Sensor 4 RS-422 5 V 8-pin X X
Sensor 5 TTL UART 5 V 6-pin X
Sensor 6 RS-232 / RS-422 5 V 8-pin X
Sensor 7 SPI 3.3 V 8-pin X X
Sensor 8 SPI 3.3 V 8-pin X
Sensor 9 CAN 2-pin
Sensor 10 Analog input 2-pin

To support a variety of current and future devices, the SyncBoard pro-
vides several input ports with different protocols. The microcontroller used
on the SyncBoard, the Microchip PIC32MZ2048EFH, has 6 UART (Uni-
versal asynchronous receiver/transmitter) connections and all of these are
connected to output ports on the SyncBoard. One UART port is available
at transistor-transistor logic (TTL) voltage level only, three are available
with a 1 Mbps RS-232 protocol through MAX3225EAP microchips, one is
available with a 20 Mbps RS-422 protocol through a pair of MAX3362EKA
microchips, and the last port can switch between a hardware flow controlled
RS-232 port and a receive-only RS-422 port. Two of the RS-232 ports have
support for hardware flow control using two additional wires; namely Re-
quest To Send (RTS) and Clear To Send (CTS). There are also two SPI
(Serial Peripheral Interface) ports that can be used for sensors, with a max-
imum speed of 50 MHz, one Controller Area Network (CAN bus) port and
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one analog input. In addition, most pins can be used as simple digital inputs
or outputs. Table 2.1 lists a quick overview of the communication ports on
the SyncBoard.

To provide power and timing capabilities, the TTL UART ports and
non-hardware flow controlled RS-232 ports have 6-pin connectors on the
SyncBoard, while the hardware flow controlled RS-232 ports, the RS-422
ports and the SPI ports have 8-pin connectors. The extra pins on each
port consist of ground, power and dedicated Interrupt/Input Capture (IC)
pins. The power pins are controlled by the microcontroller through 2.4 A
Vishay SIP32402ADNP load switches, with 3.3 V for the SPI devices and
5 V for the others. By allowing the microcontroller to individually control
the power for each of the connected sensors, a sensor can be automatically
be restarted if a persisting fault is detected, without restarting the entire
system. The interrupt capture pins are specialized interrupt pins that, in
addition to triggering an interrupt in the microcontroller, also capture the
value of a 32-bit timer at the same time as the edge of the interrupt is
detected. This provides the highly accurate timing information which is the
most important feature of the SyncBoard.

The board also supports accurate timing of signals by sending a trigger
signal to a port with an empty package. This is useful for example when
recording camera images which are too large to be read directly through
the SyncBoard. When using this type of sensor package timing, correlating
timestamps on the SyncBoard with the correct sensor packages is challeng-
ing, especially if the frame rate of the camera is high. One might solve
this problem by making sure that the camera starts capturing images after
the SyncBoard is recording, and then counting the images, assigning the
first image to the first trigger of the SyncBoard. Synchronization issues
can occur if an image is captured by the camera, and thus triggering the
SyncBoard, but then the image is not transferred correctly. As images typ-
ically are not retransferred, as there usually is not enough throughput to
both allow the retransfer of the dropped images and still send the incoming
images, the frames are dropped. When a frame is dropped, the n-th im-
age might therefore be assigned the (n-1)-th timestamp. This issue can be
solved by choosing a camera that has an internal counter of the captured
camera images and that sends this information along with every camera
frame, or make sure that the frame rate is low enough that the timestamps
uniquely match to a SyncBoard trigger.

In addition to the Interrupt Capture, one of the RS-422 ports and one of
the SPI ports have an Output Compare port, which can be used to trigger
sensors externally. This can for example be used to synchronize two different
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IMUs with an interpolated signal from the GNSS receiver’s GPS time-pulse
(PPS), to compare their performance. There is one more output compare
connector which is intended to be used for triggering a camera to synchronize
images with GPS locations. This signal goes through a Microchip TC1240A
charge-pump voltage doubler to increase the signal voltage as some cameras,
such as the IDS GigE uEye UI-5250CP, require a minimum of 5 V to register
an input trigger signal.

The analog input port and the CAN port do not have interrupt capture
pins by default, but one of the other ports’ IC pin can be used if needed.
The input of the analog pin on the microcontroller has a range from 0 V
to 3.3 V. To scale the input signal down to a maximum of 3.3 V a voltage
divider is provided on the board. By default, the resistors in the voltage
divider are 1.0 kΩ and 4.7 kΩ, giving a scaling factor of 1000

1000+4700 ≈ 17.5%.
The CAN bus runs at up to 1 Mbps with full CAN 2.0B compliance [94, p.
485].

When connecting to the SyncBoard using a USB port, the SyncBoard
can draw power from it as well, but due to the 0.5 A current restriction
of the USB 2.0 standard, the port might not provide enough power for all
connected sensors. If a higher current is required, additional power can be
provided through a connector on the board. The 5 V input, regardless if
the source is from the USB port or the external connector, has a 5 A fuse
to protect both the components on the SyncBoard itself and the connected
sensors that are powered from the SyncBoard.

2.2.3 SyncBoard sensor output

To make the SyncBoard available for most on-board computers on UAVs,
sensor data is transferred through a USB 2.0 port by default, but one of the
sensor ports can be used as a data-output port if needed. To guarantee the
integrity of the sensor packages and that the proper timing data is sent, the
SyncBoard wraps each sensor message in its own package format.

In Figure 2.3 the package format that the SyncBoard uses when send-
ing sensor data to the on-board computer can be read. Sync is a set of
synchronization bytes and should always be 0x425E. Length is the number
of bytes in DATA + 14 bytes. The 14 extra bytes are the package header
bytes (bytes number 4 through 15), plus an additional 2 for the package
checksum, which are excluded from the sensor message length as they are
always included in the message. The sync bytes and the length itself are
excluded from the package length to make it easier to read the remainder
of the package on the on-board computer. The ID field is the sensor ID
that sent the data, which is required to differentiate between sensors when
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having several of the same sensor connected, or sensors with a similar pack-
age structure. Res. is a reserved byte which is currently set to 0. CHK_H
is a two-byte header checksum, the Fletcher-8 checksum [35], calculated as
described in Listing 2.1. The Time of Validity (TOV ) is the time when the
last IC was triggered. If TOV-triggering is not supported by the sensor,
the TOV field can be set to the Time of Transport (TOT), which is the
time when the first byte of the message was transferred. The Time of Ar-
rival (TOA) is the time when the sensor message has finished transferring
to the SyncBoard and marks the earliest time the package can be parsed
and used in an online application, such as a state estimator or filter. The
CHK_PKG field is a checksum calculated for the data after the CHK_H
field in the package, using the same method as for CHK_H, to the integrity
of the remaining data. The 0-bytes at the end of the package is a padding
to ensure that the package aligns with a full 4-bytes to minimize the work
for the microcontroller when sending data using USB. When using Direct
Memory Access (DMA) the PIC32MZ requires the source data buffer to be
aligned to a 4-byte offset, if not it will round the start byte down to the
closest 4-byte offset. During some experiments, an additional TOT field
was added after the TOV field, to measure the difference of these timings.
Three different methods for buffering sensor messages are described below.

Listing 2.1: Checksum calculation

uint16_t get_checksum (char *data , size_t datalen ) {
// A and B are 8-bit numbers that will overflow
// such that 255 + 1 = 0
uint8_t A = 0;
uint8_t B = 0;

for ( size_t ix =0; ix < datalen ; ix ++) {
A += data[ix];
B += A;

}

// Combine A and B to one 16- bit number
return (A << 8) & B;

}

1The zero bytes are the zero to three extra padding zeros required by the queueing
method in section 2.2.4
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0 1 2 3 4 5 6 7

Sync Length ID Res. CHK_H
Time of Validity (TOV) Time of Arrival (TOA)

DATA
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

CHK_PKG 01

Figure 2.3: Output sensor package format as sent from the SyncBoard.

2.2.4 Sensor message queueing

When transferring data packages of different sizes and rates, such as when
using a GNSS receiver with raw satellite readings at 10 Hz and a high frame
rate IMU at 2000 Hz, an efficient queueing method is needed to correctly
transfer all the messages. To ensure that the transferred data is properly
aligned after each sensor package, each package is padded with 0-bytes so
that each package is divisible by 4. By doing this, the SyncBoard can
send each queued package through the DMA-enabled USB protocol of the
microcontroller, and thereby the time spent when scheduling USB-writes
is low. Low USB-write schedule delays are critical as this code might be
executed while in an interrupt routine, and the time spent while inside of
an interrupt routine should be minimized. Pseudo code for this queueing
method is given in Listing 2.2. Note that code for handling queue over-
/underflow and interrupts are removed from this listing to better show the
queueing strategy. By containing the scheduled data in a single array, the
differently sized packages are packed on top of each other, minimizing the
amount of allocated space needed for package queueing.

Listing 2.2: Sensor message queueing

char[ QUEUE_SIZE ] queue;
uint16_t back_ix ;
uint16_t front_ix ;
uint16_t queue_size ;

usb_queue_package (char *data , uint16_t datalen ) {
uint8_t extra = 4 - ( datalen % 4);
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uint16_t fixed_len = datalen + extra;
memcpy (data , &queue[ front_ix ], fixed_len );
front_ix = ( front_ix + fixed_len ) % QUEUE_SIZE ;
queued_size += fixed_len ;

// Schedule write if one is not already scheduled
if(! write_scheduled )

usb_schedule_write ();
}

usb_schedule_write () {
// Calculate how much data we can write
// without exceeding the buffer sizes
uint16_t to_write ;
to_write = min( QUEUE_SIZE - back_ix , queue_size );
to_write = max(to_write , USB_SEND_MAX );

// Schedule the write
pic32_write_data (& queue[ back_ix ], to_write );

}

usb_write_finished ( uint16_t bytes_written ) {
queue_size -= bytes_written ;
back_ix = ( back_ix + bytes_written ) % QUEUE_SIZE ;

// Stop if there is no more data to write
if( queue_size == 0) {

write_scheduled = false ;
return ;

}

usb_schedule_write ();
}

2.2.5 SyncBoard configuration and status

Although the main usage of the SyncBoard’s USB port is to transfer sen-
sor data from the SyncBoard to an on-board computer, configuration of
the SyncBoard and status messages from the SyncBoard can also be read
through the USB connection. Configuration of the SyncBoard can either be
done by connecting to the board using a serial port communications pro-
gram, such as minicom[95] or GNU Screen[42], or by using a Graphical User
Interface (GUI) program written in the PythonTM programming language
specifically created for this purpose on an external desktop computer.

When connecting through the command line interface status information
and debug messages can be shown. Commands that have been implemented
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at this time are: showing the current rate at which messages are received;
showing the last received message from a sensor; showing the value of the
main timer; and turning the power to a sensor on and off. Periodic reporting
of the rate of sensor messages can also be turned on, so that the rate of each
sensor is printed every second. These debugging tools have shown to be very
useful, especially when setting up the configuration to a new sensor for the
first time.

As the SyncBoard endpoints are configured as USB communications
device class (CDC) type endpoints, many Linux distributions ("distros")
such as Debian and Ubuntu have drivers automatically installed by the ker-
nel. Using these drivers, the SyncBoard typically shows up as either a /de-
v/ttyAMC or a /dev/ttyUSB device, with a number appended. The number
that is appended depends on how many other tty-devices are already in the
system which makes it difficult to differentiate which device is the Sync-
Board. To easily find the SyncBoard, an udev-rule[137] is written to match
the USB specified idVendor and idProduct of the SyncBoard, with the extra
parameter SYMLINK+="ttySyncboard%E{ID_USB_INTERFACE_NUM}". This tells udev
to create two symbolic links to the SyncBoard, /dev/ttySyncboard00 and
/dev/ttySyncboard02, one for each of the USB endpoints. The configura-
tion endpoint is called Syncboard02, opposed to Syncboard01, due to a bulk
transfer endpoint defined by the CDC class configuration on the endpoint
with ID 1.

To quickly show the current status of the board without the use of an
external computer, a set of Light Emitting Diodes (LEDs) are placed on the
board. These are very convenient as a last-minute check that the system is
running as expected, for example before launching a UAV. There are two
green LEDs, four yellow LEDs and two red LEDs. The first green LED is a
simple power present LED, which lights up if 3.3 V is present on the board.
This is useful to show if a fuse has blown, or if there is something else wrong
with the power supply. The second green light is linked to the main timing
loop of the SyncBoard and blinks at a rate of 2 Hz. The yellow LEDs are
tied to the sensors and they light up if there are errors in the sensor data, or
if the rates of the sensors are not within the expected limits. One of the red
LEDs light up if there are repeated errors in the reading of sensor messages
or the USB transfer buffer is full, and the last red LED is lit if the USB
connection is missing or faulty.

To enable configuration of the device without rewriting the microcon-
troller’s internal flash, by a non-volatile ferroelectric RAM (F-RAM) circuit
on the PCB. The device can now be reconfigured without the use of an
external programmer to easily switch between different sensors and data
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rates.
To reconfigure the SyncBoard, a user connects using the same physical

connection that the sensor data is read from, but through a different USB
endpoint. Here the user can change baud rates, protocol line control, syn-
chronization bytes, interrupt capture set-ups, SPI polling data, and external
triggering signals for cameras or IMUs. A transition diagram showing the
possible states of the SyncBoard, and how the configuration file is loaded,
can be seen in Figure 2.4.

2.2.6 Performance

To test that the SyncBoard is able to handle the large data rates provided
by the sensors, it was set to simultaneously record data from two high-rate
IMUs and one GNSS receiver. The IMUs used were the Sensonor STIM300
and the Analog Devices ADIS16488A, with relatively short messages, and
the GNSS receiver was the u-blox LEA M8T, with a lower frame rate, but
longer messages. Almost 11 million sensor messages were recorded during
this test, and the difference in TOV between each message from each sensor
was calculated. Table 2.2 lists the expected and recorded number of clock
ticks between each sensor message and Table 2.3 lists the requested and the
calculated recorded sensor rates. According to the ADIS16488A datasheet
[9, p.31], the timing jitter on the TOV signal for that sensor is 1.4 µs, and
the measurements of the ADIS done by the SyncBoard are well within the
specified values, with an average difference of 0.157 µs from the expected
value.

Table 2.2: Mean number of clock ticks from a 1-hour recording. All units are in
internal clock ticks at 100 MHz, that is 10 ns

Sensor Expected Recorded Std.dev.
ADIS16488A 40 650 40 634.276 79.778
STIM300 200 000 200 002.148 148.766
LEA-M8T 10 000 000 10 000 009.737 13.983

Table 2.3: Calculated rates from 1-hour recording

Sensor Requested rate Recorded rate Difference [%]
ADIS16488A 2460 Hz 2460.974 Hz −0.039 59 %
STIM300 500 Hz 499.995 Hz 0.001 05 %
LEA-M8T 10 Hz 10.000 Hz −0.000 02 %
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Figure 2.4: SyncBoard transition diagram
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2.3 Experimental results

The SyncBoard has already been used in several successful experiments,
with different sensor configurations and on different vehicles, since the first
version of the SyncBoard was ready in late 2014. This section presents
an overview of these results and the SyncBoard’s role in the publications.
Several yet unpublished experiments as of February 2017 are described at
the end of the section.

Several of the experiments were done using a sensor structure as shown in
Figure 2.5. A TOV-recorded GNSS receiver (u-blox LEA 6T or LEA M8T),
and one or more TOV-recorded IMUs (Sensonor STIM300 and Analog De-
vices ADIS16488A) are present in most configurations. Additional sensors
such as the Honeywell HMR2300 magnetometer, Latitude Engineering AGL
laser altimeter, the Aeroprobe air-data probe, a connection to the vehicles
autopilot (such as Could Cap’s Piccolo II or the PIXHAWK), in addition to
a Gigabit Ethernet camera which is triggered by the SyncBoard are added
as needed. These are logged to an on-board computer, such as a Intel NUC
or a Hardkernel ODROID XU4, and the data is stored either on an embed-
ded MultiMediaCard (eMMC) or, if more storage space is needed, on a solid
state drive (SSD). With the connection to the autopilot, extra sensor data
and information about operational parameters such as current way-points,
mode of operation and engine control signals can be logged.

In [39] the author uses a Sensonor STIM300 with gyroscope, accelerom-
eter, and inclinometer output recorded at 300 Hz, a u-blox LEA-6T GNSS
receiver recorded at 10 Hz with a pulse-per-second signal recorded at 1 Hz,
along with an IDS GigE uEye UI-5250CP color camera with an 8 mm lens.
The IMU and the GNSS receiver are recorded through the SyncBoard, and
the camera is triggered by the SyncBoard, to guarantee that the images are
synchronized with the GNSS receiver’s measurements. The measurements
were carried out using a Penguin B fixed wing UAV platform at Eggemoen
Aviation and Technology Park. These measurements allowed Fusini et al.
to confirm the validity of the analysis and the design of a uniformly semi-
globally exponentially stable (USGES) non-linear observer for estimation of
attitude, gyro bias, position, velocity and acceleration for a fixed-wing UAV.
Experimental verification of a continuous epipolar optical flow (CEOF) non-
linear observer was performed in [62] using the same sensor kit and the same
UAV.

Furthermore, in [40] the same IMU, GNSS receiver and camera were
used, but in this experiment a Honeywell HMR2300 magnetometer, running
at 1 Hz and a Latitude Engineering’s Above Ground Level Sensor running
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Figure 2.5: SyncBoard payload configuration with simultaneous recording from a
GNSS receiver, two IMUs, a magnetometer, a laser altimeter, an air sensor probe,
and the autopilot. The Camera is triggered to be synchronized with GNSS mea-
surements, but the images are read through the on-board computer. SSD storage
is needed due to the size of the camera images. This configuration was primarily
flown in a UAV Factory Penguin-B fixed wing UAV platform.
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Figure 2.6: SyncBoard payload configuration with an Aeroprobe, a set of pressure
sensors, a pair of accelerometers connected to the wing tips of the plane, an IMU
in addition to the Navigation Stack (Figure 2.7). This sensor setup was flown in a
Skywalker X8.
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at 1 Hz were added. In this paper the authors proved global exponential
stability (GES) of their proposed observer and verified it experimentally
using data captured with the SyncBoard.

In [68] the authors have developed an observer that estimates wind ve-
locity, Angle-Of-Attack (AOA) and Sideslip Angle (SSA) of a UAV, only
using the kinematic relationships, thus bypassing the need for an aerody-
namic model of the aircraft. A u-blox LEA-6T at 5 Hz with a base station
for RTK post processing, an ADIS16488 IMU at 410 Hz and a Piccolo au-
topilot with 1 Hz measurements of air speed data were logged through the
SyncBoard. Using the experimental data collected through the SyncBoard,
the authors conclude that "the estimates appears to have slightly stronger
correlations for AOA and significantly better correlations for SSA than the
ones achieved by the Piccolo sensor suite."

In [51] the author uses a similar setup, with a u-blox LEA-6T GNSS-
receiver at 5 Hz, an ADIS16488 IMU at 410 Hz in a Penguin B. In this paper
the effect of time delay of signals in observers and methods for handling such
delays are discussed and experimentally verified. This sensor setup has also
been used in [69] and [19].

The SyncBoard is not only usable in UAVs, in [52] it is used in a manned
aircraft to verify "a method for handling time-delayed GNSS measurement in
a loosely-coupled strapdown GNSS/INS system." In an unpublished exper-
iment the SyncBoard was also used to collect data on board an unmanned
surface vehicle (USV), namely the Maritime Robotics’ (MR) Telemetron.

A collaborative experiment between the Norwegian University of Sci-
ence and Technology (NTNU), Kongsberg Seatex, Underwater Systems and
Technology Laboratory (LSTS), and Maritime Robotics (MR) was done in
April 2016 where the SyncBoard was used on board the Skywalker X8 fixed
wing UAV to log STIM300 IMU and u-blox LEA-M8T data[82]. A simi-
lar experiment was carried out with NTNU, LSTS, KTH Royal Institute of
Technology and MR in November 2016, where in addition to logging data,
live camera images were streamed from the UAV to both the UAV command
center and to the MR Telemetron [100].

There have also been several experiments, unpublished as of February
2017, where a phased array radio antenna system has been added, in ad-
dition to a GNSS receiver and a STIM300, on a Skywalker X8 fixed wing
UAV. From these experiments we are expected to extract valuable insight
in position estimation using phased array antenna systems, and data for
observer verification.

From the autumn of 2016 through the winter of 2017 experiments using
the high accuracy air-data probe from Aeroprobe have been conducted. The
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results from these experiments are yet to be published, but the aim is to
verify several novel methods for estimation of wind velocity, angle-of-attack
and lift coefficients. For these data sets additional special sensors are added
and logged directly to the on-board computer, as shown in Figure 2.6.

Figure 2.7: The Navigation Stack consists of a u-blox LEA M8T GNSS receiver,
a STIM300 IMU, the SyncBoard, and an ODROID XU4 on-board computer with
eMMC storage. This stack provides a complete plug-and-play navigation logging
solution with a tactical grade IMU, the orange block at the bottom, and a GNSS
receiver with RTK capabilities on the top.

The above experiments and publications show that the SyncBoard is an
important tool to help when reading time-critical data from a variety of
sensors. The adaptability of the board has been shown through its usage
with various sensors that use different protocols, sampling rates and sensor
data sizes. When handling very large data sizes, such as camera images, the
SyncBoard has successfully been used as a synchronization trigger to allow
georeferencing of the images. The applicability of the SyncBoard has been
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Figure 2.8: The SyncBoard on the Navigation Stack mounted in a Skywalker X8
fixed wing UAV

Figure 2.9: A closer view of the mounted Navigation Stack
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shown through its usage in collecting data on different vehicles: on UAVs
such as the Penguin B and the Skywalker X8, and USVs such as the MR
Telemetron, in addition to a GA Slingsby T67C manned aircraft.

2.4 Conclusion
In this chapter the highly accurate, reconfigurable timing and synchroniza-
tion board, the SyncBoard, has been described, and its role in several re-
search projects have been introduced. A variety of sensors using different
protocols have been successfully interfaced and used in multiple experi-
ments. As the SyncBoard can also be used to accurately trigger a camera
to synchronize it with GNSS time and position in order to georeference the
images which is an essential part of enabling UAVs to perform accurate
photogrammetry and 3D imaging.

To test that the SyncBoard can precisely log from high performance sen-
sors, controlled experiments were performed in the laboratory where both
high frame rate sensors with smaller data packages, and lower frame rate
sensors with longer data packages were recorded simultaneously. The Sync-
Board was able to precisely log the data well within the accuracy needed
for most high-speed UAV applications.

The SyncBoard presented in this chapter has proven to be a useful in a
variety of UAV sensor systems, and has already shown its use multiple exper-
iments, which is verified by several publications until now and more planned
publications in the near future. As accurate timing of sensor messages is an
important feature needed for precise position and attitude estimation sys-
tems, the SyncBoard is a tool that highly simplifies the process of acquiring
high-quality sensor data for navigation solutions.
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3
User-Configurable Timing and Navigation for UAVs

The work in this chapter is based on Sigurd M. Albrektsen and Tor Arne
Johansen. User-configurable timing and navigation for UAVs. Sensors,
18(8):2468, 2018. ISSN 1424-8220. doi: 10.3390/s18082468. URL http:
//www.mdpi.com/1424-8220/18/8/2468

3.1 Introduction
Reconfigurable sensor timing hardware, that accurately records the TOV of
the data, is an integral part of a highly accurate and maintainable multi-
sensor navigation and image acquisition solution. TOV is often named pulse
per second (PPS) in the setting of timing systems and might be different
from when it is transmitted. This especially is the case when there are large
delays from the TOV to the package is transmitted from the sensor, which
typically is the case for global navigation satellite system (GNSS) receivers,
which need to analyze the incoming data and calculate a solution before
transmitting it[52]. As many sensors, such as inertial measurement units
(IMUs), measure derivatives of the desired values (acceleration, angular
rate) and not the desired values (position, velocity, attitude) directly, an
accurate measure of the measurement’s TOV is essential when integrating
with positioning reference and image capture systems operating at high
frame rates. Moreover, the high speed and fast attitude dynamics of UAVs
means that time synchronization errors may have a significant impact on the
measurement quality, as the measurement quality does not only depend on
the value, but also the temporal accuracy of the measurement’s timestamp.
Thus, hardware synchronization is required to provide the highest quality
measurements possible. An implementation of such a system is depicted
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in Figure 3.1. A visualization of errors due to a time delay can be seen in
Figure 3.2, where a simulated system with perfect INS and GNSS sensors
are integrated with and without a time delay. A very simple sensor fusion
algorithm is implemented, where the position estimate is set to the GNSS
value when it is received.

(a) The SenTiBoard including removable
adapter legs.

(b) The SenTiStack in the smaller
configuration.

(c) Example of mounting in a Skywalker X8 UAV

Figure 3.1: The implemented sensor timing board (SenTiBoard) in various config-
urations. In 3.1(a) the full-sized SenTiBoard with legs for attaching to an ODroid
XU4 is shown; in 3.1(b) the SenTiStack is shown in a small configuration, without
an onboard computer; and in 3.1(c) the configuration in 3.1(b) is shown mounted
in a fixed wing UAV.

Developing embedded systems, especially systems without an OS, is dif-
ferent from writing software for modern desktop computers. Limitations on
processing power, threading/interrupt behavior, real-time considerations,
memory capacity, memory handling, and high requirements for stability dif-
ferentiates an embedded system’s firmware from conventional software run-
ning on a PC. This makes writing correct firmware difficult. Even when con-
sidering life-critical embedded systems such as pacemakers and implantable
cardioverter defibrillators, recalls or defect warnings over a one-year period
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(b) Delayed GNSS signal.

Figure 3.2: Comparison of a system with perfect timing 3.2(a) and a system with
imperfect timing 3.2(b). The UAV has a velocity of 20 m s−1 an uncompensated
GNSS time delay of 1 s. Note that this time delay is exaggerated to show the effect
clearly and is larger than an expected delay in an implemented navigation system.

is about one to 15 and nearly one to six, respectively[33], and such systems
are expected to be designed to be safe and extensively tested.

3.1.1 Related Work

In the current academic state of the art, several hardware timing solutions
have been used, but few have been properly described. Several publications
are using some named product with little description or references to de-
tails about the hardware and methods used. Examples of such devices are
the SyncBox[64], the ADAS[71, 16] with the RefBox[129], the integration
platform[27] and the VIASAT [115]. Solutions where the authors measure
timestamps in a single integrated system, with specific sensors, also exist.
An example is [112], where a Gumstix Overo processor running Linux with
a real-time extension is used to read data from an IMU and register hard-
ware synchronization signals from two cameras. Although all these systems
seem to provide sufficiently accurate results for their use, they seem highly
specialized for the task and there is little focus on maintainability and in-
tegration of different sensors.

Autopilots often aim to solve similar problems with hardware synchro-
nization of GNSS solutions with IMU data. Examples of autopilots are
the closed source CloudCap Piccolo, and the open hardware systems PIX-
HAWK[92] and Paparazzi[17]. The main challenge with the closed source
systems is that a very limited number of sensors can be used, and inte-
gration of unsupported sensors is virtually impossible as the source code
is not available. As an example, the Piccolo only supports two specified
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IMUs—the Crista Inertial Sensor and the Navigator GPS/INS Navigation
System[22]. Integration of sensors unsupported by the open hardware sys-
tems are possible, as the firmware is available, but this can be challenging
and requires expertise in embedded software development and alteration of
the autopilot’s firmware, which is flight safety critical and should therefore
only be altered with care.

To simplify embedded hardware development, several solutions to lower
the expertise needed for creating such systems have been created. Examples
of such microcontroller development systems (MDSs) are the open-source
Arduino electronics platform[12], the Teensy[104], and the discontinued In-
tel Edison project[65]. In addition, single-board computers such as the
Raspberry Pi (R-Pi 3 B+)[38] the ODroid XU4[53] have become popular
due to their small form factor and easy operation. Finally, there are tradi-
tional microcontrollers such as the Microchip PIC32 MZ[94]. An overview
of the hardware capabilities of a selection of these systems is presented in
Table 3.1. These systems have different strengths and weaknesses, with the
single-board computers typically having more powerful processors, but less
support for protocols channels. As described later, in Section 3.3, the num-
ber of input captures (ICs) is critical for accurate sensor timing, and thus
the two most promising approaches are the Arduino Due and developing
a system using a microcontroller. The Arduino Due is, however, lacking
when it comes to the number of U(S)ART and SPI ports, but smaller sys-
tems could be created with this system.

Table 3.1: Comparison of hardware capabilities of embedded systems.

Name Type Clock
Speed IC U(S)ART

/SPI
USB
Ver.

Arduino MEGA MDS 16 MHz 1 4/1 -
Arduino Due MDS 84 MHz 6 3/1 2.0
Teensy MDS 180 MHz 2 6/3 2.0
Intel Edison MDS 500 MHz 0 2/1 2.0

R-Pi 3 B+ Single-
board 4×1.4 GHz 0 2/1 2.0

ODroid XU4 Single-
board 4×2 GHz 0 1/1 3.0

PIC32 MZ Micro-
controller 252 MHz 9 6/6 2.0
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3.1.2 Contributions

This chapter presents a set of required and favorable features of a recon-
figurable hardware sensor timing system, that simplifies system integration
when time synchronizing sensor data, without compromising sensor accu-
racy. Suggestions for system modularization; a data frame format; and syn-
chronization, queueing, timing and configuration methods are proposed. By
using dedicated hardware features such as IC to record the TOV from sen-
sors, the temporal error is minimized. To verify the validity of the system
design, a hardware implementation, visualized in Figure 3.1, was created,
where acquired measurements are referenced to a 100 MHz clock, which re-
sults in a temporal resolution of 10 ns. To further simplify system integra-
tion a software library with utilities and a high-accuracy navigation payload
are presented. Results from lab tests and an experiment are presented and
evaluated.

This chapter starts by describing key terms related to sensor timing,
in addition to proposing required and desired features of a sensor system
integration tool in Section 3.2. Then, in Section 3.3, solutions for the chal-
lenges with sensor timing are proposed, before an implementation, named
the SenTiBoard, is presented in Section 3.4, along with supporting soft-
ware and hardware. The implemented solution is verified in two different
scenarios, before the chapter is concluded in Section 3.5.

3.2 Sensor System Timing Integration

When associating timestamps to sensor data, there are several points in
time that can be of interest. First, is the time-of-validity (TOV), which
is the time at which the measurement is considered to be valid. Second,
is the time-of-transport (TOT), which is when the first detectable part of
the sensor message is received by the receiving platform. Finally, the time-
of-arrival (TOA), which is when the full sensor message has been received,
which denotes the earliest time when another algorithm can verify the sen-
sor message’s integrity and parse and use the data. A visualization of these
timestamps are given in Figure 3.3, where there are two transmission lines,
one signaling when the data is valid, and one transferring the values mea-
sured by the sensor. In GNSS systems, the TOV is often called PPS (pulse
per second) or 1PPS. We prefer the term TOV over PPS as we find it more
descriptive, especially when framerates are different than 1 Hz. If we imag-
ine an object position detection sensor, that analyses where an object is
in an image, and then transfers this detection to a computer, these times-
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tamps could be as follows. The TOV would the time be when the image
was captured by the camera. Then the system would analyze the image
and calculate the object’s position in the image. Then this result would
be transmitted from the sensor and the TOT would be when the start of
the sensor message is received at the computer. Note that this time could
be significantly delayed, and that this delay could vary with many factors,
such as the number of visible features in the image, the available resources
on the sensor system, if other data is transferred on the same transmission
line, and when the computer is ready to receive the message. The TOA
would be when the whole data package has been transferred from the sen-
sor and received at the computer. Although the TOA is the least relevant
timestamp of the three, it is the one that is the easiest to implement, as one
could write an application that first reads a full message from a sensor, and
then assigns a timestamp to the message afterwards.

When designing a sensor timing system there are several features which
are required for correct behavior: the resolution of the timestamps needs
to be sufficiently high, the system must have enough interrupt capture pins
to record TOVs, and the system must support the protocols used by the
sensors. In addition, some sensors, such as stereo camera setups, need
to be hardware-triggered to achieve high-quality temporal accuracy and
synchronization. When using sensors that need to stitch together several
sensor readings, high-quality attitude and position estimates are essential for
a satisfactory result. An example is hyperspectral cameras, which typically
only reads a single line of data per frame. As even small errors in the
attitude, for example in a UAV’s roll angle, will result in a large error in
the measured position, especially at high altitudes, these errors must be
minimized. By using sensor timing hardware, the temporal accuracy of
each of the data lines can be significantly improved. By having navigation
sensors connected to the same system as the hyperspectral camera, the TOV
of each line from the camera can be accurately associated to the position and
attitude of the UAV at the time of capture. This allows the hyperspectral
lines to be transformed from the camera’s local coordinate frame, to a global
coordinate frame, and simplifying the process of accurately stitching the
lines together to a complete image[36].

Furthermore, the system must be able to transmit the incoming mes-
sages to a receiving platform and considerations must also be made about
the format in which the sensor data is transmitted. In addition to these
requirements, there are several preferred features that are not strictly re-
quired. Such features are user configurability, a minimum of 32-bit clock
timer, integrated storage support, individual sensor power control, inte-



3.3. Hardware Sensor Timing 49

PPS

DATA

TOV TOT TOA TOV TOT TOA

Figure 3.3: Visualization of the time-of-validity (TOV), time-of-transport (TOT)
and time-of-arrival (TOA). The PPS signal line produces a rising edge when the
measurement is valid, and the data is transferred after a delay. Note this delay
between TOV and TOT may vary, for example due to internal calculation delays.

grated sensor navigation fusion algorithms, and system status reporting.
By having a user configurable system, a system integrator can for ex-

ample upgrade a sensor to a newer model without requiring alterations of
the hardware timing system, as long as the system supports the protocol
used by the new sensor. With the rapid development in MEMS technology,
new and improved sensors are released to the consumer market continu-
ously. The effect of this can for example be seen in the Analog Device’s
ADIS product line listed in Table 3.2, where the sensors have improved sig-
nificantly over the last few years. Note that this table only considers one
type of sensor typically found in a navigation payload, from a single man-
ufacturer in a specific price range, and as sensor systems consist of several
types of sensors, alterations to the system must be made almost yearly to
stay up-to-date with the newest technology.

Table 3.2: ADIS IMU product line gyro stability comparison [11].

Part ID Release Date Gyro Stability Max Sample Rate
16485 Dec. 2012 6.25 ◦/h 2460 Hz
16488A May 2014 5.1 ◦/h 2460 Hz
16490 Apr. 2017 1.8 ◦/h 4250 Hz
16495 Nov 2017 0.8 ◦/h 4250 Hz

3.3 Hardware Sensor Timing
To achieve as accurate timing measurements as possible, a hardware sensor
timing system is typically built around a microcontroller with specialized
features for parallel registration of hardware interrupts, called input capture
(IC), also known as interrupt capture. The IC-pins act as regular interrupt
pins, except that in addition to triggering an interrupt subroutine (ISR)
when an edge is detected, which is the normal behavior of interrupt pins, the
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value of the clock timer when the edge was detected is recorded. This enables
a microcontroller to record the time when the value of an IC pin changes,
typically on the first clock cycle after the event happened, minimizing the
delay of the recorded time.

Several sensors need to be connected to the sensor timing system for it
to be able to relate the different measurement timestamps to each other.
By using the system to read the sensors’ data in addition to the TOVs, syn-
chronization is simplified as the system can associate the timestamps to the
sensor messages directly. This is, however, not always possible. Some sen-
sors, for example cameras, send too much data for a typical microcontroller
to process. Such sensors can still be synchronized with the other sensors,
either by having the timing system send a trigger pulse to the sensor, and/or
by registering a TOV signal from the sensor and then associating this trig-
ger with the sensor message at a later stage. As cameras typically have a
trigger to an external flash, which is synchronized with the image capture
process, this can typically be used as a TOV measurement.

The system proposed in this chapter is divided into several parts. First,
an overview of how the different parts of the system communicates is given,
followed by a description of the data envelope, which is used to both store
timing information and other necessary data about the sensor message.
Then, a sensor input handler is presented, which is divided into package
separation and synchronization; and timestamp association. An example of
how these methods work is also given. Then suggestions for transmission
of the received data to an external are made, along with some considera-
tions for implementations on a microprocessor. Finally, two methods for
configuring the hardware sensor timing board are presented.

3.3.1 Communication Overview

To keep a hardware sensor timing system’s code maintainable, the authors
suggest modularizing the design by creating subsystems that interact with
each other only through communication channels. This design is inspired by
occam’s[109] or Go’s[43] concept of channels. By modularizing the system
based on how it communicates, we can modify a sub-module with minimal
disruption to other sub-modules (p. 203[57]). As the microcontroller typi-
cally runs without an operative system or a scheduler/hypervisor, it is not
possible to wait for transfer channels to become ready. As the system can-
not wait for communication to become ready by both the main loop and an
ISR, an alternative scheme for communication must be implemented and
suggestions for such systems are given later in this section. During normal
operations there are two main communication channel types in the system:
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the transfer from a sensor to the microcontrollers internal buffer, and the
transfer from the internal buffer to an external computer and/or logging to
the SD-card. This system is visualized in Figure 3.4, with the Sensor Han-
dler and the Output Queue modules running onboard the microcontroller.

External Computer

Sensor 1 Sensor 2 Sensor N…

Sensor 
Timing 

Hardware
Sensor Handler

Output Queue
SD

TOV
TOV

Figure 3.4: Proposed modularization of a hardware sensor timing system, which
is modularized by communication.

3.3.2 Data Envelope

To create a unified parsing system that can relate all sensor messages to
a common clock, the sensor data must be associated with one or more
timestamps. As not all sensors provide a timestamp as a part of the sensor
message, and if a timestamp is included it is typically in the sensor’s local
clock frame, a timestamp from a clock common for all the sensors must
be associated with the data. To solve this, each sensor message can be
wrapped in an envelope format, such as the one depicted in Figure 3.5.
This format is similar to the one presented in Figure 2.3, but it includes
an envelope format revision, an optional onboard timestamp (only available
when logging to an onboard computer), and the TOT-timestamp. By having
a revision ID changes such as which timestamps the messages provide can
be distinguished. In the presented version of the envelope there are three
clock recordings: the TOV is the time-of-validity – the time when a sensor
reading was validated; often referred to as PPS (pulse-per-second) in timing
applications, the TOA is the time-of-arrival – the time when a full sensor
message has arrived at the receiver, and finally the TOT is the time-of-
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transport – the time when the first byte of a data package is received.
0 1 2 3 4 5 6 7

Sync Length ID Rev. CS_H
(External timestamp1)

TOV TOA
TOT

DATA
hhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhh

CS_PKG PAD2

Figure 3.5: A sensor data envelope. To assign timestamps to sensor message
packages, sensor data can be wrapped in this format. 1An external timestamp
can be added when the sensor data is transferred to an external computer. 2The
PAD bytes are zero to three extra padding bytes required by the queueing method
described in Section 3.3.4

3.3.3 Sensor Input Handler

There are two main methods of sensor data transfer: asynchronous transfer
initiated by the sensor, which is typical for UART and UART-like com-
munication; and polled transfer initiated by the microcontroller, which is
typical for SPI communication. To create a layer of abstraction from the
communication protocol, each byte received from a sensor can be passed
through a sensor handler function. By designing a multi-step module that
separates single sensor readings from the datastream, and registers appro-
priate timestamp information and associates that with each message, only
a single module needs to be maintained and tested regardless of where the
data was received from. Furthermore, this simplifies the configuration pro-
cess, as the same configuration interface can be used for all sensor message
types. A proposed sensor handler module is described below.

Package Separation and Synchronization

To provide support for a variety of sensors simultaneously, information
about how to synchronization with each sensor’s data stream needs to be
configured individually for each sensor. The most common methods for
synchronization of sensor data are as follows:
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1. Start synchronization bytes with fixed length;

2. Start synchronization bytes with dynamic length;

3. End synchronization bytes;

4. Zero-length packages.

The first method is typically used if a sensor sends a binary stream of
messages in a single format, for example from an IMU sending accelerations
and angular rates. In this mode, the sensor handler module does not need
to parse the length of the package from the data-stream itself as it is already
specified by the format.

The second method is typically used if a sensor outputs messages of
different lengths, for example a GNSS receiver that outputs satellite infor-
mation. These messages typically have varying length based on how many
satellites are visible at the time. To be able to use this in a binary stream,
the sensor needs to provide how many bytes a package consists of – the
message’s length (L). In this mode the sensor handler module needs infor-
mation about where in a message L is stored, how many bytes L consists of
and the endianness and signedness of L. Although a sensor message cannot
have a negative length, one can imagine a format where negative values are
used to indicate errors, and therefore the signedness must be specified. In
addition, this configuration must be able to be configured to read a specified
number of additional bytes, such as header files not included in L.

The third method is most commonly used if the sensor is configured to
send data in a human readable (ASCII) format. To avoid erroneous division
of packages, the end synchronization bytes must be a series of bytes that is
guaranteed to not be a part of a sensor message, except, of course, at the
end. When used with a human readable format, where each line of text is a
sensor reading, the newline character (\n), optionally in combination with
the carriage return (\r), can be used. An example of such formats is the
NMEA protocols for GNSS data [99].

The final method is intended for use with systems that do not send any
data to the sensor timing hardware itself, except for a single pulse. This is
the case for camera frames that are read by an external computer, but sends
a TOV message, for example from the camera’s flash output, to the sensor
timing hardware. With such sensors, synchronization is trivial: as soon as
a trigger is received a package with the recorded timestamp is transmitted
to the sensor handler.

In addition to these methods one might imagine a fifth method using a
temporal delimiter where the sensor sends a sensor measurement, followed
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by a pause, followed by a new distinct sensor measurement. The sensor
timing system could then detect the pause, either by a timeout or by com-
paring a timestamp since the previous byte was received, and separate the
measurement as needed. Note that the latter method is simpler to imple-
ment but introduces a larger delay from the message has been received until
it is transferred to an onboard computer.

When using the two first synchronization methods the system may be-
come desynchronized if an error occurs in the communication link with a
sensor. A desynchronized situation is detected if the bytes after reading all
the package data are something else than the synchronization bytes. If this
is the case, the system should raise a warning flag and skip bytes until the
synchronization bytes are received. In the third and fifth modes, the sys-
tem cannot be desynchronized, but the sensor can send an arbitrary long
package without sending the end synchronization byte sequence. If this
happens a buffer-overflow warning should be flagged, and the sensor timing
hardware can clear the already buffered package and start reading the next
sensor message. If an operator is supervising the process, the error message
can be acknowledged and cleared by him or her by sending a command to
the timing system.

Timestamp Association

Timestamp association is done in two separate places, first after the syn-
chronization bytes of the package has been read and then when the whole
package has been transferred. The timestamp from when the first byte
was received is stored as the message’s TOT, and if the sensor supports a
dedicated TOV-output, the timestamp of the last received TOV for that
sensor is associated with the sensor message. Note that the TOV might not
update for every message. For example, if a GNSS-receiver outputs satel-
lite observations for use with real-time kinematic (RTK)-GNSS at a rate
of 10 Hz, but the navigation (and thereby time) solution is only sent at a
rate of 1 Hz, the receiver might only produce a 1 Hz TOV signal (PPS). In
these scenarios, the delay from TOV to TOT can be estimated using the
messages with a time solution and compensated for by assuming that this
delay is known and constant[52].

When the last byte of the sensor message is handled, the TOA is as-
signed. This value represents the earliest possible time when an application
could start to process the sensor data. The TOA message is mostly used
for post-process analysis of the system and is not a vital part of a real-time
application.

When all the bytes of a sensor package are read, and the package has
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been assigned the timestamps, the information should be stored in a struc-
tured format. In this step, the total length of the data and the timestamps
are copied to the correct places in the sensor data envelope (Figure 3.5),
and checksums are calculated and inserted. By reserving space for these
fields in the buffer before the sensor data is collected, additional copying
due to moving the data is avoided and only the 22 bytes (8 + (3 × 4) + 2
for header, three timestamps and checksum) are written to the process. It
is, nonetheless, vital that this operation is not performed in an ISR, as the
checksum calculation must iterate the whole sensor package before finishing,
which might take more time than is acceptable to spend in an ISR.

Example Message

Imagine that we have a uBlox GNSS receiver connected to the sensor hard-
ware timing board, and that it sends a short message with two bytes (in
addition to its own headers) to the board. The binary sensor message could
look like this: [B5 62 05 01 02 00 FF FF 1E 61], in addition let’s say that
we have are not currently synchronized with the stream, and therefore we
receive some other data before the message. The full message we receive is
therefore: [aa aa B5 62 05 01 02 00 FF FF 1E 61 B5 62]. According to the
uBlox datasheet we have configured the system to look for a synchroniza-
tion id: [B5 62] and a message length in a little-endian format of two bytes,
located 4 bytes into the package, with 8 bytes in addition to the length we
read due to the uBlox header and the checksum. This would correspond to
the second synchronization method – start synchronization with dynamic
length.

Before the first part of the message is received, we register an edge on
the IC-pin and the TOV is stored in a variable associated with the sensor
port. Then, after some time, we receive the first byte (aa). We register the
timestamp tot1, but as this is not the expected synchronization bytes of the
uBlox protocol (B5), we do not increase the current package length, but
instead flag a warning to the user. The same happens for the next byte we
receive (also aa). When we receive the third byte (B5), it matches what we
have configured the system for. We store the timestamp in tot1, and increase
the current package length to 1. When we receive the next byte (62), the
timestamp is stored in another value (tot2) and as the synchronization bytes
matches both in value and in length, we register that we (most likely) have
achieved synchronization, increase the package length to 2 and store the
value tot1 as TOT. We also copy the latest TOV to the sensor message. To
find the length, we have to have a sensor message size at least 4 (length
offset) + 2 (size of length) = 6 bytes. As we have found the TOT, we no
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longer need to record timestamps for the bytes.
The next few bytes – 05, 01 and 02 – we store in the current buffer, but

when the byte after that arrives (00) we have a buffer size of 6, and we can
find the expected length of the sensor message. We read the last two bytes
in the buffer as a little endian integer, and we find out that we have a total
expected package size of 2 + 8 = 10 bytes. We continue to read until the
current package size is 10, and when we receive the last (61), we mark the
sensor message as completed, we attach the TOA, and switch to another
write buffer to be ready for the next sensor message.

3.3.4 Sensor Timing Hardware Output

When a full package has been read by the sensor handler and packaged in
the envelope format, the data is transferred to the data output module. This
module needs to handle both small packages at a very high rate, typically
IMUs with up to thousands of measurements per second, and large packages
with a lower rate, for example raw data GNSS messages at ten measure-
ments per second. Furthermore, we want the timing system to utilize direct
memory access (DMA) features of the processor.

One of the most used and available protocols on the market today is the
USB-protocol, which in addition to providing high transfer speeds and hav-
ing the option to deliver power to attached devices, is available on almost all
modern computers – both desktop computers and single-board computers
such as the ODroid XU4. Through a single USB connection, it is possi-
ble to have several endpoints, which may have different functions which
makes it flexible. Some microcontrollers, such as the PIC32 MZ, also al-
low USB-transfers using DMA, which makes them a CPU-efficient protocol.
Some systems, however, have limitations on which memory addresses can
be accessed when using USB through DMA.

To enable efficient data transfer, processors can use DMA for data trans-
fers. The DMA module is responsible for copying a set of data from one
part of the processors memory to either another part of the memory, or to an
external interface such as the USB interface. Without DMA the CPU needs
to explicitly copy one word at a time from one memory address to another,
which is inefficient both because the CPU could do something more useful,
and because it might not be fast enough to keep up with higher transfer
rates. A downside with some DMA implementations is that the starting
address must be aligned in memory. Figure 3.6a shows a visualization of 16
bytes of memory with four queued messages, shown in four different colors.
Now we imagine that these messages are transferred one by one using DMA
with a 4-byte alignment requirement. First the green package is transmit-
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) No padding

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) 4-byte aligned padding

Figure 3.6: Four queued packages with and without padding. The crosses repre-
sent don’t-care data, which may be zeroed out.

ted: the index is 0, the four bytes are written as expected, and the index is
increased to 4. Then the blue package is transmitted: index is 4, three bytes
are transmitted, and the index is increased to 7. Now, the yellow package is
transmitted, but since the index is 7, it is no longer on the boundary and the
DMA rounds the index down to the closest alignment and two bytes from
there, resulting in that bytes 4 and 5, instead of 7 and 8 are transferred.
Then the index is increased with 2 from 7 to 9. The next package (red) is
4 bytes long, but the index is still not aligned. Hence, the DMA copies 4
bytes from index 8 instead of from index 9, resulting in another erroneous
transfer.

A proposed implementation that efficiently handles both messages of
varying size and rate, and limitations in accessible memory addresses is
given in Listing 3.1. The queueing implementation assumes the following
interface with the processor’s USB-interface: a USB-transfer is initiated
with a function named usb_write_dat that takes a pointer to the buffer
to be written and the number of bytes to write from that buffer. Only one
USB-write can be active at a time. When the transfer is finished, the USB-
subsystem calls a function named usb_write_finished with a parameter
containing the number of bytes that were written by the USB-interface.
The number of bytes are less-than or equal to the requested number of
bytes, but it is assumed that this number is always aligned to the spe-
cific interval specified by the DMA module of the processor. Furthermore,
two functions for disabling and enabling interrupts on the processor, called
usb_interrupt_disable and usb_interrupt_enable are assumed avail-
able. The memcpy_mod function copies data from a regular array to a ring
buffer and is defined in Listing 3.2 in Appendix 3.A.

To address the problem due to DMA-alignment, code in Listing 3.1
automatically aligns each queued package to a 4-byte offset by padding the
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end of each package with up to 3 dummy-bytes, referred to as the extra
variable in the code and the PAD-bytes in Figure 3.5. This allows any
number of packages to be transmitted using DMA, allowing the system to
fill the DMA-buffer if enough data is queued, without introducing issues
with alignment, as every package is ensured to end at an aligned index.
This approach is visualized in Figure 3.6b.

The write_scheduled variable does not need to be protected by the
critical section, as it does not alter the behavior of the system, even though
it is shared between the functions. If the variable is false when the function
is called, no write events are in progress and thus the system cannot be
interrupted by a finished write. The only exception to this is after a write
has been scheduled at the very end of the function, after which the variable
is no longer used. If the variable is true when entering the critical section,
a write event should not be scheduled by the usb_queue_package function,
and the write_scheduled remains unchanged.

The code provided in the listing is thread-safe under the following two
assumptions: the usb_queue_package function is only called from the main
loop, and the usb_write_finished is only called by the USB module when
it has finished writing.

Listing 3.1: Sensor message queueing.

# define BUFFER_SIZE (1024 * 4)
uint8_t usb_write_buffer [ BUFFER_SIZE ] __ALIGNED__ ;
uint16_t queue_size ;
uint16_t back_ix ;
uint16_t front_ix ;
bool usb_write_is_scheduled ;

void usb_schedule_write () {
// Make sure that we don ’t use variables we haven ’t checked

.
size_t _queue_size = queue_size ;
size_t _back_ix = back_ix ;

uint16_t send_size ;
// Verify that we do not write outside the queue
size_t last_byte_pos = _back_ix + _queue_size ;
if ( last_byte_pos > BUFFER_SIZE ) {

send_size = BUFFER_SIZE - _back_ix ;
} else {

send_size = _queue_size ;
}

usb_write_data (& usb_write_buffer [ _back_ix ], send_size );
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}

void usb_write_finished ( size_t datalen ) {
// Remove the written data from the queue
queue_size -= datalen ;
back_ix = ( back_ix + datalen ) % BUFFER_SIZE ;

// Check if there is more data to transmit
if ( queue_size > 0) {

usb_schedule_write ();
} else {

usb_write_is_scheduled = false;
}

}

void usb_queue_package ( uint8_t *data , uint16_t datalen ) {
// Calculate padding bytes and the total size
uint8_t extra = (4 - ( datalen % 4)) % 4;
uint16_t len_extra = datalen + extra;

if ( queue_size + len_extra >= BUFFER_SIZE ) {
return ; // Prevent queue overflow - skip messages if

queue is full
}

// Copy the data to the queue
front_ix = memcpy_mod ( usb_write_buffer , data , len_extra ,

front_ix , BUFFER_SIZE );

// Critical section
usb_interrupt_disable ();
queue_size += len_extra ;
bool schedule_write = ! usb_write_is_scheduled ;
usb_interrupt_enable ();

// Only schedule write if needed
if ( schedule_write ) {

usb_write_is_scheduled = true;
usb_schedule_write ();

}
}

As the queue_size variable is changed both in the usb_queue_package
and usb_write_finished functions, it needs to be protected in the critical
section of usb_queue_package. A temporary variable, write_should_-
be_scheduled, is also created in this section. This variable indicates if the
usb_queue_package should schedule the next write event, or if a write event
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is already in progress and the next write event should be scheduled in USB
callback routine.

Microprocessor Considerations

When implementing this method on a microprocessor, special considerations
to the time spent in ISRs must be taken. Although the processor primarily
runs in one main loop, this loop can be temporarily paused when handling
ISRs. When an interrupt event occurs, the microprocessor sets a flag that
the interrupt event has occurred and then launches an ISR and clears the
flag. If multiple interrupt events happen simultaneously the associated flags
are set and ISRs are executed in order of priority. If two interrupt events of
the same type happen while the microprocessor is handling a higher-priority
interrupt event, the flag for the lower-priority interrupt event can only be
set once, and one of the events are dropped. To prevent loss of data or other
events, the time spent in ISRs should be minimized.

This method minimizes the time spent in the usb_write_finished-ISR,
and the only time the data transfer could be further increased is when the
end of the queue is reached, as only the data from the back_ix to the end
of the queue is transferred. By choosing a sufficiently large QUEUE_SIZE,
and thus reducing the frequency of the queue overflows, the loss of transfer
capacity is negligible.

3.3.5 Sensor Configuration

As a developer of a sensor system is not necessarily an expert in hardware
design, real-time systems or embedded system development, a hardware
sensor timing system must be reconfigurable without impacting the overall
system operation. To ensure that the system operation is intact, the devel-
oper needs to configure the hardware timing system without rewriting the
firmware itself.

To configure a hardware sensor timing system, we suggest providing two
distinct methods: using a USB command-line interface (CLI), and using
configuration files on an SD-card or other removable storage. The main
benefit of a USB command-line interface method is that it does not require
any additional software except a standard VT102 terminal emulator such
as Minicom[95] or PuTTY[106] – everything else is contained on the tim-
ing system itself. This method is ideal if changes must be made in the
field or when configuring a new sensor for the first time, as the changes
happen immediately. The configuration can then be written to the micro-
controller’s non-volatile memory, so the configuration is kept even if the
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system is restarted. A screenshot of a command-line version of a sensor
configuration module is shown in Figure 3.7.

The second method of configuring a hardware sensor timing system is
to use configuration files placed on an SD-card or similar storage. This is
an efficient method to use when identical sensors, or at least sensors with
identical interfaces, are used in multiple sensor suites. To allow reuse of
a configuration, the configuration for a specific sensor can be stored in a
distinct file. This configuration can then be referenced to in the main con-
figuration file, even several times if multiple identical sensors are connected
simultaneously. An example of textual configuration files are shown in Fig-
ure 3.8. Reuse of sensor configuration files decreases system integration
time, reduces the chance of errors as fewer files need to be changed if a
sensor’s configuration has changed, and follows the "Don’t Repeat Yourself"
philosophy common in computer science [147].

Figure 3.7: An example of a CLI for sensor port configuration.
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s en so r s :
ublox:
powered: t rue
sync_id: [ 0 xB5 , 0x62 ]
l ength_s i z e : 2
length_placement: 4
length_extra_bytes : 8
baudrate: 460800
i n t e r r up t : r i s i n g

stim300:
powered: t rue
sync_id: [ 0 x93 ]
l ength_f ixed : 38
baudrate: 921600
i n t e r r up t : f a l l i n g

Sensor specification

c on f i gu r a t i on :
uart1:

s enso r : ublox
# Override default
# baudrate value:
baudrate: 115200

uart2:
s enso r : ublox

rs422 :
s enso r : st im300

Port specification

Figure 3.8: An example of text files for sensor port configuration, in YAML.

3.4 SenTiBoard

To verify the proposed design, we have implemented the SenTiBoard, which
is a reconfigurable sensor timing system that uses a PIC32MZ microproces-
sor running at 200 MHz, with a 32-bit timing counter running at 100 MHz to
which the sensor readings are referenced. Communication with the SenTi-
Board from an embedded or desktop computer is done through a double-
endpointed High-Speed USB 2.0 interface; the first endpoint is used for
configuration and debugging, and the second endpoint is used for sensor
data transfer. If needed, for example if using an onboard computer with-
out USB, sensor output can be redirected through one of the sensor ports.
To record accurate timestamps from sensors, the SenTiBoard has a total of
9 IC-pins–allowing the system to simultaneously capture the TOV triggers
from 9 sensors simultaneously. In addition, each sensor port can be trig-
gered using the output compare (OC) functionality of the microcontroller.
The physical dimensions of the board are 60 mm × 50 mm, and to simplify
integration with the ODroid XU4, the removable adaptor legs shown in
Figure 3.1a are attached to the board, with mounting holes that align with
those of the ODroid. An overview of the SenTiBoard’s hardware is given in
Figure 3.9.

By making the system reconfigurable, the firmware itself can be kept
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PIC32 MZ

RS-232

U(S)ART

RS-422

SPI

IC + OC + Power control

IC + OC

USB

SD-card

External PC UART1

UART2

UART3

RS232-1

RS232-2

RS422

SPI-1

SPI2

IC/TRIG

Figure 3.9: Overview of the hardware of the SenTiBoard. Each of the sensor
ports (pink) have a IC-input pin, a OC-output pin and a power control pin in
addition to pins for the associated protocol. The pink IC/Trig port only contains
an IC-input pin and an OC-output pin.

more stable, and creating specialized versions for every sensor combination
can be avoided. This allows the firmware to be reused and maintained
by experts that know the system well, while still being adaptable to the
sensor-suites by non-experts, which again leads to fewer errors as shown by
Mohagheghi et al.[97]: “Our results showed that reused components have
lower defect-density than nonreused ones (almost 50% less)”.

For sensor communication, the SenTiBoard supports several protocols.
By default, three ports with U(S)ART support, two ports with RS-232
support, one port with RS-422 support, and two SPI ports are implemented.
Additionally, the three UART ports can be configured to use the I2C, also
know as TWI, protocol, and other protocols can also be interfaced with the
system. The SenTiBoard can also generate pulses that act as triggers for
sensors. This is useful for example for triggering when a camera should
record a photo, or to sample multiple IMUs simultaneously.

Power control is another feature of the SenTiBoard. Each sensor port
has a controllable power output pin on either 3.3 V (for the SPI-ports),
or 5 V (for the other ports), which are independently controlled by the
microcontroller. This allows the SenTiBoard to turn on and off sensors as
needed; for example, if a sensor is misbehaving and needs to be restarted, or
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in an emergency where the sensor needs to be powered off. There are also
a set of error-LEDs, one per sensor port in addition to one for the whole
system, that are used to indicate errors on the corresponding sensor and
general errors.

The SenTiBoard has been previously used with a variety of sensor con-
figurations in several experiments on UAVs, unmanned surface vehicles
(USVs), and manned aircraft as discussed in Chapter 2.

3.4.1 SenTiUtils

To support system integration with the SenTiBoard and the SenTiStack
(see Section 3.4.2), a utilities software package named SenTiUtils has been
created. This package consists of documentation and software that interacts
with the SenTiBoard, and software that converts the binary sensor data into
higher level formats preferred by end-users, such as MATLAB’s .mat-format
and NumPy for Python’s .npy files. The SenTiUtils package is split into
five modules: Documentation, Testing, Logging, Parsing, Supervisor

Documentation

The documentation module contains details about the SenTiBoard hard-
ware, the connectors used, how to configure the system, and the general
structure of the intended usage of the SenTiBoard and the SenTiUtils pack-
age itself. This module also contains 3D-models of the board and connectors,
sensor port specifications and mounting information. In addition, recom-
mended configurations and tips for integrating commonly used sensors are
provided.

Testing

The testing module contains software for testing basic interaction between
the SenTiBoard and the host computer. There are two scripts in this mod-
ule; sentiboard_rate.py and senti_package_print.py. The sentiboard_-
rate.py script reads all sensor packages from the SenTiBoard and prints
a list of the rate of each of the incoming packages every 0.5 s. This gives the
user a quick overview to see if the packages are received as expected. The
senti_package_print.py script can be used when integrating a new sensor
with the SenTiBoard. This prints the bytes contained in each sensor mes-
sage in a human readable text format which again can be compared and
verified with the expected output from the sensor described in the manual
or datasheet provided by the sensor’s manufacturer. Note that this module
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has nothing to do with testing the firmware of the SenTiBoard, but rather
testing of the sensor configuration and communication.

Logging

The logging module consists of a logging system which is recommended to
use with the SenTiBoard. The logging system serves five main functions.
Firstly, it creates a folder structure that ensures that logs are not overwrit-
ten when the system is restarted, by separating data in to different flights
when it starts. Secondly, it separates messages from each sensor into dis-
tributed streams and distinct files. The number of sensor messages received
by each sensor is printed by the logging system. This allows a user to su-
pervise that the SenTiBoard and the logging system operates as intended
by checking the log messages and the file system of each sensor and allows
the user to only parse data from the sensors needed for their application.
Thirdly, the logging system creates a new logging-folder at specified inter-
vals, set to 15 minutes by default. The intention behind this time-splitting
is to limit the impact of a file becoming corrupted which might happen if
the onboard computer is powered off abruptly. Fourthly, the logging sys-
tem provides an interface that automatically starts both the logging system
itself and other necessary software for the sensor system when the onboard
computer boots. Examples of such software are imaging logging software
and logging of sensors not connected to SenTiBoards. Finally, the logging
system injects a timestamp from the onboard computer into the stream of
sensor data received by the onboard computer from the system. This allows
the sensor packages on the SenTiBoard to be synchronized with messages
not connected to either the SenTiBoard or a GNSS-receiver, for example
when using cameras without external triggering pins.

Parsing

The parsing module contains code responsible for interpreting the binary
stream or stored files from the sensors, wrapped by the SenTiBoard, to data
processable by sensor fusion algorithms and other applications. There are
two implementations of this system, one written in Python and one written
in C++. The Python implementation is primarily used for converting to
MATLAB and Python NumPy formats, while the C++ implementation is
intended for use for relaying messages to other systems such as ROS[107],
DUNE[32] and the SenTiBoard supervisor system. To be extendible to sup-
port a variety of sensors, the parsing module consists of two parts: a general
package reader that extracts the timing and metadata from the SenTiBoard
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envelope, and an interface for the specialized parses which is specific for each
sensor type. The sensor data is then transmitted in a Message structure,
which is specific to each sensor. To streamline integration of sensors of the
same type, generic message types such as ImuMessage or GnssMessage can
be used to handle IMUs and GNSS receivers from different manufacturers
without having to change the external code. These message types can be
extended as needed.

Supervisor

The supervisor module consists of a graphical visualization tool for showing
real-time data as it is received from the SenTiBoard. This tool does not
have any large framework dependencies, such as ROS, so it is valuable when
using the SenTiBoard without such frameworks. The tool receives parsed
sensor messages and visualizes the data in one of three main views. The first
view shows a map with both the current and historical position data from
the GNSS-receiver, the second view either shows a plot of the acceleration,
gyroscope and magnetometer readings from the IMU(s) and magnetome-
ter(s). The third view shows current camera images and is only active if
a camera is connected. If a sensor fusion algorithm, such as an extended
Kalman filter (EKF) is used, the first and second view can show the esti-
mated position, the attitude and the heading instead of the measurement
data.

3.4.2 SenTiStack

When developing new sensor fusion algorithms, having access to a high-
quality reference is of great value. By comparing the results to a reference,
an indicator on the performance of the newly developed algorithm can be
obtained. The SenTiStack is a high-accuracy navigation payload that is de-
signed to work with the SenTiBoard, and it serves two functions: primarily
it provides high quality sensors and a high-accuracy navigation solution, but
it is also a fully working and maintained example on how to configure and
use the SenTiBoard. In addition to providing a solution, additional sensors
can be added at will, except for the ports the sensors for the SenTiStack
occupy. Sensors that have integrated with the SenTiStack so far are autopi-
lots, RGB, IR and hyperspectral cameras, air data/pressure sensors, phased
array radio navigation equipment and specialized sensors created at our uni-
versity, but other system can be integrated as well. A benefit with using
the SenTiStack as a reference system when developing algorithms that in
addition to provide a navigation solution, also provides the sensor data the
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estimates are based on, so that a new algorithm can be tested with identical
sensor input.

Although the intended use is for UAVs, the SenTiStack has been used on
other platforms such as ground rovers, unmanned surface vehicles (USVs)
and manned aircraft. The SenTiStack consists of a SenTiBoard, an ODroid
XU4 single-board computer, one or more uBlox M8T GNSS receivers and an
IMU. Several different IMUs have been used; the Sensonor STIM 300[117],
the Analog Devices ADIS16490[10], the Analog Devices ADIS16488A[9],
and a combination of multiple IMUs simultaneously. In addition, a magne-
tometer connected to the UAV’s autopilot has been used. An overview of
the hardware of the SenTiStack is given in Figure 3.10.

SenTiBoard

IMU
-

ADIS16490
ADIS16488A

STIM300

GNSS
-

uBlox M8T

Magnetometer
-

PIXHAWK

Single-board 
computer

-
ODroid XU4

eMMC storage

Telemetry

Figure 3.10: Overview of the components of the SenTiStack. In each of the
sensor boxes (yellow), one or more of the options can be chosen, depending on
the specific mission requirements. The telemetry link is optional, but can provide
useful data about the system status, current sensor measurements, and provide
data for RTK-GNSS calculations.

As the SenTiStack is used with a specific set of sensors, additional sup-
port for this system can be included. This includes pre-made parsers and
integration with middleware systems such as ROS and DUNE. Furthermore,
we are currently implementing a state estimator, onboard the SenTiBoard,
and this will primarily support the sensors on the SenTiStack. By record-
ing multi-GNSS pseudorange, Doppler, carrier phase, phase lock and signal
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quality information from the onboard GNSS receiver and recording cor-
responding data at a local base station, a highly accurate RTK-solution
can be calculated using the open source solution RTKLIB[130]. By using
the RTK-GNSS solution to aid IMU and magnetometer measurements in a
non-linear observer, or an EKF, PVA estimates can be obtained [52]. Thus,
the SenTiStack is developed to be a complete high-accuracy navigation and
timing system with tactical grade sensors, a hardware sensor timing board,
and sensor fusion algorithms.

3.4.3 Verification

The operation of the implemented hardware sensor timing system was ver-
ified in two ways. First, the queueing method’s maximal transfer rate was
tested by transmitting dummy sensor messages with a data size and rate
distribution typically seen in a sensor configuration. Then the clock accu-
racy was tested with a UAV experiment, where a GNSS receiver was used
to provide a TOV and timing solution.

Transfer Rate Verification

To verify that the SenTiBoard’s throughput using the proposed queueing
strategy is sufficient, a performance benchmark was performed. In this
benchmark a dummy sensor suite is implemented in the firmware. This
dummy-suite only sends mocked data packages, but the size and rate of the
sensor messages are based on real sensors. The following imagined sensors
with the specified messages are connected: a uBlox M8T GNSS receiver
transmitting a navigation solution at 1 Hz and raw measurements at 10 Hz
with sizes 100 bytes and 648 bytes respectively (based on UBX-NAV-PVT
and UBX-RXM-RAWX with 20 satellite readings (pp. 307, 337 [136]); a
Sensonor STIM300[117] with rate, acceleration, inclination and tempera-
ture, transmitting 58 bytes at 2500 Hz; and two ADIS16490 transmitting
32 bytes (sync-id, temperature, delta-angles, delta-velocities and status) at
5000 Hz. The values 2500 Hz and 5000 Hz were chosen for convenience be-
cause they are the closest to a 5000 Hz counter already implemented on the
SenTiBoard, and these values are sufficiently close to the real sensor values
of 2000 Hz and 4250 Hz for testing purposes. In addition to the bytes from
each sensor message, the 22–25 bytes from the SenTiBoard envelope are
added to each package, depending on the number of extra bytes.

With the test-configuration given above, the SenTiBoard could trans-
fer all the packages as required. To test the maximal transfer speed of
the SenTiBoard, we gradually increased the rate of the timer with until it
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reached a factor of 10, and the system still worked as expected, with very
minor variances due to startup and shutdown timings. At this rate a total
of 100,000 ADIS messages, 25,000 STIM messages and 110 uBlox messages
are handled every second, and the total transfer speed is 7.66 MiB/s. When
we further increased the speedup factor beyond 10.5, the system started to
drop a significant number of packages, and we can see the data transfer does
not increase further. See Table 3.3 and Figure 3.11 for details. The received
messages are likely to be slightly different from the expected messages as
some time is used to start and stop the process.

Speed
factor

Received
Messages

Expected
Messages

Transfer
Rate

Expected
Rate

1 125,178 125,110 0.77 MiB/s 0.77 MiB/s
2 250,278 250,220 1.53 MiB/s 1.53 MiB/s
5 625,430 625,550 3.83 MiB/s 3.83 MiB/s
8 1,000,597 1,000,880 6.13 MiB/s 6.13 MiB/s
10 1,249,119 1,251,100 7.66 MiB/s 7.67 MiB/s
10.5 1,309,422 1,313,655 8.03 MiB/s 8.05 MiB/s
11 1,344,635 1,376,210 8.19 MiB/s 8.44 MiB/s
11.5 1,340,067 1,438,765 8.19 MiB/s 8.82 MiB/s

Table 3.3: Average transfer speed and number of messages received during a 10
second period. Each value is the average of 5 consecutive recordings.
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Figure 3.11: Visualization of Table 3.3.
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Accuracy Analysis

To analyze the accuracy of the SenTiBoard’s timestamping an experiment
was carried out, where a flight with the SenTiStack onboard a Skywalker
X8 fixed-wing UAV, was performed. The uBlox M8T GNSS receiver was
set to output a position velocity time (PVT) solution and corresponding
TOV signal with a rate of 1 Hz, and reported an accuracy of 3.35 ns RMS
during the flight. To calculate the relative accuracy, the difference between
each TOV message was calculated. An RMS difference of 1.90 µs to the
expected 1 s output from the GNSS receiver was found, and the result from
the flight is shown in Figure 3.12. This inaccuracy is likely due to a drift in
the oscillator and can be reduced, either by choosing a more stable primary
oscillator, by attaching a stable secondary oscillator, or by increasing the
output rate of the GNSS receivers’ TOV signal, assuming that the drift
of the GNSS receiver is negligible. In addition, one may compensate for
clock drift using a mathematical model for the drift due to variations of the
temperature[26].

Without using hardware synchronization to record a sensor’s TOV, the
most common way of timestamping messages is to record the time when
the first byte has been transferred (TOT). This method is inaccurate as it
depends on several factors, such as internal processing time, the number of
messages transferred before the desired message is transmitted, the size of
these messages, and the transfer rate from the sensor. The RMS difference
of the first received byte of the GNSS PVT message to the expected 1 s rate
was 53.56 ms and the TOV and TOT values are visualized in Figure 3.13.

To compare the accumulative effect of these inaccuracies over time, the
following calculation was performed:

e(n) = t(n)− (TOV(0) + n) (3.1)

where t(n) is the TOV or TOT value n seconds into the dataset and TOV(0)
is the first TOV recording. The e(n) of the TOV timestamp is shown in Fig-
ure 3.14, and the e(n) of the TOT timestamp is shown in Figure 3.15, with
the e(n) of TOV for comparison. This error starts at the first measurement
and then measure how much the proceeding measurements varies from the
expected 1 s per measurement. As the measurement rate from the GNSS
receiver is synchronized with a GNSS clock, it should be both precise and
drift free. Hence, e(n) provides an estimate of the drift of the SenTiBoard’s
clock over time.
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Figure 3.12: TOV accuracy, in microseconds.

Camera Payload

To illustrate the use of the SenTiBoard in a complete remote sensing sys-
tem, another experiment was carried out using the SenTiStack. This time
with a SenTiBoard, an ODroid XU4 onboard computer, an ADIS 16490
IMU, a STIM 300 IMU, two uBlox M8T GNSS receivers and a FLIR Tau2
longwave infrared thermal camera. The main goal of this experiment was
to track two surface vehicles, a manned boat and the Maritime Robotics
Telemetron USV, using an infrared camera onboard a Cruiser-Mini fixed-
wing UAV. The reason for having two GNSS antennas in this payload is
to be able to estimate the heading of the UAV. To achieve a high quality
RTK GNSS solution, an additional GNSS receiver, in addition to the two
GNSS receivers onboard the UAV, was placed at the base station. This base
station is located at a fixed point and used as a reference to compensate for
atmospheric disturbances.

To accurately synchronize the camera images with the UAV’s position,
the SenTiBoard was used to trigger an image capture circuit connected to
the camera, using the OC functionality of the SenTiBoard. As the OC is
connected to the same hardware timer running the microcontroller as the
IC, the accuracy of the trigger signal is comparable to the results found in
Section 3.4.3. The capture circuit attaches a timestamp, in milliseconds, to
each camera image, and the timestamp can be set to zero using an external
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Figure 3.13: TOT accuracy vs. TOV accuracy, in milliseconds.

input pulse. To synchronize this input pulse with a GNSS receiver, the
SenTiBoard is configured to emit an output pulse which is synchronized
with a TOV pulse from one of the attached GNSS receivers, although at a
higher framerate. This pulse is sent to the input trigger of the timing circuit
board, which then makes the associated timestamp from the capture board
synchronized with GNSS-time. A partial track of the position of the USVs
and the UAV are visualized in Figure 3.16 and examples of infrared images
captured during the mission are shown in Figure 3.17.

An analysis of the results from this experiment is given in [55] where the
authors estimate an improvement in georeferencing errors from 10 m–15 m
at an altitude of 100 m, to a mean of 9 m at an altitude of 350 m–400 m,
when comparing to a solution with the same camera without GNSS synchro-
nization. When accounting for the altitude difference, this corresponds to
an accuracy improvement of a factor of 4, as improved accuracy is achieved
at 4 times the altitude. This accuracy improvement is due to several factors,
such as improved navigation and camera synchronization.

3.5 Conclusions

The high speed and fast dynamics of unmanned aerial vehicles make them
valuable assets in many applications today, but these features also pose a
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Figure 3.14: e(n) for TOV recordings, measured in milliseconds.

challenge when it comes to sensor accuracy. As we want UAVs to perform
more complex tasks, such as performing hyperspectral imaging, high accu-
racy is needed—not only for the sensor values, but also in the time domain.
The rapid movements a UAV is capable of make an attached sensor to also
move quickly, and thus cause large inaccuracies if the associated timestamp
is imprecise.

This chapter describes required and desirable features of a reconfigurable
hardware sensor timing system. An overall system design, a method for as-
signing timestamps to sensor messages using a data envelope, an approach
for receiving sensor data and efficiently transmitting timestamped messages
has been described. By making the solution reconfigurable, both the soft-
ware and the hardware of the sensor timing system can be kept stable, which
increases the reliability of the system, without compromising on sensor ac-
curacy. Two methods are suggested for reconfiguration: one based on a
command-line interface, and one based on files stored on a removable media
such as an SD-card.

To verify the functionality of the suggested system a hardware imple-
mentation, the SenTiBoard, has been created. The system has a 32-bit, 100
MHz timer and uses interrupt capture to accurately record timestamps. It
supports several commonly used protocols, power control of individual sen-
sor ports, and triggering of external sensors such as cameras. In addition to
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Figure 3.15: e(n) for TOT vs. TOV, measured in milliseconds.

the system itself, a support system that consist of both software for testing
and verification, and hardware solutions for providing a rapid navigation
solution for UAVs, consisting of a RTK-GNSS capable GNSS receiver, one
or two IMUs, and a magnetometer has been created.

The implementation has been tested and a maximal transfer speed of
more than 8 MiB/s was achieved, allowing the board to transfer more than
130,000 packages per second. A relative accuracy of 1.90 µs per second
was measured, and an absolute accuracy of 2.75 ms after 2000 s when not
compensating for the drift. An experiment with a hardware synchronized
thermal camera was also performed and georeferencing errors were reduced
with a factor of 4, compared to a software synchronization solution.

3.A Ring buffer memcopy
Support methods for copying to and from ring buffers are described in List-
ing 3.2. Note that the implementation on the SenTiBoard are optimized to
avoid using the modulo operator which has a high computational cost.
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Figure 3.16: A partial GNSS track of the UAV’s and the two surface vehicles’
position.

Figure 3.17: Infrared images captured during the mission.
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Listing 3.2: Modulo memcpy

size_t memcpy_mod (char *dst , char *src , size_t datalen ,
size_t front_ix , size_t queuelen ) {

size_t i;
for (i = 0; i < datalen ; i++) {

dst [( front_ix + i) % queuelen ] = src[i];
}
return ( front_ix + datalen ) % queuelen ;

}

size_t memcpy_demod (char *dst , char *src , size_t datalen ,
size_t front_ix , size_t queuelen ) {

size_t i;
for (i = 0; i < datalen ; i++) {

dst[i] = src [( front_ix + i) % queuelen ];
}
return ( front_ix + datalen ) % queuelen ;

}
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4
Inertial Optical Flow for Throw-and-Go Micro Air

Vehicles

This chapter is based on S. Weiss, R. Brockers, S. M. Albrektsen, and
L. Matthies. Inertial optical flow for throw-and-go micro air vehicles. In 2015
IEEE Winter Conference on Applications of Computer Vision (WACV),
pages 262–269, Waikoloa, Hawaii, USA, January 5–9 2015. doi: 10.1109/
WACV.2015.42.

4.1 Introduction and related work

Small Unmanned Aerial Vehicles (SUAVs) have significantly gained impor-
tance in the past years. Industry is already using these vehicles on a regular
basis for aerial mapping and inspection in the mining, and oil and gas sector,
as well as for aerial photography, and search and rescue operations in fire
fighting scenarios. For large area mapping and surveillance, mostly fixed
wing platforms are used in open space where GPS availability is granted.
However, for inspection tasks, underground mining operations, or search
and rescue tasks in confined spaces an agile system with GPS independent
autonomy is key.

Whereas the demand for high agility asks for naturally unstable plat-
forms – and thus good state estimation and control algorithms – GPS inde-
pendence in areas which are difficult to access require innovative solutions
for state estimation with on-board sensing and processing. Multicopter sys-
tems (e.g. quadrotors) have a distinct advantage in their hovering capabili-
ties and agility to counteract strong winds and other external disturbances.
Navigating such a system is particularly challenging since there is no “hold”
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function as compared to ground vehicles that can be entered as a safety
regime (e.g. holding all actuators will only result in zero velocity after a
crash). Furthermore, a misalignment to gravity results in an acceleration in
one direction causing the position to drift quadratically in time. Similarly,
simply integrating IMU accelerations for position hold will soon result in
a crash due to noise and bias terms on the accelerometers. A minimal re-
quirement for keeping a quadrotor airborne is a continuous estimate of the
metric velocity1 and the gravity aligned attitude. The SUAV may still drift
in position and yaw (linear in time), however, given an obstacle free area or
a protective case, the vehicle remains airborne.

There is a large body of work for indoor SUAV control using motion
tracking systems [93, 83] and for outdoor operations using GPS signals
[2, 148]. In contrast to these approaches that depend on external positioning
information, this paper focuses on SUAV control in environments where an
external tracking setup is infeasible (e.g. large outdoor areas) and where
GPS signals may be corrupted or unavailable (e.g. in cities, caves etc.).

A popular approach is to control and navigate SUAVs based on (local)
maps without the need of a motion capturing system or GPS. This is of-
ten done using known markers, pre-built maps or maps built on the fly
using SLAM or (keyframe based) visual odometry (VO) techniques. Such
approaches usually control the vehicle in its 6DoF pose (position and atti-
tude). The drift in position and yaw is either very low or even eliminated by
using known, fixed structures as reference. Sensors that are commonly used
for map generation are laser scanners [13, 118] or cameras incorporating
known markers [21, 146] or SLAM/VO techniques [18, 3, 144]. Since laser
scanners are still too heavy and power hungry for small quadrotor systems,
our work focuses on vision based approaches. Common to all approaches
using a map for motion estimation is that the map can get corrupted or
lost. In such a case recovery is difficult if not impossible and the vehicle is
prone to crash.

In order to avoid the issue of a map loss, we follow the approach of not
having any type of feature history except the feature matches between two
consecutive images: i.e. optical flow (OF). A history free approach aug-
ments the algorithm robustness due to the independence on past readings.
OF approaches that do not include 6DoF inertial measurements are pre-
sented in [56, 150]. While already showing the capabilities of OF for SUAV
navigation, these approaches act on a reactive manner to keep the vehicle
away from ground or from obstacles. Reactive control for position-keeping
or trajectory-navigation of an unstable micro air vehicle is not sufficient,
since the unavailability of metric information can result in instability.
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More recent work includes 6DoF inertial reading and successfully esti-
mates not only the metric velocity [80, 44] but also inertial biases, inter-
sensor transformations, and a gravity aligned attitude of the SUAV [141] -
the minimal requirements in order to keep a SUAV airborne.

Our work is a continuation of the work in [142] with the novelty that
we 1) include a method for fast initialization, 2) develop a robust outlier
rejection both for temporal miscalibration and for errors due to noise in the
optical flow, and 3) proof robust state estimation and control in extreme
situations such as throwing the SUAV in the air to deploy it.

Compared to commercial products, our approach does not require an
active sensor (e.g. ultra sonic altimeter) nor GPS. This reduces the weight
and power consumption of the overall sensor suite. More important, our
approach does not require a gravity aligned nor completely flat ground
plane for correct functioning. In fact, our approach gains on performance
in inclined terrain as explained later. Furthermore, our approach is self-
calibrating and is algorithm focused, rather than platform focused. That is,
any platform that can mount a camera and an inertial sensor can achieve
the performance we show in this paper. There is no need for sophisticated
hardware nor (time) synchronization mechanisms.

The remainder of this chapter is organized as follows. In Section 4.2
we briefly describe the computation of the optical measurements that are
obtained from optical flow – the arbitrarily scaled 3D camera velocity vector
and the terrainplane parameters in the camera frame. These measurements
are later fused with the inertial cues in a filter approach. In Section 4.3 we
describe the effects of temporal miscalibration between the inertial sensor
and camera on these measurements and discuss the robustness against non-
flat terrain. Section 4.4 briefly describes our EKF framework showing the
capability of estimating metric velocity, full attitude, inertial biases, sensor
extrinsics, as well as the terrain inclination and metric terrain distance to
the SUAV. We also discuss our fast initialization approach and the ability
to render the system truly throw-and-go. In Section 4.5, we verify our
approach in real world experiments where the SUAV is deployed by literally
just throwing it in the air. Section 4.6 concludes the chapter.

4.2 Computation of optical measurements

In this section, we will briefly review how optical flow can be used to compute
the camera body velocity and the current terrain plane parameters in the
camera frame up to a unifying, but arbitrary scale Λ. Note that we only
require two consecutive feature matches (i.e. optical flow) to compute the
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velocity, and three for the plane parameters. We do not store any feature
history nor local map. We use the continuous epipolar constraint and the
additional information of the angular velocities measured by the Inertial
Measurement Unit (IMU).

4.2.1 Camera velocity and terrain-plane parameter compu-
tation

The motion (i.e. flow) of a feature in the camera frame is given by

Ẋ(t) = b~ω(t)cX(t) + ~V (t) (4.1)
Where X is the 3D feature position, ~V the camera velocity, and b~ω(t)c

the skew symmetric matrix of the camera angular velocities. We can define
a scale factor Lf which scales a unit feature direction vector ~x to a metric
3D point: X = Lf~x. Similarly, Lv scales the unit velocity direction vector ~v
to the metric 3D velocity vector ~V = Lv~v. Inserting this in (4.1) and elim-
inating the scale factors by multiplying with b~ω(t)c~x yields the continuous
epipolar constraint [84]:

~̇x
T b~v(t)c~x+ ~xT b~ω(t)cb~v(t)c~x = 0 (4.2)

Un-rotating the feature direction vectors with the angular velocities from
the IMU eliminates the second term in (4.2) and reduces the problem to

(b~̇x(t)c~x)T~v = 0 (4.3)
This equation can be solved for ~v using N features and SVD. Note, that

the complexity of the SVD is only of dimension three (for the 3D velocity
vector ~v).

As suggested in [84] and from (4.1) with ~ω = 0 using the IMU, any
(un-rotated) feature i used in (4.3) needs to fulfill its motion equation

λ̇i(t)~xi(t) + λ(t)~̇xi(t) = η~v(t) (4.4)

The scale factor λi is different for every unit length feature direction
vector ~xi to reflect the 3D structure of the terrain. When stacking all λi,
λ̇i, and η into the vector

~λ =
[
λ1 ... λn λ̇1 ... λ̇n η

]
(4.5)

(4.4) can be rephrased as the SVD problem

M(~x, ~̇x,~v)~λ = 0 (4.6)
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The solution ~λ unifies all scale factors in a consistent way up to one
common scale factor Λ. This is essentially a continuous triangulation of
feature points since we can reconstruct the 3D scene and camera velocity
up to common scale Λ with:

Xi = Lf~xi = Λλi~xi (4.7)
~V = Lv~v = Λη~v (4.8)

We note at this point, that the scene can be of any 3D structure and
that the algorithm is not bound to planar terrain.

(4.7) represents a 3D point cloud in Euclidean space. We can compute
this point cloud measuring OF and using (4.3) and (4.6) up to the common
scale factor Λ. We define the term terrain-plane as the plane fitted to this
point cloud by the regression

[~nTtp, dtp][λi~xTi , 1]T = 0 (4.9)

with the plane normal vector ~ntp and the distance to the origin (i.e. camera
center) dtp.

To compute the visual measurements - i.e. the unscaled 3D velocity vec-
tor v, the terrain plane normal ntp, and the unscaled distance dtp – feature
matches in two images are required and (4.3), (4.6), and (4.9) have to be
solved. Using the simplification in [142], solving (4.3), (4.6), and (4.9) have
low computational complexity, leaving the burden on the feature matching
part. To speed up this process we use a vision based prediction step. We
explicitly do not use the prediction from the state estimator described in
Section 4.4 to keep the vision module independent and decoupled from the
state estimator (and its maybe yet unconverged estimates). Instead, we use
(4.4) and approximate the time derivative to predict the feature position ~xi2
in the second image. We assume that the feature distance is much larger
than its temporal change λ � λ̇ ≈ 0, and thus λi1 ≈ λi2. This is particu-
larly true for feature direction vectors ~xi perpendicular to the velocity vector
~v (e.g. SUAV with a down looking camera and moving in the xy-plane).
There λ̇ ≡ 0. From (4.4) we can then infer ~xi2 as follows

λi2~xi2 − λi1~xi1
dt

= η~v (4.10)

~xi2 = dt
η~v

λi
+ ~xi1 with λi1 = λi2 (4.11)

We can compute an initial value for η~v using only a few high-quality
features evenly spread in the image. With this initial value, we can predict
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additional feature positions accurately within a very small search window.
The decreased search window size for the majority of the features to be
matched leads to a noticeable algorithmic speed-up of 24 %.

(4.9) requires the observed features to be roughly planar. In [142] the
authors assume that the terrain is flat and it does not change quickly in
the world frame such that they can use the plane parameters together with
IMU readings to estimate relative yaw and distance between the SUAV and
the plane. However, in practice bushes and trees in the field of view may
present challenging situations to maintain this assumption. Furthermore,
inaccurate time calibration between the IMU and camera can lead to wrong
feature unrotation and thus failures in the algorithm. We extend the ap-
proach in [142] by extracting planar surfaces more reliably and by mitigating
the influence of wrong time synchronization. The increased algorithm ro-
bustness enables the SUAV to be deployed and used quickly (e.g. by simply
tossing it into the air) in real-world scenarios.

4.3 Temporal misalignment and non-flat terrain

Incorrect time synchronization between IMU and camera lead to a wrong
un-rotation of the optical flow and feature direction vectors violating (4.3)
since ω 6= 0. This is different than noise and introduces a bias to the
estimate. To solve (4.3) we compute the cross product between the feature
direction vector and the optical flow vector for each feature. This yields a
bundle of normal vectors which are all required to be perpendicular to the
unknown velocity direction vector. Figure 4.1 illustrates this relation for a
camera motion parallel and perpendicular to the scene surface. The normal
vectors are expected to end on a circle on the unit sphere defining a plane
which includes the camera center (yellow circle in Figure 4.1).

The difficulty is to find a robust approach for the plane regression on
the normal vector bundle. A RANSAC approach is impractical for this
problem because the abort criteria and other parameters are difficult to
define. Figure 4.2 shows the same setup as in Figure 4.1 but representing
real data. The yellow dots mark the normal vectors to find ~v. Depending
on the parameters, RANSAC is very likely to find a plane in a local mini-
mum (marked as a red line in the figure). Hence, it is desirable to have a
parameter-free approach which is adaptive to the vector distribution. We
have chosen an iterative re-weighted least squares (IR-LSQ) approach which
is parameter free, robust against noise, and against some amount of tempo-
ral misalignment.

Temporal misalignment introduces a fix pattern in the distribution of the
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Figure 4.1: Schematic drawing of the camera C moving parallel (left) and perpen-
dicular (right) to a scene. Xi denotes a 3D feature in the world with its direction
vector xi on the unit sphere and its optical flow vector ui = ẋi. Each pair of xi

and ui span a plane with normal vector ni = buicx. All ni end in a circle on the
unit sphere (yellow dashed line) and span a plane with the camera center C. The
normal of this plane is the camera velocity direction vector v.

Figure 4.2: Real data showing the tracked feature direction vectors in frame
1 (red dots, ~x) and frame 2 (green dots) to compute the optical flow ~̇x and the
normal vectors b~̇xc~x (yellow dots). A RANSAC approach is dependent on param-
eter setting and likely to result in a local minima (red line) whereas our iterative
reweighted least squares (IR-LSQ) approach selects the correct inliers (dark yellow
dots) and finds the right plane (magenta circle) and its normal vector (green line,
~v).
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normal vectors b~̇xc~x. We measure the effects of temporal misalignment by
an angular offset in the un-rotation step. This gives a performance overview
independent of the current angular velocity of the vehicle. As an example,
an angular offset of one degree translates in a temporal IMU-camera offset of
10ms if the vehicle currently turns at 100deg/s. Based on this angular offset,
we measure the angular error of the computed velocity direction vector ~v and
terrain-plane normal ~ntp with respect to ground truth. Figure 4.3 depicts
the performance upon different angular offsets in roll and yaw if the camera
is moving parallel to the scene (a pitch offset is comparable to a roll offset).
Whereas our algorithm can mitigate temporal misalignments resulting in an
angular offset of up to 12deg in roll for both ~v and ~ntp it can only mitigate
about 6deg offset in yaw for ~v and quickly deteriorates for ~ntp. Note that
these effects switch for roll, pitch, and yaw according to the feature location
and the relative camera motion.
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Figure 4.3: Computation error for ~v and ~ntp with different angular offsets for
un-rotation. These offsets reflect a time misalignment between IMU and camera.
An offset of one degree is a time offset of 10ms if the vehicle executes motion of
100deg/s. The maximum angular velocity measured in controlled flight does not
exceed 60deg/s in roll and pitch – an offset of one degree would translate into a
time misalignment of 17ms. In yaw, the angular velocities in controlled flight are
much smaller (cf. Fig. 8).

The difference in performance comes from the different effect an offset
has in each axis relative to the current camera motion and feature location.
Figure 4.4 depicts the different distortions of the normal vectors b~̇xc~x and
the terrainplane. The wide spread of b~̇xc~x and the large distortion of the
plane caused by a yaw offset makes it difficult for any regression algorithm.

In our experiments, the SUAV did not exceed 60deg/s in roll and pitch,
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Figure 4.4: Distributions of ~v and ~ntp for different angular offsets: top: b~̇xc~x for
different roll (left) and yaw (right) offsets; bottom: plane triangulation for different
roll (left) and yaw (right) offsets. Whereas an offset in roll and pitch is simpler to
mitigate for our IR-LSQ algorithm, the wide spread caused by a yaw offset makes
a correct regression difficult. Note the different scales in the axes of the plots.
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and 11.5deg/s in yaw during controlled flight. From Figure 4.3 we see that
our approach mitigates 12deg offset in roll and pitch well for both ~v and
~ntp. This translates in a tolerance of 200ms for a time misalignment between
IMU and camera. We note that with NTP-like software time synchroniza-
tion methods, the misalignment can be kept below 2ms. 200ms time mis-
alignment with 11.5deg/s in yaw would translate into an offset of 2.5deg
which can be well mitigated (Figure 4.3). We will discuss in Section 4.5
how we can reliably handle abrupt angular motion over a short period.

While outliers due to noise are rejected robustly both in the calculation
of ~v and ~ntp due to the IR-LSQ approach, non-flat terrain for the terrain-
plane regression to compute ~ntp needs a separate analysis. A terrain often
has a dominant plane with several positive or negative objects on it. As
the SUAV flies over these objects the parameters of the dominant plane
should roughly be kept constant since this is the model we will be applying
later when adding the IMU cues in a filter framework. Our parameter-
free IR-LSQ approach adapts well to such situations converging quickly to
the dominant plane of the terrain ignoring disturbances from positive or
negative objects. In Figure 4.5 we show real data captured above non-flat
ground. The live camera image shows the calculated optical flow on the
ground and on the objects. Our approach computed correctly the ground
plane normal vector ~ntp. Outdoors, bushes and trees are simpler to eliminate
because of their lack of planar characteristics biasing the result.

4.4 Extended Kalman filter

So far, we extracted the unscaled 3D velocity vector v, the terrain plane
normal ntp, and the unscaled distance dtp from the camera to the terrain
plane from optical flow using (4.3), (4.6), and (4.9). (4.6) combines all scale
factors in ~λ up to one unifying but arbitrary scale factor Λ. In order to esti-
mate this factor reliably using IMU inputs, it should not arbitrarily change
from one optical flow measurement to the other. We use the approach from
[142] and normalize ~λ by dtp such that n

~λ = ~λ
dtp

. This way, Λ will only
change if the distance to the scene changes. In fact this normalization links
the value of Λ directly to the metric distance between the camera and the
scene.

Sudden and large changes in distance to the scene as they occur when
throwing the SUAV for fast deployment result in equivalent changes in Λ.
In fact, since metricdtp = Λ short-term integration of the accelerometer to
determine the change in metricdtp can directly be used to propagate Λ in
an EKF prediction step [142]. This allows accurate state tracking even in
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Figure 4.5: Terrain plane matching in a non-flat scene. The computation of v is
independent of the terrain structure, thus, even though the features (red and green
dots) are in 3D terrain, the vectors b~̇xc~x (yellow dots) are coplanar and the velocity
vector v is estimated correctly. The triangulated features λix represent well the
3D scene and our IR-LSQ approach correctly finds the dominant plane (green line)
and its normal vector ntp (dark red line).

abrupt height changes and highly dynamic movements. Furthermore, since
metricdtp = Λ the initialization of Λ is straight forward when knowing roughly
the initial height of the SUAV above the scene. When throwing an SUAV,
this is about half the size of a human and can be approximated by 1 m. The
initialization is sufficiently close to the true value to allow fast convergence
of all system states.

To fuse the visual measurements nηv, ntp, and ndtp with IMU cues, we
use an EKF framework to not only get metric velocity, metric distance to
the scene, and full attitude for SUAV control, but also to allow system
self-calibration of the IMU bias terms and the 6DoF IMU-camera extrinsic
transformation.

We assume that the IMU inputs have the following model with bias b
and zero mean white Gaussian noise n. We denote the accelerometer model
with subscript a and the gyroscope model with subscript ω:

ω = ωm − bω − nω, a = am − ba − na (4.12)
ḃω = nbω, ḃa = nba (4.13)

The state vectors

χ =
{
piw viw qiw bω ba Λ pci qci α

}
(4.14)
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contains the IMU-centered SUAV position piw, velocity viw and attitude
qiw with respect to the world frame. It also contains the IMU biases on
gyroscopes bω and accelerometers ba, the common visual scale factor Λ and
the 6DoF transformation between the IMU and the camera in translation
pci and rotation qci . Thus, we provide a self-calibrating and so-called power-
on-and-go system.

The terrain plane is represented using three parameters: two for the
unit normal vector (elevation α and azimuth β) and one for the distance of
the plane to the origin. Without loss of generality, we can anchor the world
frame in the terrain plane such that its distance to the origin and azimuth
vanishes. A non-linear observability analysis reveals that α is observable
and – if α 6= 0 (i.e. if the plane is inclined with respect to gravity) – the full
attitude including yaw with respect to the plane inclination of the SUAV
becomes observable. In fact, the only unobservable states in χ are the two
dimensions of the position vector parallel to the terrain plane.

While the uncertainty for the process noise is given by the IMU man-
ufacturer and from signal analysis of the accelerometer and gyroscope, we
need similar information for the visual updates. Since all visual measure-
ments are computed from least squares methods, this is straight forward by
using the residuals. This uncertainty information not only allows to apply
correct measurement noise for an EKF update step but also to gate the
measurements if they seem to be invalid according to a χ2 test. If the test
fails, the visual update is discarded and the EKF continues to integrate the
IMU readings until a valid visual update is available. Since all visual up-
dates are independent and only require two consecutive frames, this gating
can directly be applied and used to bridge short term failures of the vision
module without further specific considerations.

We use the approach in a similar way as described in [142] for the EKF
system definition. For fast initialization we use a manually measured IMU-
camera 6DoF transformation pci , qci for initialization, set the bias value bω =
0, and baa = 0, and assume a 1 m distance to the scene (typical setup when
holding the SUAV at waist height). The initial attitude qiw is computed by
using two constraints: First, the gravity measured by the accelerometer (we
assume little to no motion for initialization) must align with the gravity in
the world frame g = R(qwi )a. Second, the azimuth for the terrain plane
normal vector in the world frame nwtp = R(qwi )R(qic)ntp must vanish. This
will additionally yield

viw = R(qwi )(R(qwi )Λnηv − bωcpci ) (4.15)

and the initialization of the metric scene distance is straight forward.
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Figure 4.6: 500 g AscTec Hummingbird equipped with a 12 g Exynos 4412 (quad
Cortex ARM A9, 1.7 GHz) processing board and a global shutter WVGA camera.

This initialization only needs one visual and one inertial measurement (i.e.
two consecutive camera frames) and is sufficiently close to the real values
to allow a very quick convergence.

4.5 Performance evaluation

We implemented our approach on-board a quadrotor, the 500 g AscTec
Hummingbird, equipped with a 12 g Exynos 4412 processing board and
a global shutter WVGA camera (Figure 4.6) using ROS for inter process
communication. Even though our approach would run at more than 50 Hz
on this platform, for the following experiments, we ran the camera at 30 Hz
and the IMU at 1 kHz to provide a safety margin. A low level attitude
control auto pilot board (60 MHz ARM7) hosts the IMU and performs the
EKF prediction step for short term control. The camera is plugged to the
Exynos where we perform the more complex image processing and EKF up-
date step. We synchronize the auto pilot board with the Exynos by an NTP
like protocol. Thus, camera and IMU are not hardware synchronized. The
time jitter on the USB bus plus the inaccuracy of the NTP time synchro-
nization is still well below our margins for IMU-camera time misalignment
discussed in Section 4.3.

For rapid deployment, we literally throw the SUAV in the air just after
switching it on. Stabilization after such a drastic maneuver with essen-
tially no initialization, hardware time synchronization, or previous calibra-
tion is only possible with our improved and robust visual measurements, our
normalization method for accurate scale tracking, and robust initialization
approach.

For performance testing, we hold the SUAV in the hand, switch on the
motors and the start the state estimation. No particular motion is required
for initialization (as for example translation is needed to initialize map-
based SLAM approaches). Since we use any two consecutive camera frames
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Figure 4.7: Throwing a small rotorcraft. With the fail-safe state estimation using
only two consecutive camera frames without any feature history or (local) map, we
are able to literally toss the rotorcraft in the air for deployment.

to initialize the system states, we can immediately throw the vehicle in the
air for deployment. Figure 4.7 depicts such a throw.

Fig. 8 to Fig. 12 depict the different states and IMU readings during
the throw maneuver. From t=32s to t=33s we hold the vehicle as depicted
in Fig. 7 in the lowest position. We throw the SUAV just after t=33s where
it enters a parabola flight due to gravity only controlling its attitude (we
deliberately delay the position control to have some free flight). Just after
t=34s we start the position control and the vehicle stabilizes within the next
1.5s until about t=35.5s. During the next 5-7s the visual scale factor fully
converges.

Fig. 8 depicts the gyroscope readings during the maneuver. Immedi-
ately after releasing the SUAV, the low-level attitude controller stabilizes
the helicopter. The throw and this stabilization maneuver cause angular
velocities up to 6rad/sec. This causes motion blur and errors in the vision
module computing velocity and scene plane parameters. However, the IMU
can bridge these short moments by integrating the inertial readings. Any
time two consecutive images yield reliable optical flow readings, they can
be used as an EKF update, if not, the visual input is discarded and the
IMU simply keeps integrating. Errors in some frames do not cause issues
since we do not have a feature history or a (local) map which could get
corrupted. Erroneous frames are simply skipped without consequences in
our approach.

Fig. 9 depicts the accelerometer readings. At the point of maximum
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Figure 4.8: Angular velocities while throwing the SUAV in the air. At the throw
the angular velocity reaches a maximum of 6rad/s.
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Figure 4.9: The acceleration graph shows the different stages of the throw. The
SUAV experiences large acceleration at the beginning, enters a free fall flight as
soon as we release it and experiences gravity once the position controller stabilizes
it in hover mode. We use the low gravity threshold during free fall for a timer to
actively delay the start of the position controller.

excitation, the acceleration reaches up to 40m/s2. Once the SUAV is re-
leased, it enters a free fall flight barely measuring any acceleration. We use
this low acceleration point for a timer to start the position control. Just
after t=34s this control starts and stabilizes the SUAV within 1.5s to hover
mode, hence the 9.81m/s2 in the z-accelerometer after stabilization.

Fig. 10 depicts the velocity the SUAV experiences. It reaches a maxi-
mum of 3.7m/s. The free fall period shows as a clean linear velocity decrease
until the position controller starts just after t=34s.

Since the proposed algorithm can estimate the metric scale Λ using in-
ertial cues, the metric scene distance is observable. Thus, the controller
can keep the SUAV at a fix distance with respect to the scene. Fig. 11
shows this estimated distance during the throw. The parabola flown during
free fall after releasing the vehicle is well visible. After t=34s the controller
starts and tries to keep the SUAV leveled. A clear overshoot is visible and
at about t=40s (i.e. 7s after tossing the vehicle) the SUAV is stabilized at
a distance of roughly 1.4m to the scene. The overshoot is mainly caused
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Figure 4.10: Velocity plot of the thrown SUAV. The maximal velocity is as high
as 3.7m/s. The free fall period is well visible in the linear velocity decrease until
just after t=34s when the position controller starts.
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Figure 4.11: Estimation of the metric scene distance. This state is observable
since the metric scale factor Λ is observable. Thus, the SUAV can be controlled
to keep constant scene distance. The state is accurately tracked during the throw
and the free fall phase until the controller starts and keeps the vehicle at a height
of about 1.4 m above the scene.

by the non-converged metric scale Λ. As the vehicle moves and excites
the accelerometers, more information is acquired to converge this state and
the position control becomes more precise. In fact, this is a positive feed-
back since an unconverged scale factor leads to imprecise position control,
which leads to excitation, which leads to information for better scale factor
estimation.

Figure 4.12 shows the attitude estimation. Note that the above described
state estimation includes the drift free estimation of yaw. The attitude is
independent of the scale factor convergence and can thus be stabilized much
more quickly. Note in the graph that, after stabilization, the yaw is roughly
constant since it is observable.

4.6 Conclusion

In this chapter, we presented a GPS independent inertialoptical flow (IOF)
approach which significantly advances the state-of-the-art with respect to



4.6. Conclusion 95

32 34 36 38 40 42 44

-0.5

0

0.5

1

1.5
at

tit
ud

e 
[ra

d]

time [s]

roll
pitch
yaw

Figure 4.12: Attitude estimation while throwing the SUAV. Note, that our frame-
work provides a drift free estimation of the full attitude including yaw. Apart from
some corrective actions in roll and pitch the graph shows this non-drifting behavior.

fast and robust deployment of small rotorcraft SUAVs without the need for
specific initialization procedures or previous calibration.

We only assume pre-calibrated intrinsic camera parameters. The frame-
work fully self-calibrates the drifting IMU biases, the IMU-camera 6DoF ex-
trinsic transformation, and the metric scale to estimate metric velocity and
scene distance for accurate SUAV control. Our approach does not require
hardware time-synchronization. Instead, we use a soft time-synchronization
via an NTP like protocol. We analyzed in detail the effects of time mis-
alignment and showed that our approach is robust against misalignment,
typically occurring on real systems.

Our optical flow based vision module computes the 3D velocity vector in
cluttered, 3D environment. Since the scene distance computation requires
the extraction of the dominant terrain plane, we developed an approach
which is robust against clutter on this plane allowing correct vision-based
measurements in most scenarios.

The robustness against time misalignment and scene clutter together
with our proposed robust initialization method which uses only two con-
secutive camera frames culminated in a framework which practically gives
instantaneous state estimates after powering up the vehicle. Erroneous mea-
surements can simply be skipped since we do not use any feature history
or (local) map. This allows drastic short-term excitations and originated
in the first throw-and-go SUAV purely navigating on a single camera and
IMU.
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5
Navigation of UAV Using Phased Array Radio

This chapter is based on S. M. Albrektsen, A Sægrov, and T. A Johansen.
Navigation of UAV using phased array radio. In 2017 Workshop on Re-
search, Education and Development of Unmanned Aerial Systems (RED-
UAS), pages 138–143, Linkoping, Sweden, October 3–5 2017. doi: 10.1109/
RED-UAS.2017.8101657

5.1 Introduction

Today, two major challenges with unmanned aerial vehicle (UAV) flights
beyond visual line of sight (BVLOS) are navigation and communication.
UAVs’ abilities to cover large distances in a short amount of time, and their
maneuverability, make them valuable tools for many civilian tasks such as
surveillance of power lines, search and rescue and scientific research. To
be able to safely perform these tasks, however, an operator needs to know
where the UAVs are, what they are sensing, and he or she needs to be able
to send updated commands to the UAV.

When it comes to positioning sensors there are two main categories;
absolute positioning systems, which measure a position in relation to a fixed
point, and relative positioning systems, which measure a position in relation
to the previous position. When using relative positioning sensors, the errors
accumulate, as old estimates are added to the current estimate, and thus the
accuracy of the estimated position will deteriorate over time. Conversely,
an absolute positioning system will typically have bounded errors, and the
errors will not vary over time as they are measured directly. The most
commonly used absolute positioning systems today are global navigation
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satellite systems (GNSS) such as Global Positioning System (GPS), due to
the low integration cost and global coverage.

There are, unfortunately, challenges when relying solely on GNSS posi-
tioning. Hardware failures, operation in areas with weak signal reception
due to multipath or atmospheric effects, and malicious disruption of the sig-
nal through jamming [103], spoofing [74], selective availability (SA) [76], or
unintended electronic interference from other systems, makes it vital to have
alternative sources of navigation. The state-of-the-art solution to GPS-less
navigation is using computer vision [14, 41, 54, 73, 75, 81, 96, 145]. The
main weakness of vision-based solutions is the need for visual features and
such systems are therefore susceptible to both atmospheric and light con-
ditions. When flying over a calm ocean there are also few visible features,
even with high visibility. Another challenge with computer vision systems
is that image analysis is both complex and computationally expensive. As
the downlink data-rate from a UAV to the ground usually is too limited
to transfer a high-quality video stream, especially on long-range flights,
data analysis needs to be performed on-board. Due to the limited onboard
computational power it is advantageous to reduce the computational power
needed by the navigation system, to be able to focus on the mission specific
tasks instead.

By using a phased array radio system (PARS), both the challenges of
communication and navigation are addressed. By using electrical beam-
forming, the PARS is able to direct the energy from the transmitting an-
tenna elements towards the receiving radio [88, 133, 134, 140]. In addition
to allowing efficient high-rate data transfer over long distances, the system is
also able to provide positioning data. The position estimates are obtained
by accurately timing the round-trip time of the signal and analyzing the
direction of the incoming radio waves [87, 128]. This positioning system
provides a local absolute position measurement, it is GNSS-independent,
and no complex signal analysis needs to be performed on board the UAV.

This chapter studies a PARS as an alternative to GNSS-based position-
ing. As the PARS system provides absolute position estimates, it is drift
free and thus a valuable sensor for long duration flights. Due to a degrada-
tion in vertical accuracy, a solution of using a barometer as an altimeter to
compensate for this is effect is proposed. The system is tested and verified
through a 35 min flight over the ocean and compared to a RTK (Real Time
Kinematic) GPS solution.

This chapter first gives an overview of the PARS used in Section 5.2.
Then an overview of the proposed UAV system, in which to use the PARS,
is presented in Section 5.3. A method of estimating the pose of the ground
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radio is given in Section 5.4. Experimental results from a flight with a UAV
are then presented in Section 5.5 with results from radio measurements in
Section 5.5.1 and barometer aided results, for handling vertical inaccuracies,
in Section 5.5.2. Finally, a conclusion is given in Section 5.6.

5.2 Phased array radio navigation system
By accurately recording the time at which radio messages are sent from
the ground radio and the time at which the corresponding wireless ACK-
responses are received from the UAV radio, the round-trip time (RTT) of the
signals are calculated by subtracting the internal computation time. This
RTT is then used to calculate the distance between the ground radio and
the UAV, knowing the speed of radio waves in air and the internal delays of
the system. These direction and distance measurements then provide local
absolute position measurements for the UAV, by knowing the pose of the
ground radio.

Although the radio system does not have a global coverage, as opposed
to GNSS, a sector of tens of kilometers can be covered from a single ground
radio. The frustum covered by the ground radio spans 90◦ in both the hor-
izontal direction and the vertical direction, with a maximal range of 60 km.
Multiple ground radios can be used to ensure coverage of a larger opera-
tional area if needed. Note that the accuracy of the positional measurements
in Cartesian coordinates will deteriorate proportionally with the measured
distance, as the accuracy of the radio is specified as bearing and elevation
angles from the ground radio.

As the PARS has a much higher signal-to-noise ratio (SNR) than GNSS
signals transmitted from satellite orbit, jamming or spoofing the PARS po-
sition measurements are much more difficult. The PARS is also directional,
as opposed to GNSS, and thus a malicious source needs to be in the visible
sector of the ground radio to disrupt the position estimates. In addition,
position estimates sent from the ground radio can be strongly encrypted to
verify the sender’s origin.

5.3 Experimental system overview
The phased array radio system used in this experiment is the Radionor
Communications CRE2 189 PARS ground radio with a 8 by 8 grid of an-
tenna elements, and an CRE2-144-LW with four antenna elements placed
on the nose of the UAV. The onboard CRE2-144-LW has a weight of 85 g,
dimensions of 120 mm x 65 mm x 13.3 mm, and uses AES-256 encryption.
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The CRE-144-LW is depicted in Fig. 5.1. To provide high efficiency data
transfer from a ground station to a UAV, the PARS uses electrical beam-
forming to focus the transmitted energy in one direction. To properly be
able to use beamforming, the ground radio needs to know the direction and
preferably the distance to the UAV. To find this direction, the ground radio
first sends an omnidirectional "ping"-signal, then observes the incoming re-
sponse from the UAV radio, to find the direction towards UAV’s antennas.
The directional vector from the ground radio’s antennas towards the UAV’s
radio antennas is calculated by observing how the signals are received by the
different antenna elements on the ground radio. By using electrical beam-
forming to increase the performance of the radio system, a maximum user
data throughput of 15 Mbps at 20 km, 7 Mbps at 30 km, and 2.3 Mbps at
60 km is achieved. An overview of the experimental setup is given in Figure
5.2.

Figure 5.1: The CRE2-144-LW phased array radio

As can be seen in Figure 5.3, the system on board the UAV is split in to
three main parts; the avionics, the SenTiStack, and the PARS. The avionics
is responsible for the flight critical components of the UAV and can oper-
ate without any other parts of the system during normal conditions. This
system is based around the PIXHAWK[92] autopilot with a LEA-7N GPS
receiver [135], the PX4 Airspeed Sensor based on the MS4525DO sensor [90],
and the standard integrated PIXHAWK sensor suite with IMUs[66, 126, 127]
and a MEAS MS5611 barometer [89].

The SenTiStack, described in Section 3.4.2, is responsible for providing
a more accurate and robust navigation solution for the UAV using RTK
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Figure 5.2: A minimal overview of a UAV and ground station system. For clarity,
the avionics are not shown.

GPS, a tactical grade IMU and a hardware synchronization board. To
be able to calculate a high precision position solution based on GPS, raw
satellite data with carrier-phase measurements are recorded on the base
station. These measurements can either be transmitted from the ground
station to the UAV, or be stored on the ground station and only be used
for post-processing. A separate GPS receiver, the ublox LEA M8T [136],
is used due to the difficulties of relaying raw GPS measurements from the
GPS receiver attached to the PIXHAWK.

To accurately synchronize the data a hardware synchronization board,
the SyncBoard, described in Chapter 2, is used to capture the PPS (pulse
per second) signal from the GPS receiver and the time of validity (TOV)
from the IMU, and attach accurate timestamps to the corresponding sensor
messages. The data recorded by the SyncBoard is then transferred through
USB to the ODroid-XU4 on-board computer and stored on the attached
embedded multi-media controller (eMMC) storage.

5.3.1 Real-time kinematic GNSS

To improve the accuracy of GNSS positioning systems, the real-time kine-
matic (RTK) solution is commonly used. By having a stationary ground
station with a known location and comparing the phase of the signal’s carrier
wave received at the ground station to the measurements received on-board
the UAV, the RTK position can be calculated. By multiplying the carrier
wavelength with the number of whole cycles between the satellite and the
UAV, the phase difference can be compensated for and centimeter-level pre-
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cision can be achieved. This makes it a good option for a ground-truth when
evaluating the performance of the PARS.
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Figure 5.3: System overview of the UAV payload and ground station. The dashed
line between the radios represents wireless communication. For simplicity, some
components of the avionics are not shown in this overview.
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5.4 Ground radio pose estimation
Each time the ground radio is moved, its pose needs to be estimated. This
can be done manually, by measuring the position using a GNSS receiver
and the attitude using an inclinometer and a compass, but a more accurate,
time efficient and elegant method is to estimate the pose automatically.

By accurately calculating the position of the UAV using RTK satellite
navigation, and accurately synchronizing the measurements from the ground
radio measurements with the GPS clock, the radio-pose which would pro-
duce the observed measurements can be calculated. To compensate for noise
and other inaccuracies of the measurements, several such measurement pairs
are used. In [60], summarized by [123], this is done by taking the singular
value decomposition (SVD) of the mean-subtracted measurements and then
using the result to calculate the rotation matrix, R, for the ground radio in
the local East-North-Up (ENU) coordinate system.

First we convert the radio measurements, given in bearing, elevation and
range, to Cartesian coordinates. Then we organize the measurements from
the RTK solution and the radio measurements in two separate vectors.

prtk =


(x, y, z)1,rtk
(x, y, z)2,rtk

...
(x, y, z)n,rtk

 pradio =


(x, y, z)1,radio
(x, y, z)2,radio

...
(x, y, z)n,radio

 (5.1)

Then we subtract the mean value of the measurements:

p∗
rtk = prtk − p̄rtk (5.2)

p∗
radio = pradio − p̄radio (5.3)

and use the SVD as follows:

(p∗
radio)ᵀ · p∗

rtk = UΣV ᵀ (5.4)

Then we calculate the rotation matrix as in Equation 25 in [123]. The
det(V Uᵀ) term comes from the special orientation reflection case described
in [123].

R = V


1

. . .
1

det(V Uᵀ)

Uᵀ (5.5)
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The position of the ground radio, t, is then calculated by:

t = p̄rtk −Rp̄radio (5.6)

To achieve more accurate results, the measurements can be weighted
based on the estimated accuracy from the sensors.

5.5 Experimental results
To verify the positional measurements from the PARS, an experiment was
carried out using a Skywalker X8 UAV at Agdenes outside Trondheim, Nor-
way on June 23rd 2016 in good weather conditions and a forecasted wind
of 15 km/h.

Figure 5.4: A map of the flight track, with indicators showing the loitering circles
from 520 s to 650 s and 1540 s to 1660 s after takeoff. The icon with the building
indicates the base station.

By recording GPS measurements at a stationary location close to the
mission area, the accuracy of the GPS measurements can be improved, by
compensating for local atmospheric disturbances. An open source RTK
solver, RTKLIB, was used to find the real-time kinematic GPS solution.
This solution is labeled RTK in the plots in this section. Note that the
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RTK solution is only used to calibrate the position of the PARS and for
verification but is not used to improve the radio measurements.

To ensure that the data for the ground-pose calibration is reliable, UAV
missions can be preceded by a calibration step. To calibrate the ground
radio pose, the UAV should be piloted in an area with good GPS coverage,
while recording PARS measurements. This step can either be a separate
flight, or the initial part of a longer mission. The recorded dataset can then
be used in the calibration step described in Section 5.4.

5.5.1 Raw radio measurements
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Figure 5.5: Measurements from the phased array radio system

Figure 5.5 shows the measurements from a complete UAV flight with a
maximum measured distance of approximately 5 km from the ground sta-
tion. When the UAV is close to the base station, from 0 s to 175 s after
takeoff, the measured angle fluctuates as the UAV is outside the visible sec-
tor of the radio. Note that although the UAV maintains a fixed altitude,
the angle measurement in the y-direction varies with approximately 4◦ at
about 4125 m. This is an inaccuracy likely due to reflections of the radio
beams in the surface of the water, and results in an error of the position
measurement from the radio of 4125 m sin(4◦) ≈ 288 m. Figure 5.6 shows a
ground track of the flight from both the RTK GPS and radio measurements,
with the radio position and opening frustum in the horizontal plane shown.
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Figure 5.7 shows ENU plots from both the RTK GPS measurements,
and Figure 5.8 shows zoomed-in views at times the UAV was loitering. In
the Horizontal column of Table 5.2 the number of measurements in the
horizontal plane within a specified accuracy are summarized. The error
is calculated as the root-mean-square (RMS) of difference from the RTK
position measurements.
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Figure 5.6: Ground track of the PARS measurements and the RTK solution.
The black circle marks the radio position, and the green lines indicate the visible
frustum from the radio in the horizontal plane.

5.5.2 Barometric vertical correction

To compensate for the inaccuracies of the radio measurements in the vertical
plane, measurements from the standard barometer (altimeter) connected to
the PIXHAWK autopilot is used. As can be seen from Figure 5.9, these



108 Navigation of UAV Using Phased Array Radio

0 500 1000 1500 2000

5000

4000

3000

2000

1000

0

Ea
st

/N
or

th
 [m

]

Radio East
RTK East
Radio North
RTK North

0 500 1000 1500 2000
Time [s]

1000

500

0

500

Up
 [m

]

Radio Up
RTK Up

Figure 5.7: Position measurements from the PARS, and RTK-GPS measurements
for reference. The data from 897-901 s and 913-1148 s are missing due to a file
transfer that disrupted the measurements.



5.5. Experimental results 109

520 540 560 580 600 620 640

4100

4000

3900

3800

Ea
st

 [m
]

750

700

650

600

550

No
rth

 [m
]

Radio East
RTK East
Radio North
RTK North

520 540 560 580 600 620 640
Time [s]

100

200

300

400

Up
 [m

]

Radio Up
RTK Up

Figure 5.8: PARS measurements from 520 s to 650 s of loitering UAV at a fixed
altitude, and RTK-GPS measurements for reference
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measurements are significantly closer to the RTK measurements than the
radio measurements. Although the errors of a barometer are unbounded
and vary with weather conditions, they tend to be considerably more stable
than for example position estimates based on IMU, and should provide
sufficiently accurate readings for the duration of a typical flight in most
scenarios. A full plot of the combined data can be seen in Figure 5.9.

Table 5.1 lists these numbers in addition to the mean error and stan-
dard deviation of the error of both the radio-only and barometer supported
measurements. Figure 5.10 contains a cumulative histogram of the RMS
error and Table 5.2 lists example points from the histogram.

Table 5.1: Comparison of radio-only and radio measurements compensated with
barometer measurements

Radio only Radio + barometer
Mean error 96.22 m 24.23 m

Standard deviation 95.26 m 16.66 m

Table 5.2: Percentage of measurements that are within a certain accuracy. The
Horizontal measurements are radio-only measurements without the vertical com-
ponents.

Measurements Horizontal Radio only Radio + barometer
20.00 m 52.71 % 19.40 % 50.46 %
30.00 m 76.52 % 29.72 % 74.90 %
40.00 m 88.23 % 36.44 % 87.89 %
100.00 m 99.69 % 63.65 % 99.69 %
200.00 m 99.94 % 87.83 % 99.94 %

5.6 Conclusion

In this chapter we have studied a novel method of using a PARS and a
barometer for absolute positioning of a UAV. As the phased array radio sys-
tem is primarily used for communication, the system as a whole solves two
major challenges with UAV operations. As radio beam reflections, caused
by the ocean surface, disrupt the vertical accuracy of the position measure-
ments of the UAV, a barometer is used as a vertical reference.

The PARS has been tested and verified with experimental results, and
when combined with barometer readings, the mean error compared to RTK
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Figure 5.9: RTK-GPS plotted against radio measurements in the horizontal plane
and barometer readings in the vertical plane.

Figure 5.10: Cumulative histogram of the root mean square of radio measurement
errors in all three directions.
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GPS is 24.23 m and 87.89 % of the measurements are within 40 m of the
RTK GPS measurements. As the system provides absolute position mea-
surements, independent from GNSS measurements, it is a valuable naviga-
tion source for BVLOS UAV flights.



6
Phased Array Radio System Aided Inertial
Navigation for Unmanned Aerial Vehicles

This chapter is based on S. M. Albrektsen, T. H. Bryne, and T. A Johansen.
Phased array radio system aided inertial navigation for unmanned aerial
vehicles. In 2018 IEEE Aerospace Conference, Big Sky, Montana, USA,
March 3–10 2018. doi: 10.1109/AERO.2018.8396433. Note that Section 6.7
is not in the original publication.

6.1 Introduction

In this chapter the accuracy of the navigation solution of the absolute PARS
measurements, previously presented in Chapter 5, are improved by using an
inertial navigation system (INS). The INS is used to improve the position
estimates in-between the radio measurements, and to improve the band-
width of the system. It can furthermore act as a smoothing filter on the
position estimates with a large variance and it makes the attitude of the
UAV observable when combined with a magnetometer. The INS is, how-
ever, only accurate in short time intervals as the measurements it provides
are relative to the previously estimated state, and these errors accumulate
with time.

This chapter presents a navigation solution based on measurements from
a PARS along with an INS, a barometer and a magnetometer. By aiding
a high-bandwidth IMU with the absolute position measurements from a
PARS, along with altitude measurements from a barometer and heading
from a magnetometer, we achieve a high-bandwidth, drift-free navigation
solution that is independent of GNSS. We test our filter in an experiment

113
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and compare the results to a real-time kinematics (RTK) GNSS solution.
Compared to this solution we achieve a combined root-mean-square error
of approximately 26.3 m.

6.1.1 Chapter overview

We start by defining the preliminaries in Section 6.2 before we introduce
the necessary steps needed to use the PARS as a positioning system in
Section 6.3. We continue with presenting our nonlinear observer for aided
INS in Section 6.4. An experiment was carried out, and a description of the
system and hardware used is described in Section 6.5. The results from this
experiment are presented in Section 6.6. An updated experiment was also
performed, using identical hardware, but with updated software, and results
from this experiment are presented in Section 6.7. Finally, a conclusion is
given in Section 6.8.

6.2 Preliminaries
Before presenting the PARS-based positioning, and the PARS-aided INS,
we state some preliminaries.

6.2.1 Notation

The Euclidean vector norm is denoted ‖ · ‖2. The n × n identity matrix
is denoted In. Moreover, the transpose of a vector or a matrix is denoted
(·)ᵀ. Coordinate frames are denoted with {·}. S(·) ∈ SS(3) represents
the skew symmetric matrix such that S(z1)z2 = z1 × z2 for two vectors
z1, z2 ∈ R3. In addition, zabc ∈ R3 denotes a vector z, to frame {c}, relative
{b}, decomposed in {a}. Moreover, ⊗ denotes the Hamiltonian quaternion
product. Saturation is represented by sat?, where the subscript indicates
the saturation limit.

The rotation matrix, Rb
a ∈ SO(3), describes the rotation between two

given frames {a} and {b}. Equivalently, the rotation between {a} and {b}
may be represented using the unit quaternion qba = (s, rᵀ)ᵀ where s ∈ R1 is
the real part of the quaternion and r ∈ R3 is the vector part. In addition,
the Euler angles (roll, pitch and yaw) are given as

Θ =
(
φ, θ, ψ

)ᵀ
. (6.1)

Latitude and longitude on Earth is represented by µ ∈ [−π/2, π/2] and
λ ∈ (−π, π], respectively.
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Figure 6.1: Definitions of the BODY, Tangent, ECEF and ECI reference frames.

6.2.2 Coordinate frames

This paper considers four coordinate frames; The Earth Centered Inertial
(ECI) frame, the Earth Centered Earth Fixed (ECEF) frame, a tangent
frame equivalent of an Earth-fixed North East Down (NED) frame, and the
BODY reference frame, denoted {i}, {e}, {t}, and {b}, respectively (see
Figure 6.1). The NED directions are respectively denoted N, E, D.

6.2.3 Inertial measurement units

A simplified measurement model of an IMU, providing specific force and
angular rate sensor (ARS) measurements, is given as

f bIMU = f bib + bbacc +wb
acc (6.2)

ωbIMU = ωbib + bbars +wb
ars (6.3)

where f bib is the specific force, relating to the acceleration and gravity vector,
gtb = (0, 0, g)ᵀ through

f bib = Rb
nv̇

t
ib −Rb

tg
t
b

= abib + S(ωbib)vbib −Rb
tg
t
b. (6.4)

ωbib represents angular velocity, while vbib, represents the BODY-fixed linear
velocity. The BODY-fixed acceleration is represented by abib, while S(ωbib)vbib
constitutes the centripetal accelerations. bb? represent the accelerometer
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(acc) biases, and the angular rate sensor (ars) biases, respectively. wb
? rep-

resent noise.

6.2.4 Strapdown equations

The NLO-based INS is derived using

ṗttb = vttb (6.5)
v̇ttb = −2S(ωtit)vttb +Rt

bf
b
ib + gtb (6.6)

q̇tb = 1
2q

t
b ⊗

(
0
ωbib

)
− 1

2q
t
b ⊗

(
0
ωtit

)
(6.7)

as strapdown equations. Moreover,

ωtit = ωtie =

 cos(µ)
0

− sin(λ)

ωie, (6.8)

[34], due to {t} being Earth fixed and thus ωtet = 03×1. pttb and vttb represents
the position and velocity vectors, respectively.

6.3 Phased array radio system positioning
As described in Section 6.1 the range, elevation and bearing from the ground
antenna towards the UAV can be calculated by observing incoming signals
from the UAV. To be able to use these measurements for navigation, they
need to be rotated into the UAV’s positional reference frame. To do this,
the pose of the base station needs to be known.

6.3.1 PARS base station pose

To be able to use the PARS system for different experiments, a mobile
PARS base station is used. A downside of this approach is that the pose
of the base station needs to be calibrated on a per-mission basis. Although
a rough estimate can done manually, an automatic calibration routine is
advantageous, not only to save time, but also to increase the accuracy of
the pose estimate.

To ensure high-quality data for the base station pose estimation, mis-
sions can be preceded by a calibration phase, where the UAV is maneuvered
in an area with good GNSS coverage and optimal visibility from the base
station. From this data, an RTK solution can be calculated, and by using
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the position measurements from the PARS, the pose of the base station
PARS can be estimated as described in Chapter 5.

Positioning: range/bearing/elevation measurements

Although the primary functionality of the PARS is data transfer, the sys-
tem can also be used as an absolute positioning measurement system. By
observing the phase difference of the incoming signal between the different
antenna elements in the radio array, the bearing and elevation of the UAV
can be observed, in the ground radio’s frame of reference, {r}. There exits
a variety of methods that aim to solve this problem of direction-of-arrival
(DOA) [77], perhaps most notably Schmidt’s MUSIC [114] and Roy and
Kaliath’s ESPRIT [110]. Furthermore, by accurately timing the transmis-
sion time of the signal and subtracting internal processing time, the range
measurement is found. To be able to use these measurements for navi-
gation, they need to be rotated and translated into the UAV’s positional
reference frame. Calculations of the pose from the mobile PARS ground
station to the tangent frame is described in Chapter 5. As the calculation
of the PARS measurements are done on the ground, a minimal amount of
processing power is needed by the computer on-board the UAV.

The PARS range, elevation and bearing measurements can be used to
calculate the relative position of the UAV in a local Earth-fixed frame.
When using the tangent frame, as done in this paper, the range/bearing
measurements related to the UAV position, through the radio coordinate
system {r} using,

ρm = ρu + ερ, (6.9)
ψm = ψu + εψ, (6.10)
θm = θu + εθ, (6.11)

where

ρu = ‖prPARS‖2, (6.12)
tan(ψu) = prrb,y/p

r
rb,x, (6.13)

tan(θu) = −prrb,z/ρhor (6.14)

with
‖prPARS‖2 =

√
(prrb,x)2 + (prrb,y)2 + (prrb,z)2 (6.15)

and
ρ̄u =

√
(prrb,x)2 + (prrb,y)2 (6.16)
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Figure 6.2: Range/bearing measurements. The red vector denotes the vector
from the {t} frame to the {r}, given in the {t} frame, denoted lrtr. The angle ψr

represents the azimuth angle between the {t} frame and the {t} frame.

while ε? represents noise. Moreover, the relationships of (6.12)–(6.14) are
like those in [131, Ch. 13.6.2.2], used for radar tracking of aircraft, and can
derived from

prPARS =

p
r
rb,x

prrb,y
prrb,z

 =

ρu cos(ψu) cos(θu)
ρu sin(ψu) cos(θu)
−ρu sin(θu)

 . (6.17)

according to Figure 6.2. Based on (7.1), the PARS position is given in the
tangent frame as ptPARS = Rt

r(ψr)prPARS + lttr, where lttr is the vector from
the {t} frame to the {r} frame, decomposed in the {t}. ψr represents the
azimuth angle from {t} to {r}. ψr is obtained in during calibration of the
PARS ground antenna.



6.4. Nonlinear observer for aided INS 119

ωbIMUIMU

Baromenter
Altitude

ptBARO,D

PARS
Position

ptPARS

f̂ tib

Σ1

ψIMU

Attitude
Observer

Translational
Motion
Observer

Compass

Σ2

f bIMU

f bIMU

q̂tb, σ̂bib
p̂ttb

v̂ttb

Figure 6.3: NLO structure overview

6.4 Nonlinear observer for aided INS

The position, velocity and attitude (PVA) of the UAS is estimated using a
feedback-interconnected nonlinear observer integration strategy as depicted
in Figure 6.3, based on the work of [47] and references therein. The PVA es-
timation is carried out in two steps. First the attitude is estimated by using
rate gyro, specific force and heading reference measurements. The attitude
observer is further aided by the second step, consisting of a Translational
Motion Observer (TMO) providing specific force estimates in the navigation
frame, together with 3-DOF position and velocity estimates based on the
estimated attitude, in addition to, specific force, and aiding sensors.

6.4.1 Aiding sensors

The aiding measurements in the attitude observer is the accelerometer used
for leveling, and the UAVs autopilot compass, ψauto. Due to signal reflec-
tions in the ocean surface, the vertical accuracy of the PARS is reduced
significantly. To compensate for this inaccuracy, the TMO is aided by a
barometer in addition to using the horizontal PARS position obtained in
Section 6.3.1, similarly as in Chapter 5.
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6.4.2 Attitude observer

The NLO for estimating the attitude between the {b} and the {t} frame is
given similar to [47],

Σ1 :



˙̂qtb = 1
2 q̂

t
b ⊗

(
0
ω̂bib

)
− 1

2

(
0
ωtit

)
⊗ q̂tb,

ω̂bib = ωbIMU − b̂bars + σ̂bib,
˙̂
bbars = Proj

(
b̂bars,−kIσ̂bib

)
,

(6.18a)

(6.18b)

(6.18c)

where Proj(?, ?) denotes the angular rate bias projection algorithm ensuring
that ‖b̂bars‖2 ≤ Mb̂ars

for Mb̂ars
> Mbars [46], and kI is the gain associated

with the rate gyro bias estimation. The NLO is structurally the same as in
[47], where the attitude between the {b} and the {e} frame was estimated.
Moreover, the observer’s nonlinear injection term, σ̂bib, is given as

σ̂bib =k1v
b
1 ×Rᵀ(q̂tb)vt1 + k2v

b
2 ×Rᵀ(q̂tb)vt2, (6.19)

where the measurement vectors vb1,2 and reference vectors vt1,2 are calculated
using

vb1 = f b, vt1 = f t, (6.20)
vb2 = f b × cb, vt2 = f t × ct. (6.21)

Furthermore, the measurement and corresponding reference vector pairs in
(6.20)–(6.21) are constructed as

f b = f bIMU
‖f bIMU‖2

, f t =
satMf

(f̂ tib)
‖satMf

(f̂ tib)‖2
, (6.22)

cb =

 cos(ψauto)
− sin(ψauto)

0

 , ct =

1
0
0

 , (6.23)

where ψauto is a heading measurement provided from a given heading refer-
ence such as a compass or a attitude and heading reference system (AHRS).
f̂ tib is the estimated specific force, provided by the TMO, presented next in
Section 6.4.3, as depicted in Figure 6.3. The benefit of using normalized
vectors is that the vector pairs only provide direction, hence these are di-
mensionless, such that the gains k1,2 can be considered as cut-off frequencies
of the complementary filter Σ1 [63]. Since the gains have unit rad/s, σ̂bib
obtains the same unit as ωbIMU.
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6.4.3 Translational motion observer

The TMO is similar to that of [47], except that here the tangent frame is
used as navigation frame, and given as follows,

Σ2 :



˙̂pttb = v̂ttb + ϑK0
ppỹ

t
tb

˙̂vttb = −2S(ωtie)vttb + f̂ tib + gtb + ϑ2K0
vpỹ

t
tb

ξ̇tib = −R(q̂tb)S(σ̂bib)f bIMU + ϑ3K0
ξpỹ

t
tb

f̂ tib = R(q̂tb)f bIMU + ξtib,

(6.24a)
(6.24b)
(6.24c)
(6.24d)

where

ỹttb =

p
t
PARS,N
ptPARS,E
ptBARO,D

− p̂t, (6.25)

while K? are gains associated with the PARS and the barometer measure-
ments. ξtib is an auxiliary state used to estimate f tib. ϑ is a high-gain like
parameter used to guarantee stability. Furthermore, by noting the linear
time-varying (LTV) structure of (6.24) and defining

x :=
(
pttb; vttb; ξtib

)
, (6.26)

the TMO can be written on LTV form as
˙̂x = Ax̂+B(t)u+D(t, x̂) +K(t)(y −Cx̂), (6.27)

with the system matrices,

A =

03×3 I3 03×3
03×3 03×3 I3
03×3 03×3 03×3

 ,B(t) =

 03×3 03×3
R(q̂tb) 03×3
03×3 R(q̂tb)

 , (6.28)

the measurement matrix,

C =
(
I3 03×3 03×3

)
, (6.29)

the vector,

D(t, x̂) =
(
03×1; −2S(ωtie)v̂ttb + gtb; 03×1

)
, (6.30)

and the gain matrix,

K(t) =

Kpp

Kvp

Kξp

 =

 ϑK0
pp

ϑ2K0
vp

ϑ3K0
ξp

 , (6.31)
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where
K0(t) =

(
(K0

pp)ᵀ (K0
vp)ᵀ (K0

ξp)ᵀ
)ᵀ

(6.32)

is given obtain with K0(t) = P (t)CᵀR−1(t), with P (t) = P ᵀ(t) > 0 being
the solution of the time-scaled Riccati equation

1
ϑ
Ṗ (t) = AP (t) + P (t)Aᵀ − PCᵀR−1(t)CᵀP (t)

+B(q̂tb)Q(t)Bᵀ(q̂tb).
(6.33)

Finally, the input is given as

u =
(
f bIMU;−S(σ̂bib)f bIMU

)
. (6.34)

Moreover, the error states of the TMO can be defined as p̃ttb := pttb − p̂ttb,
ṽttb := vttb − v̂ttb, and f̃ ttb := f tib − f̂ tib, where the latter is obtained through a
combination of (6.24c)–(6.24d), the resulting the error state is obtained,

x̃ :=
(
p̃ttb; ṽttb; f̃ tib

)
. (6.35)

The corresponding error dynamics of the origin of Σ2 is then obtained as

˙̃x = (A−K(t)C)x̃+ ρ1(t, x̃) + ρ2(t,χ), (6.36)

with

ρ1(t, x̃) =
(
03×1; −2S(ωtie)ṽttb; 03×1

)
, (6.37)

ρ2(t,χ) =
(
03×1; 03×1; d̃(t,χ)

)
, (6.38)

and where,

d̃(t,χ) = (I3 −R(q̃)ᵀ)Rt
b

(
S(ωbib)f bib + ḟ bib

)
− S(ωtit) (I3 −Rᵀ(q̃))Rt

bf
b
ib −Rᵀ(q̃)Rt

bS(b̃bars)f bib,
(6.39)

similar to [47] and [70]. Hence, semiglobal exponential stability properties
can be achieved as in the cited works.

6.5 Full-scale test setup
To verify the nonlinear observer with positional measurements from the
PARS, we use the data from the experiment described in Section 5.5. In
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addition to the PARS positioning information, data from several other sen-
sors were recorded during this flight.

On-board the UAV, the payload is split into three parts; the on-board
PARS, the experimental navigation stack, and the flight-critical avionics.
This division is done to be able to easily move subsystems between dif-
ferent platforms, and the division is based on functionality: the PARS’
primary function is to provide a communication link between the ground
and the UAV payload, the navigation stack is responsible for providing a
high-quality navigation solution for the UAV, and the avionics is responsible
for all flight-critical functionality.

The SenTiStack consists of a Hardkernel Odroid XU4 [53] on-board com-
puter, with a SenTiBoard, described in Chapter 3. The SenTiBoard reads
and accurately records the timestamps of the incoming messages from a
STIM 300 IMU [117] and a u-blox LEA-M8T GNSS receiver [136]. We use
a PIXHAWK autopilot [91] with a 3DR GPS module containing a u-blox
NEO-7N GPS receiver [135] and a Honeywell HMC5883L digital compass
[58]. The barometer used in this paper is the PIXHAWK’s integrated MEAS
MS5611 [89].

For convenience, the data from the autopilot and navigation stack are
synchronized using the GPS-time timestamps. To fully be able to oper-
ate without GPS coverage, this synchronization is not feasible, but receiv-
ing barometer and magnetometer data from the either from the autopilot’s
communication interface or through additional external sensors is a trivial
alteration.

6.6 Results

6.6.1 Reference measurements

To evaluate the performance of the position estimates from the PARS aided
NLO, an RTK GNSS solution was calculated. This solution has centimeter-
level accuracy, which is sufficient to be considered a ground-truth when
compared to the PARS NLO. The RTK GNSS solution is denoted as RTK
GNSS in the figures and is shown with a green line.

The performance of the attitude observer is compared to the on-board
autopilot’s (the Pixhawk’s) AHRS. Although the Pixhawk uses relatively
low-cost sensors, it is well-tested, and provides an attitude solution which is
independent from the PARS NLO. Note that this solution is not sufficiently
accurate to be considered a ground truth, and we cannot say if the AHRS
or the NLO performs better, but it should at least show the trends of the
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system. The Pixhawk’s AHRS solution is denoted as Pixhawk AHRS in the
figures and is shown with a green line.

6.6.2 Performance metrics

The results statistics presented in this paper is based on three performance
metrics:

• Absolute Mean Error (AME),

• Standard Deviation (STD) and,

• Root mean square (RMS) error

6.6.3 Raw PARS measurements

The raw range, bearing and elevation measurements are shown in Figure 6.4.
Two file transfers disrupted the position measurements from 466 s - 498 s
and 913 s - 1145 s, annotated in Figure 6.4 as A - B and C - D respectively.
During the period from 0 s - 172 s, annotated as E - F, the UAV is circling
near the ground antenna to ascend to cruising altitude. This causes the UAV
to enter and exit the visible sector of the ground antenna, and when the
UAV is outside this sector, the positioning does not work correctly. During
the period from 2100 s - 2147 s, annotated as G - H, the UAV is landing and
is also outside the visible sector of the UAV.

6.6.4 Results: aided INS

To compare the effect of the feedback-interconnection described in Sec-
tion 6.4, two versions of the NLO were realized: one with feedback-intercon-
nection turned on, and one with feedback-interconnection turned off. Both
the observers were tuned equally. The gains for the NLO were chosen as
k1 = 0.095, k2 = 0.6, and kI = 0.0007, and the TMO was tuned as follows:

RPARS = diag
(
72, 72, 0.06322

)
,

QPARS = diag
(
0.03082 · I3, 50 · I3

)
.

As position measurements are missing in the intervals from 466 s to
498 s and 913 s to 1145 s, the filters rapidly drift off during these intervals,
as they rely only on dead reckoning, which the observer is not tuned to
handle. These intervals heavily skew the metrics for accuracy, and to the
better represent the performance of the PARS, the results presented are
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Figure 6.4: Raw PARS measurements.

filtered to exclude these intervals. The estimates are still used internally
in the filter, but the intervals are removed from the statistics in Tables 6.1
to 6.2 and the plots in Figure 6.9.

As can be seen when comparing Figure 6.6 to Figure 6.7, the NLO
solution without feedback interconnection give better results when there are
no position measurements from the radio. This is expected as the feedback
interconnection is more sensitive to loss of the aiding sensor. To compensate
for this, an improvement was made to the filter, where it turns off the
feedback interconnection if there has not been any position measurements
in a certain amount of time (set to 1 s in these results).

For this experiment we only had access to a single ground antenna, and
limited options for antenna positioning. Due to these limitations we could
not cover the whole area of the mission, particularly around the take-off
and landing areas. In the following statistics the period when the UAV was
outside the visible frustum of the ground antenna are omitted to represent
a more realistic performance of the system.
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Figure 6.5: Position solution from NLO (with feedback interconnection).

From the comparisons given in Figure 6.9, and by comparing tables 6.1
and 6.2, we can see that the feedback interconnection does not significantly
alter the performance of the position estimates, even when omitting the
dead-reckoning parts of the flights. We see, however, that the estimates of
both the pitch and roll are significantly improved by the feedback intercon-
nection.

The velocity solution from the nonlinear observer and the Pixhawk’s
internal extended Kalman filter is shown in Figure 6.10.
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Figure 6.6: Attitude solution from NLO without feedback interconnection (posi-
tion measurements missing from 913 s to 1145 s)

Table 6.1: PARS/BARO/INS (with feedback interconnection): Error statistics,
compared to RTK and Pixhawk respectively

North [m] East [m] Down [m]
AME: 16.78 6.86 7.17
STD: 23.34 9.00 3.56
RMS: 23.35 9.22 7.97

Roll [deg] Pitch [deg] Yaw [deg]
AME: 2.67 2.70 1.98
STD: 4.02 4.04 3.41
RMS: 4.03 4.09 3.41
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Figure 6.7: Attitude solution from NLO with feedback interconnection (position
measurements missing from 913 s to 1145 s)

Table 6.2: PARS/BARO/INS (no feedback interconnection): Error statistics rel-
ative RTK and Pixhawk

North [m] East [m] Down [m]
AME: 16.76 7.59 7.18
STD: 23.28 9.53 3.56
RMS: 23.29 9.81 7.97

Roll [deg] Pitch [deg] Yaw [deg]
AME: 6.33 4.33 1.99
STD: 6.88 6.00 3.33
RMS: 8.69 6.25 3.33
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Figure 6.8: Attitude solution from NLO with thresholded feedback interconnec-
tion (position measurements missing from 913 s to 1145 s)



130 Phased Array Radio System Aided Inertial Navigation for Unmanned
Aerial Vehicles

(a) Position estimate with no feedback-
interconnection
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(b) Position estimates with feedback-in-
terconnection
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(c) Attitude with no feedback-intercon-
nection
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(d) Attitude with feedback interconnec-
tion
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Figure 6.9: Comparison of RTK GPS with position estimates from the NLO and
attitude estimates, with and without feedback interconnection. The results are
filtered to exclude the periods without radio position estimates and the periods
when the UAV is outside the visible region of the radio antenna.
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Figure 6.10: Velocity solution from NLO with feedback interconnection
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6.7 Updated results
To further evaluate the PARS aided NLO, a secondary experiment was car-
ried out. The experiment used identical sensor suite, except for updated
software running PARS, and the DOA detection algorithm for position cal-
culation of the PARS. For this dataset compensation for the skew mounting
alignment error of the IMU was estimated which also increases the perfor-
mance of the NLO.

Table 6.3: PARS/BARO/INS (with feedback interconnection) relative RTK
GNSS/Pixhawk solution

North East Down Norm
AME: 8.34 4.53 3.19 10.01
STD: 15.77 4.09 0.78 16.31
RMS: 16.41 5.62 3.28 17.65

Roll Pitch Yaw Norm
AME: 2.18 3.63 0.90 4.33
STD: 3.60 3.05 2.87 5.52
RMS: 3.60 4.42 2.88 6.39

Table 6.4: PARS/BARO position solution

North East Down Norm
AME: 17.29 7.40 3.19 19.07
STD: 21.20 9.05 0.71 23.06
RMS: 24.72 10.60 3.27 27.09

When comparing the direct PARS/BARO solution presented in Ta-
ble 6.4 to the PARS/BARO/INS solution presented in Table 6.3, we see
a significant improvement in the position estimates, from 27.09 m RMS
with the PARS/BARO solution to 17.65 m RMS with the PARS/BARO
aided NLO solution. We also see a significant improvement in the attitude
estimates with this dataset.
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(a) Clipped attitude estimates
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(b) Clipped position estimates
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(c) Attitude estimates
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(d) Position estimates

750 800 850 900 950 1000 1050 1100 1150 1200 1250
-1000

-500

0

500

1000

1500

750 800 850 900 950 1000 1050 1100 1150 1200 1250
-5000

-4000

-3000

-2000

-1000

0

750 800 850 900 950 1000 1050 1100 1150 1200 1250

-300

-200

-100

0

NLO PARS/INS/Baro

rtk: pos

Figure 6.11: Results from the secondary experiment. The top figures show the
full observer output and the bottom figures show a zoomed-in view of part of the
data.
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6.8 Summary
The nonlinear observer presented in this chapter fuses range and bearing
measurements from the PARS with the measurements from the on-board
inertial measurement unit, a magnetometer and a barometer. By aiding
the INS with PARS measurements, compass readings, and altitude readings
from a barometer, drift-free position, velocity and attitude estimates are
obtained. In addition, the PARS measurements can be used for positioning
alongside today’s GNSS solutions, or as a redundant backup system running
in parallel.

We have verified the performance of the PARS aided navigation filter
through a BVLOS test experiment, by comparing the estimated position
from the PARS aided navigation filter with real-time kinematic GNSS so-
lution. The estimated attitude was compared with the autopilot’s attitude
estimates.

Compared to the RTK GNSS solution, we achieved an accuracy of ap-
proximately 26.3 m RMS on a flight with a maximal distance of 5.35 km
from the ground station. Compared to the Pixhawk autopilot’s AHRS so-
lution, RMS attitude accuracy of approximately 4.0◦, 4.1◦ and 3.4◦ were
achieved in roll, pitch and yaw respectively.

In the second experiment, we improved the accuracy to RMS position
error to 17.6 m on a 37 minute flight with a maximal distance of 4.75 km
from the base station, with RMS attitude accuracy of approximately 3.6◦,
4.4◦ and 2.9◦ for roll, pitch and yaw respectively.
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Robust and Secure UAV Navigation Using GNSS,

Phased-array Radio System and Inertial Sensor
Fusion

This chapter is based on S. M. Albrektsen, T. H. Bryne, and T. A Johansen.
Robust and secure UAV navigation using GNSS, phased-array radio system
and inertial sensor fusion. In IEEE Conference on Control Technology and
Applications (CCTA), Copenhagen, Denmark, August 21–24 2018.

7.1 Introduction

As previously mentioned, the most common solution for drift-free posi-
tioning has for several years been using global navigation satellite sys-
tems (GNSS). This solution has several attractive features: global coverage,
lightweight receivers, and high accuracy - especially when using a real-time
kinematic (RTK) solution. However, due to the low signal-to-noise ratio
(SNR) of GNSS systems, these navigation solutions are prone to jamming
[103] and spoofing [74], where the latter got much public attention in Jan-
uary 2016, when a US Navy patrol boat ended up in Iranian territorial
waters [125]. In addition, a single error in either hardware or software can
inhibit a GNSS positioning solution to work as intended. With more fre-
quent UAV-usage in both the civil and military sector, being able to handle
loss of GNSS positioning due to either errors or malicious sources becomes
increasingly important.

A study of countermeasures to GNSS spoofing attacks is given in [67],
where alterations to existing methods reduce the vulnerability to spoofing
interference by monitoring the GNSS signal over time. These methods do,
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however, not protect against jamming attacks and hardware failure. As a
result, they are not sufficient as a redundant navigation system.

The proposed strategy for spoofing detection in this chapter is inher-
ently dependent of the accuracy of the PARS. Since the positioning is based
on both range and direction of arrival of the signal, signal reflections will be
an issue. Alternative strategies than the one proposed in this paper can be
based on GNSS equipment and advanced integrity monitoring techniques.
In [105], the usage of two GNSS receivers for GNSS direction-of-arrival
sensing combined with signal distortion detection is advised. The bene-
fit of PARS in this respect, especially compared to civilian GNSS, is that
in addition to having encrypted communication, PARS is based on signal
direction-of-arrival detection, such than any spoofing attempts has to be
carried out in the same sector that is covered by the PARS base antenna.

7.1.1 Main contribution

This chapter presents an inertial navigation system (INS) aided by a highly
accurate RTK GNSS positioning solution when it is available, but also de-
tects GNSS spoofing, based on the more secure, but less accurate, PARS
positioning system. If GNSS spoofing is detected, PARS will be used as the
aiding position sensor.

The solution consists of two observers running in parallel: the first ob-
server using the RTK GNSS solution as the position reference, and the
second observer using PARS and barometer measurements as the position
reference. The estimates from these observers are inputs to a supervisor
module that detects spoofing and provides the best available solution.

To verify the solution experimental data from a fixed wing, beyond visual
line of sight experiment was used, with a simulated GNSS-spoofing attack
added during post-processing.

7.1.2 Outline

In this chapter we start by introducing the GNSS RTK positioning system
and necessary steps needed to improve the performance of the PARS as a
positioning sensor in Section 7.2. We continue with presenting our non-
linear observer for aided INS and spoofing supervisor in Section 7.3. An
experiment was carried out, and a description of the system and hardware
used is given in Section 7.4. The results from the experiment are presented
in Section 7.5 and conclusive remarks are given in Section 7.6.
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7.2 Positioning

7.2.1 PARS and barometer positioning

Similarly to Chapter 2 and Chapter 3 the vertical PARS position measure-
ment based on the range and elevation angle is some times very noisy, likely
due to reflections in the ocean surface. From Section 6.3.1 we have:

prPARS =

p
r
rb,x

prrb,y
prrb,z

 =

ρu cos(ψu) cos(θu)
ρu sin(ψu) cos(θu)
−ρu sin(θu)

 . (7.1)

To improve on this, the vertical measurement in (7.1) is replaced with an
altitude measurement based on barometric pressure γBARO,m = prBARO,z +
εBARO. Moreover, to prevent the elevation angle measurement to affect the
horizontal positioning, the PARS range was altitude compensated using the
barometer measurement

ρ̄m =
√
ρ2
m − γ2

BARO,m, (7.2)

where ρ̄m then becomes a measurement of horizontal range

ρ̄u =
√

(prrb,x)2 + (prrb,y)2 (7.3)

, cf. Figure 6.2, such that Cartesian position measurement becomes,

prPARS,BARO =

ρ̄m cos(ψm)
ρ̄m sin(ψm)
γBARO,m

 , (7.4)

decoupling the horizontal components of the measurement prPARS,BARO from
the elevation angle measurement. The covariance of prPARS,BARO, denoted
R̄(t), is based on the original measurements, ρm, ψm and γBARO,m and their
covariance RPARS(t) = diag

(
E[ε2

ρ], E[ε2
ψ], E[ε2

BARO]
)
.

R̄(t) = M(t)RPARS(t)Mᵀ(t) is derived through linearization [15, Ch.
1.6] by assuming that the noise is Gaussian, where M(t) is the Jacobian of
prPARS,BARO w.r.t. to the noise ε =

(
ερ εψ εBARO

)ᵀ
. This results in:

M(t) =
∂prPARS,BARO

∂ε
=

m11 m12 m13
m21 m22 m23

0 0 1

 (7.5)
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Figure 7.1: Feedback-interconnected observer framework. The observer design is
based upon integration of ARS and ACC measurements. The compass measure-
ment ψc is used as a aiding heading measurements in the nonlinear observer. In
addition, the two position references pr

PARS,BARO or pt
RTK, given in the {r} and

{t} frames, are used to aid the translational motion observer.

with

m11 = cos(ψm)ρm
ρ̄m

m21 = sin(ψm)ρm
ρ̄m

m12 = − sin(ψm)ρ̄m m22 = cos(ψm)ρ̄m

m13 = −cos(ψm)γBARO,m
ρ̄m

m23 = −sin(ψm)γBARO,m
ρ̄m

.

In addition, the measurement (7.4) can be given directly in the {t} frame by
taking ptPARS,BARO = Rt

rp
r
PARS,BARO and transforming the corresponding

covariance to the {t} frame using

R̄(t) = Rt
rM(t)RPARS(t)Mᵀ(t)Rr

t . (7.6)

7.3 System implementation

7.3.1 NLO and TMO observers

The observer design consist of two feedback-interconnected observers, sim-
ilar as in Chapter 6, as depicted in Figure 7.1. The first observer is a
nonlinear attitude observer, estimating attitude and the ARS bias. The
second observer is a translational motion observer estimating position, ve-
locity and specific force given in the navigation frame. These observers are
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Figure 7.2: Spoofing prevention system overview.

referred to as the NLO and TMO respectively in this paper. The observer
framework is structurally the same as in [47], where the attitude between
the {b} and the {e} frame was estimated.

The error dynamics of the feedback interconnected observer is uniformly
semiglobal exponentially stable, under certain conditions, with positive def-
inite matrices Q and R̄, see [47] for details.

To account for any colored noise in the PARS measurements, additional
states can be introduced such as in [102]. By choosing appropriated error
states and corresponding models, the gain of the TMO can use a time-
scaled Riccati equation that can account for the additional uncertainty when
propagating the covariance[20].

7.3.2 Spoofing detector

An overview of the spoofing prevention system is given in Figure 7.2. The
concept of the spoofing detector is the base assumption that the PARS as
a positioning system cannot easily be spoofed due to:

• The high signal-to-noise ratio

• Only signals originated inside of the visible sector of the radio are
considered in the DOA calculation

• The communication on the PARS-network is encrypted, ensuring the
sender’s origin

There are, however, a different set of challenges with the PARS, such as
reflections and inaccuracies in the algorithm used for detecting the incoming
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angles.
To determine if ptRTK is subjected to a malicious attack, we suggest using

one of two detection methods. The first suggestion is based on a Kalman
filter and the second is based on position compared to estimated covariance.

7.3.3 Kalman filter detection

The first suggested method is a supervisor module which is based on the
following state-space model and measurement vector:

ẋ1 = x2 (7.7)
ẋ2 = w (7.8)
z = x1 = p̂ttb,PARS − p̂tRTK (7.9)

used to estimate the difference between position estimates of the INSs with
RTK and PARS aiding, respectively. w is some Gaussian process noise.
This results in the Kalman filter:

ẋ = Fx+Ks(z −Hx), (7.10)
Ks = PsH

ᵀR−1
s (7.11)

Ṗs = FPs + PsF ᵀ −KsRsK
ᵀ
s +EQsE

ᵀ (7.12)

where

F =
(

03x3 I3
03x3 03x3

)
,H =

(
I3 03x3

)
,E =

(
03x3
I3

)
. (7.13)

Concerning the tuning of the KF, we define measurement error covariance:

Rs := PPARS,pos + PRTK,pos, (7.14)

where P?,pos indicates the upper left three by three matrix of the full covari-
ance matrix P?, obtained from the two TMOs in Chapter 6. Qs is consider
a tuning matrix chosen dependent on how responsive one would like the fil-
ter to be. The RTK measurement is considered to be spoofed if the output
of the RTK-aided INS differ from that of the INS aided by PARS. The INS
position to the user is then given by the module:

p̂trobust =
{
p̂ttb,RTK if ||x1|| < θthreshold(t),
p̂ttb,PARS otherwise,

(7.15)

where θthreshold(t) is a user-defined threshold. This threshold should typi-
cally vary with the distance from the PARS to the UAV as the uncertainty
of the PARS position measurements in Cartesian coordinates increases pro-
portionally with the range.
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7.3.4 Covariance based detection

The second method is based on a twofold strategy:

• Monitoring the discrepancy between the two observer outputs

• Monitoring the residuals of the two observers

The discrepancy between the observer is monitored using

TRTK,PARS = p̃ᵀ (PPARS + PRTK)−1 p̃ ∼ χ2
3. (7.16)

The observer position difference is given as p̃ = p̂ttb,PARS− p̂ttb,RTK resulting
in TRTK,PARS being chi-squared distributed, [50]. Combining this with using
e.g. a CUSUM [101] algorithm to monitor the mean of the residual in the
given observers one can conclude that GNSS is spoofed if

1. The mean of ỹt in the RTK aided observer changes

2. The mean of ỹt in the PARS aided observer does not change

3. TRTK,PARS surpasses the critical value of χ2
α,3

where α is the significance value of choice. This results in the default (H0)
and alternative hypothesis (H1)

H0 : ptRTK is a valid position measurement.
H1 : ptRTK is subjected to a spoofing attempt.

7.3.5 Output smoothing

To prevent switching back and forth between the two INS’s when the dif-
ference between the sensors are around the threshold value, hysteresis func-
tionality can be implemented. This can both be done on the detection level,
to avoid that spikes in the observer’s state estimates too strongly influences
the detector, and on the output level to guarantee that the spoofing attack
has terminated before switching back. Moreover, since the position, velocity
and attitude estimates will be considered by the autopilot, the output of the
supervisor can be weighted when switching between the two hypotheses to
prevent steps in the INS data. This can be done using exponential function
such that

p̂trobust =
(
1− e−α(t−t0)

)
p̂ttb,PARS + e−α(t−t0)p̂ttb,RTK, (7.17)

when switching between the RTK-based INS and the PARS-based. α is a
tuning variable and t0 is the time of the switch between p̂ttb,RTK and p̂ttb,PARS
as the module output.
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7.4 Experimental results

To verify the validity of the observer and supervisor, an experiment was
carried out on December 14th, 2017 in good, although cold, weather condi-
tions at Agdenes outside of Trondheim, Norway. A flight of 37 min with a
Skywalker X8 UAV was performed. The payload was identical to the one
described in Section 6.5, but some software updates were made to improve
the system performance.

7.4.1 Ground station

To pilot the UAV, register base GNSS data for the RTK solution, and
calculate the PARS positioning data, a ground station was set up. This
consisted of a laptop computer, a uBlox M8T GNSS receiver, and a Radionor
Communications CRE2 189 PARS. The CRE2 189 radio consists of a 60
antenna elements, and the PARS system was set to operate in a 15 Mbit/s
mode, providing a maximal distance of up to 15 km. The PARS modules
communicate in the 5 GHz band.

Figure 7.3: Track of the UAV flight, based on RTK GNSS position.
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7.4.2 RTK Spoofing

To simulate a spoofing process of the RTK positioning, we imagine that a
malicious agent wants to create an offset to the on-board-calculated position
of the UAV. If we assume that the intended landing area is close to the
take-off area, and the malicious agent observes the take-off of the UAV,
the agent can calculate a position offset that would deceive the positioning
system into flying the UAV to a different area when it returns for landing.
In this scenario the malicious agent can slowly adjust the offset to make it
difficult to detect the spoofing process by using inertial sensors.

7.5 Results

7.5.1 Spoofing setup

In this experiment we set up the RTK-spoofing procedure to initiate 907.6 s
after takeoff and create an offset to the RTK-signal, increasing with 0.1 m
per sample at a sample rate of 10 Hz, resulting in a velocity change of 1 m s−1

until an offset of −1000 m in both East and North direction is reached.
Furthermore, we imagine that after the malicious agent discovered that the
GNSS-spoofing attempt was ineffective, the spoofing attempt is terminated
after being active for 1000 s, at 1907.5 s after take-off. This allows us to
show the automatic recovery-feature of the supervisor filter.

Figure 7.4 illustrates the observer outputs from the observer using real
RTK measurements and the observer using spoofed RTK measurements. It
also indicates when the GNSS-spoofing is active. The spike that occurs on
the spoofed input at the end of the spoofing period is due to inaccurate
velocity estimates which are induced due to the large correction in position
when the position measurement snaps back.

7.5.2 Tuning

Both the RTK and PARS aided NLOs and TMOs were tuned equivalent
with the exception of the R matrices in the TMOs. The Q and R? matrices
were set as follows:

Q = diag
(
0.03082 · I3, 50 · I3

)
RPARS = diag

(
52, (2◦)2, 0.52

)
RRTK = diag

(
0.052, 0.052, 0.12

)
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Table 7.1: Detector key-figures. Time measurements are given as seconds after
take-off and distance measurements are given as the 2-norm of the difference from
the output from the observer with the non-spoofed RTK position reference.

Start [s] End [s] Offset [m] End offset [m]
Actual: 907.60 1907.50 0.00 1414.35
Detector: 932.89 1910.89 35.97 22.98

The Q matrix of the first supervisor implementation was chosen as

Qs = diag (1, 1, 0.5) , (7.18)

and the spoofing-threshold, θthreshold(t), was set to the largest value of 20 m
and 0.015 · ρm at the given timestep. Furthermore we added a hysteresis
function so that three consecutive position measurements must be classi-
fied as inaccurate before the supervisor evaluates that the system is being
spoofed and outputs the more robust measurement. For the second method,
based on covariance a threshold value of 182 m2 was chosen.

7.5.3 Performance metrics

To compare the performance of the different filter setups the following met-
rics are used: Absolute mean error (AME), standard deviation (STD), and
root mean squared (RMS).

The absolute mean error is the sum of the absolute difference between
the estimate and the reference value, divided by the number of samples.
The standard deviation is the square root of the variance of the set, where
the variance is the expected value of the squared deviation from the mean.
The root mean squared value is the root of the mean of the squared of each
of the points in the data set.

Figure 7.5 plots the output of the detector with both RTK measure-
ments and spoofed RTK measurements as references. A line indicating
when spoofing is detected is also given. Table 7.1 lists the actual starting
and ending times of the RTK spoofing, and the offset at the given times.
The period when spoofing is detected, and the distance between the RTK
and spoofed RTK observers at these times are also given in this table.

In Tables 7.2 and 7.3 the performance metrics for the RTK observer and
the PARS observer when they are compared to the RTK measurements are
listed. An error-plot of the detector output compared to the RTK measure-
ments is given in Figure 7.6.
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Figure 7.4: RTK filter output with and without spoofing. The green line indicates
when the spoofing is active.

7.5.4 Discussion

From the results provided in this section we see that when the spoofing
attack is recognized by the detector as intended as the magnitude of the
spoofed offset becomes significant. Furthermore we see that the system
output of the detector changes according to the estimated spoofed state,
and that it recovers as intended. The computational overhead of using
these detection methods is primarily due to running the two observers in
parallel, as the supervisor module is lightweight.

As illustrated in Figure 7.7, the spoofing observer also handles a spoofing
attack with a slower change in position. We can see that the time before
the attack can be detected by the filter increases, which is expected as
the impact of the attack is less severe. However, as the offset increases,
this spoofing is also detected. The time before asserting a detection can be
reduced by lowering the threshold value, but this will increase the likelihood
of false positives.

Although the results in this paper looks promising, more testing should
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solid green line shows when the spoofing is active.

be done before concluding on the reliability of the PARS as a position sensor.
The occurrence of an errors, possibly due to reflections of the PARS signal,
may be more likely than a spoofing attack, especially in short intervals where
the PARS measurements are inaccurate.

7.6 Concluding remarks

In this chapter we have implemented a drift-free positioning system that
automatically detects and handles spoofing of GNSS positioning solutions.
By using a phased array radio system (PARS), which is robust against
malicious attacks such as spoofing and jamming, as a secondary position
reference, security of the UAV can be maintained, even during spoofing
attacks on the UAV.

An experiment was carried out and a simulated spoofing attempt was
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Table 7.2: PARS observer performance compared to RTK measurements

North [m] East [m] Down [m] Norm [m]
AME: 7.76 4.48 3.18 9.51
STD: 10.35 3.55 0.78 10.97
RMS: 11.00 5.31 3.28 12.65

Table 7.3: RTK observer performance compared to RTK measurements

North [m] East [m] Down [m] Norm [m]
AME: 0.02 0.02 0.03 0.04
STD: 0.03 0.02 0.04 0.06
RMS: 0.03 0.02 0.05 0.06

added in software. With our defined threshold the spoofing attempt was first
detected when the RTK estimate was approximately 36 m away from the
expected value. Furthermore, we showed that the supervisor automatically
recovered to the high-quality position estimate when the spoofing attempt
was terminated.
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Figure 7.7: Detector calculations and threshold. A spoofing attack with an offset-
velocity of 0.1 m s−1 is added to show the difference in behavior.
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8
Conclusions

8.1 Summary and conclusions

The motivation behind this thesis was twofold. First, to create a well-tested
and field-proven system for high-accuracy sensor timing and synchroniza-
tion; second, to develop navigation solutions that can operate in GNSS-
denied environments.

In the first part of this thesis, requirements for a high-accuracy hardware
sensor timing system were presented. To utilize unmanned aerial vehicles’
desirable features for collecting high-quality sensor data in complex tasks,
hardware synchronization of sensor data is needed. In most remote sensing
tasks, the sensor measurements must be associated with the position and
attitude of the UAV. As UAVs typically have high velocities and fast system
dynamics, errors in sensor messages’ associated timestamps will result in
inaccuracies in the associated position and attitude estimates, which again
lead to inaccurate sensor measurements. In this thesis, a reconfigurable
system that minimizes these unknown temporal errors from sensors has
been introduced. By allowing system integrators to reconfigure the sensor
timing system, the payload can be altered without redesigning and testing
the hardware and firmware of the timing system.

Two implementations, the SyncBoard and its successor, the SenTiBoard,
were created, tested with mock-implementations in the laboratory and tens
of experiments in the field. The SenTiBoard has been shown to have an
RMS accuracy of 1.90 µs drift per second, and by using the solution, a geo-
referencing error was improved by a factor of four. Both solutions simplify
sensor integration and maintenance of sensor payloads, which has been ver-
ified by implementation in several different sensor platforms, with a variety
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of sensors.
In addition to the hardware sensor timing systems, a UAV navigation

system has been presented, and together with the timing systems these
have been implemented with GNSS-receivers, IMUs, magnetometers, an air-
pressure/data probe, phased array radio systems, RGB cameras, IR cam-
eras, a hyperspectral camera, laser altimeters, UAV autopilots and other
specialized sensor systems, and these setups have been used on UAVs, USVs
and manned aircraft.

The second part of this thesis discusses navigation in GNSS-denied envi-
ronments and handling loss of GNSS due to failures or malicious intentions.
As UAVs become increasingly available for civilian use, and adopted by in-
dustry, the risk associated with UAV operations increases. Most systems
today are critically dependent on GNSS to operate safely, and GNSS is
highly susceptible to malicious attacks, due to the weak signal strength. To
reduce the requirement of GNSS availability, this thesis suggests two differ-
ent approaches for operating in GNSS-denied environments; one based on
camera measurements, and one based on phased array radio system nav-
igation. The latter method is explored in three stages: with only PARS
measurements and a barometer; with PARS measurements, a barometer
and an IMU; and a hybrid approach where the solution fusing PARS, IMU
and a barometer is used as a redundant alternative to RTK GNSS. When
using these methods, GNSS is no longer a single point of failure.

The first chapter in this part discusses a throw-and-go UAV which uses
inertial optical flow and an IMU to stabilize after being thrown in the air.
To be able to analyze the data sufficiently quickly in such situations, opti-
mizations were made to increase the performance of the system. An experi-
ment was carried out where the UAV was thrown in the air and successfully
stabilized at the desired height.

To provide GNSS-less navigation at long-distance, long-endurance mis-
sions, a PARS was used to provide absolute position measurements. Exper-
iments were performed, and first only the PARS and a barometer was used,
then this solution was used to aid an NLO to provide PVA estimates. With
the PARS and barometer only, an RMS accuracy of 27 m was achieved, and
using the NLO this was improved to approximately 18 m RMS and further
reduced to 13 m by implementing more advanced covariance handling.

Finally, the NLO solution was used as a countermeasure to GNSS-
spoofing. A system that automatically detects and handles spoofing of
GNSS was created and the best solution available was chosen by the sys-
tem. Using this strategy, the high-accuracy GNSS solution can be used if
no spoofing is detected, and the PARS solution which is more robust to
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malicious intents can be used otherwise. The system is created so that it
automatically recovers when a spoofing attack is discontinued.

With the solutions presented in this thesis, high-accuracy GNSS sensors
solutions can easily be integrated, and using the robust and secure naviga-
tion sensor, a combined approach delivering the best from the two systems
is provided.

8.2 Recommendations for further work

To minimize the hardware required for navigation estimation when using the
hardware sensor timing system, one could omit the onboard computer and
store the data on an SD-card or other onboard storage. To further increase
the usability of this sensor logging system, a sensor fusion implementation,
such as a multiplicative extended Kalman filter (MEKF), that provides
position, velocity and attitude estimates of the UAV could be implemented
and synchronized with the sensor data. Similarly, the calculations for the
RTK GNSS solution could be performed onboard the SenTiBoard. This
is useful in online applications with minimal sensor configurations, as the
position estimates are highly improved. To be able to perform this, the
sensor data must be parsed by the timing board, and the measurements
must be integrated. If these tasks are too computationally demanding for a
microcontroller to perform, solutions for FPGAs could be implemented and
integrated on the hardware sensor timing system.

It would also be interesting to produce a hardware sensor timing system
with some of the core navigation sensors integrated on the board directly.
This would simplify integration of sensor fusion algorithms, as the sensors
and the data formats are known by the firmware, and thus the sensors can
use the sensor measurements.

To support a wider range of sensor combinations, another improvement
to a hardware sensor timing system would be to implement a modular design
for the communication ports. In such a design, instead of having protocol
transceivers such as the MAX3225 and MAX3362 on the sensor timing
hardware, the UART ports can be exposed directly through a specified
interface. Through this interface such transceivers could be added on an
as-need basis with a modular connector. This would allow the user to freely
choose how many RS232, RS422 or other protocols that can be interfaced
through UART as needed, and which connectors to use.

To verify that the accuracy of the navigation system based on phased
array radio is sufficient to perform a navigation task in a real-life scenario,
this should be tested. Although the navigation system shows promising
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results, it has not yet been integrated with an autopilot and flown using
this as the navigation source. To be able to do so, safety precautions,
such as being able to switch to GNSS in case of an emergency should be
implemented as well.

To be able to rely on the vertical component of the radio measurements,
the accuracy needs to be improved significantly. This inaccuracy should be
further investigated to verify if it is due to reflections by the ocean surface.
If both the actual direction and the reflected signals are detectable, the al-
gorithm which calculates bearing and elevation angles from the incoming
signals, can be altered to provide one or more alternative measurements,
instead of only the best-guess of the signal. With such an alteration, tech-
niques such as Multiple Hypothesis Tracking (MHT) can be used to make
sure that the real signal is correctly tracked by the navigation system.

It would also be interesting to make a flight with multiple ground radios
that observe the UAV from different positions on the ground. This would in
theory not only improve the position estimates by having more independent
readings, but also allow a larger area to be visible by the radios. This
configuration will also allow us to verify the error sources of the radio system,
such as reflections from the ocean surface. One might also imagine a hand-
off scenario where when the UAV leaves a sector covered by one radio, the
second radio provides the position estimates.

To improve the position estimates from the radio observer, an imple-
mentation that compensates for the curvature of the Earth should be im-
plemented. The implementations presented in this thesis assume that the
Earth is flat, which is an assumption that is accurate when covering small
areas. When covering larger distances, however, this inaccuracy increases.
We want to adapt the filter to handle a non-flat Earth model, to compare the
effect of using different models when flying missions of tens of kilometers.

Finally, to be able to use the PARS as a spoofing detector in a real-life
scenario, further testing and robustification of the direction-of-arrival detec-
tion should be performed. PARS-navigation is a new technology, especially
when compared to GNSS, and it is more prone to outliers from for example
reflections.
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Appendix

A.1 Payload power control board

An important feature of the non-avionics part of the payload is to be able to
power off the system in case of an emergency. In one of our payloads, using
the Piccolo SL Autopilot, we wanted to integrate this feature with Piccolo’s
command center software, so we could control the payload from the com-
mand center. Unfortunately, due to the limited number of general purpose
input/output (GPIO) pins controllable from the command center, no pins
were available to us for this purpose. There are, however, 1000 waypoints
configurable directly from the interface, and each of these waypoints have a
User Byte field which can be set to a user configurable value.

Thus, to be able to control the power output of the non-avionics part
of the payload one can create a power control board with four connections:
power in, power out, communication in, and communication out. Both the
power in and the power out connectors need to have at least three pins:
positive voltage, ground and an enable-pin which can be used to switch a
relay, or an external DC/DC converter, on or off. The power-in connector
has the same pins, but the enable-pin is connected to ground. By providing
identical connectors one can easily add or remove the power control board
as needed.

To be able to control the power from the ground station, the board
needs to monitor the communication between the ground station and the
autopilot. This can be done by "wiretapping" the transmission line from the
telemetry link onboard the UAV to the autopilot, by connecting the com-
munication channel from the telemetry link to the power control board and
from the power control board to the autopilot. As the power control board
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does not transmit any data on the communication channel, the communi-
cation link can go directly through the board with only passive connections
to the communication lines. Like the power connectors, the communication
connectors should be identical, to allow an operator to easily add or remove
the board as needed.

When the communication can be monitored, the board can read the
waypoint messages sent from the ground station to the autopilot, including
the configurable User Byte. By assigning special values to different values of
the User Byte different commands can be sent to the board. Such commands
can be switch power on, switch power off, or restart.

A board with the aforementioned functionality was implemented using
an Atmel ATtiny84 microprocessor with dimensions 42 mm x 42 mm. A fuse
was also added in-between the live wires of the power lines and a DC/DC
low-dropout regulator (LDO) voltage regulator to provide the appropri-
ate voltage for the microprocessor. The board supports either an RS-232
connection or a TTL-level connection. Schematics and PCB layout of the
payload power control board are given in Figure A.1 and Figure A.2.
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Figure A.1: Schematics of the payload power control board
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Figure A.2: PCB layout of the payload power control board
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