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Abstract 
 

The aim of the work is that of using SED approach to predict the fatigue behavior of the aluminum 

alloy 6082-T6. The following steps are made in order to develop the model necessary to do reach 

this goal: 

1. Fatigue tests of 15 aluminum  V-notched specimens; 

2. Implementation of the elastic model and plot of the Wöhler curves using SED; 

3. Analysis of the differences between elastic and plastic models, developed using the FEM 

software Ansys;  

4. Computation of the Notch Stress Intensity Factor using SED and stress and comparison of 

the numerical values; 

5. Computation of the number of cycles necessary to nucleate and propagate the crack; 

6. Plot of the Haigh diagrams using SED; 

7. Use of the equivalent stress and SED, computed using Gerber and Goodman`s relation. 
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1. Computation of Strain Energy Density for V-

Notched Aluminum Samples 

 

A static linear analysis has been performed, using the Ansys® APDL code, to compute the value 

of SED around the V-shaped notch’s tip. It has been used a plane183 element in condition of plain 

strain. In the table below are reported the relevant value of the 6082-T6 aluminum alloy of the 

sample.   

E [MPa] 𝝂 𝛔𝐑 [MPa] 

64000 0,34 275 

 

The critical radius is assumed equal to that of the welded aluminum, which can be found in 

literature and it is equal to 0.12 mm (1). The geometry of the sample is reported in the following 

figure 

 

 

FIGURE 1 GEOMETRY OF THE SPECIMEN 
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In the Ansys’ model the specimen has been loaded to ensure a tension Δ𝜎1  of 1 MPa at the 

restricted area. 

The averaged SED value on the control volume can be computed simply by dividing two outputs 

of the model 

𝑊 =
𝑆𝐸𝑁𝐸

𝑉𝑂𝐿𝑈
 

In which SENE is the strain energy of the control volume and VOLU is the volume inside the 

critical radius. 

As it is shown in the table and in the figure below, coarse mesh in enough to compute a precise 

value of SED.  Singular elements around the notch’s tip have been used, thanks to the command 

KSCON, which allows to move the nodes on the radial sides of the element at a quarter of the side 

length from the concentration point. 

 

elements volu [mm3] sene [N∙mm] 𝚫𝑾𝟏 [N∙mm/mm3] 

142 1,696E-02 1,733E-06 1,021E-04 

508 1,696E-02 1,725E-06 1,017E-04 

1098 1,696E-02 1,725E-06 1,017E-04 

 

 

FIGURE 2 CRITICAL AREA (SX) AND MESH OF THE MODEL (DX) 
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Using the following expression, it is possible to evaluate the value of SED for each test and to plot 

its value in function of the number of cycles 

Δ𝑊1

Δ𝑊2
= (

Δσ1

Δσ2
)

2

 

 

The Wöhler curve and the data for the two series of specimens with load ratio equal to 0 and 0.5 

are 

 

  

𝝈𝒎𝒂𝒙 

[MPa] 

N 

[cycle] 

𝚫𝑾 

[N∙mm/mm3] 

40 

RUN 

OUT 0,163 

50 511426 0,254 

50 532025 0,254 

60 270174 0,366 

60 298772 0,366 

80 59360 0,651 

80 86392 0,651 

100 34745 1,017 

100 35148 1,017 

120 16360 1,465 

120 16856 1,465 

 

 

FIGURE 3 WÖHLER CURVE OF THE SPECIMENS LOADED WITH 

R=0 
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𝝈𝒎𝒂𝒙 

[MPa] 

N 

[cycle] 

𝚫𝑾 

[N∙mm/mm3] 

60 2000000 0,092 

80 653514 0,163 

120 116732 0.366 

140 54631 0.498 

 

 

 

 

 

 

 

  

  

FIGURE 4 WÖHLER CURVE OF THE SPECIMENS LOADED WITH 

R=0.5 
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FIGURE 5 SPECIMEN 12, MAX LOAD 50 MPA, FATIGUE LIFE 511426 CYCLES, R=0 

 

FIGURE 6 SPECIMEN 16,MAX  LOAD 50 MPA, FATIGUE LIFE 532025 CYCLES, R=0 
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FIGURE 7 SPECIMEN 11, MAX LOAD 120 MPA, FATIGUE LIFE 16856 CYCLES, R=0 

 

FIGURE 8 SPECIMEN 2, MAX LOAD 120 MPA, FATIGUE LIFE 16360 CYCLES, R=0 
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FIGURE 9 SPECIMEN 14, MAX LOAD 80 MPA, FATIGUE LIFE 653514 CYCLES, R=0.5 

 

FIGURE 10 SPECIMEN 13, MAX LOAD 120 MPA, FATIGUE LIFE 116732 CYCLES, R=0.5  
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2. Difference between Elastic and Plastic Model 

 

The aim of this paragraph is to estimate the error committed in considering an elastic model instead 

of a plastic one while studying a V-sharp notch and computing SED. 

The figure below shows the true stress strain curves of 6082-T6 aluminum alloy. The flow stress 

increased rapidly as the strain increased. When the stress reached a certain point, the material 

began to yield. After entering the plastic stage, under the effects of work-hardening and dynamic 

recovery, flow stress increased much slower than the beginning part. When the stress reached a 

certain value, the material began necking and local stress increased sharply (2). 

 

FIGURE 11 TRUE STRESS-STRAIN CURVE OF ALUMINUM ALLOY 6082-T6 (2) 
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This is the curve implemented in Ansys to compute the plastic model, from different value of the 

strain rate the material shows different value of the UTS and the yield stress. 

Since the material showed no significant yield point, therefore the strain of 0.2% was used as the 

yield point. As the strain rate increased from 0.001s−1 to 100 s−1, the yield stress increased from 

306.1 MPa to 322.63 MPa, increased by 5.4%, and the tensile strength increased from 364 MPa to 

384 MPa, increased by 5.49% (2). So an average value have been used, a yield stress of 315 MPa. 

The plastic part of the plot has been modelled using Johnson Cook law: 

 

𝜎 = 𝐴 + 𝐵𝜖𝑝
𝑛 

 

By fitting the experimental data the value of the constants are achieved (2): 

𝐴 = 305.72 

𝐵 = 304.9 

𝑛 = 0.6796 

The curve is plotted until a strain of 1, this is obviously absurd, but it is necessary to avoid errors 

near the notch tip, where the strain might be high for high value of the stress. 

The mesh used is refine, even with SED, because the following is a plastic model, which needs to 

be studied with more precision than the elastic one. It is shown that a more precise model allows 

to obtain a better solution, but it is more complicated to compute. 

Through Ansys it is possible to plot the equivalent stress and strain. In the following figures this 

plot is shown for a load of 120 MPa and 40 MPa and looking at the superior limit of the scale it is 

possible to notice that a plastic model shows higher strains than the elastic one, but the stress is 

obviously less because the materials yields. 

All the plots are shown with the same mesh. 
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FIGURE 12 EQUIVALENT STRESS IN THE ELASTIC AND PLASTIC MODEL (120 MPA) 
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FIGURE 13 EQUIVALENT STRAIN IN THE ELASTIC AND PLASTIC MODEL (120 MPA) 
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FIGURE 14 EQUIVALENT STRESS IN THE ELASTIC AND PLASTIC MODEL (40 MPA) 
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FIGURE 15 EQUIVALENT STRAIN IN THE ELASTIC AND PLASTIC MODEL (40 MPA) 
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If the load is high the difference of SED between the elastic and the plastic model is higher because 

the plastic region is bigger, in fact, for the highest load at which the specimens are loaded the 

difference is the 28%, which is anyway an acceptable error for the model used, while when the 

specimen is less loaded the difference is even less. 

Stress 

[MPa] 

Sene        

[Nmm] 

Volu   

[mm3] 

𝑾𝒑𝒍 

[Nmm/mm3] 

𝑾𝒆𝒍                    

[Nmm/mm3] 

error 

120 0,035 0,017 2,038 1,465 28 % 

40 0,003 0,017 0,186 0,163 12 % 

 

The following plot is an output of Ansys and shows how the stress increases in time in the plastic 

model in a node close to the notch tip when the load is 120 MPa. It can be plotted using Time Hist 

Postpro, between the first and the second circumference closest to the notch tip with the finest 

mesh possible using the command kscon. It is clear that with a plastic model, the material yield 

and the stress reaches a plateau at 315 MPa. 

 

FIGURE 16 STRESS VS TIME IN A NODE CLOSE TO THE NOTCH TIP 
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Time is equal to one when all the sub steps are completed. A convergence study is made to choose 

the correct number of sub steps. For a load of 40 MPa 10 of them are enough as shown in the plot 

below 

 

FIGURE 17 CONVERGENCE STUDY 

10 subset are thus chosen for all the computations.  
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3. Computation of the Notch Stress Intensity Factor 

 

As explained in the initial review the N-SIF cannot be used to draw the Wöhler curve when the 

geometry changes because its unit depends on an exponent which varies with the V-notch angle. 

This problem has been overcome by using the mean value of the strain energy density range present 

in a control volume of radius 𝑅𝑐  surrounding the area near the stress concentration. 

Once SED is known, the N-SIF can though be calculated, through the following expression (3): 

 

𝑅∗ has here been assumed to be equal to 𝑅0, the critical radius of the material. 

The values of 𝜆1 and 𝑒1 for an opening angle of 90𝑜can be found in literature 

The notch stress intensity factor has been computed both using SED and stresses and the results 

are compared, showing that SED method is very precise even though less elements are required in 

the FEM model. 

 

FIGURE 18 SHAPE FUNCTIONS 𝝐𝟏 AND 𝝐𝟐 VERSUS THE NOTCH OPENING ANGLE (3) 
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It is possible to compute 𝐾𝐼 with the following expression, using stresses (3) 

 

 

In which r is the distance from the notched tip and 𝜎 is the stress applied. 

As it was expected the stress rise to a singularity at the pointed crack tip, while, in a radius close 

to the notch tip, the N-SIFs calculated express a plateau, which is a good estimate of the N-SIFs.  

 

FIGURE 19 PLOT OF STRESS IN FUNCTION OF THE DISTANCE FROM THE TIP 
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FIGURE 20 PLOT OF NSIF IN FUNCTION OF THE DISTANCE FROM THE TIP 

 

Stresses obtained at a node belonging to faced finite elements are very different when a coarse 

mesh is used. As a natural consequence, the degree of mesh refinement required for the accurate 

determination of the strain energy is much lower than that required for the stress fields, simply 

because in the former case no derivation or integration process is really involved (4). 

In fact, the mesh used to compute 𝐾1 through stresses is more refined that the one used with SED, 

as shown in the following figure 
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FIGURE 21 COMPARISON BETWEEN REFINE AND COARSE MESH 

 

The values of K1 computed are very similar as it is shown in the table below 

 

𝑲𝟏 [𝐌𝐏𝐚 𝐦𝐦𝟏−𝛌𝟏] 

stress SED difference 

0,113 0,109 3,6% 
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A comparison between plane strain and plane stress has been made to verify that the value of 𝐾1 

is lower in conditions of plane stress. 

𝑲𝟏 [𝐌𝐏𝐚 𝐦𝐦𝟏−𝛌𝟏] 

Plane 

Stress 

Plane 

Strain 

difference 

0,101 0,111 9,5% 

 

A comparison has been made by plotting the scatter curve for the welded aluminum and the values 

of SED calculated for the samples tested.   

 

FIGURE 22 DATA FITTING IN WELDED ALUMINUM SCATTER BAND 

 

As expected, the values computed for the samples fit in the welded aluminum scatter curve and 

they seem to be more resistant than the welded specimens. 
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4. Dimensionless Parameter Y 

 

The stress intensity factor can be defined as 

Δ𝐾 = 𝜎𝑌√𝑎 

In which 𝜎 is the stress applied, a is the length of the crack and Y is a dimensionless parameter. 

Using a parametric Ansys model and the expression above it is possible to compute the value of 

Y, while the crack is progressing. 

The aim is to find an expression for Y, suitable for V-shape notches, with an opening angle of 90𝑜, 

in function of the ratio between the crack’s length and the width of the sample. 

When the SED is known it is possible to calculate 𝐾1 by the well-known expression 

 

𝐾1 = 𝑅0
1−𝜆1 √

𝐸𝑊

𝑒1
 

 

In which 𝜆1 and 𝑒1 must be computed for an angle of 0𝑜 

A fourth-grade polynomial can fit the values obtained 

 

𝑌 (
𝑎

𝑊
) = 5852 (

𝑎

𝑊
)

4

− 7647 (
𝑎

𝑊
)

3

+ 3712 (
𝑎

𝑊
)

2

− 788.5 (
𝑎

𝑊
) + 63.67 
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FIGURE 23 COMPARISON BETWEEN V-NOTCH AND CRACK AND DATA FITTING FOR V-NOTCH 

 

This expression seems to be quite close to that used for double crack for low value of a, while the 

two curves tend to spread for high value of the crack’s length. 
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5. Initiation and Propagation of the Crack 

 

It is known from the paper written by Paris and Erdogan in 1963 (5) that by plotting on a log-log 

diagram the value of the derivative of the crack length with respect to of the number of cycles in 

function of the SIF, the data can be quite well fitted by a straight line, so the following expression 

can be written 

𝑑𝑎

𝑑𝑁
= 𝐶Δ𝐾𝑛 

Where C and n are two parameters which depend on the material and the load ratio. 

The aim of this paper is to find a value of the coefficient C and n of the Paris’ law, adapted for the 

Strain Energy Density. 

𝑑𝑎

𝑑𝑁
= 𝐶′Δ𝑊𝑛′ 

 

In the case of non-singular mode II and considering a null opening angle of the notch it is possible 

to determine the mode I N-SIF a posteriori from SED, through the following expression 

 

𝐾𝐼 = √
𝑅0𝐸𝑊

𝑒1
 

After some easy computation the parameters of interest and the number of cycles can be expressed 

in the following way 

𝐶′ = 𝐶 (
𝑅0𝐸

𝑒1
)

𝑛/2

 

𝑛′ = 𝑛/2 

𝑁𝑝 = ∫
𝑑𝑎

𝐶′𝑊𝑛′

𝑎𝑓

𝑎0
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W is a function of the length of the crack and can be found by fitting the different value of W while 

the crack is propagating. It is possible to compute an Ansys parametric model in which the stress 

at the restricted area 𝜎1 is equal to 1 MPa and find the function 𝑊1(𝑎), expressed by an exponential 

function 

𝑊1(𝑎) = 𝐴 exp(𝐵 𝑎) + 𝐶 exp(𝐷 𝑎) 

 

In which 𝐴 = 3.223𝐸 − 5; 𝐵 = 0.2868; 𝐶 = 1.858𝐸 − 14; 𝐷 = 2.608 

 

FIGURE 24 SED IN FUNCTION OF THE LENGTH OF THE CRACK 

 

To find the function 𝑊(𝑎) for each specimen the following expression can be used 

 

𝑊(𝑎) = 𝑊1(𝑎) ∙ 𝜎2 
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In which 𝜎 is the value of stress at the restricted area. 

Finally, the number of cycles between the initiation of the crack and the failure of the specimen is 

 

𝑁𝑝 =
1

𝐶′𝜎2𝑛′ ∫
𝑑𝑎

𝑊1(𝑎)𝑛′

𝑎𝑓

𝑎0

 

 

Where 𝑎𝑓 has been measured from the crack surface. 

The integral can be numerically solved using the ‘integral’ function in matlab and considering that 

the value of the Paris’ parameters for the aluminum alloy 6082-T6 are present in literature (6). 

Also the number of cycles necessary to initiate the crack can be computed 

𝐶′ = 6.1154𝑒 − 05 

𝑛′ = 1.3235 

𝑁𝑖 = 𝑁𝑓 − 𝑁𝑝 

 

FIGURE 25 SED IN FUNCTION OF THE NUMBER OF CYCLES IN SEMI-LOG PLOT 
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FIGURE 26 SED IN FUNCTION OF THE NUMBER OF CYCLES IN LOG-LOG PLOT 

 

From the figures it is clear that at low cycles the propagation is prevalent, while at high cycle the 

initiation is so. For very low cycle the Np exceeded the whole life of the specimen and this is 

clearly a mistake due to the approximations made. This model gives good result in a range between 

3∙E04 and 1∙E06 cycles and outside this range the Np, computed using the Paris’ law is different 

from its actual value. Another relevant observation is that the shift from a life of the specimen 

dominated by the propagation of the crack to that dominated by the initiation occurs between 1∙E05 

and 2∙E05 cycles, this is due to the fact that the specimen has a sharp notch, so the crack initiates 

earlier than in an un-notched one. 

No experiments were made to compute the parameters C and n and they are taken from literature, 

for this reason the focus of this chapter is the analytical part, useful to find equivalent parameters 

and to apply Paris law to SED, even though the results seems to be consistent. 
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FIGURE 27 INFLUENCE OF SED ON THE PROPAGATION OF THE CRACK 

 

 

FIGURE 28 INFLUENCE OF SED ON THE INITIATION OF THE CRACK 
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6. Haigh Diagram 

 

Both the data from the specimens loaded with R=0 and R=0.5 are used to plot the Haigh diagram 

using SED formulation. The coordinates of each point belonging to the plot are mean SED, 

alternative SED and number of cycles to failure. This plot has been projected on the  𝑊𝑚, 𝑊𝑎 plane. 

The SED components cannot be computed in a similar way to that used for the stress ones: 

𝑊𝑚𝑎𝑥 = 𝑊1 ∙ 𝜎𝑚𝑎𝑥
2  

 

𝑊𝑚𝑖𝑛 = 𝑊1 ∙ 𝜎𝑚𝑖𝑛
2  

 

𝑊𝑎 =
𝑊𝑚𝑎𝑥 − 𝑊𝑚𝑖𝑛

2
 

 

𝑊𝑚 =
𝑊𝑚𝑎𝑥 + 𝑊𝑚𝑖𝑛

2
 

 

As explained in the Chapter dedicated to the Paris method, integrated with SED, 𝑊1is the value of 

SED, when the specimen is loaded with a stress of  1 𝑀𝑃𝑎 at the restricted area. 

Using these definitions both the Wöhler and Haigh plot are nonsense, because it seems that when 

the load ratio increases the material can resist to a higher 𝑊𝑎 as it is shown in the following plot 

 

FIGURE 29 ERRONEOUS WÖHLER DIAGRAM 
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To avoid such problems, it is necessary to define new variables which are not the actual values of 

the mean and alternative components of SED, bot allows to plot a meaningful Haigh plot: 

 

𝑊𝑚
′ = 𝑊1𝜎𝑚

2  

𝑊𝑎
′ = 𝑊1𝜎𝑎

2 

Knowing that: 

𝜎𝑎 =
𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛

2
 

𝜎𝑚 =
𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛

2
 

Consequently for R=0.5 

𝑊𝑚
′ = 9 ∙ 𝑊𝑎

′ 

 

It is now necessary to find a point correspondent to the 𝜎𝑢𝑡𝑠 in the Haigh diagram plotted with 

SED, through which it is possible to draw the iso number of cycles lines, using the Gerber relation. 

This value has been computed by doing the mean of the value of SED at the fracturing point for 

all the specimen loaded with a null load ratio. 

Knowing that the value of SED for a load of 1 MPa in function of the length of the crack is  

 

𝑊1(𝑎) = 𝐴 ∙ exp(𝐵 ∙ 𝑎) + 𝐶 ∙ exp(𝐷 ∙ 𝑎) 

 

In which 𝐴 = 3.223𝐸 − 5;  𝐵 = 0.2868;  𝐶 = 1.858𝐸 − 14; 𝐷 = 2.608 

 

It is necessary to measure the length of the crack on the fractured surface to compute the value of 

SED. This procedure is made for all the samples loaded with R=0 and the mean value of SED right 

before the rupture of the specimen is 3.41 𝑁 ∙ 𝑚𝑚/𝑚𝑚3. 
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specimen af[mm] W1(af) [Nmm/mm3] Wf [Nmm/mm3] 

2 8,08 3,53E-04 5,09 

11 7,92 3,30E-04 4,75 

6 8 3,70E-04 3,70 

8 8,18 3,71E-04 3,71 

3 8,78 5,63E-04 3,61 

9 9 6,14E-04 3,93 

5 8,68 5,15E-04 1,85 

10 9,385 1,27E-03 4,56 

16 8,63 4,94E-04 1,23 

12 8,94 6,67E-04 1,67 

   

3,41 

 

It can be noticed that the size of the final crack at fracture depends on the stress level. The higher stress 

levels have shorter critical crack sizes and the lower stress levels have larger critical crack sizes. 

 

FIGURE 30 VARIABILITY OF THE FINAL LENGTH OF THE CRACK IN FUNCTION OF THE STRESS APPLIED FOR R=0 
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FIGURE 31 EXPERIMENTAL VALUES IN THE HAIGH DIAGRAM 

 

In order to model the effect of the mean stresses, a multitude of formulations have been proposed, 

most of which use the engineering tensile stress 𝜎𝑢𝑡𝑠 or the monotonic yield stress 𝜎𝑦 as one of the 

parameters. 

In general, these formulas come from empirical approaches to correlate groups of tests on 

particular materials. In the literature it is widely documented that there is no general empirical law 

to relate the effect of mean stress on the fatigue limit (7). 

The Gerber relation is used in the following diagrams, a parabola, concave downward that passes 

through the point 𝑊𝑢 on the x-axis, interpolates the iso number of cycles point and crosses the y-

axis with horizontal tangent.  
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FIGURE 32 GERBER`S RELATION WITH SED 

 

FIGURE 33 GERBER`S RELATION WITH STRESS 
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The number of cycles at the intersections between the Gerber parabola and the lines at R=0 and R=0.5 are 

graphically found and the ratio between the predicted life and the experimental one is computed: 

Number of cycles computed with SED 
 

R0 R0.5 

Gerber 1,0E+04 5,0E+04 5,0E+05 1,0E+04 5,0E+04 5,0E+05 

 Experimental Life 9,0E+03 6,5E+04 7,0E+05 1,2E+04 3,7E+04 3,3E+05 

Ratio 1,1 0,8 0,7 0,8 1,4 1,5 

 

 

 

 

 

The same procedure is adopted with the Goodman relation, represented in the diagrams by a line which passes 

through point 𝑊𝑢 on the x-axis and interpolates the points underlined. 

 

  

 

 

 

Number of cycles computed with SED 
 

R0 R0.5 

Goodman 1,0E+04 5,0E+04 5,0E+05 1,0E+04 5,0E+04 5,0E+05 

Experimental Life 8,6E+03 5,2E+04 6,0E+05 1,6E+04 4,7E+04 3,6E+05 

Ratio 1,2 1,0 0,8 0,6 1,1 1,4 

 

Number of cycles computed with stress 
 

R0 R0.5 

Gerber 1,0E+04 5,0E+04 5,0E+05 1,0E+04 5,0E+04 5,0E+05 

Experimental Life 1,1E+04 6,5E+04 7,0E+05 9,0E+03 3,7E+04 3,5E+05 

Ratio 0,9 0,8 0,7 1,1 1,4 1,4 

Number of cycles computed with stress 
 

R0 R0.5 

Goodman 1,0E+04 5,0E+04 5,0E+05 1,0E+04 5,0E+04 5,0E+05 

Experimental Life 9,0E+03 5,0E+04 5,6E+05 1,2E+04 5,0E+04 4,3E+05 

Ratio 1,1 1,0 0,9 0,8 1,0 1,2 
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FIGURE 34 GOODMAN`S RELATION WITH SED 

 

 

FIGURE 35 GOODMAN`S RELATION WITH STRESS 
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It is clear that using Gerber relation the precision is very similar using stress or SED, in both cases the critical 

point is that on the R=0.5 line, because according to Gerber`s relation the specimen should resist 50%  and 40%  

more than it actually does, respectively in SED and stress`s diagram. This level of precision is consistent with 

that present in the literature (8). 

Goodman relation works better with the stress, even though the precision achieved with SED is also 

acceptable.  

It is though possible to use SED method to plot the Haigh diagram, exploiting all the advantages linked to this 

method, especially for what concern the computation time and the possibility of using coarse meshes, as 

explained in the dedicated chapter. 

  



39 
 

7. Equivalent method to characterize the fatigue 

behavior of the aluminum specimen 

 

The three parameters that characterize a mechanical fatigue behavior are the mean stress, 𝜎𝑚 

alternating stress, 𝜎𝑎 and the resulting life, N, the application of the data that characterize the mean 

and alternating stress in one equivalent stress model allows to evaluate theirs effect on the fatigue 

behavior. 

The equivalent value of the stress use in this paragraph is calculated as the fatigue strength, 𝜎−1, 

when the load ratio R is equal to -1. For example in the Haigh diagram, the iso-N curves, drawn 

using Goodman`s relation, can be described by the following equation: 

𝜎𝑎 = (−
𝜎−1

𝜎𝑈𝑇𝑆
) 𝜎𝑚 + 𝜎−1 

Starting from the experimental data, alternative and mean stress are computed, after that the 

equivalent stress is computed, both by using Goodman and Gerber models. 

 

𝜎−1 = 𝜎𝐺𝑜 =
𝜎𝑎

1 − (
𝜎𝑚

𝜎𝑈𝑇𝑆
)
 

𝜎−1 = 𝜎𝐺𝑒 =
𝜎𝑎

1 − (
𝜎𝑚

𝜎𝑈𝑇𝑆
)

2 

The objective of this paragraph is to verify the possibility to apply this method, devised by the 

researchers of the Department of mechanical Engineering of the University of Brasília (9) to be 

used with stress, to SED. 

All the data are fitted in the Wöhler plot and the R-squared value is computed using Matlab. 

The method works well for the aluminum specimen, because both using Goodman and Gerber`s 

relation, the value of R-sqaured increases. 

The R-squared is a statistic value that gives some information about the goodness of fit of a model 

as explained in Errore. L'origine riferimento non è stata trovata. and an R2 of 1 indicates that 

the regression predictions perfectly fit the data.  
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FIGURE 36 GEREBER`S RELATION ON STRESS 
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FIGURE 37  GOODMAN`S RELATION ON STRESS 
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The same variables defined to draw the Haigh plot are used in the following expressions and the 

Wöhler plot are again analyzed with SED:  

 

𝑊𝑚
′ = 𝑊1𝜎𝑚

2  

𝑊𝑎
′ = 𝑊1𝜎𝑎

2 

𝑊𝑢 = 3.41 𝑁𝑚𝑚/𝑚𝑚3 

𝑊`𝑎,𝐺𝑜 =
𝑊`𝑎

1 − (
𝑊`𝑚

𝑊𝑢
)
 

𝑊`𝑎,𝐺𝑒 =
𝑊`𝑎

1 − (
𝑊`𝑚

𝑊𝑢
)

2 

 

Where 𝑊1 is the value of SED when the specimen is loaded with 1 𝑀𝑃𝑎 at the restricted area. 

For both the stress and SED there is a big advantage in using this method because in all cases the 

R-squared values sensibly increases, even though with SED this variance is bigger using Gerber 

method, while with stress is bigger using Goodman. 
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FIGURE 38  GEREBER`S RELATION ON SED  
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FIGURE 39  GOODMAN`S RELATION ON SED  
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8. Conclusion 
 

SED method works well with the aluminum specimen and the value of the N-SIF is really close to 

that computed with stress, but a model with many less elements is sufficient. This is a great 

advantage, especially when complicated model are implemented and the computation time is much 

bigger than that needed for the sample, since its geometry is very simple. 

For what concern the hypothesis and the simplifications adopted in this theory a particular focus 

on the difference between a plastic and elastic model is made. 

The difference in the numerical values of SED can be quite high, and it depends a lot on the load 

applied to the specimen, because as it increases the region in which the material yields becomes 

bigger. In the plastic model the stress is limited but the strain increases and as a result the value of 

SED computed with this model is higher than that of the elastic one. 

Anyway the method works well, as documented in the literature (10), (3), (4), and it is though 

possible to neglect the yield which occurs close to the notch tip, in a very restricted area. This 

hypothesis is very useful because it permits to use very simple models and less time consuming. 

The theory works good in the Haigh diagram, in fact the precision is similar to that of the traditional 

Haigh diagram if the Gerber`s relation is used. For this reason SED method can be applied and 

once the strain energy density is computed through FEM models the new Haigh diagram can be 

directly used. 

A particular attention is necessary in considering the variables 𝑊𝑚
′  and 𝑊𝑎

′ used in the diagram not 

as the actual values of the mean and alternative component of the energy, but as two equivalent 

parameters defined to plot a meaningful Haigh plot, in which an increase of the load ratio leads to 

a reduction of the component's life. Another important parameter, 𝑊𝑢 , is defined and the point 

(0; 𝑊𝑢) is the equivalent of the (0; 𝜎𝑢𝑡𝑠 ) in the traditional Haigh diagram. 

If 𝐾𝐼𝑐 is known, an easy solution can be that of computing  𝑊𝑢 from the well−known formula that 

relates SED with the mode I of N−SIF:  

𝑊𝑢 = (
𝐾𝐼𝑐 𝑒1

𝐸 𝑅0
1−𝜆1

)

2

  

In which the value of 𝜆1 and 𝑒1 are those related to an opening angle of 0𝑜  

Since 𝐾𝐼𝑐 is not known,  𝑊𝑢 is computed doing the mean of the value of SED at the fracturing point 

of all the specimen loaded with a null load ratio. 
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This method has also been extended to Paris theory, with the aim to predict the number of cycles 

necessary for the nucleation and propagation of the crack and to compute two equivalent 

parameters 𝐶′ and 𝑛′, that can be used with SED. The analytical procedure is explained in detail 

in the dedicated chapter, but the parameters C and n of the Paris law are taken from the literature 

and not directly find through the experimental procedure, so the numerical results cannot be used 

for practical applications. 

Finally it is demonstrated that also the equivalent method devised by Badibanga, Miranda et al. 

works well with SED if the same parameters, 𝑊𝑢 , 𝑊𝑚
′  and 𝑊𝑎

′ , defined for the Haigh diagram 

are used. Using the equivalent SED the dispersion of the experimental points from the 

interpolating line decreases, as it happens for the stress. In the case of the samples tested the 

Goodman relation works better with the stress, while with SED the Gerber relation is slightly 

better. 
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