
Discontinous Galerkin Methods for
Conservation Laws,
with and without fractional diffusion

Alexander N. Sigurdsson

Applied and Engineering Mathematics

Supervisor: Espen Robstad Jakobsen, IMF

Department of Mathematical Sciences

Submission date: July 2018

Norwegian University of Science and Technology

Preface

This thesis is the culmination of my period as a student at the Mas-
ter of Science program in Industrial Mathematics at The Norwegian
University of Science and Technology (NTNU). The work here reflects
my current interests in mathematics, differential equations and numer-
ical analysis. Not showcased in this thesis is my love for dynamical
systems, bifurcations and chaos theory. I would like to thank my ad-
visor, Professor Espen Robstad Jakobsen, for our weekly meetings and
his inspiration and guidance in completing my thesis. I would also like
to thank the Department of Mathematical Sciences, especially the ad-
ministration, for their hospitality and the way they accommodated me
for the final stretch. Lastly, I want to thank my parents, Grethe Sig-
urdsson and Eric Nævdal, for their unwavering support. Trondheim,

July 5. 2018
Alexander N Sigurdsson

i

Summary

This thesis was submitted on July 5’th 2018 as the Master’s thesis
for Alexander N Sigurdsson in Industrial Mathematics at the Depart-
ment of Mathematical Sciences at The Norwegian University of Science
and Technology (NTNU). In this thesis we apply the Discontinuous
Galerkin (DG) methods on scalar conservation laws with and without
fractional diffusion. The supporting theory of Discontinuous Galerkin
methods is taken from [2] and [6] while the discretizing of the frac-
tional Laplacian is shown in [1]. More general theory on numerical
solutions of PDE’s is found from [9] and [7]. The first part of the thesis
gives an introduction to DG methods for scalar conservation laws. We
then employ the methods to solve specific conservation laws with both
linear and non-linear flux. Here we also introduce an explicit numeri-
cal time integration scheme, a Runge-Kutta method with TVD (Total
Variation Diminishing) properties (RKTVD method) and show how to
use slope-limiting techniques to avoid spurious oscillations that occur
for higher-order methods. Numerical examples and results are shown
for both linear and non-linear flux up to 2’nd order. The second part
tackles the addition of a fractional diffusion operator specifically the
fractional Laplacian. By using a result where the fractional Laplacian
can be written as a singular integral we are able to discretize it and find
solutions of the fractional conservation law. Numerical examples with
fractional diffusion are shown for both linear and non-linear flux up to
1’st order. The appendix gives a more thorough walk-through of how
the integrals are analytically calculated for the fractional Laplacian,
and how one can calculate these integrals numerically.

ii

Sammendrag

Denne oppgaven ble innlevert den 5. juli 2018 som avsluttende mas-
teroppgave for Alexander N Sigurdsson i Industriell Matematikk ved
Institutt for Matematiske Fag ved NTNU. I denne oppgaven anvendes
Diskontinuerlig Galerkin (DG) metode p̊a den skalare bevaringsloven
med og uten fraksjonell diffusjon. Teorien back metoden er tatt fra
[2] og [6], mens diskretiseringen av den fraksjonelle Laplace operatoren
er vist i [1]. Mer generell teori n̊ar det kommer til løsningen av par-
tielle differensialligninger er hentet fra [9] og [7]. Den første delen
av oppgaven gir en introduksjon til DG metoder for skalare bevar-
ingslover. Vi bruker s̊a metoden metoden til å løse spesifikke bevar-
ingslover med b̊ade lineære og ikke-lineær flux. Her introduserer vi
ogs̊a et spesielt, eksplisitt skjema for tidsintegrering, en Runge-Kutta
metode med TVD (Total Variation Diminishing) egenskaper (RKTVD
metode) og viser hvordan vi kan broke slope-limiting teknikker for å
unng̊a falske svingninger som oppst̊ar for høyere-ordens metoder. Nu-
meriske eksempler og resultater er vist b̊ade for lineær og ikke-lineær
flux for opp til kvadratisk basis. Den andre delen av oppgaven tar for
seg hva som skjer n̊ar man inkluderer en fraksjonell diffusjos-operator
i bevaringslovene, spesifikt den fraksjonelle Laplace operatoren. Ved å
benytte oss av et resultat der den fraksjonelle Laplace operatoren kan
representeres ved et singulært integral kan vi forsøke å diskretise den
for å finne løsninger til den fraksjonelle bevaringsloven. Numeriske ek-
sempler med fraksjonell diffusjon er vist for b̊ade lineær og ikke-lineær
fluks opp til først orden. Appendikset gir en mer grundig gjennomgang
av hvordan man regner ut integralene i diskretiseringen analytisk, og
hvordan man regner ut integralene numerisk.

iii

DISCONTINOUS GALERKIN METHODS FOR
CONSERVATION LAWS, WITH AND WITHOUT

FRACTIONAL DIFFUSION

ALEXANDER N SIGURDSSON

Abstract. We seek to apply the Discontinous Galerkin (DG)
method to the scalar conservation law with and without fractional
diffusion. Using the framework in [2] and [1], we show how total
variation diminishing methods (TVD-methods) permits accurate
higher-order solutions with the help of slope limiters, and how
to discretize the fractional Laplacian, both analytically and nu-
merically. Numerical examples include solving for the non-linear
Burgers’ equation.

Date: July 5, 2018.
iv

Contents

Preface i
Summary ii
Sammendrag iii
1. Introduction 1
1.1. The Discontinous Galerkin method 1
2. Background 2
2.1. The Weak Formulation 2
2.2. Picking a basis 3
3. Burgers’ equation 5
3.1. Discontinous Galerkin Method with Legendre basis 5
3.2. Time integration and Runge Kutta methods 8
3.3. Slope limiters 9
3.4. Numerical results 10
3.5. Numerical convergence 11
4. A (super) short introduction to fractional calculus 17
5. The Fourier transform of fractional conservation laws 17
5.1. Transforming the fractional Burgers’ equation 17
5.2. Transforming the linear fractional equation, f(u) = cu 18
6. The fractional conservation law 18
6.1. The linear case 22
6.2. Numerical results 23
7. CFL-condition 24
8. Conclusion and future work 25
Appendix A. Analytically solving the integrals for the

discretized fractional Laplacian 26
Appendix B. Numerically solving the integrals for the

discretized fractional Laplacian 30
B.1. Numerically solving the integrals 30
Appendix C. Figures 32
C.1. The effect of α in the fractional Laplacian 32
C.2. The Buckley-Leverett equation 34
Appendix D. On the usage of MATLAB 37
References 38

v

1. Introduction

1.1. The Discontinous Galerkin method. The Discontinous Gal-
erkin (DG) method enjoys certain properties that are familiar in the
multitude of methods to discretize partial differential equations. The
method divides its domain into elements, similarly to FEM, allowing for
complex geometries. The difference is that instead of using piecewise
continuous basis functions the basis functions used to reconstruct the
solution are defined locally in each element, and they do not have
to be continuous across element boundaries. This locality, which is
something you can find in FDM, makes the method excel at capturing
high gradient solutions/shock solutions.

Figure 1. Initial block function and an example ele-
ment Ij

Let us consider the scalar conservation law, excluding source terms

∂u

∂t
+
∂f(u)

∂x
= 0 in Ω× (0, T),

u(x, 0) = u0(x)
(1)

Here we have the differential equation posed on a physical domain
Ω = [L,R], where L and R is the left and right boundary. In the same
way as for conform (continuous) Galerkin methods we will provide a
weak formulation, but here the weak formulation will given over each
element Ii = (xi− 1

2
, xi+ 1

2
), where Ii is the partition of Ω. We will use

the notation ∂
∂t

:= ∂t. Figure 1 shows the block function,

(2) u0(x) =

{
1 if a < x < b

0 otherwise
1

and a close up of an example element, Ij. Here, one can see how u and
x are defined on the interval. The numerical examples in this thesis
uses the block function as initial data for the most part, except for
when calculating convergence. Considering the block function it makes
sense to use either Dirichlet boundary conditions, where the solution
is 0 on the boundary, or periodic boundary conditions. However, we
can add a non-local source term to our conservation law to obtain the
fractional conservation law,

∂tu(x, t) + ∂xf(u(x, t)) = −ε (−∂2
x)

α
2 u(x, t)

in Ω× (0, T), α ∈ (0, 2), ε > 0

u(x, 0) = u0(x).

(3)

Here, the right side of the PDE is the fractional Laplacian, a non-
local source of diffusion, meaning that the diffusion happens across
the entire domain. The details and definition of this operator will be
explained in section 6, for now it is enough to know that because of
this diffusion using Dirichlet boundary conditions set to 0 will cause
mass loss at the edges. Therefore, we have chosen periodic boundary
conditions for our numerical results in sections 3.4, 6.2 and appendix
C.

2. Background

2.1. The Weak Formulation. We seek to find an approximation,
uh|Ii , that satisfies the differential equation in weak form within each
element Ii. We are looking for approximations belonging to the space

Vh = {v ∈ L1(Ω) : v|Ii ∈ P l(Ii), l = 0, ..., k},

where P l is the polynomial space up to a degree of k, a basis. Hence,
we let our approximation be a linear combination of these polynomials:

(4) uh(x, t)|Ii =
k∑
l=0

uli(t)v
l
i(x)

and we take the direct sum of the numerical solution on each element
to obtain the complete numerical solution,

(5) uh(x, t) =
⊕
Ii

uh(x, t)|Ii =
⊕
Ii

k∑
l=0

uli(t)v
l
i(x).

Here
⊕

Ii
just means that the complete solution is a sum of the nu-

merical solutions on each element Ii. The reason for this notation, as
opposed to simply

∑
Ii

, is that the basis polynomials are not defined
outside their respective elements. We can now multiply our conserva-
tion law by the test function v and integrate over the interval Ii to find

2

the weak form. Applying integration by parts to the integral containing
the flux term yields the following,∫

Ii

∂tu(x, t)v(x) dx+

∫
Ii

∂xf(u(x, t))v(x) dx = 0∫
Ii

∂tu(x, t)v(x) dx+
[
f(u(x, t))v(x)

]
Ii
−
∫
Ii

f(u(x, t))∂xv(x) dx = 0.

Our conservation law can now be broken down into four parts, they
are as follows,∫

Ii

∂tu(x, t)v(x) dx (mass matrix)

=

∫
Ii

f(u(x, t))∂xv(x) dx (stiffness matrix)

−
(
f(u(xi+ 1

2
, t))v(x−

i+ 1
2

)− f(u(xi− 1
2
, t))v(x+

i− 1
2

)
)

(flux)∫
Ii

u(x, 0)v(x) dx =

∫
Ii

u0(x)v(x) dx (initial condition).

(6)

2.2. Picking a basis. When it comes to picking a basis, we will look
at the following options and their advantages and limitations: Firstly,
the monomials, the simplest polynomial basis, we will use the reference
element I = (−1, 1),

ψn(x) := xn

secondly, the Legendre polynomials

Pn(x) := 2n
n∑
k=0

xk
(
n

k

)(
n+k−1

2

n

)
and lastly, Lagrange polynomials,

Ln(x) :=
n∑
j=0

yj`j(x), where

`j(x) :=
∏

0≤m≤k
m6=j

x− xm
xj − xm

.

Let us first calculate the mass matrix with a monomial basis of N ’th
order ∫

I

∂tu(x, t)v(x) dx =

∫
I

∂t

N∑
i=0

ui(t)xixj dx for j ∈ [0, ..., N]

=
N∑
i=0

∂tu
i

∫
I

xixj dx for j ∈ [0, ..., N]

= M · ∂tu
3

Mi,j =

∫
I

xixj dx

When solving the discretized system one will have to calculate M−1

in order to find ∂tu. Using 2’nd order as an example we can find the

condition number of this matrix, κ(M3×3) = λmax(M3×3)
λmin(M3×3)

≈ 2.24
0.16
≈ 14.

This is an ill-conditioned matrix, and one can show that the condition
number increases exponentially for higher orders, see [6]. This makes
the monomials an unsuitable basis for our discretization. Similarly,
calculate the mass matrix using Legendre polynomials,

Mi,j =

∫
I

PiPj dx =
2

2n+ 1
δij

Here we use the fact that Legendre polynomials are orthogonal, and
δij is the Kronecker delta. This gives a diagonal mass matrix which
is trivial to invert. We can see that the orthogonal property makes
the Legendre polynomials a very suitable basis. Having the solution
on each element be approximated by a sum of polynomials multiplied
by some coefficient is known as a Modal method. Compare this to
regular Galerkin method where, for example using a piecewise linear
basis ei, we have the numerical approximation uh =

∑N
i ui ei. For a

general problem this method attempts to solve a(uh, ej) = f(ej), which

gives
∑N

i uia(ej, ei) = f(ej). This can be rewritten as a linear system
of equations Au = f , where Aij = a(ej, ei). A is an N × N matrix
that gives the coefficients for the entire system, while M, for a linear
basis, is a 2× 2 matrix giving the coefficients for just a single element.
One advantage for DG methods is that one avoids the computationally
taxing task of inverting large matrices, while the downside is an increase
in the degrees of freedom. For linear elements there is a doubling as
inverting A gives an ODE-system of size N, while inverting M gives 2
ode’s per element, 2N in total. For a more thorough approach to the
Galerkin finite element method, and a more complete look at the fauna
of methods used to solve partial differential equations, see [10].

Lagrange polynomials are a little trickier,

Mi,j =

∫
I

LiLj dx.

We need to calculate an integral for each element in M , and as we will
see later the same applies to the stiffness matrix K which is the matrix
form of the second line in (6). One way of doing this numerically is
using quadrature rules,∫ 1

−1

f(x) dx ≈
n∑
k=1

wkf(xk).

A smart way of setting up the discretization is to use the same points
that define the Lagrange polynomial to calculate the quadrature, this

4

is referred to as a Nodal method. Let us use the points from the
Gauss-Lobatto quadrature which uses the values at the end point of
the interval, ∫

I

LiLj dx ≈
n∑
k=0

wkLi(xk)Lj(xk).

As an example, for a 2’nd order method we need 3 points to define
our Lagrange polynomial. For the Lobatto quadrature we have the
points x = (−1, 0, 1) and weights w = (1

3
, 4

3
, 1

3
). The values of Li(xk)

are easy to find as they are the value of our function uh at those points,
by definition. The results and analysis in this thesis utilizes a modal
method with Legendre polynomials.

3. Burgers’ equation

Let us consider Burgers’ equation, named after the dutch physicist
Jan Burgers, a non-linear conservation law,

∂tu+ ∂x(
1

2
u2) = 0 in Ω× (0, T),

u(x, 0) = u0(x)
(7)

We can see it is a conservation law of the form (1) with a non-linear
flux, f(u) = 1

2
u2.

3.1. Discontinous Galerkin Method with Legendre basis. Now,
we choose Legendre polynomials as our basis, and we pick our test
functions v from the same basis. The first few Legendre polynomials
are below.

l Pl(x)
0 1
1 x
2 1

2
(3x2 − 1)

We want the polynomials transformed from the reference element [−1, 1]
to our elements, Ii. We denote this transformed polynomial by φli,
∆x = (xi+ 1

2
− xi− 1

2
).

φli = Pl

(2(x− xi)
∆x

)
For the transformed polynomials we have the orthogonal property:

(8)

∫
Ii

φliφ
l′

i =
∆x

2l′ + 1
δll′

From (4) we get that the our approximation with Legendre polynomials
becomes:

uh(x, t)|Ii =
k∑
l=0

uli(t)φ
l
i(x)

5

Now looking at the Burgers’ equation and with our approximate solu-
tion uh|Ii , we can revisit our weak formulation. From the orthogonality
property (8), and the mass matrix (6) we have

∀i = 1, ..., N and l′ = 0, ..., k∫
Ii

(∂t

k∑
l=0

uliφ
l
i)φ

l′

i dx

⇒ ∂t

k∑
l=0

uli

∫
Ii

φliφ
l′

i dx

⇒ ∆x

2l′ + 1
∂tu

l′

i

Note that l refers to the order of the polynomials in the solution
uh|Ii , while l′ is the order for the test functions. From the stiffness
matrix part of (6) we get

∀i = 1, ..., N and l′ = 0, ..., k∫
Ii

f(
k∑
l=0

uliφ
l
i)∂xφ

l′

i dx

⇒
∫
Ii

1

2
(
k∑
l=0

uliφ
l
i)

2∂xφ
l′

i dx

The third line in (6) is referring to the flux. However, because we
are dealing with an approximation that is discontinuous across the ele-
ments we have no way of evaluating f(u(xi± 1

2
, t)). Instead we calculate

a numerical flux that depends on the two values across each of the
discontinuities. This numerical flux is defined as:

h(uh)i± 1
2

= h(uh(x
−
i± 1

2

, t), uh(x
+
i± 1

2

, t))

In [2] the motivation behind the Runge Kutta Discontinous Galerkin
(RKDG) methods, which are the ones we use in this thesis, is explained.
The idea is to make sure the method is monotone for constant basis
functions, and then consider the higher-order solutions as perturbations
of the constant basis solution. Monotone schemes are known to be
stable and converge to the entropy solution for scalar conservation laws.
A method un+1

j = G(..., unj−1, u
n
j , u

n
j+1, u

n
j+2, ...) is considered monotone

if G is monotonically increasing in each of its arguments
The numerical flux is therefore chosen such that for a constant basis

we have a monotone method. Two numerical fluxes that satisfies this
are the Godunov flux,

hG(a, b) =

{
mina≤u≤bf(u), if a ≤ b

maxb≤u≤af(u), if otherwise
6

and the local Lax-Friedrichs flux,

hLLF (a, b) =
1

2
[f(a) + f(b)− C(b− a)],

C = maxmin(a,b)≤s≤max(a,b)|f ′(s)|
For linear flux, f(u) = cu these fluxes can be reduced to

(9) hlinear(a, b) =
c

2
(a+ b)− |c|

2
(b− a)

This is simple to see for the Lax-Friedrichs flux where we have |f ′(s)| =
|c|. Substituting for the numerical flux and using the fact that
φli(xi+ 1

2
) = 1 and φli(xi− 1

2
) = (−1)l, we get

−
(
h(uh)i+ 1

2
φl
′
(x−

j+ 1
2

)− h(uh)i− 1
2
φl
′
(x+

j− 1
2

)
)

=−
(
h(uh(x

−
i+ 1

2

, t), uh(x
+
i+ 1

2

, t))φl
′
(x−

j+ 1
2

)

− h(uh(x
−
i− 1

2

, t), uh(x
+
i− 1

2

, t))φl
′
(x+

j− 1
2

)
)

=−
(
h(uh(x

−
i+ 1

2

, t), uh(x
+
i+ 1

2

, t))− (−1)l
′
h(uh(x

−
i− 1

2

, t), uh(x
+
i− 1

2

, t))
)

=−
(
h(

k∑
l=0

uli,
k∑
l=0

(−1)luli+1)− (−1)l
′
h(

k∑
l=0

uli−1,
k∑
l=0

(−1)luli)
)

The last part of the space-discretization is the initial condition from
the last line in (6)∫

Ii

uh(x, 0)v(x) dx =

∫
Ii

u0(x)v(x) dx

∀i = 1, ..., N and l′ = 0, ..., k∫
Ii

(
k∑
l=0

uli(0)φli)φ
l′

i dx =

∫
Ii

u0(x)φl
′

i dx

∆x

2l′ + 1
ul
′

i (0) =

∫
Ii

u0(x)φl
′

i dx

Putting the pieces together we can write the method in matrix form
with a vector ui = [u0

i (t), u
1
i (t), u

2
i (t), ...], mass matrix M , stiffness

matrix K and numerical flux NF .

M · ∂tui = K(ui) +NF

ul
′

i (0) =
2l′ + 1

∆x

∫
Ii

u0(x)φl
′

i dx ∀l′ = 0, ..., k

Using up to 2’nd order Legendre polynomials we have:

M =

∆x 0 0
0 ∆x

3
0

0 0 ∆x
5


7

And we have for Burgers’ equation f(u) = 1
2
u2

K(ui)f(u)= 1
2
u2 =

 0
(u0

i)
2 + 1

3
(u1

i)
2 + 1

5
(u2

i)
2

2u0
iu

1
i + 4

5
u1
iu

2
i


and for linear transport f(u) = cu

K(ui)f(u)=cu =

 0
2cu0

i

2cu1
i


and the numerical flux,

NFf(u)= 1
2
u2 =


−
(
h(
∑2

l=0 u
l
i,
∑2

l=0(−1)luli+1)− h(
∑2

l=0 u
l
i−1,

∑2
l=0(−1)luli)

)
−
(
h(
∑2

l=0 u
l
i,
∑2

l=0(−1)luli+1) + h(
∑2

l=0 u
l
i−1,

∑2
l=0(−1)luli)

)
−
(
h(
∑2

l=0 u
l
i,
∑2

l=0(−1)luli+1)− h(
∑2

l=0 u
l
i−1,

∑2
l=0(−1)luli)

)


NFf(u)=cu, c>0 =

−(c(u0
i + u1

i + u2
i)− c(u0

i−1 + u1
i−1 + u2

i−1))
−(c(u0

i + u1
i + u2

i) + c(u0
i−1 + u1

i−1 + u2
i−1))

−(c(u0
i + u1

i + u2
i)− c(u0

i−1 + u1
i−1 + u2

i−1))


Our differential equation has now been completely discretized in

space, and after multiplying our matrix form by M−1 on both sides
we can see that we have obtained a system of first-order ODE’s:

d

dt
uh = Lh(uh), in (0, T)

uh(t = 0) = u0h

(10)

Here Lh(uh) = M−1[K(ui) +NF]

3.2. Time integration and Runge Kutta methods. Now that we
have a system of ODE’s we must choose a suitable temporal discretiza-
tion and method to solve the system. Total Variation Diminishing
(TVD) and conservative schemes have been found to have desirable
properties for solving the scalar conservation law. A scheme,

un+1
i = uni − λ(f̂n

i− 1
2
− f̂n

i+ 1
2
)

is TVD if
TV (un+1) ≤ TV (un)

where we have the definition of Total Variation (TV),

TV (u) =
∑
i

|ui+1 − ui|.

From these definitions we can see that a TVD scheme can not have
any spurious oscillations across discontinuities or shocks, as that would
increase the TV. So far we have chosen our spatial discretization such

8

that it is monotone for constant basis functions. Harten showed in [5]
that monotone schemes are TVD and that TVD schemes are mono-
tonicity preserving. We will be using an explicit TVD Runge-Kutta
method described in [11] and [2].

3.2.1. TVD Runge-Kutta algorithm. We partition [0, T] into Nt parts
with size ∆t = tn+1 − tn, n = 0, ..., Nt − 1

• Set u0
h = u0h

• For n = 0, ..., Nt − 1 compute un+1
h from unh

(1) set u
(0)
h = unh

(2) for i = 1, ..., k + 1

u
(i)
h =

{ i−1∑
l=0

αilu
(l)
h + βil∆t

nLh(u
(l)
h)
}

;

(3) set un+1
h = uk+1

h

Runge-Kutta discretization parameters
order αil βil

2
1
1
2

1
2

1
0 1

2

3
1
3
4

1
4

1
2

0 2
3

1
0 1

4
0 0 2

3

3.3. Slope limiters. As we shall see from the numerical results, using
higher order polynomials to approximate a solution gives rise to spuri-
ous oscillation where our solution has sharp gradients/shocks. Burgers’
equation gives rise to shocks, and is indeed suffering from this phenom-
enon. We can explain this by the fact that our method is only TVD
for constant basis functions. Thus we need to create some adjustments
to our solution to enforce TVD when using a higher-order basis. To do
this we use a TVDM (total variation diminishing in the means) slope
limiter. The principle is to compare the slope of our approximate so-
lution on each element, given in equation (4) to that of the differences
between the mean value of the element and the surrounding elements,
for linear basis functions with Legendre polynomials,

(11) u1
i (t) = minmod

(
υ1
i (t), υ

0
i+1(t)− υ0

i (t), υ
0
i (t)− υ0

i−1(t)
)
.

This limiter is denoted ΛΠ1
h in [2] where it is given as function of

means and slopes, here it is given as a function of the polynomial
coefficients. υ is the approximation before limiting, and minmod is a
function that picks the value closest to 0, given that they all have the
same sign, or it returns 0. Mathematically,

9

minmod(a1, ..., aν) =

{
smin1≤n≤ν |an| if s = sign(a1) = ... = sign(aν),

0 otherwise.

When dealing with Legendre polynomials of higher order, the algo-
rithm is to compare the function value at the edges to the surrounding
means, this higher-order limiting is denoted ΛΠk

h,

u−
i+ 1

2

= ῡi + minmod(υ−
i+ 1

2

− ῡi, ῡi − ῡi−1, ῡi+1 − ῡi)

u+
i− 1

2

= ῡi −minmod(ῡi − υ+
i− 1

2

, ῡi − ῡi−1, ῡi+1 − ῡi).

If u−
i+ 1

2

= υ−
i+ 1

2

and u+
i− 1

2

= υ+
i− 1

2

then we set uh|Ii = υh|Ii , otherwise

we reduce the order of the approximate solution to a linear basis in that
element and set the new slope value by using the first-order limiter ΛΠ1

h,
(11).

3.3.1. TVD Runge-Kutta algorithm with slope limiters. Including sloper
limiters the modified RKTVD algorithm becomes, We partition [0, T]
into Nt parts with size ∆t = tn+1 − tn, n = 0, ..., Nt − 1

• Set u0
h = ΛΠk

hu0h

• For n = 0, ..., Nt − 1 compute un+1
h from unh

(1) set u
(0)
h = unh

(2) for i = 1, ..., k + 1

u
(i)
h = ΛΠk

h

{ i−1∑
l=0

αilu
(l)
h + βil∆t

nLh(u
(l)
h)
}

;

(3) set un+1
h = uk+1

h

Note that the slope limiting is applied for each intermediate step.
Each intermediate step has the ability to create spurious oscillations
that might propagate if not corrected for before completing a full step.

3.4. Numerical results. First a note that is relevant for all figures
throughout this entire thesis. All calculations are done on the domain
Ω = [−10, 10], while the figures only show the domain [−2, 6]. The
reason behind this is to create consistency between the figures with
and without fractional diffusion. As will be explained in section 6, the
fractional Laplacian acts globally so we capture more of the diffusion
with a larger domain.

Figures 2 through 6 shows the solution to Burgers’ equation using
different orders of polynomials. From figures 3 and 5 it is very ap-
parent that without using limiting the solution suffers from spurious
oscillations across all sharp gradients, and especially the shock. For
the constant case in figure 2, there are no oscillations because of the
monotonicity property discussed in section 3. A keen eye can perhaps

10

spot that for constant basis functions the solution seems to smooth out
the edges of the initial data much more quickly than for linear and qua-
dratic basis. Figure 7 uses constant basis functions, but with a much
finer grid, it much closer mimics the solution from higher-order polyno-
mials. The next section deals with how quickly the different methods
converge to the exact solution.

Figure 2. The evolution of Burgers’ equation with con-
stant basis functions and the block function as initial
data

3.5. Numerical convergence. By refining our grid we can check the
order of convergence for the different orders of the method. We can
calculate the error between exact solutions and approximate solutions
using the L1 norm:

Error =
∣∣∣∣u− uh∣∣∣∣1 =

∫ ∞
−∞
|u− uh| dx

We can look at approximate solutions using second order basis func-
tions ∫ ∞

−∞
|u− uh| dx =

∫ ∞
−∞
|u−

⊕
Ii

k∑
l=0

uli(t)v
l
i(x)| dx

For linear flux without the fractional diffusion the exact solutions are
just translations of the initial data. The numerical convergence results
will be looking at the convergence of the methods using linear flux with
c = 1 on the Gauss function e−x

2
. Let us look at the solution after some

11

Figure 3. The evolution of Burgers’ equation with up
to linear basis functions and the block function as initial
data, no slope limiting

Figure 4. The same as figure 3, but with slope limiting

12

Figure 5. The evolution of Burgers’ equation with up
to quadratic basis functions and the block function as
initial data, no slope limiting

Figure 6. The same as figure 5, but with slope limiting

13

Figure 7. The same as figure 2, but with a finer grid

time T . Because the Gauss function is smooth the numerical results
are without any slope limiting.

N∑
i=1

∫
Ii

|e−(T−x)2 −
k∑
l

uli(T)φli(x)| dx

This integral can be solved numerically using quadratures, check the
appendix for more details about quadrature integration.

Table 1 gives an overview for convergence rate for the DG method
using different orders. For reference,

∣∣∣∣e−x2∣∣∣∣
1

=
√
π ≈ 1.77. The

constant basis solution converges very slowly, while the quadratic can
use a very coarse grid and still give an accurate solution. The trade-
off being that the semi-discretized system (10) needed to be solved for
each time step has the size N · (k + 1), where N are the number of
elements, and k is the order of polynomials used. The lower limit of
0.0004 is related to the time-discretization, and can be further reduced
with more time steps. Figures 8 through 10 show the solution of the
scalar conservation law with f(u) = cu, c = 1 using a Gauss function
as initial data with ∆x = 0.4. The initial condition wave is in green
while the translated solution at t = 2 is in red. Using a quadratic basis
is clearly superior for such a coarse grid.

14

∆x Constant Linear Quadratic

2 2.0092 0.8044 0.3317
1.33 1.6131 0.5340 0.1219

1 1.3944 0.3120 0.0443
0.667 1.1536 0.1340 0.0107
0.4 0.8418 0.0416 0.0020
0.25 0.6096 0.0142 0.0006
0.167 0.4484 0.0057 0.0004
0.1 0.2943 0.0019 0.0004

0.0625 0.1947 0.0008 0.0004
0.04 0.1292 0.0005 0.0004
0.02 0.0669 0.0004 0.0004

Table 1. This table shows L1 norm for the difference
between the numerical solution and the exact solution
for the scalar conservation law with linear flux at time
T = 2. The Gauss function is used as initial data.

Figure 8. Constant basis: It is clearly causing some
unwanted dissipation. Here the initial condition (t = 0)
is shown in green, while the solution for t = 2 is in red.

15

Figure 9. Linear basis: No longer has the unwanted
dissipation, but it is still far from the smooth solution
we would like.

Figure 10. Quadratic basis: Almost impossible to tell
that this is a numerical approximation and not the exact
Gauss function.

16

4. A (super) short introduction to fractional calculus

Before adding fractional diffusion to our conservation law we need
to understand exactly what is meant by fractional derivatives. One
way to understand them is through the Fourier transform. The Fourier
transform and inverse Fourier transform are given below,

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πixξdx

f(x) =

∫ ∞
−∞

f̂(ξ)e2πixξdξ.

One can calculate the Fourier transform of the derivative of a function
as well,

f̂ ′(ξ) =

∫ ∞
−∞

f ′(x)e−2πixξdx =
[
f(x)e−2πixξ

]∞
−∞
−
∫ ∞
−∞

(−2πiξ)f(x)e−2πixξdx

= (2πiξ)

∫ ∞
−∞

f(x)e−2πixξdx = (2πiξ)f̂(ξ),

and by extension,

f̂ (n)(ξ) = (2πiξ)nf̂(ξ).

By allowing n to be any number and not just integers, the Fourier
transform gives a simple definition of fractional derivatives. This simple
definition is enough to understand how a specific fractional operator
behaves when Fourier transformed, namely the fractional Laplacian.
All that is needed is some simple manipulation of the second derivative,

f̂ (2)(ξ) = −(2πξ)2f̂(ξ)

−̂∂2
xf(ξ) = (2πξ)2f̂(ξ)

̂−(−∂2
x)

α
2 f(ξ) = −(2π)α|ξ|αf̂(ξ),

the last equation is the fractional Laplacian and its Fourier transform.

5. The Fourier transform of fractional conservation
laws

5.1. Transforming the fractional Burgers’ equation. Because of
this definition we can transform entire fractional differential equations
into the Fourier space. One idea behind this is that the differential
equations might be easier to solve in the Fourier space, and even though
transforming the solution back again might be difficult, the L2-norm
preserving property of the Fourier space might let us do some simpler
convergence analysis. A requirement of the transformation is of course
that the L2-norm of our initial condition is < ∞, the fact that we’re

17

dealing with conservation laws let’s us know that the solution u(x, t)
will stay bounded.

∂tu(x, t) + ∂xf(u(x, t)) = −ε(−∂2
x)

α
2 u(x, t)

F
{
∂tu(x, t)

}
+ F

{
∂xf(u(x, t))

}
= F

{
− ε(−∂2

x)
α
2 u(x, t)

}
∂tû(k, t) +

∫ ∞
−∞

∂x(
1

2
u(x, t)2)e−2πikxdx =

∫ ∞
−∞
−ε(−∂2

x)
α
2 u(x, t)e−2πikx

∂tû(k, t) +
[
(
1

2
u2)e−2πikx

]∞
−∞
−
∫ ∞
−∞

(
1

2
u(x, t)2)

1

−2πik
e−2πikxdx

= −ε(2π)α|k|αû(k, t)

∂tû(k, t) +
1

4πik

∫ ∞
−∞

(u(x, t)2)e−2πikxdx = −ε(2π)α|k|αû(k, t)

∂tû(k, t) +
1

4πik
(û(k, t) ∗ û(k, t)) = −ε(2π)α|k|αû(k, t)

5.2. Transforming the linear fractional equation, f(u) = cu.

∂tu(x, t) + ∂xf(u(x, t)) = −ε(−∂2
x)

α
2 u(x, t)

F
{
∂tu(x, t)

}
+ F

{
∂xf(u(x, t))

}
= F

{
− ε(−∂2

x)
α
2 u(x, t)

}
∂tû(k, t) +

∫ ∞
−∞

∂x(c · u(x, t))e−2πikxdx =

∫ ∞
−∞
−ε(−∂2

x)
α
2 u(x, t)e−2πikx

∂tû(k, t) + c · (2πik)û(k, t) = −ε(2π)α|k|αû(k, t)

∂tû(k, t) = −(ε(2π)α|k|α + c · (2πik))û(k, t)

û(k, t) = C · e−(ε(2π)α|k|α+c·(2πik))t

6. The fractional conservation law

Now that we have an understanding of fractional calculus we can en-
tertain the idea of fractional differential equations. By adding the frac-
tional Laplacian to our scalar conservation law we get what is known
as the fractional conservation law, as mentioned in equation (1) in the
introduction.

∂tu(x, t) + ∂xf(u(x, t)) = −ε (−∂2
x)

α
2 u(x, t)

in Ω× (0, T), α ∈ (0, 2), ε > 0

u(x, 0) = u0(x)

Another way to represent fractional derivatives, other than through
the Fourier transform, is with singular integrals. The integral repre-
sentation of fractional Laplacian is given in [3] for two cases of α in one
dimension.

18

For α ∈ (0, 1) we have

−(−∂2
x)

α
2 φ(x) = gα[φ(x)] = c(α)

∫
R

φ(x+ z)− φ(x)

|z|1+α
dz

For α ∈ (1, 2) we have

−(−∂2
x)

α
2 φ(x) = gα[φ(x)] = c(α)

∫
R

φ(x+ z)− φ(x)− ∂xφ(x) · z
|z|1+α

dz

c(α) =
αΓ(1+α

2
)

2π
1
2

+αΓ(1− α
2
)

Now let’s look at how we can discretize such an operator with the
Discontinous Galerkin method. For the case where α ∈ (0, 1) we do
the same procedure as previously, we find the weak formulation by
multiplying by a test function and integrating. For a method using
α ∈ (1, 2) see [13].

Using a constant basis the approximation is given by

uh(x, t) =
⊕
Ii

u0
i (t)φ

0
i (x)

The weak formulation of the fractional Laplacian becomes

c(α)u0
i (t)

∫
R

∫
R

(φ0
i (x+ z)− φ0

i (x))φ0
j(x)

|z|1+α
dx dz

The order of integration is arbitrary as z and x are independent
variables. Where we have the constant functions

φ0
i (x) =

{
1 for x ∈ [xi− 1

2
, xi+ 1

2
]

0 otherwise

φ0
i (x+ z) =

{
1 for x+ z ∈ [xi− 1

2
, xi+ 1

2
]

0 otherwise

Gj
i = c(α)u0

i (t)

∫
R

∫
R

(φ0
i (x+ z)− φ0

i (x))φ0
j(x)

|z|1+α
dx dz

Gj
i = c(α)u0

i (t)

∫
R

∫ x
j+1

2

x
j− 1

2

(φ0
i (x+ z)− φ0

i (x))

|z|1+α
dx dz

If i = j we have two different cases for the inner integral

ξ(z)(i=j) =

∫ x
j+1

2

x
j− 1

2

(φi(x+ z)− φi(x))

|z|1+α
dx =

{
− 1
|z|α for |z| ≤ ∆x

− ∆x
|z|1+α for |z| > ∆x

Further simplifications can be made with a change of variable z =
ẑ ·∆x

19

ξ(ẑ)(i=j) =

{
− 1
|ẑ|α·∆xα for |ẑ| ≤ 1

− 1
|ẑ|1+α·∆xα for |ẑ| > 1

leading to the integral

Gj
j(α) =c(α)u0

i (t)
(∫

R
ξ(ẑ)(i=j) dẑ

)
·∆x

=c(α)u0
i (t)
(∫
|ẑ|≤1

− 1

|ẑ|α
dẑ +

∫
|ẑ|>1

− 1

|ẑ|1+α
dẑ
)
·∆x1−α

=c(α)u0
i (t)
(∫ 1

0

− 2

ẑα
dẑ +

∫ ∞
1

− 2

ẑ1+α
dẑ
)
·∆x1−α

=c(α)u0
i (t)
([−2

1− α
z1−α

]1

0
+
[2

α
z−α
]∞

1

)
·∆x1−α

=c(α)u0
i (t)
(2

α− 1
− 2

α

)
·∆x1−α

=c(α)
(2

α(α− 1)

)
u0
i (t) ·∆x1−α

Because of the condition α ∈ (0, 1) we have convergence of the inte-
grals as the inner integral removes one order of |z| across z = 0. Solving
for α = 0.5 we get c(0.5) = 1

4π
and 2

α(α−1)
= −8 leading to

Gj
j(0.5) = − 2

π
u0
i (t) ·∆x0.5

In the case that i 6= j then we have φ0
i = 0 leading to,

Gj
i = −c(α)u0

i (t)

∫
R

∫ x
j+1

2

x
j− 1

2

φ0
i (x+ z)

|z|1+α
dx dz.

We start by assuming j > i and we’ll use symmetry to find the values
for when j < i.
If j > i we have to have z > 0 for the following integrals to be non-zero.

ξ(z)(j>i) =

∫ x
j+1

2

x
j− 1

2

φi(x+ z)

z1+α
dx

=

{
z−(j−i−1)∆x

z1+α
for (j − i− 1)∆x < z < (j − i)∆x

0 otherwise

Gj
i = c(α)ui(t)

∫ (j−i)∆x

(j−i−1)∆x

(1

zα
− (j − i− 1)∆x

z1+α

)
dz

20

Again with a variable change z = ẑ ·∆x.

Gj
i = c(α)u0

i (t)

∫ (j−i)

(j−i−1)

1

ẑα
− (j − i− 1)

ẑ1+α
dẑ ·∆x1−α

= c(α)u0
i (t)
([1

1− α
ẑ1−α

]j−1

j−i−1
−
[j − i− 1

α
ẑ−α
]j−1

j−i−1

)
·∆x1−α

= c(α)u0
i (t)
(1

1− α
((j − i)1−α − (j − i− 1)1−α)

+
(j − i− 1)

α
((j − i)−α − (j − i− 1)−α)

)
·∆x1−α

Note that Gj+1
i+1 = Gj

i , this means that the full matrix G will be
Toeplitz, meaning one can construct the entire matrix from just one
row or column. One also needs to careful that for j = i + 1 the inner
integral is ξ(z)(j=i+1) = 1

z
for 0 ≤ z ≤ ∆x, otherwise one risks dividing

by 0 when calculating the outer integral. Again, using the value α = 0.5
we can calculate the super-diagonal and, similarly, all other diagonals.
Gj
i = Gi

j.

(12) Gi+1
i =

1

2π
u0
i (t) ·∆x0.5

From this we can construct the matrix G for the discretized fractional
Laplacian. The table below shows the values for each diagonal of the
matrix, a symmetric Toeplitz matrix.



c(α) −2
α(1−α)

c(α) 1
1−α

c(α)
(

1
1−α(21−α − 1) + 1

α
(2−α − 1)

)
c(α)

(
1

1−α(31−α − 21−α) + 1
α

(3−α − 2−α)
)

c(α)
(

1
1−α(41−α − 31−α) + 1

α
(4−α − 3−α)

)
...

c(α)
(

1
1−α(N1−α − (N − 1)1−α) + 1

α
(N−α − (N − 1)−α)

)


and for α = 0.5

−2/π
0.5/π

1
π

(
0.5(
√

2− 1) + 0.5(1√
2
− 1)

)
1
π

(
0.5(
√

3−
√

2) + 0.5(1√
3
− 1√

2
)
)

1
π

(
0.5(
√

4−
√

3) + 0.5(1√
4
− 1√

3
)
)

...
1
π

(
0.5(
√
N −

√
N − 1) + 0.5(1√

N
− 1√

N−1
)
)

1
π

(
0.5(N+1√

N
− N√

N−1
)
)


21

Here we see that the fractional Laplacian has a global scope, the
matrix is a full matrix, meaning that the diffusion process is applied
on the whole domain. Ideally, for complete accuracy the entire R would
need to be discretized, but this is not feasible, however when i and j
are far apart, the diffusion diminishes rapidly, meaning that as long as
the discretized domain includes the entire initial condition wave as well
as some buffer there shouldn’t be any significant loss of accuracy. This
is the reason why the numerical examples are calculated for a larger
domain, [−10, 10], than what is shown in the figures.

6.1. The linear case. Using a linear basis we have the approximation

uh(x, t) =
⊕
Ii

(
u0
i (t)φ

0
i (x) + u1

i (t)φ
1
i (x)

)
For the two different test functions v = φ0

i and v = φ1
i the weak form

of the fractional Laplacian becomes

c(α)
(
u0
i (t)

∫
R

∫
R

(φ0
i (x+ z)− φ0

i (x))φ0
j(x)

|z|1+α
dx dz

+ u1
i (t)

∫
R

∫
R

(φ1
i (x+ z)− φ1

i (x))φ0
j(x)

|z|1+α
dx dz

)
and

c(α)
(
u0
i (t)

∫
R

∫
R

(φ0
i (x+ z)− φ0

i (x))φ1
j(x)

|z|1+α
dx dz

+ u1
i (t)

∫
R

∫
R

(φ1
i (x+ z)− φ1

i (x))φ1
j(x)

|z|1+α
dx dz

)
Where we have the same constant functions as before, with the ad-

dition of the linear basis functions

φ1
i (x) =

{
2

∆x
(x− xi) for x ∈ [xi− 1

2
, xi+ 1

2
]

0 otherwise

φ1
i (x+ z) =

{
2

∆x
(x+ z − xi) for x+ z ∈ [xi− 1

2
, xi+ 1

2
]

0 otherwise
22

There are 4 inner integrals that we need to solve.

ζ0,0 =

∫
R
(φ0

i (x+ z)− φ0
i (x))φ0

j(x) dx

ζ1,0 =

∫
R
(φ1

i (x+ z)− φ1
i (x))φ0

j(x) dx

ζ0,1 =

∫
R
(φ0

i (x+ z)− φ0
i (x))φ1

j(x) dx

ζ1,1 =

∫
R
(φ1

i (x+ z)− φ1
i (x))φ1

j(x) dx

Refer to appendix A for the solutions of these integrals analytically,
and appendix B for how to solve them numerically.

6.2. Numerical results. Figures 11 and 12 shows the solution to
Burgers’ equation for a constant and linear basis. Comparing to the
solutions of Burgers’ equation without diffusion we see that the peak
of the wave is getting smaller quicker, as well as some smoothing of
the edge of the wave. This is evidence of the non-locality, diffusion is
happening over the entire domain. Refer to appendix C.2 for results
with other values of α and ε.

Figure 11. The evolution of Burgers’ equation with
fractional diffusion using a constant basis

23

Figure 12. The evolution of Burgers’ equation with
fractional diffusion and slope limiting using a linear basis

7. CFL-condition

One can find the CFL condition for the semi-discrete system. ∂u
∂t

=
L(u). For non-linear flux the system L(u) becomes very complex, but
we can do some analysis using the linear case F (u) = cu. As we saw
in section 3.1, the numerical fluxes for the linear case reduces to

h(a, b) =
c

2
(a+ b)− |c|

2
(b− a)

Using this flux, we can see that ∂u
∂t

= L(u) becomes a linear system
∂u
∂t

= Λu, where we have

Λ = − 1

2∆x



2|c| c− |c| 0 0

−c− |c| 2|c| c− |c| . . .
...

0 −c− |c|
...

...
. c− |c| 0

...
. . . −c− |c| 2|c| c− |c|

0 0 −c− |c| 2|c|



N×N

From [12], the eigenvalues of a tridiagonal, Toeplitz matrix, with
diagonal, superdiagonal and subdiagonal d1, d2, d3, is given by

λn = d1 + 2
√
d2d3 · cos (

nπ

N + 1
) for n = 1, ..., N

24

This let’s us know that the largest eigenvalue in the system is max λn =
d1+2

√
d2d3 = − 1

∆x
(|c|+

√
(c− |c|)(−c− |c|)) = − 1

∆x
(|c|+

√
|c|2 − c2) =

− |c|
∆x

. From this we can use the forward Euler step to find a stability
condition.

∂tu = − |c|
∆x

u

⇒ un+1 = un −∆t
|c|
∆x

un

⇒ un = (1− |c|∆t
∆x

)nu0

For this to be stable we need ∣∣∣1− |c|∆t
∆x

∣∣∣ ≤ 1

−1 ≤ 1− ∆t

∆x
|c| ≤ 1

−2 ≤ −∆t

∆x
|c| ≤ 0

0 ≤ ∆t

∆x
|c| ≤ 2

|c|∆t
∆x
≤ 2

The Gershgorin circle theorem also tells us that the eigenvalues of Λ

all lie within − |c|
∆x
± 2|c|

∆x
, which in the worst case is |c|

∆x
giving us the

same stability condition as the one we arrived at.

8. Conclusion and future work

We have shown how the DG methods can be used to numerically
solve the scalar conservation law. This includes both linear and non-
linear flux. By making sure the method is Total Variation Diminishing
(TVD) we could ensure a stable solution for constant basis functions.
For higher-order basis functions and on differential equations that give
rise to shocks we were able to salvage the accuracy through slope lim-
iting techniques.

A direct continuation of the work in this thesis would be to analyt-
ically solve the integrals needed for the discretization of the fractional
Laplacian for even higher orders, as the numerical integration is very
inefficient. One could also investigate how diffusion will affect the CFL-
condition, one would probably expect it to allow for a more lenient con-
dition. Additional challenges include applying the methods to irregular
grids and 2D and 3D domains. One could also use the framework here
to discretize conservation laws with other types of singular non-local
sources or even the larger class of partial integro-differential equations
(PIDE).

25

Appendix A. Analytically solving the integrals for the
discretized fractional Laplacian

ζ0,0 =

∫
R
(φ0

i (x+ z)− φ0
i (x))φ0

j(x) dx

ζ1,0 =

∫
R
(φ1

i (x+ z)− φ1
i (x))φ0

j(x) dx

ζ0,1 =

∫
R
(φ0

i (x+ z)− φ0
i (x))φ1

j(x) dx

ζ1,1 =

∫
R
(φ1

i (x+ z)− φ1
i (x))φ1

j(x) dx

The first one is the same integral we solved using basis functions.
But now we’ll solve it a little differently, first for j = i∫

R
(φ0

i (x+ z)− φ0
i (x))φ0

i (x) dx

=

∫
R
φ0
i (x+ z)φ0

i (x) dx−
∫
R
φ0
i (x)φ0

i (x) dx

=


∫ x

i+1
2
−z

x
i− 1

2

dx−∆x for 0 < z ≤ ∆x∫ xi+1
2

x
i− 1

2
−z dx−∆x for −∆x ≤ z < 0

−∆x otherwise

=


−z for 0 < z ≤ ∆x

z for −∆x ≤ z < 0

−∆x otherwise

For j = i− n

∫
R
(φ0

i (x+ z)− φ0
i (x))φ0

i−n(x) dx

=

∫
R
φ0
i (x+ z)φ0

i−n(x) dx

=


∫ xi−n+1

2
x
i− 1

2
−z dx for (i− j − 1)∆x < z ≤ (i− j)∆x∫ x

i+1
2
−z

x
i−n− 1

2

dx for (i− j)∆x ≤ z < (i− j + 1)∆x

0 otherwise

=


(n− 1)∆x+ z for (i− j − 1)∆x < z ≤ (i− j)∆x
(n+ 1)∆x− z for (i− j)∆x ≤ z < (i− j + 1)∆x

0 otherwise

26

for j = i+ n

∫
R
(φ0

i (x+ z)− φ0
i (x))φ0

i+n(x) dx

=

∫
R
φ0
i (x+ z)φ0

i+n(x) dx

=


∫ x

i+1
2
−z

x
i+n− 1

2

dx for (i− j)∆x < z ≤ (i− j + 1)∆x∫ xi+n+1
2

x
i− 1

2
−z dx for (i− j − 1)∆x ≤ z < (i− j)∆x

0 otherwise

=


(n− 1)∆x− z for (i− j)∆x < z ≤ (i− j + 1)∆x

(n+ 1)∆x+ z for (i− j − 1)∆x ≤ z < (i− j)∆x
0 otherwise

and now for solving the complete integral

∫
R

ζ0,0

|z|1+α
dz for j = i

=

∫ ∆x

0

−z
|z|1+α

dz +

∫ 0

−∆x

z

|z|1+α
dz +

∫ ∞
∆x

−∆x

|z|1+α
dz +

∫ −∆x

−∞

−∆x

|z|1+α
dz

=
(∫ 1

0

−1

zα
dz −

∫ 0

−1

1

(−z)α
dz +

∫ ∞
1

−1

z1+α
dz +

∫ −1

−∞

−1

(−z)1+α
dz
)

∆x1−α

=
(1

α− 1
+

1

α− 1
+
−1

α
+
−1

α

)
∆x1−α

=
(2

α(α− 1)

)
∆x1−α

This is the same solution that was arrived at in section 5.1. Solving
the outer integral is similar for all the other cases and has been omitted.
Continuing with the inner integrals, the second can be solved as follows,

27

first for i = j,∫
R
(φ1

i (x+ z)− φ1
i (x))φ0

i (x) dx =

∫ x
i+1

2

x
i− 1

2

φ1
i (x+ z)− φ1

i (x) dx

=

∫ x
i+1

2−z

x
i− 1

2

φ1
i (x+ z) dx

=


∫ x

i+1
2−z

x
i− 1

2

2
∆x

(x+ z − xi) for 0 < z ≤ ∆x∫ x
i+1

2
x
i− 1

2−z

2
∆x

(x+ z − xi) for −∆x ≤ z < 0

0 otherwise

=


z − z2

∆x
for 0 < z ≤ ∆x

z + z2

∆x
for −∆x ≤ z < 0

0 otherwise.

Here we have used the fact that
∫ x

j+1
2

x
j− 1

2

φ1
i (x) dx = 0 and the identities

(xj+ 1
2
− xj− 1

2
) = ∆x and (1

2
x2
j+ 1

2

− 1
2
x2
j− 1

2

) = xi ·∆x
and then for i 6= j, fixing i we calculate the integrals for j = i + n

and j = i− n∫
R
(φ1

i (x+ z)− φ1
i (x))φ0

i−n(x) dx

=

∫ x
i−n+1

2

x
i−n− 1

2

φ1
i (x+ z) dx

=


∫ xi−n+1

2
x
i− 1

2
−z

2
∆x

(x+ z − xi) dx for (i− j − 1)∆x ≤ z ≤ (i− j)∆x∫ x
i+1

2
−z

x
i−n− 1

2

2
∆x

(x+ z − xi) dx for (i− j)∆x ≤ z < (i− j + 1)∆x

0 otherwise

=


(n2 − n)∆x− (2n− 1)z + z2

∆x
for (i− j − 1)∆x ≤ z ≤ (i− j)∆x

−(n2 + n)∆x+ (2n+ 1)z − z2

∆x
for (i− j)∆x ≤ z < (i− j + 1)∆x

0 otherwise

and similarly for j = i+ n∫
R
(φ1

i (x+ z)− φ1
i (x))φ0

i+n(x) dx

=


−(n2 − n)∆x− (2n− 1)z − z2

∆x
for (i− j)∆x ≤ z ≤ (i− j + 1)∆x

(n2 + n)∆x+ (2n+ 1)z + z2

∆x
for (i− j − 1)∆x ≤ z < (i− j)∆x

0 otherwise
28

The third integral, for j = i− n:∫
R
(φ0

i (x+ z)− φ0
i (x))φ1

j(x) dx

=


(n2 + n)∆x− (2n+ 1)z + z2

∆x
for (i− j)∆x ≤ z ≤ (i− j + 1)∆x

−(n2 − n)∆x+ (2n− 1)z − z2

∆x
for (i− j − 1)∆x ≤ z < (i− j)∆x

0 otherwise

and for j = i+ n:∫
R
(φ0

i (x+ z)− φ0
i (x))φ1

j(x) dx

=


(n2 − n)∆x+ (2n− 1)z + z2

∆x
for (i− j)∆x ≤ z ≤ (i− j + 1)∆x

−(n2 + n)∆x− (2n+ 1)z − z2

∆x
for (i− j − 1)∆x ≤ z < (i− j)∆x

0 otherwise

The fourth integral is by far the hardest, and the answers have been
checked with Mathematica,

∫
R
(φ1

i (x+z)−φ1
i (x))φ1

j(x) dx =

∫
R
φ1
i (x+z)φ1

j(x) dx−
∫
R
φ1
i (x)φ1

j(x) dx.

The second part is easy, using the diagonal properties of Legendre
polynomials

−
∫
R
φ1
i (x)φ1

j(x) dx = −∆x

3
for i = j

The first part for z > 0 or in other words j = i− n∫
R
φ1
i (x+ z)φ1

j(x) dx =

∫
R
φ1
i (x+ z)φ1

i−n(x) dx

=


∫ xi−n+1

2
x
i− 1

2
−z

4
∆x2

(x+ z − xi)(x− xi−n) for (i− j − 1)∆x ≤ z ≤ (i− j)∆x∫ x
i+1

2
−z

x
i−n− 1

2

4
∆x2

(x+ z − xi)(x− xi−n) for (i− j)∆x ≤ z < (i− j + 1)∆x

0 otherwise

=



−2
3
z3

∆x2
+ ∆x(−4

3
n3 + 4n2 − 3n+ 1

3
) + 2

∆x
z2 + (2n2 − 6n+ 3)z

for (i− j)∆x ≤ z ≤ (i− j + 1)∆x
2
3
z3

∆x2
+ ∆x(4

3
n3 − n+ 1

3
)− 2

∆x
z2 − (2n2 − 2n− 1)z

for (i− j − 1)∆x ≤ z < (i− j)∆x
0 otherwise

29

and the first part for z < 0, in other words j = i+ n∫
R
φ1
i (x+ z)φ1

j(x) dx =

∫
R
φ1
i (x+ z)φ1

i+n(x) dx

=


∫ x

i+1
2
−z

x
i+n− 1

2

4
∆x2

(x+ z − xi)(x− xi+n) for (i− j)∆x ≤ z ≤ (i− j + 1)∆x∫ xi+n+1
2

x
i− 1

2
−z

4
∆x2

(x+ z − xi)(x− xi+n) for (i− j − 1)∆x ≤ z < (i− j)∆x

0 otherwise

=



2
3
z3

∆x2
+ ∆x(−4

3
n3 + 4n2 − 3n+ 1

3
) + 2

∆x
z2 − (2n2 − 6n+ 3)z

for (i− j)∆x ≤ z ≤ (i− j + 1)∆x

−2
3
z3

∆x2
+ ∆x(4

3
n3 − n+ 1

3
)− 2

∆x
z2 + (2n2 − 2n− 1)z

for (i− j − 1)∆x ≤ z < (i− j)∆x
0 otherwise

Appendix B. Numerically solving the integrals for the
discretized fractional Laplacian

B.1. Numerically solving the integrals. As the order of our method
increases, so do the number of integrals. Instead of solving them analyt-
ically as in the previous section, an idea could be do them numerically
using a quadrature method. Let’s look at our integral for constant
basis functions as an example, ∀i, j we have

Gj
i = −c(α)ui(t)

∫
R

∫
R

(φ0
i (x+ z)− φ0

i (x))φ0
j(x)

|z|1+α
dx dz

A generic quadrature method has the form∫ b

a

f(x) dx ≈ b− a
2

n∑
i=1

f(
b− a

2
xi +

a+ b

2
) · wi

Again using the fact that φj(x) is 0 except for xj− 1
2
≤ x ≤ xj+ 1

2
, all

integrals will take the form

Gj
i =− c(α)ui(t)

∫
R

∫ x
j+1

2

x
j− 1

2

(φ0
i (x+ z)− φ0

i (x))φ0
j(x)

|z|1+α
dx dz

≈− c(α)ui(t)

∫
R

n∑
l=1

∆x

2
(φ0

i (
∆x

2
xl + xj + z)− φ0

i (
∆x

2
xl + xj))

· φ0
j(

∆x

2
xl + xj) · wl

dz

|z|1+α

Here we have used a+b
2

=
x
j− 1

2
+x

j+1
2

2
= xj and b−a

2
=

x
j+1

2
−x

j− 1
2

2
= ∆x

2
.

We know that φ are polynomials, so our numerical integration will be
accurate. When it comes to integrating over z we run into the problem
that it is a singular integral and not a polynomial. When solving the

30

integrals analytically, we found that the integrals are convergent for
α ∈ (0, 1), however we still need to be careful to pick non-zero nodes
for z. One way to do this, and it is the one we have used for my
numerical results, is to discretize in space such that 0 is in the middle
of an element, and then using a Gauss-Lobatto quadrature, pick an
even number of quadrature points, that way 0 is not one of the nodes.

Keeping this in mind, the complete numerical integration is, ∀i, j

Gj
i ≈− c(α)ui(t)

N∑
p=1

even n∑
k=1

n∑
l=1

∆x2

4
φ0
j(

∆x

2
xl + xj)

wlwk

|(∆x
2
zk + xp)|1+α

· (φ0
i (

∆x

2
xl + xj + (

∆x

2
zk + xp))− φ0

i (
∆x

2
xl + xj))

Note that xl and zk are the quadrature nodes, while xj and xp are
values on the domain. For fine grids this numerical integration is ex-
tremely inefficient, and so, the analytical solutions from appendix A are
to be preferred. However, there are some tricks one can do to reduce the
number of calculations. Firstly, because of the symmetric properties of
the Legendre polynomials G has either a symmetric Toeplitz structure
or a Toeplitz structure where the lower triangular part is the negative
of the upper triangular part. This means only one row/column needs
to be calculated. Secondly, for most of the node values, the function
φli is 0. For further insight into optimizing quadrature calculations, see
[8].

31

Appendix C. Figures

This appendix gives some further figures and Numerical results

C.1. The effect of α in the fractional Laplacian. The following
figures 13 through 15 shows numerical solutions for different values of
α. All the figures in this section uses ε = 1 in order to clearer see the
effect of the fractional Laplacian and how it changes with α. We have
used a linear basis.

Figure 13. For very small α the shock looks to be pre-
served, even though compared to Figure 4 there is a con-
siderable diffusion effect.

32

Figure 14. For α = 0.5 the shock front is being lost
in the diffusion. Note that the peak diminishes quicker
here than for α closer to 0 or 1.

Figure 15. For α = 0.9 all sharp gradients are quickly smoothed.

33

C.2. The Buckley-Leverett equation. The Buckley-Leverett equa-
tion is a scalar conservation law of the form (1) with f(u) = 4u2

4u2+(1−u)
.

It is used to describe fluid displacement, see [4]. One thing to note is
that the flux is non-convex and the solution consists of both a rarefac-
tion and a shock, in other words, a compound wave. This effect can
clearly be seen in figures 16 through 19, where the block function is
being stretched out followed by a sharp shock at the wave front. The
Buckley-Leverett solutions have all been computed using a constant
basis and with the Godunov flux. Calculating the Godunov flux for
the Buckley-Leverett equation is very simple when using a constant
basis and as long as we use initial data such that 0 ≤ u0(x) ≤ 1.
In this domain the Buckley-Leverett flux is monotonically increasing,
meaning that finding the minimum and maximum of f(u) is trivial.
The numerical flux reduces simply to hG(a, b) = f(a).

Figure 16. The evolution of the Buckley-Leverett
equation without fractional diffusion.

34

Figure 17. A higher resolution evolution of the
Buckley-Leverett equation without fractional diffusion.

Figure 18. The evolution of the Buckley-Leverett
equation with slight (ε = 0.1) fractional diffusion.

35

Figure 19. The evolution of the Buckley-Leverett
equation with significant (ε = 1) fractional diffusion.

36

Appendix D. On the usage of MATLAB

All plots in this thesis were created using MATLAB. The code has been
included in the attachments as a .zip file. Here one will find 3 folders,
one for each basis order. The main scripts are named constantDGscript.m,
linearDGscript.m and quadraticDGscript.m. Inside them one can
choose grid size, domain, limiting and/or adding fractional diffusion.
For calculating the numerical convergence rates, the scripts convscript0.m,
convscript1.m and convscript2.m were used. In them one can find
a vector containing information as to how fine one wants the spatial
grid to be.

37

References

[1] S. Cifani, E. R. Jakobsen, and K. H. Karlsen, The discontinuous
galerkin method for fractal conservation laws, IMA Journal of Numerical Anal-
ysis, 31 (2011), pp. 1090–1122.

[2] B. Cockburn, Discontinuous Galerkin Methods for Convection-Dominated
Problems, Springer Berlin Heidelberg, Berlin, Heidelberg, 1999, pp. 69–224.

[3] J. Droniou and C. Imbert, Fractal first-order partial differential equations,
Archive for Rational Mechanics and Analysis, 182 (2006), pp. 299–331.

[4] S. E. Buckley and M. C. Leverett, Mechanism of fluid displacement in
sands, Society of Petroleum Engineers, 146 (1942).

[5] A. Harten, High resolution schemes for hyperbolic conservation laws, Journal
of Computational Physics, 135 (1997), pp. 260 – 278.

[6] J. Hesthaven and T. Warburton, Nonlinear problems, Springer New York,
New York, NY, 2008, pp. 115–168.

[7] R. J. Leveque, Finite Volume Methods for Hyperbolic Problems, Cambridge
University Press, New York, 2002.

[8] K. B. Ølgaard and G. N. Wells, Quadrature representation of finite ele-
ment variational forms, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012,
pp. 147–158.

[9] A. Quarteroni, Discontinuous element methods (DG and mortar), Springer
Milan, Milano, 2014, pp. 267–289.

[10] , The Galerkin finite element method for elliptic problems, Springer Milan,
Milano, 2014, pp. 61–119.

[11] C.-W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. and
Stat. Comput.,, 9 (1988), pp. 1073–1084.

[12] N. Silvia, P. Lionello, and R. Lothar, Tridiagonal toeplitz matrices:
properties and novel applications, Numerical Linear Algebra with Applications,
20, pp. 302–326.

[13] Q. Xu and J. Hesthaven, Discontinuous galerkin method for fractional
convection-diffusion equations, SIAM Journal on Numerical Analysis, 52
(2014), pp. 405–423.

38

