
 

 

 

 

Bacheloroppgave 

 

IE303612 - Bacheloroppgave 

Track’a’Pet 

 

10021 

10019 

10050 

 

Totalt antall sider inkludert forsiden: 100 

 

Innlevert Ålesund, 31.05.2018 



NTNU IN ÅLESUND    

BACHELOR THESIS 

Obligatorisk egenerklæring/gruppeerklæring  
 

Den enkelte student er selv ansvarlig for å sette seg inn i hva som er lovlige hjelpemidler, retningslinjer for bruk 

av disse og regler om kildebruk. Erklæringen skal bevisstgjøre studentene på deres ansvar og hvilke 

konsekvenser fusk kan medføre. Manglende erklæring fritar ikke studentene fra sitt ansvar. 

Du/dere fyller ut erklæringen ved å klikke i ruten til høyre for den enkelte del 1-6: 

1. Jeg/vi erklærer herved at min/vår besvarelse er mitt/vårt eget arbeid, 

og at jeg/vi ikke har brukt andre kilder eller har mottatt annen hjelp 

enn det som er nevnt i besvarelsen.  

 

 

 

2. Jeg/vi erklærer videre at denne besvarelsen:  

• ikke har vært brukt til annen eksamen ved annen 

avdeling/universitet/høgskole innenlands eller utenlands.  

• ikke refererer til andres arbeid uten at det er oppgitt. 

• ikke refererer til eget tidligere arbeid uten at det er oppgitt.  

• har alle referansene oppgitt i litteraturlisten.  

• ikke er en kopi, duplikat eller avskrift av andres arbeid eller 

besvarelse.  

 

 

 

 

 

 

 

 

3. Jeg/vi er kjent med at brudd på ovennevnte er å betrakte som fusk og 

kan medføre annullering av eksamen og utestengelse fra universiteter 

og høgskoler i Norge, jf. Universitets- og høgskoleloven §§4-7. 

 

 

 

 

4. Jeg/vi er kjent med at alle innleverte oppgaver kan bli plagiatkontrollert   

 

 

5. Jeg/vi er kjent med at NTNU vil behandle alle saker hvor det foreligger 

mistanke om fusk. 

 

 

 

6. Jeg/vi har satt oss inn i regler og retningslinjer i bruk av kilder og 

referanser på biblioteket sine nettsider 

 

 



NTNU IN ÅLESUND    

BACHELOR THESIS 

Publiseringsavtale 

 

 

Studiepoeng: 20 

    

Veileder: Girts Strazdins    

 

 
Fullmakt til elektronisk publisering av oppgaven 

 

Forfatter(ne) har opphavsrett til oppgaven. Det betyr blant annet enerett til å gjøre verket 
tilgjengelig for allmennheten (Åndsverkloven §2). 

Alle oppgaver som fyller kriteriene vil bli registrert og publisert i Brage med forfatter(ne)s 
godkjennelse. 

Oppgaver som er unntatt offentlighet eller båndlagt vil ikke bli publisert. 

 

 

Jeg/vi gir herved NTNU en vederlagsfri rett til å  

gjøre oppgaven tilgjengelig for elektronisk publisering:   ja  nei 

 

 

Er oppgaven båndlagt (konfidensiell)?     ja  nei 

(Båndleggingsavtale må fylles ut) 

- Hvis ja:  

Kan oppgaven publiseres når båndleggingsperioden er over?  ja  nei 

 

 

Er oppgaven unntatt offentlighet?     ja  nei 

(inneholder taushetsbelagt informasjon. Jfr. Offl. §13/Fvl. §13 

    

Dato:      30.05.2018 



NTNU IN ÅLESUND   PAGE I 

BACHELOR THESIS 

 

I. PREFACE 

The group would like to use this opportunity to thank Anna Kristine Fiskerstrand for illustrating the 
logo and some of the icons used. In addition, Girts Strazdins for excellent feedback and follow-up 
throughout the whole process. 

  



NTNU IN ÅLESUND   PAGE II 

BACHELOR THESIS 

 

II. TABLE OF CONTENTS 

I. PREFACE I 

II. TABLE OF CONTENTS II 

III. SUMMARY VII 

IV. TERMINOLOGY VIII 

CONCEPTS VIII 

ABBREVIATIONS IX 

1 INTRODUCTION 1 

 BACKGROUND 1 

 PURPOSE AND APPROACH 1 

 THESIS STRUCTURE 1 

2 THEORETICAL BASIS 2 

 LAWS AND REGULATIONS 2 

 Universal Design of ICT 2 

 Personal data act 2 

 General Data Protection Regulation 2 

 INFORMATION SECURITY 3 

 Hashing of passwords 3 

 Tokens 3 

 Cryptography 4 

 HTTPS 6 

 Common attacks 6 

 STANDARDS 7 

 HTTP 7 

 GPS Standards 8 

 JSON 9 

 AGILE DEVELOPMENT 10 

 OBJECT ORIENTED PROGRAMMING 10 

 Coupling 10 

 Cohesion 10 

 Class 11 

 Interfaces 11 

 Unit Testing 11 

 Camel case 11 

 DESIGN PATTERNS AND PRINCIPLES 11 

 Inversion of Control 11 



NTNU IN ÅLESUND   PAGE III 

BACHELOR THESIS 

 

 Model-view-controller 12 

 MAN-MACHINE INTERACTION 12 

 Gestalt principles 12 

 Responsiveness 14 

 Alerts 14 

 ANDROID AND ANDROID STUDIO 14 

 Manifest.xml 14 

3 MATERIALS AND METHODS 16 

 PROJECT ORGANIZATION 16 

 Project team 16 

 Workflow 16 

 Pair Programming 17 

 PRE-PLANNING 17 

 ARCHITECTURE 18 

 Spring Boot 18 

 PostgreSQL 18 

 JDBC Template 18 

 REST 19 

 Servlet Container 20 

 Java Servlets 20 

 PROGRAMMING LANGUAGES 21 

 Arduino 21 

 Java 21 

 CODING CONVENTION 21 

 Naming 21 

 Structure 21 

 Comments 22 

 Language 23 

 Implementation 23 

 EXTERNAL LIBRARIES – MICROCONTROLLER 23 

 GSM 23 

 Adafruit_GPS_Alt 23 

 AltSoftSerial 23 

 MemoryFree 23 

 ArduinoDES 23 

 EXTERNAL LIBRARIES - BACKEND 24 

 Bcrypt 24 



NTNU IN ÅLESUND   PAGE IV 

BACHELOR THESIS 

 

 Liquibase 24 

 JSON web token 25 

 Project Lombok 26 

 EXTERNAL LIBRARIES – ANDROID 26 

 Gson 26 

 CircleImageView 26 

 Spectrum 27 

 GraphView 27 

 DEVELOPMENT TOOLS 27 

 IntelliJ IDEA Ultimate 27 

 Android Studio 27 

 Bitbucket 27 

 SUPPORT TOOLS 28 

 Network Analyzer 28 

 TESTING METHODS 29 

 Unit Testing 29 

 Integration Testing 29 

 TESTING TOOLS 29 

 Mockito 29 

 JUnit 29 

 MATERIALS 29 

 Arduino Uno rev3 30 

 Arduino GSM shield 2 30 

 Adafruit Ultimate GPS Breakout 30 

 DOCUMENTATION 30 

 Confluence 30 

 Jira 31 

 Minutes of Meeting 32 

 Retrospective 32 

4 RESULTS 33 

 ARCHITECTURE 33 

 BACKEND ARCHITECTURE 34 

 Programming language and platform 34 

 Overall structure 35 

 Components 35 

 Database Versioning 37 

 Hosting and deployment 37 



NTNU IN ÅLESUND   PAGE V 

BACHELOR THESIS 

 

 MICROCONTROLLER 38 

 Hardware 38 

 Mobile Subscription 39 

 Software 40 

 FRONTEND ARCHITECTURE 42 

 Programming language 42 

 Overall structure 42 

 Components 42 

 USE CASE DIAGRAM 45 

 CLASS DIAGRAM 46 

 Frontend 46 

 Backend 46 

 DATABASE DESIGN 47 

 Entity relationships 48 

 Overview of attributes 48 

 SECURITY 50 

 Protection from SQL injection 50 

 Protection from Broken Authentication 50 

 Protection from sensitive data exposure 51 

 Microcontroller 51 

 DESIGN 52 

 Wireframes 52 

 Layout 54 

 User feedback and alerts 62 

 Design Concerns 64 

 TESTING 64 

 Regression Testing 64 

 Manual Testing 64 

 BUSINESS ANGLE 65 

 Market 65 

 Hardware Cost 66 

 Software Cost 66 

 Income 67 

 Financial Feasibility 67 

5 DISCUSSION 68 

 TECHNICAL RESULT 68 

 Microcontroller 68 



NTNU IN ÅLESUND   PAGE VI 

BACHELOR THESIS 

 

 Frontend 68 

 Backend 69 

 Device registration 70 

 Security 70 

 Design 71 

 Testing 71 

 Complexity 71 

 Future Development 71 

 Existing solutions 72 

 PROJECT EXECUTION 73 

 Development Methodology 73 

 Organization 73 

 Version Control 73 

 Use Of Sources 73 

6 CONCLUSION 74 

7 REFERENCES 75 

TABLE OF FIGURES 82 

TABLE OF TABLES 84 

TABLE OF CODE SNIPPETS 85 

APPENDIX 86 

SOURCE CODE 86 

APPENDIX 1 – PRELIMINARY REPORT 1 

APPENDIX 2 – RETROSPECTIVE 1 

APPENDIX 3 – MEETING NOTES 1 

APPENDIX 4 – BURNDOWN CHARTS 1 

  



NTNU IN ÅLESUND   PAGE VII 

BACHELOR THESIS 

 

III. SUMMARY 

About one in three Norwegian households own at least one pet. Up until recently, there were no 
good solutions for keeping track of pets that could go missing. To help pet owners safeguard their 
pets, we wanted to develop a system for easily tracking them. Our goal was to develop an Android 
application that displayed pet location data. The data would come from a tracker on the pet, and 
saved to a remote server. 

Development of this system has led to a system that offers security, safety and awareness 
surrounding pet movement and well-being. The system comprises of an Arduino tracker device, a 
backend REST service and a frontend Android application. Security has been paramount in this 
project, and most recent development practices has been implemented to retain satisfactory 
information security. 

The process of creating this system have been a steep learning curve. The team has invested 
significant effort in creating a system which is both scalable and modular, in compliance with privacy 
and security principles.  



NTNU IN ÅLESUND   PAGE VIII 

BACHELOR THESIS 

 

IV. TERMINOLOGY 

CONCEPTS 

Confidentiality Confidentiality means when information is protected from exposure or 
disclosure to unauthorized people or systems. It ensures that only those 
with the correct rights and privileges to access data can do so. 

Integrity Integrity means that the information is whole, complete, and 
uncorrupted. 

Availability Availability means enabling authorized users or systems to access 
information without obstruction or interference, and to get it in the right 
format. 

Tracker The whole microcontroller system. Including microcontroller, GPS, GSM 
and battery. 

Microcontroller A small computer on a single integrated circuit (Brain 2018). 

Server A server is a computer that provides data, resources and services to 
other computers. 

Client A client is a computer which receives data, resources and services from a 
computer. 

Web Server A web-server is a computer that provide access to websites over 
internet. 

Repository A storage for development code, provides an overview over historical 
progress. 

System A system is a collection of two or more components which makes up a 
complex interconnected system, where each component has a specific 
task. 

NMEA SENTENCE A way of structuring GPS data mainly for marine equipment. The NMEA 
abbreviation stands for National Marine Electronics Association 
(DePriest, NMEA data 2018). 

End-point Web server URL, access point for a client application. 

  



NTNU IN ÅLESUND   PAGE IX 

BACHELOR THESIS 

 

ABBREVIATIONS 

API Application Programming Interface 

GPS Global Positioning System 

HTTP HyperText Transfer Protocol 

HTTPS HyperText Transfer Protocol Secure 

SSL Secure Sockets Layer 

TLS Transport Layer Security 

CA Certificate Authority 

ACME Automatic Certificate Management Environment 

ICT Information and Communication Technology 

IDE Integrated Development Environment 

JDBC Java DataBase Connectivity 

JPA Java Persistence API 

JSON  JavaScript Object Notation 

ORM  Object Relational Mapping 

REST REpresentational State Transfer 

SQL Structured Query Language 

UML  Unified Modeling Language 

URL Uniform Resource Locator 

URI Uniform Resource Identifier 

NMEA National Marine Electronics Association 

GPGGA Global Positioning System Fix Data 

IoC Inversion of Control 

CLI Command-Line Interface 

Java EE Java Enterprise Edition 

M2M Machine-To-Machine 

IoT Internet of Things 



NTNU IN ÅLESUND   PAGE X 

BACHELOR THESIS 

 

VM Virtual Machine 

GDPR General Data Protection Regulation 

OWASP Open Web Application Security Project 

AES Advanced Encryption Standard 

DES Data Encryption Standard 



NTNU IN ÅLESUND   PAGE 1 

BACHELOR THESIS 

 

1 Introduction 

 BACKGROUND 

About 37 percent of all Norwegian households own a pet. A majority of those pets are cats 
(Aftenposten 2008). When first discussing this project, there were no available solutions for easy pet 
tracking in Norway. We wanted to develop a solution that would allow pet owners to keep track of 
their pets through their phone, and notify them if they wandered too far. 

By creating such a system, we aimed to achieve a greater understanding of mobile and distributed 
applications, as well as information security and embedded programming. We hoped this would give 
us experience that would be useful in the job market. 

 PURPOSE AND APPROACH 

As a pet owner, the security of a household pet is often paramount. Pets often disappear over long 
periods of time and to know with certainty where they are would give pet owners comfort. 
Furthermore, pet owners sometimes dedicate a lot of time and effort into finding lost pets, which 
could have been used on other leisure activities. 

We would like to mitigate some of these adverse effects of owning pets, by using current technology 
to implement a location system for pet owners. 

Our solution would consist of a mobile application, microcontroller tracker, and a backend for storing 
information and communicating with the trackers and mobile devices. The mobile app should be 
simple to use and provide satisfactory information security.  

 THESIS STRUCTURE 

The report is divided into seven main parts which will describe different aspects of the project. 

• Introduction: Contains definition of the purpose and problem of the project. 

• Theoretical basis: Introduces and define terms essential to the report. 

• Materials and methods: A description of architecture, procedures, services and testing 
methods in the project. 

• Results: Contains a description of the end-product.  

• Discussion: Contains discussion of selected solutions and other alternatives. 

• Conclusion: Will give answers to our issues, conclusion of the final product and further 
development. 

• References: Contains a list of references and attachments. 

  



NTNU IN ÅLESUND   PAGE 2 

BACHELOR THESIS 

 

2 THEORETICAL BASIS 

This chapter will describe the theoretical background essential to our assessments and decisions. 

 LAWS AND REGULATIONS 

This section describes relevant laws and regulations that we need to take into account in the project. 

 UNIVERSAL DESIGN OF ICT 

In Norway, we want a society where everyone can participate. Therefore, from 1 July 2014 all new 
ICT solutions developed must be universally designed. From 1 January 2021, existing solutions should 
comply with universal design requirements. This is a legal requirement for both the public and 
private sector (Difi 2017). 

§ 1 Purpose of the regulation 

“The purpose of the regulation is to ensure universal design of information and communication 
technology, without causing an undue burden on businesses. Universal design means that the design 
or adaption of the main solution in information and communication technology is such that it can be 
used by as many as possible.” (Lovdata 2017) 

 PERSONAL DATA ACT 

The purpose of the personal data act is to protect individuals from their privacy being violated 
through the processing of personal information. We will not store any sensitive information in our 
database. However, we will store user's e-mail address, and optionally their name and phone 
number. This is information can be used to identify individual people, which makes it personal data, 
according to the act.  

The personal data act states that planned and systematic measures must be taken to ensure 
satisfactory information security, with respect to confidentiality, integrity and availability when 
processing personal data (Datatilsynet 2017). 

 GENERAL DATA PROTECTION REGULATION 

The GDPR is a new EU privacy policy that will come into force by 2018 in Norway. The regulation 
imposes numerous tasks on businesses that handle personal information and give the consumer a 
variety of rights. 

Extended duties for businesses include informing users how they process personal data, to 
investigate privacy implications, and to notify users about security breaches. 

For the consumer, rights include the right to gain access to all information a company has stored 
about them, the right to data portability, and they may require that all information about them is 
deleted. 

A summary of the GDPR state that businesses are not allowed to process personal information unless 
they have consent from the one in question (European Union 2016). 

  



NTNU IN ÅLESUND   PAGE 3 

BACHELOR THESIS 

 

 INFORMATION SECURITY 

This section will provide a detailed outline of the different security measures we have implemented 
in the project, with relevant theory.  

 HASHING OF PASSWORDS 

One should exercise great care when storing personal or sensitive information. A good rule of thumb 
is to only store information that is needed, and to ensure the confidentiality of sensitive information. 
This way, we can minimize the damage if our database is breached.  

One of the most important pieces of information is user passwords. The majority of online users tend 
to use the same password on several online accounts (Irvine 2017). Theoretically, this means that if 
one site is breached, attackers can use the same credentials on several other sites.  

Even if users do not reuse passwords, most of them are still easily cracked. They tend to follow the 
same patterns, are short, or are words you would find in a dictionary (Cohen 2017). To effectively 
safeguard passwords in a database, one should hash the passwords and store the hash instead of the 
plaintext password.  

Hashing works by running the plaintext password through a special algorithm. The algorithm 
computes a single large value of a fixed size based on the bit value of the password. The hash is 
irreversible, meaning you cannot easily decode the plaintext value from a hash. The same exact 
password will always result in the same hash value, but two different passwords will generally never 
have the same hash (E. Whitman og J. Mattord 2014). However, a hashed password is not necessarily 
safe from a brute force attack. 

Attackers are known for using rainbow tables when carrying out brute force attacks. A rainbow table 
is a long list of common passwords and their hash values. Attackers can use this to compare the 
user’s hashed password with the hashed values in the table. This saves a lot of time since you do not 
have to hash all the values yourself. If the user has a weak or common password, the attackers can 
immediately find the plaintext version of it (E. Whitman og J. Mattord 2014). To combat this, an 
approach called salting is commonly used. 

A salt is a randomly generated string of data that is appended to the password before it is hashed. 
The salt is not a secret, as it is often stored alongside the hashed password in a database. However, it 
negates the use of rainbow tables since the attacker no longer benefits from any time-memory 
trade-off (E. Whitman og J. Mattord 2014). This is because the resulting value of a password-salt hash 
will never be found in any rainbow table. Figure 1 provides a diagram of a hashing process with salt. 

 

Figure 1: Password hashing process 

 TOKENS 

An access token in information security is a piece of information that contains some data about the 
current security context of a user of a computer system. More specifically, it often contains an 
identifier for a user, along with their privileges (MSDN u.d.). This can for example be a unique user id 
and a privilege in form of a role, like ‘user’ or ‘admin’.  

The access token is generated when a user successfully logs in to the system. The user receives it 
from the server, and automatically saves it. When the user sends further requests to the server, a 
copy of the token is enclosed. The server decodes the token if it is encoded and reads its contents. If 



NTNU IN ÅLESUND   PAGE 4 

BACHELOR THESIS 

 

the information is correct, the request can go through. If not, the request is denied. The server also 
examines which privileges the user has, and denies and allows resources based on that (MSDN u.d.). 
Figure 2 shows a typical exchange of access tokens.  

 

Figure 2: Typical flow of token exchange 

Tokens can include a lot of other information than id and privileges. They often contain an expiration 
date, which means you must log in and get a new one when it expires. They can also for example 
include a session id to identify the current logon session, as well as several custom fields (MSDN 
u.d.).  

 CRYPTOGRAPHY 

Cryptography is the study of encoding and decoding secret messages. Cryptographic techniques 
allow a sender to disguise data so that intercepted data appear as nonsense for an intruder (Kurose 
og Ross 2013). 

2.2.3.1 Symmetric encryption 

Symmetric encryption, also known as secret key encryption, is the oldest and best-known technique. 
A secret key is applied to the message to change the content in a particular way. The secret can be a 
number, a word, or a string of random letters. Both the sender and the recipient need to know the 
secret key, this way they can encrypt and decrypt all messages using this key (E. Whitman og J. 
Mattord 2014). Figure 3 provides an example of symmetric encryption using a shared key. 



NTNU IN ÅLESUND   PAGE 5 

BACHELOR THESIS 

 

 

Figure 3: Symmetric encryption 

2.2.3.2 Asymmetric encryption 

In asymmetric encryption, also called public key encryption, there are a pair of related keys. The 
private key is kept protected and secret so only you know it, and the public key is made available to 
anyone who might want to send you a message. Anything encrypted with the public key can only be 
decrypted with the matching private key and vice-versa (E. Whitman og J. Mattord 2014). Figure 4 
provides an example of asymmetric encryption. 

 

Figure 4: Public-key cryptography 

Certificate 

To use asymmetric encryption, we need a way for people to discover other public keys. To 
accomplish this, digital certificates is most commonly used. A certificate is a package of information 
identifying a user or server, and the user’s public key.  

When a key is needed, a query is sent to the other party. The other party returns a copy of the 
certificate, from where the public key can be extracted (Microsoft 2018). 



NTNU IN ÅLESUND   PAGE 6 

BACHELOR THESIS 

 

 HTTPS 

Communication between client and server over HTTP is not encrypted, meaning data is sent in 
plaintext. This makes it vulnerable to man-in-the-middle attacks, where an attacker secretly manages 
to come between the two communicating parties to listen or alter the communication.  

HTTP Secure is an extension of HTTP used for secure communication, protecting integrity and 
confidentiality of data between the client and server. When connecting to a server using HTTPS, you 
can see a padlock icon in the URL bar, verifying that this is a trusted and secure connection. Figure 5 
provides an example. 

 

Figure 5: HTTPS connection to trackapet.uials.no 

Typically, HTTPS is HTTP with an added encryption layer of SSL or TLS. These protocols use 
asymmetric encryption, described in section 2.2.3.2 (Comodo u.d.). 

 COMMON ATTACKS 

This section describes relevant common security attacks and vulnerabilities. 

2.2.5.1 Man-in-the-middle 

A man-in-the-middle attack is an attack where someone intercepts, and possibly alters, a stream of 
communication between two parties, and convinces the parties that they are communicating 
directly. The attacker can insert new messages into the stream, making it look like they are coming 
from one of the legitimate parties, or alter existing messages (E. Whitman og J. Mattord 2014). 

There are a number of ways a man-in-the-middle attack can occur. However, the most efficient way 
to be reasonably secure against them is to encrypt all communication with HTTPS. 

2.2.5.2 SQL injection 

An SQL injection attack occurs when malicious user input in a system is not properly validated before 
used to query a database. For example, an input field may expect an email value for use in a 
database query, like so: 

String input = getInput(); 

SELECT * FROM users WHERE email = ‘ + input + ‘; 

If the input is a valid email, everything goes as expected. However, if the input is not sanitized, the 
user can insert a valid SQL query like so: 

Input = name@mail.com’ OR ‘1’=’1 

The resulting query would then be: 

SELECT * FROM users WHERE email = ‘name@mail.com’ OR ‘1’=’1’; 

Since 1=1 is always true, the query will return the account info for all the users in the table. The user 
can also insert code that would delete the whole table or database, or edit the information of other 
users (E. Whitman og J. Mattord 2014). 

One way to mitigate SQL injections is to use an API that provides a parameterized interface, where 
input is not treated as query language (OWASP 2017). 

  



NTNU IN ÅLESUND   PAGE 7 

BACHELOR THESIS 

 

 STANDARDS 

This part will describe standards used in the project. 

 HTTP 

The Hypertext Transfer Protocol (HTTP) is a generic stateless application-level protocol which allows 
us to fetch resources, such as HTML documents. HTTP is the foundation of any data exchange on the 
web and it is a request/response protocol. A client sends a request to a server in form of a HTTP 
request message, and the server responds with a HTTP response message after receiving and 
interpreting the request message (Fielding og Reschke, RFC7230 2014). 

2.3.1.1 HTTP request 

The request message is built up from a request line, request headers, an empty line, and an optional 
body. 

 

Figure 6: HTTP request (Mozilla 2018) 

In Figure 6 we see an example of a HTTP request. The first line is the request line with three fields: 
the method field, the path or URL field, and protocol version field. Method defines the action to be 
applied to the resource, the most common methods are shown in Table 1. Path is a URI which 
identifies the resource to apply the request. In the third field of the request line, we have version of 
the protocol used. After the request line comes the request header fields. This allows the client to 
pass additional information about the request and the client itself (Kurose og Ross 2013). 

Method Description 

GET Retrieves whatever information identified by the request-URI 

POST Used to send data to the server 

PUT Asks the server to store the data 

DELETE Asks the server to delete the data 

Table 1: HTTP methods 

The optional part of a HTTP request is not shown in this example, but after the header fields there 
can be an empty line to separate the header and the body. Finally, the message body is used to carry 
the payload associated with the request (Fielding og Reschke, RFC7231 2014). 

  



NTNU IN ÅLESUND   PAGE 8 

BACHELOR THESIS 

 

2.3.1.2 HTTP response 

The response message is built up from a status line, response headers, an empty line and an optional 
body. 

 

Figure 7: HTTP response (Mozilla 2018) 

In Figure 7 we see an example of a HTTP response. The first line is the status line with three fields; 
protocol version field, a status code, and corresponding status message. The protocol version field 
show the protocol used. Status code is a three-digit integer result code where the first digit 
represents the class of the response as we can see in Table 2. Status message gives a short textual 
description of the status code to help humans to understand the HTTP response.  

After the status line is the response header fields, allowing the server to pass additional information 
about the response, server and further access to the resource (Kurose og Ross 2013). 

Status code Description 

1xx (Informational) Request received, continuing process 

2xx (Successful) The action was successfully received, understood and accepted 

3xx (Redirection) Further action must be taken to complete the request 

4xx (Client error) The request contains bad syntax or cannot be fulfilled 

5xx (Server error) The server failed to fulfill an apparently valid request 

Table 2: HTTP status codes 

As for the request, the response can also have an empty line and body to carry a payload (Fielding og 
Reschke, RFC7231 2014). 

 GPS STANDARDS 

According to US Environmental Data Standards Council the standard for a GPS data message should 
be latitude before longitude (US Environmental Protection Agency 2017). This is also apparent from 
the old standards for GPS NMEA data sets, which sorts the coordinates latitude first, then longitude 
last (DePriest, NMEA data 2018). Furthermore, DePriest have described GGA NMEA sentence, which 
provides current fixed data from the GPS module. This standard sentence is formatted as shown in 
Figure 8. 



NTNU IN ÅLESUND   PAGE 9 

BACHELOR THESIS 

 

 

Figure 8 – One type of NMEA sentence - GGA: Fix data (DePriest, NMEA data 2018) 

 JSON 

JavaScript Object Notation is a lightweight data-interchange format for storing and exchanging data 
(Json.org 2018). It is easy for humans to read and write, and for machines to parse and generate. 
Code Snippet 1 shows a Json array with two pets. 

JSON data is structured in a specific way: 

• data represented in key-value pairs 

• colon ( : ) assigns value to a key 

• comma ( , ) used to separate key-value pairs  

• curly brackets ( {} ) hold objects 

• square brackets ( [] ) hold arrays 

[ 

   { 

      "id":1, 

      "name":"Linus" 

   }, 

   { 

      "id":2, 

      "name":"Pontus" 

   } 

] 

 

Code Snippet 1: Json example 

  



NTNU IN ÅLESUND   PAGE 10 

BACHELOR THESIS 

 

 AGILE DEVELOPMENT 

Agile development is an approach to software development which tries implement changes as soon 
as they arrive. Traditional development methods, such as plan-based development, have in many 
cases shown to be too rigid and inflexible leading to many projects failing to achieve their intended 
goals. Agile development tries to mitigate this by diverging from plan-based development style and 
incorporate change and refactoring as a common practice. In addition, it is deemed crucial to update 
the requirements underway in the development process (Sommerville 2016). Figure 9 shows the 
agile process. 

 

Figure 9: Agile development 

 OBJECT ORIENTED PROGRAMMING 

Object oriented programming (OOP) is a human friendly approach to reduce the complexity of 
programming, by encapsulating logical entities in classes and abstractions. OOP is identified as a 
programming approach which offers state to objects, and mutability. This is different from functional 
programming, which does not rely on stateful data to function, rather that functions only depend on 
arguments. The OOP approach to break up complexity and offer a way to interact with objects and 
state offers a way to create complex systems with an easy overview of the whole program (Barnes 
2012). 

 COUPLING 

Coupling relates to the inter-connectiveness of the different software components. More specifically, 
how dependent each class is on other classes (Barnes 2012). The more independent each component 
is from each other, the more flexible the system will be. 

 COHESION 

“A unit of code should always be responsible for one, and only one, task.” [ (Barnes 2012), page 219]  

Each method should only be responsible for one, and only one well-defined task. Each class should 
represent one single well-defined entity in the problem domain. By using these two principles the 
code will both be more readable, as well as more maintainable. 

By keeping low coupling and high cohesion the developer can make software that are more durable 
at the same time as flexible. By lowering the dependence between components, the software is not 
as prone to erroneous bugs as the application increases in complexity over time. 

  



NTNU IN ÅLESUND   PAGE 11 

BACHELOR THESIS 

 

 CLASS 

A class is a logical unit which should incapsulate only one concept. It is a way to break up logic in 
programming to smaller concepts, and usually have a naming convention which highlights the 
concept behind the class. Classes can include fields, constructors and methods (Barnes 2012). A 
typical approach to thinking of a class is to associate it with a physical concept, such as an animal. For 
example, a duck. A duck weight (field), can produce sound (method) and must be created 
(constructor). 

 INTERFACES 

“A Java Interface is a specification of a type (in the form of a type name and set of methods) that 
does not define any implementation for the method” [ (Barnes 2012), page 355]. In other words, a 
class which implements an interface makes a promise to implement its own methods to match the 
interface methods. 

 UNIT TESTING 

Unit tests are small and reusable test that test concepts and individual components in a system 
(Barnes 2012). These tests are often automated, so that the developer get feedback if any of the 
tests fail, and it gives the developer freedom to optimize the program without fear of implementing 
critical bugs. If the test pass, the program should operate according to specifications.  

It is worth noting, to have full system integrity using unit testing, the programmer needs to 
implement different test for each scenario. Such as user input is empty, too large, negative, or 
wrong. The process of creating tests for each scenario can often be quite difficult, and time 
consuming. 

 CAMEL CASE 

Camel case is a writing convention where the author uses capital letters to distinguish between 
words. Programmers use camel case to allow more meaningful naming in their programs without 
violation naming limitations (Rouse 2005). 

 DESIGN PATTERNS AND PRINCIPLES 

In this section we will highlight some of the design patterns and principles we have used. 

 INVERSION OF CONTROL 

IoC (Inversion of Control), sometimes referred to as Dependency Injection, is a design principle in 
which control of program flow is inverted to achieve looser coupling in a system (Tutorialsteacher 
u.d.). 

For example, if you have a program that accepts user input through a command-line interface, you 
can invert control by implementing a graphical interface instead, where you have text boxes that can 
be interacted with in any order. By doing this, the interface framework controls the primary loop of 
the program and calls on your custom event handlers (Tutorialsteacher u.d.).   

It is important to note that Inversion of Control is a very general term and may be achieved in a 
variety of ways.  

  



NTNU IN ÅLESUND   PAGE 12 

BACHELOR THESIS 

 

 MODEL-VIEW-CONTROLLER 

Model-view-controller (MVC) is a design pattern for separating an application into three main parts 
that handles interaction, presentation, and business logic. The primary goal is to increase cohesion 
and achieve looser coupling by keeping the design clear and flexible (Freeman, et al. 2010). 

The three parts each have their own responsibilities (Freeman, et al. 2010): 

• Model: Handles application data and business logic. It is responsible for holding state, data, 
and business logic. It does not “know” of the view or controller, it only provides an interface 
the other parts can work with. 

• View: Represents the user interface. The view gives the user a representation of the model, 
usually getting it directly from the model. 

• Controller: Handles interaction with the user. It takes input from the user, parses it, and 
figures out what it means to the model.  

Figure 10 shows how a user interacts with the different parts of the model-view-controller. 

 

Figure 10: Overview of MVC interactions 

 MAN-MACHINE INTERACTION 

This section will describe theory based on human-machine interaction. 

 GESTALT PRINCIPLES 

Gestalt principles are guide lines to achieve visual logic and how to handle GUI composition. By 
following the gestalt principles as a developer and designer, the user satisfaction tends to be more in 
line with expectations (J. Johnson 2014). 

2.7.1.1 Proximity 

The gestalt principle proximity describes how humans tend to group objects with a similar spacing 
between them into the one logical group (J. Johnson 2014). If objects are presented as in Figure 11: 
Gestalt principle - Proximity there are two apparent logical groupings.  



NTNU IN ÅLESUND   PAGE 13 

BACHELOR THESIS 

 

 

Figure 11: Gestalt principle - Proximity 

2.7.1.2 Similarity 

The gestalt principle similarity affects the tendency of grouping similar objects into related logical 
groupings (J. Johnson 2014). This is apparent in Figure 12: Gestalt principle – Similarity, where the 
triangles are one subset and the circles are another.  

 

Figure 12: Gestalt principle – Similarity 

2.7.1.3 Figure/ground 

The gestalt principle figure/ground describes how the human mind separates visual information into 
a background and a foreground. Figure 13 demonstrates this principle. The blue circle is perceived as 
being in the foreground, while the green rectangle is perceived to be the background. When a small 
and large figure overlaps, humans tend to see the small figure as the foreground (J. Johnson 2014). 

 

Figure 13: Gestalt principle – Figure/ground 

2.7.1.4 Common fate 

The gestalt principle common fate describes how objects that move together are perceived as 
grouped or belonging together. For example, if we had a group of identical objects and some of them 
wiggled in the same fashion, they would seem to belong together (J. Johnson 2014). 

  



NTNU IN ÅLESUND   PAGE 14 

BACHELOR THESIS 

 

 RESPONSIVENESS 

Responsiveness is the compliance with human time related expectations and in an application. It is 
closely related to how long the user needs to wait for the application to perform feedback to the 
user. Jeff Johnson defines the “maximum interval between events for perception that one event 
causes another event: 140 milliseconds” [ (J. Johnson 2014), page 201]. It is considered best practice 
to give the user feedback, in the form of a loading icon, if a task is expected to exceed this time limit. 

 ALERTS 

When giving feedback to the user in form of error messages or alerts, it is important to follow some 
basic guidelines. Humans have very poor peripheral vision, so messages should appear where the 
user is looking. For example, if a user inputs wrong email or password in a login field, the error 
message should appear as close to the login button as possible. Otherwise, the user might miss it and 
become frustrated with the system (J. Johnson 2014). 

If the message you are displaying is an error message, it should be clearly marked as such. One way 
to mark an error message is to use the color red, as it is often connoted with danger. Another way is 
to use a symbol, like an exclamation mark or a traffic sign that users might already be familiar with. 
However, one should reserve these markings for errors, else they might be misinterpreted (J. 
Johnson 2014). 

 ANDROID AND ANDROID STUDIO 

Android Studio offers a framework to develop applications from. Android development involves 
many different components, where the most essential components will be discussed in-depth further 
on. One of the most essential components in Android development is the manifest.xml file. 

 MANIFEST.XML 

Manifest.xml represents the whole application and holds much of the system specific information. 
Manifest.xml contains among other things, permissions required by the app, activities and services 
belonging to the application, features used by the application and intent filters. 

2.8.1.1 Permissions 

Android is concerned with user security, and therefore any application which needs to use features 
and services deemed a potential risk of invasion of privacy needs to ask and receive permission 
before it can use compromising features or services (Android, Permission 2018). For example, to use 
locational data the following permission needs to be declared in the manifest.xml file, shown in Code 
Snippet 2. 

 

Code Snippet 2: Declaring required permission 

Furthermore, all security critical permissions need to be checked at runtime for the application to 
perform the given task. If the permission is not granted, the application either bypass the given 
feature or in worst case scenario, if lacking error handling, the application crashes. A simple 
implementation on permission checking is shown in Code Snippet 3: Runtime permission check for 
contacts. 

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/> 

<uses-permission 

android:name="android.permission.ACCESS_COARSE_LOCATION"/> 



NTNU IN ÅLESUND   PAGE 15 

BACHELOR THESIS 

 

 

Code Snippet 3: Runtime permission check for contacts (Android, Request permission 2018) 

2.8.1.2 Features 

Applications are required to announce which software and hardware features it is require, so that 
Android can keep track of which system features the application is dependent on. It is also possible 
to define if it is a critical feature or non-critical feature, giving the application more flexibility. One 
might use the camera, but the app is not dependent on it, unless the application is camera 
application. An example of declaring features is presented in Code Snippet 4: Declaring feature. 

 

Code Snippet 4: Declaring feature 

  

//Check if have access to contacts, if not asks for permission 

if (ContextCompat.checkSelfPermission(thisActivity, 

        Manifest.permission.READ_CONTACTS) 

        != PackageManager.PERMISSION_GRANTED) { 

    // Permission is not granted 

    // Should we show an explanation? 

    if (ActivityCompat.shouldShowRequestPermissionRationale(thisActivity, 

            Manifest.permission.READ_CONTACTS)) { 

        // Show an explanation to the user *asynchronously* -- don't block 

        // this thread waiting for the user's response! After the user 

        // sees the explanation, try again to request the permission. 

    } else { 

        // No explanation needed; request the permission 

        ActivityCompat.requestPermissions(thisActivity, 

                new String[]{Manifest.permission.READ_CONTACTS}, 

                MY_PERMISSIONS_REQUEST_READ_CONTACTS); 

        // MY_PERMISSIONS_REQUEST_READ_CONTACTS is an 

        // app-defined int constant. The callback method gets the 

        // result of the request. 

    } 

} else { 

    // Permission has already been granted 

} 

<uses-feature 
    android:name="android.hardware.camera" 
    android:required="false" /> 

<uses-feature 
    android:name="android.hardware.location.gps" /> 



NTNU IN ÅLESUND   PAGE 16 

BACHELOR THESIS 

 

3 MATERIALS AND METHODS 

This chapter describes the materials and methods used in the project. 

 PROJECT ORGANIZATION 

This section will describe how our project was organized and how we worked to reach our goal.3.2 

 PROJECT TEAM 

Because our project was self-defined by the team, we had no natural project owner, as per the 
Scrum methodology. The Scrum guide states that the product owner may only be one person, so we 
chose one of the team members to act as the sole product owner in this project (Schwaber og 
Sutherland 2017). 

We did not have a formal Scrum master either. Our solution was to let each individual team member 
assume the role of Scrum master for a month before the next member took over. In doing this, we 
did not technically break any of the rules in the Scrum methodology, as the Scrum guide does not 
explicitly state that a Scrum master or product owner may not be part of the development team 
(Schwaber og Sutherland 2017). 

In the beginning of the project, the team started working on separate components. One team 
member took responsibility for getting the microcontroller and all its components and libraries to 
work, another member took responsibility for the physical server, along with the servlet container 
and general server networking, while the final member took responsibility for the Spring Boot 
backend and the database architecture. The mobile application was a cooperation by all members of 
the development team.  

 WORKFLOW 

The workflow is based on the scrum process as seen in Figure 14. The product owner is responsible 
for an ordered list of everything we know is needed in the product. This list is known as the product 
backlog.  

The heart of scrum is a sprint, a time-box of 1-4 weeks consisting of sprint planning, daily scrums, 
development work, sprint review and sprint retrospective.  

 

Figure 14: Scrum process (Brainhub u.d.) 



NTNU IN ÅLESUND   PAGE 17 

BACHELOR THESIS 

 

In the first part of a sprint, the entire scrum team comes together for a sprint planning meeting to 
decide the work to be performed in that sprint. Items selected from the product backlog represents 
the sprint backlog, a visible real-time view of work the development team plans to accomplish during 
the sprint. Once the sprint begins, the duration is fixed and cannot be changed, but the development 
team has authority to change the sprint backlog during the sprint.  

Every day, the development team gather together for an event called daily scrum, also known as 
stand-up meeting. The daily scrums are maximum 15 minutes and help improve communication, 
identify obstacles, improve knowledge, eliminate other time-consuming meetings and promote quick 
decision-making.  

A sprint review is held at the end of the sprint to inspect the increment. The sprint review is an 
informal meeting where the scrum team demonstrate a workable version to the stakeholders and 
collaborate about what have been done in the sprint, general status of the project and new ideas for 
the next sprint.  

The final step before the next sprint can start is a sprint retrospective described in section 3.15.4.  

This sprint process is repeated, and the scrum master ensures that scrum is followed through all 
steps (Schwaber og Sutherland 2017). 

3.2.2.1 Planning Poker 

Planning poker is an agile estimating technique for weighting the workload of each issue in relation 
to other issues. It is a dynamic process where each team member assign story points to each issue 
from a given scale. Each member picks a card representing the time or duration they think an issue is 
worth. The cards are revealed simultaneously before the estimate is discussed, and a consensus is 
reached. If there is a big deviation, team members can repeat the process after the discussion. This 
way, smearing effect within the group is avoided and team members reach a mutual understanding 
of the workload (Grenning 2002). 

 PAIR PROGRAMMING 

Pair programming is a practice introduced by extreme programming where developers work in pair 
to develop software. The use of pair programming supports the idea of collective ownership and 
responsibility. Each line of code is looked at by at least two people, so pair programming works as an 
informal review process. Software errors can be discovered in an early stage and fixed without the 
use of time consuming code inspections and reviews. Another advantage is that developers can give 
input when refactoring can be beneficial (Sommerville 2016). 

A study using student volunteers found that productivity with two people working independently 
seems to be comparable with pair programming. However, studies with experienced developers did 
not replicate these results (Sommerville 2016). Based on this, we could benefit on the use of pair 
programming in some situations. 

We used pair programming for sharing knowledge and helping each other when stuck on a specific 
problem. When discovering a problem from our daily scrums, we would go back to our workstation 
and use pair programming to solve this specific problem. This way we reduced the risk of getting 
stuck and wasting too much time on one problem. 

 PRE-PLANNING 

When planning the project, we first wrote a preliminary report (Appendix 2). This report provided a 
basic outline for what the final product would do, what it would consist of, and how we would create 
it.  

  



NTNU IN ÅLESUND   PAGE 18 

BACHELOR THESIS 

 

 ARCHITECTURE 

This section details the components that make up the system’s architecture.  

 SPRING BOOT 

Spring Boot is an open-source solution for creating production-grade Spring-based applications. It is 
configured out of the box with the options that Spring view as “best”. This leads to minimal 
configuration on the user’s part, making it easy to get started (Webb, et al. 2018).  

Spring Boot is just a part of the Spring framework. The Spring framework itself is an IoC (Inversion of 
Control) web container (See section  2.6.1). The IoC part means the responsibility for making things 
happen is moved into the framework, which results in less work for the developer, who can then 
focus on application code (R. Johnson 2005).  

Spring and Spring Boot offer a lot of functionality for a wide variety of tasks. You can easily get 
started in seconds with REST applications, web sockets, streaming, web applications, and more. It 
also offers simplified security, tracing, metrics, health status. Additionally, it offers good support for 
SQL (Webb, et al. 2018).  

 POSTGRESQL 

PostgreSQL is an open source relational database system available for all major operating systems. It 
is known for its reliability, data integrity, and correctness. It offers a wide range of features, 
functionality and supports many different data types. Additionally, it supports storage of pictures, 
video, sounds, and more (PostgreSQL u.d.). 

PostgreSQL is highly sophisticated and customizable. Some of the features it can offer include 
recovery for a specific point in time, asynchronous replication, online backups, auto-increment 
columns through a sequence, table inheritance, and many more. Postgres can run stored procedures 
in over 12 programming languages, and it allows the creation of custom data types (PostgreSQL u.d.).  

In addition to having many specific features, PostgreSQL can also ensure a great deal of security in 
running transactions. In being ACID-compliant, PostgreSQL rolls backs changes if one statement in a 
transaction fails, ensures the database is in a valid state, ensures concurrent execution of 
transactions, and ensures data is not lost in event of crashes or power loss (Haerder og Reuter 1983). 

 JDBC TEMPLATE 

JDBC (Java Database Connectivity) is an API for database-independent connectivity between Java and 
a variety of databases (Oracle u.d.). JDBC Template aims to simplify the usage of JDBC, and help avoid 
prevalent errors. It offloads work from developers by taking care of the central JDBC workflow. It 
executes SQL queries, initiates iteration over the results, and catches exceptions (Spring u.d.). Code 
Snippet 5Error! Reference source not found. demonstrates a simple use case of JDBC Template: 

public void updateUser(User user) { 
        String sql = "UPDATE user_account SET name = ?, phone = ? WHERE email = ?"; 
        jdbcTemplate.update(sql, user.getName(), user.getPhone(), user.getEmail()); 
    } 
 

Code Snippet 5: Method updateUser in class UserRepository 

The above method takes a User object as a parameter. It constructs the query it will run, with 
question marks where the variables will be inserted. A call to update() then executes the transaction, 
while managing resources and other tasks in the background.  

  



NTNU IN ÅLESUND   PAGE 19 

BACHELOR THESIS 

 

 REST 

REST (Representational State Transfer) is an architectural style that is based on several principles 
describing how resources exchanged over a network are addressed and defined. It was first 
described by Roy Fielding in his doctoral dissertation on architectural styles and design of network-
based software architectures (Douglas u.d.).  

RESTful applications can be characterized by the following traits (R. T. Fielding 2000): 

• Client-Server: Separation of user interface and data storage. This Improves portability of the 
user interface, and improves scalability by simplifying the server components. 

• Stateless: Server does not keep any state regarding clients. Each request to the server must 
contain all the necessary information needed to fulfill that request. This makes the 
application more scalable since the server can more quickly free resources, and relieves the 
need to manage resources across requests. Requests and responses are typically HTTP-
based, using basic HTTP methods such as POST, GET, PUT, etc.  

• Cache: Responses from the server are marked as cacheable or non-cacheable. If a response is 
marked as cacheable, then the client can reuse the data from the response for similar 
requests later. The advantage of this is that it can reduce or eliminate some interactions, 
which improves efficiency and scalability.  

• Uniform interface: There is a uniform interface between components. The system 
architecture is simplified and visibility of interactions to the server is improved. The 
implementations of functionality are decoupled from the service they provide the client. 
Individual resources are identified in each request, by for example using URIs. Information is 
typically conveyed in HTML, XML, or JSON. 

• Layered system: The architecture is designed in such a way that each component cannot 
know of anything beyond the immediate layer with which they are interacting. This reduces 
the overall system complexity and improves scalability. However, they also add some 
overhead and a certain degree of latency to the processing of data.  

• Code on demand: Additional code in the form of scripts or applets can be downloaded from 
the server and executed on the client machine for extended functionality. This improves 
system extensibility, but also reduces visibility.  

  



NTNU IN ÅLESUND   PAGE 20 

BACHELOR THESIS 

 

 SERVLET CONTAINER 

The basic idea of a servlet container is to use Java to generate a web page dynamically on the server 
side. Essentially, the servlet container is part of a web server responsible for interacting with the 
servlets as seen in Figure 15. 

 

Figure 15: How web server and servlet container process requests (Programcreek 2013)   

 JAVA SERVLETS 

A servlet is a server-side program running within a web server. The servlets receive a request and 
dynamically generates a response based on the request.  

The Servlet interface defines three methods for the life cycle of a servlet, as seen in Figure 16. init() 
initialize a servlet, service() is used to service requests, and destroy() to remove a servlet from the 
server (Oracle 2016). 

 

Figure 16: Servlet lifecycle (Servlet lifecycle 2012) 

  



NTNU IN ÅLESUND   PAGE 21 

BACHELOR THESIS 

 

 PROGRAMMING LANGUAGES 

In this section we will discuss the programming languages the project is built from, as well as what 
defines those languages. 

 ARDUINO 

“Arduino is an open-source electronics platform based on easy-to-use hardware and software.” 
(Arduino 2018) The idea behind this language is to create an easy approach toward programming and 
hardware configuration for microcontrollers. From small and easy systems, to large and complex 
systems. Arduino has been a platform for creative digitalization, by offering an easy approach for 
creators worldwide. Arduino was developed by Ivera Interactive Design Institute to create an easy 
tool for fast prototyping, specifically for students without any programming experience. 

Arduino programming language is based on the open-source programming language Wiring (Arduino 
2018), which is a framework for microcontrollers. Wiring is based on Processing, which is an open 
project by Ben Fry and Casey Reas (Wiring 2018). Ultimately, under the hood of the Arduino is a 
WinAVR compiler, which compiles programs in C and C++ (Igendel 2014). 

 JAVA 

Java is both a compiled and an interpreted object-oriented programming language. It was developed 
under the supervision of James Gosling and Bill Joy at Sun Microsystems in the early 1990’s 
(Niemeyer og Leuck 2013).  

Java is popular for its speed and portability. The portability stems from the fact that Java code is 
compiled into a universal format; instructions for a Java Virtual Machine (JVM). This enables 
developers to write code that can run on any platform that supports the JVM, which includes 
anything from home computers to toasters. They only have to write this code once, without the need 
for adjusting it for every system (Niemeyer og Leuck 2013). 

 CODING CONVENTION 

The code convention in this project should follow the guidelines from the object-oriented 
programming theories from Objects First with Java (Barnes 2012). We also have drawn much of our 
convention from Clean Code (Martin 2008). 

 NAMING 

- Class names should start with a capital letter followed by small letters. Capital letters should 
be used to distinguish between words. For example ‘MyClass’. 

- Method and variable names should start with a small letter.  Capital letters should again be 
used to distinguish between different words. For example ‘myMethod()’. 

- Final/Constant variables should be named using only capital letters, and underscore to 
indicate space between words. For example ‘PI_SQUARED’. 

 STRUCTURE 

Curly brackets should start at the same line as the method/class name. For example: 

/*Get a random number between 0 and 100*/ 

private int getRandomInteger (){ 

 return Math.random()*101; 

} 

 

Code Snippet 6: Method convention 

  



NTNU IN ÅLESUND   PAGE 22 

BACHELOR THESIS 

 

Nested functions should be indented with tabulator for each layer. For example: 

/*Check if number is positive and larger than*/ 

private boolean isPositiveAndLargerThan(int test, int than){ 

    boolean result = false; 

    if(test > 0){ 

        if(test > than){ 

            result = true; 

        } 

    } 

    return result; 

} 

 

Code Snippet 7: Nested methods convention 

To distinguish between methods, we use one empty line. This allows us to easier navigate between 
different methods. Shown as the following: 

private int getId(){ 

    return this.id; 

} 

 

private String getName(){ 

    return this.name; 

} 

 

Code Snippet 8: Method separation convention 

 COMMENTS 

Our convention on comments are closely related to Clean Code (Martin 2008), where we aim to write 
our programs with only necessary comments where good naming does not adequately describe the 
functionality of the program. We also aim to comment our more complex methods and classes. We 
follow this approach because comments often lead to unnecessary noise in the code, plus the 
comments need to be updated once a method is refactored. This often leads to potential outdated 
comments, which does not give us any added information. Code Snippet 9 and Code Snippet 10 
demonstrate what refactoring commented code can result in. 

// Check to see if the employee is 

// eligible for full benefits 
if ((employee.flags & HOURLY_FLAG) && 
   (employee.age > 65)) 

 

Code Snippet 9: X Bad code with comment. Should be refactored (Martin 2008) 

if (employee.isEligibleForFullBenefits()) 

 

Code Snippet 10: ✓ Better code, with no unnecessary comment (Martin 2008) 



NTNU IN ÅLESUND   PAGE 23 

BACHELOR THESIS 

 

 LANGUAGE 

All our programming and comments should be in English, since English is the predominant language 
convention in programming. Additionally, it lets us at a later stage collaborate with an international 
environment. 

 IMPLEMENTATION 

It was up to each developer stay true to our code convention, and to write clean code. Our basis was 
to write as clean code as possible from day one, and use refactoring when the code became unclear 
and messy. From time to time we also did some refactoring of each other’s code, which would 
highlight potential misunderstandings and bad design decisions. From the start of the project our 
supervisor Girts Strazdins encouraged us to not include header fields such as version, author and 
date due to the collaborative and iterative nature of this project. 

 EXTERNAL LIBRARIES – MICROCONTROLLER 

This section will describe the external libraries that were used on the microcontroller. 

 GSM 

The GSM library enables the Arduino to perform phone functionality. For example sending and 
receiving SMS, place and receive phone calls, and access the phone GPRS network. The library 
abstracts the low-level communication between the SIM card and modem. It relies heavily on the 
Software Serial library for this communication (Arduino, GSM 2018). 

 ADAFRUIT_GPS_ALT 

The Adafruit alternative GPS library is based on the original Adafruit GPS library, which performs the 
much of the communication with the GPS module. For instance, reading stream data in a background 
interrupt which then parses it. The library returns a stream of parsed NMEA sentences, which 
contains the GPS information from the attached GPS module (Adafruit, GPS Library 2018). The 
alternative library uses an alternative Software Serial implementation, which does not conflict with 
the GSM library (Rick, Adafruit Support 2014). 

 ALTSOFTSERIAL  

The alternative software serial library implements an alternative software serial which allows the 
Arduino program to use two similar software serials implementations (PJRC 2018). The latest 
development is located at Github (PJRC 2017). 

 MEMORYFREE 

The external MemoryFree library makes it possible to get an indication on memory usage on the 
microcontroller in real-time. This allows for resource management for Arduino programming and 
opens for more control over the Arduino debugging process (Muthu 2012). 

 ARDUINODES 

The ArduinoDES library is designed to be fast and efficient and makes it possible to encrypt and 
decrypt using symmetric encryption algorithms DES and 3DES. (Spaniakos 2015) 

  



NTNU IN ÅLESUND   PAGE 24 

BACHELOR THESIS 

 

 EXTERNAL LIBRARIES - BACKEND 

The sections in this chapter describe the external libraries which were used on the backend. 

 BCRYPT 

Bcrypt is a file encryption utility primarily used for hashing passwords. It has become widely popular, 
and is the standard password hashing tool for many systems (PassLib u.d.).  

Bcrypt hashes passwords into a fixed-sized string of 60 characters. A nice feature of Bcrypt is that the 
generated hashes have a built-in salt. As developers, this means we do not have to take any 
measures to generate and store the salts ourselves. A hashed password is shown in Code Snippet 11. 

$2b$12$GhvMmNVjRW29ulnudl.LbuAnUtN/LRfe1JsBm1Xu6LE3059z5Tr8m 

 

Code Snippet 11: Password hashed with Bcrypt 

This string consists of three fields, separated by the ‘$’ character. 2b indicates the version of Bcrypt 
used. 12 is a logarithmic parameter which indicates how many times the internal hash function is 
called. The last field is again separated into two subfields. The first 22 characters, 
GhvMmNVjRW29ulnudl.Lbu, is the randomly generated salt. This is unique for each user.  
AnUtN/LRfe1JsBm1Xu6LE3059z5Tr8m, the final 31 characters, is a checksum, generated by the 
internal algorithm when hashing the salt and password combination (PassLib u.d.).  

 LIQUIBASE 

Liquibase is an open source library for managing changes in a database. It supports multiple database 
types, which ensures that you do not have to tailor your changes to a specific database dialect 
(Shmeltzer 2017). 

Using Liquibase involves defining a file in the project structure that contains all the database 
changes. You can write it in XML, YAML, JSON or SQL. These changes can be anything from defining a 
new table, inserting data, or deleting relations. Every changeset that is not written in plain SQL is 
translated to the correct SQL dialect, meaning all members of the team can run different database 
systems without difficulty. When others download this changefile, Liquibase runs the newest 
changes once and only once (Liquibase u.d.). A changeset written in XML is shown in Code Snippet 
12. 

<changeSet author="developer" id="1"> 

 <createTable schemaName="public" 
                     tableName="device"> 
            <column name="id" type="integer"> 
                <constraints primaryKey="true"/> 
            </column> 
            <column name="user_email" type="varchar(100)"> 
                    <constraints foreignKeyName="fk_device_user" 

references="user_account(email)"/> 
            </column> 
        </createTable> 
</changeSet> 

 

Code Snippet 12: Liquibase changeset 

The above code simply creates a new table with two columns. 

One of the most attractive features of Liquibase is the ability to make database changes that applies 
to everyone’s local database. Instead of creating a change script and making sure everyone on the 
team runs it on their database, the changeset you define in Liquibase is automatically run when you 
start the application. Liquibase keeps track of what changes are run, so that no changes are 



NTNU IN ÅLESUND   PAGE 25 

BACHELOR THESIS 

 

accidentally executed twice (Liquibase u.d.). This ensures that changes you make to the source code 
that deals with database transactions do not cause failures for someone that has forgot to apply the 
correct database changes.  

 JSON WEB TOKEN 

JWT (JSON Web Token) is an open standard based on JSON used for creating and verifying access 
tokens (Auth0 u.d.). For a general explanation of access tokens, see section 2.2.2.  

JWTs are lightweight, in that they are small and self-contained. They are small enough to easily be 
sent through the header in a HTTP request, and they are self-contained by having all the necessary 
information regarding the user in the body of the token, which reduces work on the server that 
authenticates them (Auth0 u.d.).  

A JWT consists of three parts; the header, the payload, and a signature, each separated by a 
punctuation mark. An example token is given in Code Snippet 13. 

eyJhbGciOiJIUzUxMiJ9.eyJzdWIiOiJhcm5lQG50bnUubm8iLCJleHAiOjE1MjUzNDY5MzJ9.DFIoJuRBRIfkr

VM0HxE3WB4tTeGKbZmGAEg0B01-RNEIHoF5V_Z9Adnrywwh8DDOQRg6Hou0CCLXbQARaU8KSA 

 

Code Snippet 13: Encoded JSON web token 

If we decode the first part, the header, we get the information shown in Code Snippet 14. 

{ 

  "alg": "HS512" 

} 

 

Code Snippet 14: Decoded header 

This tells us which hashing algorithm is used. In this case it is HMAC SHA512. 

If we decode the payload, we get the claims shown in Code Snippet 15. Claims are essentially 
assertions about the user who carries the token.  

{ 

  "sub": "arne@ntnu.no", 

  "exp": 1525346932 

} 

 

Code Snippet 15: Decoded payload 

This token contains the claims “sub” and “exp”, which are short for “subject” and “expiration time”, 
respectively. These are registered claims, which are claims that are not mandatory to include, but 
recommended. The subject claim tells us who the holder of the token is. In this case, we have used 
an email address as a unique identifier. The expiration time is the number of seconds since the Unix 
epoch, January 1st, 1970. This particular claim tells us that the token expires on May 3rd, 2018, at 
13:28. After that, the token will no longer be accepted, and a new one will have to be issued.  

  



NTNU IN ÅLESUND   PAGE 26 

BACHELOR THESIS 

 

The signature is a string generated by hashing the encoded header, encoded payload, and secret. See 
Code Snippet 16. 

HMACSHA512( 

  base64UrlEncode(header) + "." + 

  base64UrlEncode(payload), 

  secret 

) 

 

Code Snippet 16: Signature 

In this case, the secret is only known by the server authenticating the token. We execute this step to 
ensure the token was not changed along the way. To create the signature, we must use the same 
hashing algorithm as specified in the header.  

 PROJECT LOMBOK 

Project Lombok is a library for reducing boilerplate code in Java. It provides a collection of 
annotations that can replace common, unchanging code. For example, instead of manually writing 
getters and setters for all the fields in an entity class, you can instead place an annotation at the top 
of the class. The methods will be generated and hidden, but can still be called normally. This reduces 
a lot of visual noise (Kimberlin u.d.). 

Notable annotations include (Project Lombok u.d.): 

• @NonNull – Generates a null-check for parameters in a method. 

• @Getter/@Setter – Generates getters/setters on annotated fields. Can also be used on class 
to generates getters and setters for all fields. 

• @Data – Generates getters, setters, toString(), equals(), and a constructor with one 
parameter for fields that need special handling. 

 EXTERNAL LIBRARIES – ANDROID 

This section will describe the external libraries that were used on android. 

 GSON 

Gson is an open source library for effortlessly converting Java objects to their JSON representation, 
and vice versa (Gson 2017).  

Using Gson is as simple as instantiating a Gson object and calling its toJson() and fromJson() methods. 
toJson() reads the Java class and creates a JSON representation with the same field names. However, 
it is also flexible in that it allows you to override the field names by using annotations. fromJson() 
converts a JSON string to a specified Java object that shares its field names (Gson 2017).  

 CIRCLEIMAGEVIEW 

CircleImageView is an open source library created by Henning Dodenhof for easily displaying images 
as circular on Android (Dodenhof 2018).  

CircleImageView is efficient in that it does not create a copy of the original image and can be used 
with any drawable image. Using the library is as simple as adding a CircleImageView object to the 
layout file and specifying its attributes. The image that uses this tag will appear as a circle in the 
Android application. The library is licensed under the permissive Apache license (Dodenhof 2018). 



NTNU IN ÅLESUND   PAGE 27 

BACHELOR THESIS 

 

 SPECTRUM 

Spectrum is an open source library created by Nathan Walters to make it easy to implement a way 
for the Android user to pick a color from a color pallet (Walters 2016). This library is subject to the 
MIT license. 

The Spectrum library includes multiple ways to implement a color picker, such as a pop-up dialogue 
in an activity, a preference option, as well as an Appcompat support and lastly as an integrated 
widget. To instantiate a color picker, the developer first needs to define which colors should be 
included in the pallet. This could be done from the colors.xml, and made even easier with an array of 
color references. 

 GRAPHVIEW 

GraphView is an open source Android library for creating flexible diagrams, created by Jonas Gehring. 
It supports the creation of line graphs, bar graphs, point graphs, and even custom graph types. It is 
designed to be simple to get up and get started, meaning you can quickly set up and display a graph 
in any layout (Gehring 2018). 

To implement it, you simply add a GraphView object to the layout file. To fill the graph with data, you 
programmatically add a series of data points to the instantiated object. Data points are normally 
number values, but dates and custom types are also supported (Gehring 2018). 

 DEVELOPMENT TOOLS 

This section describes the different development tools that were used in the project.  

 INTELLIJ IDEA ULTIMATE 

IntelliJ IDEA Ultimate is an integrated development environment (IDE) for writing software. It is a 
proprietary tool created by JetBrains (JetBrains 2018). We primarily used it in the development of the 
backend part of the system.  

IntelliJ offers a great deal of useful features and language- and framework support. It provides agile 
navigation, error analysis, refactoring assistance, and it continuously analyzes your code to provide 
programming assistance. It offers code and chain completion, which helps you write code faster by 
giving suggestions based on what you are writing. Additionally, it offers an inline debugger, which 
shows values of variables directly in the source code. Finally, it has good support for the Spring 
framework, database tools, and SQL  (JetBrains u.d.). These are just some of the features it provides 
and are the primary reasons we chose to use it as our development environment.  

 ANDROID STUDIO 

Android Studio is a free IDE based on the community version of IntelliJ IDEA, developed by Google 
and JetBrains. It is designed specifically for Android application development (Google u.d.). We used 
Android Studio in the development of the mobile application. 

Android Studio offers many of the same features as IntelliJ IDEA, and an additional set of tools for 
Android. It provides an Android emulator that lets you simulate a range of different devices to see 
how your app would look and run on those devices. It also provides several other useful features, 
such as a translations editor for localizing applications, and a graphical layout editor for drag-and-
drop editing of user interfaces (Google u.d.). 

 BITBUCKET 

Bitbucket is a scalable distributed version control system from Atlassian, making it easy to 
collaborate with your team. In the bitbucket cloud, Git repositories can be stored giving benefits such 
as conflict resolution, offsite source code backup, and the possibility to roll back and undo changes to 
source code (Bitbucket 2018). 



NTNU IN ÅLESUND   PAGE 28 

BACHELOR THESIS 

 

3.10.3.1 Gitflow 

Gitflow is a Git workflow design. See Figure 17. Defining a branching model designed around the 
project release, it dictates which branches to set up and how to merge them. This design helps the 
team distinguish between code in development and finished work (Bitbucket 2018). A description of 
how to use Gitflow is shown in Table 3. 

 Description of branch 

Master Only tracks released code. 

Develop Contains the complete history of the project. 

Feature Used for new development. 

Release Used for preparation of a new production release. 

Hotfix Used to create emergency fixes. 

Table 3: How to use branches in Gitflow 

The overall flow of Gitflow (Bitbucket 2018): 

1. Develop branch is created from master 
2. Release branch is created from develop 
3. Feature branches are created from develop 
4. A Finished feature is merged into develop 
5. When the release branch is done it is merged into develop and master 
6. A hotfix branch is created from master if an issue in master is detected 
7. A finished hotfix is merged into develop and master 

 

Figure 17: Example of Gitflow in our project 

 SUPPORT TOOLS 

This section describes the different supporting tools that were used in the project. 

 NETWORK ANALYZER 

Wireshark is a widely used network protocol analyzer that lets you see what is happening on your 
network at a microscopic level (Wireshark u.d.). Wireshark can be used to capture live network 
packets and to display packet data as detailed as possible. In our case, we used offline analysis with 
packet data imported from text files to be analyzed.  



NTNU IN ÅLESUND   PAGE 29 

BACHELOR THESIS 

 

On the ubuntu server with only a CLI available, we used a command-line version of Wireshark named 
TShark. It supports the same options as Wireshark described, but it is designed for use when an 
interactive user interface is not available (Wireshark u.d.).  

Figure 18 shows how to start a capture in TShark, dumping all packet data to a pcap file. 

 

Figure 18: Start a TShark capture 

 TESTING METHODS 

In this section we will describe which parts of the system will be tested, along with which methods 
will be used to conduct the testing. 

 UNIT TESTING 

Unit testing is used to test individual pieces of the software implementation. These are lightweight 
tests that give direct feedback to the developer if the test fails (see section 2.5.5). It is relative easy to 
find critical bugs and malicious behavior with unit testing. 

 INTEGRATION TESTING 

Integration tests the software towards a web-service. These tests mock user interaction and checks if 
the web-service response accordingly (Sommerville 2016). 

 TESTING TOOLS 

A testing tool is a library which offers an environment to write tests and perform testing of software. 
This section will highlight some of the testing tools we have used to test our system. 

 MOCKITO 

Mockito is a Java testing framework for writing unit tests (Mockito 2018). To test an Android 
application and android specific methods, the testing environment must have access to a context, 
which Mockito provides a light-weight instance of. 

 JUNIT 

JUnit is a unit testing framework to write light-weight and repeatable tests (JUnit 2018). JUnit offers 
a way to test expected results towards actual results. All methods which are to be tested must be 
annotated with @Test. JUnit also provides a setup phase, @Before, and a breakdown phase, @After.  

 MATERIALS 

To develop our prototype, we needed the equipment shown in Table 4:. 

 Name Link 

Microcontroller Arduino Uno Rev3 https://no.rs-online.com/web/p/products/7154081/  

GSM module Arduino GSM shield 2  https://no.rs-online.com/web/p/processor-
microcontroller-development-kits/8659010/  

GPS module Adafruit Ultimate GPS 
Breakout 

https://no.rs-online.com/web/p/gps-
modules/9054630/  

Mobile subscription Telenor Go Norge https://www.telenor.no/bedrift/iot/m2m/  

Table 4: Hardware components 

  

https://no.rs-online.com/web/p/products/7154081/
https://no.rs-online.com/web/p/processor-microcontroller-development-kits/8659010/
https://no.rs-online.com/web/p/processor-microcontroller-development-kits/8659010/
https://no.rs-online.com/web/p/gps-modules/9054630/
https://no.rs-online.com/web/p/gps-modules/9054630/
https://www.telenor.no/bedrift/iot/m2m/


NTNU IN ÅLESUND   PAGE 30 

BACHELOR THESIS 

 

 ARDUINO UNO REV3 

Arduino Uno rev3 is based on the ATmega328P (Arduino, arduino.cc 2018), which is a high-
performance Microcontroller 8-bit AVR RISC-based microcontroller combined with 32KB flash 
memory (Microchip.com 2018). The Arduino comes with 14 digital I/O pins, of which 6 are PWM 
enabled. It provides 6 analogue inputs, a 16 MHz quartz crystal, USB connection, a power jack, an 
ICSP header (Waldby 2017), and a reset button. The Arduino Uno delivers a ready out-of-the-box 
microcontroller which functions as a programming platform with significant customization flexibility 
at a low cost. Since Arduino is a well-established microcontroller, custom component is easy to come 
by. 

 ARDUINO GSM SHIELD 2 

The Arduino GSM shield enables the microcontroller to use the mobile network to send SMS, make 
phone calls and access the internet using the onboard antenna. The microcontroller communicates 
with the GSM module using AT commands (Arduino, Arduino.cc 2018). The AT commands are 
abstracted using the built-in GSM library from Arduino (Arduino, GSM 2018). AT commands are 
basically the standard for communicating with GSM and GPRS network (QT 2009). The GSM shield 
uses pin 2 and pin 3 for software serial communication with quad-band M10 GSM/GPRS chip, which 
operates at GSM850MHz, GSM900MHz, DCS1800MHz and PCS1900MHz. The GSM shield has a 
downlink/uplink capacity of maximum 85.6kbps. The GSM shield also needs a SIM card backed by a 
network provider to operate.  

 ADAFRUIT ULTIMATE GPS BREAKOUT 

The Adafruit Ultimate GPS breakout is built around a MTK3339 chipset, which is an All-in-One GPS 
system on a chip (Adafruit, Adafruit.com 2018). The MTK3339 offers a high-performance GPS chip 
that works great in dense urban environments, and has high tracking sensitivity (Mediatek Labs 
2018). 

The Adafruit GPS breakout also offers regulator so that the module can be powered from a range of 
3.3 – 5V, as well as a practical LED to indicate fix state of the module. The LED blinks at a 1Hz while 
searching for satellites and at a 15Hz when it has a fix. Other features include connectors to external 
antenna and built-in datalogging, which can log data for up to 16 hours to preserve energy 
consumption on the microcontroller. 

 DOCUMENTATION 

This section will describe tools and methods used for project management. 

 CONFLUENCE 

Confluence is a content collaboration tool, developed by Atlassian. Confluence offers a central 
location to store your team’s work and a way to organize it in a logical and simple-to-find way 
(Atlassian u.d.).  

We used Confluence to store and share documentation, like meeting notes, retrospectives, photos 
and wireframes. Confluence has specific ways to handle all these kinds of documentation, including 
editors for wireframes and various diagrams. Figure 19 shows the dashboard for our project, which is 
what you see when you log in to Confluence. On the left, you have quick access to rooms for some of 
the different types of documentation. In the middle, you have a collection of some of the diagrams 
and photos stored on Confluence.  



NTNU IN ÅLESUND   PAGE 31 

BACHELOR THESIS 

 

 

Figure 19: Screenshot of Confluence dashboard 

 JIRA 

Jira is a collaborative agile management tool which offers a workspace to plan and perform agile 
software development. Jira also offers many support tools to plan and review the progress of the 
project, such as retrospective and estimated burndown charts. However, the main functionality of 
Jira is to provide a digitalized version of sticky notes, where each task can be broken down into 
separate issues and tracked in real time. 

From Figure 20 we can see a section of the whole backlog, where all current tasks preside. From here 
the team can set up a sprint, shown in Figure 21. When a sprint is started, issues are assigned to a 
person and moved to ‘in progress’. Once the issue is resolved they are moved to ‘done’. This offers 
the team a straightforward way of keeping track of progress. 

 

Figure 20: Jira – Backlog 



NTNU IN ÅLESUND   PAGE 32 

BACHELOR THESIS 

 

 

Figure 21: Jira – Active sprint 

 MINUTES OF MEETING 

For the weekly meeting with our supervisor, meeting notes was written in Confluence to help plan 
the meeting and share our notes for team members not present.  

 RETROSPECTIVE 

A sprint retrospective meeting is held after finishing a sprint. The team discuss what went well and 
what could be improved. The goal is to improve product quality by improving work processes, and at 
the end of a retrospective the scrum team should have identified what to improve in the next sprint 
(Schwaber og Sutherland 2017). 

  



NTNU IN ÅLESUND   PAGE 33 

BACHELOR THESIS 

 

4 RESULTS 

This chapter will give an in-depth view of our process in the whole project, rooted in the theoretical 
part of the report. 

 ARCHITECTURE 

In these sections, we will describe how the system is constructed, and why we chose to construct it 
the way we did. Figure 22 shows a very general overview of the system as a whole. 

 

Figure 22: General system architecture 

Firstly, the GPS module acquires a location using data received by GPS satellites. The module parses 
the data into NMEA sentences and encrypts and sends the location data to the REST service. The 
REST service receives HTTP requests over an encrypted connection from Android devices, and 
responds in the same fashion. The backend server communicates with the production database over 
JDBC Template. 

  



NTNU IN ÅLESUND   PAGE 34 

BACHELOR THESIS 

 

 BACKEND ARCHITECTURE 

The backend consists of a Spring Boot application, with a PostgreSQL database, deployed on an 
Ubuntu server located in the basement of NTNU in Ålesund. Figure 23 illustrates the general 
architecture of the backend. Custom components are marked with purple. 

 

Figure 23: Backend architecture 

This section will further detail the backend architecture and explain the choices that were made. 

 PROGRAMMING LANGUAGE AND PLATFORM 

We chose to implement the backend in Java, as every team member were relatively proficient in the 
language. Java is the language that has been used in most of the programming courses, therefore 
everyone on the team knew how to utilize it for several use cases, such as networking, app 
development, and more.  

When deciding on which framework to use, we considered both Java EE and Spring Boot. Our 
decision to use Spring Boot was rooted in the fact that it has increased in popularity over the last few 
years, compared to Java EE. Figure 24 shows the popularity of both search terms in Norway over the 
last five years. However, the decision was also impacted by Spring Boot’s ability to easily let you get 
your environment set up and start developing your project instead of spending a lot of time 
configuring the framework, as explained in section 3.4.1.  



NTNU IN ÅLESUND   PAGE 35 

BACHELOR THESIS 

 

 

Figure 24: Popularity of search terms ‘Spring Boot’ and ‘Java EE’ represented by blue and red line, respectively (Google 
Trends u.d.) 

 OVERALL STRUCTURE 

This section will document the overall structure that make up the backend. 

4.2.2.1 Model-view-controller 

The backend logic is implemented using the model-view-controller pattern. By doing this, we ended 
up with flexible code where we can easily change the implementation of almost any part of the 
system. The model part is made up of the repository classes that handle direct interaction with the 
database, the entity classes that represent data, and the service classes that handle other potential 
business logic. The view part is the response that is returned to the user. Finally, the controller part is 
made up of the controller classes. They receive and process user input. 

4.2.2.2 REST API 

The backend is implemented as a RESTful web service. As explained in section 0, this gives us a great 
deal of flexibility. It allows us to easier scale the system if it were to gain a large number of users, and 
it reduces complexity since we do not have to hold any state about connections or users. However, 
the primary reason we decided to implement the backend as a RESTful service is that we can easily 
implement other user interfaces without having to change or add a line of code to the backend logic. 
If we at some point decide to create a web interface for the application, we can simply have it take 
advantage of the end-points we created.  

 COMPONENTS 

This section will document the main components of the backend. 

4.2.3.1 RestController 

The Controller classes are the end-points a client interacts with to send and retrieve data Code 
Snippet 17 shows the class declaration for UserController. 

@RestController 

@RequestMapping("/user") 

public class UserController { 

   // Methods omitted 

} 

 

Code Snippet 17: User Controller declaration 

 

The @RestController annotation marks the class as a controller. Spring Boot will then treat it as a 
controller where each method returns a response body. The @RequestMapping annotation maps 
the URI “/user” to methods in this class. A specific method in this controller class is shown in Code 
Snippet 18. 



NTNU IN ÅLESUND   PAGE 36 

BACHELOR THESIS 

 

@RequestMapping(value = "/register", method = RequestMethod.POST, consumes 

= "application/json") 

    public void createUser(@RequestBody User user) { 

        userService.createUser(user); 

    } 

 

Code Snippet 18: Method create User in class UserController 

This method is mapped to the URI “user/register”, and we have specified that it only accepts the 
HTTP method POST. Additionally, we have specified that the method consumes a request body in the 
form of a JSON string. The parameter indicated that the JSON string will be read as a User object, 
meaning its field names must match the ones in the entity class User. 

4.2.3.2 Service 

Between the Controller and Repository classes, we have an added layer of business logic. In addition 
to providing some degree of looser coupling by not binding the repository classes directly to the 
controller classes, the service classes are there to perform any extra logic needed for the data to be 
fully usable by the controller classes. This way, we make sure the repository classes only have to 
worry about database interaction, and the controller classes only have to worry about user 
interaction. Code Snippet 19 gives an example of a service class declaration. 

@Service 

public class UserService { 

   // Methods omitted 

} 

 

Code Snippet 19: UserService declaration 

The @Service annotation tells Spring and others that will read the code that this is a component that 
holds business logic and interacts with the repository layer Code Snippet 20 shows how a method in 
a service class might look. 

public void createUser(User user) { 

        String hashedPassword = passwordEncoder.encode(user.getPassword()); 

        user.setPasswordHash(hashedPassword); 

        userRepository.createUser(user); 

    } 

 

Code Snippet 20: Method create User in class UserService 

Firstly, the method accepts a user object, in this case always sent by a controller class. Then it 
performs some sort of operation on the data, in this case it hashes the password. Lastly, it sends the 
data down to the repository layer for it to be saved to the database. 

4.2.3.3 Repository 

The repository layer is responsible for handling interaction with the database. Code Snippet 21 shows 
the declaration for the class UserRepository. 

@Transactional 

@Repository 

public class UserRepository { 

   // Methods omitted 

} 

 

Code Snippet 21: UserRepository declaration 



NTNU IN ÅLESUND   PAGE 37 

BACHELOR THESIS 

 

The @Transactional annotation ensures that changes in the database are rolled back if an error 
occurs when interacting with it. The @Repository annotation tells Spring that this is a repository 
class, meaning it handles data storage and retrieval. 

To interact with the database, we first used a tool built into Spring called JPA (Java Persistence API). 
However, this proved to be ineffective and produced code that was harder to read. Using it included 
defining all the database attributes and relations through annotations in the entity classes, which is 
challenging when you have mildly complex keys in the database. Additionally, the cluster of 
annotations does not immediately make it clear how entities are related to each other. Beyond that, 
communication with the database is abstracted to an interface, making it especially challenging if you 
want to perform queries beyond standard insertion and retrieval. We then decided to use JDBC 
Template instead. 

JDBC Template lets you create your own SQL queries. These are often more effective, since you can 
make them as specific as you want. The code also became cleaner, since all the annotations from the 
entity classes could be removed. We also found the code became easier to understand, since you 
could see how the database was interacted with. A typical repository method makes use of JDBC 
Template, which is demonstrated in section 3.4.3. 

To convert the data we retrieve from the database to a Java object, we use a Spring interface called 
RowMapper. To use it with JDBC Template, you pass a custom RowMapper object as an argument to 
JDBC Template’s query method, which calls the overridden mapRow() method internally. 

Code Snippet 22 demonstrates how it is used for a User object. 

@Override 

    public User mapRow(ResultSet rs, int rowNum) throws SQLException { 

        User user = new User(); 

        user.setEmail(rs.getString("email")); 

        user.setPasswordHash(rs.getString("password_hash")); 

        user.setName(rs.getString("name")); 

        user.setPhone(rs.getString("phone")); 

        return user; 

    } 

 

Code Snippet 22: Method mapRow in UserRowMapper 

 DATABASE VERSIONING 

A database in a system often changes to support new features or developments. To easily track and 
manage changes, we used a library called Liquibase. As explained in section 3.8.2, Liquibase 
automatically applies the changes defined in a changefile to the databases. We first wrote the initial 
database tables and attributes in a single changeset, so that when you first run the program, you do 
not have to worry about setting up the database yourself. All further changes were written in 
subsequent changesets that would automatically be applied when run for the first time. By doing 
this, neither the production database nor any local database would accidentally be left out of date, 
and team members did not have to run any changes themselves that others had defined.  

 HOSTING AND DEPLOYMENT 

We chose to host our solution on a virtual machine running on NTNU’s servers. Spring Boot was 
wired up to start our REST application as a servlet and build a WAR file as output.  

When a new version of application is ready for deployment, the WAR file is uploaded to the server 
and placed in our servlet container tomcat. When a new file is deployed to a container, the container 
automatically unpacks it to access the files and launch the application. An important aspect of the 
WAR file is that the filename is used to map HTTP requests to our application.  



NTNU IN ÅLESUND   PAGE 38 

BACHELOR THESIS 

 

 MICROCONTROLLER 

In this project we wanted to assemble a microcontroller prototype, which would act as a tracker unit. 
The long-term plan was to develop a light-weight microcontroller embedded in a pet collar. This 
section will describe how this microcontroller was assembled and programmed. 

 HARDWARE 

The hardware requirements for the prototype was that it should be able to receive its own GPS 
position, and communicate its position to our REST-service.  

4.3.1.1 Components 

The requirements we had for the components for this project was they had to be light-weight, 
readily available, robust, and the components needed to be compatible with Arduino Uno Rev3. So 
that if we ever went to production, the components could be sourced from reliable suppliers at a 
predictable price range. That is why we landed on the following components for the prototype: 

• Arduino Uno Rev 3 as our microcontroller, which facilitates our software and logic. 

• Adafruit Ultimate GPS breakout, to receive the GPS position. 

• Arduino GSM shield 2, as our means of communication. 

• SIM card. 

• 8000mA battery pack. 

4.3.1.2 Wiring Diagram 

Arduino Uno Rev 3 GSM Shield 2 GPS breakout 

5V VCC VCC 

GND GND GND 

PIN 2 GSM RX (standard Adafruit RX) 

PIN 3 GSM TX (standard Adafruit TX) 

PIN7 Modem Reset  

PIN 8  GPS TX 

PIN 9  GPS RX 

Table 5: Wiring Diagram - Arduino, GSM and GPS 

4.3.1.3 Battery consumption 

We estimate the tracker prototype to use roughly 133mAh, see Table 6. This is due to the huge 
power consumption of the GSM module, which is based on 4 position loggings each hour and an 
estimated initialization process- and send time of 30 seconds. The power drainage is probably less 
than the estimate, but to be on the safe side we use this estimate to calculate battery lifetime.  

Component  Max   Amount Rate Total   

Arduino 50 mA 1 0.4 20 mAh 

GPS Breaker 20 mA 1 
 

20 mAh 

GSM Shield 700 mA 4 0.033 93 mAh 

Consumption         133 mAh 
Table 6: Estimated Power Consumption 

Using a battery life calculator (Digikey 2018), we estimate that the lifetime of the tracker device 
surmounts to approximately 42 hours, with the 8000mA battery package. 



NTNU IN ÅLESUND   PAGE 39 

BACHELOR THESIS 

 

The Arduino implementation can most certainly be optimized, and an approach to this problem will 
be discussed in section 5.1.1. 

4.3.1.4 Prototype 

Figure 25 shows how our Arduino prototype was assembled. 

 

Figure 25: Track’a’Pet prototype of tracking device 

 MOBILE SUBSCRIPTION 

To establish communication from our tracking device, we needed a suitable mobile subscription. 
After some research we found a subscription type called M2M, which is a machine-to-machine 
communication subscription. This subscription type is specialized for communication from IoT 
devices and was ideal for our use.  

Since NTNU has a framework agreement with Telenor for such services, we could choose between 
two subscriptions delivered from Telenor. A comparison is shown in Table 7. 

 Telenor Total (NOK) Telenor Go Norge (NOK) 

Establishment 15 150 

Monthly price 20 299 

Price pr. MB 6 0.10 

Price pr. SMS 0.59 0.59 

Table 7: Prices for Telenor M2M-subscriptions and additional services (Telenor u.d.) 

To calculate the total cost of different subscriptions, we had to analyze the data usage for a 
connection from the microcontroller to the REST application. Using TShark as described in section 
3.11.1, we analyzed several HTTP requests that consists of an initial three-way-handshake and a post 
of a new status to the server. We found that approximately 650 bytes of data was quite accurate for 
calculating one connection from the microcontroller. Together with the prices from Table 7, this is 
the base of calculation in Table 8. 

  



NTNU IN ÅLESUND   PAGE 40 

BACHELOR THESIS 

 

 Frequency # connections MB Telenor Total (NOK) Telenor Go Norge (NOK) 
 1

 D
ay

 15 min 96 0.062 0.37 0.01  

5 min 288 0.187 1.12 0.02 

1 min 1440 0.936 5.62 0.09 

1
 M

o
n

th
 15 min 2880 1.872 31.23 302.12 

5 min 8640 5.616 53.70 304.37 

1 min 43200 28.080 188.48 317.85 

1
 Y

e
ar

 15 min 34560 22.464 374.78 3625.48 

5 min 103680 67.392 644.35 3652.44 

1 min 518400 336.960 2261.76 3814.18 

Table 8: Data usage (650 bytes pr. connection) and the corresponding subscription cost 

The calculations in Table 8 show that even with updates from the microcontroller every 1 min, 
Telenor Total would be the cheapest choice. However, with the uncertainty of packet size at the time 
of order we subscribed to Telenor Go Norge. With this solution we had flexibility for testing without 
any concern of data usage. 

 SOFTWARE 

In the programming part of the Arduino, we used Adafruit alternative GPS, alternative Software 
Serial, Arduino GSM, as well as MemoryFree library. These are described in more detail in sections 
3.7.2, 3.7.3, 3.7.1, and 3.7.4, respectively. Further on, we explain how our software implementation 
used those libraries to facilitate our desired result, as well we touch on some problems we 
encountered along the way. 

4.3.3.1 JSON 

At the starting point of this project, we hoped to use our own custom JSON parser to wrap our data 
to the REST service in a nice and memory efficient JSON string. Later in the process this parser did not 
give us the desired results, so we implemented ArduinoJson to parse our data. This later showed to 
be a bad idea.  

As we developed the program for Arduino, the JSON parser was updated several times to 
accommodate the REST requirements. This refactoring led to so much extra work that we found it 
beneficial to implement the ArduinoJson library instead. 

The ArduinoJson library originally worked as expected, and was simple to implement. However, a 
side effect of the library resulted in the microcontroller frequently restarting itself. We later 
discovered this was due to the ArduinoJson library using too much memory with our usage. Because 
of this, we had to implement our own light-weight JSON parser. This solved the memory leak 
problem, and our microcontroller could again communicate with our REST service. 

4.3.3.2 GSM 

To accommodate communication with our REST service, we implemented the built-in Arduino GSM 
library. This offered a way for our GSM component to communicate with the mobile phone network 
and use GPRS. By setting up a light-weight web client on the microcontroller, it enabled us to use the 
microcontroller to send data to our REST service. The GSM component uses the built-in antenna to 
first connect to the cellular provider using data from the SIM card. Once the connection is 
established, it can setup a light-weight web client to communicate over the internet. In our 
implementation, we created our own POST method to ensure memory usage would not exceed the 
microcontroller’s limit, and comply with our requirements. 



NTNU IN ÅLESUND   PAGE 41 

BACHELOR THESIS 

 

4.3.3.3 GPS 

Since the Arduino GSM library makes use of the integrated Software Serial library, we needed to find 
another way for the Arduino to communicate with the GPS module. This led to a series of conflicts 
where the alternative Adafruit GPS library did not contain a default return method for latitude and 
longitude. This was solved by making our own converter method, where we could pass degree-
minutes as a parameter, to which we got decimal-degrees back. 

4.3.3.4 Alternative Software Serial 

Since we needed to both have the GSM and GPS module, we needed to implement a way for the GPS 
module to communicate with the Arduino. By default, the Adafruit GPS library uses the same 
software serial implementation the GSM shield relies on. By using an alternative Software Serial 
implementation in conjunction with the integrated Software Serial, we could specify which pins the 
alternative software serial implementation should use. This solved the conflict between the Arduino 
GSM shield and Adafruit Ultimate GPS breaker, allowing us to use both components simultaneously. 
This offered us the functionality we started out with as a requirement for the prototype. 

4.3.3.5 MemoryFree 

To help us debug and find potential memory leaks, we used a library called MemoryFree, which 
offered us an accessible way to read the memory usage on the microcontroller. This made it possible 
for us to debug and find issues before they became too complicated to deal with. 

4.3.3.6 Software Flow 

By following Figure 26, the microcontroller initiates the GPS module, then starts to receive GPS data. 
Once GPS data is received, the microcontroller connects to the GSM network and encrypts sensitive 
data before parsing the data into JSON, which it then sends to the REST service. 

Thereafter, the microcontroller sends a new location once a timer has exceeded 15 minutes, 
bypassing the GPS initiation because the GPS maintains its fix on the satellites with low battery 
consumption.  

 

Figure 26: Microcontroller State Diagram 



NTNU IN ÅLESUND   PAGE 42 

BACHELOR THESIS 

 

 FRONTEND ARCHITECTURE 

The frontend of the system is a native Android application. Because of our backend architecture, our 
system can handle any type of frontend client. As a proof-of-concept, we chose to develop an 
Android application, because we received feedback from potential users that they would prefer the 
simplicity and convenience of being able to check on their pets at any time, on their mobile device. 

 PROGRAMMING LANGUAGE 

When deciding which programming language to use in the development the Android application, we 
had several options. We ultimately decided on Java, because of the amount of online support and 
resources available. Kotlin is relatively new language, with a smaller community, which means it may 
be harder to find solutions to common problems.  

 OVERALL STRUCTURE 

We decided to structure the application using the Model-View-Controller pattern. The reasoning for 
this was increased flexibility, higher cohesion, and looser coupling. Table 9 Gives an overview of the 
files and classes that make up the Model-View-Controller structure in the application. 

 File/class Explanation 

View 

Layout Files defining the layout of UI elements 

String resources Files containing all the UI text 

Drawable Figures and symbols 

Style File containing format and look of layout 

Controller 

Activity Represents a single screen in the application, controls user 
input 

Fragment Represents a portion of a user interface, controls user input 

Model 

Asynctask Represents an operation that runs in the background, updates 
view 

HttpClient Handles direct network communication 

Entity Classes that represents domain objects 

Table 9: Explanations of the components that make up the MVC 

 COMPONENTS 

This section will describe the major components that make up the application. 

4.4.3.1 Activity and fragment 

An activity represents a single screen of an Android application. Activities interact directly with the 
user by handling input and updating the view (Android, Activity 2018). All the different screens in our 
application extend the Activity superclass, and have their own layout file that define how the UI is 
presented. 

In our application, we also make use of a custom toolbar and navigation drawer. To avoid duplicating 
the code that controls these elements, we created a superclass that handles all the functionality 
pertaining to them. All the activities that want to use the navigation drawer and toolbar then only 
need to extend this class, called BaseActivity. 

Using activities also allows our app to have more than one entry point. For example, the user can 
start the app normally and be directed to the main activity. However, if the user opens the app 



NTNU IN ÅLESUND   PAGE 43 

BACHELOR THESIS 

 

through a notification, they are directed to the map activity. This means the app adapts to the user, 
and not the other way around. 

A fragment represents a more specific portion of the UI. Fragments are used for modular pieces of 
the application that can be reused several times. They have their own lifecycles, and handle their 
own user interaction (Android, Fragment 2018). 

We used fragments in our application where we had a portion of a UI that we know we could reuse. 
For example, the list of pets in MainActivity is implemented as a fragment. If we were to adapt the 
app for tablets, we could show that fragment on one side, and the map on the other. Figure 27 
demonstrates how this could look. This makes the code more modular, and allows for greater 
flexibility. 

 

Figure 27: Usage of fragment 

4.4.3.2 Async Task 

AsyncTask is an Android-specific abstract class for performing background operations, and update 
the UI thread with the results (Android, AsyncTask 2018). 

We make use of AsyncTasks when performing network operations, such as fetching data from the 
REST API. This has several advantages: 

• Since tasks are executed asynchronously, the UI thread will not freeze while waiting for some 
network operation to finish. 

• Tasks have only one responsibility, leading to higher cohesion. 

• Tasks have no knowledge of activities or fragments, leading to looser coupling. 

Code Snippet 23 demonstrates the usage of an AsyncTask: 



NTNU IN ÅLESUND   PAGE 44 

BACHELOR THESIS 

 

public class LoginTask extends AsyncTask<String, Void, String> { 
    OnPostExecute callback; 
 

    public interface OnPostExecute { 
        void onPostExecute(String token); 
    } 
 

    public LoginTask(OnPostExecute callback) { 
        this.callback = callback; 
    } 
 

    @Override 
    protected String doInBackground(String... strings) { 
        String username = strings[0]; 
        String password = strings[1]; 
        return new LoginHttpClient().login(username, password); 
    } 
 

    @Override 
    protected void onPostExecute(String token) { 
        if (callback != null) { 
            callback.onPostExecute(token); 
        } 
    } 
} 

 

Code Snippet 23: Implementation of an AsyncTask for user login 

The three parameters, <String, Void, String>, represents the type of parameters sent to the task, the 
type of progress returned during execution, and the type the task returns when execution finishes, 
respectively. This class expects username and password as arguments, does not publish any progress, 
and returns an access token when it finishes executing. Here we have also defined an interface for 
onPostExecute to make it easier for the activity classes that override the method. 

An example of how an AsyncTask is used is shown in Code Snippet 24. 

private void login(final String username, String password) { 

        new LoginTask(new LoginTask.onPostExecute() { 

            @Override 

            public void onPostExecute(String token) { 

                if (token != null) { 

                    JwtService.saveToken(getBaseContext(), token); 

                    navigateMainActivity(); 

                } else { 

                    showProgress(false); 

                    //Error handling omitted 

                } 

            } 

        }).execute(username, password); 

    }  

Code Snippet 24: Usage of LoginTask in the class LoginActivity 

Here we instantiate a new LoginTask and pass an overridden onPostExecute as an argument. When 
the task finishes execution, it should return a new access token, which we then save to disk. 

  



NTNU IN ÅLESUND   PAGE 45 

BACHELOR THESIS 

 

4.4.3.3 HTTP client 

Our AsyncTasks do not handle HTTP communication directly. Instead, they call on a set of classes that 
are responsible for sending and retrieving data over the network. The application has a set of classes 
that handle their own specific HTTP event. For example, LoginHttpClient is responsible for sending 
login credentials to the correct URL, and return a token on successful login, and UserHttpClient is 
responsible for registering users, fetching users, updating, etc. Code Snippet 25 shows a typical 
method in an HttpClient class. 

public class UserHttpClient extends HttpClient { 

     

    public User getUser(String token) { 

        String userJson = getJson(URL, token); 

        return JsonParser.jsonToObject(userJson, User.class); 

    } 

 

    // Other methods and fields omitted 

} 

 

Code Snippet 25: Method getUser in the class UserHttpClient 

Network communication often requires several steps. For example setting up a connection, opening 
a connection stream, exception handling, and more. For this reason, all HTTP classes extend from a 
single superclass that handles general HTTP events. This class, HttpClient, has general methods for 
posting JSON strings, fetching data, and more. This way, we avoid code duplication, and the classes 
that want to do network communication can work with the friendlier methods as seen above. 

To convert the string of data returned from the network, we have a class that maps JSON to Java 
objects. This class contains static methods that are general enough to be used with any entity class. 
This class makes use of the Gson library, detailed in section 3.9.1. 

 USE CASE DIAGRAM 

Figure 28 shows the most essential user interaction in the application. 

 

Figure 28: Use case diagram 



NTNU IN ÅLESUND   PAGE 46 

BACHELOR THESIS 

 

 CLASS DIAGRAM 

To highlight the core implementation, we chose to create a couple of class diagrams to represent the 
dependencies in our project. 

 FRONTEND 

Figure 29 shows a class diagram, focused around MainActivity. It highlights all the project specific 
dependencies, while all the android and java specific dependencies are omitted to increase 
readability. This demonstrates a general approach to dependencies, so we have chosen to omit class 
diagrams for the whole application. 

 

Figure 29: Class diagram around main activity 

 BACKEND 

Figure 30 shows a simplified class diagram centered around UserController. It shows the general 
program flow and dependencies. We have chosen to omit the other controllers, services, repositories 
and entity classes, as the structure is generally the same for all of them. We have also chosen to omit 
all external dependencies and interfaces for improved readability. However, we have chosen to 
emphasize the flow of the security classes, because of their importance in the system. 

The diagram also demonstrates loose coupling. Classes that are “low” in the hierarchy have no 
knowledge of the classes that call on them. For example, the entity class does not know of any other 
class in the system. UserRowMapper knows about the User class, but has no knowledge about the 
classes above itself. The diagram also shows how we have chosen to program against interfaces, and 
not implementations, which again results in looser coupling. A full class diagram is enclosed as an 
appendix. 



NTNU IN ÅLESUND   PAGE 47 

BACHELOR THESIS 

 

 

Figure 30: Simplified class diagram centered around UserController 

 DATABASE DESIGN 

This section will describe how the database was designed, and which choices were made during the 
process. The Entity Relationship Diagram is shown in Figure 31. 

 

Figure 31: Entity Relationship Diagram for Track’a’Pet database 



NTNU IN ÅLESUND   PAGE 48 

BACHELOR THESIS 

 

The primary keys are marked with [PK], and the foreign keys are marked with [FK]. Some tables, such 
as ownership, have composite keys. Composite keys are primary keys that consist of more than one 
attribute. In ownership and status, foreign keys are also used as primary keys. Not shown in the 
diagram is the database changelog table, which is generated and maintained by Liquibase. 

By having a table for tracking devices, we gained some benefits. The table would contain all tracking 
devices in circulation. When a user registers a device with the app, the device is then locked to that 
user until it is deregistered. If someone tries to register an already registered device to themselves, 
they will be unable to until the original owner deregisters it. This means a device would be useless to 
a would-be thief. 

The database design evolved over time. The bugreport table was added later, as we did not originally 
have a bug report feature planned. The user_account table originally had a salt attribute, but was 
later deleted since Bcrypt stores the salt with the hash. 

 ENTITY RELATIONSHIPS 

• A user can own several pets 

• A pet can be owned by several users 

• A user can own several trackers (device) 

• A pet can only wear one tracker at a time 

• A pet can have several status updates associated with it 

• A user can submit several bug reports 

 OVERVIEW OF ATTRIBUTES 

This section details all the attributes in the database. 

4.7.2.1 User_account 

Attribute Data type Comment 

Email VARCHAR(100)  

Name VARCHAR(100)  

Phone VARCHAR(50) Stored as string value since number operations will 
never be performed on phone numbers. Its length 
gives us better support for longer numbers, such as 
for other countries. 

Password_hash CHAR(60) Hash is always 60 characters 

Table 10: DB Table – User_account 

  



NTNU IN ÅLESUND   PAGE 49 

BACHELOR THESIS 

 

4.7.2.2 Pet 

Attribute Data type Comment 

Pet_id Integer  

Name VARCHAR(50)  

Type VARCHAR(50) For example ‘Dachshund’ or ‘Egyptian Mau’ 

Gender CHAR(1) ‘M’ or ‘F’ 

Device_id Integer  

Missing Boolean Defaults to false 

Geofence_latitude Double precision  

Geofence_longitude Double precision  

Geofence_radius Double precision  

Color Integer Google maps uses integers to represent colors 

Table 11: DB Table - Pet 

4.7.2.3 Status 

Attribute Data type Comment 

Pet_id Integer  

Time Timestamp Timestamp is without time zone. Not including it 
simplifies some business logic. Can be added later 
to support more countries 

Latitude Double precision  

Longitude Double precision  

Table 12: DB Table - Status 

4.7.2.4 Ownership 

Attribute Data type Comment 

Pet_id Integer  

User_email VARCHAR(100)  

Table 13: DB Table - Ownership 

4.7.2.5 Device 

Attribute Data type Comment 

Id Integer  

User_email VARCHAR(100)  

Table 14: DB Table - Device 

  



NTNU IN ÅLESUND   PAGE 50 

BACHELOR THESIS 

 

4.7.2.6 Bugreport 

Attribute Data type Comment 

Id Integer  

User_email VARCHAR(100)  

Title VARCHAR(100)  

Message VARCHAR(500)  

Time Timestamp  

Table 15: DB Table - Bugreport 

 SECURITY 

This section will describe the measures we have taken to implement sufficient information security in 
the system. In the development of the system, we have emphasized that our solution will be as safe 
as possible. 

 PROTECTION FROM SQL INJECTION  

Injection was the most critical security vulnerability in 2017 (OWASP 2017). To protect the system 
from malicious SQL injections detailed in section 2.2.5.2, we use prepared statements, as provided by 
JDBC Template. By structuring queries as shown in section 3.4.3, with question marks in place of 
variables, we can be sure that the user input is treated as a variable, and never as a valid SQL 
statement. 

 PROTECTION FROM BROKEN AUTHENTICATION 

The second most critical security vulnerability in 2017 was broken authentication, such as functions 
related to authentication and session management (OWASP 2017).  

4.8.2.1 Tokens 

To authorize users, we decided to use self-contained access tokens for several reasons. Firstly, it 
would keep the backend stateless, since we would not have to store any information about the 
tokens. Secondly, we would not have to store passwords on the client devices. As explained in 
section 3.8.3, the JSON web token we are using only contains an identifier and expiration time. 

The token itself is saved on the client device on a successful login. It is saved to the shared 
preferences, in private mode. This ensures that the token can only be accessed by the Track’a’Pet 
application. When the user logs out or uninstalls the app, the token is deleted.  

The expiration time on the tokens were set to be ten days. When the token expires, the user must 
reauthenticate and receive a new token. This adds some additional security in case a user’s token is 
somehow stolen, since they are only valid for a short time period.  

4.8.2.2 End-point security 

Almost all end-points on the API are secured. If a valid access token is not included in the header, the 
server will return a HTTP code 403 FORBIDDEN. Additionally, users will only be given access to the 
resources that matches the identifier in the token. This prevents users from manipulating the 
information belonging to other users. The exceptions are the login and register end-points, which 
everyone must be able to access without authentication. 

We have also added a JSON web token login filter to the login end-point. This filter will try to 
authenticate the submitted user credentials. If they match a registered user, a token is generated 
and returned. 



NTNU IN ÅLESUND   PAGE 51 

BACHELOR THESIS 

 

 PROTECTION FROM SENSITIVE DATA EXPOSURE 

Sensitive data exposure was the third most critical vulnerability in 2017 (OWASP 2017). In Norway, 
the personal data act described in section 2.1.2 protects the users from violation of their right to 
privacy through the processing of personal data. When protecting our sensitive data, we had to take 
into consideration that GDPR will come into force in Norway by 2018 as described in section 2.1.3. 
Failure to follow the personal data act or the GDPR can result in considerable fines. 

4.8.3.1 Data encryption 

According to OWASP Top 10 (OWASP 2017), the most common reason for sensitive data exposure is 
simply not encrypting sensitive data. 

As explained in section 2.2.3, by using HTTPS we ensure that all communication between users and 
the server is secure. No one other than the two parties involved can decipher the messages sent back 
and forth, thus also preventing man-in-the-middle attacks, detailed in section 2.2.5.1. 

To enable HTTPS on our server, a certificate (described in 2.2.3.2) from a Certificate Authority was 
needed. Let’s Encrypt is a free, automated and open CA (Internet Security Research Group u.d.). To 
get a certificate we had to demonstrate control over the domain. This had to be done by using a 
software that use the ACME protocol. This was done using Certbot client. Installation instructions can 
be seen in Figure 32.  

 

Figure 32: Install Certbot ACME client on Ubuntu 

Certbot supports different plugins that can be used to fetch and deploy certificates. Running the 
command in Figure 33 will obtain a single certificate for trackapet.uials.no using the webroot plugin. 
To prove control of the domain, Certbot will place files below /var/lib/tomcat8/webapps/trackapet. 

 

Figure 33: Obtain a certificate from Let’s Encrypt using Certbot 

Certificates issued by Let’s Encrypt is only valid for 90 days, therefore a scheduled task was set up to 
run twice a day to check if the certificate is due for renewal.  

4.8.3.2 Password storage 

One should be careful when working with user passwords, as explained in section 2.2.1. If 
unauthorized people manage to gain access to the passwords of other users, they can maliciously use 
that information on all accounts where a user might use the same password. For that reason, we salt 
and hash all user passwords before storing them in the database. We decided to go with BCrypt, 
because of its reliability, and because it automatically generates and stores unique salts for each 
individual password. Furthermore, BCrypt can be made resistant to brute-force attacks by increasing 
the iteration count of the internal hash function. This increases the time needed to hash a password, 
making it too slow to try common brute-force methods, but is still fast enough for a regular user who 
logs in normally. 

 MICROCONTROLLER 

As mentioned in section 4.8.3.1 missing encryption of the data is the most common reason for 
sensitive data exposure. This shows how important it is to have encryption throughout the system. 
On the Android app this was solved by using HTTPS for all communication with the REST application. 
However, implementing HTTPS on the microcontroller proved to be as good as impossible with our 
setup, therefore we looked at alternative approaches using symmetric encryption as we described in 



NTNU IN ÅLESUND   PAGE 52 

BACHELOR THESIS 

 

section 2.2.3.1. While using symmetric encryption and with physical access to the device, it would be 
possible to reverse engineer the microcontroller and gain access to the shared key. 

First, we tried AES encryption. this worked fine when testing the library by itself, but when using the 
AES library with our setup the system as a whole started to behave unstable. Sometimes it seemed to 
work and other times it crashed without any response. Debugging showed that the library was too 
resource-intensive. 

Next, we tried DES encryption, which was more stable with our setup. However, DES has some 
limitations. With specific knowledge and equipment, DES can in some cases be compromised. At the 
same time, it is the only stable solution possible on Arduino. Our implementation is generic enough 
to be easily replaced with any other symmetric encryption algorithm, or perhaps the final real device 
is powerful enough to run SSL. The information we send from the microcontroller is not considered 
sensitive by itself, so we concluded that stable encryption was more important than unstable, more 
secure encryption. The important thing to note is that we have shown that reasonable security is 
possible even on very resource-constrained devices. 

 DESIGN 

In this section we will discuss the general design, with focus on the user interface. 

 WIREFRAMES 

Before we began writing code, we started planning how users would interact with the system. We 
began by drawing sketches on a whiteboard, and later we created more detailed wireframes. This 
saved us time long term, by having a general plan to stick to. A selection of wireframes that became 
the basis for our design is shown in Figure 34 through Figure 39. 

 

Figure 34: Login wireframe 

 

Figure 35: Register wireframe 

 



NTNU IN ÅLESUND   PAGE 53 

BACHELOR THESIS 

 

 

Figure 36: Main activity wireframe 

 

Figure 37: Pet profile wireframe 

 

 

Figure 38: Maps activity wireframe 
 

Figure 39: Feedback wireframe 

The design was adjusted continuously while developing the application. If we found new or better 
ways to accomplish something, we would alter the design accordingly. 



NTNU IN ÅLESUND   PAGE 54 

BACHELOR THESIS 

 

 LAYOUT 

4.9.2.1 Login and register 

When a user starts the application for the first time, they are greeted with the login screen seen in 
Figure 40. If they do not have an account to log in with, they can click the text on the bottom to 
navigate to the register screen seen in Figure 41. After they successfully register, they are 
automatically logged in and redirected to the main activity. 

 

Figure 40: Login screen 

 

Figure 41: Register screen 

The login and register screen have a multitude of error checks and communication with the user to 
ensure a smooth experience. For example, if the fields are empty when the user tries to sign up, 
messages appear telling the user exactly what is wrong. When the user tries to register with an email 
that already belongs to another account, an error message is displayed as well. Many other events 
are handled similarly. User feedback is explained in greater detail in section 4.9.3. 

In Figure 41, we have utilized the gestalt principle proximity (2.7.1.1) by having a larger space 
between the obligatory and optional fields. This makes it easier for the user to immediately see 
which fields belong together. 

The design is very similar to the wireframes, although we left out the toolbar and navigation drawer. 
The reason is that one should not be able to navigate to any other activity unless you are logged in. 

  



NTNU IN ÅLESUND   PAGE 55 

BACHELOR THESIS 

 

4.9.2.2 Main activity 

When users are logged in, they are directed to the main activity ( Figure 42). It is worth noting 
that when the phone has a valid token saved, the user is automatically directed to the main activity. 
This way, the user does not have to log in every time they open the app.  

 

 Figure 42: Main activity screen  

The screen displays all the pets that the user is an owner of. Several people can own the same pets. 
An example is a family dog, which usually has at least two owners. Pet information is displayed as 
cards that consists of a profile image, name, static map image, last known position, and time of last 
update. The time of last update is displayed in a human-friendly format. 

The gestalt principle figure/ground (2.7.1.3) is utilized by adding a slight drop shadow to each card to 
make them stand out from the background. This makes it clearer to the user what the focus on the 
screen should be. The principle of common fate (2.7.1.4) is also used, by having each card move as 
one unit when the user scrolls the screen up and down.  

When at the top of the list, the user can drag the view down to update the list of pets, shown in 
Figure 43. Dragging down reveals an icon that begins spinning when let go, and the app then fetches 
the latest information from the server. If the user is somehow unable to perform this gesture, there 
is also a refresh button in the overflow menu on the far right on the toolbar. 



NTNU IN ÅLESUND   PAGE 56 

BACHELOR THESIS 

 

 

Figure 43: Refresh view by swiping down 

The activity is designed to give users a quick overview of their pets, and easily letting them navigate 
to anything they would like more information on. Tapping on the upper part of the card directs the 
user to the pet profile screen. The map image is static, and only shows what the last registered 
position of the pet is. To navigate to the interactive tracking map, the user can tap on the map image. 
Tapping on the floating action button directs the user to the ‘add new pet’ screen. 

4.9.2.3 Map activity 

Once the user navigates to the map activity, they will be directed to a map specifically for that pet. 
This activity shows the latest position of the pet, as well as the last path the pet has traveled, 
indicated with a colored line. Figure 44 provides an example with blue lines. Furthermore, if the user 
has set up a geofence for the pet, it will be indicated on the map as a green circle with an eye as icon. 

 

Figure 44: Actual map activity 

 

Figure 45: Map expanded options 

The map also includes user location focus when the user presses the location icon in the upper right 
on the screen. The map activity periodically calculates the distance between the user and the current 
pet and displays it underneath the pet icon, on the upper left side of the screen. When the user 



NTNU IN ÅLESUND   PAGE 57 

BACHELOR THESIS 

 

presses the profile picture, the information of the pet is displayed besides the profile picture, as seen 
in Figure 45, in addition to the name of the latest position. 

If the user needs the map to focus on the current pet, this is easily achieved with a press and hold 
gesture on the profile picture. This action animates the camera towards the pet and sets the marker 
in to focus. By using an animation on the camera panning, the user experiences a smooth transition 
from current position towards the pet. The gestalt principle proximity described in section 2.7.1.1 is 
utilized by grouping all current pet related features to the upper left of the screen. This lets the user 
use all the features associated with the current pet within a small section of the screen. 

 

Figure 46: Defining geofence 

Lastly, if the user presses the floating action button in the bottom right on the screen, the advanced 
options will be available. Here the user can activate markers for each of their pets in the same map.  

The advanced options also give access to geofence options, seen as the icon above the floating action 
button in Figure 45. When this option is enabled, the user can define and manipulate a geofence for 
the pet. If the geofence is not defined, the user only clicks the center point of the geofence and uses 
the slider to define the radius of the geofence, as shown in Figure 46.  

We use the proximity gestalt principle to achieve a sense of logical grouping, by association to 
buttons in advanced options in a to advanced options. In line with the gestalt principle similarity, the 
profile pictures have the same look, while the geofence has a distinct icon.  

  



NTNU IN ÅLESUND   PAGE 58 

BACHELOR THESIS 

 

Table 16 contains a full list of events featured in the map activity. 

Element Press Long Press 

Profile Picture Toggle name and location Focus on pet location 

User Location Focus on user location  

Pet Marker(s) Display name  

Geofence Marker Display pet relationship  

Advanced Option Toggle advanced options  

Geofence option Toggle geofence placement and 
adjustment of geofence radius 

 

Non-primary pet icon Toggle marker on map Focus on pet location 

Table 16: Full list of features in map activity 

  



NTNU IN ÅLESUND   PAGE 59 

BACHELOR THESIS 

 

4.9.2.4 Pet profile activity 

Once the user arrives at the pet profile activity, he or she will be presented with an overview of the 
current pet. On the top of the screen the user can see information on the pet in addition to the latest 
location in the form of a street address, with a timestamp, as seen in Figure 47. 

 

Figure 47: Pet profile activity 

 

Figure 48: Pet profile edit 

If the user wants to edit any of the information, such as name, color and profile picture, they must 
first enable editing by pressing the pencil icon. Thereafter, the elements which can be edited will be 
susceptible to click events. 

If users want to take a new photo, they must first allow the application to use the camera, as shown 
in Figure 49. Since Android needs permission to use device-specific features, as described in section 
2.8.1.1 and 2.8.1.2 , this permission will be prompted the first time the user wants to use the camera. 
Once the permission is granted the application can use the camera to take a photo, or the user might 
want to select an existing photo from their device. See Figure 50 for an example. Both these options 
are in line with foreground/background gestalt principle by darkening the background and drawing 
the user’s focus to the dialog box. 



NTNU IN ÅLESUND   PAGE 60 

BACHELOR THESIS 

 

 

Figure 49: Permission to use camera 

 

Figure 50: Select photo option 

The pet profile activity also features a way to pick colors for the pet. Once the user clicks the color, a 
color pallet will appear in the foreground and prompt the user to choose a color, as illustrated in 
Figure 51. This color is later used in the map activity, 4.9.2.3, and displays the latest path of the pet. 
Additionally, it distinguishes the different pet markers on the map. To incorporate universal design, 
the colors are color blindness aware and selected from ColorBrewer, a color advice site for 
cartography (ColorBrewer 2018). 

Lastly, the pet profile activity also displays a graph over the distance the pet has covered in the last 
20 updates. The graph calculates the total distance between each status update, as seen in Figure 47. 



NTNU IN ÅLESUND   PAGE 61 

BACHELOR THESIS 

 

 

Figure 51: Color picker 

4.9.2.5 Toolbar 

Android toolbar gives the user a recognizable navigation bar at the top of the screen. This offers the 
user a persistent way to interact with the app, by giving them a short overview of what they are 
doing (see Figure 52). 

 

Figure 52: Toolbar 

  



NTNU IN ÅLESUND   PAGE 62 

BACHELOR THESIS 

 

4.9.2.6 Navigation drawer 

The navigation drawer offers the user a way to navigate from anywhere in the application, see Figure 
53. By using a persistent navigation drawer in the whole application, it offers the user a simpler way 
to navigate between activities, rather than chained navigation.  

 

Figure 53: Navigation Drawer 

To achieve this functionality, we have implemented a base activity class which contains the toolbar 
and navigation drawer, in addition to a fragment which can be manipulated. Activities that contain 
these features are all extended from this base activity, removing code duplication and giving us a 
codebase that is easier to maintain. 

 USER FEEDBACK AND ALERTS 

It is important to give users concise feedback when they use the system. If an error occurs, they 
should not be left in the dark, even if the error is out of their control or not. Moreover, feedback 
should be consistent. For example, wrong information in input fields should be handled the same 
way for all fields. 

An example of user feedback during data input is shown in Figure 54. When the user presses ‘Sign in’, 
an error message pops up giving a clear message on what is wrong. The field causing the error is 
marked with a red symbol, in line with the principles explained in section 2.7.3. 

 

Figure 54: Error displayed when input fields are empty 

  



NTNU IN ÅLESUND   PAGE 63 

BACHELOR THESIS 

 

When informing the user of actions that require immediate attention, a dialog box is typically 
displayed. Usually, this means that an action of greater importance is about to be performed, or the 
system needs some action from the user before it can proceed. Figure 55 provides an example. The 
gestalt principle figure/ground (2.7.1.3) is used here. What was previously the user’s focus becomes 
the background by darkening it, and displaying the dialog on top as the new figure. This lets users 
focus on this new event, while still providing them context through the background. 

 

Figure 55: Alert on removal of pet 

Often, non-important feedback is given to the user. This type of feedback does not require user 
intervention, and exists strictly to keep the user informed on what is happening. This increases the 
experienced responsiveness and enhances the user experience. These messages are usually 
displayed through a toast. A toast is a message that is shown briefly at the bottom of the screen. 
Figure 56 provides an example.  

 

Figure 56: Toast saying a pet is successfully registered 

Text fields have hints in them to let the user know what type of data is expected in them. When the 
user taps the field to begin typing, the hint becomes animated and moves up. This way, the user will 
always be reminded of what the expected data is, even if they are in the middle of typing. When text 
fields are in focus, they also become colored, so the user can easily see where they are supposed to 
be typing. Examples are shown in Figure 57 and Figure 58. 

 

 

Figure 57: Unfocused input field 

 

Figure 58: Focused input field 

  



NTNU IN ÅLESUND   PAGE 64 

BACHELOR THESIS 

 

 DESIGN CONCERNS 

4.9.4.1 Layout 

To structure each activity, we used the Android Studio layout manager feature to drag and drop 
elements into our activity layouts. This featured worked great at building the UI elements, and to 
structure each layout.  

4.9.4.2 Values 

String 

We have tried to keep our string values up-to-date as often as possible, and where it is logical we 
have translated the string values to Norwegian. By keeping a list of string values, instead of 
hardcoding in text in the application, porting the app to other languages becomes very easy. 

Colors 

To have persistent color throughout the whole application, we have defined all the secondary colors, 
which include red, green, blue, yellow, purple and orange, in addition to black and white. 
Furthermore, to reduce code duplication we only reference those colors in the code, so that the 
application does not depend on hidden hardcoded colors. We also have defined color-blind friendly 
colors to comply with universal design. 

4.9.4.3 Drawable 

When dealing with drawable, we preferred to use Android vector icons, which scaled nicely with our 
requirements.  However, when handling profile pictures, we used image assets like Bitmap. 

 TESTING 

This section will describe how we used testing in our project. 

 REGRESSION TESTING 

Our main focus has been regression testing, to check if existing code has integrity after we 
implement new functionality. Most of these tests are concerned with computation and correct 
outputs, such as the distance calculation, time parsing and location. By testing these support 
methods, we can ensure that the application will keep integrity over time. Thus, reducing the 
opportunity for latent bugs later in development. 

 MANUAL TESTING 

Other than regression testing we have used much time and effort on manual testing, because of the 
complexity of the system we focused on manual testing to test system-wide implications. We have 
also tried to test unexpected user inputs and navigation. By using this approach to test the 
application, we have uncovered many different scenarios which have helped us make the application 
more robust.  

A typical approach we used was to try and break the application by overloading the UI and navigating 
to different parts of the application in an unnatural way. Lastly, we have handed the application over 
to users which have tried to break the application, to ensure integrity as well as highlighting 
improvements.  

  



NTNU IN ÅLESUND   PAGE 65 

BACHELOR THESIS 

 

 BUSINESS ANGLE 

In this section we will estimate the potential income and cost associated with the product. We do not 
account for indirect cost, and we make some assumptions surrounding cost and price. 

 MARKET 

Initially the product would have been launched in Norway, and from Table 17 we can see that there 
are many potential pets in Norway. Note that this data is somewhat outdated, but it provides an idea 
of the potential market in Norway. 

 Cat Dog Total potential pets 

Pets 535’000 414’000 949’000 

Pr. household 1.4 1.2  

Households 382’000 345’000 727’000 

Table 17: Pet ownership Norway 2008, (Aftenposten 2008) validated with (Regjeringen.no 2004) 

From Figure 59 we can see that Android has the largest market share internationally (roughly 80%), 
leaving our application highly compatible with the international market. 

 

Figure 59: Smartphone market shares 2009-2017 (Statista.com 2016) 

We intended to release the product to the Norwegian market, thus the Norwegian device market 
shares need to be accounted for. In the Norwegian market there is a different culture, where iOS 
devices are more abundant. Therefore, our application will be less sought after, leaving us roughly 
50% compatibility towards Android. 



NTNU IN ÅLESUND   PAGE 66 

BACHELOR THESIS 

 

 

Figure 60: Smartphone market share Norway 2016 (gsStatcounter.com 2017) 

If pet owners do not have any bias towards specific smartphone OS, this leaves us with 
approximately 475’000 potential pets and 363’000 households. We assume that we could potentially 
achieve to acquire roughly 0.1% - 2% of the estimated market within the first year of release. This 
results in 475 – 9’500 expected devices sold the first year. 

 HARDWARE COST 

In this project the main cost has been to develop the backend and frontend solution, therefore most 
of the cost of development is already taken into account. Furthermore, the hardware components 
are a fixed cost, but as production scaled up we assume that we could produce cheaper components 
and arrange quantum discounts with suppliers. However, to be on the safe side we calculate with the 
initial cost of components, a pessimistic estimate and an optimistic estimate (Table 18). 

Component Full Cost 

(NOK) 

Pessimistic Cost (90%) 

(NOK) 

Optimistic Cost (50%) 

(NOK) 

Arduino Rev 3 190 171 95 

GPS Module 324 292 162 

GSM Shield 618 556 309 

Battery Solution 100 90 50 

Miscellaneous 50 45 25 

Total Cost 1282 1154 641 

Table 18: Estimated cost 

 SOFTWARE COST 

If this project were to be deployed, the team is confident that we would deploy the solution as a 
Heroku Cloud service (Heroku 2018). This would cost somewhere between 200 NOK to 4050 NOK, 
depending on the scale. 



NTNU IN ÅLESUND   PAGE 67 

BACHELOR THESIS 

 

 INCOME 

The team assumes the estimated market share, see 4.11.1, in Norway is achievable, thus setting the 
pet and household market to 475’000 and 363’000, respectively. In Table 19 we try to estimate 
device profit for the first year using the assumed price of 1’300 NOK per device. 

%- Market Share 0.1% (475) 

(NOK) 

2% (9’500) 

(NOK) 

Cost Modifier Pessimistic Optimistic Pessimistic Optimistic 

Device Income 617’500 617’500 12’350’000 12’350’000 

Device Cost 548’150 304’475 10’963’00 6’089’500 

Device Profit 69’350 313’025 1’387’000 6’260’500 

Table 19: Estimated Device Profit First Year 

The running cost of the sim cards have huge impact on the profitability of the service, and to 
negotiate a reasonable price on that cost would benefit the business plan in the long run. 

It is worth noting that Table 20 is based on full coverage of our estimated customer base from day 
one. This would likely not be the case, and a more reasonable approach would be that customer 
growth would be more linear. The first months probably would result in a deficit in this aspect. 

%- Market Share 0.1% (363) 2% (7’260)  

Modifier Pessimistic 

(NOK) 

Optimistic 

(NOK) 

Pessimistic 

(NOK) 

Optimistic 

(NOK) 

Subs. Income 30 30 30 30 

M2M Cost 26  20  26  20  

Service Profit 4  10  4  10  

Agg. Service Profit 1’452  3’630  29’040  72’600  

Heroku Cost 4’050  250  4’050  250  

Monthly Profit -2’598  3’380  24’990  72’350  

Table 20: Continuous Monthly Profit 

 FINANCIAL FEASIBILITY 

In comparison to competing products in the Norwegian market (see section 5.1.10), our pessimistic 
approach to hardware cost would place the product within the price range of competitors. By that 
estimate, it is possible to launch the product and break even. If we are more closely aligned with the 
optimistic cost, the product would produce quite a lot of revenue.  

However, our main revenue stream would potentially be long-term subscriptions, given that we can 
negotiate better prices from cellular providers. Table 21 shows our estimate of the worst- and best-
case situation one year after release. The conclusion being that this product is quite feasible to 
realize. 

 Worst Case (NOK) Best Case (NOK) 

Profit 38’174 7’128’700 

Table 21: First Year Profit Estimates 



NTNU IN ÅLESUND   PAGE 68 

BACHELOR THESIS 

 

5 DISCUSSION 

In this chapter, we will discuss the technical result of the project, and the execution of the project. 

 TECHNICAL RESULT 

In this section, the technical result of the project will be discussed. 

 MICROCONTROLLER 

Programming a microcontroller such as the Arduino proved to be a greater challenge than we first 
anticipated. The main reasons are the strict memory restrictions on the microcontroller, and the fact 
we had to use a low-level programming language we did not have much experience with.  

We chose to work with the Arduino primarily because we had some experience with it beforehand, 
but we did not factor in the complexity of the tools we would have to use. However, if Track’a’Pet 
were to be realized as a full-fledged product, the Arduino prototype is closer to what a finished 
tracker would look like, compared to a higher-level board such as the Raspberry Pi. 

We ended up using pointers and fixed size char arrays to handle strings, even though Arduino 
supports strings. The reason is that it is highly discouraged to use native strings in Arduino, since 
extra care must be taken to avoid memory leaks. 

Following the advice from our supervisor, we did not focus on the prototype and as a result the GSM 
module is far from efficient. The GSM module implementation can certainly be optimized to expand 
the battery lifetime. For example, if we refactored the implementation to instantiate the GSM 
initiation to the setup, and only use the GSM module to post statuses when necessary, we would 
have less antenna drainage, resulting in longer battery lifetime. In addition, we also could have 
optimized the Arduino power drainage by slowing the clock frequency on the microcontroller, 
resulting in even less power drainage.  

 FRONTEND 

5.1.2.1 Potential Web Frontend 

We initially intended to implement a web-based administrative frontend, but chose to prioritize the 
Android user frontend. It is worth noting that since we have a truly independent REST API this could 
be done without much hassle, and it would function without depending on the Android frontend. 

5.1.2.2 Android 

Early in the process we discussed using Cordova and develop an application which could function on 
both Android and iOS using JavaScript. Cordova is an alternative approach to mobile device 
development, where the application is built in HTML, CSS and JavaScript. This results in a hybrid 
system, which is not a true native application nor a true Web-based application (Quasar 2018). We 
decided that this would introduce too much uncertainty in the project, because of lack of experience 
with JavaScript and similar solutions. 

By using Reactive Extensions for JavaScript (Npmjs 2018) we could mimic the background tasks in 
Android, giving the application a smooth user interface. 

In retrospect, Cordova could have solved some of the problems we have encountered along the way 
in Android Studio, but our feeling is that our progress and work in Android Studio have been of a high 
level. Additionally, we feel having native access to one type of device helped us in developing a more 
efficient application. 

It is worth noting that the battery solution for the prototype is based on what was available to us at 
the mechatronic lab. This solution is far too heavy and bulky to ever be used on a cat. A more 
reasonable battery solution would be a 3.7V 2500mA Lithium Ion Polymer Battery (Adafruit 2018). By 



NTNU IN ÅLESUND   PAGE 69 

BACHELOR THESIS 

 

reducing the power supply, the importance to minimize the power consumption of the GSM module 
is even more apparent.  

5.1.2.3 Geofence alternative approach 

Android’s memory allocation has meant that our geofence service is killed shortly after the 
application is closed. To solve this, we could have implemented a service on the REST backend that 
notified the application if a pet was outside the geofence. This could trigger the creation of a 
notification on the phone. The REST service would need to compare the location data as soon as it 
arrived in the database, and notify the user device if the pet was outside the allowed geofence.  

To implement push notification, the application first needs to be registered at the OS push 
notification provider (OSPNS). Secondly, we would have needed to implement the Android specific 
push notification API on the REST service. Thereafter, we would have needed to store the app device 
IDs, which in turn would have mapped devices to the service. Using both the app-specific identifier 
and device identifier, we could have sent a push notification to the OSPNS, which in turn would have 
redirected the push notification toward the correct device (UrbanAirship.com 2018). 

We originally tried to implement the Geofence client API (Android 2018),but it did not function for 
our use-case. It was dependent on the device position, and did not work with custom positions. 

5.1.2.4 Architecture 

Although we programmed the app in Java, Android has some specific intricacies that made it 
challenging to maintain good structure and code quality. For instance, activities and fragments 
should only contain code that handles user interface and operating system interaction. All other code 
should be moved to other classes. However, a lot of Android libraries and methods require the 
context of the activity that uses them. These methods sometimes belonged to classes that were so 
far removed from the activities, that using them meant sending the context as an argument several 
layers down.  

Instead of creating our own HTTP client, it would have been more effective to use an existing 
solution, such as Retrofit (Retrofit u.d.). This could have taken care of everything related to network 
communication, which could have saved us a lot of time, and most likely would have resulted in a 
more stable client. 

What we learned from this, is that we should have spent some time researching how to properly 
structure an Android app before we started writing code. We still did our best to write maintainable 
and modular code, but we can imagine that some parts can be more difficult to understand than 
others. 

 BACKEND 

5.1.3.1 Framework 

As discussed earlier, we decided to use the Spring Boot framework for the backend. The main reason 
for this choice was the minimal amount of configuration needed to get up and running. Spring also 
has good and easy support for security, among other things. 

5.1.3.2 REST 

We decided to implement a RESTful interface for several reasons. As we have mentioned earlier, 
RESTful services are much easier to scale, because of their stateless nature. We can effortlessly move 
our application to any device that can communicate with the REST interface. The backend does not 
have to know anything about the devices that it communicates with. 

  



NTNU IN ÅLESUND   PAGE 70 

BACHELOR THESIS 

 

5.1.3.3 Hosting and deployment 

As mentioned earlier, we hosted our solution on a VM on NTNU’s servers. With this solution we had 
more than enough resources available, and it was free of cost. For a full-scale release, we would 
rather go for a cloud solution like Heroku or Microsoft Azure. Doing so would give a scalable hosting 
solution and transfer the responsibility to the provider, and we could instead focus on further 
product development. 

For deployment, we considered solutions for continuous delivery like Jenkins or Bitbucket Pipelines. 
Since our REST application will not have frequent updates, we decided to manually deploy the WAR 
file when a new version was ready for release.  

 DEVICE REGISTRATION 

One of the technical aspects we did not completely finish, is the registration of tracker devices. Our 
goal was to have a database table of all devices in circulation, along with the user who owns it, as 
explained in section 4.7. The device ID would be a long string consisting of both numbers and letters. 
When the user buys a device, this ID would visible on the device itself. Then the user could enter this 
in the app, and it would be locked to that user, until it is deregistered. Given a long enough ID, it 
would be almost impossible to brute-force it if there is no consistency in the way it is formed. This 
would prevent people from trying to register unowned devices to themselves.  

Another solution to registering a device, would be to implement Bluetooth pairing. The user could 
press a button on the device to activate Bluetooth for a short period of time, and connect to it with 
their phone to permanently register it to themselves. This would prevent brute-force attacks 
altogether, but would increase the cost and complexity of the tracker devices. 

 SECURITY 

This section will discuss the implemented security mechanisms. 

5.1.5.1 Password hashing 

Bcrypt was used for secure hashing of passwords. With alternative solutions, we would most likely 
have to salt passwords ourselves. This means we would need an extra column in the user table to 
store the salt, and we would need to extract it and append it to the password manually when doing 
comparisons. This has a larger margin for error because of the manual work needed. Bcrypt can be 
made more secure over time by increasing the number of times the internal hashing function is 
called. For the reasons mentioned, we believe Bcrypt to be the best solution for our needs. 

5.1.5.2 Token 

We chose to use JSON web tokens in our system. The benefits of JWT is that they are stateless and 
lightweight. We did not have to store any information about them on the server, and they were 
simple to work with. Changing the expiration on new tokens is simple if that is needed, and the 
expiration can be removed outright.  

5.1.5.3 Microcontroller 

The use of DES encryption on the microcontroller was far from optimal, but still better than sending 
the data as plaintext. 3DES, a technique to use DES encryption three times was also tested and 
considered. This approach would make it a little bit safer, but the time consumption would be 
tripled. We thought the small increase in security was not worth the extra resources. 

Another solution to this problem was to buy an SSL chip that would take care of the encryption and 
give us satisfactory communication with HTTPS. This would be a much more robust solution, but 
unfortunately this was discovered so late in the process that we could not risk introducing new 
hardware into an already complex working solution. We decided to use the less secure DES 
encryption and suggest a proper encryption implementation as further development. 



NTNU IN ÅLESUND   PAGE 71 

BACHELOR THESIS 

 

 DESIGN 

We designed the app so that almost every interaction results in an immediate response. If the user 
needs to wait for something to happen, a loading icon is displayed to give the user feedback that the 
interaction is registered. The app also displays information to the user when the state changes, or 
events occur. 

In the app, we used a color scheme that should be comfortable to look at. We deliberately avoided 
unfavorable color combinations, such as blue and yellow, or red and green. 

We have tried to follow best practices for human-machine interaction. The gestalt principles are 
utilized to create a pleasant user experience, amongst other guidelines discussed in Johnson’s 
‘Designing with the Mind in Mind’ (J. Johnson 2014).  

Although we have followed best practices, none of the team members are graphical designers. 
Knowing this, our priority was creating a system that was good on a technical level. If the application 
were to be released to the public, we would hire a professional to design the user interface for us. 

 TESTING 

Testing on the microcontroller proved harder than expected, since we only used manual testing to 
test our Arduino programming. This approach to testing proved to be quite cumbersome and 
ineffective, and instead we should have researched and implemented a testing framework. 

In the context of frontend testing we should have developed an initial testing plan. This could have 
led to more tests and better test coverage. In the end, this could have resulted in a recursive testing 
suite, that could have saved us time. 

 COMPLEXITY 

Initially we felt that the system integration would predominate the complexity of the project, due to 
the different technological solutions. It has shown that this assessment was to a certain degree 
accurate. Along the way, we have also uncovered that implementing abstraction and best practices 
have proven quite complex, especially in the Android development phase. 

Each individual piece is not incredibly complex in and of itself, but having it all work together in one 
coherent system is a different beast. The system consists of several different programming 
languages, frameworks, security considerations, storage engines, hardware components, interfaces 
for data exchange, and more. At the same time, we had to adhere to best practices and coding 
conventions, as well as develop the product with agile methods. 

The prototype development proved to be much more complex then we initially thought. Since our 
supervisor warned us not to put too much effort into the hardware of the project, we managed to 
develop a proof of concept, rather than spending too much time developing a full-fledged 
production-ready prototype. 

To have the opportunity to develop a full-stack system have proven beneficial for all team members, 
and we have acquired a great deal of experience during the project duration. 

 FUTURE DEVELOPMENT 

There are several ways the product can be further developed and expanded upon in the future. One 
feature we wanted to implement was the ability to report pets as missing. The last position, pet 
information and owner contact information would show up on the map for nearby users, so that 
other pet owners could contact them if they saw their pets nearby. 

Improved security on the microcontroller should be implemented, as described in section 5.1.5.3. 

Another feature we considered was the possibility of Twitter integration. Each pet could have their 
own Twitter account, which automatically tweeted their location along with some context. For 
example, if the pet has been at home for the last few hours, it could automatically tweet a message 



NTNU IN ÅLESUND   PAGE 72 

BACHELOR THESIS 

 

along the lines of “Relaxing at home.” Alternatively, if the pet has been moving along a street, it 
could tweet “Having a blast walking down Karl Johan.” 

Lastly, having Facebook integration with our system could remove the need for new users to register 
an account with us. This could make it more attractive for new users, since it would result in one less 
password to remember. At the same time, it would allow for pet status updates to automatically be 
posted on Facebook as well, and even information about missing pets. 

 EXISTING SOLUTIONS 

There were not many solutions which covered pet tracking when we first discussed the problem 
domain. However, as time went on more and more tracker products hit the market, either in form of 
finished products or Kickstarter/pre-order products. The existing products will be discussed in 
comparison to Track’a’Pet. 

5.1.10.1 Gibi Pet Locator 

Gibi (Gibi 2018) is a GPS tracker collar using cellular providers to achieve maximum coverage. Gibi 
depends on an application and only operates within the United States of America. The estimated 
battery lifetime on the tracker is 2-3 days and costs $99.99. 

Compared to our system, Gibi offers some of the features we have developed, but currently only 
operates in America, which does not initially conflict with our potential market share. In addition, 
Track’a’Pet offers some extra features, such as pet profiles and native Norwegian translation. 

5.1.10.2 The Paw Tracker 

The Paw Tracker (The Paw Tracker 2018) is a light-weight tracking system which costs $99.95, plus an 
additional $10/month subscription fee. The paw tracker promotes a 10 days battery duration, with 
an update frequency of 12 hours.  

The Paw only offers coverage in North America, which could be a selling point from our perspective. 
In addition to statistics over pet activity and a richer user experience. 

5.1.10.3 Tractive 

Tractive (Tracktive 2018) is a dog tracking system, which operates with international coverage. Due 
to their early mover advantage and coverage, the team views them as the biggest competitor. Their 
product costs $49.99 (originally $99.99), plus cellular provider fees. 

Compared to Track’a’Pet, their cost alone is reason for concern. In addition, they have the most 
complete application in comparison to the other competitors. One approach to dealing with Tractive 
could be to highlight the security aspect of our system, in addition to promote nationally in Norway 
with native Norwegian translation.  

5.1.10.4 Marcel Hundetracker 

Marcel dog tracker (PetWorld 2018) costs 2199 NOK in addition to 99 a NOK/month subscription fee. 
It uses maps from Statens Kartverk and promotes a battery lifetime of 25 hours at an update 
frequency of 1 minute. Marcel dog tracker operates in Norway and is to be considered a close 
competitor. 

Compared to Marcel, we can offer a substantial lower price and an application that puts the pet in 
focus. 

5.1.10.5 Eyenimal 

Eyenimal dog tracker (PetWorld 2018) is a light-weight tracker developed for hunting and hiking. It 
does not include an embedded sim card, and costs 2199 NOK. Battery life is estimated to roughly 24 
hours. It features its own application. Eyenimal is to be viewed as a close competitor. 

Compared to Eyenimal we can provide embedded sim card, and a lower cost. It is hard to provide a 
technical comparison because the application is proprietary. 



NTNU IN ÅLESUND   PAGE 73 

BACHELOR THESIS 

 

 PROJECT EXECUTION 

During the whole project period the team has put in a lot of work and effort into making the system 
complete. 

 DEVELOPMENT METHODOLOGY 

From the start we intended to use an agile approach to development, where we could adapt to 
changes as they presented themselves. By following the Scrum methodology, we were able to adapt 
our internal resources to the best of our effort. It also made the process more dynamic, where each 
member had the possibility to change their focus on a weekly basis. The team have tried to the best 
effort to follow the Scrum methodology with daily Scrum meetings, retrospectives, sprint planning 
and reorganizing the issue priorities along the way. 

One drawback with using Scrum was our limited experience with estimating tasks. Estimating the 
time of software tasks is generally very hard, especially when no one on the team has had much 
professional software engineering experience. This resulted in some sprints where one or two tasks 
dominated by taking up much more time than anticipated. We got gradually better at adjusting our 
tasks and sprints as time went on, so it overall proved to be a valuable experience. 

From our perspective, Scrum has been the right choice for the project and we had positive 
experiences using it throughout the project.  

 ORGANIZATION 

Since the system consists of several main parts, the individual team members started working on 
separate pieces in parallel. That is, one member started working on the backend, another on the 
microcontroller, and the last on the server and hosting. This was beneficial, in that we could early on 
adapt our fundamental architecture to changes or limitations with other parts. However, it also 
meant that some parts mostly just had one person working on it, which made it harder for other 
team members to change the code later. With this in mind, we made sure that every team member 
contributed to the Android application early on. This allowed everyone to get familiar with the 
architecture and structure by getting hands-on experience with the development, so that it was easy 
to jump back in later to make changes. 

 VERSION CONTROL 

From the start we set out to use full GIT flow, but as we time went on we only used the feature, 
master and develop branches. This resulted in a light-weight GIT flow. Consistent use of GIT flow 
made it easier to develop features, and avoid conflicts and partially implemented features. The team 
merged finished features into the develop branch, and only committed directly when implementing 
hot-fixes. 

Additionally, the integrated VCS in Android Studio proved to be rather good and was used to solve 
many of the merge conflicts that emerged. 

 USE OF SOURCES 

Throughout the project, we have focused on citing credible sources. Where possible, we have used 
text books from courses provided by NTNU, which are usually written by professionals who have 
established their credentials in the field. The fact that these textbooks have been chosen by lecturers 
can also establish some credibility, as it means other professionals agree to the quality of the texts.  

When citing sources for technology used, we often ended up using the official documentation 
available online. They often contain more accurate information than tutorials on blogs or similar 
sites.  



NTNU IN ÅLESUND   PAGE 74 

BACHELOR THESIS 

 

6 CONCLUSION 

During the project, the group has acquired great experience and new insight into the development of 
full-stack applications. By working with a team-defined project, we have experienced freedom in how 
to design and implement decoupled systems.  

The project resulted in a complete, usable product. Users can register themselves and their pets with 
the application and track them in real time. They can set up a geofence and will be notified if their 
pets leave it. Several pets can be tracked simultaneously and be distinguished by colored markers 
and paths. User and pet information can be modified at any time. Users can view statistics of their 
pets’ movements, in form of a line graph. 

The system implements best security practices. Passwords are salted and hashed before being 
stored. All traffic between the server and mobile devices are encrypted with HTTPS. The REST end-
points are properly secured in such a way that there is no risk of anyone other than the 
authenticated user gaining access to their information.  

The microcontroller works as a proof-of-concept. It receives correct GPS information, and safely 
sends it to the remote server. It manages to perform a multitude of operations over long time 
periods, despite its limited memory and processing power. 

Parts of the system are incomplete and need further development. Although pets can be owned by 
several people, there should be functionality for easily sharing pets with other users. Additionally, 
features regarding missing pets needs to be implemented, so that users can help other users find 
their pets. Facebook and Twitter functionality could also be implemented. This can be a good option 
for users that do not want to create a new account, and for sharing their pet’s status and activity 
with their friends. Lastly, the microcontroller should implement HTTPS. This cannot be done natively, 
since it requires an external SSL chip. 

In the project we put significant effort in writing good code. Even though this was time consuming, 
consistent refactoring resulted in better and more maintainable code. By following the principle of 
object-oriented programming and Clean Code, we managed to create a system that can easily be 
modified without much effort. 

By depending on Spring Boot throughout the project, much of our backend services could be 
simplified and our focus diverted to implementing good solutions. Furthermore, by using Liquibase as 
version control for our database, it was easy to keep the project up-to-date across the team. 

The project process has been challenging for all the team members, and we have grown significantly 
as full-stack developers. We have acquired valuable insight and experience in developing a product 
as a team, and have become more familiar with utilizing agile processes to develop software. 

  



NTNU IN ÅLESUND   PAGE 75 

BACHELOR THESIS 

 

7 REFERENCES 

Adafruit. 2018. 3.7V 2500mA - Lithium Battery. 1 January. Funnet May 28, 2018. 
https://www.adafruit.com/product/328. 

—. 2018. «Adafruit.com.» Ultimate GPS Breakout. 1 January. Funnet April 13, 2018. 
https://www.adafruit.com/product/746. 

—. 2018. «GPS Library.» Adafruit.com. 1 January. Funnet March 16, 2018. 
https://learn.adafruit.com/adafruit-ultimate-gps-featherwing/arduino-library. 

adafruit_support_rick. 2014. Error w/ Adafruit GPS Library & GSM Library together. 8163jb. 2 
November. Funnet February 18, 2018. 
https://forums.adafruit.com/viewtopic.php?f=25&t=38764&start=60. 

Aftenposten. 2008. Kjæledyr. 25 May. Funnet May 24, 2018. 
https://www.aftenposten.no/osloby/i/nwn55/Hvert-tredje-hjem-har-et-kjaledyr. 

Android. 2018. Activity. 17 April. Funnet May 3, 2018. 
https://developer.android.com/guide/components/activities/intro-activities. 

—. 2018. Activity Life Cycle. 17 April. Funnet March 3, 2018. 
https://developer.android.com/guide/components/activities/activity-lifecycle. 

—. 2018. AsyncTask. 8 May. Funnet May 10, 2018. 
https://developer.android.com/reference/android/os/AsyncTask. 

—. 2018. Figure 1. 8 May. Funnet May 10, 2018. 
https://developer.android.com/guide/components/fragments. 

—. 2018. Fragment. 8 May. Funnet May 10, 2018. 
https://developer.android.com/guide/components/fragments. 

—. 2018. Geofence. 5 May. Funnet May 30, 2018. 
https://developer.android.com/training/location/geofencing#java. 

—. 2018. Intent. 27 April. Funnet May 10, 2018. 
https://developer.android.com/guide/components/intents-filters. 

—. 2018. Layout. 27 April. Funnet May 14, 2018. 
https://developer.android.com/guide/topics/ui/declaring-layout. 

—. 2018. Permission. 17 April. Funnet May 11, 2018. 
https://developer.android.com/guide/topics/permissions/overview. 

—. 2018. Request permission. 25 April. Funnet May 11, 2018. 
https://developer.android.com/training/permissions/requesting. 

—. 2018. String resources. 17 April. Funnet May 14, 2018. 
https://developer.android.com/guide/topics/resources/string-resource. 

—. 2018. Style. 8 May. Funnet May 11, 2018. https://developer.android.com/guide/topics/ui/look-
and-feel/themes. 



NTNU IN ÅLESUND   PAGE 76 

BACHELOR THESIS 

 

Arduino. 2018. Arduino. 1 January. Funnet March 16, 2018. 
https://www.arduino.cc/en/Guide/Introduction. 

—. 2018. «arduino.cc.» arduino-uno-rev3. 13 April. Funnet April 13, 2018. 
https://store.arduino.cc/usa/arduino-uno-rev3. 

—. 2018. «Arduino.cc.» Arduino GSM Shield 2. 13 04. Funnet 04 13, 2018. 
https://store.arduino.cc/arduino-gsm-shield-2-antenna-connector. 

—. 2018. GSM. 1 January. Funnet March 2, 2018. https://www.arduino.cc/en/Reference/GSM. 

—. 2018. «Reference.» Arduino.cc. 1 January. Funnet March 16, 2018. 
https://www.arduino.cc/reference/en/. 

Atlassian. u.d. Confluence. Funnet March 23, 2018. https://www.atlassian.com/software/confluence. 

Auth0. u.d. Introduction to JSON Web Tokens. Funnet April 27, 2018. https://jwt.io/introduction/. 

Barnes, David J. 2012. Objects first with Java: a practical introduction using BlueJ. 5th. Boston: 
Pearson. Funnet March 1, 2018. 

Bitbucket. 2018. Funnet May 14, 2018. https://bitbucket.org/product. 

—. 2018. Gitflow. Funnet May 14, 2018. https://www.atlassian.com/git/tutorials/comparing-
workflows/gitflow-workflow. 

Brain, Marshall. 2018. Microcontroller. 1 January. Funnet March 2, 2018. 
https://electronics.howstuffworks.com/microcontroller1.htm. 

Brainhub. u.d. «Scrum Process.» brainhub. Funnet May 3, 2018. https://brainhub.eu/blog/wp-
content/uploads/2018/04/differences-lean-agile-scrum-scrum-process.jpg. 

Cohen, Eran. 2017. 35% of Users Have Weak Passwords; the Other 65% can be Cracked. 13 March. 
Funnet March 1, 2018. https://blog.preempt.com/weak-passwords. 

ColorBrewer. 2018. Color Selection. Funnet May 26, 2018. 
http://colorbrewer2.org/#type=diverging&scheme=RdYlBu&n=8. 

Comodo. u.d. What is HTTPS? Funnet May 16, 2018. https://www.instantssl.com/ssl-certificate-
products/https.html. 

Datatilsynet. 2017. Personal Data Act. 08 July. Funnet February 16, 2018. 
https://www.datatilsynet.no/en/regulations-and-tools/regulations-and-
decisions/norwegian-privacy-law/personal-data-act/. 

DePriest, Dale. 2018. «NMEA data.» gpsinformation.org. 2 March. Funnet March 2, 2018. 
http://www.gpsinformation.org/dale/nmea.htm. 

—. 2018. «NMEA data.» Gpsinformation.org. 1 January. Funnet March 16, 2018. 
http://www.gpsinformation.org/dale/nmea.htm. 

Difi. 2017. Universal design of ICT. 11 May. Funnet February 12, 2018. https://uu.difi.no/om-
oss/english. 



NTNU IN ÅLESUND   PAGE 77 

BACHELOR THESIS 

 

Digikey. 2018. Battery Life Calculator. 1 January. Funnet May 28, 2018. 
https://www.digikey.no/en/resources/conversion-calculators/conversion-calculator-battery-
life. 

Dodenhof, Henning. 2018. CircleImageView. 2 April. Funnet April 28, 2018. 
https://github.com/hdodenhof/CircleImageView. 

Douglas, Barry. u.d. Representational State Transfer. Funnet April 20, 2018. https://www.service-
architecture.com/articles/web-services/representational_state_transfer_rest.html. 

E. Whitman, Michael, og Herbert J. Mattord. 2014. Principles of Information Security. 5th. Boston: 
Cengage Learning. Funnet March 1, 2018. 

European Union. 2016. Regulation (EU) 2016/679. Official Journal of the European Union, European 
Union. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2016:119:FULL. 

Fielding, Roy T, og Julian F Reschke. 2014. RFC7230. Internet standard, IETF. Funnet 04 20, 2018. 
https://tools.ietf.org/html/rfc7230. 

Fielding, Roy T, og Julian F Reschke. 2014. RFC7231. Internet standard, IETF. Funnet 04 20, 2018. 
https://tools.ietf.org/html/rfc7231. 

Fielding, Roy Thomas. 2000. Architectural Styles and the Design of Network-based Software 
Architectures. Doctoral dissertation, Irvine: University of California. Funnet April 20, 2018. 
https://www.service-architecture.com/articles/web-
services/representational_state_transfer_rest.html. 

Freeman, Eric, Elisabeth Robson, Bert Bates, og Kathy Sierra. 2010. Head First: Design Patterns. 
Cambridge: O'Reilly Media. Funnet May 3, 2018. 

Gehring, Jonas. 2018. GraphView. Funnet May 22, 2018. http://www.android-graphview.org/. 

Gibi. 2018. Gibi Tracker. 1 May. Funnet May 26, 2018. https://getgibi.com/. 

Google. u.d. Features. Funnet March 16, 2018. https://developer.android.com/studio/features.html. 

Google Trends. u.d. Spring Boot, Java EE - Google search trends. Funnet May 25, 2018. 
https://trends.google.com/trends/explore?date=today%205-
y&geo=NO&q=Spring%20Boot,Java%20EE. 

Google. u.d. User Guide. Funnet March 16, 2018. 
https://developer.android.com/studio/intro/index.html. 

GoogleAPI. 2018. LatLng. 12 April. Funnet May 14, 2018. 
https://developers.google.com/android/reference/com/google/android/gms/maps/model/L
atLng. 

Grenning, James W. 2002. «Planning Poker.» Paper. https://wingman-
sw.com/papers/PlanningPoker-v1.1.pdf. 

Gson. 2017. Gson user guide. Funnet April 6, 2018. 
https://github.com/google/gson/blob/master/UserGuide.md. 



NTNU IN ÅLESUND   PAGE 78 

BACHELOR THESIS 

 

gsStatcounter.com. 2017. Smartphone Market Share Norway 2016. Funnet May 24, 2018. 
http://gs.statcounter.com/os-market-share/mobile/norway/2016. 

Haerder, Theo, og Andreas Reuter. 1983. «Principles of transaction-oriented database recovery.» 
ACM. December. Funnet April 13, 2018. https://dl.acm.org/citation.cfm?doid=289.291. 

Heroku. 2018. Heroku Cloud Service. 1 January. Funnet May 30, 2018. https://www.heroku.com/. 

Igendel. 2014. «Arduino, programming.» Idogendel. 26 October. Funnet March 16, 2018. 
http://www.idogendel.com/en/archives/19. 

Internet Security Research Group. u.d. Let's Encrypt. Funnet May 7, 2018. https://letsencrypt.org/. 

Irvine, Calif. 2017. Survey: Majority of Americans Reuse Passwords and Millennials Are the Biggest 
Culprits. 19 July. Funnet March 1, 2018. 
https://www.secureauth.com/company/newsroom/secureauth-survey-majority-reuse-
passwords. 

JetBrains. u.d. Features. Funnet March 16, 2018. https://www.jetbrains.com/idea/features/. 

—. 2018. IntelliJ IDEA. Funnet March 16, 2018. https://www.jetbrains.com/idea/. 

Johnson, Jeff. 2014. Designing with the mind in mind. Waltham: Morgan Kaufmann. 

Johnson, Rod. 2005. Introduction to the Spring Framework. 1 May. Funnet April 13, 2018. 
https://www.theserverside.com/news/1364527/Introduction-to-the-Spring-Framework. 

Json.org. 2018. Introduction to Json. 1 January. Funnet May 30, 2018. 
https://www.json.org/index.html. 

JUnit. 2018. JUnit. Funnet May 21, 2018. https://junit.org/junit4/. 

Kimberlin, Michael. u.d. Reducing Boilerplate Code with Project Lombok. Funnet May 19, 2018. 
http://jnb.ociweb.com/jnb/jnbJan2010.html#summary. 

Kristoffersen, Bjørn. 2016. Databasesystemer. 4. utg. Oslo: Universitetsforlaget. Funnet March 1, 
2018. 

Kurose, James F., og Keith W. Ross. 2013. Computer networking: a top-down approach. 6th ed., 
International ed. Harlow: Pearson Education. Funnet March 1, 2018. 

Liquibase. u.d. Documentation. Funnet April 6, 2018. 
https://www.liquibase.org/documentation/index.html. 

Lovdata. 2015. Personal Data Act. 01 October. Funnet February 16, 2018. 
https://lovdata.no/dokument/NL/lov/2000-04-14-31. 

—. 2017. Regulations for universal design of information and communication technology (ICT) 
solutions. 22 May. Funnet February 16, 2018. 
https://lovdata.no/dokument/SF/forskrift/2013-06-21-732. 

Martin, Robert C. 2008. Clean Code. Prentice Hall. 



NTNU IN ÅLESUND   PAGE 79 

BACHELOR THESIS 

 

Mediatek Labs. 2018. «Mediatek.com.» MT3339. 1 January. Funnet April 13, 2018. 
https://labs.mediatek.com/en/chipset/MT3339. 

Medium.com. 2016. MVC. 1 November. Funnet May 15, 2018. https://medium.com/upday-
devs/android-architecture-patterns-part-1-model-view-controller-3baecef5f2b6. 

Microchip.com. 2018. «microchip.com.» atmega328P. 13 April. Funnet April 13, 2018. 
http://www.microchip.com/wwwproducts/en/atmega328p. 

Microsoft. 2018. 17 April. Funnet May 23, 2018. https://support.microsoft.com/en-
us/help/246071/description-of-symmetric-and-asymmetric-encryption. 

Mockito. 2018. Mockito. Funnet May 21, 2018. http://site.mockito.org/. 

Mozilla. 2018. developer.mozilla.org. 29 January. Funnet April 13, 2018. 
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview. 

MSDN. u.d. Access Tokens. Funnet April 27, 2018. https://msdn.microsoft.com/en-
us/library/Aa374909.aspx. 

Muthu, Sudar. 2012. MemoryFree. 3 September. Funnet February 14, 2018. 
https://github.com/sudar/MemoryFree/blob/master/README.md. 

Niemeyer, Patrick, og Daniel Leuck. 2013. Learning Java. 4th. Sebastopol, California: O'Reilly Media. 
Funnet March 16, 2018. 

Npmjs. 2018. Reactive Extension for JavaScript. 22 May. Funnet May 28, 2018. 
https://www.npmjs.com/package/rxjs. 

Nuzzle. 2018. Nuzzle Tracker. 1 May. Funnet May 26, 2018. https://hellonuzzle.com/. 

2016. Oracle. Funnet Mai 29, 2018. https://docs.oracle.com/javaee/7/api/javax/servlet/Servlet.html. 

Oracle. u.d. Java SE Technologies - Database. Funnet April 13, 2018. 
http://www.oracle.com/technetwork/java/javase/jdbc/index.html. 

OWASP. 2017. «OWASP Top 10 - 2017.» 

PassLib. u.d. Bcrypt. Funnet March 15, 2018. 
https://passlib.readthedocs.io/en/stable/lib/passlib.hash.bcrypt.html. 

PetWorld. 2018. Eyenimal. 1 January. Funnet May 28, 2018. 
https://www.petworld.no/no/artiklar/gps-peiler-hund-for-mobiltelefon.html. 

—. 2018. MarcelDogTracker. 1 January. Funnet May 28, 2018. 
https://www.petworld.no/no/artiklar/marcel-hundetracker-sort.html. 

PJRC. 2018. AltSoftSerial. 1 January. Funnet February 26, 2018. 
https://www.pjrc.com/teensy/td_libs_AltSoftSerial.html. 

—. 2017. AltSoftSerial Repository. 24 August. Funnet February 26, 2018. 
https://github.com/PaulStoffregen/AltSoftSerial. 



NTNU IN ÅLESUND   PAGE 80 

BACHELOR THESIS 

 

u.d. PostgreSQL. Funnet April 13, 2018. https://www.postgresql.org/about/. 

Programcreek. 2013. April. Funnet Mai 29, 2018. https://www.programcreek.com/wp-
content/uploads/2013/04/web-server-servlet-container.jpg. 

Project Lombok. u.d. Lombok features. Funnet May 22, 2018. https://projectlombok.org/features/all. 

u.d. Putty. Funnet May 4, 2018. https://www.putty.org/. 

QT. 2009. «qt.io.» AT Commands. 1 January. Funnet April 13, 2018. 
https://doc.qt.io/archives/qtextended4.4/atcommands.html. 

Quasar. 2018. Cordova. 21 February. Funnet May 16, 2018. https://quasar-
framework.org/guide/cordova-introduction.html. 

Regjeringen.no. 2004. Hundeloven. Funnet January 24, 2018. 
https://www.regjeringen.no/no/dokumenter/otprp-nr-48-2002-2003-/id172933/sec3. 

Retrofit. u.d. Retrofit: A type-safe HTTP client for Android and Java. Funnet May 29, 2018. 
http://square.github.io/retrofit/. 

Rick, Adafruit Support. 2014. «Adafruit Forum.» Adafruit. 12 November. Funnet March 16, 2018. 
https://forums.adafruit.com/viewtopic.php?f=31&t=63113&hilit=+gps+gsm+altsoftserial. 

RosettaCode. 2018. Haversine. 9 May. Funnet May 14, 2018. 
https://rosettacode.org/wiki/Haversine_formula. 

Rouse, Margret. 2005. «www.TechTarget.com.» CamelCase. 01 September. Funnet April 27, 2018. 
https://searchmicroservices.techtarget.com/definition/CamelCase. 

Schwaber, Ken, og Jeff Sutherland. 2017. The Scrum Guide™. November. Funnet March 23, 2018. 
https://www.scrumguides.org/scrum-guide.html. 

2012. Servlet lifecycle. October. Funnet Mai 29, 2018. 
https://www.ntu.edu.sg/home/ehchua/programming/java/images/Servlet_LifeCycle.png. 

Shmeltzer, Shay. 2017. Managing Your Database Source Code. 16 October. Funnet April 6, 2018. 
https://blogs.oracle.com/shay/introduction-to-liquibase-and-managing-your-database-
source-code. 

Silberschatz, Abrahan. 2014. Operating system concepts: international student version. 9th edition. 
Hoboken, N.J: Wiley. Funnet March 1, 2018. 

Sommerville, Ian. 2016. Software engineering. 10th ed. (global ed.). Boston: Pearson. Funnet March 
1, 2018. 

Spaniakos. 2015. ArduinoDES. February. Funnet Mai 29, 2018. 
http://spaniakos.github.io/ArduinoDES/. 

Spring. u.d. Class JdbcTemplate. Funnet April 13, 2018. https://docs.spring.io/spring-
framework/docs/current/javadoc-api/org/springframework/jdbc/core/JdbcTemplate.html. 



NTNU IN ÅLESUND   PAGE 81 

BACHELOR THESIS 

 

Statista.com. 2016. MarketShare_Smartphone. Funnet May 24, 2018. 
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-
operating-systems/. 

TechTerms.com. 2018. Vector Graphic. 1 January. Funnet May 11, 2018. 
https://techterms.com/definition/vectorgraphic. 

Telenor. u.d. M2M. Funnet May 19, 2018. https://www.telenor.no/bedrift/iot/m2m/. 

The Paw Tracker. 2018. The Paw Tracker. 1 May. Funnet May 26, 2018. 
https://www.thepawtracker.com/. 

Tracktive. 2018. Tractive GPS Tracker. 1 May. Funnet May 26, 2018. https://tractive.com/noeu_en. 

Tutorialsteacher. u.d. Inversion of Control. Funnet April 27, 2018. 
http://www.tutorialsteacher.com/ioc/inversion-of-control. 

UrbanAirship.com. 2018. Push Notification Explained. 1 January. Funnet May 1, 2018. 
https://www.urbanairship.com/push-notifications-explained. 

US Environmental Protection Agency. 2017. «Latitude/Longitude Data Standard.» United States 
Environmental Protection Agency. 7 June. Funnet March 2, 2018. 
https://www.epa.gov/geospatial/latitudelongitude-data-standard. 

Waldby, James. 2017. «StackExchange - Arduino.» icsp-pin-what-is-it-actually. 30 June. Funnet April 
13, 2018. https://arduino.stackexchange.com/questions/40098/icsp-pin-what-is-it-actually. 

Walters, Nathan. 2016. Spectrum. 23 December. Funnet May 16, 2018. https://github.com/the-blue-
alliance/spectrum. 

Webb, Philip, Dave Syer, Josh Long, Stephane Nicoll, Rob Winch, Andy Wilkinson, Marcel Overdijk, et 
al. 2018. Spring Boot Reference Guide. Funnet April 12, 2018. https://docs.spring.io/spring-
boot/docs/current-SNAPSHOT/reference/htmlsingle/#getting-started-introducing-spring-
boot. 

Wireshark. u.d. TShark. Funnet April 27, 2018. 
https://www.wireshark.org/docs/wsug_html/#AppToolstshark. 

—. u.d. Wireshark. Funnet April 27, 2018. https://www.wireshark.org/. 

Wiring. 2018. «Wiring.» Wiring.org.co. 1 January. Funnet March 16, 2018. http://wiring.org.co/. 

  



NTNU IN ÅLESUND   PAGE 82 

BACHELOR THESIS 

 

TABLE OF FIGURES 

Figure 1: Password hashing process 3 
Figure 2: Typical flow of token exchange 4 
Figure 3: Symmetric encryption 5 
Figure 4: Public-key cryptography 5 
Figure 5: HTTPS connection to trackapet.uials.no 6 
Figure 6: HTTP request (Mozilla 2018) 7 
Figure 7: HTTP response (Mozilla 2018) 8 
Figure 8 – One type of NMEA sentence - GGA: Fix data (DePriest, NMEA data 2018) 9 
Figure 9: Agile development 10 
Figure 10: Overview of MVC interactions 12 
Figure 11: Gestalt principle - Proximity 13 
Figure 12: Gestalt principle – Similarity 13 
Figure 13: Gestalt principle – Figure/ground 13 
Figure 14: Scrum process (Brainhub u.d.) 16 
Figure 15: How web server and servlet container process requests (Programcreek 2013) 20 
Figure 16: Servlet lifecycle (Servlet lifecycle 2012) 20 
Figure 17: Example of Gitflow in our project 28 
Figure 18: Start a TShark capture 29 
Figure 19: Screenshot of Confluence dashboard 31 
Figure 20: Jira – Backlog 31 
Figure 21: Jira – Active sprint 32 
Figure 22: General system architecture 33 
Figure 23: Backend architecture 34 
Figure 24: Popularity of search terms ‘Spring Boot’ and ‘Java EE’ represented by blue and red line, 
respectively (Google Trends u.d.) 35 
Figure 25: Track’a’Pet prototype of tracking device 39 
Figure 26: Microcontroller State Diagram 41 
Figure 27: Usage of fragment 43 
Figure 28: Use case diagram 45 
Figure 29: Class diagram around main activity 46 
Figure 30: Simplified class diagram centered around UserController 47 
Figure 31: Entity Relationship Diagram for Track’a’Pet database 47 
Figure 32: Install Certbot ACME client on Ubuntu 51 
Figure 33: Obtain a certificate from Let’s Encrypt using Certbot 51 
Figure 34: Login wireframe 52 
Figure 35: Register wireframe 52 
Figure 36: Main activity wireframe 53 
Figure 37: Pet profile wireframe 53 
Figure 38: Maps activity wireframe 53 
Figure 39: Feedback wireframe 53 
Figure 40: Login screen 54 
Figure 41: Register screen 54 
Figure 42: Main activity screen 55 
Figure 43: Refresh view by swiping down 56 
Figure 44: Actual map activity 56 
Figure 45: Map expanded options 56 
Figure 46: Defining geofence 57 
Figure 47: Pet profile activity 59 
Figure 48: Pet profile edit 59 



NTNU IN ÅLESUND   PAGE 83 

BACHELOR THESIS 

 

Figure 49: Permission to use camera 60 
Figure 50: Select photo option 60 
Figure 51: Color picker 61 
Figure 52: Toolbar 61 
Figure 53: Navigation Drawer 62 
Figure 54: Error displayed when input fields are empty 62 
Figure 55: Alert on removal of pet 63 
Figure 56: Toast saying a pet is successfully registered 63 
Figure 57: Unfocused input field 63 
Figure 58: Focused input field 63 
Figure 59: Smartphone market shares 2009-2017 (Statista.com 2016) 65 
Figure 60: Smartphone market share Norway 2016 (gsStatcounter.com 2017) 66 
Figure 61: Retrospective - 2018.02.16 1 
Figure 62: Retrospective - 2018.03.02 1 
Figure 63: Retrospective - 2018.03.19 2 
Figure 64: Retrospective - 2018.04.03 2 
Figure 65: Retrospective - 2018.04.16 3 
Figure 66: Retrospective - 2018.04.20 3 
Figure 67: Retrospective - 2018.04.30 4 
 

  



NTNU IN ÅLESUND   PAGE 84 

BACHELOR THESIS 

 

TABLE OF TABLES 

Table 1: HTTP methods 7 
Table 2: HTTP status codes 8 
Table 3: How to use branches in Gitflow 28 
Table 4: Hardware components 29 
Table 5: Wiring Diagram - Arduino, GSM and GPS 38 
Table 6: Estimated Power Consumption 38 
Table 7: Prices for Telenor M2M-subscriptions and additional services (Telenor u.d.) 39 
Table 8: Data usage (650 bytes pr. connection) and the corresponding subscription cost 40 
Table 9: Explanations of the components that make up the MVC 42 
Table 10: DB Table – User_account 48 
Table 11: DB Table - Pet 49 
Table 12: DB Table - Status 49 
Table 13: DB Table - Ownership 49 
Table 14: DB Table - Device 49 
Table 15: DB Table - Bugreport 50 
Table 16: Full list of features in map activity 58 
Table 17: Pet ownership Norway 2008, (Aftenposten 2008) validated with (Regjeringen.no 2004) 65 
Table 18: Estimated cost 66 
Table 19: Estimated Device Profit First Year 67 
Table 20: Continuous Monthly Profit 67 
Table 21: First Year Profit Estimates 67 
 

  



NTNU IN ÅLESUND   PAGE 85 

BACHELOR THESIS 

 

TABLE OF CODE SNIPPETS 

Code Snippet 1: Json Example Error! Bookmark not defined. 
Code Snippet 2: Declaring required permission 14 
Code Snippet 3: Runtime permission check for contacts (Android, Request permission 2018) 15 
Code Snippet 4: Declaring feature 15 
Code Snippet 5: Method updateUser in class UserRepository 18 
Code Snippet 6: Method convention 21 
Code Snippet 7: Nested methods convention 22 
Code Snippet 8: Method separation convention 22 
Code Snippet 9: X Bad code with comment. Should be refactored (Martin 2008) 22 

Code Snippet 10: ✓ Better code, with no unnecessary comment (Martin 2008) 22 
Code Snippet 11: Password hashed with Bcrypt 24 
Code Snippet 12: Liquibase changeset 24 
Code Snippet 13: Encoded JSON web token 25 
Code Snippet 14: Decoded header 25 
Code Snippet 15: Decoded payload 25 
Code Snippet 16: Signature 26 
Code Snippet 17: User Controller declaration 35 
Code Snippet 18: Method create User in class UserController 36 
Code Snippet 19: UserService declaration 36 
Code Snippet 20: Method create User in class UserService 36 
Code Snippet 21: UserRepository declaration 36 
Code Snippet 22: Method mapRow in UserRowMapper 37 
Code Snippet 23: Implementation of an AsyncTask for user login 44 
Code Snippet 24: Usage of LoginTask in the class LoginActivity 44 
Code Snippet 25: Method getUser in the class UserHttpClient 45 
 

  



NTNU IN ÅLESUND   PAGE 86 

BACHELOR THESIS 

 

APPENDIX 

Appendix 1 Preliminary report 

Appendix 2 Retrospective reports 

Appendix 3 Meeting notes 

Appendix 4 Burndown charts 

Appendix 5 Class Diagram (uploaded zip-file) 

Appendix 6 Source code (uploaded zip-file)  

SOURCE CODE 

Backend : https://bitbucket.org/trackapetgroup/rest/src/master/ 

Frontend : https://bitbucket.org/trackapetgroup/android/src/master/ 

Tracker  : https://bitbucket.org/trackapetgroup/tracker_v3/src/master/ 

 

 



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 1 

APPENDIX 1 – PRELIMINARY REPORT 

TITTEL:  

Forprosjekt - Track’a’Pet  

  

  

STUDENTNUMMER(E):  

10021 

10019 

10050 

   

DATO:  EMNEKODE:  EMNE:   DOKUMENT 

TILGANG  

24/01/18  IE303612  Bacheloroppgave   Åpen  

STUDIUM:   ANT SIDER/VEDLEGG:  BIBL. NR:  

Dataingeniør   22/0  Ikke i bruk -  

  

OPPDRAGSGIVER(E)/VEILEDER(E):  

Egendefinert oppgave / Girts Strazdins   

 

 

  

Postadresse  Besøksadresse  Telefon  Telefax  Bankkonto  
NTNU i Ålesund  Larsgårdsvegen 2  70 16 12 00  70 16 13 00  7694 05 00636  

N-6025 Ålesund  Internett  Epostadresse  Foretaksregister  

Norway  www.ntnu.no  postmottak@ntnu.no  NO 971 72 140  



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 2 

INNHOLDSFORTEGNELSE  

I. PREFACE ........................................................................................................................................ I 

II. TABLE OF CONTENTS .......................................................................................................... II 

III. SUMMARY ............................................................................................................................. VII 

IV. TERMINOLOGY .................................................................................................................. VIII 

CONCEPTS ....................................................................................................................................... VIII 

ABBREVIATIONS ................................................................................................................................ IX 

1 INTRODUCTION .......................................................................................................................... 1 

 BACKGROUND ........................................................................................................................... 1 

 PURPOSE AND APPROACH.......................................................................................................... 1 

 THESIS STRUCTURE ................................................................................................................... 1 

2 THEORETICAL BASIS ............................................................................................................... 2 

 LAWS AND REGULATIONS ......................................................................................................... 2 

 INFORMATION SECURITY........................................................................................................... 3 

 STANDARDS .............................................................................................................................. 7 

 AGILE DEVELOPMENT ............................................................................................................. 10 

 OBJECT ORIENTED PROGRAMMING ........................................................................................ 10 

 DESIGN PATTERNS AND PRINCIPLES ........................................................................................ 11 

 MAN-MACHINE INTERACTION ................................................................................................. 12 

 ANDROID AND ANDROID STUDIO ........................................................................................... 14 

3 MATERIALS AND METHODS ................................................................................................ 16 

 PROJECT ORGANIZATION......................................................................................................... 16 

 PRE-PLANNING ........................................................................................................................ 17 

 ARCHITECTURE ....................................................................................................................... 18 

 PROGRAMMING LANGUAGES .................................................................................................. 21 

 CODING CONVENTION ............................................................................................................. 21 

 EXTERNAL LIBRARIES – MICROCONTROLLER ........................................................................ 23 

 EXTERNAL LIBRARIES - BACKEND ......................................................................................... 24 

 EXTERNAL LIBRARIES – ANDROID ......................................................................................... 26 

 DEVELOPMENT TOOLS ......................................................................................................... 27 

 SUPPORT TOOLS .................................................................................................................. 28 

 TESTING METHODS ............................................................................................................. 29 

 TESTING TOOLS ................................................................................................................... 29 

 MATERIALS ......................................................................................................................... 29 

 DOCUMENTATION ................................................................................................................ 30 

4 RESULTS ..................................................................................................................................... 33 

 ARCHITECTURE ....................................................................................................................... 33 



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 3 

 BACKEND ARCHITECTURE ...................................................................................................... 34 

 MICROCONTROLLER ............................................................................................................... 38 

 FRONTEND ARCHITECTURE .................................................................................................... 42 

 USE CASE DIAGRAM ............................................................................................................... 45 

 CLASS DIAGRAM ..................................................................................................................... 46 

 DATABASE DESIGN ................................................................................................................. 47 

 SECURITY ................................................................................................................................ 50 

 DESIGN .................................................................................................................................... 52 

 TESTING ............................................................................................................................... 64 

 BUSINESS ANGLE ................................................................................................................ 65 

5 DISCUSSION ............................................................................................................................... 68 

 TECHNICAL RESULT ................................................................................................................ 68 

 PROJECT EXECUTION .............................................................................................................. 73 

6 CONCLUSION ............................................................................................................................. 74 

7 REFERENCES ............................................................................................................................. 75 

TABLE OF FIGURES ........................................................................................................................ 82 

TABLE OF TABLES .......................................................................................................................... 84 

TABLE OF CODE SNIPPETS .......................................................................................................... 85 

APPENDIX .......................................................................................................................................... 86 

APPENDIX 1 – PRELIMINARY REPORT .................................................................................................. 1 

APPENDIX 2 – RETROSPECTIVE ............................................................................................................ 1 

APPENDIX 3 – MEETING NOTES............................................................................................................ 1 

APPENDIX 4 – BURNDOWN CHARTS .................................................................................................... 1 

 

   
  



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 4 

1  INNLEDNING  

Savner du kjæledyret ditt? Ved hjelp av Track’a’Pet trenger du ikke bekymre deg lenger.  

I en verden med stadig økt usikkerhet er behovet for dynamiske sikkerhetstiltak rundt kjæledyr 
mer framtredende. Det finnes et behov for økt sikkerhet og kontroll på kjæledyr, som kan dekkes 
av dagens teknologi.  

Oppgaven omfatter å utvikle et system som skal holde kontroll over GPS posisjonene til kjæledyr 
og rapportere det tilbake til bruker.  

Valget falt på denne oppgaven siden den omfatter de fleste elementer og fagfelt fra studiet vårt, 
er meget omfattende og kompleks, samtidig som oppgaven har samfunnsmessig nytte utover 
læringsmål. Det vil også være i oppgavens natur å koble forskjellig teknologi sammen, som for 
eksempel mikrokontrollere og Android programmering. Videre vil sikkerhet stå sentralt, siden 
uautorisert tilgang kan få store konsekvenser for bruker og kjæledyr.  

Oppdragsgiveren i dette tilfellet er oss selv.  

2  BEGREPER  

2.1  Begreper  

Man-in-the-middle-angrep   

Angrep hvor angriperen releer og potensielt endrer meldinger mellom to parter som 

tror de kommuniserer direkte. Scrum  

Scrum er en smidig metode for å utvikle programvare. Denne metoden baserer seg på dynamiske 
prosesser som skal fremme kvaliteten på programvaren som blir utvikler. Metoden fungerer med 
at man jobber i mindre perioder, kalt en sprint, noe som gjør det enklere å gjøre kritiske endringer 
underveis i prosessen.  

Sprint  

En sprint i Scrum er en tidsperiode ofte definert fra en til tre uker. Innenfor denne perioden blir 

det foretatt utvikling, hvor ved enden av perioden den overordnet planen for prosjektet blir 

revidert for å ta høyde for nyvunnen kunnskap. Product backlog  

I Scrum opererer vi med en backlog (funsjonalitetsbank) som rommer alle aktivitetene vi har og 
skal gjennomføre for at produktet vil bli ansett som fullført. Backloggen blir dynamisk lagt til 
etterhvert som nye features er ønsket, samtidig som man oppdager bugs som må fikses. Derfor vil 
prosjektet i utgangspunktet begynne med mange issues i backloggen, som blir behandlet med tid.  

Issue   

En issue i Scrum er en klart definert oppgave som skal gjennomføres for å legge til eller redigere 
funksjonalitet i programvaren. Dette vil være de overordnede oppgaven som må gjennomføres. 
Som for eksempel fjerne en bug, legge til funksjonalitet og lignende.     

  



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 5 

Planning Poker  

Planning poker er en metode for å vekte arbeidsmengden hvert issue burde vektes. Det gjøres 
dynamisk i gruppen i begynnelsen av prosjektprosessen. Hvor hvert medlem i gruppen angir 
poeng på hvert issue, med en gitt skala. Estimatet blir da diskutert og man kommer fram til en 
enighet. Slik unngår man en poeng smitteeffekt innad i gruppen, hvor første tallet blir gjeldende.  

JIRA  

JIRA er et issue tracking program som gjør det mulig å holde oversikt over alle issuene som står 
igjen og organisere prosessen på en lettfattelig måte. Fra JIRA sin backlog organiseres det 

sprinter og rapporter som burndown charts. Confluence  

Confluence er et samarbeidsverktøy for dokumentasjon.  

Bug  

En bug er en uønsket hendelse i programvare. Dette kan være noe som ikke fungere, eller noe 
som fungerer feil. En bug oppstår da en programvare inneholder mye forskjellig kode som kan 
være i konflikt, eller at man har konfigurert noe feil. Generelt er det tilnærmet umulig å ikke 
feilaktig innføre bugs i programmet.  

Konfidensialitet  

Når informasjon er beskyttet fra eksponering og formidling til uautoriserte personer eller 
systemer. Bare personer med riktig rettigheter skal kunne ha tilgang til sensitiv data.   

Integritet  

Når informasjon er hel, komplett, og ukorrupt.   

Tilgjengelighet  

Når autoriserte brukere eller systemer har tilgang til data uten obstruksjon eller forstyrrelser, og i 
riktig format.   

GIT  

Versjonskontroll program som sikrer forbedret team samspill ved å gi mulighet for 
mellomlagring og synkronisering innad i teamet.  

Bitbucket  

Distribuert hostingtjeneste for versjonskontroll.  

Bruker  

Sluttbruker av systemet, i dette tilfellet eier av kjæledyr.  

Backend  

Grunnleggende system sluttbruker ikke dirkete arbeider mot. Backend systemet står 
for den databærende funksjonalitet.  

Frontend  

Systemet sluttbrukeren jobber mot. Gjerne grafisk framstilling og interaksjon med systemet.  

Android  

Operativsystem som benyttes på mange mobiltelefoner.  

  



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 6 

2.2  Forkortelser  

GPS - Global Positioning System  

GSM - Global System of Mobile communication  

UML - Unified Modeling 

Language GUI - Graphical User 

Interface  

SQL – Structured Query Language  

REST - REpresentational State Transfer 

IDE – Integrated Development 

Environment  

3  PROSJEKTORGANISASJON  

3.1  Prosjektgruppe   

Studentnummer  Navn  Epost  

060274  Kjetil Yndestad  kjetilyn@stud.ntnu.no  

460039  Kay Sindre Lorgen  kaysl@stud.ntnu.no  

269644  Anders Grytten Standal  andergs@stud.ntnu.no   

Tabell 1: Studentnummer(e) og navn på gruppemedlemmene     

3.1.1   Oppgaver for prosjektgruppen - organisering  

Dette prosjektet vil bli organisert delvis ved hjelp av Scrum utviklingsmetodikk. Derfor vil rollene 
for gruppemedlemmene være dynamisk og tidvis skiftende. Siden vi er en liten gruppe har vi sett 
det som nødvendig at gruppemedlemmene opererer med flere funksjoner. 
  



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 7 

Rolle  Navn  

Scrum-master i Februar  Kay Sindre Lorgen  

Scrum-master i Mars  Kjetil Yndestad  

Scrum-master I April  Anders Grytten Standal  

Utvikler  Kay Sindre Lorgen  

Utvikler  Kjetil Yndestad  

Utvikler  Anders Grytten Standal  

Sekretær  Kjetil Yndestad  

Beta tester  Linus (the cat)  

Tabell 2: Rollefordeling  

Utover dette forventes det også at gruppen innfrir de følgende arbeidsoppgavene.  

● Overholde frister for møter  

● Sette opp systemet  

● Utvikle programvaren  

● Rapporteringsarbeid  

3.1.2  Oppgaver for Scrum-master  

Scrum-masteren er ansvarlig for at Scrum-rammeverket blir fulgt. Sørge for at produkteier forstår sin 

rolle og at samspillet mellom disse fungerer godt. Scrum-master hjelper utviklingsteamet til å bli 

selvorganisert og om nødvendig skjermer utviklingsteamet mot ytre forstyrrelser.   

3.1.3  Oppgaver for utviklingsteamet  

Scrum-teamet tar kollektivt ansvaret for å skape mest mulig verdier for interessentene.  

3.1.4  Oppgaver for sekretær  

Overordnet ansvar for å planlegge møter med veileder og løpende loggføring av møter. Ved 
fravær vil det falle på de andre gruppemedlemmene å utføre denne rollen.  

3.2  Styringsgruppe   

Navn  Epost  Rolle  

Girts Strazdins  gist@ntnu.no  Veileder  

Tabell 3: Kontaktinformasjon for styringsgruppen  

  



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 8 

4  AVTALER  

4.1  Arbeidssted  

Gruppen disponerer arbeidsplass på NTNU Ålesund sine lokaler, hvor L167 er sentralt. Videre har 
vi gruppen også tilgang til visualiserings-laboratoriet og diverse grupperom på bygget. Ved 
mangelfull arbeidsplass kan eget bosted brukes som hjemmekontor.  

4.2  Ressurser  

Funksjonalitet  Navn  

Utviklingsverktøy til REST tjener  Netbeans  

Utviklingsverktøy til Android  Android Studio  

Oppgavehåndtering  JIRA  

Prosjektdokumentasjon  Confluence  

Rapportskriving  MS Word (delt dokument)   

Versjonskontroll distributør  Bitbucket  

Database  PostGRES  

SSL sertifikat  Let’s Encrypt  

Webserver  Apache  

Tabell 5: Ressurser  

4.2.1  Tilgang på personer  

Veileder er løpende tilgjengelig for spørsmål på epost, samtidig som det blir foretatt ukentlige 
møter med veileder.  

Gruppedeltakerne er tilgjengelig på NTNU sine lokaler i ordinær arbeidstid. Ut over dette er alle i 
utgangspunktet tilgjengelig på epost.  

4.2.2  Datasikkerhet  

I henhold til personopplysningsloven skal vi gjennom planlagte og systematiske tiltak sørge for 
tilfredsstillende informasjonssikkerhet med hensyn til konfidensialitet, integritet og tilgjengelighet 
ved behandling av personopplysninger.  

4.2.3  Avtalt rapportering  

Det er avtalt å rapporteres løpende under hele utviklingsprosessen, da dokumentasjonen i denne 
prosessen vil være dynamisk og derfor krever konstant revidering. I tillegg skal det rapporteres på 
engelsk.  

Det skal utarbeides meeting notes i confluence til ukens møte, som skal fungere som agenda for 
ukens møte. Disse skal i tillegg fungere som møtereferater ved at sekretær fyller ut stikkord fra 
møtet underveis.  



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 9 

4.3  Gruppenormer – samarbeidsregler – holdninger  

4.3.1  Gruppenormer og samarbeidsregler  

● Møte opp i god tid til ukentlige møter med veileder  

● Gi beskjed i god tid hvis man ikke kan møte opp på skolen  

● Samtlige medlemmer i prosjektgruppen har like mye innflytelse over avgjørelser relatert 

til prosjektet  

● Programvaren som blir utviklet skal ha tiltak for å sikre informasjonssikkerhet, i henhold 

til konfidensialitet, integritet og tilgjengelighet  

4.3.2  Holdninger til dataingeniørfaget som profesjon  

● Utføre oppgaver på en profesjonell måte  

● Hjelpe andre prosjektmedlemmer når det er behov for det  

● Skrive ren og opprettholdbar kode  

● Koden skal bestå alle tester før den går i produksjon  

● Gi ærlige tidsestimat  

● Ikke overta arbeidsoppgaver fra andre prosjektmedlemmer uten vedkommendes 

samtykke  

     



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 10 

5  PROSJEKTBESKRIVELSE  

5.1  Problemstilling - målsetting - hensikt  

Problemstillingen i dette prosjektet er å utvikle en sporer som kan kommunisere med en sentral 
server, samt utvikle et grafisk grensesnitt for sluttbruker.  

Hensikten og målsettingen er å utvikle et system som innfrir alle de implisitte kravene som ligger i 
problemstillingen. Vi skal utvikle en databaseløsning, REST-basert serveroppsett, Android-
applikasjonen og mikrokontroller med GPS som kommuniserer over GSM.   

Hovedmålet er å utvikle en applikasjon som viser posisjon og posisjonshistorikk til et valgt 
kjæledyr. Applikasjonen skal fungere på en hensiktsmessig og tilfredsstillende måte.   

  

Målnivå  Målformulering  

Effektmål  ● Det hovedsakelige effektmålet er å tilby kjæledyreiere en enkel og 

effektiv måte å finne ut hvor dyrene deres befinner seg, og hvor de har 

vært.  

● Kutte ned tiden det tar en dyreeier å lete etter kjæledyr.  

Ressursmål  ● Det skal utvikles et halsbånd til kjæledyr som loggfører GPS lokasjonene 

til dyret, som maskinvaren kommuniserer til en sentral database.   

● Det skal settes opp en database som tar imot GPS lokasjonene til flere 

kjæledyr.  

● Lokasjonsdata skal vises for brukeren via et GUI i form av en Android 

applikasjon.  

● Det skal i tillegg utvikles en web GUI som gjør det mulig for bruker å 

administrere abonnement sitt via en nettside knyttet til prosjektet.  

● Systemet skal innfri de moderne kravene til datasikkerhet.  

Samfunnsmål  ●  Systemet kan ha en avskrekkende effekt på pøbler og forkastelige 

personer som ønsker å skade eller bortføre kjæledyr.  

Tabell 6: Målformulering   
  



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 11 

5.2  Krav til løsning eller prosjektresultat – spesifikasjon  

5.2.1  Kravspesifikasjon  

Track’a’Pet skal ha følgende funksjonalitet:  

Handlinger fra brukergrensesnitt  

● Bruker registrerer seg i applikasjonen  

○ Fornavn/etternavn  

 ○  Passord  

 ○  Epost  

● Bruker logger inn i applikasjonen  

● Bruker administrer konto  

○ Bruker endrer/velger passord  

 ○  Bruker endrer personinstillinger  

● Bruker registrerer kjæledyr i applikasjonen  

○ Navn  

 ○  Type dyr  

 ○  Hjemmeadresse  

 ○  Bilde/Avatar  

 ○  Endre markørfarge  

● Bruker sporer kjæledyr ved å se lokasjonen på et kart  

● Bruker aktiverer GPS på telefon for å se sin egen lokasjon i forhold til kjæledyr  

● Bruker kan spore flere kjæledyr samtidig  

● Bruker kan melde kjæledyr savnet  



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 12 

  
Figur 1: Aktivitetsdiagram  

5.2.2  Leveranse fra prosjektet  

For at prosjektet skal bli ansett som fullført, kreves følgende:  

● Grafisk brukergrensesnitt med alle kravene spesifisert i 5.2.1  

● Backend-tjener som håndterer lagring av data og kommunikasjon mellom 

brukergrensesnitt og hardwaremodul  

● Generell dokumentasjon  

● God kodestil på samtlige systemer  

● God GUI utforming  

  



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 13 

5.3  Planlagt framgangsmåte for utviklingsarbeidet  

Prosjektstyringen vil hovedsakelig foregå gjennom JIRA, hvor vi setter ukentlige sprints for 
prosjektet. Utover dette benyttes planning poker for å vekte arbeidsmengden hvert issue 
omfatter.  

I prosjektet vil vi benytte oss av en smidig utviklingsmetode som heter Scrum. I Scrum deler man 
opp arbeidet inn i mindre oppgaver som kan bli løst i løpet av en gitt tidsramme; en sprint. 
Hovedideen i Scrum er at kravet til produktet endrer seg underveis, så planen skal holde seg 
fleksibel. Arbeidsflyten er følgende:  

● Produkteieren lager en prioritert ønskeliste av funksjoner som blir kalt for en prosjektkø  

● Når teamet planlegger neste sprint velger de seg et sett med oppgaver fra produktkøen  

● Teamet jobber med å implementere oppgavene i løpet av sprintperioden, samtidig som 

de har daglige stand-up møter hvor de diskuterer fremgangen  

● Scrum-masteren jobber konstant med å holde teamet fokusert på målet  

● På slutten av en sprint skal teamet sitte igjen med et produkt som er klar til bruk, selv om 

ikke alle oppgavene nødvendigvis er ferdige  

● Oppgaver som ikke ble gjort denne sprinten blir lagt på toppen av sprintkøen  

● Sprinten avsluttes med en sprintgjennomgang og retrospektiv  

● Teamet velger seg ut oppgaver for neste sprint fra produktkøen   

  

I Scrum jobber man i sprinter, altså iterasjoner med en fast lengde. Når en sprint starter, skal 
teamet helst levere det omfanget fra produktkøen de tror de kan klare å gjennomføre. Når en 
sprint er ferdig skal teamet demonstrere det de har laget for interessentene og produkteier. Til 
slutt skal teamet reflektere over hva som gikk bra, og hva som burde forbedres til neste sprint.   

I vårt tilfelle vil en sprintene først vare 14 dager. Etter hvert som vi blir ferdig med det 
obligatoriske faget Ingeniørfaglig systemteknikk og systemutvikling, vil vi vurdere å begynne med 
7-dagers sprinter. Vi vil ha cirka like mange arbeidsdager siden vi ikke har andre fag å jobbe med.   

Produkteieren representerer prosjektets interessenter. I tillegg skal vedkommende sikre at 
teamet til enhver tid jobber med de rette oppgavene sett fra et forretningsperspektiv. Eieren er 
ansvarlig for at produktkøen er prioritert og estimert for interessentene og teamet.   

Scrum-masteren skal være ansvarlig for at teamet lærer seg å selv organisere, at produkteier 
forstår sin rolle, og at samspillet fungerer som det skal. Scrum-master kan også være ansvarlig for 
at teamet ikke blir distrahert av utvendige forstyrrelser.   

Utviklingsteamet er ansvarlig for å utvikle produktet. Det er som regel et relativt lite team på 3-9 
personer. Teamet har ansvar for å skape mest mulig verdier for interessentene.   

Det er flere fordeler ved å benytte seg av Scrum. For det første kan man fort ta i bruk produktet 
selv om det ikke er ferdig. Ved å ha en ferdig versjon på slutten av hver sprint sørger man for tidlig 
verdiskaping.   

En annen fordel er at det er mindre kostbart å gjøre endringer. Ved å bruke vanlige 
fossefallsmetoder vil det ofte være dyrt og tidkrevende å endre funksjonalitet i prosjektet før det 
er ferdig. Siden Scrum er såpass dynamisk, kan man lett endre betydelige deler av produktet uten 
for mye ekstra arbeid.  

Scrum har også noen svakheter. I prosjekter der man fra starten av har full kontroll på kravene og 
løsningen vil det ikke gi noen økt gevinst ved å bruke Scrum, med tanke på at man har liten 
mulighet til å fastsette krav på forhånd.   



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 14 

Scrum fungerer heller ikke optimalt der team er geografisk delt eller noen medlemmer jobber på 
deltid. Det er fordi Scrum er lagt opp til at utviklere skal arbeide tett, med pågående samarbeid.    

5.4  Informasjonsinnsamling – utført og planlagt  

Så langt har vi funnet flere løsninger som ligner på det vi skal oppnå i dette prosjektet. Disse 
varierer veldig i funksjonalitet og pris. Vi kan bruke disse som utgangspunkt når vi for eksempel 
skal finne ut hvor lenge batteriet på halsbåndet skal kunne vare mellom hver ladning.   

Videre gjenstår det å finne ut hvordan vi kan gjøre hardwaren, altså modulen i halsbåndet, så lite 
som mulig.   

5.5  Vurdering – analyse av risiko  

Med tanke på at hardware spiller en vesentlig rolle i prosjektet, er det en liten mulighet for at 
prosjektet ikke blir realisert innenfor den gitte rammen. Det er mange kilder til feil når man 
jobber med slik hardware. Vi må ta hensyn til batteritid, at kommunikasjonen over GSM fungerer, 
at GPS gir riktig plassering, og at selve modulen er liten nok og tåler å bli utsatt for regn og annet 
vær.   

Et annet risikoelement er sikker kommunikasjon mellom sporer modulen og den sentrale 
serveren. Kommunikasjon må krypteres for å forhindre man-in-the-middle angrep. Slike 
operasjoner på mikrokontrollere kan ofte være kostbart, med tanke på prosesseringsevne og 
batteritid.   

Leveransetid på hardware kan også være en fallgrop. Slike varer må som regel bestilles fra 
utlandet, der vi må sette av tid til frakt og eventuelt toll. Vi kan begynne å planlegge og 
programmere før vi har den nødvendige hardwaren, men har da ikke mulighet for å teste om det 
fungerer.   

Når det kommer til softwaredelen av prosjektet, er det en liten fare for at vi får for lite tid. Det er 
mange elementer vi ønsker å ha med, og i flere av tilfellene kommer vi til å bruke teknologi vi ikke 
har jobbet med tidligere. Oppsiden er da at oppgaven er såpass modulær at vi kan skalere 
prosjektet etter hvert som vi jobber.  

ID  Beskrivelse  

A  Sjukdom  

B  Problemer rundt mikrokontroller prototype.  

C  Arbeidsmengden blir for stor  

    

Tabell 7: Identifisering av risiko  

  

  

  

  



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 15 

Mulighets-/ 

Risiko- 

matrise  

  Kon sekvens    

 Mulighet    Risiko   

Sann- 

synlighet  

> 7 

dager  

2- 7 

dager  

1 - 2  

dager  

< 1 

dag  

< 1 

dag  

1 -2 

dager  

2 - 7  

dager  

> 7 dager  

Veldig stor  

> 50 %  

            B    

Stor  

25-50 %  

                

Middels  

5-25 %  

            A  C  

Liten  

1-5 %  

                

Usynlig  

< 1 %  

                

Figur 2: Mulighet og risiko analyse  

  

5.5.1  Handlingsplan   

ID  Tiltak  

A  God kommunikasjon og dokumentasjon internt i gruppen. Om et av medlemmene blir sjuk har 

dem andre i gruppen kunnskap og forståelse nok til å fortsette arbeidet.   

B  Simulere data som prototypen sender ved hjelp av software.  

C  En av fordelene med smidige metoder er at vi kan tilpasse arbeidsmengden underveis og vil 

prioritere funksjonaliteten. På denne måten kan vi skalere ned om arbeidsmengden blir for 

stor og levere et fungerende produkt.   

    

Tabell 8: Handlingsplan  

  

  



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 16 

5.6  Hovedaktiviteter i videre arbeid  

Hovedaktivitetene har en logisk sammenheng, hvor hovedaktivitetene må forekomme i 
kronologisk rekkefølge. Videre kan noen av delaktivitetene bli omrokert ved behov.     

Nr  Hovedaktivitet  Omfang  

A1  Utvikle prototype  3 uker  

A1.1  Identifisere alternativer for prototype    

A1.2  Programmere hardware    

A1.3  Test GSM kommunikasjon    

A1.4  Test GPS kommunikasjon    

A2  Backend  3 uker  

A2.1  Design database    

A2.2  Implementasjon av databaseløsning    

A2.3  RESTful design    

A2.4  RESTful implementasjon    

A2.5  Backend konfigurasjon    

A2.6  Kommunikasjon mellom prototype og API    

A3  Frontend  10 uker  

A3.1  Design av android applikasjon    

A3.2  Utvikle android applikasjon    

A3.3  Teste android applikasjon    

A3.4  Design av web frontend    

A3.5  Utvikle web frontend    

A3.6  Teste web frontend    

A3.7  Kommunikasjon mellom applikasjon og API    

A4  Systemteknisk validering  2 uker  

A4.1  Android systemtesting    

A4.2  Web frontend systemtesting    

Tabell 9: Hovedaktivitetene i prosjektet  



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 17 

5.7  Framdriftsplan – styring av prosjektet  

5.7.1  Hovedplan  

Gruppen kommer til å benytte seg av smidige metoder. Vi planlegger å ha sprints som varer 14 
dager ut februar for så gå over til 7 dagers sprint fra Mars. I tillegg skal vi ha daglige Scrum-møter 
for å kartlegge fremgang og videre planlegge hva som skal gjøres i nærmeste fremtid.   

Gruppen vil benytte seg av oppgavehåndteringsverktøyet JIRA for å planlegge sprintene, samtidig 
som gruppen planlegger hvilke oppgaver hvert medlem arbeider med i begynnelsen av hver 
sprint. Ved uenigheter har Scrum-master ansvar for å komme fram til en fornuftig løsning.   

Rapporten skal skrives underveis før siste uken settes av til å sy sammen rapporten og avsluttende 

finpuss.  

5.7.2  Styringshjelpemidler  

JIRA  

JIRA er et issue tracking program som gjør det mulig å holde oversikt over alle issuene som står 
igjen og organisere prosessen på en lettfattelig måte. Fra JIRA sin backlog organiseres det sprinter 
og rapporter som burndown charts.  

  

Figur 3: Eksempelbilde av JIRA      

  



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 18 

Confluence  

Confluence er programvare for innholdssamarbeid og gir ditt team et sentralt sted å holde 
prosjektets arbeid organisert og tilgjengelig.  

  

Figur 4: Eksempelbilde av Confluence  

Bitbucket  

Bitbucket er et skalerbart distribuert versjonskontrollsystem som gjør det enkelt å samarbeide 
med teamet ditt.  

  

Figur 5: Eksempelbilde av Bitbucket  

    
  



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 19 

Sourcetree  

Sourcetree forenkler hvordan du samhandler med GIT-repoene dine slik at du kan fokusere på 
koding. Visualiser og administrer GIT-repoene via GUI.  

  

Figur 6: Eksempelbilde fra Sourcetree  

  

5.7.3  Utviklingshjelpemidler  

Netbeans  

Netbeans er et utviklingsverktøy som primært er utviklet med hensyn på Java. Det gir brukeren en 
god mengde ekstra funksjonalitet og hjelp når man skal programmere. Dette fører til at 
programmeringsprosessen blir effektivisert.   

Android Studio  

Android Studio er et utviklingsmiljø for programmering av applikasjoner til Android telefoner. 
Android studio gjør det også mulig å teste applikasjonene på i et virtuelt kjøremiljø, hvor dette 
effektiviserer noen av debuggingsprosessen.   

Arduino  

Arduino er en IDE som er utvikler for å gjøre det lett å programmere en Arduino mikrokontroller. 
Det støtter i tillegg seriellport overføring, noe som gjør det mulig å overvåke mikrokontrolleren i 
sanntid via utviklingsmiljøet.  

    
5.7.4  Intern kontroll – evaluering  

Burndown chart  

For hver sprint sjekker vi burndown chart og får en pekepinn på hvordan arbeidet har gått utover 
sprinten. Ser vi at vi ikke har kommet i mål eller blitt for tidlig ferdig med sprinten kan vi justere 
arbeidsmengden vi planlegger for neste sprint.  



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 20 

  

Figur 7: Eksempel på burndown chart   

5.8  Beslutninger – beslutningsprosess  

5.8.1  Avgrensning  

Vi bestemte oss tidlig for hva vi ville oppnå i prosjektet. Vi tegnet opp en overfladisk arkitektur 
(figur 8) som viser hva slags komponenter vi skal ha med i systemet, hvordan de interagerer, og 
hvilke programmeringsspråk som skal tas i bruk. Ved hjelp av veileder kom vi frem til hva som er 
et realistisk mål for prosjektet.  

5.8.2  Kjøremiljø  

Vi valgte å bruke Spring Boot som rammeverk i backend-systemet. Dette valget baserte vi på at:  

● Det er enkelt å sette opp og raskt få i gang applikasjoner ●  Det tilbyr enkel og kraftig 

databasestøtte  

● Det reduserer mengden boilerplate kode man må skrive ●  Det tilbyr enkel 

dependencyhåndtering  

  

For databasesystemet valgte vi å bruke PostgreSQL. Noen av fordelene med det er at:  

● Det er gratis og åpen kildekode  

● Det tilbyr mye funksjonalitet, samtidig som den ikke er veldig ressurskrevende  

● Det er pålitelig, kjent for å ikke bryte sammen  

● Det er tilgjengelig på nesten alle plattformer  

  

5.8.3  Hardwaremodul  

For selve sporeren velger vi å utvikle første prototypen med Arduino Uno og nødvendige 
ekstramoduler.  
Det er hovedsakelig fordi Arduino er lett å jobbe med, og det tar lite tid å sette sammen noe som 
fungerer. Programmeringsspråket, Arduino C, er en forenklet versjon av C som er simplifisert slik 
at det skal være lettere og raskere å skrive kode, men det tilbyr fortsatt mye fleksibilitet.   

5.8.4  Videre beslutninger  



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 21 

Store avgjørelser og beslutninger vil bli gjort internt i utviklingsteamet, siden medlemmer av 
teamet også er produkteier og Scrum-master.  

5.8.5  Systemarkitektur  

  
Figur 8: Overordnet systemarkitektur   

  



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 22 

6  DOKUMENTASJON  

6.1   Rapporter og tekniske dokumenter  

Gruppen ønsker at kildekoden skal følge beste praksis slik at den blir lettleselig nok til at 
dokumentasjon blir overflødig. Noe dokumentasjon av kode vil uansett være nødvendig i noen 
tilfeller.   

Det vil føres møtereferat av sekretær i Confluence etter møte med veileder. Møtereferat skal 
leses av alle gruppemedlemmer og tillegg/feil skal rapporteres til sekretær.  

JIRA vil også fungere som dokumentasjon. Der vil det være en logg over hvilke oppgaver som er 
gjort av hvem og når, i tillegg til å vise hvilke oppgaver som gjenstår.   

Vi vil skrive retrospektiv i Confluence for avsluttet sprint hvor vi kartlegger hva som gikk bra og 
hva som gikk dårlig. På denne måten kan vi forbedre prosessen underveis i prosjektet.  

     



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 23 

7  PLANLAGTE MØTER OG RAPPORTER  

7.1  Møter med styringsgruppen  

Dato  Klokke  Formål  Lokasjon  

19.01-2018  09:00  Møte med veileder  Hovedbygg B313  

26.01-2018  09:00  Møte med veileder  Hovedbygg B313  

02.02-2018  09:00  Møte med veileder  Hovedbygg B313  

09.02-2018  09:00  Møte med veileder  Hovedbygg B313  

16.02-2018  09:00  Møte med veileder  Hovedbygg B313  

23.02-2018  09:00  Møte med veileder  Hovedbygg B313  

02.03-2018  09:00  Møte med veileder  Hovedbygg B313  

09.03-2018  09:00  Møte med veileder  Hovedbygg B313  

16.03-2018  09:00  Møte med veileder  Hovedbygg B313  

23.03-2018  09:00  Møte med veileder  Hovedbygg B313  

06.04-2018  09:00  Møte med veileder  Hovedbygg B313  

13.04-2018  09:00  Møte med veileder  Hovedbygg B313  

20.04-2018  09:00  Møte med veileder  Hovedbygg B313  

27.04-2018  09:00  Møte med veileder  Hovedbygg B313  

04.05-2018  09:00  Møte med veileder  Hovedbygg B313  

11.05-2018  09:00  Møte med veileder  Hovedbygg B313  

18.05-2018  09:00  Møte med veileder  Hovedbygg B313  

Tabell 10: Planlagte møter  

7.2  Prosjektmøter  

Siden vi kjører Scrum som arbeidsmetodikk holder vi daglig standup møte 08:15 hvor alle 
gruppemedlemmene deler informasjon, beskriver framgangen siden forrige møte, problemer som 
har oppstått og planlagt arbeid påfølgende dag.   

På denne måten er alle gruppemedlemmene oppdatert på arbeidet og kan hjelpe hverandre for å 
løse enkle utfordringer på et tidlig tidspunkt før det eskalerer til et problem.   



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 24 

7.2  Periodiske rapporter  

7.2.1  Framdriftsrapporter (inkl. milepæl)  

  

Figur 9: Framdriftsplan    

8  PLANLAGT AVVIKSBEHANDLING  

Hvis vi ikke klarer å lage en fungerende hardwareenhet i tide, må vi vurdere å benytte oss av 
mulige ferdige løsninger. Vi må da finne en modul som er såpass åpen at vi enkelt kan hente ut 
den nødvendige informasjonen om lokasjon. Alternativt bruke en mobiltelefon som 
sporingsenhet, slik at vi kan fokusere på software utviklingen.  

Hvis vi ser at vi ikke får tid til å lage ferdig alle softwarekompontene, så kan vi underveis vurdere 
om vi skal skalere ned prosjektet til å bare fokusere på enkelte deler, og droppe de delene som 
ikke er kritiske for systemet.  

Ved feilestimert tidsforløp angående utviklingsprosessen er web fronten noe som kan settes som 
andreprioritert, samtidig som prosjektet bruker Android som primær GUI.  

  

  



Appendix 1 – Preliminary Report 

 

Kjetil Yndestad  

Anders Grytten Standal    

Kay Sindre Lorgen   Side | 25 

9  UTSTYR  

For å kunne lage sporingsenheten trenger vi følgende:  

●  Mikrokontroller  

●  GPS modul  

●  GSM modul  

●  Mobilabonnement   

●  

  

SIM-kort  

10  REFERANSER  

Sommerville, I. (2015). Software Engineering. Pearson.  

Sutherland, J., & Schwaber, K. (2016). The Definitive Guide to Scrum: The Rules of the Game. Henta 
frå scrumguides.org: http://www.scrumguides.org/docs/scrumguide/v2016/2016-Scrum-
GuideUS.pdf  

  



APPENDIX 3 – MEETING NOTES 

 

A2 – Page 1 

APPENDIX 2 – RETROSPECTIVE 

2018-02-16 Retrospective 

Date 16 Feb 2018 

Participants Kay Sindre Lorgen Anders Grytten Standal Kjetil Yndestad  

Retrospective 

What did we do well? 

• Use of planning poker was a good technique to estimate story points 

• Daily scrum 

What should we have done better? 

• Move issues to "In progress" and "Done" in JIRA 

• More specific issues, now some of the issues was to "big" 

• Some issues should be in the sprint because of dependencies  

 

Figure 61: Retrospective - 2018.02.16 

2018-03-02 Retrospective 

Date 02 Mar 2018 

Participants Anders Grytten Standal Kay Sindre Lorgen Kjetil Yndestad  

Retrospective 

What did we do well? 

• Effectively solved most issues with the microcontroller 

• Almost completed all issues in sprint, in spite of absence from several team members 

• Better at using Jira 

What should we have done better? 

• Remember to notify team members if you can't show up 

• Write more consistently on thesis 

 

Figure 62: Retrospective - 2018.03.02 



APPENDIX 3 – MEETING NOTES 

 

A2 – Page 2 

2018-03-19 Retrospective 

Date 19 Mar 2018 

Participants Kay Sindre Lorgen Anders Grytten Standal Kjetil Yndestad  

Retrospective 

What did we do well? 

• Daily scrum 

• Good report workflow 

What should we have done better? 

• Should have more precise issues 

• Added sub-tasks after main issue was completed (should have been added as a new issue) 

• Miscalculated story points 

 

Figure 63: Retrospective - 2018.03.19 

2018-04-03 Retrospective 

 

Date 03 Apr 2018 

Participants Kay Sindre Lorgen Kjetil Yndestad Anders Grytten Standal 

Retrospective 

What did we do well? 

• Charged our batteries during the Easter holidays 

What should we have done better? 

• Should finish the sprint on time 

• Too many story points allocated 

• Easter has too many vacation days 

• Write report 

 

Figure 64: Retrospective - 2018.04.03 



APPENDIX 3 – MEETING NOTES 

 

A2 – Page 3 

2018-04-16 Retrospective 

Date 16 Apr 2018 

Participants Kay Sindre Lorgen Anders Grytten Standal Kjetil Yndestad  

Retrospective 

What did we do well? 

• Good progress until Thursday 

What should we have done better? 

• Remember to complete sprint. 

• Because of sickness we could not add to many story points. 

• .gitignore made problems, should work now. 

 

Figure 65: Retrospective - 2018.04.16 

2018-04-20 Retrospective 

Date 20 Apr 2018 

Participants Kjetil Yndestad Kay Sindre Lorgen Anders Grytten Standal 

Retrospective 

What did we do well? 

• Good progress on app development. 

• Implemented security on Android. 

• Good progress on estimated issues. 

• Mapped out the road ahead. 

What should we have done better? 

• More focus on report. Write report consecutively. 

 

Figure 66: Retrospective - 2018.04.20 



APPENDIX 3 – MEETING NOTES 

 

A2 – Page 4 

2018-04-30 Retrospective 

Date 30 Apr 2018 

Participants Anders Grytten Standal Kjetil Yndestad Kay Sindre Lorgen  

Retrospective 

What did we do well? 

• Worked relatively productively 

• Follow SCRUM process closely 

What should we have done better? 

• More focus on bug fixing 

• Should have finished sprint on friday, instead of after the weekend 

 

Figure 67: Retrospective - 2018.04.30 



APPENDIX 3 – MEETING NOTES 

 

A3 – Page 1 

APPENDIX 3 – MEETING NOTES 

2018-01-12 Meeting notes 

Date 

12 Jan 2018 

Attendees 

• Kjetil Yndestad 

• Kay Sindre Lorgen 

• Anders Grytten Standal 

• Girts Strazdins 

Goals 

• Preliminary meeting 

Discussion items 

Time Item Who Notes 

15 Misc  • Loose discussion around the bachelor. 

        

Action items 

• Setup JIRA and Confluence Kay Sindre Lorgen 18 Jan 2018  

• Research technology surrounding GPS and GSM tracking 

  



APPENDIX 3 – MEETING NOTES 

 

A3 – Page 2 

2018-01-19 Meeting notes 

Date 

19 Jan 2018 

Attendees 

• Kjetil Yndestad, Kay Sindre Lorgen, Anders Grytten Standal and Girts Strazdins 

Goals 

• Select technology 

o Which hardware has the most promise? 

o First prototype? 

• Specify group organization, product owner and SCRUM master. 

• What should we focus on with the preliminary project? 

Discussion items 

Time Item Who Notes 

10min Technology  

• REST server ( Begrunn) 

• Begrunnelse: Hvorfor rest? → Android og Web mulig. 

• Begrensning på hardware: 

• Eksterne bibilotek. 

• Prototype: Greit med stor arduino. 

• Finns det noen åpne systemer? 

  



APPENDIX 3 – MEETING NOTES 

 

A3 – Page 3 

2018-01-26 Meeting notes 

Date 

26 Jan 2018 

Attendees 

• Anders Grytten Standal 

• Kay Sindre Lorgen 

• Kjetil Yndestad 

• Girts Strazdins 

Discussion items 

Time Item Who Notes 

10min 

Communication between 

arduino and server. Keeping 

packet size small over SSL 

 

• UDP? 

• TLS SSL overhead på toppen av TCP. 

• 100bits pr pakke?, 

 5-10min 

Our project compared to 

tractive, to similar? 

https://tractive.com/noeu_en 

   Apps på toppen som bruker tjenesten. 

 



APPENDIX 3 – MEETING NOTES 

 

A3 – Page 4 

2018-02-02 Meeting notes 

Date 

02 Feb 2018 

Attendees 

• Kay Sindre Lorgen 

• Anders Grytten Standal 

• Girts Strazdins 

Discussion items 

Time Item Notes 

5 min 

Who will Judge the final report? Max Mørk said in a 

lecture that all english words should be in Norwegian so 

anyone could read it and understand it. 

• Write English 

• Persons with 

technical experience 

5 min Should we write daily worklog? 
• No need 

 10 

min 
JIRA structure 

• Works good 

• Condition for when a 

task is done. 

•  

Database structure 

 

• Can modify database 

later in development 

• Versioning 

• Don't make it more 

complex than 

necessary  

o Don't have 

several tables 

that aren't 

used in the 

finals system 

  



APPENDIX 3 – MEETING NOTES 

 

A3 – Page 5 

2018-02-16 Meeting notes 

Date 

16 Feb 2018 

Attendees 

• Kay Sindre Lorgen 

• Anders Grytten Standal 

• Kjetil Yndestad 

• Girts Strazdins 

Discussion items 

Time Item Notes 

5min Hardware status 
▪ Test GPS next week. 

 5min Backend status 

▪ Autodeploy solutions (continuous integration) 

▪ Database version systems, see Robert. Scheme version system. 

SQL version 

▪ (Binding layer, retrieve result, convert to list.) 

▪  
Rapport 

▪ Send final preliminary rapport to Girts.z 

  



APPENDIX 3 – MEETING NOTES 

 

A3 – Page 6 

2018-03-02 Meeting notes 

Date 

02 Mar 2018 

Attendees 

• Kjetil Yndestad 

• Girts Strazdins 

• Anders Grytten Standal 

• Kay Sindre Lorgen 

Goals 

• Road ahead 

Discussion items 

Time Item Who Notes 

   • Liquidbase 

      

• Setup new sprint, start week after exam. 

• JWT json webtoken ( one group last year). important https 

(letsencrypt) 

  



APPENDIX 3 – MEETING NOTES 

 

A3 – Page 7 

2018-04-13 Meeting notes 

Date 

13 Apr 2018 

Attendees 

• Kjetil Yndestad 

• Girts Strazdins 

• Anders Grytten Standal 

• Kay Sindre Lorgen 

Discussion items 

Time Item Who Notes 

 Generic 

update 

Anders 

Grytten 

Standal 

Kay Sindre 

Lorgen 

Kjetil 

Yndestad 

• Problem with git, mostly fixed. 

• Not SSL hardware, implement symmetric key. AIS 

broken? Try RC4, weakness decompile sourcecode, 

spoof pet location. Write in report could fix security 

with built-in SSL chip, and other security measures. 

• Third solution implement noise, binary key. 

• Challenges with spring implementation. Send message, 

send json which is encrypted, latitude, longitude and id. 

• Json webtoken. Hard to keep track of conserns. If 

somebody steals your mobile somebody can use the 

token from the phone. Last year, logout all users from 

phones. 

  
 Next 

week 
  

Anders: Pretty much the same. 

Kay: Arduino security and app dev. 

Kjetil: Activitylog and Map. 

 Admin  Send bachelor draft to girts. (track changes, find solution on 

track changes) 

  



APPENDIX 3 – MEETING NOTES 

 

A3 – Page 8 

2018-04-20 Meeting notes 

Date 

20 Apr 2018 

Attendees 

• Kjetil Yndestad 

• Anders Grytten Standal 

• Kay Sindre Lorgen 

• Girts Strazdins 

Discussion items 

Time Item Who Notes 

 show and 

tell 
 

• What is the wow factor 

• Example: Security in whole app (focus security in thesis), 

version control in DB, 

• Girts sees: SQL version, real security arduino as wow factor. 

• Jumper serial. Once connected send random key. LED serial. 

• APP: Geofencing, log when cat leaves house, and back again. 

• TODO: Estimate battery time, on production full product, duty 

cycle, warm up 

• Maybe business model? 

• Focus finished product, does not need to implement all 

functionality, show previous products, could not use closed 

API. 

•  
Report  Remember to also write the solutions that did not work. 

  
 Next 

week 
  Microcontroller security.  

  



APPENDIX 3 – MEETING NOTES 

 

A3 – Page 9 

2018-04-27 Meeting notes 

Date 

27 Apr 2018 

Attendees 

• Kjetil Yndestad 

• Kay Sindre Lorgen 

• Anders Grytten Standal 

• Girts Strazdins 

Goals 

• How to make the report better? 

Discussion items 

Notes 

• Comment, if method does thing that are not intuitive. 

• If can not be null. 

• Not intuitive boolean returns. 

• Algorithms. 

 Next: 

▪ Implement geofence data backend 

▪ Fix bug with images 

▪ Bugfixing 

▪ Geofence: Unit testing, more test, different direction, different lengths. 

Report: 

▪ Inversion of control: As a read I don't understand after I read it. IOC → If dependency 

is going the wrong way, can revert it with implementing an interface. Look at what is 

dependency injection, write something about it. 

▪ A section describing micro services, backend, frontend, why is it useful. Stateless → 

makes it easier for backend, server does not need state to operate. 

▪ Why have we chosen this solution. 

 



APPENDIX 3 – MEETING NOTES 

 

A3 – Page 10 

2018-05-08 Meeting notes 

Date 

11 May 2018 

Attendees 

• Anders Grytten Standal 

Discussion items 

Time Item Who Notes 

5min 
Do we need to write theory about solutions that didn't end 

up in the final product? 
  

  

 Where to put sections in the thesis? Should we write 

about Android-specific technology under theory, 

methods, or results? 

    

  



APPENDIX 3 – MEETING NOTES 

 

A3 – Page 11 

2018-05-11 Meeting notes 

Date 
11 May 2018 

Goals 
• The road ahead, what need to be done and advice on the report. 

Discussion items 

Time Item Who Notes 

5min 
Where 

are we? 

Anders 

Grytten 

Standal 

Kjetil 

Yndestad 

• Thought about responsibility (asynctask, http client, etc) 

• Lombok → Write short about it (materials and method) 

• From system, point id (does not matter where it comes 

from). 

• Create some marketing point (why is it excellent points, 

inovation). 

• Market → Arduino remote device, security on device, 

analysed ssl not working,  

• Market → Safety and personel data, token, no critical 

data in DB, secure endpoints 

10 

min 
Feedback  

Girts 

Strazdins  

• Report → Focus on what is done, specifically on 

security on the whole system.  

o Detailed → Login and authorization 

o No sql-injection 

o Describe other alternatives 

o Even though Robert has Liquibase, do describe 

liquibase indepth. 

• Presentation → Device → Packaged in separate device 

(not connected to computer) 

• Geofence → could have used websocket. 

• Maybe mention hackaton if relevant. (maybe possible to 

make very tiny devices, piggyback on disruptive 

technologies network) 

• Written good achitecture, componenets independent, 

change out and add app, web, tracking device, etc. 

  
 



APPENDIX 3 – MEETING NOTES 

 

A3 – Page 12 

2018-05-19 Meeting notes 

Date 

22 May 2018 

Attendees 

• Kjetil Yndestad 

• Anders Grytten Standal 

• Kay Sindre Lorgen 

• Girts Strazdins 

Discussion items 

Time Item Who Notes 

 

Should we have some code implementation such as: 

▪ HTTP client abstraction 

▪ Geofence Service 

▪ Distance calculation 

▪ Example of async task 

Girts Strazdins   

  



APPENDIX 3 – MEETING NOTES 

 

A3 – Page 13 

2018-05-25 Meeting notes 

Date 

25 May 2018 

Attendees 

• Anders Grytten Standal 

• Girts Strazdins 

Discussion items 

Time Item  Notes 

 Notes on 

thesis 
 

• Generally don't say "we didn't have time" when explaining 

why we did not implement some functionality 

• Where to write about technical problems and how we solved it  

o Can create a new section on Discussion 

   Presentation   

• Should not spend more than 5 minutes on introduction  

o Who we are, what the project is, what the goal is, etc 

• Can talk about technical details, but focus should be on results  

o Can mention technical challenges, architecture, how 

we solved certain problems, etc  

  



APPENDIX 3 – MEETING NOTES 

 

A3 – Page 14 

2018-05-29 Meeting notes 

Date 
30 May 2018 

Attendees 
• Kjetil Yndestad 

• Kay Sindre Lorgen 

• Anders Grytten Standal 

• Girts Strazdins 

Goals 
• Final meeting, clarify last uncertainties. 

Discussion items 

Time Item Who Notes 

5-10min Battery calculations Kjetil • Rough estimate 

 5min Package size Kay •  ok 

 Which appendixes?  

Have: 

• Meeting notes 

• Preliminary Report 

• Retrospectives 

Maybe: 

• Burndown charts? 

• other? 

 Report  

• Candidate number or Student number and name? 

• Include word count? Neh, 

MC: Duty cycle, persistent connection, clock speed, etc. 

  



APPENDIX 4 – BURNDOWN CHARTS 

 

A4 – Page 1 

APPENDIX 4 – BURNDOWN CHARTS 

 

Sprint 1 

 

Burndown Chart 1: Sprint 1 (week 6-7) 

Sprint 2 



APPENDIX 4 – BURNDOWN CHARTS 

 

A4 – Page 2 

 

Burndown Chart 2: Sprint 2 (week 8-9) 

Sprint 3 

 

Burndown Chart 3: Sprint 3 (week 11) 

Sprint 4 



APPENDIX 4 – BURNDOWN CHARTS 

 

A4 – Page 3 

 

Burndown Chart 4: Sprint 4 (week 12-13) 

  



APPENDIX 4 – BURNDOWN CHARTS 

 

A4 – Page 4 

Sprint 5 

 

Burndown Chart 5: Sprint 5 (week 14) 

Sprint 6 

 

Burndown Chart 6: Sprint 6 (week 15) 



APPENDIX 4 – BURNDOWN CHARTS 

 

A4 – Page 5 

Sprint 7 

 

Burndown Chart 7: Sprint 7 (week 16) 

Sprint 8 

 

Burndown Chart 8: Sprint 8 (week 17) 



APPENDIX 4 – BURNDOWN CHARTS 

 

A4 – Page 6 

Sprint 9 

 

Burndown Chart 9: Sprint 9 (week 18) 

Sprint 10 

 

Burndown Chart 10: Sprint 10 (week 19) [forgot to close sprint] 

 


