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Problem description 

With the Internet of Things being one of the most anticipated technological advancements, the 

amount of data being collected by sensors is increasing, and making useful applications based 

on the information we can obtain is an interesting prospect. Microphones are one type of 

hardware that is used by sensor chips to collect information, in the form of audio. However, 

compared to many other types of information, sound is harder to understand without human 

interpreters. Machine learning presents a way to deal with this, where we can train a machine 

to interpret the sound input, based on the learning process it has gone through.  

The combination of these technologies could allow for sensing systems based on 

microphones, given that the weak sensors can provide data that is good enough to use for both 

training a good classifier and classifying new input. As these sensors do not currently contain 

enough resources in terms of CPU, memory and power to do classification of audio on the 

sensor itself, one option is to send the raw audio files to a more powerful central unit.  

Raw audio files are traditionally sampled with a high sampling rate and lasts for several 

seconds at the least. This leads to large audio files, which is very undesirable for weak 

sensors. For that reason, this project will investigate using sound clips that are far below the 

standard used for human listeners, as the input for training and testing classifiers.  

The sound clips with reduced dimensions will be considered together with a suitable data 

transfer protocol designed for IoT, in order to evaluate the usability of the raw audio files in a 

realistic IoT-setting.  
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Abstract 

The Internet of Things is one of the most promising fields of technological advancements. 

Through networks of sensors, we can obtain information about the environment around the 

sensor and use it for various purposes. In this project, the usage of microphones as a sensor is 

explored, by utilizing machine learning to classify sound clips collected in a lecture hall. To 

make raw sound clips usable by weak sensors, a downscaling of duration and sample rate of 

the audio clips are done. The downscaling is measured against the classification accuracy and 

Matthews Correlation Coefficient and show that the audio clips used in this project could by 

downscaled by a factor of 197, without losing classification accuracy/MCC. Based on the 

results of the downscaling tests, an estimation of energy consumption using Bluetooth Low 

Energy to transfer the audio files is presented, and the estimation result give a sensor lifetime 

that the author considers viable for a sensor network. Lastly, some approaches to adaptive 

sensing is briefly discussed, as a function to increase the reactiveness and data value. 

In the end, the results are considered mostly as a proof-of-concept for using downscaled audio 

files in an IoT-setting with weak sensor nodes. Even though these tests are done with a 

specific binary classification-based use case, and performed in a specific lecture hall, the 

results seem promising for other applications.  
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Sammendrag 

Tingenes Internett er en av de mest lovende teknologiene i dagens marked. Gjennom 

sensornettverk kan vi samle informasjon fra miljøet rundt sensorene og bruke det til 

forskjellige formål. I dette prosjektet blir mikrofoner som sensorer utforsket, ved å bruke 

maskinlæring til å klassifisere lydklipp fra en forelesningssal. For å gjøre rå lydklipp 

håndterbare for svake sensorer, er det blitt gjort en nedskalering av varighet og 

punktprøvefrekvens. Nedskaleringen er målt mot klassifiseringstreffsikkerhet og Matthews 

Correlation Coefficient og viser at lydklippene i dette prosjektet kunne bli nedskalert med en 

faktor på 197, uten å miste treffsikkerhet/MCC. Basert på resultatene fra nedskaleringen ble 

det gjort en estimering av energiforbruk ved bruk av Bluetooth Low Energy for filoverføring, 

og estimatet ga en sensorlivstid som forfatteren vurderte til å være brukbar for et reelt 

sensornettverk. Etter dette blir noen metoder for adaptiv føling kort presentert og diskutert, 

som en funksjon for å øke reaktivitet og dataverdi.  

Resultatene blir til slutt vurdert mest som et bevis på konsept for bruk av nedskalerte lydklipp 

i en IoT-situasjon med svake sensornoder. Selv om dette prosjektet har jobbet ut i fra et binært 

klassifiseringsproblem i en bestemt forelesningssal, viser resultatene at metoden virker 

lovende for andre applikasjoner.   
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1. Introduction and Motivation 

This project combines two of the most promising technological fields right now; Internet of 

Things and machine learning. Collection of data from simple sensors is a core functionality in 

IoT, and machine learning can provide ways of analysing this data and use it for desired 

purposes. There is a wide array of sensors to choose from, but we will focus on audio data 

gathered from microphones. 

Machine learning has proven to be a very powerful problem-solving tool and has shown that it 

can deliver results on a level humans just can’t. A good example of this can be found in chess. 

The chess game has existed for hundreds of years, and has been studied to great depths, and 

powerful computer programs has been developed to master the game. The most powerful 

chess engine today is called Stockfish (CCRL 40/4 Rating list, 2018) and is built as a 

traditional chess engine with a brute-force approach to finding the best moves (Stockfish 

community, 2018). The engine is very powerful, and much higher rated than any human 

player (FIDE, 2018). Despite this, a machine learning program called AlphaZero 

outperformed Stockfish after just 4 hours of training, with no other input than the rules of 

chess (Silver, et al., 2017). 

One interesting aspect of audio data in IoT is that sound is cheap and easy to obtain, as 

microphones can be bought very cheaply, and in small sizes. Microphones can be especially 

interesting in situations or locations where other sensors are unfitting or unwanted, such as 

cameras in a bathroom. In many scenarios it will be beneficial and natural to use more than 

one type of sensor, such as a microphone and a movement sensor together to detect human 

presence, but we will mainly focus on audio data alone. 

Another interesting aspect is the complexity of audio data compared to other types of sensor 

gathered data. Several other types of data, such as light level, CO2 level or temperature can be 

easily represented by a number, which makes it a lot easier to handle and very cheap to deal 

with. This is the ideal situation for sensors as they don’t want to store or transmit large files, 

because it is taxing on their limited power and memory.  

Using machines to classify audio data is not a new concept at all and is being used in various 

applications. One typical use case is speech recognition, where you can give commands to a 

machine by vocal input, for example your phone (Siri, Google Assistant, etc). Although 

speech recognition is not this project’s area of focus, it is interesting to see that the leading 
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global tech companies are invested in using information in sound for some of their core 

applications.  

 

1.1 The problem to be solved 

Raw audio files are typically sampled with a high sampling rate and lasts for several seconds 

at the least. This leads to large audio files, which is very undesirable for weak sensors. For 

that reason, this project will investigate using sound clips that are far below the standard used 

for human listeners, as the input for training and testing classifiers. The idea is that if we can 

reduce the sound clips down to a level where the sensors are able to handle them, without 

ruining the classification process, there is feasibility in using audio classification in an IoT-

setting. This means we have to investigate a system that is limited by typical IoT-restrictions, 

and see if this system would be able to operate at a satisfying level with low-level audio clips. 

 

1.2 Use Case: A System to Monitor Lecture Hall Usage 

In order to research the potential of audio data used in a cheaply operating sensor system 

utilizing machine learning, we want to see if we can get such a system to operate cheaply 

while maintaining satisfactory classification results. To do so, we will take base in a single 

use case, and work with that use case to obtain concrete results that can be used to analyse the 

performance on different system configurations.  

The use case we have chosen to test the feasibility of a cheaply operating sensing system 

using microphones, is to try to identify if there is activity in a lecture hall, only by analysing 

the sound from it. The reason for choosing this is simply because of convenient collection of 

audio data, and there is only a selected number of activities that occur regularly in a lecture 

hall, judging from personal experience. We also believe this use case is realistic enough to be 

used as a test scenario.  
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Figure 1: Abstraction of a sensor system in a lecture hall 

 

Figure 1 shows an abstraction of how we picture the system. Simply put, we have some 

sensors that record sound clips and send them or some information about them, to the central 

unit. This central unit can be a more powerful computer, and can either run classification on 

itself, or be responsible of sending the data over the internet to some cloud server that does 

the classification process. Either way, the central unit should be the one controlling the 

system, so that is where the logic of the system is located.   

 

1.3 Report Summary  

The initial parts of this report present some background and related work (section 2), 

methodology used in the project (section 3), basic sensor functionality and at what points 

energy can be saved (section 4), and the machine learning solution that are used in this project 

(section 5). 

The biggest and most time-consuming part of this project is presented in section 6, where we 

have performed a series of classification processes on increasingly lower quality sound clips 
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(reduction in duration and sample rate) and have investigated how the classifier reacted to 

this, presented by accuracy and MCC, compared to file size reduction. The results seemed 

very promising for usability in a sensor network, where the file size was reduced by a factor 

of 197 without a loss in accuracy/MCC, and only 4% accuracy loss/0.08 MCC loss when 

reduced by a factor of 391. 

In section 7, several IoT communication protocols are investigated, and BLE is selected as the 

optimal one for our system. Some calculations of estimated energy consumption are made, 

and it shows that a modern sensor chip utilizing BLE and the reduced files could theoretically 

operate for several years.  

Section 8 looks at adaptive sensing, and what other researches has achieved within that area. 

An idea for an algorithm that adepts the duty cycle based on observations is presented and 

adapting on battery level is briefly presented. 

Finally, in section 9 some concluding remarks are given, and suggestions for future work is 

presented in section 10. 
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2. Background and Related Work 

A key question is how to analyse and classify audio data. A modern audio file typically has a 

high sampling rate that contains thousands of data points per second and takes up a few 

megabytes of memory. This led us to research what previous work has been done on 

classifying audio data, and we found that feature extraction was a commonly used concept for 

this. 

Features as classifying values on audio data is not a new concept. Over 20 years ago features 

were used in a distance-based system to classify a new sound after having trained their model 

(Wold, et al., 1996). This system was mainly used to search for and retrieve similar sounds to 

input sounds in a database. They successfully described different types of sound using a set of 

features. Later work also proved the feasibility of such an approach where features are used 

for classification in a large collection of audio data (Mierswa and Morik, 2005). 

With the knowledge that features should be used to represent audio data, the next challenge is 

to decide what features to use. It seems natural that the selection of features is detrimental to 

get a good representation of the audio and get good classification results. The problem is 

selecting the set of features that suits your specific problem.  

 

2.1 Acoustic Scene Classification 

The goal of the sensing system in this project is to classify activity around the sensor, which is 

a lecture hall in our use case. That means the features needs to be good at representing an 

acoustic audio clip, which is not necessarily the same as features for other types of audio (e.g. 

speech recognition). Classifying what a person is saying is totally irrelevant in this setting, but 

sensing that a person is speaking, regardless of what words are spoken, is very relevant. This 

type of audio classification has its own “category”, called acoustic scene classification. 

The field of acoustic scene classification has seen a lot of research in the last years, especially 

through the Detection and Classification of Acoustic Scenes and Event challenges. The 2017 

edition of DCASE had a challenge based on acoustic scene classification, with training data 

already provided (Mesaros and Heittola, 2017). Participants were set to develop a system that 

outperforms a baseline system. Most of the background on acoustic scene classification in this 

project is taken from the research that was done in for this challenge, as it is some of the most 

modern research in the field. 
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Choosing exactly what features to use for a machine learning problem is far from a trivial 

task. Selecting the best features for a problem often requires a lot of work and is very 

impactful on the result of the classifier. Different type of features has been explored in the 

DCASE 2017 challenge in several of the papers, such as combining MFCCs (Mel Frequency 

Cepstral Coefficients) with IMFCCs (Inverted Mel Frequency Cepstral Coefficients) 

(Chandrasekhar and Gangashetty, 2017), different types of mel-spectrograms in combination 

(Park, et al., 2017), or extracting features from a fusion between standard spectrograms 

(spectrograms directly from the Short Time Fourier Transform) and Constant-Q-Transform 

spectrograms (Weiping, et al., 2017).  

One of the most commonly used features for this type of task are mel-band energies and 

features derived by them, according to the developers of AuDeep (Amiriparian, et al., 2017). 

MFCCs are one type of features derived from these mel-band energies. They further state that 

manual feature selection can be a hard and demanding task, and that unsupervised 

representation learning has gained popularity as a substitute to conventional feature sets. They 

especially mention representation learning with deep neural networks. To aid their task of 

acoustic scene recognition they developed a recurrent sequence-to-sequence autoencoder for 

unsupervised representation learning.  

 

2.2 Sensor Networks Used for Audio Classification 

Salomons and Havinga has done a survey on the feasibility of sound classification on wireless 

sensor nodes and does mention that some classes of sound classification could be done with a 

lower sampling frequency than what is normally used for sound recordings. They also 

conclude that when using MFCC features, the calculation costs are too heavy for small sensor 

nodes, but that Haar-like features could be feasible to calculate on a weak sensor. However, 

they don’t consider the payload of learning algorithms (Salomons and Havinga, 2015). 

Within the field of assisted ambient living systems there has been proposed a solution for a 

low cost wireless acoustic sensor network, where acoustic audio data is classified based on 

their audio fingerprint and Hamming distance to the closest fingerprint neighbour. Their end 

results did prove that it is feasible to realize an acoustic sound sensing system, where an audio 

fingerprint can be calculated before the data is sent to the classifying system. Compared to the 

classification system we have used in this project, their system used audio clips of higher 
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quality than what we found necessary for strong classification results and did not discuss 

using low power communication protocols (Quintana-Suárez, et al., 2017). 

While searching for related work and previous results reducing duration or sample rate of 

audio clips, there was very little work to be found that could guide our parameters. This 

means we had no knowledge about how classifiers would react to low duration/low sample 

rate audio clips. The choice of methodology had to have this in mind, so that the process is 

suitable for solving a problem we had little knowledge about. 
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3. Methodology 

Approaching the problem of optimizing the parameters of the audio clips needed to be done 

systematically. The book of Design Science Methodology for Information Systems and 

Software Engineering (Wieringa, 2014a) presents a way of designing a treatment for a 

problem that we found fitting for this project. A treatment is way to solve a problem, so 

designing a treatment essentially means designing a way to solve a problem. Naturally, 

finding a good treatment is not a necessarily a process where you find the optimal solution 

immediately, but rather through a looped process.  

 

Figure 2: The Engineering Cycle, taken from (Wieringa, 2014a) 

 

Wieringa introduces the loop in Figure 2, called the Engineering Cycle, and describes a 

looped process consisting of four phases. It starts of at problem investigation, where a 

phenomena that must be improved is defined. Moving into treatment design, we design one or 

more potential treatments for the problem. This treatment is then validated in the treatment 

validation phase, before treatment implementation happens. Lastly, we move to the 

implementation evaluation, where we evaluate the success of the treatment, and this is where 

a new iteration of the cycle could follow.  

 

3.1 Relating the Engineering Cycle to This Project 

Entering the loop, we first did some problem investigation, and found that modern audio files 

are difficult and expensive to handle for weak sensors. Looking at a potential chip for a 

system like this, the nRF52840 from Nordic Semiconductor (Nordic Semiconductor, no date), 
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it has 1MB flash memory onboard. Comparing this to audio files sampled at 44.1 kHz, a 

normal modern sampling rate, the sensor would run out of memory after recording between 5 

and 6 seconds of audio, assuming the entire memory is available for audio data. 

Power consumption is also a major issue with weak sensors, and data transfers are a power-

demanding operation. Because of this, sensors typically don’t want to transfer large data files, 

because it involves sending a large amount of packets, and that represent a large power drain.   

Next step was to design a treatment to this problem. The idea is that if we need to reduce the 

size of the audio files. This would be a treatment to the memory problem and could make 

sending the raw audio file a viable solution. From how sound is recorded and stored on digital 

devices, it can be represented as a series of data points on a time axis. That means we can 

either reduce the number of points, or the duration in order to reduce the size.  

The important relation to look at is how the classification process reacts to the change in 

audio file size. This relation is what defines the treatment as good or bad, and if we need to 

continue working on a treatment. This whole process can be seen in chapter 5, where the 

process is performed in this looped sequence.  
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Figure 3: Scaling up, taken from (Wieringa, 2014b) 

 

When developing and testing a system, it is important to keep the scale of it in mind 

(Wieringa, 2014b). What scale we are operating at indicates what information we can obtain 

from the results. During the development of a system, the idea is to work in increasingly 

realistic conditions. In this project we have mainly been operating in the bottom left corner 

and moved towards the right on the “Robust mechanism”-axis. The tests we have performed 

and their relation to this model are discussed later on.   
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4. The Sensor 

4.1 The Duty Cycle 

The sensor has three main tasks in this system: sense (record sound), compute (do some 

operation on the sound) and send (transfer sound file to central unit). This entire process is 

called a duty cycle. 

 

Figure 4: An abstract duty cycle 

Figure 4 illustrates a duty cycle, where the sensor sleeps for some time, wakes up to do some 

measurements (record audio in this case), compute (sensor chip performs some computations, 

Fast Fourier Transform is one example), send the data, and then go back to sleep. This figure 

is a high-level illustration of the operations that the sensor is supposed to do. It is not correctly 

scaled in relation to the other activities or the power and time-axis. The purpose of the figure 

is to give a general insight into the sensor’s operations, and to clarify this project’s thought 

process for problem treatment.  

This means there are three stages that can be influenced by configuration: Sensing, computing 

and sending. In addition to this, how often the cycle is run affects power consumption. 

Naturally, less frequent cycles leads to more time in sleep mode for the sensor, which saves 

power.  

 

4.1.1 Sensing 

Reducing the power spent on sensing would make a positive impact on power consumption. 

To reduce power consumption during sensing, the column for sensing either has to become 

shorter on the time axis, or shorter on the power axis. As there exists microphones can operate 
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with very little power drawn, such as electret condenser microphones (CUI INC, 2013), the 

importance of power saving in this phase is not as critical as in the sending phase. 

 

4.1.2 Computing 

What kind of computing needs to be done is system-dependent. For the system in this project, 

computations like Fast Fourier Transform could be relevant, but best case is that no real 

computations are done, so almost no power are used. Naturally, there could be some gain in 

power savings if the power spent computing reduces the power spent on sending by more than 

what the computations costs. This is discussed later, after presenting the results of audio 

reductions. 

 

4.1.3 Sending 

The power used for sending will depend on the amount of data that has to be sent, and how 

that data is sent (what protocols are used). The amount of data that needs to be sent is 

influenced by how much data is recorded in the sensing phase and how this data is handled 

before sending. Data transfer is typically the most expensive phase of the duty cycle, and for 

that reason it is an important factor when managing power usage.  

 

4.2 Duty Cycle Frequency 

How often the sensor executes a duty cycle is also a big factor in terms of energy usage. Say 

you reduced the amount of cycles performed by 50%, then power usage should also be 

reduced by 50%, assuming every cycle use the same amount of energy and that power spent 

in sleep mode is negligible. However, reducing the sensing frequency could reduce the 

usability and reactiveness of the system. 

 

4.3 Why is Resource Usage Important? 

On a relatively weak sensor that is running on battery or some alternative constrained power 

source, the sustainability of the sensor is a big concern. You typically want the sensor to be 

able to operate for very long periods of time, without having do any manual operations on it.   
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In contrast to personal computers today, all resources on a small battery-driven sensor chip is 

scarce. The CPU is much slower, the memory is very small, and the power is limited. 

Changing battery or manually recharging it is typically not a feasible solution, so the power 

usage must be carefully planned. Possible operations or computations that can be performed 

on the sensor is also limited with limited CPU and memory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

5. Finding and Testing a Machine Learning Solution 

In section 2.1, AuDeep was mentioned as an acoustic scene classification tool. Using AuDeep 

makes it possible to do unsupervised feature learning for different sound data sets, and then 

use these features to train a classifier. As the tools seemed easy to use, delivered strong results 

in the DCASE 2017 challenge and deals with the issues of features selection, AuDeep was 

selected for initial testing, to see if it is compatible and suitable for this project. 

As an initial test, the settings were fitted to the bottom left corner of Figure 3, meaning the 

test were a single case, with idealized condition. Before running the test, the hope was that the 

AuDeep-tools would accept the recorded audio files, and that the classifiers would give 

acceptable results after training. This would confirm that AuDeep could be used for this 

system and this use case. 

The AuDeep-project comes with built-in functionality to train an SVM and an MLP-classifier. 

Throughout the tests, we run the classification process with both classifiers to give more 

trustworthy results, and to reveal how the classifiers differs as the input is changed. Testing 

this with self-supplied test data separated in cross-validation folds showed promising results, 

as demonstrated by these confusion matrices: 

MLP:        SVM: 

 

 

 

 

Figure 5: MLP classifier test Figure 6: SVM classifier test 
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This was the initial test with only two labels, which are very different from each other. As the 

resulting confusion matrices indicates, the correct classification rate is 100%, and confirms 

the usability of the tools and the case itself. This test fits the description of a single case with 

idealized conditions, which is the bottom left corner of Figure 3. The next step is to scale up 

to a more realistic scenario. 

Following this run, two more labels were added, so the system is now trained to label a sound 

into one of these four classes: “forelesning”, “stille”, “rats” or “team_act”. “Forelesning” is 

sound of a lecture being held in the lecture hall, “stille” is how the hall sounds when there are 

no people in the hall itself (but background noise exist), “rats” is sound recorded from when a 

large group of students is taking a test in the hall, but being quiet whilst doing so, and 

“team_act” is a team activity taking place in the lecture hall, meaning that a lot of chatter is 

going on, but the lecturer is not speaking, and no sound is coming from the lecture hall 

speakers.  

From personally observing the lecture hall, this situation seems much more realistic, and 

covers most of the activity that takes place in the lecture hall. Note that there will always be 

exceptions to this, like construction work or washing being done. These cases could trick the 

system, as it has to label a sound with one of the given labels, but as we are not developing a 

commercial product, we will not implement any handling of these because it does not change 

how the system behaves. 

The reason these classes were added was to get a better understanding of what type of sound 

comes closer to each other in classification, as parameters are changed. In the end, the system 

should do a binary classification where “forelesning”, “rats” and “team_act” all are classified 

as the lecture hall being busy, while “stille” means the lecture hall is classified as empty.  

An initial concern here was that the system would not be able to separate between rats and 

silence, as they sound very similar to a human. Sitting in the hall with your eyes closed could 

fool you at the right time, unless you pick up the sounds of rattling paper, someone coughing, 

etc. However, this proved to be much less of a problem than expected, as shown by these 

confusion matrices: 
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MLP:        SVM: 

 

As shown, the results seem very strong, and if we look at how the binary classifier would 

evaluate these results, it would result in 100% accuracy, as we don’t really care about making 

some wrong classifications between classes that represent the same end result. 

The initial test data set used to set this standard consists of 158 audio clips, divided like this: 

44 “forelesning”, 50 “rats”, 39 “stille” and 24 “team_act”. The imbalance in number of audio 

clips per class is due to hardware problems during recording resulting in corrupted clips, and 

therefore some data had to be cut from the final data set after the data collection phase. This 

imbalance is taken into account when evaluating the classifier later on. The audio clips are put 

in two folds of almost equal size, in order to use cross-validation for evaluation, which is 

handled by AuDeep. 

A Raspberry Pi 3 Model B together with a Cirrus Logic Audio Card (Element14, 2014) were 

used to record audio data and transfer it to a more powerful computer for analysis. The built-

in microphones of the audio card seem well suited for a test environment that resembles an 

IoT-sensor setting. The data collection has only been done with a single sensor.  

These original tests are done with 9 second audio clips, sampled at 44100 Hz, which is what 

we use as our upper limit for duration and sample rate. This combination seems representable 

for a typical classification problem that does not restrict itself because of constrained 

resources. 

Figure 7: MLP with no reduction on audio clips Figure 8: SVM with no reduction on audio clips 
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The spectrogram extraction is done with 0.08 FFT window width, 0.04 window overlap, and 

128 mel frequency bands extracted.  

The autoencoder has recurrent layers, with 256 GRU cells as is default in AuDeep. The 

decoder is set to be bidirectional. The training of the autoencoder is done with 64 epochs, 

learning rate 0.001 and 20% dropout. Because of memory issues, the batch size on the home 

system that were used was set to 16. In the later test, this is turned up to 32, just to speed up 

the training process slightly. 

With this autoencoder we could generate features from the spectrograms and use the cross-

validation setup to evaluate the classifiers based on these features. The SVM evaluation was 

done with a complexity parameter of 1, while the MLP evaluation was done with two hidden 

layers, 150 hidden units per layer, for 400 epochs, a learning rate of 0.001 and 40% dropout. 

All classification tests are done five times and the results shown are the average of those five 

runs. This is done because the classifiers show some randomness, and therefore the average of 

five runs gives a better picture of the real performance. 

The choice of these parameters is simply based on the original AuDeep experiment. The 

AuDeep developers showed how their classification accuracy was affected by changing these 

parameters, and what were the optimal settings for their data sets. We used rather low settings 

in this system, but the classification accuracy is still very high in the best cases. The most 

important factor in these tests is keeping these AuDeep-parameters static, so comparison of 

the classifier can be made when the only change in the system are the sound files themselves.  

There could be a lot more experimentation with parameters and machine learning techniques 

to perfectionate the correct prediction rates, but this project focuses more on the differences 

between different sound clip parameters than perfectionating the machine learning part of the 

system, and it is much more interesting for us to investigate efficiency-aspects of the full 

system. For this reason, we settle for the learning parameters we have found satisfactory so 

far.  
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6. Classification on Downscaled Audio Clips 

One way of making the system more efficient is reducing the amount of data needed. There is 

strong motivation to reduce the size of each sound file. If we could reduce the file size, there 

would be less memory usage on the sensor, there would be less power spent on transferring 

data and smaller sound files are potentially cheaper to record and do operations on, saving 

both power and CPU. There are two obvious ways this could be done: reduce the number of 

seconds of each sound clip; or reduce the sample rate of each sound clip.  

For all following tests, a four-label confusion matrix is presented for both classifiers to give a 

better idea of how the classifiers reacts for each data set, and what classes gets harder for the 

classifiers to distinguish as the sound clips are cut down. However, the use case that is 

considered in this project is a binary classification problem, with two labels that describes the 

state of the lecture hall: busy or empty. In the end of each subset of tests, a table with the 

binary classification accuracy is presented, with a corresponding graph. All classification 

accuracy percentages presented are for the binary classification case. Percentages are also 

rounded to the closest integer. 

The tests performed in this section is done with more realistic conditions than the initial test 

with only two classes, moving the field of operation further to the right of Figure 4. The 

samples are still only collected in a single lecture hall and therefore more tests from several 

rooms are needed to move into the centre of the graph where we are looking at multiple 

samples of realistic condition tests. 

One assumption done here is that the reduction of sampling rate and sound clip duration are 

independent, so that one dimension can be altered without the other dimension being affected. 

As illustrated by the graph in Figure 9, this assumption gives us the possibility to explore 

values along one axis at a time. If the assumption is true, this should mean that when both 

dimension are explored, doing a combined reduction on both dimension should yield a 

classification accuracy very close to the weakest accuracy shown when only reducing one 

dimension. An example would be if cutting the duration in half gave 90% accuracy and 

reducing the sample rate by half gave 87% accuracy, then the combination of the two should 

still give around 87% accuracy.  
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Figure 9: Time and sampling rate relation 

 

6.1 Reducing Duration by Cutting Clips in Smaller Parts 

For this part of the project, the work is done in cycles like indicated by Figure 2. The machine 

learning process is the same, but with constantly changed sound clip durations. For each step 

we look at gain versus loss and change the next run slightly to find the optimal settings for the 

system. 

One concern here is that the shorter sound clips doesn’t capture for a duration that is long 

enough to obtain sound data that is pivotal for the class, such as recording in between two 

words or two sentences of the lecturer, making the room appear silent to the classifier.  

First test done is cutting all clips used in the initial test in half, meaning that the number of 

sound clips used are now doubled, while the total duration stays the same. The confusion 

matrices below show the results for 4.5 seconds sound clips: 
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4.5 second clips: 

MLP:        SVM: 

  

Both classifiers still show a ~100% accuracy, showing no real loss compared to the original 

run. 

2.25 second clips: 

MLP:        SVM: 

 

The binary classification accuracy is still maintaining 100% accuracy for MLP, and dropping 

to 99% for the SVM-classifier. 

 

Figure 10: MLP 4.5 seconds Figure 11: SVM 4.5 seconds 

Figure 12: MLP 2.25 seconds Figure 13: SVM 2.25 seconds 
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1 second clips: 

MLP:        SVM: 

 

The original clips are now cut in 9 equal parts, but the system still performs classification at a 

near perfect rate, rounded to 100% for both classifiers. 

 

0.5 second clips: 

MLP:        SVM: 

 

The confusion matrices show a very slight drop-off for 0.5 second clips, but the accuracy is 

still high enough to be rounded to 100%. 

Figure 14: MLP 1 second Figure 15: SVM 1 second 

Figure 16: MLP 0.5 seconds 
Figure 17: SVM 0.5 seconds 
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0.25 second clips: 

MLP:        SVM: 

 

Once again cutting all previous clips in half, but the classification stays at 100% for MLP and 

drops to 99% for SVM. 

0.08 second clips: 

MLP:        SVM: 

 

 

Going down to the lowest clip duration our settings allows, and the system still performs very 

strong classification, with both classifiers correctly classifying 98% of the total clips. 

Figure 18: MLP 0.25 seconds Figure 19: SVM 0.25 seconds 

Figure 20: MLP 0.08 seconds Figure 21: SVM 0.08 seconds 
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Results visualizations: 

 

 

As seen in the table with the corresponding graph, the overall accuracy is very high, only 

showing a slight drop-off for the very lowest category. These results were surprisingly high, 

especially for the 0.08 second clips. Despite one of the initial concerns being that when given 

very short sound clips, there is a chance of not recording sound that is typical for the class, it 

seems this was not a very big problem in this case. 

 

6.2 Reducing Sample Rate of Each Audio Clip 

Lowering the sample rate of the clips, rather than the shortening of the recordings, gives a 

similar reduction in memory used. On the sensor node this would mean the sensor would have 

to sense for a longer period of time for each duty cycle, but the sensing itself is possibly 

cheaper due to the lower sampling rate of the audio clip itself. For the sake of this system, we 

assume the sensor power consumption is directly related to the file size, which makes 

changing the duration and sample size equally important. 

 

 

 

Time MLP SVM 

9 100 100 

4,50 100 100 

2,25 100 99 

1 100 100 

0,5 100 100 

0,25 100 99 

0,08 98 98 

Table 1: Classification accuracy vs time reduction 
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Figure 22: Graph of classification accuray vs duration 
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Sample rate: 22050 Hz 

MLP:        SVM: 

 

Reducing the sample rate by 50% does have a larger impact than what cutting the duration in 

half had. Both classifiers still perform very well but does go down from 100% to 99%. 

Notice: a severe dip in the accuracy for “team_act”, somehow caused by this sampling rate in 

particular. Why this happened is unclear to me, despite trying to compare the frequency 

spectrum of these clips to the originals. This will not be a problem in when working with this 

use case but shows that reduction of sample rate could have some unexpected effects.  

 

 

 

 

 

 

 

 

 

Figure 23: MLP 22.05 kHz Figure 24: SVM 22.05 kHz 
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Sample rate: 16000 Hz 

MLP:        SVM: 

 

There is a very slight loss going from 22050 Hz to 16000 Hz, tipping the SVM-classifier over 

to 98% accuracy.  

 

Sample rate: 8000 Hz 

MLP:        SVM: 

 

Just as with 16000 Hz, the accuracy increases slightly when reducing the sample rate. 8000 

Hz is pretty much the lowest frequency used to sample sound these days and is already 

Figure 26: MLP 16 kHz Figure 25: SVM 16 kHz 

Figure 28: MLP 8 kHz Figure 27: SVM 8 kHz 
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considered old-fashioned because the sound quality is too low for a good listener experience. 

The classifier still performs well, and SVM goes all the way back up to 100%.  

 

Sample rate: 4000 Hz 

MLP:        SVM: 

 

Going down to 4000 Hz, the audio quality is terrible to listen to, but the system performs 

extremely well under these conditions, showing 100% accuracy on both classifiers. This 

seems very promising when the goal is to make a system that operates as cheap as possible.  

 

 

 

 

 

 

 

 

 

Figure 29: MLP 4 khz Figure 30: SVM 4 kHz 
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Sample rate: 2000 Hz 

MLP:        SVM: 

 

At 2000 Hz it gets very hard to tell what the lecturer is saying, but any human could still tell 

it’s a lecture, and so can the system. Still near perfect accuracy despite having 22.05 times 

lower sampling rate. 

 

 

Sample rate: 1000 Hz 

MLP:        SVM: 

 

Figure 32: MLP 2 kHz Figure 31: SVM 2 kHz 

Figure 34: MLP 1 kHz Figure 33: SVM 1 kHz 
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At 1000 Hz it is almost impossible to make out any words the lecturer is saying, but it is still 

possible to understand that the sound clip is a human speaking. The system shows extremely 

good performance, despite having reduced the sampling rate by a factor of 44.1. In fact, the 

system does not wrongly predict nearly any labels, so seemingly there is no critical loss of 

information that is needed to separate the audio clips. 

 

 

Sample rate: 500 Hz 

MLP:        SVM: 

 

At this sample rate, some voice gets cut out, and the system starts struggling with 

classification finally, with a very large drop-off in accuracy from 1000 Hz. 

Figure 36: MLP 0.5 kHz Figure 35: SVM 0.5 kHz 
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Result visualization: 

 

 

 

 

After doing a frequency analysis on a selection of sound files from each class, it becomes 

clear that the majority of all sound in the clips is found from ~2000 Hz and below, while there 

is some noise from ~3000 Hz to ~4000 Hz and also a little bit of noise from ~12000 Hz and 

above, while there is nothing to report between ~4000 Hz and ~12000 Hz. This lead us to 

believe that 4000 Hz would be the ideal sampling rate for the system, but as it turns out, the 

sound that is important for classification seems to be present even when sampling with only 

1000 Hz.  

Overall, reducing the sample rate also showed very promising results, where we were able to 

reduce the sample rate all the way down to 1000 Hz without losing accuracy. In fact, the low 

sample rates of 4000 and 1000 Hz both managed an 100% accuracy, which was slightly better 

than some of the higher sample rates.  

Based on the tests performed so far, both for duration and sample rate, both options seem very 

strong, and both options bring great benefits to the system without losing classification 

accuracy. 

Sample 

rate MLP SVM 

44100 100 100 

22050 99 99 

16000 99 98 

8000 99 100 

4000 100 100 

2000 100 99 

1000 100 100 

500 87 92 

Table 2: Classification accuracy vs 

sample rate reduction 
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Figure 37: Graph of classification accuracy vs sample rate 
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6.3 Combining the Two Downscaled Factors 

Our initial assumption about duration and sampling rate is that they are independent of each 

other, and that leads us to try both parameters at the same time in this next step. The idea 

behind this is illustrated in Figure 9, where we assumed we could find the best solution for the 

system along the diagonal line somewhere. The straight lines along the X and Y-axis is where 

we have tested the classification accuracy at each point. 

First test done was with very low values, the second lowest tested in both categories, being 

0.25 seconds duration and sampled at 1000 Hz. Best case that could happen here is that the 

combination shows no loss compared to the 0.25 seconds, high sampling rate run, and we 

obtain a classification accuracy that is close to 100%.  

 

 

Sound files of 0.25 seconds, sampled at 1000 Hz: 

MLP:        SVM: 

  

So the assumption of complete independency did not hold, and the combined reductions on 

the audio clips lead to a major loss in classification accuracy. With this combination, the 

accuracy drops off significantly, to a point where it is unacceptable in pretty much any 

classification system. This means more tests need to be done to get a better understanding of 

how changing both parameters at the same time affects the classification accuracy.  

 

Figure 38: MLP 0.25 seconds, 1 kHz Figure 39: SVM 0.25 seconds, 1 kHz 
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Sound files of 0.5 seconds, sampled at 1000 Hz: 

MLP:        SVM: 

 

 

 

Sound files of 1 second, sampled at 1000 Hz: 

MLP:        SVM: 

 

 

 

 

Figure 40: MLP 0.5 seconds, 1 kHz Figure 41: SVM 0.5 seconds, 1kHz 

Figure 42: MLP 1 second, 1 kHz Figure 43: SVM 1 second, 1 kHz 
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Sound files of 1 second, sampled at 2000 Hz: 

MLP:        SVM: 

 

 

 

Sound clips of 0.08 seconds, sampled at 500Hz: 

MLP:        SVM: 

 

 

Figure 44: MLP 1 second, 2 kHz Figure 45: SVM 1 second, 2 kHz 

Figure 46: MLP 0.08 seconds, 0.5 kHz Figure 47: SVM 0.08 seconds, 0.5 kHz 
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To give an idea of how the system would perform with the worst settings tested in 

combination, one test was run with 0.08 second clips, sampled at 500 Hz. As seen in the 

confusion matrices, the result is extremely unreliable, and the system wrongly classifies two 

of the classes more often than it correctly classifies them.  

Sound files at 1 second, sampled at 4000 Hz: 

MLP:        SVM: 

 

Both 1 second and 4000 Hz showed 100% accuracy on their own, and the combination is 

almost equally good, yielding 100% accuracy with the MLP classifier.  

 

 

 

6.4 Accuracy to File Size Reduction Ratio 

An interesting relation to look at is how much classification accuracy is sacrificed in order to 

reduce the file size. This is the essential factor that has to be considered when designing the 

system. A product owner could use this to make a decision, based on his system specification, 

of what file size to use in order to keep a satisfactory classification accuracy. 

Figure 48: MLP 1 second, 4 kHz Figure 49: SVM 1 second, 4 kHz 
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The tests with reducing both dimensions of the audio clips in this data set is presented in this 

table with the corresponding graph (MLP accuracy is used as it performed slightly better 

overall): 

 

 

6.5 Suspicion of Overfitting 

As the classification accuracy is very high even when reducing the duration and sample rate, 

there could be a danger of overfitting. Overfitting would mean that the correct classification 

rate is artificially high due to a too one-sided data set or the test data being artificially close to 

the training data, and that the test results are not realistic. This would also mean that the 

system may not be fit to predict labels on new data samples. To make sure that the cross-

validations were not overfitted, tests of data that was not available during training of the 

models were used. These tests show similar results to the original cross-validation tests 

(within reasonable boundaries of a few percent), and at least proves that the previous tests are 

not majorly overfitted.  It should be noted however, that these tests were only done for a few 

combinations in the category of both dimensions being reduced, and that more testing is 

necessary to get a strong understanding of the classification accuracy over time.   

 

6.6 Using Matthews Correlation Coefficient to Evaluate the Classification 

Looking at the classification accuracy in the table above, it could seem that accuracy can be a 

misleading metric for classification performance. Given that the classes are imbalanced in the 

Classification 

accuracy 

File size 

reduction 

100 0 

100 99 

100 197 

96 391 

92 771 

87 1500 

73 7283 

Table 3: Classification accuracy vs 

file size reduction 
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Figure 50: Graph of size reduction vs classification accuracy 
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binary case, the accuracy is as high as 73% despite the confusion matrix showing horrible 

results, as the system would almost always wrongly classify silence with these parameters. 

Matthews correlation coefficient is another metric and has shown to be suitable for 

imbalanced data (Boughorbel, et al., 2017). A great benefit of using MCCs in this project is 

that it can be directly calculated from the confusion matrices and takes all squares of the 

matrix into account.  The formula for MCC can be written like in Equation 1 

MCC =
𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

Equation 1: Matthews correlation coefficient 

where TP is True Positives, TN is True Negatives, FP is False Positives and FN is False 

Negatives. 

The MCCs are only calculated for the combined reduction section, because it would give very 

little valuable information elsewhere. The ideal value for the MCC is 1, and if the value goes 

below 0, the classifier performs worse than what a random classification would do. The 

results from the MCC calculations are displayed with a table and graph below: 

 

 

                   Figure 51: Graph of MCC vs file size reduction 
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Table 4: MCC vs file size 

reduction, with file size in kB 

MCC 
File size 
reduction 

Size in 
kB 

1 0 1587 

1 99 16 

1 197 8 

0,92 391 4 

0,8 771 2 

0,65 1500 1 

0,03 7283 0,2 
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These results paint a more telling picture of the system’s performance, and actually shows that 

the combination of 0.08 seconds and 500 Hz is almost equal to randomly labelling sound 

clips. It still shows that the 197 times reduction is equal to that of the full-size clips, and the 

loss of going down to 391 times file size reduction is relatively small. 

 

6.7 Discussion of Results 

The numbers presented from the tests speaks for themselves to some degree, where the drop-

off in classification quality clearly shows when the clips are reduced more and more. Without 

a full implementation of a system and a product owner with some demands for the system, it 

is difficult to pick the “correct” file size, but with a presentation like this it is possible to set a 

requirement for either file size or MCC/accuracy and tell the other factor from that. Example: 

The university demands an MCC of above 90 in the system, and that means we are able to 

reduce the file size about 400 times while still satisfying the requirements.  

The two classifiers gave very similar results throughout most of the tests, except for the 0.08 

seconds, 500 Hertz audio clips. From this it can be seen that the representation learning 

process gives a very good basis for the classifiers, and that the choice is final classifier is not 

necessarily critical. Other classifiers have not been tested, but it is plausible that they would 

show similar results, and that the final application can be flexible in the choice of classifier. 

The degree of reduction needed could also be hardware specific. Some sensors have very little 

memory and might not be able to store files over a few tens of kilobytes, while stronger 

sensors could be able to store a few megabytes. In this case it comes down to selecting the 

proper hardware for the desired system.  

A side effect of using audio clips of short duration and very low sampling rate, is that they 

become uninterpretable to a human listener. This does cause the system to become naturally 

non-intrusive, as it does not capture data that has any real value outside of the classification 

system. If security is down-prioritized because of resource constraints, this could be a very 

positive effect to inherit.  

These results are obtained from sound files recorded in a single lecture hall and is therefore 

mostly a proof of concept in this context. However, the results seem very strong and is 

promising for a more general setting. The possibility of training a system that can classify 
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sound from any given room is unclear, but an interesting prospect for future systems, and with 

a powerful common cloud server there is potential for a very scalable solution, suitable for 

something like an entire university.  
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7. Data Transfer Protocol 

The reason that choice of data transfer protocol is an important aspect of system design, is that 

data transfer is the most expensive operation for a lot of sensors systems, including the one in 

this project. A lot of the protocols designed for IoT is not designed to handle larger file 

transfers and works best when the information that needs to be sent can be stored in a single 

packet. 

Finding the most suitable protocol to use for an IoT-system is a challenging task, because it 

depends on a lot of variables. There is no single protocol that simply beats out all the others, 

they all have different perks and drawbacks, and the choice comes down to what environment 

the system operates in and what the system needs to accomplish. In our case, the system is set 

to work within one room in an indoor environment, and it needs to transfer files of some 

kilobytes (around four to eight, as shown in the previous section).  

The protocol used in a sensor system is a contributing factor in defining the system’s 

capabilities. It is the protocol that determines how far the sensor can send data, how fast it can 

send the data, and how much power it uses doing so.  

 

7.1 Finding a Set of Potential Protocols 

The list of protocols to choose from is long (Schatz, 2016), but luckily there has been several 

comparative studies between some of the most popular ones. For the system we are aiming 

for, the most important value is low power consumption, as long as some transmission rate 

and range are preserved. The transmission range for this indoor sensing system will be some 

tens of meters, so we can exclude the very low range protocols such as NFC, and high 

power/high range technology such as cellular is not relevant for the system either. That leaves 

the protocols that operates within a range of some tens of meters, and keeps an acceptable 

data rate, while still consuming very little power. Some of the protocols that fits this 

description are 6LoWPAN, Zigbee, Bluetooth Low Energy, Z-wave and ANT, so these are 

the ones we will compare and decide between in the next section. 

 

7.1.1 6LoWPAN 

6LoWPAN – “IPv6 over Low-Power Wireless Personal Area Networks” is as the name 

suggest, a low power protocol that uses IPv6-packets to efficiently transfer data. This protocol 
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does what it promises and is capable of operating cheaply in a duty cycle with sleeping 

periods (Olsson, 2014). The big advantage of 6LoWPAN is usage of IP communication which 

is used by an extreme number of devices already, and very well known by most developers, 

and it also has good support for mesh networks. In this system however, it falls behind some 

of the other protocols like Bluetooth Low Energy, because of higher energy consumption and 

no need for mesh network capabilities (Tabish, et al., 2013;López, et al., 2013) 

 

7.1.2 Zigbee 

Zigbee is another low power, low data protocol that is designed for sensor networks. It is 

created by the Zigbee Alliance which consists of several of the world’s largest communication 

and IT-based companies like Huawei and Comcast (Zigbee Alliance, no date). This means 

there are strong support for the protocol, and it is well established in the market. Zigbee has 

been part of several comparison articles, and the capabilities of the protocol is well tested and 

documented through all of this research (Siekkinen, et al., 2012; Dementyev, et al., 2013).  

 

7.1.3 Bluetooth Low Energy 

Another promising low power protocol is Bluetooth Low Energy, which is the newer versions 

of Bluetooth. The Bluetooth protocol exist in a very large portion of commercial products 

already, such as most smartphones. Originally the protocol had shorter range and higher data 

rate than Zigbee (Ray, 2015), but with the introduction of Bluetooth 5, the range has been 

quadrupled and the maximum rate doubled, without an increase in power consumption, 

making in a very strong contender in the IoT-sensor protocol market. For the system in this 

project it seems like a good fit, with a star network topology and long sleeping durations 

between data bursts (Gomez, et al., 2012; Collotta, et al., 2017). 

 

7.1.4 Z-wave 

Z-wave is a more specialized low power protocol than Zigbee and BLE, but with many 

similarities. The main differences are that it operates in a lower frequency band, and that it 

offers low data rate, especially compared to BLE (40 kbps vs 2Mbps). Like Zigbee, it 

operates as a mesh network, but it has no significant advantages in this project’s system (Ray, 

2017). 
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7.1.5 ANT 

ANT is another low power protocol that is capable of operating in a cyclic sleep scenario. 

With ANT+, and extension of the ANT protocol it is possible to build a topology-flexible 

sensor network, and ANT+ offers interoperability between all ANT+-devices (ANT / ANT+ 

DEFINED, no date). However, ANT doesn’t seem to provide any significant advantage over 

the other protocols for this project, as it loses out in power consumption to both Zigbee and 

BLE (Dementyev, et al., 2013). 

 

7.2 Choosing a Suitable Protocol 

Judging from these descriptions and comparisons, Bluetooth 5’s Low Energy seems to be the 

most promising alternative, as it has sufficient range, high data rate and very low power 

consumption. Bluetooth is also a widely used protocol and there are several chips on the 

commercial market with Bluetooth 5 capabilities. With the improved performance in 

Bluetooth 5, the sensor should be able to transmit at least 40 meters indoors, and the data rate 

can be configured to 125kbps/500kpbs/1Mbps/2Mbps. Noting that an increase in data rate 

means a decrease in range, makes it so that choosing data rate becomes sensor specific. 

Despite all of this, the sensor could transmit data at 2Mbps using only half the power its 

previous version would have used, because the radio frequency decides the power 

consumption, not the data rate itself, and the radio frequency has remained 2.4GHz (Collotta, 

et al., 2017). 

What is especially interesting in this case, is how much energy is spent on the file transfer. 

This could be a very costly operation in terms of power usage and can have a heavy influence 

of how the sensor operates in general, if the number of data transfers has to be restricted to 

save battery power.  

 

7.3 Making an Estimation of Power Consumption 

To try to understand more about how this system could operate, making an estimation of 

power consumption could be useful. Although an estimation won’t match a real-life situation, 

it should give some idea about how the system will perform, and if it is within reasonable 

boundaries for the system requirements.  
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There is a lot of parameters to consider when trying to estimate energy usage by the sensor 

node. The number of packets that needs to be retransmitted is one of these parameters, which 

can be different for every transmission. To make an estimation, the number of retransmissions 

is assumed to be 0.  

To give a general idea of the power consumption of the data transfer, we set a series of 

parameters that could be used in the system. In order to keep a connection between the master 

and slave alive, there has to be at least one notification sent every 4 seconds. Assuming 

latency is a non-issue in the system, the sensor could send the file in packets, with one packet 

every 4 seconds. Choosing a sensible file size, such as 8058 bytes which showed no real loss 

in accuracy, with DLE enabled, meaning we can fit 244 bytes of payload in each packet, we 

need a total of 35 packets to transfer the entire file. Using the 1MB PHY data rate, sending 1 

packet per 4 seconds, means the sensor transfers one full audio file in 140 seconds. This way 

we essentially spend no excess power transferring the data, except the power difference 

between sending an empty packet to keep the connection alive and sending a full 244-byte 

payload.  

To do the calculations, we used STMicroelectronics’ BlueNRG current consumption 

estimation tool (STMicroelectronics, 2017). Their BlueNRG-2 chip does support Bluetooth 5, 

and is therefore suitable to use in these calculations (STMicroelectronics, no date). Assuming 

a battery capacity of 500 mAh and using the power consumption values for the BlueNRG-2 

for the different operations, the estimated lifetime of the battery is 7 years, 4 months, and 27 

days. Keep in mind these calculations only take the Bluetooth data transfer into account, so 

that all sensing, computing and other operations done on the sensor chip are not included. The 

plot given of the power consumption in one connection interval is shown in the plot in Figure 

52. 
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Figure 52: BlueNRG-2 energy consumption for one packet sent 

These settings would allow the sensor to send one audio file to the central unit every ~2.33 

minutes, meaning the situation of a lecture hall is mapped out by around 25 measurements per 

hour, without having to worry too much about power consumption. Even if the real energy 

consumption of the sensor proved to be double of what this estimation shows, it would still 

last for over 3.5 years. In fact, if we chose to send 35 packets per 4 second interval, the battery 

would still last for 3 months and 25 days if only spending energy on data transmission. 

 

7.4 If We Could Do Classification on the Sensor 

Currently, the sensors do not have the capability to do classification on the sensor themselves, 

but if they did, there could be a huge power saving potential, by only sending very small 

packets indicating the class (1 byte), and even choose to only send data when a change in 

class is observed. Using the same settings as the calculation above, but with 1-byte payloads 

instead of 244, we are looking at over 17 years of battery life, although this is slightly 

misleading as the operations on the sensors would be much heavier. Without a significant 

increase in memory and CPU power on the sensor, classification on the sensor is not feasible, 

but it is an interesting aspect of the future.  

Doing the pre-processing of the audio clips on the sensor also proved inefficient when the 

audio clips were small, as the files made by the pre-processing were significantly bigger than 

the raw audio clips. 
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8. Adaptive Sensing 

A lot of work has been done on sensing smarter than just getting samples from all the sensors 

in a network at a static interval. The motivation behind this can be several factors, but one of 

the most popular is saving energy without losing data value. This is usually achieved by 

adapting the duty cycle. Studies has been done where the duty cycle is adapted based on 

traffic load (Oliveira, et al., 2013), distance to the central unit (Zhang, et al., 2010), and also 

sensor redundancy where some sensors can be left sleeping to conserve power (T, 2015). 

However, these are not the only factors that can be considered to trigger a change in duty 

cycle frequency. 

How often a duty cycle is performed can also be related to the reactive needs of the system. 

One example of a system that is dependent on fast reactions is an alarm system, where the 

earlier you can raise the alarm, the better. In a system like this, sensing frequently is crucial, 

but would be very taxing on the battery, so finding the correct trade-off is the key to obtain a 

good system overall.  

Another factor to consider is the current battery level of the sensor. In many cases, loss of 

functionality in the system is worse than having a weaker data foundation. In case of low 

battery level, a decision to reduce the duty cycle frequency could be made in order to maintain 

the sensing functionality. 

The adaption based on observations is the factor this project will take a closer look at, as it 

seems the most interesting in a single-hop network with relatively low amount of sensors per 

central unit. Adaption based on battery level is also briefly discussed in combination with 

energy harvesting techniques.   

 

8.1 Adaption Based on Observations 

When dealing with sound as an information source, noise is a challenge that must be dealt 

with in some way. Noisy sound can even be assumed to always be present in some way, and 

noise can affect the classification. If the environment around the sensor proved to be noisy on 

a regular basis, it can be hard to trust a single sound clip coming from it.  

In the calculations for BLE power consumption, a constant duty cycle interval was used, 

making the system very predictable, but in a situation where we choose to not trust the 

observation before we see several equal classifications in a row, the reactiveness of the system 
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is weak. There is considerable motivation to increase the duty cycle frequency in some 

periods of time to increase the data value and reactiveness of the system. However, this would 

mean an increase in power consumption, which is very undesirable. The ideal system would 

be able to dynamically change the duty cycle frequency to achieve higher data value and 

reactiveness, without significantly increasing the power consumption. 

As previously mentioned, doing classification on the sensor is not viable yet, which means 

that if the system were to adapt its duty cycle frequency based on observations, it needs to be 

organized by the central unit.  

The idea behind this is that a lecture hall typically goes through longer periods of the same 

activity. One single lecturing session often indicates activity in the room for around 2 hours, 

and a full schedule could mean the lecture hall is almost always in a busy state from 08:15 in 

the morning to 16:00 in the evening. This description of a lecture hall calls for a low duty 

cycle frequency. 

Although the low duty cycle frequency would be a good solution most of the time, it would 

come at a cost, which is reactiveness. As changes in the environment around the sensor is 

assumed to be infrequent, it is fair to assume that the central unit would be in a situation 

where it classifies the new incoming sounds as the same class many times in a row. When a 

change in class finally appears, it can be hard to trust that a change has really taken place. In 

this situation, it could be beneficial to be able to take more samples in a shorter amount of 

time to confirm that the classification was not a false positive.  

We picture an algorithm that change the duty cycle frequency whenever a streak of several 

similar classifications is broken, illustrated by Figure 53 where each rectangle indicates a duty 

cycle. This could be achieved by the allowing the central unit to ask the sensor for a 

measurement and set the connection interval to a shorter period/send more packets per 

interval. 

Theoretically, the new BLE connection interval could be set too 100 milliseconds, which is 

enough to send 35 packets, and do one sensing per second, meaning a change in the activity 

could be confirmed by 4.4 seconds (1 second spent sensing, 0.1 seconds spent sending), 

assuming we set the streak threshold before reducing frequency to four cycles. This would be 

draining on the battery, but compared to the static interval of one sensing per 2.33 minutes, 

assuming the same four streak requirements, confirming a change in the activity would take 

about 9 minutes and 20 seconds.   
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Figure 53: Adaptive sensing on observations idea visualization 

 

The time limit of this project made implementing and testing an algorithm like this undoable. 

Without a proper implementation and simulation, there is sadly little value to draw from this 

result-wise. We still choose to present the idea, to show future work that could aid the 

reactiveness of a sound sensing system that cannot do classification on a sensor level.  

There are some potential dangers to consider when designing an algorithm like this, such as 

ending up with a much higher than normal power consumption due to noise making a change 

in classification very often. It is hard to say what should be done in these cases. Some systems 

might be satisfied with just putting the sensor to sleep for a while and hope that the source of 

the noise disappears, while some systems might not tolerate down-time at all and wants to 

keep the sensor on a high frequency duty cycle plan. If noise is too much of a problem, then a 

microphone-based sensing system might not even be feasible. 

 

8.2 Adaption Based on Battery Level 

Energy harvesting sensors are an interesting option in any power constrained sensor network, 

and several ways to harvest energy on a sensor exists (Shaikh and Zeadally, 2016). However, 

state-of-the-art energy prediction models was described as immature, and showed high error 

rates. A better solution could be to not try to predict future energy gain, but rather look at the 

available power at the current time. 
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Estimating energy level on the sensor and sending it to a central unit has proven to be a 

possibility without any additional hardware, and the estimations are very close to the actual 

level, which enables adaption on the current battery level, controlled by the central unit 

(Tamkittikhun, et al., 2017).  

The possibility of both down and upscaling the duty cycling frequency based on how much 

energy a sensor has could be an interesting option, especially when combined with energy 

harvesting techniques for sensors. This has proven to be a feasible option which manages to 

avoid any sensor dead time due power shortage (Vigorito, et al., 2007). 

Although this project did not find the time to implement any functionality for adaption on 

battery level, it is presented as an interesting extension of the system for future work, and also 

to give a better picture of the options that are available to a sensor system. These options 

should be taken into account when discussing the feasibility of audio data, as it could enable 

high data value without causing too high power consumption.  
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9. Summary and Concluding Remarks 

In this project we have investigated the potential of using microphones as a sensor in an IoT 

setting, in combination with machine learning. To accomplish this, we have investigated 

popular methods to do acoustic scene classification and ended up using a tool that utilize 

unsupervised feature representation instead of hand-crafted feature sets.  

The tests performed shows that classification of sound files with low duration and sampling 

rate is possible, even with large reductions, but further testing with more variance is needed to 

get a better idea of how reductions impacts classification on a general basis.  

An investigation of communication protocols designed for low power IoT sensor networks 

has been performed, and BLE was chosen as it seemed the best candidate for the system in 

this project. Estimated power usage showed that a weak sensor should be able to operate with 

high classification accuracy for a very long time if downscaled audio clips are used in 

combination with BLE. 

Lastly, adaptive sensing was discussed as a way to make the system more reactive. Other 

projects have shown that adapting the duty cycle is a feasible option to achieve goals like 

saving power without losing system capabilities. An idea of adapting based on observations 

has been presented briefly, but a proper implementation of an observation-based adaptive 

sensing algorithm needs to be tested and compared to a static interval sensing application to 

investigate the gained value vs power consumption.  

Utilizing machine learning, low power communication protocols, and possibly smart sensing 

techniques, we believe the results show that audio is a feasible information source with a lot 

of potential in an IoT network. This project investigated audio data with a binary 

classification problem as its basis, but the tests done involving machine learning shows that it 

could be viable to more complex problems with several different classes. 
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10. Future Work 

A full-scale prototype of a system should be implemented to get a better understanding of 

how the system would work in a real-world scenario. There are also a lot of more work that 

could be done optimizing the machine learning process, potentially allowing for even bigger 

reductions in file size without losing accuracy/MCC.  

Adaptive sensing seems to have a lot of potential and pursuing a good solution for adapting 

based on observations further could be a strong addition to systems like these.  

We believe that both wireless sensor networks and machine learning will see a lot of research 

and improvements in the future, and that possible solutions to classification on the sensor side 

will be discovered. This could make file size reduction less needed as we don’t need to 

transfer a full data file anymore. It could still be energy efficient because of the energy saved 

on sensing and computations, and there is also a possibility that reducing the sound clips 

before classification could be an enabling factor in sensor-side classification, but that remains 

to be seen. 
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