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Abstract

In full-scale reservoir simulation models, the characteristics of the rock are not fully
resolved. Upscaled permeabilities are used to account for the effective behaviour
of a composite region. By averaging the fine properties of the flow, they provide a
simple linear correlation between the flux and the pressure drop. The goal of this
master project is to assess the performance of machine-learning algorithms for the
computation of upscaled permeabilities. The methodology is to use high resolution
simulations on a randomly generated set of fine scale models. This data set will
be used as training set for a machine learning algorithm. Ordinary least squares
and Kernel Ridge regression algorithms will be the two different machine learning
algorithms that will be tested and compared. We will also investigate the robustness
of the algorithms with respect to the choice of the statistical distributions used for
the generation of the fine scale models. Our results show that both the ordinary
least squares and Kernel Ridge is capable to capture the upscaled behaviour of
the flow and encode it into a single coefficient, namely the upscaled permeability.
Hence they will capture the underlying physics of the problem. However, Ordinary
least squares does so with a high error that is likely to limit the usefulness of that
particular algorithm.






Sammendrag

I fullskala reservoarsimuleringsmodeller kan man ikke bevare alle karakteristiske
egenskaper av et berg fult ut. Oppskalere permeabiliteter brukes til & regne ut
effektiv oppfersel av en sammensatt region. Ved a beregne flyt far man en lineser
sammenheng mellom flux og trykkfall i en slik region. Malet med dette masterpros-
jektet er a vurdere ytelsen til maskinleeringsalgoritmer for beregning av oppskalere
permeabiliteter. Metodikk er & bruke hgyopplgselige simuleringer pa et tilfeldig
generert sett av fine skala modeller. Dette datasettet vil deretter bli brukt som
treningssett for en maskinleeringsalgoritme. De to regresjonsalgoritmene Ordinary
least squares og Kernel Ridge vil bli testet og sammenlignet. Vi vil ogsa underspke
robustheten av algoritmene med hensyn til valg av sannsynlighetsfordeling som
brukes til generering av finskala modeller. Vare resultater viser at bade Ordinary
least squares og Kernel Ridge klarer a fange opp den oppskalerte oppfgrselen av
flyt og lagre dette i en koefficient, den oppscalerte permeabiliteten. Med andre ord,
sa klarer de a fange opp fysikken. Desverre sa gjor Ordinary least squares dette
med en rimelig stor feilmargin noe som sansynligvis vil begrense nytten av den
algoritmen.
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Chapter 1

Introduction

1.1 History and Importance of Petroleum

From the early cradle of civilization in the Indus Valley of the ancient times known
as the bronze age (3300-1300 BCE) the green-brown-black flammable viscous liquid
known as Petroleum was used as an adhesive with good waterproofing properties
in construction [I4]. Since then, early uses has been a variety of other purposes
like early medicine and tarring of ship ropes. However the true value of the liquid
was concealed until 1848 when James Young was called to find alternative use of a
petroleum seepage in the Riddings colliery at Alfreton, Derbyshire England. With
his knowledge of early industrial era chemistry he figured out that he could distil
the liquid into light thin oil suitable as lamp oil and at the same time obtain a
much thicker oil suitable as machine grease. The invention was a huge success
and he ended up creating Young’s Paraffin Light and Mineral Oil Company witch
grew and expanded its operations, selling paraffin lamps all over the world. This is
however only the start of the rise to importance of petroleum. Later inventions like
the internal combustion engine, the rise in commercial aviation and the hundreds
of different uses of petroleum in organic chemistry, particularly the synthesis of
plastics, fertilizers, solvents, adhesives and pesticides sky-rocketed a whole new
industry.

Today the petroleum industry, including the processes of exploration, extraction,
refining, transporting and marketing of petroleum products, taken as a whole rep-
resents the world’s largest industry in terms of dollar value [8] [I8]. Petroleum is
vital to many industries, and is of importance to the maintenance of industrial civi-
lization in its current configuration, and thus is a critical concern for many nations.
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Petroleum also accounts for a large percentage of the worlds energy consumption.
Since the early 1970’s Norway have been extracting petroleum from the continental
shelf in their sector in the north sea and has been a major source of the country’s
wealth [12].

1.2 Petroleum Extraction

Petroleum is derived from ancient organic materials that were covered by stagnant
water or sediments faster than they could decompose aerobically. Then through
geological processes over millions of years being pushed deep underground. Down
there the pressure and temperature is high enough that over said millions of years
the organic matter cooks into petroleum. The petroleum created through this
process have a lower density compared to other fluids and will slowly rise towards
the earth’s surface where it dissipates. Sometimes however it meets a geological
formation where it gets trapped. Such a formation, called a oil reservoir, consists
of a layer of porous rock where the petroleum can reside, that is topped by a denser
rock that it cannot pass through as illustrated in Figure

oil and gas migrated from the
source rock to the reservoir rock

and trapped beneath the cap rock \

/ impervious cap rock

porous reservoir rock

/

organic rich source rock

/ exposed to heat and pressure

Figure 1.1 — Illustration of Oil getting trapped below impervious rock. Figure taken

from [19]

One of the keystones in profitable petroleum extraction is proper estimation of
reserves, making decisions regarding the development of a field, predicting future
production, placing additional wells and evaluating alternative management sce-
narios. The main tool used in this estimation is reservoir modelling involving the
construction of a computer model of a petroleum reservoir. These models are
huge in scale as a reservoir itself can span several square kilometre in the horizon-
tal plane. Hence, it is often not feasible to do micro and macro simulations on
the same model. The purpose of the presented work in this thesis is looking at
the performance of machine-learning algorithms for the computation of upscaled
petrophysical properties. Upscaling refers to the process of propagating proper-
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ties and parameters from a model of high spatial resolution to a model of lower
spatial resolution as illustrated in Figure

Fine model Coarse model

Upscaling region

Figure 1.2 — Upscaling of reservoir models. Figure taken from [I7]

1.3 Motivation for Machine Learning

The methodology is to use high resolution simulations on a randomly generated set
of fine scale models. Calculating upscaled properties using the Matlab Reservoir
Simulation Toolbox (MRST) framework will turn these models into a data training
set for machine learning algorithms [I3]. The goal of this master project is then to
assess the performance of these machine-learning algorithms for the computation
of upscaled permeabilities. Different machine learning algorithms will be tested
and compared.

There are two purposes for using Machine learning technology in this thesis. The
first goal is of theoretical nature. We want to study the capabilities of machine
learning algorithms to reproduce physical processes. In this case, given a perme-
ability distribution, is machine learning capable to capture the upscaled behaviour
of the flow and encode it in a single coefficient, namely the upscaled permeability.
In this case, we will use regression algorithms. At the practical level, computation
of upscaled permeability using machine learning are expected to be much faster
than direct computations. Teaching of the machine may take some time, but once
the machine has learnt, evaluation is very fast. This is a core property of machine
learning: learning may be costly, but once it is done, then it is very efficient. Di-
rect computations of upscaled permeabilities require to assemble and solve a large
linear system that can be costly and has to be done again and again.
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There has been very little work done in this field trying to replace direct numerical
computations with a machine learned algorithm. However, the recent resurgence
in the popularity of machine learning image recognition, classification and analyses
has spiked the interest. There are already several attempts being made at teaching
a machine to learn the intricate patterns of a the porous media in a reservoir
in order to do construction of geological models based on limited samples. In
[15] L. Mosser et al. made a generative adversarial neural network capture the
statistical and physical behaviour of three different porous media; Ketton limestone,
Berea Sandstone and Beadpack. In their work they trained the neural network on
1283 voxel samples and then let the learned machine create new synthetic ones.
These where then evaluated through how close they resemble the test samples in
terms of porosity, specific surface area, single-phase effective permeability and Euler
characteristic. The latter being a number that describes a topological space’s shape
or structure regardless of the way it is bent. The method shows great promise and
show a good agreement between synthetic and test samples. In [2] by S. Chan
and A.H. Elsheikh. the same algorithm was applied on 50? conceptional images of
meandering patterns and semi-straight channelled structures that appear in these
types of porous media. In their evaluation they where comparing permeability,
with the conclusion that the flow physics induced by the generated realizations
were close to reference. Further work was done by E. Dupont et al. in [5] where
among other things trained the algorithm on real world fluvial patterns from a
meandering underground river in Kuskokwim, Alaska. In conclusion they state
that they have developing the method into a powerful and flexible framework that
is superior to existing geological modelling tools on several aspects.

The presented work in this thesis aims to look into further applications of machine
learning in reservoir modelling. As described we are interested in seeing if machine
learned algorithms also can replace direct computations for upscaling permeability.
If our approach works, then this could be the start of a methodology in witch
all the parts that constitute a reservoir model are done by one or several learned
machines.



Chapter 2

Modelling Reservoir Rocks

The main goal of this chapter is to outline how reservoir rocks, rocks that contain
hydrocarbons or aquifer systems, are modelled.

2.1 Properties of Aquifers

Aquifer is per definition a body of permeable rock or soil which can contain or
transmit water. To achieve this aquifer rocks and soils consist of a certain per-
centage of solid and a certain percent of void space.The fraction of water/other
contents in aquifers is called the porosity, ¢, which is defined by the relation

volume of contents that are not rock

6= (2.1)

total volume
While a high porosity means the rock may contain a lot of fluid it does not describes
the fluvial patterns or lack thereof. Sandstone is a good example of that. While
sandstone consists of thin layers of silt and clay dividing it into distinct layers with
large porosity the specific layout of the pore networks spread through sandstone
make it often act as a caprock. A layer of hard impervious rock overlying and
often sealing in a deposit of water or petroleum. In reservoir modelling the full
pore network in a rock is not feasible given their small size. Instead we introduce
a quantifiable measure called permeability describing the ease with which fluid can
flow through a rock on a macro scale. Finally there are aquifers that can act as
a caprock despite having pores for oil to flow through (high porosity) and a good
structure to facilitate flow through those pores (a generally high permeability).
This is due to different types of rock attracting different types of fluids. Some

13
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rocks attract water, while others will attract oil. Since oil does not flow through
water by itself, a rock that is filled with water will have difficulties to facilitate
flow of oil. The fluid with the strongest attraction is therefore commonly called the
wetting fluid. An aquifer tends to get filled with its wetting fluid and often that
results in a reduced relative permeability of other non-wetting fluids through the
same rock. From now on in this work we will refer to relative permeability as just
permeability.

2.2 Representative Elementary Volumes

Aquifer modelling is characterized by vast differences in scale. Our discussion of the
concepts of porosity, permeability and wetting fluids was based on considerations
of how fluid flows through the pore networks in a rock. A small slice where all the
details of a specific rocks pore network is correctly represented is typically in the
micrometer scale and larger pores in-between pebbles are in the millimetre scale.
However, the size of the aquifer in a full reservoir we seek to model are often on a
kilometre scale in the horizontal plane. To cope with this we can apply conservation
laws on Representative Elementary Volumes (REV) of the rock. A REV is often
defined to be the smallest volume over which measurements will yield values that
are representative of the whole. E.g., lab measurements of the porosity of a rock
would oscillate strongly with small samples. These oscillations would dampen out
as the sample size became larger and larger, and a representative elementary volume
could be defined when the measurements gave consistent readings. I.e there is a
certain continuum within a REV.

2.3 Conservation laws

For mathematical purposes a REV can be looked at as an isolated domain that is
governed by physical laws that apply to certain conserved measurable quantities
@ € R™. These laws are called conservation laws. The conservation principle
states that the rate of change in a conserved quantity within the domain of a
isolated system (2, is equal to the sum of inflow and production minus outflow and
removal. Mathematically the general conservation law for  on 2 € R™ in integral
form can be stated as

Q/Q(ajl,:cg,..,mm,t)dx—i— F(x1,22, ..y Tm, t, Q) - n d(Is)
ot Q o0 (22)

= / S(.’IJ]_,$2, ..,.’I}m,t, Q)d$7
Q
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for t > 0. This equation describes the rate of change of the variable @) inside the
domain (2 after a certain time ¢ = 0. The rate of change is dependent on the normal
component of the flux function F, defined on the domain boundary 92 with outer
normal n, and the function S € () representing the sources and sinks within the
domain. The functions and variables might be vector valued functions, meaning
that Q, F, S : R™ — R™. Also the source term can depend on other variables than

what is stated in (2.2]).

Using the divergence theorem and requiring the integrand to be identically equal
zero, the partial differential equation (PDE) form can be obtained from equation

232,

Qt(gjth? "7:CTn7t) +V. F(I17I25 "7IM7t7 Q) = S(xla‘TQv 33 Imat Q) (23)

Now in the case of a REV being the domain 2 and the particular conservation law
being the law of mass conservation we have that change of mass in the REV being
Qi(x1, 22, .., Ty, t) = %(pqﬁ) equal to the flow in and out V- F(z1, xa, .., Ty, t, Q) =
V - (pv) plus any sources or sinks S(z1,z2,..,Zm,t, Q) = g. This gives us the
following mass conservation equation

200+ V() =0 24)

p is the density of the substance in the flow model, ¢ is the porosity and v is the
Darcy velocity of the substance, further derived in . For an incompressible
fluid the density does not change and hence the first term in the equation is zero.
In that case, the law simplifies to just

V.-v=gq. (2.5)

2.4 Darcys Law

In the flux term in (2.4)) the v is a relationship between the REVs rock permeability
k, p the viscosity of the fluid and p pressure. This relationship,

k
v=——Vp, (2.6)
i

was first a law discovered through experimental observations by the French hydrol-
ogist Henry Darcy. Today it can also be derived from the Navier-Stokes equations.
The rock permeability k in this equation is a tensor as pressure can be applied
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in every direction. For a two dimensional case we will have a two dimensional
permeability represented as a 2 X 2 matrix.

Darcys Law is a mathematical statement witch neatly summarizes several proper-
ties of flow through an aquifer, including:

e If there is no pressure gradient over a distance, no flow occurs.

e If there is a pressure gradient, flow will occur from high pressure towards low
pressure.

e The greater the pressure gradient through the same material and formation,
the greater the discharge rate.

e The discharge rate will be different through different material and formation,
even if the pressure gradient is the same.



Chapter 3

Upscaling for reservoir
simulation

3.1 Multiscale Modelling

For full sized reservoirs simulation the traditional approach has been to model geo-
logical structures with a geological model, and fluid flow with a coarser simulation
model [I3]. Geological models are produced to represent the heterogeneity of the
reservoir and possibly incorporate a measure of inherent uncertainty. Pore, core,
and bed models are mainly designed to give input to the geological characterization
and to derive flow parameters for simulation models. The process of making a geo-
logical model is generally strongly under-determined. It is therefore customary, in
particular on the reservoir scale, to use geostatistical methods to generate plausible
distributions of petrophysical properties.

A starting point for the work done in this thesis is the creation of a python script
that generate several simple simulation models derived through a Gaussian dis-
tribution of permeabilities. Given more time using some of the results from [5],
[15] or [2] would be interesting as it would strengthen the idea that one could use
Machine Learning through the whole modelling process. However using standard
geostatistical methods does a better job at testing if replacing parts of the process
of reservoir simulation integrate with the current methods.

17
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3.2 Averaging Techniques

Heterogeneity and correlations in petrophysical properties depend strongly on the
patterns in the sedimentary deposits and flow patterns tend to be strongly affected
by details in the structural architecture of the reservoir. There is therefore a general
trend to build complex, high-resolution models for geological characterization to
represent small-scale geological structures. Likewise several models that are equally
probable to be true are generated to systematically quantify model uncertainty.
While high-resolution models can describe a wide variety of geological structures,
there are also many structures on a finer scale than the resolution of the geological
model that are thought to be important to understand the reservoir. Therefore,
it is common to develop hierarchies of models that cover a wide range of physical
scales to systematically propagate the effects of small-scale geological variations
observed in core samples up to the reservoir scale. Upscaling refers to the process
of propagating properties and parameters from a model of high spatial resolution
to a model of lower spatial resolution as illustrated in Figure [I.2] In this process,
heterogeneous regions in a reservoir model are replaced by homogeneous regions to
make up a coarser model of the same reservoir.

In other words we are looking for the average of a petrophysical property. How-
ever simply applying the arithmetic mean witch is what most people think of as
the average of something can be disastrous as the new homogeneous regions are
unlikely that they preserve the effects of small-scale variations. A good example of
where the arithmetic mean is disastrous as it returns a high value of permeability
when there is none, is if we assume within our domain we have a huge perme-
able area that cover most of the domain. However this area is enclosed within
non-permeable rock resulting in no flow through the area at all. The opposite is
also quite likely to happen where there is a semi-straight ”pipe” going through the
aquifer with high permeability, but a large portion of the domain is non-permeable
rock. Despite this, the arithmetic mean still gets used, alongside with other trivial
averaging methods such as median, mode, geometric mean or harmonic mean. In
certain special cases these methods combined with good geological knowledge of
the aquifer is the preferred technique [I7]. Still a more complex averaging algo-
rithm that is more likely to preserve the effects of small-scale variations is needed
in other cases. How this averaging should be performed depends on the type of
property to be upscaled. One distinguishes between additive properties that can
be upscaled using the trivial averaging methods and nonadditive properties, for
which correct averaging or simple methods only exist in special cases and in most
cases the best one can hope for is to compute accurate approximations. First off,
when a change of scale happens it does not automatically follow that the same
flow equations govern the model. Secondly is how to honour heterogeneities at the
subgrid level.

This far there are only rigorous mathematical theory for asymptotic analysis of pe-
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riodic structures, such as periodic and stratified media [13]. However since natural
rocks very seldom are periodic these explicit analytical methods can only be used
in special cases. Most upscaling techniques rely on some kind of local averaging
procedure in which effective properties in each grid block are calculated solely from
properties within the grid block. As such, these averaging procedures do not con-
sider coupling beyond the local domain, which in turn implies that the upscaling
methods fail to account for the effect of long-range correlation and large-scale flow
patterns in the reservoir unless these can be represented correctly by the forces that
drive flow inside the local domain. Hence it is generally acknowledged that global
effects must also be taken into consideration to obtain robust coarse-scale simula-
tion models. Since these obstacles are not the main focus of this thesis we will use
a simplified grid, that will be outlined later, as well as making the assumption that
said grid always accounts for global effects.

The literature on upscaling techniques is extensive, ranging from trivial averag-
ing techniques [I0], to more comprehensive global and localglobal methods [I] [6].
There are comprehensive review papers written on this topic, like [21]. Some at-
tempts have been made to analyse the upscaling process itself, like [22], but so far
there is generally no theory or framework for assessing the quality of an upscal-
ing technique. In fact, upscaling techniques are seldom rigorously quantified with
mathematical error estimates. Instead, the quality of upscaling techniques is usu-
ally assessed by comparing unscaled production characteristics with those obtained
from a reference solution computed on an underlying fine grid.

3.3 Upscaling additive properties

Porosity is the simplest example of an additive property and can be upscaled
through a simple volumetric average. If €2 denotes the region we want to aver-
age over, the averaged porosity value is simply given as

1
ox = ﬁ/Qgﬁ(w)d:c (3.1)

This is nearly trivial averaging and shows why upscaleing of additive properties is
not a focus of the work in this thesis. However permeability being a non-additive
property things are about to get much harder.
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3.4 Upscaling permeability

Given a subdomain 2, we want to compute a single upscaled permeability that can
be used to compute an approximation of the flow in 2. Our starting point is the
fine scale problem for the permeability tensor distribution K (z). The equations
for the fine scale problem is the mass conservation equation,

V- (K(x)Vp)=0 (3.2)

with boundary conditions on 9€2. The upscaled permeability tensor K is a constant
tensor such that, for the same boundary conditions, the flow obtained by solving
the problem

V- (KVp) =0 (3.3)

will provide a good approximation of the fine scale problem. By a good approxi-
mation, we do not mean to match point-wise quantities between the two computed
flows, but only averaged quantities, such as for example the integrated outflux on
one side, see below.

How accurate such an approximation can be depends on the coarse grid, the specific
upscaling method, the purpose for witch the upscaled values are to be used, and
the complexity of the fine-scale permeability distribution. Most techniques for
upscaling absolute permeability seek an averaged tensor K that reproduces the
same total flow through each homogeneous region as one would obtain if the single-
pressure equation was solved with the full fine-scale heterogeneity.

This reflects that K depends on the flow through €, which in turn is determined
by the boundary conditions that are specified on 0€2. The better we know the
boundary conditions the homogenized region will be subject to in subsequent sim-
ulations, the more accurate estimates we can compute for the upscaled tensor K.
In fact, if we know these boundary conditions exactly, we can compute the true
effective permeability. In general, we will not know these boundary conditions un-
less we have already solved our problem. This followed by the problem that the
permeability tensor K needs to be symmetric and positive definite and there is no
guarantee that this is the case. This makes it so that the single-phase upscaling
problem is fundamentally ill-posed.

In the process of upscaling, we loose the fine description of the flow. The hope is
that, with only few coefficients, we retain the main features of the flow. We follow
the methodology described in [7]. While the general problem of upscaling perme-
abilities is not necessarily solvable, a case that is useful in many scenarios is to the
reduced problem in two dimensions with a known boundary. For simplicity, we will
also only consider diagonal permeability tensors, that is K1 o(z,y) = Ko1(z,y) = 0.
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3.5 Computation of upscaled permeabilities in two

dimensions

We consider a two dimensional square grid Q € [0, L] x [0, L], as illustrated by
Figure

no flow
SONNNNANNNNNANN

Varying permeability

//////I//////

no flow

Figure 3.1 — Illustration of our two dimensional grid with known boundary

The mass conservation equation gives us
V.-v=0, (3.4)

see for ¢ = 0. We are going to compute the constant permeability tensor
K which matches K (z) for a specific set of boundary conditions. This consists of
two problems, one for each Cartesian direction (horizontal or vertical). For the
horizontal case, the boundary condition is given as follows. At the top and bottom
boundary, we impose a no-flow boundary condition

v-n=0, (3.5a)
On the vertical sides, we impose constant pressure. We have

p(0,y) = p1 and p(L,y) = p2, (3.5b)

for y € [0,L]. The constant py and p; are given. We want to find the upscaled
permeability tensor K such that the integrated outflux matches exactly in this case
with the one obtained by solving the fine scale problem.

Let us first assume that the permeability tensor is constant in 2, that is K (z,y) =
K, for some diagonal matrix K € R?*2, The Darcy flux is given by

v =—KVp. (3.6)
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We claim that the pressure given by

_ Ap
p(x,y) = 77 + 11

is a solution to the problem as it satisfies (3.4), (3.5a) and (3.5b). Where Ap =
p2 —p1-

Here we have y
__ |Ap/L
v ]
Hence, in vector notation equation (3.6) becomes

_ [Kn 01][Ap/L] _ -~ Ap1
v {0 K22H0 =—Ku7 g

For easier notation we use F to denote the east boundary, and by extension of that
|E| denotes the area on the east boundary. Using law of mass conservation once
again we have the relation that flux through the east boundary should be

Y . _ — Ap, [1] [1 B Ap _
’UE—/E’U'ndS——/EKHT |:0:| . |:0:| dS——|E| TKH. (37)

After running a fine scale computation, using the boundary conditions as illus-
trated in Figure , we obtain a solution p(z,y). To solve the flow problem,
we use the standard two-point flux-approximation method (TPFA). For a two-
dimensional Cartesian grid and with homogeneous permeability, the TPFA method
is equivalent to a classical five-point finite-difference scheme for Poisson’s equation.
First, we compute the transmissibilities at each face, then we assemble and solve
the corresponding discrete system. This is done through invoking the functions
computeTrans () and incompTPFA() functions in the incompressible flow module
from MRST, as explained in the manual [13]. We use this solution to compute the
integrated flux,

'uEz—/ KVp-nds.
E

Our requirement is vy matches exactly the result obtained from the upscaled prob-
lem, that is we require vg = vg. Hence, from (3.7), we obtain an expression for
K 1 that we use as our upscaled permeability, given by

’UEL

Rn=-vel
H |E| Ap

(3.8)
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permeability N\
(in Darcy) \

25

P P,

7

Figure 3.2 — Figure showing a grid containing a permeability field. The striped area
represents no-flow on the northern and southern boundaries, while P; and P, are
the constant pressures boundary conditions at the western and eastern boundaries
with P, >> P,. An expected direction of the fluid flux is added on top for clarity.
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Chapter 4

Generation of permeability

field

The methodology of the presented work is to use high resolution simulations on a
randomly generated set of finer scale models. This data set will be used as training
set for a machine learning algorithm. To generate the permeability field, we will
use multivariate Gaussian fields.

4.1 Multivariate Gaussian

When creating our data set we create a a two dimensional square grid Q € [0, L] x
[0, L], as illustrated by Figure from previous chapter. This domain is decom-
posed into a 20 x 20 grid constituting a total of N = 400 cells. To each cell
corresponds a given value of permeability. Thus, we have to determine a vector
k € RY which, for each cell indexed 4, gives the corresponding permeability value
k; at this location. We denote by p; € R? the coordinates of the centroid of the cell
indexed i. We want to generate this vector randomly but we also want to include
the property that the permeability values for cells in the same neighbourhood are
correlated. That is the correlation between k; and k; is function of the distance
|lpi — pjl|. Multivariate Gaussian is a tool that has been used in such purpose and
kriging methods have been used extensively in the field of geosciences, [3] [4]. Let
us denote a generic multivariate variable by  and its probability distribution by
p(x). That is a function that describes all the possible values that x can take
within its range. Taking the integral of this function over an interval will return
the probability that & will lie within that interval. As a trivial follow up to this
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taking the integral over the whole range of & will result in a probability of 1. A mul-
tivariate Gaussian random variable is a random variable vector whose probability
distribution is given by

1 1 -1
p(xe, ... x) = WGXP <—2($—M)T2 (:c—u)) (4.1)

where p € RY is a vector which gives the average of £ and ¥ € R¥*¥ is a matrix
which is called the covariance matrix. We can check that

B = p)las =) = [ (= s =)o) d = 2.
hence the name of covariance matrix. Because the covariance of the i-th random
variable with the j-th one is the same thing as the covariance of the j-th random
variable with the ¢-th one, every covariance matrix is symmetric. In addition, every
covariance matrix is positive semi-definite.

We want to use a correlation matrix that takes into account the proximity be-
tween points as our covariance matrix. It can be done by introducing a covariance
function, which we denote &k : R? x R? — R and use in our matrix

k(pi1,p1) k(pi,p2) ... k(p1,pn)

k(p2,p1) Fk(p2,p2)

5 = (4.2)

k(pn,p1) ... k(pn,pPN)

The covariance function must be such that the resulting matrix ¥ is a proper
covariance matrix, meaning that it must be symmetric positive. There exist several
choices of covariance function. We choose the most standard one which is the radial
basis function given by

k(p,p) = exp(—& |p — p|?). (4.3)

k(p,p) return the same result if we swap p and p, while the range of the exponen-
tial function are only positive numbers. Hence, the matrix ¥ becomes symmetric
positive semi-definite. This covariance function also achieve our goal perfectly, cre-
ating a high dependency between cells in the domain that are close to each other
and a rapidly reducing dependency with increased distance.

4.2 Implementation

The implementation of the generation of the permeability field is done in Python.
In fact, all of the coding in this thesis is done in Python, with the exception of the
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high resolution computations of the upscaled permeabilities which is done using
MRST toolbox for MATLAB as explained in Chapter All of the Python code
we have written relies heavily on the NumPy library for all the mathematical and
vector array functionality. In the generation of the permeability field, an important
choice is to set the value of the covariance parameter s, see . Large values
of k lead to less spatial dependences and therefore a more oscillating permeability
field. We tested different values of x ranging from 1072 to 102, see Figure

a) b)
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Figure 4.1 — Plot of randomly generated permeability fields with different values
of ki a) k=102, b) k =10"%, ¢) k =1, d) kK = 10, e) kK = 100. When comparing
the plots, it is important to look at the color scales. For example case a) and b)
are significantly different even if they look similar at first sight.

We compute a permeability field through random draw in accordance to the mul-

tivariate Gaussian probability distribution (4.1). The first step in the program is

to create coordinate matrices out of the coordinate vectors through the function

numpy .meshgrid corresponding to the grid. Using these coordinate matrices the

next step is to compute the covariance matrix in accordance to Equation and

. Given this covariance matrix, we use the function numpy .random.multivariate_normal
to generate a random multivariate vector & € RV of zero mean. Then, we define

the vector K € RV giving the permeability at each cell, as

Ki = Kmean + OK T,
where Kpean and ok are given constants. We use Kpyean = 0 = 1 Darcy. Finally,

we set the few negative values that are obtained to a given small value.

We created 100 permeability fields for each of our chosen values of k: £ = 1072, k =
107, k =1, k = 10 and x = 100. For each of those, we obtain the corresponding
upscaled permeability by running the high resolution computations. These results
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give us the dataset on witch we train our machine learning algorithms. Figure
shows a sample of the generated permeability fields with x = 10 we created. Figure
[£:3] provides an example of how the permeability field effects the flow, as explained
in Chapter [3.5

permeabilty (in Darcy) permeability (in Darcy) permeability (in Darcy)
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Figure 4.2 — Plot of six randomly generated permeability fields with x = 10 taken
from our dataset.

permeability RightFlux «10®

Figure 4.3 — Illustration of the flow pattern obtained from one of the permeability
fields of our dataset (upper left permeability field in Figure a) permeability
field, b) pressure field obtained by running the high-resolution simulation, solving
Equations and (3.5), ¢) visualization of the flux in the horizontal direction.



Chapter 5

Machine Learning

As stated before, the whole purpose of the work in this thesis is to see if a machine
learning algorithm can do a good job at solving the problem that upscaling absolute
permeability presents. However first this chapter will introduce some basic concepts
for machine learning. First off we can divide machine learning into three categories.

5.1 Reinforcement learning

The first category is an example of machine learning where the machine is trained
to take specific decisions based on the business requirement expressed as an util-
ity function. This utility function is often a expression that it needs to maximize
or minimize, resulting in maximizing of efficiency, performance or profit in said
business or minimizing accidents or expenses. The idea involved in reinforcement
learning is that the machine trains itself on a continual basis based on the envi-
ronment it is exposed to, and applies its enriched knowledge to in the future solve
problems better in agreement with its utility function. While there is a whole en-
semble of different machine learning algorithms in this category most of them build
on the idea of making decisions, witch is not the problem we are trying to solve.
However algorithms concerning dimensionality reduction are a integral part of more
complex regression algorithms, so in a sence we are doing some reinforcement learn-
ing in one of our methods. They have both in common that they undergo a decision
process in order to reduce the number of random variables under consideration.
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5.2 Unsupervised learning / Descriptive models

Unsupervised learning is used to train descriptive models where no target is set
and no single feature is more important than the other. The case of unsupervised
learning can be: When a retailer wishes to find out what are the combination of
products, customers tends to buy more frequently. Neural network algorithms,
like the one used in [5], [I5] and [2] belong to this category and have shown great
success in learning the intricate patterns in aquifers. However as their end goal was
descriptive, our goal is a little different. They tough the machine to learn what the
patterns there were given no prior knowledge of them. We seek to do more than
just describe the patterns and reproduce them in synthetic samples. We want to
teach the machine to predict an upscaled permeability from the samples. Hence
we should first look at a different category of machine learning algorithms. If we
had more time we could perhaps revisit the descriptive approach to our problem.

5.3 Supervised Learning / Predictive models

Predictive model as the name suggests is used to predict the future outcome based
on the historical data. Predictive models are normally given clear instructions right
from the beginning as in what needs to be learnt and how it needs to be learnt.
These class of learning algorithms are termed as Supervised Learning. As our
upscaling problem is used in a predictive manner to predict upscaled permeabilities,
the chosen algorithms are in this category. In fact, we will look at algorithms from
a subcategory of predictive models; Regression algorithms.

Supervised machine learning is best understood as approximating a target function
f that maps input variables X to an output variable Y

Y = f(X). (5.1)

Once the function has been trained, we want to compute the output Y, for an
input data X, which does not belong to the training set.

The characterization describes the range of prediction problems and the ma-
chine algorithms that can be used to address them. If we narrow it down to
regression algorithms the target function is defined in the model as we search for
functions within a set of functions. If we use linear regression, we are looking for
a linear target function. Quadratic regression looks for a quadratic equation, and
so on. Model capacity is tied to the ability a algorithm has to match the training
data. A curved line will be able to fit through more points than a straight line.
While that is the strength of a higher capacity algorithm there are also weaknesses
to choosing a too high capacity model.
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5.4 Underfitting vs. Overfitting

An important consideration in learning the target function from the training data
is how well the model generalizes to new data. Generalization is important because
the data we collect is only a sample, it is incomplete and noisy. Overfitting occurs
when our algorithm has learned too much from our data, up to the point of mapping
curve shapes and rules that do not exist. It is picking up on not just the general
characteristics of the data, but also the random noise, errors and very specific
characteristics. This is often a symptom of choosing a to high capacity model or
giving a machine algorithm to many similar training sets. While fitting the training
data excellently any slight change in the procedure or in the training data produces
erratic predictions and large generalization errors. Underfitting refers to a model
that can neither model the training data nor generalize to new data. An underfit
machine learning model is not a suitable model and will be obvious as it will have
poor performance on the training data.

Underfitting Appropriate capacity Overfitting
/..<
] ®

] Ty Ty

Figure 5.1 — Example figure showing a regression algorithm with increasing model
complexity on the same dataset. First underfitting, then fit appropriatly and finally
overfitting when the model complexity becomes to high. Illustration from [9].

General behaviour is that with increasing model capacity the error on the training
set itself will decrease, but the model is loosing its ability to generalize to new data
and hence increasing the overall error as shown in Figure 5.2}
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— - Training error
Underfitting zone | Overfitting zone

—— Generalization error

Error

0 Optimal Capacity
Capacity

Figure 5.2 — Figure illustrating that after a certain capacity a model will have
increasing generalization error. Illustration from [9].

5.5 Ordinary Least Squares

The method of least squares is a standard approach in regression analysis to the
approximate solution of overdetermined systems. We have a set of IV pairs of obser-
vations (z;,y;) that are used to find a function relating the value of the dependent
variable y to the values of the independent variable . The algorithm seeks to find
the linear mapping f : R — R which minimizes the error

Z i — Flas) . (5.2)

More graphically, starting from a set of data points this corresponds to solving the
problem of finding a line that fits this set of data points the best, as illustrated
in Figure Then the metric by witch the algorithm measures the error ie. the
distance between the measurements and the model is sum of euclidean distances
squared. This is also how the method derives it’s name.

Since f is linear, f(x) = w"x + wq, then the wy parameter specifies the intercept
of the line. Given that data can be preprocessed and centred,

=N
1
xlgentred - N Z T and yzcentTed =y — — Z Ui (5.3)
=1

the intercept parameter can be set to zero wy = 0, and in futher computations we
will assume that this is always the case. The problem we seek to minimize is

{w*} = argm1n2|yz )| (5.4)
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20 .10 10 20 30 40 50 &0

Figure 5.3 — Example figure conceptualizing Ordinary least squares.

We introduce the notation

Y1 11 ... T1d
y=1{: |, X = : (5.5)

YN N1 --- INJd

In our implementation the response variable y is the upscaled permeability, a vector
with the length equal to the amount of training samples. Correspondent our dataset
of independent variables X is a matrix the size of all the permeabilities in each
grid cell times the amount of training samples.

We denote the argument on the right-hand side in (5.4]) by e(w). We have

M
e(w) =Y |y — f(@)]” = ly — Xwll3. (5.6)
i=1

We can expand the expression above and get
e(w)=y'y—w' X Xw+ 2y Xw
Convex problem, the solution satifies Ve(w™*) = 0, i.e.
X" Xw" =X"y. (5.7)
The solution to is not well-defined (it is not unique), because X ' X can be

ill-conditioned as a result of the problem being ill-posed. In these cases, the least
squares estimate amplifies the measurement noise and may be grossly inaccurate.
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5.6 Ridge regression

Ridge Regression is a complement to ordinary least squares that seeks to solve
the shortcomings of the algorithm. By adding the small term we get the inner
product to move away from possible singular matrices making the algorithm useful
for solveing a ill-posed problem.

There are three ways to explain ridge regression. From a machine learning perspec-
tive ridge regression is about introducing weights that perform a decision process,
often found in reinforced learning algorithms, in order to reduce the number of
random variables under consideration. This is done by imposing a penalty on the
size of coefficients through imposing a shrinkage parameter a > 0 in the error term
in the mineralization problem. We replace e(w) defined in with

2 2
e(w) = ly — Xwl; + alw|; (5:8)

From a mathematical point of view we are introducing weights that seek to improve
the conditioning of the underlying problem, enabling a direct numerical solution
aka. de-singularization of the matrix. When computing the solution to the mini-
mization problem, that is, get a formula like we end up with

(XX +alw"=X"y.

The difference this time is that this can be seen as adding diagonal elements to the
X " X matrix witch gives it a full rank. This means that X " X + oI is invertible
for & > 0 and therefore well-defined (unique).

From a qualitative viewpoint we can look at the behaviour of prediction models
through the two qualitative subcomponents of error, bias and variance [II] as
illustrated in Figure[5.4] From this point of view ridge regression is said to increase
bias in the model and get a lower variance. This is due to the higher variance
parameters being shrinked.
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Figure 5.4 — Figure showing a conceptional image explaining bias vs. variance in
statistical models.
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5.7 The kernel trick

Another limitation of the Ordinary least squares is the low capacity of the model
as it is by default a linear method. There are many ways to extend Ordinary
least squares to a search for a solution function in higher degree polynomials or
some other common functions, but this is often a a tedious way to do it and the
generalization to higher dimensions is not always trivial. Instead introducing a map
to an higher dimensional space to remove non-linearities and make linear methods
efficient is the preferred approach. As an example, we can represent the space of
polynomial of a given degree g by using the feature map ¢ given by

1
X
p(a) = |2

x4

The space of polynomial of degree ¢ can then be represented by a vector w € R?

as
q

f(z) = qub(ac) = Zwixi_l.

i=1

As in the previous chapter we consider a set of data points x;, i = 1,...,N. We
move to an higher dimensional space, the feature space, by adding features. We
introduce a feature map which has the form

¢ R 5 RS
The mapping ¢ is typically non-linear and the dimension of the image is very large,

that is f > d.

Then, we look for a function f using standard linear regression but in the feature
space. The function takes thus the form

N
flx) = sz@(fﬂ) = ¢(x) w.
i—1

If the feature map is the identity, ¢ = I with R = R, then we are back to
standard linear regression. In addition to the notations given un ([5.5)), we introduce
the matrix given by ¥ (X) € RF*N

P = (p(x1) o(x2) ... @lxn)) (5.9)

The regression problem on the feature space consists of finding the minimum of

e(w) = |ly — ¥ w]: + o fw|? (5.10)
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In this case, using the same techniques applied in Ridge regression we obtain that
w must satisfy

(" + al)w = 1py. (5.11)
Note that, typically, because the feature space is very large (f > 1), the matrix
4 T1p is very big and it may be prohibitively expensive to compute the solution w
of this equation. In fact, as we are going to see, it is possible to avoid completely

the computation of the solution w. This essential computational gain constitutes
the kernel trick. From (5.11)), we obtain

w= (" +al) by

Let us assume that the machine has been trained, so that f is now given, we want
to evaluate f(x,) for a given point x.. We have

f(iL'*> = ¢(33*)T(,¢V¢'T + O‘I)_l’lpy (5'12>

This expression still contains the inverse of a very large matrix but this can be
changed by using the following identity,

(3T +al) "' = (e T+ al) . (5.13)
To show that this identity holds, we rewrite it as

Y P +al) = (Y +al)y,
which trivially holds. The expression (5.12)) for f(x.) then becomes

f(zs) = ¢(@.) " (o +al)y. (5.14)

The fundamental difference between and is that the dimension of the
matrix to invert is significantly reduced from Rf*/ to RV*¥ . Moreover, we observe
that the values of the features ¢(x) only enter the expression as scalar
products, that is ¢(x) " @(zZ). Let us now introduce the function &k : R x R — R
defined as
k(z, ) = ¢p(x) " ¢(@).

The function k is called the kernel. We can rewrite the vector and matrices con-
tained in using only the kernel k. Let us introduce the vector v € RV and
the matrix K € RV*N as

v=a¢(x,) Y and K =1 .
We have
v; = k(xs,z;) and K, ; = k(x;, x;)
and the expression can be rewritten as
f(xz) =v (K +al) ty. (5.15)

In conclusion, it means that the features vector ¢(x), which can be very large and
therefore very expansive to compute, may not be needed at all, as all the relevant
information is encoded in the kernel function. Such simplification when it can be
done is referred in the literature as the kernel trick [20]. It is typical that simple
kernel functions correspond in fact to very large feature spaces.
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5.8 Kernel Ridge regression

The kernel ridge regression method simply refers to applying the kernel trick as
described above to Ridge regression. As in the Ridge regression method, the pa-
rameter « has a regularization effect. Indeed it penalizes large values of w, see
. In this thesis we have used the kernel

k(x;, ;) = exp(—y |z — ;). (5.16)

witch is a popular kernel to choose in data science [16]. The parameters « (from
Ridge) and v (from kernel) are called hyper-parameters as the algorithm itself can-
not learn them. Instead we use a grid-search to find the optimal hyper-parameters
as will be described in Chapter

In the implementation we use the SciPy python library for input and output han-
dling between MATLAB where the data sets are created and python. We use
the sklearn python library for calling the algorithms themselves witch is a li-
brary filled with tools for data mining and analysis. In particular the functions
sklearn.linear model.LinearRegression()

and

sklearn.kernel ridge.KernelRidge (kernel="rbf’, «, =) where useful.



Chapter 6

Results

6.1 Evaluation Strategy

As explained in Chapter we created a dataset of N = 100 samples with a
permeability field generated through the Gaussian probability distribution and a
up-scaled permeability calculated using a high-resolution finite volume method.
This dataset would then be sorted ascending by upscaled permeability value, k(1) <
k(2) < --- < kE(N). The reasoning for this are twofold. First reason is that the
computed values can be graphed as a continuous line, making it easy to create a
scatter plot of the predicted values on top of it. The second reason is that it also
makes it easier to visually identify any patterns in the relative error, if there is any.
This sorting should have no impact on the end result as the equations themselves
are unchanged. We do a naive implementation of a k-fold cross-validation where
we split our dataset into N equal subsets called a fold. Loop over each fold for
i =1toi= N. Then keep the fold number i as a validation set and the remaining
N — 1 folds in the cross-validation set. Then train the machine learning model
using the cross-validation training set and calculate the accuracy of our model by
validating the predicted results against the validation set. Estimate the accuracy
of the machine learning model by averaging the accuracies derived in all the k cases
of cross-validation.

When evaluating the trained machine we would do k-fold validation, however with
a variant where we treat each sample in the dataset of 100 samples as a fold. Hence
there would be one validation sample, kygiidation and 99 training samples, Kirqin-
This would go in a loop, starting with the first data being the test sample, then
having the second data being the test sample, etc. In each iteration we would
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predict the test sample, kp;;, based on what the machine has learned from the
other 99 samples and then measuring the relative error,

o |karr (1) — kvatidation (7))
’ ‘kvalidation(i”

(6.1)

for sample number ¢ and plotting it. This is in addition to calculating the average
error

_ 1
€= Z €; (6.2)

as our main quantitative measure to evaluate the algorithms. This is done for a
value of k = 10 as it is the value that produced highly varying permeability fields,
but without being sporadic oscillating witch often happens with higher values as

seen in Figure

6.2 Ordinary Least Squares

The results obtained for the ordinary least squares method with a x = 10, as
presented in Section are given in Figure The relative error can go as
high as 80% for some samples. However the average error is € = 0.20 ie. 20%.
Another interesting observation is that the relative error seems to be shrinking
with increasing sample number. Since we know the samples are sorted by ascending
upscaled permeability value it means the error in the model is not depending on
the actual size of the target variable.

We believe the high relative error is due to shortcomings in the algorithm that
are very likely to create a underfitting problem. It assumes an underlying linear
relationship between the independent and dependent variables. This is a very
low model capacity and it is reasonable to believe that a higher capacity model is
needed in order to match the training data and generalize to perform well on the test
data. Another possible problem with the algorithm is that ordinary least squares
is designed to perform well on well posed problems. However with us only using
100 samples, but having 400 cell grids that each have a corresponding coefficient
in the target function the problem could in theory be underdetermined depending
on how many of them are linearly independent of each other corresponding to a
degree of freedom. To check if this was the case we ran the algorithm on a data set
of 400 values, creating a determined or overdetermined system. The results where
atrocious, as seen in Figure showcasing that the results did not benefit from
having these high number of samples with a € = 1.93. The conclusion we draw
from this is that, as expected, the error seen when using 100 samples is due to to
low model/kernel complexity, as a more capable model would be expected to learn
the test data well resulting in a very low training error typical in overfitting, when
increasing the sample size.
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When investigating the robustness of the algorithm with respect to the statistical
distribution used for generation of the fine scale models we have to look at the
performance of the algorithm with different values of x. The results are presented
in Figure and The histogram of the errors are compared side
by side in Figure When looking at this comparison we can see that the error is
increasing with increasing values of k. This is as expected given that the oscillation
and general complexity of the permeability field is higher the higher the kappa.

a) “ Ordinary Least Squares, x=1e-2 b) o Ordinary Least Squares, x=1e-1 ) “ Ordinary Least Squares, x=1

Avarage error=0.17465 Avarage error=0.19242 » Avarage error=0.19461

0 0
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
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d) Ordinary Least Squares, x=10 e) Ordinary Least Squares, x=100

2
Avarage error=0.20112 Avarage eror=0.26832
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Figure 6.1 — Histogram plot of the relative error and also the computed average
error for Ordinary Least Squares and different x. a) x = 1072 with & = 0.17465.
b) £ = 107! with & = 0.19242. ¢) k = 1 with & = 0.19461. d) x = 10 with
€ =0.20114. e) k = 100. with & = 0.26832.
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Figure 6.2 — Right plot showing the relative error in each sample for ordinary least
squares with 400 samples. Left plot showing predicted value of a sample together
with it’s actual calculated value for ordinary least squares with 400 samples.
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Figure 6.3 — Plot to the left showing the relative error in each sample for ordinary
least squares and x = 1072. The plot to the right shows the same samples with
predicted values (blue) together with calculated validation values (red).
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Figure 6.4 — Plot to the left showing the relative error in each sample for ordinary
least squares and x = 10~!. The plot to the right shows the same samples with
predicted values (blue) together with calculated validation values (red).
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Figure 6.5 — Plot to the left showing the relative error in each sample for ordinary
least squares and x = 1. The plot to the right shows the same samples with
predicted values (blue) together with calculated validation values (red).
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Figure 6.6 — Plot to the left showing the relative error in each sample for ordinary
least squares and x = 10. The plot to the right shows the same samples with
predicted values (blue) together with calculated validation values (red).
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Figure 6.7 — Plot to the left showing the relative error in each sample for ordinary
least squares and x = 100. The plot to the right shows the same samples with
predicted values (blue) together with calculated validation values (red).
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6.3 Kernel Ridge regression

Kernel Ridge with a squared exponential kernel performed significantly better.
With an average error of only € = 0.085 it performs significantly better than
ordinary least squares on the same cross-validating dataset with x = 10. The
machine has learned to upscale permeability and even in the worst scenario it is
31% off as seen in Figure In order to achieve this accuracy, we optimized the
value of the hyper-parameter in the algorithm. We found that trying exponentially
growing sequences of a and y was a practical method to identify good parameters.
First, we did a very rough search to identify where the algorithm was performing
well and finally did the full grid-search shown in Table[6.1}] The parameter pair of
(a,y) = (277,2711) gave us the highest cross-validation accuracy.

When investigating the robustness of the algorithm with respect to the statistical
distribution we again have to look at the performance of the algorithm with different
values of k. The results are presented in Figure [6.10] [6.11] [6.12] and [6.13] The
histogram of the errors are compared side by side in Figure [6.8f When looking
at this comparison we can see that the error is increasing with increasing values
of k. This is as expected given that the oscillation and general complexity of
the permeability field is higher the higher the x. However the way the kernel
ridge regression has tough itself is different from the Ordinary least squares. For
low values of k, i.e a very smooth permeability field, as shown in Figure [6.9] the
algorithm will predict the upscaled permeability with a very high accuracy, while
Ordinary least squares still had a significant error for the same dataset Figure [6.3
Also for the most oscillating permeability fields created with x = 100 as shown
in Figure [6.13| we can clearly see that the algorithm has tough itself to ignore the
extreme values and hence the method is bad at capturing the the extremes in such
cases. A value of kK = 100 represents a extremely oscillating permeability field, so
much so that it should not represent a typical real world permeability field.

a | v 2—14 2—13 2—12 2—11 2—10 2—9 2—8

2-10 70,1 | 0,09 | 0,087 | 0,087 | 0,086 | 0,091 | 0,106
279 10,105 | 0,093 | 0,087 | 0,086 | 0,086 | 0,091 | 0,106
2-8 | 0,111 | 0,097 | 0,089 | 0,086 | 0,086 | 0,091 | 0,106
2-7 10,116 | 0,103 | 0,091 | 0,085 | 0,086 | 0,091 | 0,107
276 10,119 | 0,109 | 0,095 | 0,087 | 0,086 | 0,091 | 0,107

Table 6.1 — Table showing average error € for the purpose of trying to identify the
best parameters in the kernel Ridge through Grid-search. We found that the pair
(a,y) = (277,2711) gives the highest cross validation accuracy.
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Figure 6.9 — Plot to the left showing the relative error in each sample for kernel
Ridge regression and x = 10~2. The plot to the right shows the same samples with
predicted values (blue) together with calculated validation values (red).
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predicted values (blue) together with calculated validation values (red).
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Figure 6.12 — Plot to the left showing the relative error in each sample for kernel
Ridge regression and x = 10. The plot to the right shows the same samples with
predicted values (blue) together with calculated validation values (red).
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Chapter 7

Conclusion

We have proposed that a machine learning algorithm, given a permeability distri-
bution, is capable to capture the upscaled behaviour of the flow and encode it into
a single coefficient, namely the upscaled permeability. Our results show that this
is in fact the case and that both the ordinary least squares and kernel ridge regres-
sion algorithms have captured the underlying physics of the problem and taught
themselves to upscale flow. This process however is quite error prone in the case of
ordinary least squares, with a high average error of € = 0.24. This leads us to the
second goal of the work: the viability of replacing direct computations of upscaled
permeabilities with learned machines. Here, a Ordinary least squares would not be
useful due to the high error. In the case of the kernel ridge regression however, the
algorithm shows some promising results with an error of € = 0.085. This is however
several orders of magnitude higher than the numerical error in a high-resolution
finite volume simulation. To conclude whether or not the potential gains in faster
computations can justify the increase in error, we need further research.

In future work we would like to try other types of machine learning algorithms
and compare their performance to the ones we already have. We would also like
to test the current machines on different permeability fields, in particular those
with meandering patterns and/or semi-straight channelled structures, like the ones
created in [2]. Especially as the kernel Ridge algorithm has shown some inability
to capture the extremes in our artificial permeability fields with very high variance.
There is also merit in trying it out on real world fluvial patterns from underground
rivers or petroleum reservoirs.
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