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Summary

Finding good features for performing supervised learning on high dimensional industrial
datasets can be challenging, as the feature set typically consists of hundreds to thousands of
features. Specific features might follow protocols or custom coding standards that unless
decoded, are unusable by machine learning algorithms. This is often the case in industrial
environments, where you need domain knowledge to interpret the semantics of the data.
The objective of this research is to enable classification of industrial work orders into a
predefined set of failure mode codes. Analyzing the effect of incorporating domain knowl-
edge in the preprocessing phase of the supervised learning process is the main focus of the
study. A thorough analysis is conducted to assess multiple supervised learning algorithms,
to find fitting evaluation metrics, as well as to appraise the effect of extracting features
from both structured and unstructured fields. Our experiments show that incorporating
domain knowledge in the preprocessing phase improves the performance of the classifiers
substantially. By utilizing domain knowledge we were able to increase the performance of
the classifiers with ≈ 0.07 measured by Cohen’s Kappa, an average relative improvement
of 25.2%. An assessment of the feature importance in one of the final classifiers, showed
that the sum of the importance of features extracted using domain knowledge was 38.97%.
This implies that applying domain knowledge during feature extraction is crucial in order
to avoid erroneous pruning of important encoded features, and to be able to extract more
information from the dataset. The best classifier is currently not accurate enough to auto-
matically label work orders with a failure mode code, but it is accurate enough to suggest
failure mode codes when an operator submits new work orders.
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Sammendrag

Det kan være utfordrende å finne gode attributter for å utføre veiledet maskinlæring på
høydimesjonelle industrielle datasett, siden attributtsettet ofte består av hundrevis av at-
tributter. Noen attributter kan være kodet etter spesifikke standarder eller protokoller,
som gjør at attributtene ikke kan utnyttes av maskinlæringsalgoritmer med mindre de blir
dekodet. Slike attributter finnes ofte i industrielle sammenhenger, og man er da avhengig
av domenekunnskap for å forstå semantikken i dataen. Målet med dette arbeidet er å kunne
klassifisere industrielle arbeidsordre inn i et predefinert sett med feilkoder. Det vil bli
fokusert på å analysere effekten av å inkorporere domenekunnskap i preprosesseringsfasen
av den veiledede læringen. Det er også gjennomført grundige analyser for å vurdere flere
ulike maskinlæringsalgoritmer, evaleringsmetrikker, og effekten av å ekstrahere attribut-
ter fra både strukturerte og ustrukturerte felter. Eksperimentene våre viser en vesentlig
forbedring i klassifiseringsalgoritmene vi testet, når domenekunnskap ble inkorporert i
preprosesseringsfasen. Ved å utnytte domenekunnskap økte ytelsen av den beste klassifis-
eringsmodellen med ≈ 0.07 målt i Cohen’s Kappa, en gjennomsnittlig relativ forbedring
på 25.2%. Det ble også gjort en undersøkelse av hvor mye hvert enkelt attributt bidro i
en av de endelige klassifiseringsmodellene. Denne undersøkelsen viste at viktigheten av
attributter som var ekstrahert med domenekunnskap til sammen utgjorde 38.97%. Dette
impliserer at det er helt avgjørende med domenekunnskap i preprosesseringsfasen, slik at
man unngår feilaktig fjerning av viktige kodede attributter som kan brukes til å ekstrahere
mer informasjon fra datasettet. Ytelsen til den beste klassifiseringsmodellen er for øyeb-
likket ikke god nok til å automatisk merke arbeidsordre med en feilkode, men den er god
nok til å foreslå feilkoder når en operatør oppretter nye arbeidsordre.
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Chapter 1
Introduction

“There is no such thing as a free lunch.”

– David H. Wolpert

The no free lunch theorem states that there is no general purpose algorithm to solve all
problems, and that there is no right answer on optimal data preparation when working
with machine learning [70, 71]. This research focuses on finding suited algorithms and
selecting optimal feature sets, in the context of classifying an imbalanced dataset that
originates from the oil and gas industry.

1.1 Background and Motivation

A focus on a digitalization of the oil and gas sector has emerged in the past few years.
World Economic Forum recently published a white paper, naming digitalization the new
era for the oil and gas industry [59]. Digitalization is defined as the use of digital tech-
nologies to change a business model and provide new revenue and value-producing oppor-
tunities; it is the process of moving to a digital business. The industry has not yet utilized
the opportunities that derive from technology and the large amounts of data that industrial
companies possess. Industrial environments are data intensive settings, where data is gen-
erated from sensors, observations, reports and other instrumental readings. For instance, a
single drilling rig at an oilfield can generate terabytes of data daily, but only a small part
of the data is used for decision making. World Economic Forums’ value-at-stake analysis
estimates that a digitalization of the oil and gas industry could unlock approximately $1.6
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1.2 Context and Problem Description

trillion of value for the industry, its customers and wider society.

1.2 Context and Problem Description

This paper is written as part of a cooperation with Cognite, who are currently working on
digitalizing the industry of Aker BP. Aker BP is one of Europe’s largest independent oil
and gas companies. The dataset used in this research consists of work orders from Alvheim
FPSO (Floating Production, Storage and Offloading), an offshore oil and gas production
ship operating on the Norwegian continental shelf.

A work order is a manual entry of a malfunction or other types of events, and it contains
both structured and unstructured data. Most work orders contain a failure mode code

(FMC), specifying which type of malfunction that caused the work order. About 20% of
all work orders are missing an FMC. It is beneficial for Aker BP to have FMCs on all work
orders for the sake of further analysis and decision making. Being able to predict FMCs
based on other data in a work order, can also be used to suggest an FMC when operators
submit new work orders.

The main objective of this work is to train a classifier that is capable of predicting FMCs
in work orders where the FMC is missing. This involves experimentation with multiple
classification techniques and various approaches to feature extraction.

The dataset used in the study can be characterized as highly imbalanced when the train-
ing samples are grouped by their target class (FMC). Minority classes contain very few
samples, making it hard to generalize a classifier and correctly predict unseen samples.
Consequently, the research will also focus on finding informative evaluation metrics that
works well for multiclass problems and takes class imbalance into consideration. This is
important in order to train and select a classifier that performs well at the classification
task at hand.

2



1.3 Research Questions

1.3 Research Questions

In order to put emphasis on the primary goals of the research, the following research
questions have been defined:

RQ1 To what extent do new domain-driven features extracted from existing fields of
industrial datasets contribute to a classifier’s performance?
We want to investigate how domain knowledge can be utilized in the process of
extracting new features from existing fields of the dataset. Features extracted us-
ing different types of domain knowledge will be tested both singlehandedly, and in
combination. The features will be assessed using different classification algorithms,
and evaluated based on multiple evaluation metrics. Cognite and Aker BP provided
us with explanations and manuals with descriptions of the different features in the
dataset. This also included a description of how values are encoded in some features.
We only had one meeting with a domain expert from an oil platform throughout the
research, which limited the amount of domain knowledge accessible to us. Data sci-
entists from Cognite were available during the entire research, and contributed with
domain knowledge to some extent. The results will not be evaluated in terms of
computational efficiency. There are no requirements on training time, as the models
do not need to be retrained frequently.

RQ2 How does features extracted from unstructured and structured fields compare
in terms of improving a classifier’s performance when classifying industrial
data?
The dataset used in the study contains both structured and unstructured fields. We
want to investigate how features extracted from structured and unstructured fields
contribute to enhancing the performance of classifiers. The work on unstructured
features will mainly focus on extracting more features using domain knowledge,
and not using NLP. TF-IDF will be applied in order to form a basis to evaluate
the effect of predefined domain terms in the process of extracting new features. A
limited amount of work will go into optimizing TF-IDF and applying other NLP
techniques.

3



1.4 Approach

RQ3 What are informative evaluation metrics when dealing with imbalanced multi-
class datasets?
When classifying samples of an imbalanced dataset into multiple classes, it is im-
portant to use an evaluation metric that evaluates the classifier correctly based on the
characteristics of the classification task. If it is crucial to classify minority classes
correctly, some metrics might be more fitting than others. Other metrics may be
more appropriate if the task is to classify as many correctly as possible. In our task,
minority class samples are slightly more important to classify correctly than major-
ity class samples. We want to investigate which existing evaluation metrics that are
informative to use in our task. A limited number of metrics will be appraised, and
those that will be considered are decided by similar research that involve imbalanced
datasets. No effort will be put into developing new metrics or modifying existing
metrics.

RQ4 How does a Stacked Ensemble compare with its constituent models when clas-
sifying highly imbalanced datasets?
A Stacked Ensemble is a meta-learner that combines knowledge from multiple clas-
sifiers in its predictions. We want to assess how a Stacked Ensemble performs com-
pared to the constituent classifiers used in the ensemble. The base learners will be
selected from a set of models built using different classification algorithms.

The content of the thesis is centered around these research questions, and they lay ground
for a common thread throughout this work.

1.4 Approach

This section gives an overview of the approach taken in this research. The task of classify-
ing work orders can be summarized as a three-step process that includes data preprocess-
ing, feature extraction and training of classifiers.

Data preprocessing is done in order to improve the quality of the data and to make it more
suited for the purpose of machine learning. In this step irrelevant rows are removed, as
well as duplicate and highly correlated features. Some preprocessing is also done on the
textual fields to make feature extraction more applicable and efficient.

The feature extraction step includes extracting features from both structured and unstruc-
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tured fields using domain knowledge and TF-IDF. Domain expertise has been provided by
Cognite and Aker BP through their employees, manuals, protocol descriptions and tech-
nical reports. These assets are exploited and used to identify additional features that can
improve the predictive performance of the classifiers. Features extracted using TF-IDF are
used as a comparison to the domain-driven features extracted from unstructured fields.

In the classification phase, four algorithms are employed and evaluated. These are Random
Forest, Gradient Boosting Machine, Stacked Ensemble and näive Bayes. The algorithms
were chosen on the basis of a run of H2O’s AutoML feature. H2O is an open source
machine learning and predictive analytics platform which has been used throughout this
research. AutoML is a method that automatically trains and tunes several of the most
popular supervised machine learning algorithms on the same dataset, in order to give an
indicator on which algorithm best fits the problem. Hyperparameters were found by doing
a Random Grid Search.

In order to evaluate the effect of the various approaches to feature extraction, a baseline
model for each of the tested algorithms is trained. These baseline models are trained on
the preprocessed dataset without the additional extracted features, with the same hyperpa-
rameters as used in the rest of the experiments.

The experiments are conducted such that all of the approaches to feature extraction are
tested in combination and compared to the baseline. Multiple evaluation metrics are used
in order to give a better overview of the predictive performance of the classifiers.

1.5 Results

The results of the models that yielded the greatest predictive performance in terms of
Cohen’s Kappa, are shown in Figure 1.1. Cohen’s Kappa is an evaluation metric that takes
class imbalanced into consideration, by weighting the impact of each class relative to their
size. The models evaluated in the figure utilize features extracted from both structured and
unstructured fields in the original dataset. Features extracted using domain knowledge had
a significant impact on the performance of all the tested algorithms, increasing the score
from the baseline experiment by an average of ≈ 0.07 measured by Cohen’s Kappa. This
equals an average relative improvement of 25.2%.

An evaluation of feature importance in one of the best performing models, showed that
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Figure 1.1: Summary of results (baseline models vs. models with incorporated domain knowledge).
1Stacked Ensemble, 2Random Forest, 3Gradient Boosting Machine, 4Naı̈ve Bayes

six of the extracted features are among the top 23 most important features. Combined, the
features that were extracted using domain knowledge constitute 38.97% of the total feature
importance (100%). The two most important features were Equipment type and System,
both extracted from the structured field FunctionalLocation. Equipment type refers to the
type of equipment that a work order concerns, while System specifies the system that the
equipment resides in.

The classifier that had the best performance was a Stacked Ensemble that incorporated
features extracted from both structured fields and from unstructured features using domain
terms. The model achieved a Cohen’s Kappa of 0.4515 and an accuracy of 0.4851. This
is not accurate enough to automatically label work orders with an FMC, but it is accurate
enough to suggest FMCs when an operator submits new work orders.

1.6 Research Paper

As a part of this master’s thesis, we have written a research paper on Using Domain Knowl-

edge in Classifying Industrial Data from the Oil and Gas Sector. The paper is attached
in Appendix A. It analyzes the effect of incorporating domain knowledge when training
a classifier on an imbalanced high dimensional industrial dataset. Three different classi-
fication algorithms were used in the experiments. The performance of all the classifiers
improved with ≈ 0.07 measured by Cohen’s Kappa when domain knowledge was incor-
porated in the preprocessing phase. The paper was submitted to The European Conference
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on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
2018 (ECML-PKDD). At the time of writing, we have not gotten feedback on whether or
not the paper is accepted to the conference.

1.7 Report Structure

The rest of the report is structured as follows: Chapter 2 gives a theoretical overview of
the techniques and key concepts related to the task at hand. Related work is presented and
discussed in relation to our problem in Chapter 3. Chapter 4 outlines the the origin of the
dataset and context of the research. The dataset, along with a thorough analysis of its key
characteristics and challenges, is presented in Chapter 5. In Chapter 6 the specific meth-
ods and implementations used in the research are presented. The conducted experiments
along with their results are provided in Chapter 7. Chapter 8 and 9 concludes the research
by discussing the results and findings, addressing the research questions, and providing
recommendations for further work.
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Chapter 2
Background

This chapter presents the background theory of the experiments conducted in this project.

2.1 Supervised vs. Unsupervised Learning

Supervised learning is the machine learning task of learning a mapping function f , that
maps an input vector X to an output variable Y , based on labeled training data [30]. The
training data consists of pairs on the form (X,Y ), where X often is a vector of descriptive
features and Y is the class (label) associated with that feature vector. In other words, a
supervised learning algorithm uses labeled examples in order to approximate f(X) = Y .
The inferred mapping function can then be used to classify new unseen input vectors.
Supervised learning can be further divided into regression and classification based on the
prediction method (real values versus classes).

Unsupervised learning is the task of learning a function to describe the underlying structure
in data based on unlabeled input vectors. The most common unsupervised learning method
is clustering, which is used for exploratory data analysis in order to find hidden patterns or
groupings in the data.

The problem in this study is a supervised learning task. More precisely a multiclass clas-
sification problem. In other words, our dataset consists of labeled records belonging to a
discrete number of classes.
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2.2 Structured, Semi-Structured, and Unstructured Data

Structured data is data that has an unambiguous and defined interpretation. It has a high
degree of organization, and a predefined data model. It is often organized into a formatted
repository, such as a table where each column impose information about the data stored in
the column. In the context of machine learning, the term column is used interchangeably
with the term feature. Semi-structured data is data that lacks the same level of organization
and predictability as structured data. The data does not reside in fixed fields or records,
but it does contain elements that can separate the data into various hierarchies. Contrary
to structured data, unstructured data does not have a predefined data model, and it is not
organized in a specific manner. An example of unstructured data is a chunk of raw text,
such as: ”On the 23rd of February 2018, John Doe conducted an inspection of the valve”.
Table 2.1 shows how this data can be structurized.

Table 2.1: Example of structurized data.

Date Task Equipment Conducted by

2018-02-23 Inspection Valve John Doe

Unstructured data must be organized and structured in order to be useful in classification
tasks. If it is left untouched it will be interpreted as a label, meaning that two unstruc-
tured values must be equal in order to have a relationship. When datasets consist of both
structured and unstructured features, a common approach is to apply text mining to extract
features from the unstructured text. The extracted features are then added to the existing
set of structured features. This process is often used in for instance email spam filtering,
since an email consists of both structured metadata and unstructured textual content [6].
Some of the most common approaches to extract features from unstructured fields are
presented in Section 2.4.

2.3 Features

In machine learning, a feature can be described as an attribute or property of the input
set, that can be used to build an accurate predictive classifier. For instance, in the task of
training a model that predicts tomorrow’s weather, natural features would be Temperature,
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Humidity and Pressure. By using these features, a classifier is to some extent able to
differentiate between the various output classes.

2.3.1 Data Types

Features can be of various types, ranging from simple numerical values (e.g., today’s tem-
perature) to facial features extracted from an image for the purpose of facial recognition.
There are four distinguishable types of data that are often encountered in machine learning:

Nominal A Nominal feature consists of values that are simply used for labeling. In other
words, a nominal value is not assigned an order in relation to any other value. For in-
stance, names are nominal values; it would make little sense to rank them in relation
to one another.

Ordinal An Ordinal feature consist of values where the order matters; they are ranked
relatively to one another. Students’ grades (A-F) are examples of ordinal data, as
the grades have a rank; an A is superior to a B and so forth.

Interval An interval feature consist of values where the difference between two of them
is meaningful. An example of an interval feature is temperature; the difference
between 20◦C and 30◦C, is the same as the difference between 30◦C and 40◦C.

Ratio A Ratio feature shares the properties of an interval feature, but additionally, any
two values have a meaningful ratio. It is meaningful to perform multiplication and
division on ratio variables. Temperature measured in Celsius is not a ratio feature
due to the fact that 0◦C does not mean that there is no temperature, and 20◦C is not
twice as hot as 10◦C. The Kelvin temperature scale on the other hand, assigns 0 to
no temperature (absolute-zero) and is therefore considered a ratio feature.

It can be important to identify the data types of the feature set when training a classi-
fier. Some implementations of machine learning algorithms requires numerical values and
treats nominal data as ordinal data. This imposes an ordinal relationship between nominal
values, which is often undesirable. For instance, the names Leo and Jerome might be en-
coded as the numerical values 1 and 2. With this encoding, one could evaluate 1 < 2, or
Leo < Jerome, which in reality is a nonsensical comparison.
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2.3.2 Curse of Dimensionality

Datasets with a lot of features (dimensions) are prone to what is often called The Curse of

Dimensionality. The ”curse” is a phenomenon, that informally states that the complexity of
a dataset increases rapidly with increasing dimensionality [11]. This is due to the fact that
as dimensions grow, dimension space grows exponentially. In other words, the sparisty of
the data points increase exponentially with regards to the dimensionality. Assume that a
dataset consists of 10 samples and a single feature. This can be represented with only 10
values for x in one-dimensional space. If another feature were to be added, the data would
be represented in two dimensions, and the dimension space would increase to 102. If yet
another feature is added, the data would be represented in three dimensions, increasing the
dimension space to 103. It can be seen that the dimension space increases by a magnitude
of 10 for every additional feature (dimension), increasing the sparsity of the data points.
This is a problem, as the difficulty of searching through the space gets a lot harder. Various
dimensionality reduction techniques can be used in order to deal with the phenomenon.
This includes automatic feature selection methods such as backward feature elimination

and correlation filtering [27]. Domain knowledge can also be utilized to identify the most
relevant features.

2.4 Unstructured Features

In order to be useful for supervised learning, unstructured features need to be preprocessed
and organized in some way. There are multiple techniques to structurize data, for instance
by building a Bag-of-Words model.

2.4.1 Bag-of-Words Model

The Bag-of-Words model (BoW) is a way to represent and make textual data more suited
for the purpose of machine learning. In the Bag-of-Words model, a document is repre-
sented as a multiset (bag) of its words. With this representation, various document features
can be extracted and used further in the machine learning process. A common feature to
calculate using BoW is term frequency (i.e., the number of times a term occurs in a docu-
ment).
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As an example, assume the following corpus of documents D = {d1, d2, d3}, where

d1 = John likes art. He also likes tennis.
d2 = Eric and Lisa like tennis. Lisa dislikes art.
d3 = Tom dislikes tennis.

A vocabulary V is constructed from the distinct words in the corpus. This vocabulary
defines the basis for a vector space.

V = {john, likes, art, he, also, tennis, eric, and, lisa, like, tom, dislikes}

As the vocabulary consists of all the words in the corpus, every document can be repre-
sented as a fixed-length integer vector of size |V |, where the position indicates the term
and the value indicates the term frequency. The |V |-dimensional vector representations of
d1, d2, and d3 are shown in Table 2.2. Each column represents a term in V , and each row
indicates a document. Index ai,j of the matrix indicates the term frequency of term tj in
document di.

Table 2.2: Example of document representation using Bag-of-Words.

john likes art he also tennis eric and lisa like tom dislikes
d1 1 2 1 1 1 1 0 0 0 0 0 0
d2 0 0 1 0 0 1 1 1 2 1 0 1
d3 0 0 0 0 0 1 0 0 0 0 1 1

2.4.2 TF-IDF

One of the pitfalls of simply using the term frequency as in the example above, is that
common terms such as articles and prepositions are heavily weighted. Term Frequency-

Inverse Document Frequency (TF-IDF) is a simple and effective weighting scheme, often
used in text mining and information retrieval in order to deal with this shortcoming [54].
The main motivation behind TF-IDF is to give a numerical statistic on how important a
term is in a given document, based on term frequency (TF) and inverse document frequency

(IDF). TF-IDF is defined as TF · IDF .
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Term Frequency

Term frequency is generally defined as the number of times a term occurs in a document.
The term frequency may be weighted in several ways (e.g., Boolean, log scaled, or normal-
ized over document length). When dealing with variable document text lengths, the term
frequencies are commonly higher in longer documents, and they should be normalized. A
commonly used norm is the euclidean norm (`2 norm) [42]. An advantage of euclidean
normalization is that it takes document length into consideration.

Given a document d and a term t, let the term frequency tft,d = ft,d be the exact number
of times t appears in d. This can be represented as a vector, ~x = (x1, x2, . . . , xn), where
each vector element xi denotes the term frequency of term i. The term frequency vector
can be normalized using Equation (2.1).

f̂t,d =
~x

‖~x‖p
(2.1)

where f̂t,d is the normalized TF vector, ~x is the vector that is being normalized, and ‖~x‖p
is the norm of vector ~x in the `p space (Lebesgue space).

The euclidean norm uses p = 2, which makes the denominator in Equation (2.1) equal
to
√
x 2
1 + x 2

2 + . . .+ x 2
n for a TF vector ~x. To normalize, each vector element xi are

divided by the euclidean norm. Table 2.3 shows normalized term frequencies using the
example from the previous section.

Table 2.3: Example of document representation after normalizing term frequency.

john likes art he also tennis eric and lisa like tom dislikes
d1 0.33 0.67 0.33 0.33 0.33 0.33 0 0 0 0 0 0
d2 0 0 0.32 0 0 0.32 0.32 0.32 0.63 0.32 0 0.32
d3 0 0 0 0 0 0.58 0 0 0 0 0.58 0.58

Inverse Document Frequency

The inverse document frequency is a measure of how rare a term t is across all documents
in a document corpus D. It decreases the weight of commonly used words, and increases
the weight of terms that are rarely used in the corpus. The IDF of a term t given a corpus
D is calculated by Equation (2.2).
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idft,D = log
|D|
ft,D

(2.2)

where |D| is the number of documents in the corpus and ft,D is the number of documents
in D where t is present.

Combining TF and IDF

Using the definitions above, it is apparent that TF-IDF works by determining the frequency
of a term in a specific document compared to the inverse proportion of that term over the
entire document corpus [54]. In other words, the importance of a term is determined by
how frequently it appears in a given document, and how rare it is in the corpus as a whole.
By using the definitions of TF and IDF just introduced, Equation (2.3) can be derived for
calculating TF-IDF.

tft,d · idft,D = f̂t,d · log
|D|
ft,D

(2.3)

where t ∈ d, d ∈ D, and f̂t,d is the normalized term frequency of term t in document d, .

An Example of TF-IDF weighting

Assume that we have the same corpus of documents as in the example given in Sec-
tion 2.4.1, D = {d1, d2, d3}. As the term frequencies are already given in Table 2.3,
the task that remains is to calculate IDFs using Equation (2.2). After the IDFs are calcu-
lated, Equation (2.3) is used to determine the TF-IDF weights. The result is the document
representations shown in Table 2.4. The term tennis was considered an important term in
the TF representation, but by using TF-IDF the weight is reduced to 0 since it is present in
all the documents.

Table 2.4: Example of document representation using TF-IDF.

john likes art he also tennis eric and lisa like tom dislikes
d1 0.16 0.32 0.06 0.16 0.16 0 0 0 0 0 0 0
d2 0 0 0.06 0 0 0 0.15 0.15 0.30 0.15 0 0.06
d3 0 0 0 0 0 0 0 0 0 0 0.28 0.10
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2.5 Imbalanced Datasets

When talking about imbalanced datasets in classification, it refers to an uneven distribu-
tion of samples when the samples in the dataset are grouped by their target class. Small
differences in distribution can be manageable, but as the differences increase, the more
challenging the classification task becomes. Large classes can quickly become very gen-
eral, since many samples often contain a lot of distinct values for each feature [66]. Thus,
many different feature values are associated with the large classes. A minority class re-
quires new samples to be almost identical in order to be labeled with that class, since the
classifier is trained on few samples with few distinct feature values.

There are many suggested approaches to combat the problem of imbalanced datasets, but
there are three main approaches that cope with the problem on different levels. Sampling
techniques can be used to even out the class distribution (data level), cost-sensitive learning
can be used to weight smaller classes higher during model training (algorithm level), and
changing the evaluation metric can favour classifiers where smaller classes are prioritized
(evaluation level) [38, 31].

Applying sampling techniques on the dataset can even out the differences in the class
distribution. The main sampling techniques are:

Undersampling Samples are deleted from the larger classes to even out the differences.
Oversampling Samples in minority classes are duplicated in order to get more training

data.
Syntetic sampling Minor classes are oversampled by using synthetic sampling. SMOTE

is a method where synthetic samples are generated based on features in the minority
classes [13].

Accuracy might not be optimal when evaluating classifiers on imbalanced datasets. Chang-
ing the performance metric to for instance Cohen’s Kappa, g-mean or macro average F1-
Score, can indirectly weight smaller classes higher when training a classifier. The rationale
behind the choice of evaluation metrics and further discussions on evaluation metrics are
presented in Sections 7.1 and 8.2.

With imbalanced datasets it is especially important to test multiple types of algorithms,
since particular algorithms can perform better on irregular datasets. Tree based algorithms
generally work well on imbalanced datasets [31].
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2.6 Preprocessing

The representation and quality of the data is one of the most important factors for suc-
cess. Machine learning algorithms often produce less accurate results, or fail to discover
anything useful at all if the data contains extraneous or irrelevant information [39]. Data
preprocessing is therefore a crucial step in order to produce a dataset that maximizes the
performance of machine learning algorithms. There are many different techniques for
preprocessing data, and it is often repeated in an iterative manner [18].

Generally more data is better, but in some cases datasets include data that is irrelevant for
a classification task and cause noise. Such data should be discarded. Data must also be
formatted in a suitable way for further processing. This includes joining data from multiple
sources. If some samples or features have high sparsity (are missing many values), it
must be considered if they contribute to training a classifier or if they should be discarded.
Cleaning is the process of removing, adding or generating missing data. A commonly used
technique for coping with missing data is sampling, which was presented in the previous
section.

Preprocessing methods that only concern structured data are normalization and discretiza-
tion of continuous features. Techniques that only applies to unstructured textual features
are stop word removal, stemming and tokenization [19]. Using the example from Sec-
tion 2.4.1, the following procedure shows how stop word removal and stemming can be
applied to reduce the size of the vocabulary and simplify the document representation:

1. Initial vocabulary:
V = {john, likes, art, he, also, tennis, eric, and, lisa, like, tom, dislikes}

2. After stop word removal:
V = {john, likes, art, tennis, eric, lisa, like, tom, dislikes}

3. After stemming:
V = {john, like, art, tennis, eric, lisa, tom, dislike}

Words such as he and and were previously considered important terms, but these are
removed during preprocessing. After stemming, like and likes are considered to be the
same word. As shown in Table 2.5, the TF-IDF weights are different after terms are
removed during preprocessing.
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Table 2.5: Example of document representation using TF-IDF after preprocessing.

john like art tennis eric lisa tom dislike
d1 0.18 0.13 0.07 0 0 0 0 0
d2 0 0.06 0.06 0 0.16 0.32 0 0.06
d3 0 0 0 0 0 0 0.28 0.10

Another important step of preprocessing is engineering new features based on the exist-
ing data. Unstructured features such as text fields often contains ”hidden” information,
meaning that machine learning algorithms cannot utilize the features unless they are ex-
tracted and structurized first (e.g., using Bag-of-Words). Structured fields may also contain
encoded information that should be extracted.

2.7 Classification

In machine learning, classification is the task of approximating a function that maps every
feature set X to a class Y . The goal is to be able to classify new unseen samples correctly.

2.7.1 Binary vs. Multiclass Classification

Binary classifiers are classifiers that maps an input to one of two output classes. For
instance yes or no, and positive or negative. Multiclass classification on the other hand,
maps an input to one of three or more output classes. Various algorithms can handle
multiple classes by design, while others are binary classifiers by nature. Some binary
classifiers can be adapted to handle multiclass problems.

There are three categories of multiclass classifiers [1]. Extensible algorithms are binary
classification algorithms that are extended to solve multiclass problems. Decision trees,
neural networks, k-Nearest Neighbor and naı̈ve Bayes are examples of such algorithms.
Neural networks can for instance be extended by having N binary neurons instead of one
in the output layer.

The second category is decomposing the problem into binary classification tasks, and is
for instance used for multiclass SVMs (Support Vector Machine). Decomposing aK-class
classification problem into K binary classification task is the simplest approach [55]. This
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is called one-versus-all (OVA). When training a binary classifier for a class, the samples
belonging to the class are considered positive, while the samples from all the K − 1 other
classes are considered negative. The winner is the classifier that produces the maximum
output. All-versus-all (AVA) is another decomposition, where each class is compared to
all the other classes [22]. This generates K(K−1)

2 binary classifiers. When a new sample
is classified, it is classified by all the binary classifiers, and each classifier casts a vote
for the class the sample should be labeled with. The sample is ultimately labeled with
the class that received the most votes. Chih-Wei and Chih-Jen [32] compared the two
decompositions against each other using SVM, and showed that AVA performs best in
general.

Hierarchical classification is the third method that can be used to tackle multiclass prob-
lems. This method is inspired by the behaviour of decision trees, but each parent node is
an actual binary classifier. The output space is structured as a binary tree, where each leaf
node represents a class. Each parent node is divided into a cluster of classes, until the leaf
nodes only consist of one class. The division of classes must be done in such a way that
the discrimination between the clusters is as high as possible. By using training samples
from each of the clusters in every parent node to train models, new samples traverse its
way down the tree as it is classified on every level. Eventually it ends up in a leaf node,
representing the class the sample should be labeled with.

2.7.2 Decision Tree

A decision tree (DT) is a supervised learning method used for classification and regression
for both continuous and discrete data [57]. The method forms the basis for most of the
more advanced techniques used in this study. Decision trees follow a procedure where
the data is recursively partitioned into smaller subsets based on simple decision rules at
each non-leaf node of the tree. The internal nodes have exactly one parent node and two
or more child nodes. Every leaf node is associated with a class, and the input vectors are
labeled according to the node they end up in. An example of a decision tree is shown in
Figure 2.1. In this particular example, the goal is to decide whether or not an applicant
is eligible for a mortgage loan. The decision is based on features such as the applicant’s
income, age, debt and employment status. This is a binary classification problem, how-
ever, decision trees are able to handle multiclass classification by nature. An advantage of
decision trees is that new samples are very quick to classify. The decision tree algorithm
produces highly interpretable models, allowing humans to inspect paths in the tree to un-
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derstand the behaviour of the classifier. This is important in problems where it is valuable
to understand how decisions are made, for instance in predicting medical conditions and
the weather [11].

Income Range

Employed?

Age ≥ 40?

Eligible Ineligible

Ineligible

Debt?

Ineligible Eligible

Eligible

$0-20k

Yes

Yes No

No

$21-40k

High {Low, Medium}

$41k+

Figure 2.1: Example of a decision tree where the goal is to decide whether or not an applicant is
eligible for a mortgage loan.

Decision Tree Induction

There are various algorithms that are used to construct decision trees. Some of the most
well-established are CART, ID3 and C4.5 [11, 51, 52]. The implementations are mainly
different with regards to the split criterion, how overfitting is addressed, and how they deal
with missing data [72]. The algorithms construct the trees in a similar greedy manner,
using a recursive top-down and divide-and-conquer approach. This is also the idea behind
one of the earliest algorithms, Hunt’s Algorithm, that forms the basis for some of the
more complex algorithms. In order to build a decision tree, Hunt’s Algorithm recursively
subdivides the training data, X , into purer subsets, X1, X2, . . . , Xt, where t denotes the
node [35]. A high level 3-step description of the procedure is as follows:

1. IF Xt consists of records of the same class Cy exclusively, THEN label node t as a
leaf node associated with Cy (terminal condition).

2. IF Xt consists of records of multiple classes, THEN split Xt into smaller partitions
based on the attribute which discriminates best between the classes.

3. Recurse on each partition.
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The recursive splitting of partitions continues until one of the following criteria is met:
(1) When all samples in a partition belongs to the same class; (2) When all samples in a
partition have the same attributes; (3) Another predefined stopping criterion is met. In the
case where a partition contains a mixture of classes with no available split attributes, the
node is assigned the majority class of that partition.

Assume that our training data consist of n records andm features, and that the depth of our
decision tree is O(log n). At each level of the tree the entire set of n records are evaluated
(O(n log n)), and at each node all m features must be considered. In other words, the
computational complexity for Decision Tree induction without pruning is O(mn log n)

[68]. Classifying a new sample is done by conducting a single test at each level of the tree,
meaning that the computational complexity for classifying a new sample is O(log n).

Split Criterion

An attribute selection measure is used in order to find the attributes that results in the
most homogeneous class distribution in the nodes [57]. Two of the most commonly used
attribute selection measures are Gini Index and Entropy [56].

Assume that before splitting, a node contains 10 samples from class C0 and 10 samples
from C1. The best splitting criterion can be found using a greedy approach. A homoge-
neous class distribution in the nodes is desirable (e.g. 9 C0 and 1 C1 in a child node),
with a lower impurity than the parent node. Gini Index and Entropy, shown in Equa-
tion (2.4) and (2.5), measures the impurity between two splits.

GINI(t) = 1−
c−1∑

i=0

[p (i|t)]2 (2.4)

Entropy(t) = −
c−1∑

i=0

p(i|t) log2 p(i|t) (2.5)

where p (i | t) is the number of samples in class i in node t.

In order to calculate GINI of the split, the GINI of all the nodes are combined using
Equation (2.6)

GINIsplit =

k∑

i=1

ni
n
GINI(i) (2.6)

where k is the partitions of the parent node, ni is number of samples in child node i, and
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n is the total number of samples in the child nodes.

The information gain of the split can be calculated by subtracting GINI of the split from
GINI of the parent node p, as shown in Equation (2.7).

GAINsplit = GINI(p)−GINIsplit = GINI(p)−
(

k∑

i=1

ni
n
GINI(i)

)
(2.7)

If there are multiple split options, the one with the highest GAINsplit is selected. The
same approach can be used for calculating Entropy gain.

Pruning

Pruning is a technique to combat overfitting, and it reduces the size and complexity of the
decision tree [58]. It removes sections of the tree that provides little value to the classifi-
cation task. A prepruning technique is to employ an early stopping rule, for instance [52]:

• The information gain for a split is less than a given threshold.
• The number of samples is less than a given threshold.
• The class distribution of the remaining samples is independent of their features.

After the decision tree is fully constructed, error-based pruning can be utilized:

• Remove nodes from the bottom and up.
• If the generalization error is reduced, replace subtree with a node.
• The class label for the new leaf node is the majority class in the pruned subtree.

2.7.3 Naı̈ve Bayes

Naı̈ve Bayes classifiers are a family of probabilistic classifiers based on Bayes’ theorem
(2.8). They all share the assumption that all features of a sample are independent of each
other, regardless of any correlation between them. Even though this assumption is almost
always wrong, practical comparisons have proven naı̈ve Bayes to perform surprisingly
well [29]. The independence assumption simplifies the learning significantly, since the pa-
rameters for each attribute can be learned separately. It also helps to alleviate problems that
might arise from the curse of dimensionality. Popular naı̈ve Bayes classifiers are gaussian
naı̈ve Bayes, multinomial naı̈ve Bayes and multi-variate Bernoulli naı̈ve Bayes [45, 34].
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Naı̈ve Bayes has been successfully used in spam filtering, text classification, and for pre-
dicting medical diagnosis [46, 45, 37]. It is popular due to its simplicity, and it often
outperforms more complex models when it is applied on small datasets [65].

P (A | B) =
P (B | A) P (A)

P (B)
(2.8)

where A and B are events and P (B) 6= 0.

With regards to a dataset, Bayes can be applied by using Equation (2.9).

P (c | X) =
P (X | c) P (c)

P (X)
(2.9)

where X is a feature vector (x1, x2, x3, . . . , xn), and c is the class variable.

Given a set of target classes C and an unseen sample s, naı̈ve Bayes algorithms calculate
the probability of s belonging to each c ∈ C. Figure 2.2 shows how the probability for
class c is calculated based on a feature vector.

c

x1 x2 x3 . . . xn

Figure 2.2: Naı̈ve Bayes Classifier, each feature xn from the feature vector X independently con-
tributes on the probability for class c.

The final prediction is the target class with the highest probability, and can be calculated
using Equation (2.10).

cm = argmax
cj∈C

(
P (cj)

n∏

i=1

P (xi | cj)
)

(2.10)

Calculating the initial probabilities requires a simple scan through all the training instances
N and their features k [65]. In other words, the computational complexity of building the
classifier is O (Nk). Classifying new instances requires calculating probabilities for all
the |C| classes based on k features - i.e., the computational complexity is O (|C| k).
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2.8 Ensemble Learning

2.8 Ensemble Learning

In order to better apprehend how ensemble learning works, it is important to understand
the relationship between bias and variance. The total error of a model is based on bias,
variance, and irreducible error (intristic noise that can not be reduced by algorithms) [23].
Bias occurs when a model generalizes well, but has limited flexibility to learn the true
signal from the training data (known as underfitting). Variance refers to a model’s sensi-
tivity to small fluctuations in the training data [23]. A high variance implies that a model
is too specific and that it models noise in the training data instead of the signal (known as
overfitting).

Assume that six subsets are randomly subsampled from a training dataset. Now imagine
that the six subsets are used to train six classifiers with the same algorithm and parameters.
Bias can be thought of as the average performance of the classifiers, while variance is the
consistency between them. Figure 2.3 is inspired by Fortmann-Roe [20], and shows four
bulls-eye diagrams with possible scenarios of how the six classifiers perform. Each dot
in the figure represent an individual realization of a model. A dot that is close to the
bulls-eye is a classifier with a high accuracy. As we move away from the bulls-eye, the
predictions get worse. Low variance (and high bias) algorithms tend to train models that
are consistent, but inaccurate on average. Algorithms that produce classifiers with low
variance are usually less complex, such as naı̈ve Bayes. Low bias (and high variance)
algorithms are often more complex and tend to train models that are accurate on average,
but inconsistent. Decision trees are known to suffer from high variance, since one wrong
choice cascades further down the tree and has an impact on all subsequent choices.

Training classifiers that focus on reducing the bias as much as possible will often result in
higher variance, and vice versa. The bias–variance dilemma is the problem of simultane-
ously minimizing both bias and variance in order to reduce the total error [26].

The goal of ensemble learning is to reduce the total error by combining predictions of
several base estimators in a way that reduces bias and variance [16]. Bagging and boosting
are examples of such methods.
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Figure 2.3: Bias vs. variance. Each dot represents a classifier that is trained using the same algo-
rithm, but with different subsets of training data.

2.8.1 Bagging and Boosting

Bagging is an ensemble method where the base learners are built in parallel, independently
of each other [8]. A randomly sampled subset of the data is used for each base learner,
such that different subsets are used for training each learner. The same sample might occur
in multiple subsets. After the base learners are trained, the validation samples are tested in
all the classifiers, and ultimately labeled based on a majority vote between the classifiers.
The main purpose of bagging is to reduce the error by reducing the variance.

Boosting is an ensemble method where the base learners are built sequentially [21]. It
differs from bagging, since each iteration takes previous classifiers’ success into consider-
ation. Random sampling is used for generating subset of the data, but wrongly classified
data is weighted higher in each iteration in order to emphasize the hardest cases. In boost-
ing, the base learners are assigned a weight based on how accurate their results are. The
weighted average of the base learners are used when predicting new samples, so that ac-
curate learners have more influence. The main purpose of boosting is to reduce the error
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by reducing the bias, but it can also reduce the variance to some extent.

Both bagging and boosting reduce variance, but only boosting makes an effort to reduce
the bias [3]. Bagging is generally better at reducing variance than boosting, thus making it
more robust to overfitting [53, 21]. This is because bagging methods builds uncorrelated
classifiers with random samples from the training data, causing different classifiers to make
different errors.

2.8.2 Random Forest

Random Forest is an ensemble learning method that utilize bagging. It is frequently used
for multiclass classification. Characteristics of Random Forest include robustness to noise,
outliers and overfitting [10]. It works by generating a large number of tree-structured clas-
sifiers and fitting them to a random sample (with replacement) of the training set. The
mode of the output classes of the individual trees are then used to conclude a final classi-
fication. Random Forest can in other words be defined as a collection of N tree-classifiers
{Tk(x), k = 1, 2, . . . , N}, where x is the input vector of features. Each tree then predicts
a class ck based on the input vector, resulting in a total of N individual classifications,
{Tk(x) = ck, k = 1, 2, . . . , N}. The classification output c of the Random Forest, is the
most popular class among these predictions. As Random Forests are ensembles of tree-
based classifiers, they also support direct use of categorical variables. This is convenient
due to the nature of the dataset used in this study.

Random Forest builds fully constructed decision trees, resulting in trees with a high vari-
ance and a low bias. Since it is a bagging method, its strengths is that the variance is
reduced during the majority vote, as special cases are downvoted by other more general
learners. General learners are learners that were not assigned data with the noise or out-
liers that caused the overfitting during the random subsampling. This makes it more robust
to overfitting than boosting methods such as Gradient Boosting Machine. Random Forest
does not reduce the bias, but it aims to keep a low bias by using fully constructed trees.

2.8.3 Gradient Boosting Machine

Gradient Boosting Machine (GBM) is a machine learning technique that uses boosting
and steepest gradient optimization, in order to produce highly accurate, robust and inter-
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pretable classification models [24]. Boosting, as introduced above, works by combining
the predictions of several weak classifiers with high bias and low variance, in order to
make a final prediction based on a weighted majority vote [30]. The weak classifiers are
built by sequentially applying a classification algorithm to repeatably weighted modified
versions of the input data. In steepest gradient optimization, the loss function of the model
is minimized by iteratively moving towards the steepest descent (negative of the gradient).

Gradient Boosting Machine works by first constructing an initial model f0(x) (optimal
constant model) on basis of the training data. It then follows an iterative procedure where
a regression tree (weak learner) is fitted to the remaining errors (pseudo-residuals) of the
current model [30]. These pseudo-residuals are the gradient values of some differentiable
cost-function L, that we want to minimize. For each leaf node of the newly constructed
regression tree, a step is taken in the opposite direction of the average gradient (calculated
from samples with similar features), and line search is used to determine the step magni-
tude γ. The result is an updated model. After a predefined number of iterations M , the
final model fM (x) is returned. Pseudocode for Gradient Boosting Machine is shown in
Figure 2.4.

1. f0(x) = argmin
γ

∑n
i=1 L(yi, γ)

2. for m = 1 to M

(a) Compute rim = −
[
∂L(yi,f(xi))

∂f(xi)

]
f(x)=fm−1(x)

for i = 1, . . . , N

(b) Fit a regression tree to the pseudo residuals rim.

(c) Compute step multiplier γjm for every leaf node Rjm, j = 1, . . . , Jm

(d) Update fm(x) = fm−1(x) +
∑Jm
j=1 γjmI (x ∈ Rjm)

3. Return fM (x)

Figure 2.4: Gradient Boosting Machine regression algorithm.

Similar to the Random Forest, a strength of Gradient Boosting Machine is that it reduces
the variance by using multiple learners. Another strength of Gradient Boosting Machine
that does not apply to bagging techniques, is that it contributes to reducing the bias. It
reduces the bias by starting with very general classifiers, before sequentially training new
base learners with increased expressive power [63]. The new base learners are trained with
increased weights on previously misclassified samples, making the base learners more
specialized.
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2.8.4 Stacked Ensemble

Stacking (also known as Super Learning or Stacked Regression) is a concept that aims to
reduce overfitting and minimize the error rate, by deducing the biases of multiple gener-
alizers with respect to a provided learning set [69]. Instead of selecting the best predictor
in a set of classifiers, the idea of stacking is to combine several classifiers into a more ac-
curate predictor [9]. Unlike bagging and boosting, stacking is a second-layer meta learner
that intends to ensemble the base learners. Stacking can combine base learners built us-
ing simple classification algorithms, as well as learners built using bagging and boosting
classification algorithms. The particular stacking algorithm used in this work is the Super
Learner developed by van der Laan et al. [64]. The strength of a Stacked Ensemble is that
it can utilize knowledge from multiple predictors, that can be constructed using different
classification algorithms.

2.9 Evaluation Metrics

There are several methods to evaluate the performance of a classifier. Accuracy is com-
monly used, but recall, precision, F-Score or Cohen’s Kappa might be better suited de-
pending on the classification task. They can all be calculated from a confusion matrix.

2.9.1 Confusion Matrix

The performance of a classifier can be evaluated using a confusion matrix. A confusion
matrix for a binary classification task is shown in Table 2.6. The true positives (TP) are the
correctly classified samples belonging to the class. True negatives (TN) are the samples
that was correctly classified as not belonging to the class. The samples that are incorrectly
classified as members of the class are false positives (FP). Samples that actually belong to
the class, but classified as not belonging to the class, are false negatives (FN).

In a multiclass classification problem, the confusion matrix should be interpreted slightly
different. Table 2.7 shows an example of a confusion matrix where weather conditions are
predicted. The main diagonal is now only representing correctly classified samples while
the rest of the cells are wrong predictions. The confusion matrix can be interpreted by
looking at the cells in the main diagonal one by one. For cellii, the number of TPs are
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Table 2.6: Confusion matrix.

Predicted class

P N

Actual class
P True positives (TP) False negatives (FN)
N False positives (FP) True negatives (TN)

the number in the cell, while the rest of the diagonal are TNs. The other cells in row i are
FNs with regards to the predicted class, while the cells in column i are FPs. A confusion
matrix gives detailed insight into how a classifier performs, but it does not yield a single
value metric.

Table 2.7: Multiclass confusion matrix for weather predictions.

Predicted class

Rainy Cloudy Sunny Snowy

Actual class

Rainy 17 2 3 0
Cloudy 1 10 2 3
Sunny 1 4 22 1
Snowy 5 2 3 11

2.9.2 Accuracy

Accuracy measures the fraction of predictions that are correctly classified. It is defined by
Equation (2.11).

Accuracy =
TP + TN

TP + FP + FN + TN
(2.11)

In a multiclass problem, it can be calculated from a confusion matrix by dividing the sum
of the TPs in the main diagonal by the total number of samples.

Accuracy is a commonly used metric for evaluating classifiers. It can however be mislead-
ing when dealing with imbalanced classes, as it is very sensitive to class distribution [31].
Assume a classification problem where the goal is to identify disastrous malfunctions in
an oil drilling system. Ten samples belong to the malfunction class, while 990 samples
belong to the class where nothing is wrong. A classifier that predicts all the ten malfunc-
tion samples correctly, but additionally predicts 15 FPs, would get an accuracy of 98.5%.
A majority classifier that always predicts that nothing is wrong would get an accuracy of
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99%. This is referred to as the accuracy paradox [74]. The truth is that the majority classi-
fier performs terrible for the problem at hand, while the first classifier could be considered
to perform pretty well.

2.9.3 Recall & Precision

Recall and precision are metrics that originates from information retrieval, and both yield
a value between 0 and 1. In a multiclass classification problem, recall and precision can
be calculated for each class, before all the values are averaged to get a single value for
both recall and precision. Recall measures the proportion of all the actual samples that are
labeled correctly. It is not affected by incorrect positive predictions. Recall is defined by
Equation (2.12).

Recall =
TP

TP + FN
(2.12)

The FNs are samples that are labeled as not belonging to a class when they actually do.
Recall is the probability that a randomly selected target class sample is actually classified
as belonging to the target class.

Precision measures the proportion of classifications that is actually correct. It is defined
by Equation (2.13).

Precision =
TP

TP + FP
(2.13)

The FPs are cases where the classifier positively labels a sample, when it is not actually
belonging to the class. Precision is the probability that a randomly selected sample that is
classified in the target class is actually correctly classified.

In general, getting a higher precision often results in a lower recall, and vice versa [15].
Labeling all samples as belonging to a class, would give a recall of 1, but the precision
will only be the proportion of correctly predicted samples. Setting a very high threshold
for actually making a prediction in a binary classification task would give a high precision,
but a low recall.

2.9.4 F-Score

Since precision and recall measures two different properties of a classifier, and maximizing
one of the scores can negatively affect the other, it is useful to have a metric that combines
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both of them into a single value. The F-Score is the harmonic mean of precision and recall,
and it is defined by Equiation (2.14).

Fβ =
(
1 + β2

)
· precision · recall
(β2 · precision) + recall

(2.14)

A commonly used value for β is 1, where the precision and recall is weighted equally.
This is known as the F1-Score. When calculating the F-Score in a multiclass problem, it
can either be macro or micro averaged to get a single value metric. The macro average is
an average of the F-Score of each class. This implies that each class is equally weighted,
which means that samples in minority classes are much more significant than samples in
larger classes. Assume that one class has one sample and another class has 100 samples.
The punishment for mislabeling the one sample class is equal to mislabeling all the 100
samples in the other class when using macro averaging.

Micro averaging sums up all the TPs, FNs and FPs, before calculating precision, recall
and F-Score based on these values. Micro averaging does thereby not take class imbalance
into consideration, and each sample is weighted equally.

2.9.5 Cohen’s Kappa

Cohen’s Kappa, shown in Equation (2.15), is a coefficient of interjudge agreement for
nominal scales, where mere chance is excluded [14]. In order to remove random chance
from the performance evaluation, Ben-David [4] argues for using Cohen’s Kappa instead
of accuracy. Its original intent was to measure the agreement between two or more people
observing the same phenomenon, but in classification it measures the agreement between
the classifier and the truth. It ranges from -1 (disagreement) through 0 (random) to 1
(agreement) [5].

κ =
P0 − Pc
1− Pc

(2.15)

where P0 is the relative observed agreement among raters, and Pc is the hypothetical
probability of chance agreement.

In a multiclass classification task, Cohen’s Kappa can be computed from a confusion ma-
trix using Equation (2.16).
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κ =
n
∑C
i=1 xii −

∑C
i=1 x.ixi.

n2 −∑C
i=1 x.ixi.

(2.16)

where xii is the number of TPs (the main diagonal), n is the total number of samples, C
is the number of classes, and x.i, xi. are the column and row counts respectively [25].

Landis and Koch [41] have suggested that the Cohen’s Kappa can be interpreted as follows:
(< 0): No agreement, (0.00 − 0.20): Slight agreement, (0.21 − 0.40): Fair agreement,
(0.41− 0.60): Moderate agreement, (0.61− 0.80): Substantial agreement, (0.81− 1.00):
Almost perfect agreement. Let us revisit the example that was presented when discussing
the accuracy paradox, where ten samples belong to a malfunction class, while 990 samples
belong to a class where nothing is wrong. A classifier that always predicts the majority
class in this example will have an accuracy of 99%, but the Cohen’s Kappa will be 0. A
classifier that predicts all the ten malfunction samples correctly, but additionally predicts
15 false positives, would get a Cohen’s Kappa of 0.57. The reason that Cohen’s Kappa
punishes the classifier by 0.43 is that the class imbalance is so extreme that the minority
class is much higher weighted than the majority class. Since 15 of 25 predictions in the
minority class are wrong, the Cohen’s Kappa is somewhat reduced. The new classifier is
still considered to outperform the majority classifier. In addition to giving majority classi-
fiers a score of 0, classifiers that randomly classify samples according to class distribution
will statistically get a Cohen’s Kappa of 0 [4]. A classifier that has a Cohen’s Kappa of
> 0, is considered to perform better than majority and random classifiers.

2.10 Validation

When training a classifier using supervised learning, you need to have a training set where
the samples are labeled with the correct class. The goal is to train the classifier so that it
generalize from the training data in such a way, that it later can classify unseen samples
correctly based on the features of the samples. In order to do this, the training data is
typically split into a training set and a test set. The training data is used to fit a model,
which later will be used to classify new samples. Since we have a test set where the actual
class is known, we can run it through the classifier and validate if it predicted the correct
class or not.

In some cases it is common to have both a validation set and a test set. The validation set
is then used to tune the hyperparameters of the classification algorithm in use. It does not
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modify the weights of the classifier that was learned during the fitting. Since the dataset
used in this study was small relative to the number of classes, we only used a training
set and a test set. Instead of tuning the hyperparameters using a validation set, we used a
Random Grid Search in order to find the best hyperparameters.

2.10.1 k-Fold Cross-Validation

A common method used to validate the predictive performance of a model is the holdout

method, where for instance 80% of the dataset is used for training, while the remaining
20% is used for testing the model. Assuming that the performance of a model improves
in relation to the size of the training dataset, the holdout method is not optimal since a
portion of the data is never used for training [36]. Fewer samples used as test data will
widen the confidence interval for the accuracy. Increasing the number of test samples can
lead to overfitting [62].

As depicted in Figure 2.5, k-fold cross-validation is a technique where the dataset is split
into k mutually exclusive subsets of approximately equal size. The model is trained and
tested k times, each time with a different fold held out as testing data. This ensures that all
the samples are used both in training and in testing, and guarantees that minor classes are
also used for testing. It is more accurate than the holdout method, without reducing the
number of training samples [7].

←−−−−−−−− Entire dataset −−−−−−−−→
Experiment 1

Experiment 2

Experiment 3

Experiment 4

Experiment 5

Training

Validation

Figure 2.5: Dataset split into 5 folds for cross-validation.

In order to get a valid evaluation, it is crucial that the holdout sets for each of the k models
are representative of the entire dataset. If a holdout set is missing samples from one class,
it is not possible to validate samples that are classified as that class when the set is used
for validation. This will have an impact on the final classifiers ability to predict the class.
For large and evenly distributed datasets, random or modulo-based splitting are both fine
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since the probability of missing a class in a holdout set is close to zero. With an imbal-
anced dataset it is important to get samples from minority classes in each holdout set, and
stratified sampling should be used. Stratification will try to evenly distribute observations
from the different classes when splitting a dataset, thus making each holdout set represen-
tative of the whole dataset. It does however violate the principal that test labels should
not be looked at before they are used for validation, and it may lead to a loss of diversity.
Stratified sampling is generally a better scheme, both in terms of bias and variance, when
compared to regular cross-validation [36].

In our environment, the k holdout predictions are combined into a single prediction for the
full training dataset. This is done in such a way that all the samples are predicted, but the
model that has made the prediction for a particular sample has not seen that sample during
training. The overall cross-validation metrics of the model are computed by scoring the
final model against the true labels.
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Chapter 3
Related Work

We found some similar work in the manufacturing industry [61, 2, 44, 50, 47], but the
datasets and classification tasks were not similar enough to be comparable to our problem.
One paper was found on clustering and classification of maintenance logs from pump
stations for dams and weirs, and will be reviewed in this chapter.

We also found some related work from other domains. Section 3.2 reviews a research
paper on medical text report classification, which incorporates domain knowledge in their
learning process. Section 3.3 reviews a paper where the task was to detect oil spills in
satellite radar images. The study used a dataset with an imbalanced class distribution, and
the researchers encountered many of the same challenges as we do with our dataset.

3.1 Clustering and Classification of Maintenance Logs us-
ing Text Data Mining

Edwards et al. have conducted experiments on clustering and classification of industrial
maintenance logs, where text mining was used for feature extraction [17]. A company
that maintains and repairs pump stations for dams and weirs provided the data used in the
study. The objective of the work was to binary classify maintenance logs as scheduled
work (65%) or an unscheduled fault repair (35%). The dataset consists of textual main-
tenance logs from 1994-2006, and covers work on pump motors, electrical systems, fire
extinguishing systems, air conditioning systems, and external buildings and grounds. All
the features in the dataset were unstructured free text, except for the target class. Some free
text columns indicated the cause of the entry and if there was damage to the equipment.
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The columns were joined together with the other text columns because of inconsistent
values and a high level of sparsity.

In order to get the data ready for mining, a significant amount of work went into prepro-
cessing. This included joining multiple text columns, correcting misspellings, removing
punctuation marks and converting all text to lowercase. Phrases with similar meanings
were transformed to a single word in order to embody important semantics, for instance
{pump station, pump stat, pstn} → pumpstation. Stemming and stop word removal were
also performed.

The output of the preprocessing was a dataset where each row consisted of one text string.
Text mining was performed on the text by using TF-IDF, which generated term weights.
Singular value decomposition (SVD) was used on the term weights to reduce the dimen-
sionality by projecting them onto a smaller set of dimensions. Only the top 100 weighted
terms were kept. The vectors were then clustered based on the SVD dimensions. Exper-
iments showed that the optimal number of clusters was 14. Labels (type of maintenance
job) were manually assigned to each cluster, based on their samples. Decision trees and
neural networks were then trained to predict the cluster of new samples. The clusters
provided useful information to the client, but they could not singlehandedly predict if a
sample represented a scheduled or unscheduled job.

Decision trees and neural networks were also trained to classify if maintenance jobs were
scheduled or not. The predicted cluster labels of samples were not used in this classifica-
tion. Instead, the term weights were used when building the decision tree, and 17 SVD
dimensions were used for training the neural network. The neural network and the deci-
sion tree achieved an accuracy of 82.8% and 85.0% respectively. The main contribution
of the research was to show how information can be extracted from a low quality dataset
using text mining, clustering and classification.

The researchers have thoroughly experimented with text mining in unstructured textual
features, and extracted feature vectors that had a positive impact on the performance of the
classifiers. More effort on extracting structured features could have improved the results
further. The original dataset included columns that indicated the cause of the entry, if there
was damage to the equipment, and if the work was part of a larger job. Even though the
columns consists of free text, the researchers could have tried to structurize these columns
and use them as features. The predicted cluster label could also be used as a feature
when predicting if a job was scheduled or not. These techniques could have contributed to
training more accurate classifiers.
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Many of the challenges encountered in the research are challenges that we also ran into,
such as low quality data, multiple data sources, a sparse dataset, and many grammatical
errors. The reviewed research is however facing a binary classification task, while our
target class set consists of far more classes. The dataset used in the research was somewhat
imbalanced, but not to the same extent as our dataset.

3.2 The Role of Domain Knowledge in Automating Med-
ical Text Report Classification

Healthcare is an information intensive environment, and an important task in healthcare
informatics is to facilitate access to and improve quality of data. Wilcox and Hripcsak
have conducted experiments on extracting clinical observations contained in medical text
reports [67]. Structured data in medical reports was not sufficient for classifying hospital
admissions. Wilcox and Hripcsak analyzed the effect of incorporating domain knowledge
in the inductive learning process. Natural language processing (NLP) was used to convert
unstructured textual features into structured features in the preprocessing phase. Specific
attributes or features that were relevant to the classification task were then selected by
domain experts. The dataset used in the study consists of 200 medical reports, categorized
into six clinical conditions.

Experiments were conducted using varying degrees of domain knowledge utilization, and
using classifiers from multiple paradigms (decicions trees, naı̈ve Bayes, rule induction,
nearest neighbor and decision tables). Domain knowledge was shown to be the most sig-
nificant factor affecting inductive learning performance, outweighing differences in learn-
ing algorithms. The cost of acquiring domain knowledge was also a lot less than trying to
learn said knowledge inductively. Numbers or tables on the exact results are not included
in the paper, but by looking at a bar chart presented, we observe that domain knowledge
improved the performance of all the classifiers. On average, the performance went from
≈ 0.82 to ≈ 0.91 measured by area under the ROC curve. That is a relative improvement
of ≈ 11%. Wilcox and Hripcsak suggests that domain knowledge also can be used to
combine multiple features together or to create new features, but they do not conduct any
experiments on this matter.

The results of the study can be considered as strong and trustworthy, since the researchers
have conducted experiments using learning algorithms from multiple classification paradigms.
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All experiments showed an improvement when domain knowledge was incorporated. In
order to further improve their results, it could have been interesting to experiment more
with utilizing the domain knowledge for extracting features in the preprocessing phase.

3.3 Machine Learning for the Detection of Oil Spills in
Satellite Radar Images

Kubat et al. have researched the use of machine learning in the detection of oil spills
in satellite radar images [40]. The motivation behind the study was to create a system
that could give an early warning on oil spills, which could have significant environmental
impact. This is a binary classification problem, and the goal was to create a system that is
capable of deciding whether or not a specific dark region of an image is an oil spill. A set of
feature vectors describing dark regions of the image were used for training the classifiers.
The results of the study were similar to earlier research, but the main contribution of was
to identify issues deserving attention of the research community.

The design of the proposed system is heavily affected by key characteristics of the dataset,
such as data scarcity and an imbalanced class distribution. Oil spills are relatively uncom-
mon, meaning that the study had only access to a sample of 9 images containing a total of
41 spills. On the other hand, images that contain lookalikes of oil spills are easily accessi-
ble. This resulted in an uneven distribution of the classes. As a result of class imbalance,
the classification system could achieve a great predictive score in terms of accuracy (96%)
by simply classifying every record as a lookalike. This is a misleading result, as the classi-
fier fails completely at its fundamental goal of classifying oil spills. The study argues that
accuracy is an inappropriate measure in applications where the classes are unequally rep-
resented in the training set, and suggests that alternative metrics such as geometric mean

(g-mean) and F-score are far more guiding.

The study relied completely on domain experts to define useful features for the classifica-
tion task. A total of 49 features were constructed and used to describe the regions. The
feature set consists of both generic features and features that implicitly represents domain
knowledge through theoretical considerations. Many of the features proved to be insignifi-
cant in the predictive model, and the research speculates that the domain knowledge could
have been better utilized if it was captured explicitly.

Using the decision tree algorithm C4.5, the researchers were able to achieve a g-mean of

38



3.4 Summary of Related Work

0.811, and an accuracy of 76.6% on the positive samples. 1-nearest neighbor achieved a
g-mean of 0.672 and an accuracy of 54%.

The dataset used in the study has many of the same characteristics as the dataset used in
our study. This includes data scarcity, an imbalanced class distribution, and the fact that
feature engineering using domain knowledge is required. In contrast to their work, our
study uses explicitly predefined features in combination with features induced from do-
main knowledge. Our study includes an additional evaluation metric, Cohen’s Kappa, that
is more suited for our classification task, since our main goal is not to identify the minority
class samples. The metric could potentially give a better indicator on the predictive per-
formance of a classifier trained using an imbalanced training set, where minority classes
should be prioritized slightly higher than larger classes.

3.4 Summary of Related Work

The majority of similar research focused on unstructured textual features. Some of the
research had datasets that contained structured fields in addition to the textual features,
that were not utilized in the classification task. We suspect that exploiting more than just
the unstructured fields could have improved the performance of the classifiers. Especially
in our case, since the dataset used in this study includes many structured features. We
were unable to find similar research that utilize features extracted from structured fields in
a high dimensional industrial dataset. This is especially important to examine in industrial
datasets, as fields may contain values that are encoded using certain protocols and coding
schemes. The fact that domain knowledge could be used to extract new features from
existing structured features was pointed out by Wilcox and Hripcsak, but they did not
conduct any experiments on the matter.

The points mentioned in the previous paragraph is what our research will focus on. We
will extract features from both structured and unstructured fields with the use of domain
knowledge. The domain knowledge will be applied in the preprocessing- and feature en-
gineering phase, instead of being used for creating rules in a rule-based classifier. Kubat
et al. highlights the importance of choosing correct performance metrics when dealing
with imbalanced datasets. A thorough analysis will go into the selection of performance
evaluation metrics in our research.
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Chapter 4
Research Context

“Aker BP is collaborating with Cognite to make our data a strategic resource

for accelerated performance, innovation and decision making. This partnership

is a key enabler for our quest to digitize the E&P value chain.”

– Karl Johnny Hersvik, CEO Aker BP

This master’s thesis is written as part of a cooperation with Cognite AS, who are currently
working on digitalizing Aker BP’s oil and gas industry. Aker BP is one of the largest
independent oil and gas companies in Europe measured in production.

Located in the central part of the North Sea lies the greater Alvheim area, where produc-
tion started in 2008. It consists of the main field Alvheim, and the satellite fields Bøyla,
Vilje and Volund. The depth of the sea in the area is between 120 and 130 meters. Alvheim
FPSO (Floating Production, Storage and Offloading) is the production ship that is operat-
ing in the Alvheim area. The FPSO has an overall length of 252.16m, or 233m between
perpendiculars, as well as a 42m moulded breadth and a 23.2m moulded depth [49]. It
has the capacity to store 560.000 barrels of oil. Oil is stabilized and stored on the FPSO,
before it is transported using tank ships. Gas is transported to an existing UK Scottish
Area Gas Evacuation system using a cross-border pipeline.

The dataset used in this work originates from the Alvheim FPSO. It consists of work or-
ders, which are prioritized tasks and maintenance logs with hundreds of different features.
A work order is a manual entry of a malfunction or other types of events, and it contains
both structured and unstructured data. About 80% of the work orders contains an FMC,
which specifies the cause of the work order. As assigning an FMC to a work order is not
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mandatory in the ERP system used at Alvheim, the code is missing in some of them. The
objective of this work is to improve the performance in the task of classifying FMCs in
work orders. It is beneficial for Aker BP to have FMCs on all work orders for the sake
of further analysis and decision making. The classifier can also be used to suggest FMCs
when operators submit new work orders.

4.1 Work Order Life Cycle

The filing of a work order is a strict process where several different people are involved.
Figure 4.1 shows a high level overview of the life cycle of a work order. A work order is
primarily created on basis of two types of events:

1. Routine work that is scheduled at a fixed interval in the ERP system. For instance,
inspection of equipment every third month.

2. Failures or other abnormal observations that requires attention. For instance, a leak-
ing valve.

When a failure is first discovered, a notification is created and submitted to the ERP sys-
tem. The notification is then put through a review process. If the observation is deemed
insignificant, the notification is discarded and no further work is required. If not, a work
order with priority, earliest start date and other formalities is created. It also includes the
discipline (electrical, mechanical, process, etc.) that is responsible for fixing the failure.
After the work order is created, it goes to planning. In the planning phase, the approach
is planned in detail. This includes determining a date of fulfillment, deciding whether or
not contractors must be used, checking if the required material is in stock or if it must be
ordered, and so forth. The information is then added to the work order, and the work can
begin. As work is conducted, the work order is updated by the disciplines that are involved
in the process. The update includes the status of the work order after their work is com-
pleted, as well as an optional text that provides relevant information for later work. This
is an iterative process that keeps going until the failure is identified and fixed. Finally, the
work order is marked as completed and kept in the ERP system for further reference. This
includes statistical analyses on company, plant, equipment and supplier level. The stored
work orders are also utilized when the same or different equipment are exposed to similar
failures, in order to see how it was previously solved.
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Figure 4.1: The life cycle of a work order.

4.2 The Importance of FMCs

The FMCs are not significant for Aker BP in the day-to-day operational work, but they
are important for long-term statistics on equipment problems. Statistical analyses are
conducted using FMCs, in order to identify the leading causes of failure, the types of
equipment failure that are costing the company the most money, and in which aspects the
company can improve. Work orders missing an FMC are not valuable in these statistical
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analyses, as their type of failure is not explicitly given. Consequently, Aker BP is inter-
ested in being able to automatically identify and predict the FMC of these work orders.
Such a classifier would need to have an accuracy of at least 80%, in order to precisely
classify FMCs so that they are applicable for statistical analysis. It is also beneficial for
Aker BP to be able to automatically suggest relevant FMCs for their operators when they
are filing a work order. This would guide them in the process of assigning the correct
FMC, and could potentially mitigate confusion and reduce the frequency of mislabeling.
Such a system does not require the same predictive performance as an automatic classi-
fier, since human interaction is required to actually select the correct FMC from a set of
suggestions.
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Chapter 5
Data

In this study, a restricted real-world dataset provided by Cognite (on behalf of Aker BP)
has been used. The dataset consists of 20 163 maintenance and repair requests, also called
work orders. Work orders are filed for any work that needs to be done on a platform –
ranging from changing a light bulb to repairing a sub-sea pump. An FMC is manually
assigned by an inspector or operator when a work order is filed. The code indicates the
type of failure that led to the work order. FMCs are exclusive; a work order may only be
assigned a single code. The dataset used in this study is a subset of all work orders, and
consists of those that are concerned with actual failures. A subset of FMCs that concerns
actual failures is listed in Table 5.1.

Table 5.1: Subset of FMCs (10 of 40) with description and count. Listing the five largest and small-
est classes, ordered by size. The full table can be found in Table B.2 in Appendix B.

.

Code Description Count % of total

OTH Other 1 178 18.50%
ELU External leakage utility medium 466 7.32%
SER Minor in-service problems 414 6.51%
SPO Spurious operation 413 6.49%
FTF Fail to function on demand 383 6.02%
. . . . . . . . . . . .

VLO Very low output 4 0.06%
FRO Fail to rotate 4 0.06%
FTR Fail to regulate 2 0.03%
STP Fail to stop on demand 1 0.02%
FDC Fail to disconnect 1 0.02%
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5.1 Data Source

5.1 Data Source

The majority of the data used in this research originates from a database export from a
system called SAP. Alvheim FPSO uses SAP for creating and modifying work orders. The
dataset was delivered by Cognite as a CSV-file, and it is approximately 68 MB. Cognite
also has an API, where more information about work orders can be fetched. 42 MB worth
of data was exported from the API, before it was joined with the original dataset.

5.2 Dataset Analysis

In this section, the dataset at hand is analyzed and described in detail. Key features and
characteristics of the dataset are presented and discussed. The dataset poses several chal-
lenges for machine learning in terms of the amount of data, the number of target classes,
the class distribution, and the general quality of the data. These characteristics must be
understood and addressed in order to perform a sensible analysis.

5.2.1 Amount of Data

The initial dataset consists of 20 163 rows of work orders from different categories, where
4 737 are missing an FMC. Due to an M:N relationship between CodeGroup (described in
Section 5.2.2) and FMC, the dataset has a total of 3 000 possible target classes. The dataset
does not contain all of these combinations, and after removing rows missing CodeGroup

and FMC, there are 372 distinct target classes left. This proved to be a very challenging
classification task, and Cognite decided that we should rather focus on the Failure mode

category. This reduced the number of target classes drastically. After more pruning (de-
scribed in Section 6.1), the final dataset consists of 4 960 work orders with 29 distinct
FMCs.

5.2.2 Features

The feature set of the dataset originally consists of 343 features, ranging from time stamps
and identifiers automatically set by the ERP system – to textual descriptions manually
entered by an operator. In other words, a work order is made up of a diverse set of features
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5.2 Dataset Analysis

which includes nominal, ordinal and interval variables. Examples of the various feature
types found in the dataset:

Nominal The feature Enteredby indicates the person that filed the work order. This value
is limited to the persons working on the platform.

Ordinal The feature Priority assigns a numerical value of 1-4 to a work order. This value
suggests the level of urgency, where 1 is high priority and 4 is low priority.

Interval The feature CreatedOn indicates the date of which the work order was filed.
These values are on the format YYYY–MM–DD HH:ss

Since the feature set has a cardinality of 343, it would be inconvenient to give an in-
depth description of all of them. Instead, the most significant features along with their
relationship is presented in the list below. A complete list of the features can be found in
Table B.1 in Appendix B.

FailureModeCode (FMC). This feature is the classification target. An FMC is a code
indicating the type of equipment failure that led to the work order. Examples of
FMCs and their description is shown in Table 5.1. The FMCs and their distribution
are further described in Section 5.2.3.

CodeGroup. A CodeGroup is a grouping of FMCs that briefly indicates the type of equip-
ment that the work order concerns. For instance, a work order assigned with the
group EM000001 suggests that the failure is related to an Electric Motor. Further,
assume that the FMC of the work order is OHE (Overheating). It is then apparent
that the work order is filed due to an overheating electric motor. There are a total of
50 unique CodeGroups in the dataset, all of which are in relation to a subset of the
FMCs. The majority of the CodeGroups are linked to 5-20 different FMCs. There is
an M:N relationship between FMCs and CodeGroup – a FMC may belong to mul-
tiple CodeGroups, and a CodeGroup may consist of multiple FMCs. For instance,
Compressors (CO000001) may overheat as well, so this CodeGroup is also in rela-
tion with OHE. CodeGroup is not present in work orders lacking an FMC, meaning
it must be predicted as well.

CatalogProfile. A CatalogProfile is a code indicating a grouping of CodeGroups. The
relationship between CatalogProfile and CodeGroup is 1:N. In reality, the ratio is
close to 1:1 as there are few CatalogProfiles related to multiple CodeGroups. This
means that the CodeGroup of a work order can be accurately predicted (with≈ 95%

accuracy) given the CatalogProfile.
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FunctionalLocation. The FunctionalLocation of a work order is a specific identifier re-
ferring to the involved equipment. FunctionalLocation follows standardized proto-
cols that are used on the platform, and it is the key to many of the results achieved in
this study. The structure and semantics of these identifiers are thoroughly explained
in Section 5.3.

Text. The Text of a work order is a manually entered text value. It often describes the
failure, the measures that have been taken, the work that remains, and the equipment
involved. They vary from being empty or a few words, to lengthy semi-structured
documents. The longest text consists of 1 276 words, while the average length is
88 words (577 characters). Operators incrementally update the text as work related
to the work order is conducted. The characteristics of the Text feature are further
discussed in Section 5.2.4.

Three work orders are shown in Table 5.2. They are limited to their most significant
features as described above. In the first example, the work order is concerned with a
hydraulic leak. The FMC (ELU) and CodeGroup (VA000001) suggests that this is filed
due to a Valve with External leakage (utility medium), and the text feature confirms this
with a more specific description. The second work order is also concerned with a valve,
however, in this case no textual description is provided. In the last example, it is apparent
that the language of the texts vary.

Table 5.2: Example of truncated work orders limited to their most significant features.

FMC CodeGroup CatalogProfile FuntcionalLocation Text

ELU VA000001 113 NOAF-50XV0144 Hydraulic leak . . .
SPO VA000001 113 NOAF-23FV5250 –
FTF IP000001 86 NOAF-97XY7532 Spjeld virker ikke . . .

5.2.3 FMC Distribution and Challenges

As mentioned above, the final dataset includes 29 distinct FMCs after the preprocessing
phase. This is a drastic reduction from the original dataset, and the reasoning behind this
decision is discussed in Section 6.1.1.

The total of 29 FMCs poses a major challenge in the supervised classification task. On

average, each FMC has
4 960

29
≈ 171 representative work orders. This could arguably
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5.2 Dataset Analysis

be considered an insufficient amount of data for the learning task, as data is crucial in
order to train an accurate classifier. The average work order distribution is however rather
misleading, as the classes are imbalanced and the distribution is skewed. In Figure 5.1, the
distribution of the final 29 FMCs is shown. There are relatively huge classes such ELU,
SER, and SPO, as well as seemingly insignificant classes such as IHT, PDE, and TEX. This
imposes another challenging problem; the smaller classes will be underrepresented in the
training phase. This is a problem due to the fact that general classifiers often tend to favor
huge classes by design, leading to inaccurate models with regards to the small classes [66].
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Figure 5.1: The distribution of FMCs in the final preprocessed dataset.

The effect of class imbalance when training a Random Forest classifier can be seen in
Figure 5.2. This is a confusion matrix showing the actual class versus predicted class
for each of the FMCs, where the row index indicates the actual class and the column
index indicates the predicted class. Each row has been normalized such that each value is
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replaced by itself over the sum of the values in the row – i.e., the percentage of the total
predictions for that class. This percentage is represented by the color brightness of each
cell. A bright cell represents a high percentage and vice versa. Figure B.1 in Appendix B
shows a more detailed version of Figure 5.2 with all the percentages included.

Figure 5.2: Row normalized confusion matrix based on the predictions of a Random Forest classi-
fier.

By inspecting the matrix, it is evident that small classes (see Figure 5.1) are misclassified
to a far greater extent than the big classes. For instance, the biggest class, ELU, is relatively
accurately predicted, while PDE is not predicted correctly once. The ELU prediction col-
umn is bright compared to the others, suggesting that a lot of work orders are misclassified
as ELU. This implies that work orders belonging to the small classes are often predicted to
the big classes. That is the case for IHT, where the majority of the associated work orders
are classified as ELU. It is also interesting to see how some of the classes correlate. It
can be seen by cell [FTO, FTC] and [FTC, FTO] that the classes FTO (Fail to Open) and
FTC (Fail to Close) are often mistaken for one another. This suggests that these classes
are highly correlated in terms of their features.

Table 5.3 gives a more detailed overview of the data displayed in Figure 5.2. It shows
the TPs of each FMC, both as a raw number and as a percentage of the total number
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Table 5.3: FMCs along with their TPs (raw number and % of the class instances) resulting from
the predictions of a Random Forest classifier. The class that the FMC is most frequently
misclassifed as is also included.

FMC TP % TP Most misclassified as

AIR 62 28% FTO (16%)
BRD 63 29% ELU (17%)
DOP 2 6% FTC (39%)
EFF 5 33% BRD (33%)
ELP 120 40% ELU (27%)
ELU 280 60% ELP (5%)
ERO 112 40% FTF (17%)
FTC 144 54% FTO (32%)
FTF 238 62% ERO (9%)
FTI 14 28% BRD (22%)
FTO 155 57% FTC (28%)
FTS 61 42% BRD (15%)
HIO 20 13% ERO (21%)
IHT 1 7% ELU (50%)
INL 70 28% ELU (25%)
LCP 32 31% ELU (23%)
LOO 65 24% ERO (13%)
NOI 21 27% ELU (26%)
NOO 22 13% FTF (26%)
OHE 2 8% ELU (20%)
PDE 0 0% FTS (33%)
PLU 38 39% ELP (16%)
SER 217 52% FTF (8%)
SHH 7 41% SPO (29%)
SPO 251 61% FTO (7%)
STD 48 24% ELU (16%)
TEX 3 27% BRD (18%)
UST 0 0% FTS (38%)
VIB 13 21% ELU (23%)

of class instances. The class that each FMC is most frequently misclassified as is also
provided, including the percentage of misclassification in parentheses. For instance, AIR

was predicted correctly 62 times, which constitutes 28% of the total number of predicted
AIR instances. The instances were most frequently misclassified as FTO (16% of the
instances).

In 9 out of 29 cases, ELU is the FMC most instances are misclassified as. This suggests
that ELU is a general class in terms of its feature values, causing a significant overlap with
the other FMCs. There are cases where the majority class of the predictions differs from
the actual class. This is true for VIB, UST, PDE, OHE, NOO, IHT, HIO, and DOP, all of
which can be found in the bottom 16 with regards to the number of representative work
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orders (see Figure 5.1). The majority class is in these cases ELU, FTS, FTF, ERO, or FTC,
which are all found on the other end of the spectrum. This further underlines the effect of
class imbalance.

5.2.4 Data Quality

The overall quality of the data can be considered moderate in terms of structure. There
are however several aspects of the dataset that poses problems for supervised machine
learning. This includes varying quality of textual data, missing and duplicate data, and
mislabeled data. In this section, each of these challenges are presented and discussed in
relation to the dataset.

Manually Entered Text

As mentioned in Section 5.2.2, the Text feature of the work orders is a manually entered
textual description of steps taken in the process of fixing the failure. These texts are of
varying quality in terms of their content, structure and length. Some of the texts are well
structured and encapsulate important aspects of the failure, while others are significantly
less profound. There are several problems related to the content of the texts that make
them hard to utilize in the machine learning task. Several languages such as Norwegian,
English and Danish are used in the text field, and sometimes the records are multilingual,
meaning that they contain multiple languages. The sentences that make up the texts are
often grammarless and shortened, and contains industrial terms, abbreviations, identifiers
and jargon. These problematic characteristics of the texts, make feature extraction using
natural language processing a very challenging task. An example of a typical text:

”Damper not closing 27.09.2010 23:00:06 JOHN DOE (JDOE) damper not closing dur-

ing test, either from SAS or local 29/9 smørt opp tregt spjeld, testet x10, nå OK.”.

In this example, it can be seen that multiple languages are used (Norwegian and English),
as well as industrial terms and abbreviations such as SAS. JDOE is an unique identifier
referring to the person John Doe.

Missing and duplicate data

Feature values are missing throughout the entire dataset. The initial dataset without pre-
procsessing has a sparsity of 67.34%. This is assuming that features consisting of uniform
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values are treated as missing values. The reasoning behind this assumption is that uniform
values cannot be used to differentiate between classes in the classification task. In other
words, 67.34% of the feature values are either non-existent or uniform. It is not completely
known why that many values are missing, but a fair assumption is that the absence of some
data is due to unmeasured or missing information about the failures. This does not have a
detrimental effect on the classification task since many features have a coverage of 100%,
but it is still important to decide what to do with the missing values.

The dataset also consists of duplicate features that are encoded versions of one another. A
total of 14 features out of the original 343 are simply duplicates of other features. These
duplicates are present as a result of how the original dataset was constructed. The original
dataset is a joint dataset made up of smaller datasets. Some of these smaller datasets have
features in common, resulting in an overlap of features in the joint dataset. It is impor-
tant to address this issue, since a feature that is essentially the same as another feature
(1:1 mapping) are indirectly weighted double by for instance naı̈ve Bayes if both are in-
cluded [43]. The approach used to deal with missing and duplicate data is further explained
and discussed in Section 6.1.2.

Mislabeled data

As the FMCs are manually entered and assigned by an operator, it is safe to assume that
errors and mislabeling occurs to some extent. There are 29 distinct FMCs in the final
preprocessed dataset concerned with failure modes. A few of the FMCs have similar
denotations, such as Fail to Open and Fail to Close. Based on the predictions of the
Random Forest classifier depicted in Figure 5.2 from Section 5.2.3, it is evident that some
of the FMCs are highly correlated. A fair assumption is that in some cases, the operators
might be confused as to which FMCs to use. This might result in mislabeling, or simply
taking the easy way out and assigning the order either OTH (Other) or UNK (Unknown).
A fact that suggests this, is that the single biggest class is OTH as shown in Table 5.1.
It might also be the case that different operators have their own subjective interpretation
of the FMCs, leading to an overlap of the classes. In an analysis where 10 work orders
were examined, one sample was mislabeled. The content of the work order explicitly
describes a door that fails to close, but it was assigned FTO (Failed to open on demand)

instead of FTC (Fail to close on demand). How frequently mislabeling occurs can not be
concluded from this experiment alone, however, it proves that mislabeled data is present
in the dataset.
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5.3 Encapsulated Data

The feature set includes FunctionalLocation, a feature that specifies an equipment tag. At
first glance it looks like an arbitrary sequence of alphanumeric characters, but it is in fact
an encoded reference to the specific equipment that a work order concerns. Equipment tags
at the platform have been issued using two well-established coding systems: SFI Group
System [73] and NORSOK Z-DP-002 [60]. The SFI Group System is used for older hull
equipment, while the rest of the tags are issued according to the NORSOK standard. In
the preprocessed dataset, 15% of the work orders are issued using SFI and 85% using
NORSOK. Features encoded in the NORSOK equipment tags are:

Platform. Specifies on which platform the equipment resides.

System. Logical grouping category of the parent systems (e.g. Oil Storage).

Equipment type. Logical grouping category of the equipment types.

Equipment id. The first level in the hierarchy related to a physical asset.

Subunit. Unit within the equipment boundary defined by the equipment ID.

Maintainable item. Lowest level within the equipment boundary defined by the equip-
ment ID.

Features encoded in the SFI equipment tags are:

Platform. Specifies on which platform the equipment resides.

SFI 3-digit group system. A ship/rig is divided into 10 primary groups (1st digit, e.g.
7 – Machinery main components). Each primary group consists of 10 secondary
groups (2nd digit, e.g. 3 – Compressed air systems). Finally, each secondary group
is divided into 10 tertiary groups (3rd digit, e.g. 1 – Starting air systems). Each digit
represent a step down in the hierarchy.

SFI Detail- & material code. Not standardized, but used to define individual components
in a system.

How these features are extracted will be presented in Section 6.3.
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Methods

Our method for training an FMC classifier is divided into three steps. First, we do ba-
sic data preprocessing such as class filtering, class grouping and some natural language
processing. Secondly, the data is enriched by utilizing domain knowledge and data from
external sources. Finally, models are trained using naı̈ve Bayes, Random Forest, Gra-
dient Boosting Machine and Stacked Ensemble. Since our classification algorithms are
able to handle the amount of features present in our dataset, using other feature selection
techniques is not relevant in this study.

6.1 Dataset Preprocessing

Preprocessing is one of the measures taken in order to deal with the challenges of the
dataset that were presented in the previous section. The final preprocessed dataset used in
our experiments differs a lot from the initial dataset. This is a result of many steps of data
preprocessing, which will be explained in this section.

6.1.1 Filtering Out Irrelevant Rows

The original dataset consists of 20 163 rows of work orders from different categories,
where 4 737 are missing an FMC. The M:N relationship between CodeGroup and FMC
makes the classification task very difficult with 372 different classes. A work order be-
longs to one of the following categories: (1) Attribute (2) Task (3) Decision (4) Event
(5) Root cause (6) Results(def) (7) Activity QM (8) Defect type (9) Activities (10) Maint.

55



6.1 Dataset Preprocessing

items (11) Failure mech (12) Coding (13) Defect loc. (14) Dec. SPM (15) Defect - SPM
(16) Effort - SPM (17) Activity SPM (18) Insp verdict (19) Failure mode. The category is
decided by the combination of the CodeGroup and the FMC of a work order. Because of
the high number of target classes, Cognite decided that we should rather focus on the Fail-

ure mode category. This left a total of 9 721 rows distributed among 329 classes. However,
each row has a CatalogProfile that now maps almost 1:1 to the CodeGroup, which means
that only the FMC must be predicted. This reduces the number of classes to 46.

The code group NOSPEC01 is used when a work order is missing a CatalogProfile or
when the FMC is not specified (0100), and should thus be discarded. The same goes for
OTH (Other) and UNK (Unknown), which are removed due to the fact that these classes
symbolize that the operator was unable to find a fitting FMC. This leaves us with a total of
4 999 work orders and 43 distinct FMCs.

FMCs with less than ten representative work orders are also removed. This decision is
based on experiments using oversampling, undersampling and upsampling with synthetic
samples. The sampling techniques had zero or negative impact on the final results, im-
plying that there is insufficient data for these FMCs. This leaves us with the total of 29
distinct FMCs. Properties of the dataset during the filtering are listed in Table 6.1.

Table 6.1: Number of records and target classes after steps of filtering.

Step Action # Records # Classes

1 All records 20 163 372
2 Keeping failure mode records only 9 721 46
3 Removing the CodeGroup NOSPEC01 6 364 45
4 Removing OTH and UNK 4 999 43
5 Removing classes with < 10 records 4 960 29

Highly correlated CodeGroups are merged together. This is done in order to increase clas-
sifier performance when predicting CodeGroup based on CatalogProfile. The following
groups are assembled:

Fire and Gas Detectors Composed of FD (Fire Detectors), GD (Gas Detectors) and FG

(Fire and Gas Detectors).

Input Devices Composed of ID (Input devices) and IP (Input devices).

Basic natural language processing operations are applied to the Text field of the work
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orders. Punctuation characters are removed, Norwegian special characters are encoded,
and all text is made lowercase. These operations are done in order to prepare the data for
tokenization and feature extraction using a predefined domain term dictionary and TF-IDF
(described in Section 6.3.3 and 6.4, respectively). Stemming and stop word removal were
initially tested, but later discarded due to the Text field being written in different languages.

6.1.2 Filtering Out Irrelevant Columns

In order to reduce the number of features in the dataset, irrelevant columns are discarded.
The method used to reduce the column dimensionality lowered the sparsity of the dataset
substantially. Since a column with only one distinct value for all rows provides zero knowl-
edge to the classification task, these columns are treated as missing when calculating the
sparsity. Table 6.2 lists the steps taken when filtering out irrelevant columns.

Table 6.2: Number of columns after steps of filtering.

Step Action # Columns Sparsity

1 Initial dataset 343 67.34%

2 Remove empty columns 210 46.60%

3 Remove columns with only one distinct value 141 20.56%

4 Remove duplicate columns 127 15.72%

5 Remove columns with a density of < 80% 108 0.21%

The initial dataset consisted of 343 columns and had a sparsity of 67.34%. An analysis
of the dataset showed that many of the columns are either completely empty, or consist of
the same value. The first step was therefore to remove all empty columns. This pruned
133 columns, and the sparsity went down to 44.60%. Removing columns with only one
distinct value filtered out 69 more columns, and the sparsity was reduced to 20.56%. A
correlation analysis between the columns, proved that many of them had exactly the same
information. In many cases one column held the value, while another column held an id
of the value. 14 new columns were removed by pruning duplicate columns. As listed
in Table B.1 in Appendix B, there are very few columns with a density between 5% and
80%. Initial experiments showed that the effect of including the features with a density
of < 80% had close to zero impact on the performance of the classifiers. Based on this
analysis, all columns with a density of< 80% were pruned. The final dataset has a total of
108 features, with a sparsity of 0.21%. Filtering out irrelevant rows and columns lowers
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the number of data points from 6 734 442 to 535 680.

6.2 Baseline Configuration

The baseline models used in the experiments are trained using the preprocsessed dataset,
meaning that irrelevant rows and features have been filtered out. In other words, the base-
line classifiers will be trained on a dataset with the following properties:

• 4960 records (work orders)
• 108 features
• 29 target classes (FMCs)

These models will be used to assess the effect of additional features that are extracted using
domain knowledge and TF-IDF. Random Forest, Gradient Boosting Machine, Stacked
Ensemble and naı̈ve Bayes are the algorithms that will be used to train the baseline models.
These algorithms are also used in all the other experiments. The choice of algorithms along
with the selection of hyperparameters (configurations) is discussed in Section 6.6.

6.3 Utilizing Domain Knowledge

In the second step of data preprocessing, domain knowledge is incorporated. The utiliza-
tion of domain knowledge and enrichment of the data consist of three separate methods.
In the first method, applicable data is extracted from FunctionalLocation. The second
method uses external information about the equipment tags to construct new features. Do-
main knowledge used in the first two methods originates from descriptions and manuals
received from Aker BP. In the third method, knowledge about each of the FMCs is ex-
ploited in order to extract useful information from the Text field.

6.3.1 FunctionalLocation Breakdown

FunctionalLocation consists of encoded values as previously described in Section 5.3.
A series of string operations are used in order to decode and extract additional features
from the values. After each step, the extracted part of the FunctionalLocation is removed
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from the string in order to simplify further extractions. Examples of FunctionalLocation

breakdowns for both SFI and NORSOK are given in Table 6.3a and 6.3b, respectively. The
approach of the feature extraction is as follows:

1. Extract platform info
2. Identify if FunctionalLocation is SFI or NORSOK
3. If NORSOK:

(a) Extract component
(b) Extract subunit
(c) Extract system
(d) Extract equipment type
(e) Extract equipment id

4. If SFI:

(a) Extract primary, secondary and tertiary group
(b) Extract detail code
(c) The meaning of the remaining part of FunctionalLocation is unknown

Table 6.3a: FunctionalLocation breakdown for NORSOK standard.

FunctionalLocation Platform System Eq. type Eq. id Subunit Component

NOAF-24VD003 NOAF 24 VD 003 - -
NOIA-70-BS-32020-L42B NOIA 70 BS 32020 L42 B
NOAF-97XY10439A NOAF 97 XY 10439 - A
NOAF-63ACD123-M01 NOAF 63 ACD 123 M01 -

Table 6.3b: FunctionalLocation breakdown for SFI standard.

FunctionalLocation Platform Gr.1 Gr.2 Gr.3 Detail code Unknown

NOAF-662.27D-2-DE006 NOAF 6 62 662 27D 2-DE006
NOAF-713.24C-1 NOAF 7 71 713 24C 1
NOAF-769.21-1 NOAF 7 76 769 21 1

1Primary group
2Secondary group
3Tertiary group
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6.3.2 Extracting Additional Information From FunctionalLocation

Additional information about the FunctionalLocations exists in Aker BP’s internal ERP-
system. This includes further grouping of the tags, along with a short textual description of
each asset. An export of this data has been made available for use in this study. In the ERP-
system, a FunctionalLocation belongs to exactly one of the following groups: (1) Cables
(2) Electrical Equipment (3) Fire and Gas (4) Instrument (5) Junction Box (6) Lifting Lug
(7) Line (8) Manual Valve (9) Master Equipment (10) Miscellaneous (11) Signal (12) Spe-
cial (13) Telecom (14) Unknown. Based on this information, a new feature Tag type is
constructed. Each FunctionalLocation belongs to exactly one of the groups above. The
textual descriptions of the tags are also extracted, and the values are stored as a feature
named Tag description.

The new features are added to the original dataset by the following procedure: A dictionary
D is constructed from the additional dataset and filled with key-value pairs on the form
{FunctionalLocation : (Tag type, Tag description)}. For each of the work orders in
the original dataset,D is queried with the FunctionalLocation to extract the corresponding
values of Tag type and Tag description. The values are then appended to the original
dataset as separate fields.

6.3.3 Domain Term Dictionary & Binary Feature Vectors

This section describes our approach to extracting features from the unstructured Text field
of the work orders using domain knowledge. It is a two-step approach that consists of
manually defining a domain term dictionary of representative terms, followed by adding
these terms as features using the Bag-of-Words model with a binary weighting scheme.

Constructing the Domain Term Dictionary

By manually inspecting the data at hand, several descriptive domain terms for each of
the FMCs were identified. The manual process of extracting these terms consisted of
thoroughly examining the content and structure of the Text field of the work orders, in
light of the domain. By grouping the work orders based on their FMC, representative and
general terms for each of the classes could be identified. Terms for the FMCs were selected
on the basis of two criteria:
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(1) How frequently does the term appear in work orders that are assigned the FMC?
(2) Based on our understanding of the domain, how relevant is the term in context of

the FMC?

In other words, the terms representing an FMC appears frequently among its associated
work orders, and are by our understanding related to, or a direct cause of, the failure that
the FMC represents. For instance, the term block appears often in work orders assigned
with PLU, and it may also be considered a direct cause of the filing of these work orders,
as this FMC is used when equipment is plugged or choked. The output of this process
were 217 distinct terms that represents the 29 FMCs. A term may be closely associated
with one or more of the FMCs. Examples of FMCs and their related terms are shown in
Table 6.4. The full list of terms can be found in Table B.3 in Appendix B.

Table 6.4: Example of FMCs and related domain terms.

FMC Terms

INL - Internal Leakage [internal, leakage, sweat, oil, diesel,. . . ]
LOO - Low Output [low, output, pressure, flow, pump,. . . ]
PLU - Plugged/Choked [plugged, choked, drain, flow, block,. . . ]

The exact number of terms (217) was not an obvious choice, but rather a consequence of
how many representative terms we were able to identify. This is most likely not an optimal
number of domain terms. Adding more terms might help discriminate between the FMCs
to a greater extent, but it may also cause the models to overfit. Decreasing the number of
terms could reduce a potential overfitting caused by the 217 terms, but it could also reduce
the performance boost.

Calculating Binary Feature Vectors

The domain term dictionary is used in order to extract additional features from the Text

field. Our approach results in Boolean features, where the values indicate whether or not
the term is present in the work order. This is achieved by first defining the vocabulary V
as the set of domain terms, |V | = 217. Each of the documents (work order texts) are then
represented as a Bag-of-words. The Bag-of-words are then used to calculate and represent
the document as a feature vector with binary term weights, where the vector space model
is defined by V . This results in binary feature vectors of length |V |, that represents the
presence and absence of domain terms in the corresponding document. The terms are
added as features to the dataset, where the values are given by the feature vectors.
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Binary weighting of terms was chosen because it outperformed term frequency as a weight-
ing scheme in all the conducted experiments. TF-IDF was not used for weighting due to
the fact that decisions trees, the base learners for most of the tested techniques in this study,
are invariant under all monotonic transformations of individual ordered variables [11]. In
other words, node splits based on term features will be the same regardless of whether
term frequency or TF-IDF is used.

6.4 TF-IDF

TF-IDF was employed in order to compare the use of manually selected domain terms to
terms extracted using text mining. There are 20 741 unique terms when looking at all the
text fields in the dataset. It is unattainable to use that many features in a classifier, and
therefore only the most important terms were selected as features. Since the defined do-
main term dictionary consists of 217 terms, a decision was made to keep the 217 highest
TF-IDF weighted terms as well. This was done in order to get an equal base when com-
paring the performance of classifiers incorporating TF-IDF terms and domain terms. The
terms were selected by averaging the TF-IDF weights for each term, and only keeping the
217 highest average weighted terms. Table B.4 in Appendix B lists the highest weighted
TF-IDF terms.

The documents used in TF-IDF were constructed in two different ways. At first samples
were grouped by their target class, and each document consisted of the joined text from
each group. Due to the class imbalance, the text was much longer in the larger classes
and included a lot of different words. Since the large documents had many more terms,
normalizing the term frequency was necessary. This led to higher term frequency scores
on terms in the minority classes, and the extracted terms proved to be of little to no value
in the classification task. In the second approach, the text in each sample was treated as
individual documents. This reduced the difference in text length substantially. Adding the
extracted terms to the feature set resulted in a perceptible improvement in the classification
task.

A minimum and maximum document frequency can be set when applying TF-IDF. They
specify how large proportion of the documents can contain a term in order for the term
to be included in the results. The weights were decided by doing experiments where the
output terms were manually inspected. Ultimately, we decided not to set a minimum
document frequency, and a maximum document frequency of 5%. As the text fields are of
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variable length, the term frequency was normalized using euclidean norm (`2 norm).

There is an intersection of 29 terms between the domain terms and the TF-IDF terms.
These terms are aapne, aapner, batteri, close, closed, detektor, diesel, drain, fast, feedback,

flow, fuel, instrument, intern, leak, lekasje, level, nivaa, olje, open, problemer, sensor,

service, start, stenge, stengt, tar, trykk and virker.

The selection of the top features could have been done differently, since picking the ones
with the highest average TF-IDF weights might have excluded discriminating terms. As-
sume that a term is actually very important for a small class and has a high TF-IDF weight
for samples in that class. If the term is mentioned in a few other samples from larger
classes with much text, the TF score will negatively affect the TF-IDF score for the said
term in those documents. This will drastically reduce the average TF-IDF weight of the
term that in fact would have been very discriminating for the small class. This is a problem
due to the varying text lengths and the imbalanced classes.

The representation of terms in the feature set were a binary value indicating if a term was
present in the text or not. Changing this to a normalized term frequency could possibly
have improved the results. A binary value was chosen in order to have the same basis as
the features extracted using domain terms. A more sophisticated weighting scheme could
have been applied on the domain terms instead of binary weighting the TF-IDF terms.
Doing more experiments on parameter selection for TF-IDF might have had an impact on
the results as well. We did not put much effort into optimizing TF-IDF, as the focus of the
research was not centered around extracting features using NLP.

6.5 Environment

All of our experiments are conducted using H2O, an open source machine learning and
predictive analytics platform [28]. An attractive feature of H2O is that it supports the direct
use of categorical variables in tree-based algorithms. By using for instance scikit-learn,
we would have had to one-hot encode or label encode the features first. One-hot encoding
makes the feature space orders of magnitude larger, while label encoding imposes ordinal
relationships that are not necessarily true.

H2O offers a feature called AutoML, which automatically trains and tunes several mod-
els using multiple algorithms with different hyperparameters on the same dataset. Au-
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toML currently supports Random Forest, Gradient Boosting Machine, Deep Learning,
Extremely Randomized Trees, Generalized Linear Modeling, and a Stacked Ensemble of
all the models. We used AutoML to get an overview of how a large selection of candidate
models performed on our dataset.

6.6 FMC Classification

As the task of classifying FMCs is a multiclass classification problem, there are several
prominent techniques and algorithms that may be deployed. The choice of algorithm is
dependent on the task at hand, meaning that it is often necessary to test multiple algorithms
to see what best fits the problem.

H2O’s AutoML was initially used to get an intuition of which algorithms worked best
on our dataset. It is considered good practise to test multiple classification algorithms,
and it contributes to get a broader assessment of the effects of incorporating additional
features. A comparison of the different algorithms is listed in Table 6.5. These results
are only meant to give an overview of the algorithms, and are not used as baseline. Naı̈ve
Bayes is not included in AutoML, but it was included in the experiments in order to have
a probabilistic classifier as well. Three algorithms stood out after running AutoML, and
we decided to employ these methods in further experiments. Thus, the following four
algorithms were used and evaluated in this study:

1. Naı̈ve Bayes (NB)
2. Random Forest (RF)
3. Gradient Boosting Machine (GBM)
4. Stacked Ensamble (SE)

Table 6.5: Comparison of algorithms using AutoML.

Cohen’s Kappa Accuracy Macro average F1-Score

Stacked Ensemble 0.3794 0.4176 0.3003
Random Forest 0.3755 0.4133 0.3113
Gradient Boosting Machine 0.3638 0.4020 0.2914
Extremely Randomized Trees 0.3282 0.3728 0.2610
Deep Learning 0.2685 0.3146 0.1859
Generalized Linear Modeling 0.2417 0.2965 0.1377
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A Random Grid Search was used in order to find the best hyperparameters for both Ran-
dom Forest and Gradient Boosting Machine. The difference in performance using various
hyperparameters turned out to be insignificant, and the best baseline results were very sim-
ilar to the results from H2O’s AutoML. The final hyperparameters used in the experiments
are listed in Table 6.6.

Table 6.6: Hyperparameters after Random Grid Search.

Random Forest Gradient Boosting Machine

Number of trees 50 50
Maximum tree depth 10 13
Minimum samples in leaf node 1 30
n-bins (numerical values histogram) 10 20
Learn rate - 0.1
Row sample rate per tree - 0.8
Column sample rate - 0.7
Score model interval - 5
Distribution function - Multinomial
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Chapter 7
Experiments and Results

In order to examine the effect of domain knowledge, this chapter presents experiments that
are conducted using several supervised learning techniques. The experiments compare the
performance of classifiers incorporating features extracted with domain knowledge and
TF-IDF, with models trained using no form of extracted knowledge (baseline).

7.1 Evaluation Metric

Based on the class imbalance in the dataset and feedback from Cognite, it was preferable
to use an evaluation metric that weights minority classes higher than larger classes. It
should however not be weighted to the extent where each class contributes equally to the
score, since the main goal is not to only correctly classify the minority classes.

Accuracy is a commonly used metric for evaluating classifiers. Unfortunately accuracy
can be misleading when dealing with imbalanced classes, as it is very sensitive to class
distribution [31]. Based on the accuracy paradox that was presented in Section 2.9.2 and
the imbalanced dataset used in this project, we decided not to use accuracy as the primary
metric. Other metrics such as Cohen’s Kappa and F-Score punish classifiers harder for
mislabeling small classes.

Cohen’s Kappa was chosen as the primary metric over macro average F1-Score, since
macro averaging weights the F1-Score of each class equally. Misclassified samples be-
longing to minority classes would then negatively affect the score more than desired. Co-
hen’s Kappa has been used as a metric in many multiclass classification problems involving
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imbalanced datasets [12, 33].

We have also included accuracy and macro average F1-Score in our results for a more
comprehensive understanding of the performance, but Cohen’s Kappa is the primary eval-
uation metric.

To ensure that all minority classes are represented in the testing set, we use 5-fold cross-
validation. The final score presented is averaged from the five folds.

7.2 Baseline

Baseline results were computed using all the initial features, without utilizing domain
knowledge. The results are presented in Table 7.1. Using Landis and Koch’s interpreation
of the Cohen’s Kappa, the performance of the baseline classifiers can be considered as
Fair, except for naı̈ve Bayes. The naı̈ve Bayes baseline classifier has a Slight agreement

with the ground truth.

Table 7.1: Baseline results.

Cohen’s Kappa Accuracy Macro average F1-Score

Stacked Ensemble 0.3800 0.4185 0.2982
Random Forest 0.3782 0.4165 0.3087
Gradient Boosting Machine 0.3664 0.4044 0.2902
Naı̈ve Bayes 0.1616 0.1889 0.1463

7.3 Incorporating Extracted Features

This section presents the results achieved when extracted features were added to the dataset
the classifiers are trained on. The results include experiments using features that were
extracted using domain knowledge and features that were extracted using TF-IDF. Each
table that presents the results are structured in the same way. It shows the performance of
each of the four classifiers, with Cohen’s Kappa, accuracy and macro average F1-Score as
evaluation metrics. The results are shown using abbreviations for the applied algorithms;
SE (Stacked Ensemble), RF (Random Forest), GBM (Gradient Boosting Machine) and NB
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(Naı̈ve Bayes). Included in the tables are also the improvement from the baseline results,
wrapped in parentheses.

7.3.1 Features Extracted From Structured Fields

In total, 14 different features were extracted from the FunctionalLocation field of the work
orders. Since a FunctionalLocation is encoded using either the NORSOK or SFI coding
standard, a maximum of nine features can be extracted per sample. No effort was made to
find connections between features extracted from NORSOK and SFI. This implies that the
extracted features only will contribute to finding correlations internally in the two coding
scheme groups.

Experiment 1: Structured Fields

Table 7.2 shows the performance of the classifiers using the original features in addition
to features extracted from FunctionalLocation. The performance metrics increased for
all the classifiers, compared to the baseline results. Naı̈ve Bayes had a higher relative
improvement than the other algorithms, suggesting that the extracted features are good
independent features. The increase in performance of the other three algorithms were far
less, which indicates that some of the knowledge in the extracted features had already been
learned from combinations of other features.

Table 7.2: Experiment 1: Performance of classifiers using the original features in addition to fea-
tures extracted from structured fields using domain knowledge.

Cohen’s Kappa Accuracy Macro average F1-Score

SE 0.3899 (+0.0099) 0.4277 (+0.0092) 0.3068 (+0.0086)
RF 0.4012 (+0.0112) 0.4378 (+0.0213) 0.3191 (+0.0104)
GBM 0.3894 (+0.0230) 0.4259 (+0.0215) 0.3286 (+0.0384)
NB 0.2081 (+0.0471) 0.2373 (+0.0484) 0.1732 (+0.0269)

7.3.2 Features Extracted From Unstructured Fields

In the following two experiments, features were extracted from the Text field of the work
orders. The two approaches are distinct in the way that the features are extracted. TF-
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IDF is used in the first approach in order to automatically extract key terms from the
document corpus, while the second approach uses a predefined list of descriptive terms,
that was manually assembled using knowledge about the domain. Both of these extended
datasets were constructed using the method described in Section 6.3.3, where the features
are appended using binary feature vectors that represents the absence or presence of each
term in the work orders.

Experiment 2: TF-IDF

This experiment was conducted using a dataset with 217 additional term features extracted
using TF-IDF. The results are shown in Table 7.3. They show that SE performs slightly
better than RF in terms of Cohen’s Kappa and accuracy, however, RF and GBM are supe-
rior with respect to macro average F1-Score. All the algorithms had a significant improve-
ment on all evaluation metrics compared to the baseline.

Table 7.3: Experiment 2: Performance of classifiers using additional features extracted with TF-
IDF.

Cohen’s Kappa Accuracy Macro average F1-Score

SE 0.4049 (+0.0249) 0.4423 (+0.0238) 0.3060 (+0.0078)
RF 0.4048 (+0.0266) 0.4421 (+0.0256) 0.3236 (+0.0149)
GBM 0.3872 (+0.0208) 0.4236 (+0.0192) 0.3225 (+0.0323)
NB 0.1892 (+0.0276) 0.2175 (+0.0286) 0.1666 (+0.0203)

Experiment 3: Domain Terms

In this experiment, 217 additional predefined domain term features were appended to the
original dataset. The results are shown in Table 7.4. It is evident that the overall perfor-
mance of the classifiers improved significantly compared to the baseline. This approach
also performed better than the TF-IDF approach in every aspect, except for the GBM. The
overall improvement suggests that the predefined domain terms are more descriptive and
discriminating than the TF-IDF terms.
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Table 7.4: Experiment 3: Performance of classifiers using additional predefined domain term fea-
tures.

Cohen’s Kappa Accuracy Macro average F1-Score

SE 0.4115 (+0.0315) 0.4482 (+0.0297) 0.3153 (+0.0171)
RF 0.4098 (+0.0316) 0.4470 (+0.0305) 0.3292 (+0.0205)
GBM 0.3797 (+0.0133) 0.4166 (+0.0112) 0.3206 (+0.0304)
NB 0.2070 (+0.0454) 0.2369 (+0.0480) 0.1778 (+0.0315)

7.3.3 Combination of Extracted Features

Four experiments were conducted where features from unstructured fields and features
from structured fields were used in combination. Extracted structured features originates
from the structured field FunctionalLocation. Experiment 4 uses these features in combi-
nation with the terms found using TF-IDF, while Experiment 5 use the extracted structured
features in combination with features extracted using predefined domain terms. Experi-
ment 6 combines features extracted from the unstructured fields, using both TF-IDF and
domain terms. At last, all the three feature sets are combined in Experiment 7.

Experiment 4: TF-IDF and Structured Fields

Table 7.5 shows the results of the classifiers when both the features extracted using TF-
IDF and the features extracted from FunctionalLocation were added to the dataset. The
combination of the feature sets performs better than when using them separately. This
suggests that both of the feature sets add value to the classification task, and that the
knowledge they infer does not fully overlap.

Table 7.5: Experiment 4: Performance of classifiers incorporating additional features extracted us-
ing TF-IDF as well as features extracted from the structured field FunctionalLocation.

Cohen’s Kappa Accuracy Macro average F1-Score

SE 0.4260 (+0.0460) 0.4611 (+0.0426) 0.3266 (+0.0284)
RF 0.4152 (+0.0370) 0.4510 (+0.0345) 0.3479 (+0.0392)
GBM 0.4128 (+0.0464) 0.4478 (+0.0434) 0.3458 (+0.0556)
NB 0.2138 (+0.0522) 0.2429 (+0.0540) 0.1837 (+0.0374)
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Experiment 5: Domain Terms and Structured Fields

Table 7.6 shows the performance of the classifiers when both the features extracted us-
ing domain terms and the features extracted from FunctionalLocation were added to the
dataset. This was the feature set that yielded the best performance for all the classifiers.

Table 7.6: Experiment 5: Performance of classifiers incorporating additional features extracted us-
ing domain terms as well as features extracted from structured fields.

Cohen’s Kappa Accuracy Macro average F1-Score

SE 0.4515 (+0.0715) 0.4851 (+0.0666) 0.3641 (+0.0659)
RF 0.4454 (+0.0672) 0.4796 (+0.0631) 0.3665 (+0.0578)
GBM 0.4363 (+0.0699) 0.4700 (+0.0656) 0.3674 (+0.0772)
NB 0.2346 (+0.0730) 0.2651 (+0.0762) 0.2032 (+0.0569)

The classifiers using domain terms performs slightly better than the classifiers using TF-
IDF. When they are combined with features extracted from FunctionalLocation, TF-IDF
is outperformed by domain terms. This suggests that the classification value inferred from
the domain terms does not overlap with the value inferred from structured features to the
same extent as it does for TF-IDF.

Experiment 6: TF-IDF and Domain Terms

This experiment tests how all features extracted from unstructured fields perform in com-
bination. Table 7.7 shows the performance of the classifiers when features extracted using
both domain terms and TF-IDF were added to the dataset. The performance of the clas-
sifiers in this experiment is significantly higher than when the two feature sets are used
independently.

Table 7.7: Experiment 6: Performance of classifiers incorporating additional features extracted us-
ing both TF-IDF and domain terms.

Cohen’s Kappa Accuracy Macro average F1-Score

SE 0.4341 (+0.0541) 0.4685 (+0.0500) 0.3473 (+0.0491)
RF 0.4213 (+0.0431) 0.4579 (+0.0414) 0.3452 (+0.0365)
GBM 0.4138 (+0.0474) 0.4488 (+0.0444) 0.3380 (+0.0478)
NB 0.2106 (+0.0490) 0.2395 (+0.0506) 0.1769 (+0.0306)
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Experiment 7: TF-IDF, Domain Terms and Structured Fields

Table 7.8 shows the results of the classifiers when all extracted features were added to the
dataset. This includes features extracted from the Text field using both TF-IDF and do-
main terms, as well as the features extracted from the structured field FunctionalLocation.
The results are similar to Experiment 6 that uses almost the same feature set, but without
features extracted from structured fields. In Experiment 5, where only structured features
and features extracted from unstructured fields using domain terms are applied, the results
are significantly better. This may indicate that the feature set used in Experiment 7 has
caused the classifiers to overfit. A more thorough discussion of this will be presented in
the next chapter.

Table 7.8: Experiment 7: Performance of classifiers incorporating additional features extracted us-
ing both TF-IDF and domain terms, as well as features extracted from structured fields.

Cohen’s Kappa Accuracy Macro average F1-Score

SE 0.4319 (+0.0519) 0.4665 (+0.0507) 0.3441 (+0.0459)
RF 0.4366 (+0.0584) 0.4714 (+0.0549) 0.3666 (+0.0579)
GBM 0.4046 (+0.0382) 0.4395 (+0.0351) 0.3398 (+0.0496)
NB 0.2291 (+0.0675) 0.2589 (+0.0700) 0.1891 (+0.0428)

7.4 Summary of Results

The difference in metrics between the baseline classifiers and the best performing clas-
sifiers with incorporated domain knowledge (Experiment 5) is illustrated in Figure 7.1.
Cohen’s Kappa has increased with ≈ 0.07 for all algorithms.

Table 7.9 shows the performance of the baseline classifiers and the classifiers from the
experiment that yielded the best result. The last section of the table shows how much each
metric has improved from the baseline to the best classifiers from Experiment 5. The rela-
tive improvement from the baseline is wrapped in parentheses. Cohen’s Kappa shows that
the performance of the ensemble algorithms has increased to Moderate, while the naı̈ve
Bayes classifier has improved to Fair. The fact that Cohen’s Kappa has increased more
than the macro average F1-Score, implies that the classifier has a greater improvement on
the larger classes than the smaller ones.
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Figure 7.1: Cohen’s Kappa for baseline compared to models with incorporated domain knowledge.

Table 7.9: Results from the baseline models and the best performing models from Experiment 5,
along with the improvement.

Cohen’s Kappa Accuracy Macro average F1-Score

Baseline
Stacked Ensemble 0.3800 0.4185 0.2982
Random Forest 0.3782 0.4165 0.3087
Gradient Boosting Machine 0.3664 0.4044 0.2902
Naı̈ve Bayes 0.1616 0.1889 0.1463

Domain knowledge (Experiment 5 – structured features + domain terms)
Stacked Ensemble 0.4515 0.4851 0.3641
Random Forest 0.4454 0.4796 0.3665
Gradient Boosting Machine 0.4363 0.4700 0.3674
Naı̈ve Bayes 0.2346 0.2651 0.2032

Improvement from baseline
Stacked Ensemble 0.0715 (18.8%) 0.0666 (15.9%) 0.0659 (22.1%)
Random Forest 0.0672 (17.8%) 0.0631 (15.2%) 0.0578 (18.7%)
Gradient Boosting Machine 0.0699 (19.1%) 0.0656 (16.2%) 0.0772 (26.6%)
Naı̈ve Bayes 0.0730 (45.2%) 0.0762 (40.3%) 0.0569 (38.9%)

Adding features extracted from unstructured fields using domain terms in addition to fea-
tures extracted from the structured field FunctionalLocation to the feature set, yielded the
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7.4 Summary of Results

best improvement for all the classification algorithms. All of the extra features used in
the top performing classifiers were extracted using domain knowledge. When features
extracted using TF-IDF were added in addition to the domain-driven features, the perfor-
mance decreased slightly. This may indicate that the models have overfitted.

Figure 7.2 lists the feature importances of the best Random Forest classifier (from Exper-
iment 5). Feature importance can easily be computed from a Random Forest because of
the characteristics of decision trees. It is calculated from the relative influence of each
feature. A feature has influence if it is selected during the splitting of a leaf node, and if it
contributes to reducing the squared error over all trees.
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Figure 7.2: Features with a scaled importance of > 1% from the best performing Random Forest
model with domain knowledge incorporated. The features with bold text were extracted
using domain knowledge.

As shown in the figure, six of the extracted features are among the top 23 most important
features in the improved model. The features that were extracted using domain knowl-
edge constitute 38.97% of the total feature importance (100%). Equipment type, System,
Equipment type id, Equipment id and Tag type are all extracted from the structured Func-

tionalLocation field.
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Chapter 8
Discussion

This chapter contains a discussion of the results and other takeaways from the project. The
discussion is written with the research questions and related work in mind.

8.1 The Effect of Domain Knowledge

The idea of experimenting with feature extraction using domain knowledge, was the result
of several unsuccessful approaches that yielded zero to very slight improvement in perfor-
mance. It was further motivated by the fact that FunctionalLocation was discovered to be
an encoded feature consisting of relevant information about the equipment involved in the
work orders. The Text field was first utilized by extracting terms using TF-IDF, however,
these terms were manually inspected and several of them were deemed unrepresentative
with regards to the FMCs. This led to experimentation with manually extracted domain
terms that represents the FMCs to a greater extent.

In this section, the effect of the various approaches are reviewed and discussed with basis
in the experiments. From the conducted experiments it is evident that the features extracted
using domain knowledge had a significant impact on the classifiers in terms of predictive
performance.
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8.1 The Effect of Domain Knowledge

8.1.1 Features Extracted From Structured Fields

In Experiment 1 where only features extracted from the FunctionalLocation field were
added to the feature set, the naı̈ve Bayes classifier had a much higher relative improve-
ment than the other algorithms. Interpreting these results together with the naı̈ve assump-
tion that all features are independent of each other, suggests that the extracted features
are valuable independently of other features. This means that a classifier can discriminate
samples from different classes using the extracted features, without looking at features in
combination. This is also supported by Figure 7.2 that was presented in the previous chap-
ter, showing feature importances of the best Random Forest model (from Experiment 5).
Five out of the top 20 features are extracted from FunctionalLocation, indicating that they
are discriminating features that for instance would be good to use far up in decision trees.

The improvement of the other three algorithms were not as substantial, probably because
some of the knowledge extracted from FunctionalLocation already had been learned from
combinations of other features. Naı̈ve Bayes fails to find knowledge from combined fea-
tures because of the independence assumption.

When only features extracted from structured fields were added to the training set, Random
Forest had the best performance measured by Cohen’s Kappa. Experiment 1 was one of
the two experiments where Random Forest performed better than the Stacked Ensemble.
We were not able to interpret why this was the case, but one possible explanation is that
the dataset were more suited for bagging techniques (Random Forest) in this experiment.
In the other experiments, far more features were extracted from unstructured fields, which
might have improved the performance of boosting and stacking.

8.1.2 Features Extracted From Unstructured Fields

Two methods were considered for extracting features from the unstructured Text field. The
first method uses the TF-IDF weighting scheme in order to extract the most important
terms from the document corpus, while the second method utilizes the manually con-
structed domain term dictionary.

Incorporating TF-IDF features in Experiment 2 improved the performance of all classifiers
by an average of 0.025 measured in Cohen’s Kappa, an average relative improvement of
9.1%. The experiment showed that Stacked Ensemble was slightly better when consider-

78



8.1 The Effect of Domain Knowledge

ing Cohen’s Kappa and accuracy, but Random Forest and Gradient Boosting Machine per-
formed better in terms of macro average F1-Score. Since macro average F1-Score weights
smaller classes higher, the results indicate that Stacked Ensemble is better at predicting
the larger classes, while Random Forest and Gradient Boosting Machine are capable of
classifying the smaller classes to a greater extent. As the class distributions are highly
imbalanced, it is preferable that a classifier is able to identify the smaller classes, even at
the cost of accuracy.

In Experiment 3 where predefined domain terms were used, the predictive performance of
the classifiers increased by an average of 0.03 measured in Cohen’s Kappa, an average rel-
ative improvement of 13.2%. The results are similar to that of the TF-IDF method when it
comes to the performance of the algorithms, but the overall performance increased slightly
more when using the domain terms. An exception is Gradient Boosting Machine, which
for an unknown reason scored better on all metrics when the TF-IDF terms were used.
Random Forest had an almost equal Cohen’s Kappa as Stacked Ensemble on unstructured
terms, but Random Forest had a noticeable higher macro average F1-Score. This indicates
that Random Forest is better at classifying minority classes, while maintaining an overall
performance equal to Stacked Ensemble when using features extracted from unstructured
fields.

A comparison of the performance between the two methods is shown in Figure 8.1. Al-
though the domain term method performed better than the TF-IDF method, they both gave
a noteworthy performance boost when compared to the baseline experiment. One hy-
pothesis is that the domain term method performed slightly better due to the fact that it
guarantees that every FMC is represented by at least one term. This causes all FMCs to be
considered in the classification processes. The TF-IDF method does not guarantee this, as
the terms are simply selected on basis of their score.

One could argue that to give a fair assessment of the domain terms, features extracted
using TF-IDF should be used as a baseline. By this definition, the average gain from the
method is reduced to 0.005 measured by Cohen’s Kappa.
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Figure 8.1: Comparison of performance in Cohen’s Kappa between the two methods used for ex-
tracting features from unstructured fields (TF-IDF vs. domain terms).

8.1.3 Comparing the Effect of Structured and Unstructured Fields

Features extracted from structured and unstructured fields gave a notable increase in the
predictive performance of the classifiers. As domain terms gave the best results for un-
structured features, these are the results we refer to when talking about unstructured fea-
tures in this section. A comparison between the two approaches in terms of performance
measured in Cohen’s Kappa is shown in Figure 8.2. Baseline results are also included
for reference. The algorithms improved with an average of 0.023 (relative improvement
10.9%) measured in Cohen’s Kappa by using the features extracted from structured fields,
versus an average increase of 0.03 (relative improvement 13.2%) from the unstructured
fields. In other words, the features from unstructured fields contributed slightly more to
the overall performance gain.

Although the features extracted from unstructured fields affected the performance the
most, there are 217 of these features, compared to the 14 obtained from FunctionalLo-

cation. The performance gain per FunctionalLocation feature is therefore substantially
bigger than that of the features extracted using domain terms. This is most likely due to
the fact that these are nominal features, whereas the domain term features simply consists
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Figure 8.2: Comparison of performance in Cohen’s Kappa between the two approaches of utilizing
domain knowledge.

of binary values. The significance of the features extracted from FunctionalLocation is
further emphasized by the feature importance ranking shown in Figure 7.2. It shows that
five of the 20 most important features were extracted from FunctionalLocation. This im-
plies that these features are very discriminating. In contrast, single domain term features
are not important by themselves, however, when combined, they were able to boost the
predictive performance of all the classifiers.

8.1.4 Combining the Approaches

The best results in this research were achieved when utilizing features extracted from both
structured and unstructured fields. Figure 8.3 shows the results of adding different combi-
nations of extracted features to the training data. While the results from using TF-IDF and
domain terms alone are quite similar, the difference was much bigger when features ex-
tracted from FunctionalLocation were included in the training. Experiment 4 and 5 show
that domain terms perform significantly better than TF-IDF in combination with features
from FunctionalLocation. This suggests that the classification value inferred from TF-IDF
does not complement the value inferred from structured features to the same extent as the
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8.1 The Effect of Domain Knowledge

domain terms does. The performance decreased slightly when all the extracted features
were used in combination in Experiment 7. A possible explanation is that the classifiers
have overfitted due to the large amount of features used. This hypothesis is supported by
the fact that the performance of Gradient Boosting Machine decreased the most. Gradient
Boosting Machine is a boosting method and thus more prone to overfitting. Naı̈ve Bayes
is not affected to the same degree as Gradient Boosting Machine, and it is more robust
to noise and overfitting [48]. Random Forest is also only experiencing a minor decrease
in Cohen’s Kappa. Since Random Forest is a bagging technique, it is better at reducing
variance, thus making it more robust to overfitting. The Stacked Ensemble is indirectly
prone to overfitting since it uses a Gradient Boosting Machine as a base learner, but not to
the same extent. This is because the variance is reduced by using multiple different base
learners. These are all characteristics that matches the results in Figure 8.3.
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Figure 8.3: A comparison of results when the extracted structured features were added in addition
to TF-IDF and domain terms.

Experiment 6 utilize features extracted from unstructured fields using both TF-IDF and
domain terms in combination. The performance of the classifiers in this experiment are
significantly higher than when the feature sets are used alone. This suggests that the clas-
sification value inferred from the different methods complement each other. Together with
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8.2 Choice of Evaluation Metrics

the implications that the classifiers overfitted in Experiment 7, this indicates that conduct-
ing more experiments where feature selection techniques are applied to all the extracted
features could have increased the performance of the classifiers.

8.2 Choice of Evaluation Metrics

There are almost as many evaluation metrics as there are classification algorithms. Some
metrics, such as area under the ROC curve only works for binary classifiers, while others
work for multiclass problems as well. Accuracy is traditionally a commonly used evalua-
tion metric, due to its simplicity and fairness. It does however give little information about
how the performance is distributed among classes in classification tasks using imbalanced
datasets. The accuracy paradox sheds light on this shortcoming.

A confusion matrix presents a detailed overview of how a classifier performs on all classes,
and can be useful for inspecting the predictions of a single classifier. It does not yield a
single value metric, which makes it unsuitable for comparison of multiple classifiers.

The experiments presented in the previous chapter lists Cohen’s Kappa, accuracy and
macro average F1-Score. Cohen’s Kappa and macro average F1-Score were chosen based
on earlier research and recommendations. An attractive characteristic of Cohen’s Kappa
is that it always removes random chance from evaluation, regardless of class distribution.
Majority classifiers and classifiers that predicts randomly based on class distribution, will
get a Cohen’s Kappa of ≈ 0.

Accuracy was also included in the results due to its widespread use. It should not be used
as a metric singlehandedly in imbalanced class problems, since majority classifiers and
random classifiers tend to get a high score even though the classifiers do not solve the clas-
sification task at hand. This was demonstrated with the accuracy paradox in Section 2.9.2.

The use of multiple evaluation metrics proved to give some insights that would have been
missed using only one metric. While accuracy weights each sample equally, Cohen’s
Kappa weights classes relative to their size. Consequently, samples from smaller classes
are weighted higher than samples from larger classes. This makes Cohen’s Kappa suit-
able as a primary metric when you are dealing with an imbalanced dataset where smaller
classes are important, but the main task is not to correctly predict samples in small classes.
Macro average F1-Score is more suited when correctly predicting small classes is crucial,
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since it makes each class contribute equally to the final score. This means that a class with
one sample is equally important to classify correctly as all 1 000 samples in another class.
These characteristics can implicate how a classifier performs when the metrics are exam-
ined in combination. Looking at the results from Experiments 1-5, we see that Gradient
Boosting Machine always had a higher improvement on the macro average F1-Score than
on accuracy and Cohen’s Kappa when domain knowledge was added. This implies that the
domain knowledge made Gradient Boosting Machine perform better on smaller classes,
since the macro average F1-Score favours small classes. On the contrary, Naı̈ve Bayes
saw a greater improvement in Cohen’s Kappa and accuracy, meaning that the classifiers
got better on larger classes. The insight that the combination of these evaluation metrics
provide, can give an understanding of how the classifiers evolve when features are added
or removed.

8.3 Assessment of Algorithms

There were very small differences in the performance of the top three classification algo-
rithms. A possible explanation to this is that both Gradient Boosting Machine and Random
Forest are ensembles of tree learners. Stacked Ensemble is a second level meta learner
that was trained using Gradient Boosting Machine and Random Forest as base learners,
meaning that all knowledge eventually is extracted using decision trees. Another possible
explanation is that the classifiers are closing in on the best possible performance that can
be achieved with the dataset at hand. The naı̈ve Bayes algorithm performed substantially
worse, which may be caused by the fact that it ignores dependencies between features. It
is more dependent on feature selection compared to the other algorithms, and a limited
amount of time went into optimizing the feature set for naı̈ve Bayes. Nevertheless, naı̈ve
Bayes had the highest relative improvement from the basesline. This indicates that the
other algorithms already had learned some of the extracted knowledge from combinations
of other features.

Stacking generally led to an increase in Cohen’s Kappa and slight decrease in macro aver-
age F1-Score when compared to the base learners. For instance, the best Random Forest
and Gradient Boosting Machine classifiers had a Cohen’s Kappa of 0.4454 and 0.4363,
and a macro average F1-Score of 0.3665 and 0.3674, respectively. When these classi-
fiers were combined in the Stacked Ensemble, the Cohen’s Kappa increased to 0.4515
while the macro average F1-Score decreased to 0.3641. This pattern was found in Ex-
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periments 2-5. In Experiment 1 where only features extracted from structured fields were
incorporated, Random Forest performed slightly better than the Stacked Ensemble, but
the macro average F1-Score still decreased in the Stacked Ensemble. In spite of this, the
overall impression is that stacking results in a more accurate prediction of larger classes at
the expense of smaller classes. As Stacked Ensemble was the classifier that produced the
highest Cohen’s Kappa in the study, it is considered to be the most accurate predictor for
the task at hand.

As discussed in Section 8.2, Gradient Boosting Machine generally had a higher improve-
ment on the macro average F1-Score than on accuracy and Cohen’s Kappa when more
features were added to the dataset. The results in Experiment 6 and 7 show that the perfor-
mance of Gradient Boosting Machine suddenly drops below the performance of Random
Forest and Stacked Ensemble measured by all of the evaluation metrics. Since Gradient
Boosting Machine is a boosting technique, it is more prone to overfitting. This suggests
that the Gradient Boosting Machine overfits when features extracted using both TF-IDF
and domain terms are used in combination. The Stacked Ensemble is also affected by this,
since Gradient Boosting Machine is used as a base learner. Based on these results, it is
evident that Random Forest is better suited than Gradient Boosting Machine and Stacked
Ensemble if high variance and overfitting is a problem in the classification task.

The Gradient Boosting Machine from Experiment 5 was the classifier with the highest
macro average F1-Score. This speaks for using Gradient Boosting Machine instead of
Random Forest and Stacked Ensemble when the small classes are substantially more im-
portant than larger classes. This is supported by the fact that Gradient Boosting Machine
is a boosting algorithm, where misclassified samples (often belonging to minority classes)
are gradually weighted higher.

8.4 Comparison to Related Work

Many of the algorithms and evaluation metrics that were used in the related work, were
also used in our study. It did however prove to be challenging to compare the results,
due to the nature of the datasets and the classification tasks. Industrial classification tasks
are often atypical, and usually requires specific approaches. High dimensional industrial
datasets have unconventional characteristics that peculiarly influence how different tech-
niques perform at classification tasks. This makes comparison with related work challeng-
ing.
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The related studies that involved clustering and classification of maintenance logs and de-
tection of oil spills were both binary classification tasks. In the study involving detection
of oil spills, the dataset consisted of images, which made it infeasible to use the same tech-
niques for applying domain knowledge. The research on maintenance logs did not include
a baseline, and it is therefore hard to evaluate how much their preprocessing techniques
contributed to increasing the performance compared to the techniques that we applied.

We tested a few of the techniques that Wilcox and Hripcsak [67] used in the study of
automating medical text report classification. Both naı̈ve Bayes and decision tree based
algorithms were tested, and domain knowledge were utilized in a similar way. Wilcox and
Hripcsak applied text mining before domain experts selected relevant terms from the out-
put of the mining. When we tested the same approach, a few of the minority classes were
not represented in the the set of output terms. Consequently, the selection of domain terms
in our research was done without utilizing text mining. Compared to the baseline, our best
results had an improvement of 0.07 measured by Cohen’s Kappa, with a relative improve-
ment of 18.8%. Wilcox and Hripcsak were able to achieve an improvement of 0.11, and a
relative improvement of 13.6%, measured by area under the ROC curve. The classification
task in Wilcox and Hripsack’s research had six target classes, while our had 29. The large
difference in the number of target classes is one possible explanation for their better over-
all performance. Our classifiers still had a better relative improvement compared to the
baseline. This might be related to the fact that we extracted features from both structured
and unstructured fields, while they only focused on text mining unstructured fields. Due
to the large dimensionality differences of the datasets, it is hard to draw any conclusions.
It is difficult to do any further comparisons of the results, as different evaluation metrics
were used in the studies.

Our research was conducted in a similar manner as Wilcox and Hripcsak’s, considering
that we ran experiments using multiple classification algorithms and that varying degrees
of domain knowledge were incorporated in the training. Strengths in our research were
that we also applied domain knowledge on structured fields in addition to unstructured
fields, which enabled the extraction of more features. We also included multiple evaluation
metrics, which gave a more comprehensive understanding of the results.

A major part of the research conducted by Kubat et al. [40], focused on selecting a fitting
evaluation metric when dealing with an imbalance dataset. Their objective was to cor-
rectly identify minority class samples in a binary classification task. This differs from our
problem, since we rather wanted minority class samples to be slightly higher weighted in
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the evaluation.

Kubat et al. ultimately decided to use g-mean as their primary evaluation metric. In a
binary classification task, g-mean is given by

√
acc+ · acc− where acc+ is the accuracy

of positive samples and acc− is the accuracy of negative samples. In a multiclass problem,
the g-mean can be calculated by multiplying the accuracy of each class before finding the
n-th root of the product where n is the number of classes. That implies that if the accuracy
of one class is 0, the overall g-mean will also be 0. A class with an accuracy close to 0
will also have a huge impact on the final score. This is unfortunate when dealing with
29 classes, where some of the classes are very small. As we have argued for earlier in
this chapter, Cohen’s Kappa is more suited when dealing with a multiclass problem with
an imbalanced dataset. Misclassified samples belonging to minority classes will have a
bigger impact on the final score than samples from large classes, but a few errors in the
smallest classes will not bring the final score to the ground as g-mean does.

Table 8.1 shows an example of a confusion matrix for a classification task with five target
classes. The class distribution in the example resembles the distribution in our dataset, but
with fewer classes. The confusion matrix shows that the classifier has done a poor job in
classifying samples from minority classes.

Table 8.1: Example of confusion matrix for a classifier using an imbalanced dataset with five target
classes.

Predicted class

A B C D E

Actual class

A 1000 50 30 10 5
B 70 100 20 5 2
C 20 10 20 4 0
D 6 3 1 4 0
E 2 1 0 0 0

Figure 8.4 shows different single value metrics computed from the confusion matrix. It
gives an overview of how much each evaluation metric penalize misclassifying minority
class samples. Although the differences were not that big in our actual results, the trends
look the same as in the figure. When you are dealing with many classes and an imbalanced
dataset, g-mean is not suited due to the high degree of penalization of misclassifying mi-
nority samples. Unless the goal is to correctly classify samples from the smaller classes,
misclassifying minority samples will often also affect the macro average F1-Score too
much since each class is weighted equally in the score. Accuracy does not care about
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class distribution at all, and the larger classes will often have a higher impact on the score
than desired. Cohen’s Kappa weights each class relative to their size, which satisfies the
requirements we have for evaluating the models in our classification task.
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Figure 8.4: Evaluation metrics based on the confusion matrix presented in Table 8.1.

Edwards et al. [17] were the most similar research we were able to find, since it con-
cerns classifying maintenance logs in an industrial setting. The study does however not
include any baseline metrics, it is a binary classification task, and it does not utilize do-
main knowledge in the classification task. This makes it hard to compare results. The
study encountered many of the challenges as we did, and preprocessing was a major part
of the research. It only focused on extracting features from unstructured fields, although
the dataset included three structured fields that possibly could have enhanced the perfor-
mance of the classifier. TF-IDF was used for extracting features from the text. Edwards
et al. used SVD in order to reduce the dimensionality, and generalize the TF-IDF vectors.
We created binary feature vectors based on the top 217 TF-IDF words, and it could have
been interesting to experiment more with SVD, alternative weighting of extracted features,
and more advanced NLP techniques. Opposed to Edwards et al., our main effort was put
into understanding the entire dataset and extracting info from both structured and unstruc-
tured fields, instead of applying advanced NLP techniques. We do believe that Edwards
et al. could have benefited from extracting and utilizing more features. The output of
their maintenance type clustering could have been included when training a classifier for
predicting if a log entry was scheduled or not. Structured fields that indicated the cause
of the entry and damage were merely joined with the rest of the text, instead of trying to
normalize and utilize the structured fields such as we did.
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Chapter 9
Conclusion

Finding good features for supervised learning in high dimensional industrial settings is
challenging. Using feature extraction techniques to generate new features had a significant
impact on classifying work orders. It is crucial to obtain a thorough understanding of the
dataset at hand, in order to perceive where features can be encoded.

According to Cognite, the best classifier is currently not accurate enough to automatically
label work orders with an FMC, but it is accurate enough to suggest FMCs when an opera-
tor submits new work orders. A classifier used to automatically label work orders with an
FMC, would need to have an accuracy of at least 80% in order to provide value for Aker
BP. Reaching a satisfactory performance level in this task proved to be infeasible with the
techniques that we applied. While the best classifier had a relative improvement of over
18% compared to our baseline results, a Cohen’s Kappa of 0.45 is not accurate enough
to be used for automatic labeling. It is however good enough to be used for suggesting
FMCs when operators on oil platforms submit new works orders. Since human interaction
is required to actually select the correct FMC from a set of suggestions, it is not necessary
to achieve the same predictive performance as an automatic classifier. Statistically, our
best classifier will suggest the correct FMC in almost one out of two cases.

This research has given Cognite a better understanding of the dataset, such as the relation-
ships between FailureModeCode, CodeGroup and CatalogProfile, as well as the meaning
of several features. We have also shed light on some techniques that can be employed to
improve the classification results, which can be used in combination with other techniques
in further experiments.
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9.1 Research Questions

This section contains final conclusions for the research questions. The conclusions are
based on the results, as well as the discussions from the previous chapter.

RQ1 To what extent do new domain-driven features extracted from
existing fields of industrial datasets contribute to a classifier’s
performance?

The conducted experiments showed that using domain knowledge to extract new features
had a significant impact on the predictive performance of the tested classifiers. Using
features extracted from unstructured fields in combination with features extracted from
structured fields, resulted in an increase in performance by up to 0.073 measured in Co-
hen’s Kappa. The average improvement of the best models were 25.2%. Performance
gain from the extracted domain-driven features outweighed differences in the top three
classification algorithms used. Out of the top 20 features ranked by importance, five were
extracted using domain knowledge, including the top two features.

Understanding how and where domain knowledge could be utilized and applied was a time
consuming task, however, we were unable to achieve similar results using other techniques.
While the exact procedure used to extract new features in this work is very specific, the
overall approach is quite generic. Canvassing the dataset for encoded values and extracting
features from these fields, can be applied in similar work as well as in other domains.

RQ2 How does features extracted from unstructured and structured
fields compare in terms of improving a classifier’s performance
when classifying industrial data?

Features extracted from structured and unstructured fields both contributed to a signifi-
cant increase in the predictive performance of all the tested classifiers. Experiments 1-3
test feature sets extracted from structured and unstructured fields on their own. It is ap-
parent that the average performance of all the tested algorithms increased more from the
217 features extracted from unstructured fields, than from the 14 features extracted from
structured fields (0.0277 versus 0.0228 measured in Cohen’s Kappa). However, the perfor-
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mance gain per feature was greater from the features obtained from FunctionalLocation,
indicating that these are more independent and discriminating. As we are dealing with a
multiclass classification problem, this result is as expected. The domain term features are
simply binary features, whereas the FunctionalLocation features are polytomous features.

When structured features were utilized in combination with unstructured features, the per-
formance was always better than when they were applied on their own. The highest perfor-
mance boost was achieved in Experiment 5. This experiment utilized features extracted us-
ing domain terms from the unstructured Text field, in combination with features extracted
from the structured field FunctionalLocation. The average performance of the classifiers
increased by 0.0704 measured in Cohen’s Kappa in this experiment, an average relative
improvement of 25.2% from the baseline. It is therefore evident that the approaches work
substantially better in combination than as standalone feature extraction methods. As the
features extracted from structured and unstructured fields fulfill each other, it is difficult to
conclude which of them contributes the most in improving the classifiers performance.

RQ3 What are informative evaluation metrics when dealing with im-
balanced multiclass datasets?

As a single value metric, Cohen’s Kappa proved to be the most fitting evaluation metric for
the classification task at hand. That is because Cohen’s Kappa weights minority classes
higher than larger classes, but not to the extent where each class contributes equally to the
score. Characteristics of similar problems that could benefit from using Cohen’s Kappa,
are problems where the dataset is highly imbalanced, contains multiple target classes,
and where correctly classifying samples in small classes should be weighted higher than
classifying samples in large classes. If the most important task is to correctly classify
the minority class samples, macro average F1-Score should be used instead. This finds the
harmonic mean between precision and recall for each class, and weights the classes equally
in the final score. In binary imbalanced classification tasks, g −mean is an informative
metric. It is not suited for multiclass problems, since a low accuracy in one of the classes
have a detrimental effect on the final score.

Including both Cohen’s Kappa and macro average F1-Score in our results provided addi-
tional value, since it gave insight into how the classifiers evolved when new features were
added. A higher increase in Cohen’s Kappa than macro average F1-Score implies that the
classifiers got better on larger classes, and vice versa.
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9.2 Further Work

RQ4 How does a Stacked Ensemble compare with its constituent mod-
els when classifying highly imbalanced datasets?

There were very small differences in the performance of the Stacked Ensemble and its two
constituent algorithms, Random Forest and Gradient Boosting Machine. In all experiments
except one, stacking led to an increase in Cohen’s Kappa and a slight decrease in macro
average F1-Score when compared to the base learners. This indicates that stacking results
in a more accurate prediction of larger classes at the expense of smaller classes.

9.2 Further Work

It would be interesting to further investigate techniques to extract features from textual
fields. Instead of just looking at each word separately, building n-grams of words could
impact the results. The domain term dictionary can also be extended to include more
terms. Features could also be extracted using Named Entity Recognition, word2vec or
doc2vec. Extracted terms could be weighted using for instance TF-IDF weights, and a
more sophisticated technique could be used when selecting which terms to include in the
feature set.

It would also be interesting to test different numbers of terms to include in the feature set, to
see how the size of the feature set affects the performance. Acquiring more data from other
oil platforms for training and validation could improve the performance of the models as
well. It would also be interesting to see how the system performs when highly correlated
FMCs are grouped together. The measures mentioned above could further improve the
predictive performance of the classifiers.

Since the FunctionalLocation field encapsulates encoded data using two different encod-
ing schemes, these features only contribute to finding correlations internally in the two
coding scheme groups. Finding a full or partial mapping between the two coding schemes
could provide great value when training the classifiers. This would help the classifiers
to find correlations between samples from the different coding schemes. More domain
knowledge is required to create this mapping.

Late in the research, Cognite conveyed that it would be useful to know how the classifiers
performed, if a sample were considered correctly classified if the sample’s actual class
were among the top five output classes ordered by probability. Naı̈ve Bayes is a proba-
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bilistic classifier, and calculates the probabilities that a record belongs to each of the target
classes. As ensemble learners use voting to decide the predicted class, it is possible to get
probabilities for a sample belonging to each class. There was however no easy way to add
this functionality to our system, and we could not find time to implement it.
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Appendix A
Research paper

A.1 Using Domain Knowledge in Classifying Industrial
Data from the Oil and Gas Sector

On the following 16 pages are the research paper we submitted to The European Con-
ference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases 2018 (ECML-PKDD). At the time of this writing, we have not gotten feedback
on whether or not the paper is accepted to the conference.

103



Using Domain Knowledge in Classifying
Industrial Data from the Oil and Gas Sector

Sondre Hjetland1, Eirik Fosse1, Que Tran2, and Jon Atle Gulla1

1 Norwegian University of Science and Technology - Department of Computer
Science, Trondheim, Norway

sondrehj@stud.ntnu.no,eirik@bustbyte.no,jon.atle.gulla@ntnu.no
2 Cognite AS, Oslo, Norway

que.tran@cognite.com

Abstract. Finding good features for performing supervised learning on
high dimensional industrial datasets can be challenging, as your feature
set typically consists of hundreds to thousands of features. Specific fea-
tures might follow protocols or custom coding standards that, unless
decoded, are unusable by machine learning algorithms. This is often the
case in industrial environments, where you need domain knowledge to
interpret the semantics of the data. This paper analyzes the effect of do-
main knowledge on the supervised learning process in creating classifiers
for industrial work orders. Our experiments, using various supervised
learning algorithms on a high dimensional real-world dataset, show that
incorporating domain knowledge in the pre-processing phase, improves
the performance of a classifier substantially. By utilizing domain knowl-
edge we were able to increase the performance of the classifier with 7%
measured by Cohen’s Kappa. The two most important features in the
resulting model were features extracted using domain knowledge (Sys-
tem and Equipment type). The sum of the importance of the extracted
features were 38.97% in the final model. This implies that domain knowl-
edge is crucial in order to avoid erroneous pruning of important encoded
features.

Keywords: Industrial data, Supervised machine learning, Domain knowl-
edge, Imbalanced data set

1 Introduction

A focus on digitizing the oil and gas sector has emerged in the past few years.
World Economic Forum recently published a white paper, naming digitization
the new era for the oil and gas industry [16]. The industry has not yet utilized
the opportunities that derive from technology and the large amounts of data
industrial companies possess. For instance, a single drilling rig at an oilfield can
generate terabytes of data daily, but only a small part of the data is used for
decision making. World Economic Forums’ value-at-stake analysis estimates that
a digital transformation in the oil and gas industry could unlock approximately
$1.6 trillion of value for the industry, its customers and wider society.
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This paper is written as part of a cooperation with Cognite AS, who are
currently working on digitizing the oil and gas industry.

Industrial environments are data intensive settings, where data is generated
from sensors, observations, reports and other instrumental readings. The dataset
used in this research originates from one of Europe’s largest independent oil and
gas companies, hereafter referred to as the oil and gas company. It consists of
work orders from an offshore oil and gas production platform operating on the
Norwegian continental shelf. A work order is a manual entry of a malfunction
or other types of events, and it contains both structured and unstructured data.
Most work orders contain a Failure Mode Code (FMC), specifying which type
of malfunction that led to the work order. The objective of this study is to
analyze how domain knowledge affects the performance in the task of classifying
failure mode codes in work orders. It is beneficial for the oil and gas company
to have failure mode codes on all records for the sake of further analysis and
decision making. The classifier can also be used to suggest failure mode codes
when operators submit new work orders.

With regards to the distribution of failure mode codes, the dataset is highly
imbalanced and sparse, which presents a challenge in the classification task. In
this research, we will experiment with multiple classification algorithms and test
different types of domain knowledge.

There is limited work in the oil and gas industry that examines the impact of
domain knowledge in classifying industrial data. There is however more research
on this topic in other fields such as medicine and economy. The majority of the
related research focus on rule-based learning and use domain knowledge to define
rules based on features in unstructured textual data [18,8]. We experimented
with similar approaches in our study, but the best results were achieved when
encoded features were extracted from both structured and unstructured fields.

The main contribution of this work is to show the importance of understand-
ing the dataset at hand, and how utilizing domain knowledge can be used to
extract important encoded features in order to enhance the performance of a
classifier.

Related work is presented in the next chapter. Chapter 3 then describes the
dataset at hand. In Chapter 4 we go through the methods used in the research.
Chapter 5 contains results and a discussion, before a conclusion is made in the
final chapter.

2 Related Work

Wilcox and Hripcsak have analyzed the effect of domain knowledge on the in-
ductive learning process in creating classifiers for clinical observations in medical
text reports [18]. Structured data in medical reports were not sufficient for classi-
fying hospital admissions. In the pre-processing phase of the inductive learning,
natural language processing (NLP) was used to convert unstructured textual fea-
tures into structured features. Domain experts then selected specific attributes
or features that were relevant to the classification task. Domain knowledge was
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shown to be the most significant factor affecting inductive learning performance,
outweighing differences in learning algorithms. The cost of acquiring domain
knowledge was also a lot less than trying to learn said knowledge inductively.
Wilcox and Hripcsak suggests that domain knowledge can be used to combine
multiple features together or to create a new features, but they do not conduct
any experiments on this matter.

Kubat et al. have researched the use of machine learning in the detection of
oil spills in satellite radar images [13]. This is a binary classification problem, and
the system the research is based on aims to identify if oil spills are present or not
in regions of an image. The dataset used in the study shares many of the same
characteristics as the dataset in our work, such as class imbalance, data sparsity
and the fact that feature engineering is required. Domain experts defined 49
features describing each region in Kubat et al.’s study. A significant amount of
time was spent defining these features, and other feature engineering techniques
were not employed. The results of the study were similar to earlier research, but
the main contribution of the study was to identify issues deserving attention of
the research community. This include selecting descriptive performance metrics,
handling imbalanced and sparse datasets, and performing feature engineering.

The majority of similar research we examined, utilizes domain knowledge
by incorporating the knowledge in a rule-based learner. Most of the research
also focused on unstructured textual features. As Wilcox and Hripcsak pointed
out, domain knowledge could be used to extract new features from the existing
feature set. That is what this study will focus on. Domain knowledge will be
applied in the pre-processing and feature engineering phase, instead of directly
in the classifier. We will extract encoded features from both structured and
unstructured fields with the use of domain knowledge.

3 Dataset

In this study, a restricted real-world dataset provided by Cognite (on behalf of an
oil and gas company) has been used. The dataset consists of 6364 maintenance
and repair requests, also called work orders. Work orders are filed for any work
that needs to be done on a platform – ranging from changing a light bulb to
repairing a sub-sea pump. The dataset used in this study is a subset of all work
orders, and consists of orders that are concerned with actual failures. Work orders
are categorized into one of 40 classes or failure mode codes, manually assigned
by an inspector or operator when the order is filed. The code indicates the type
of failure that led to the work order. FMCs are exclusive; a work order may only
be assigned a single code. A subset of the FMCs are listed in Table 1.

3.1 Features

A work order is described by 312 features, ranging from time stamps and iden-
tifiers automatically set by the system, to textual descriptions manually entered
by an operator.
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Table 1: Subset of Failure Mode Codes (10 of 40) with description and count. Listing

the five largest and smallest classes, ordered by size.

Code Description Count % of total

OTH Other 1178 18.50%

ELU External leakage utility medium 466 7.32%

SER Minor in-service problems 414 6.51%

SPO Spurious operation 413 6.49%

FTF Fail to function on demand 383 6.02%

. . . . . . . . . . . .

VLO Very low output 4 0.06%

FRO Fail to rotate 4 0.06%

FTR Fail to regulate 2 0.03%

STP Fail to stop on demand 1 0.02%

FDC Fail to disconnect 1 0.02%

The feature space of the dataset consists of nominal and ordinal variables, with
the most significant features being:

FailureModeCode (FMC). The classification target. A code indicating the
type of equipment failure that led to the work order.

CodeGroup. A code indicating a grouping of FMCs. There are 50 unique Code-
Groups in the dataset. Note that there is an N:N relationship between FMC
and CodeGroup – a FMC may belong to multiple CodeGroups, and a Code-
Group may have multiple FMCs. For instance, amongst work orders with ELU
as FMC, there exist 18 distinct CodeGroups. The majority of the CodeGroups
are linked with 5-20 different FMCs. CodeGroup is not present in work orders
lacking a FMC, meaning it must be predicted as well.

CatalogProfile. A code indicating a grouping of CodeGroups. The relationship
between CatalogProfile and CodeGroup is 1:N. However, the ratio is close to
1:1 as there are few CatalogProfiles with multiple CodeGroups.

FunctionalLocation. An identifier referring to the involved equipment (ex-
plained in Section 3.3).

Text. A manually entered free text value, often describing the problem, what
has been done, what needs to be done and the equipment involved. The text
has often been edited multiple times as work related to the work order is
conducted.

3.2 Challenges

The work orders are manually entered by operators working on the platform. It
poses several challenges for machine learning with regards to data quality.
Insufficient amount of data. The dataset initially consists of a mere 6364
rows. This is further reduced, as the classes OTH (Other) and UNK (Unknown)
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are removed due to the fact that these classes symbolize that the operator was
unable to find a fitting FMC. That leaves us with a total of 4999 work orders
and 38 distinct FMCs.
Numerous classes & imbalance. The total of 38 FMCs poses a challenge
due to the limited amount of data. Each FMC has on average 4999/38 = 132
representative work orders. However, as seen in Table 1, the FMC distribution
is skewed and the classes highly imbalanced, leaving us with relatively huge
classes such as ELU and seemingly insignificant classes such as FDC (Fail to
Disconnect). There is also high correlation between certain FMCs, such as NOO
(No Output) and LOO (Low Output), making them hard to differentiate.
Missing and duplicate data. Attribute values are missing throughout the
dataset. The missing data is in most cases due to unmeasured and missing in-
formation about the failure. Features with a coverage of less than 80% were
pruned, which reduced the number of features to 141. Furthermore, 32 out of
the 141 features are either duplicates of other features, or consist of uniform
values. Pruning them leaves us with a total of 109 features.
Mislabeled data. As the FMCs are manually entered by an operator, errors
and mislabeling occurs. Numerous classes, some of them hard to differentiate,
may also cause the operator to be confused as to which FMC to use. This might
result in a mislabeling, or simply taking the easy way out assigning it either OTH
or UNK. Different operators may also have their own subjective interpretation
of the FMCs, leading to an overlap of the classes.
Varying quality. The manually entered fields of the work orders, especially the
failure description, are of varying quality. The texts vary from being a few words
long, to being many sentences. Several languages such as Norwegian, English
and Danish are used in the text fields, sometimes even in the same record. Some
work orders contain well structured text and encapsulates important aspects of
the order, but most of them are not. The written sentences are often grammar-
less and shortened, and contains industrial terms, abbreviations, identificators
and jargon. All of these properties make it very challenging to perform natural
language processing to extract features. An example of a typical text: ”Damper
not closing 27.09.2010 23:00:06 JOHN DOE (JDOE) damper not closing during
test, either from SAS or local 29/9 smørt opp tregt spjeld, testet x10, n̊a OK.”

3.3 Encoded Data

The feature set includes FunctionalLocation, that specifies an equipment tag. At
first glance it looks like an arbitrary sequence of alphanumeric characters, but is
in fact an encoded reference to the specific equipment that a work order concerns.
Equipment tags at the platform have been issued using two well-established
coding systems: SFI Group System [20] and NORSOK Z-DP-002 [17]. The SFI
Group System is used for older hull equipment, while the rest of the tags are
issued according to the NORSOK standard. Features encoded in the NORSOK
equipment tags are:

Platform. Specifies on which platform the equipment resides.
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System. Logical grouping category of the parent systems (e.g. Oil Storage).

Equipment type. Logical grouping category of the equipment types.

Equipment id. The first level in the hierarchy related to a physical asset.

Subunit. Unit within the equipment boundary defined by the equipment ID.

Maintainable item. Lowest level within the equipment boundary defined by
the equipment ID.

Features encoded in the SFI equipment tags are:

Platform. Specifies on which platform the equipment resides.

SFI 3-digit group system. A ship/rig is divided into 10 primary groups (1st
digit, e.g. 7 – Machinery main components). Each primary group consists of
10 secondary groups (2nd digit, e.g. 3 – Compressed air systems). Finally, each
secondary group is divided into 10 tertiary groups (3rd digit, e.g. 1 – Starting
air systems). Each digit represent a step down in the hierarchy.

SFI Detail- & material code. Not standardized, but used to define individ-
ual components in a system.

How these features are extracted will be presented in Section 4.2.

4 Method

Our method for training a FMC classifier is divided into three steps. First, we do
basic data pre-processing such as class filtering, class grouping and some natural
language processing. Secondly, the data is enriched by utilizing domain knowl-
edge and data from external sources. Finally, models are built using Random
Forest, Gradient Boosting Machine and Stacked Ensemble. Since our classifica-
tion algorithms are able to handle the amount of features present in our dataset,
and by design identifies the most important features, using other feature selec-
tion techniques is not relevant in this study.

4.1 Data Pre-processing

Pre-processing is one of the measures taken in order to deal with challenges of
the dataset presented in the previous section. The FMCs OTH (Other) and UNK
(Unknown) are filtered out due to being of little to no value. FMCs with less
than 10 representative work orders are also removed. This decision is based on
experiments using oversampling, undersampling and upsampling with synthetic
samples. The sampling techniques had zero or negative impact on the final re-
sults, implying that there is insufficient data for these FMCs. This leaves us with
the total of 29 distinct FMCs. Properties of the dataset during the filtering are
listed in Table 2.

Highly correlated CodeGroups are merged together. This is done in order to
increase the classification accuracy when predicting CodeGroup based on Cata-
logProfile Id. The following groups are assembled:

Fire and Gas Detectors Composed of FD (Fire Detectors), GD (Gas Detec-
tors) and FG (Fire and Gas Detectors).
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Table 2: Number of records after steps of filtering.

Step Action # Records # Classes

1 All records 6364 40

2 Removing OTH and UNK 4999 38

3 Removing classes with < 10 records 4960 29

Input Devices Composed of ID (Input devices) and IP (Input devices).

Basic natural language processing operations are applied to the Text field of the
work orders. Punctuation characters are removed, Norwegian special characters
are encoded, and all text is made lowercase. These operations are done in order to
prepare the data for tokenization and matching against a domain term dictionary
as described in Section 4.2.

4.2 Utilizing Domain Knowledge

In the second step of training the classifier, domain knowledge is incorporated.
The utilization of domain knowledge and enrichment of the data consist of three
separate methods. In the first method applicable data is extracted from the
FunctionalLocation. The second method uses external information about the
equipment tags to construct new features. Domain knowledge used in the first
two methods originates from descriptions and manuals received from the oil and
gas company. In the third method, knowledge about each of the FMCs is utilized
in order to extract useful information from the Text-field. Although the process
of incorporating the knowledge in the pre-processing phase was straightforward,
understanding how the domain knowledge could be used took some effort.

FunctionalLocation Breakdown FunctionalLocation consists of encoded val-
ues as previously described in Section 3.3. A series of string operations are used
in order to decode and extract additional features from the values. After each
step, the extracted part of the FunctionalLocation is removed from the string
in order to simplify further extractions. Examples of FunctionalLocation break-
downs for both SFI and NORSOK are given in Table 3a and 3b. The approach
of the feature extraction is a follows:

1. Extract platform info

2. Identify if FunctionalLocation is SFI or NORSOK

3. If NORSOK:
(a) Extract component

(b) Extract subunit

(c) Extract system

(d) Extract equipment type

(e) Extract equipment id
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4. If SFI:
(a) Extract primary, secondary and tertiary group

(b) Extract detail code

(c) The meaning of the remaining part of FunctionalLocation is unknown

Table 3a: FunctionalLocation breakdown for NORSOK standard

FunctionalLocation Platform System Eq. type Eq. id Subunit Component

PLAT-24VD003 PLAT 24 VD 003 - -

PLAT-70-BS-32020-L42B PLAT 70 BS 32020 L42 B

PLAT-97XY10439A PLAT 97 XY 10439 - A

PLAT-63ACD123-M01 PLAT 63 ACD 123 M01 -

Table 3b: FunctionalLocation breakdown for SFI standard

FunctionalLocation Platform Gr.1 Gr.2 Gr.3 Detail code Unknown

PLAT-662.27D-2-DE006 PLAT 6 62 662 27D 2-DE006

PLAT-713.24C-1 PLAT 7 71 713 24C 1

PLAT-769.21-1 PLAT 7 76 769 21 1

Extracting Additional Information About FunctionalLocation Addi-
tional information about the FunctionalLocations exists in the oil and gas com-
pany’s internal ERP-system. This includes further grouping of the tags, along
with a short textual description of each asset. An export of this data has been
made available for use in this study. In the ERP-system a FunctionalLoca-
tion belongs to exactly one of the following groups: (1) Cables (2) Electrical
Equipment (3) Fire and Gas (4) Instrument (5) Junction Box (6) Lifting Lug
(7) Line (8) Manual Valve (9) Master Equipment (10) Miscellaneous (11) Sig-
nal (12) Special (13) Telecom (14) Unknown. Based on this information, a new
feature Tag type is constructed. Each FunctionalLocation belongs to one of the
groups above, and is matched based on part of the FunctionalLocation. The tex-
tual descriptions of the tags are also extracted, and the values are stored as a
feature Tag description.

1 Primary group
2 Secondary group
3 Tertiary group
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The new features are added to the original dataset by the following procedure:
A dictionary D is constructed from the additional dataset and filled with key-
value pairs on the form {FunctionalLocation : (Tag type, Tag description)}.
For each of the work orders in the original dataset, D is queried with the Func-
tionalLocation to extract the corresponding values of Tag type and Tag description.
The values are then appended to the original dataset.

Domain Term Dictionary & Binary Feature Vectors By inspecting the
data at hand, several descriptive domain terms for each of the FMCs were iden-
tified. These are terms that are often used in the Text field of work orders
concerned with a specific failure. A term may be closely associated with one
or more of the FMCs. An example of FMCs and their related terms are shown
in Table 4. The terms are used as features in the classification, where the val-
ues indicate whether or not the term is present in the text of the work order.
This is achieved by first defining the vocabulary V as the set of domain terms,
|V | = 217. Each of the documents (work order texts) are then represented as
a Bag-of-words, which is an unordered list of the unigram terms contained in
the document. The Bag-of-words are then used to represent the document as
a feature vector with binary term weights, where the vector space model is de-
fined by V . This results in binary feature vectors of length |V |, that represents
the presence and absence of domain terms in the corresponding document. The
terms are added as features, where the values are given by the feature vectors.

Table 4: Example of FMCs and related domain terms

FMC Terms

INL - Internal Leakage [internal, leakage, sweat, oil, diesel,. . . ]

LOO - Low Output [low, output, pressure, flow, pump,. . . ]

PLU - Plugged/Choked [plugged, choked, drain, flow, block,. . . ]

4.3 FailureModeCode Classification

Random Forest, Gradient Boosting Machine and Stacked Ensemble were used
for classifying FMCs in our experiments. This section explains the different al-
gorithms used.

Random Forest Random Forest is an ensemble learning method frequently
used for multi-class classification. Characteristics of Random Forest include ro-
bustness to noise, outliers and overfitting [4]. It works by generating a large num-
ber of tree-structured classifiers, then taking the mode of the output classes of
the individual trees to conclude a final classification. Random Forest can in other
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words be defined as a collection of F tree-classifiers {Tk(x), k = 1, 2, . . . , F},
where x is the input vector of features, in our case, features that describe a work
order. Each tree then predicts a class ck based on the input vector, resulting in
a total of F individual classifications, {Tk(x) = ck, k = 1, 2, . . . , F}. The classi-
fication output c of the Random Forest, is the most popular class among these
predictions. As Random Forests are ensembles of tree-based classifiers, they also
support direct use of categorical variables. This is convenient due to the nature
of the dataset.

Gradient Boosting Machine Gradient Boosting Machine (GBM) is a ma-
chine learning technique that uses boosting and steepest gradient optimization,
in order to produce highly accurate, robust and interpretable classification mod-
els [7]. Boosting is a method used to increase the performance of a given learning
algorithm. The method works by combining the predictions of several weak clas-
sifiers in order to make a final prediction based on a weighted majority vote [10].
The weak classifiers are built by sequentially applying a classification algorithm
to repeatably weighted modified versions of the input data. In steepest gradient
optimization, the loss function of the model is minimized by iteratively moving
in the direction of the steepest descent (the negative of the gradient).

Stacked Ensamble Stacking (also known as Super Learning or Stacked Re-
gression) is a concept that aims to reduce overfitting and minimize the error
rate by deducing the biases of multiple generalizers with respect to a provided
learning set [19]. Instead of selecting the best predictor in a set of classifiers, the
idea of stacking is to combine several classifiers into a more accurate predictor
[3]. Unlike bagging and boosting, stacking is a second-layer meta learner that
intends to ensemble the base learners. The particular stacking algorithm used in
this work is the Super Learner developed by van der Laan et al. [14]. The Super
Learner ensemble was proven to be an asymptotically optimal system for learn-
ing. In our experiments, models from Random Forest and Gradient Boosting
Machine were used as base learners.

4.4 Environment

All of our experiments are conducted using H2O, an open source machine learn-
ing and predictive analytics platform. An attractive feature of H2O is that it
supports the direct use of categorical variables in tree-based algorithms. By us-
ing e.g. scikit we would have had to one-hot encode or label encode the features
first. One-hot encoding makes the feature space orders of magnitude larger, while
label encoding imposes an ordinal relationship that are not necessarily true.

H2O offers a feature called AutoML, which automatically trains and tunes
several modals using multiple algorithms on the same dataset. AutoML currently
supports Random Forest, Gradient Boosting Machine, Deep Learning, Extremely
Randomized Trees, Generalized Linear Modeling, and a Stacked Ensemble of all
the models. We used AutoML to get an overview of how a large selection of
candidate models performed on our dataset.
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5 Experiments

In order to examine the effect of domain knowledge, experiments were done
using popular supervised machine learning techniques. The experiments compare
the performance of models with incorporated domain knowledge, with models
constructed using no form of domain knowledge (baseline).

5.1 Evaluation metric

Accuracy is a commonly used metric for evaluating classifiers. Unfortunately
accuracy can be misleading when dealing with imbalanced classes, as it is very
sensitive to class distribution [11]. Assume a classification problem where the
goal is to identify disastrous malfunctions in an oil drilling system. Five records
belong to the malfunction class, while 995 records belong to the class where
nothing is wrong. A majority classifier that always predicts that nothing is wrong
would get an accuracy of 99.5%. This is seemingly a good result, but the truth is
that the classifier performs terrible for the problem at hand. Other metrics such
as Cohen’s Kappa and F-score punish classifiers harder for mislabeling small
classes.

In order to remove random chance from the performance evaluation, Ben-
David [1] argued for using Cohen’s Kappa instead of accuracy. Cohen’s Kappa (1)
is a coefficient of interjudge agreement for nominal scales, where mere chance is
excluded [6]. It’s original intent was to measure the agreement between two or
more people observing the same phenomenon, but in classification it measures
the agreement between the classifier and the truth. It ranges from -1 (disagree-
ment) through 0 (random) to 1 (agreement) [2]. If a classifier always predicts the
majority class, Cohen’s Kappa will be 0, while a classifier with Cohen’s Kappa
> 0 performs better than the majority classifier.

K =
P0 − Pc

1− Pc
(1)

where P0 is the relative observed agreement among raters, and Pc is the hy-
pothetical probability of chance agreement. In a multi-class classification task,
Cohen’s Kappa can be computed from the resulting confusion matrix using Equa-
tion (2)

K =
n
∑C

i=1 xii −
∑C

i=1 x.ixi.

n2 −∑C
i=1 x.ixi.

(2)

where xii is the number of true positives (the main diagonal), n is the total
number of samples, C is the number of classes, and x.i, xi. are the column and
row counts respectively [9].

Cohen’s Kappa has been used as a metric in many multi-class classifica-
tion problems involving imbalanced datasets [5,12]. Landis and Koch [15] have
suggested that the Cohen’s Kappa can be interpreted as follows: < 0: No agree-
ment, 0.00-0.20: Slight agreement, 0.21-0.40: Fair agreement, 0.41-0.60: Moderate
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agreement, 0.61-0.80: Substantial agreement, 0.81-1.00: Almost perfect agree-
ment.

We have also included accuracy and macro average F1-score in our results
for a better understanding of the performance, but we will focus on Cohen’s
Kappa in the discussion of the results. Cohen’s Kappa was chosen as the primary
metric over macro average F1-score, since macro averaging weights the F1-score
of each class equally. Misclassified records belonging to minor classes would then
negatively affect the score more than desired.

To ensure that all minor classes are represented in the testing set, we use
5-fold cross-validation. The metrics presented are the average score of the five
folds.

5.2 Results & Discussion

H2O’s AutoML was initially used to get an intuition of which algorithms worked
best on our dataset. A comparison of the different algorithms is listed in Table 5.
These results are only meant to give an overview of the algorithms, and are
not used as baseline. Stacked Ensemble, Random Forest and Gradient Boosting
Machine stood out in the results, and we decided to employ these methods in
further experiments.

Table 5: Comparison of algorithms using baseline dataset

Cohen’s Kappa Accuracy Macro average F1 score

Stacked ensamble 0.3794 0.4176 0.3003

Random Forest 0.3755 0.4133 0.3113

Gradient Boosting Machine 0.3638 0.4020 0.2914

Extremely randomized trees 0.3282 0.3728 0.2610

Deep learning 0.2685 0.3146 0.1859

Generalized linear modeling 0.2417 0.2965 0.1377

Baseline In order to get a broader assessment of the effects of incorporating
domain knowledge, the experiments were conducted using three classification
algorithms. A random grid search was used in order to find the best hyperpa-
rameters for both Random Forest and Gradient Boosting trees. The difference in
performance using various hyperparameters turned out to be insignificant, and
the best baseline results were very similar to the results from H2O’s AutoML.
The final hyperparameters used in the experiments are listed in Table 6.

Baseline results were computed using all the initial features, without utilizing
domain knowledge. The baseline results are presented at the top of Table 7. Using
Landis and Koch’s interpreation of the Cohen’s Kappa, the performance of the
baseline classifiers can be considered as Fair.
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Table 6: Hyperparameters after random grid search

Random Forest Gradient Boosting Machine

Number of trees 50 50

Maximum tree depth 10 13

Minimum samples in leaf node 1 30

n-bins (numerical values histogram) 10 20

Learn rate - 0.1

Row sample rate per tree - 0.8

Distribution function - Multinomial

Table 7: Results from the baseline models and the models that incorporates domain
knowledge, along with the improvement.

Cohen’s Kappa Accuracy Macro average F1 score

Baseline

Stacked Ensemble 0.3800 0.4185 0.2982

Random Forest 0.3782 0.4165 0.3087

Gradient Boosting Machine 0.3664 0.4044 0.2902

With domain knowledge

Stacked Ensemble 0.4515 0.4851 0.3641

Random Forest 0.4454 0.4796 0.3665

Gradient Boosting Machine 0.4363 0.4700 0.3674

Improvement

Stacked Ensemble 0.0715 0.0666 0.0659

Random Forest 0.0672 0.0631 0.0578

Gradient Boosting Machine 0.0699 0.0656 0.0772

With domain knowledge Table 7 also shows evaluation metrics after domain
knowledge was incorporated. The Cohen’s Kappa shows that the performance of
the classifiers has increased to Moderate. The difference in metrics between the
baseline model and the model with incorporated domain knowledge is illustrated
in Figure 1. The Cohen’s Kappa has increased with ∼ 7% for all algorithms. The
fact that Cohen’s Kappa has increased more than the accuracy, implies that the
classifier has a greater improvement on the smaller classes than the large ones.

As shown in Figure 2, many of the extracted features (Equipment type, Sys-
tem, Equipment type id, Equipment id and Tag type) are of great importance in
the improved model. The sum of the importance of all features equals 100%.



14 S. Hjetland, E. Fosse, Q. Tran, J. Gulla

SE1 RF2 GBM3
0

0.2

0.4

0.45 0.45 0.44

0.38 0.38 0.37

C
o
h
en

’s
K

a
p
p
a

Baseline

Domain knowledge

Fig. 1: Cohen’s Kappa for baseline compared to models with incorporated domain
knowledge. 1Stacked Ensemble, 2Random Forest, 3Gradient Boosting Machine.

The features that were extracted using domain knowledge constitute 38.97% of
the total feature importance.

Since the classification problems discussed in related work are not directly
comparable to our problem, it is hard to compare the results. Contrary to the
related work, we extract new features from structured fields with the use of
domain knowledge. In combination with features extracted from unstructured
fields, the performance of the classifiers increased significantly.

6 Conclusion

Finding good features for supervised learning in high dimensional industrial
settings is challenging. Using domain knowledge to extract new features had a
significant impact on classifying work orders in the dataset used in this study.
The increase in performance outweighed differences in the top three classification
algorithms used. It is crucial to obtain a thorough understanding of the dataset at
hand, in order to perceive where features can be encoded. Although it took quite
some time to understand how and where domain knowledge could be applied, we
were unable to achieve similar results using other techniques. While the exact
procedure used to extract new features in this work is very specific, the overall
approach is quite generic. Canvassing the dataset for encoded features and using
predefined domain term dictionaries, can be applied in similar work as well as
in other domains.

It would be interesting to further investigate techniques to extract features
from textual fields, and compare results for techniques with and without making
use of domain knowledge. Instead of just looking at each word separately, build-
ing n-grams of words could impact the results. The domain term dictionary can
also be extended to include more terms. Features could also be extracted using
named entity recognition, word2vec, doc2vec or tf-idf. Acquiring more data from
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Fig. 2: Features with a scaled importance of > 1% from the Random Forest model
with domain knowledge. The features with bold text are the ones that were
extracted from FunctionalLocation.

other oil platforms for training and validation could improve the performance
of the models as well. It would also be interesting to see how well the system
performs when highly correlated FMCs are grouped together. The measures
mentioned above could improve the classifiers extensively.
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9. Garćıa, S., et al.: A study of statistical techniques and performance measures for
genetics-based machine learning: accuracy and interpretability. Soft Computing
13(10), 959 (Dec 2008). https://doi.org/10.1007/s00500-008-0392-y

10. Hastie, T., et al.: The Elements of Statistical Learning. Springer Series in Statistics,
Springer New York Inc. (2001)

11. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Transac-
tions on Knowledge and Data Engineering 21(9), 1263–1284 (Sept 2009).
https://doi.org/10.1109/TKDE.2008.239

12. Jeni, L.A., et al.: Facing imbalanced data–recommendations for the use
of performance metrics. In: Proceedings of the 2013 Humaine Association
Conference on Affective Computing and Intelligent Interaction. pp. 245–
251. ACII ’13, IEEE Computer Society, Washington, DC, USA (2013).
https://doi.org/10.1109/ACII.2013.47

13. Kubat, M., et al.: Machine learning for the detection of oil spills
in satellite radar images. Machine Learning 30(2), 195–215 (Feb 1998).
https://doi.org/10.1023/A:1007452223027

14. van der Laan, M.J., et al.: Super learner. Statistical Applications in Genetics and
Molecular Biology 6(1) (2007). https://doi.org/10.2202/1544-6115.1309

15. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical
data. Biometrics 33(1), 159–174 (1977), http://www.jstor.org/stable/2529310

16. Spelman, M., et al.: Digital Transformation Initiative Oil and Gas Industry. Tech.
rep., World Economic Forum (01 2017)

17. Standard Norge: NORSOK STANDARD Z-DP-002. http://www.standard.no/

pagefiles/942/z-dp-002r1.pdf (1995), [Accessed 15 March 2018]
18. Wilcox, A.B., Hripcsak, G.: The role of domain knowledge in automating medical

text report classification. Journal of the American Medical Informatics Association
10(4), 330–338 (2003)

19. Wolpert, D.H.: Stacked generalization. Neural Networks 5, 241–259 (1992)
20. Xantic: SFI Group System - Product Description. https://www.xantic.net/

internet/files/products/amos/sfi/supportdocuments/ProductDescription.

pdf (2005), [Accessed 15 March 2018]





Appendix B
Data

Figure B.1: Row normalized confusion matrix based on the predictions of a Random Forest classi-
fier. The label in front of each row symbolize the actual class of the samples in the row,
while the columns symbolize the predicted class. Cell value x, y indicate the percentage
of samples that are actually class x, that were predicted as belonging to class y.
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Table B.1: Column density on final 4960 rows.

Column Fields not null Percent not null

1 id 4960 100.0%
2 Plants Id PltforWorkCtr 4960 100.0%
3 ValidFrom 4960 100.0%
4 WorkStart 4960 100.0%
5 NotificationInformation Id 4960 100.0%
6 CatalogProfile Id 4960 100.0%
7 GeneralObjectNumber Id Objectnumber OBJNR 4960 100.0%
8 InspectionCatalogType Id 4960 100.0%
9 Material Id Material 4960 100.0%

10 MaterialGroups Id 4960 100.0%
11 NotificationInformation Id Notification 4960 100.0%
12 NotificationInformation Id Referencenotif 4960 100.0%
13 NotificationTypes Id 4960 100.0%
14 UnitsOfMeasurement Id 4960 100.0%
15 Timecreated 4960 100.0%
16 Workorder Id Order 4960 100.0%
17 Accepted 4960 100.0%
18 Catalogprofile 4960 100.0%
19 Catalogtype 4960 100.0%
20 Chance 4960 100.0%
21 i Changedat 4960 100.0%
22 i Changedby 4960 100.0%
23 i Changedon 4960 100.0%
24 Codegroup 4960 100.0%
25 Coding 4960 100.0%
26 Complaintqty 4960 100.0%
27 Usage 4960 100.0%
28 startTime 4960 100.0%
29 LastPMR 4960 100.0%
30 Plannedrelease 4960 100.0%
31 MainWorkCtr 4960 100.0%
32 ObjectClass 4960 100.0%
33 Objectnumber 4960 100.0%
34 OrCostObj 4960 100.0%
35 Order AUFNR 4960 100.0%
36 Ordercategory 4960 100.0%
37 OrderType y 4960 100.0%
38 OriginalPlnDt 4960 100.0%
39 OutstandingQty 4960 100.0%
40 Plannedclodat 4960 100.0%
41 PlannedCompltn 4960 100.0%
42 Plant y 4960 100.0%
43 Techcompletion 4960 100.0%
44 Processgroup 4960 100.0%
45 ProdProcNo 4960 100.0%
46 ProfitCenter 4960 100.0%
47 Reachedstatus 4960 100.0%
48 RecoveryIndic 4960 100.0%
49 Release 4960 100.0%
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50 Respcostcntr 4960 100.0%
51 SalesOrdItem 4960 100.0%
52 Sequencenumber 4960 100.0%
53 Status 4960 100.0%
54 Statuschange 4960 100.0%
55 CompletedbySAP 4960 100.0%
56 Completiontime 4960 100.0%
57 Completndate 4960 100.0%
58 ReferenceTime 4960 100.0%
59 Order 4960 100.0%
60 Origin 4960 100.0%
61 OriginOfNotification 4960 100.0%
62 Plannooper 4960 100.0%
63 PltforWorkCtr 4960 100.0%
64 POdate 4960 100.0%
65 Primarylang 4960 100.0%
66 Priority y 4960 100.0%
67 PriorityType 4960 100.0%
68 Proddat 4960 100.0%
69 Referencedate 4960 100.0%
70 Refquantity 4960 100.0%
71 ComplTimeatSAP 4960 100.0%
72 Reqendtime 4960 100.0%
73 Reqstart 4960 100.0%
74 Reqstarttime 4960 100.0%
75 Required 4960 100.0%
76 RequiredEnd 4960 100.0%
77 ReturnDelivQty 4960 100.0%
78 Returnedon 4960 100.0%
79 SAPNetnotif 4960 100.0%
80 Timestamp 4960 100.0%
81 WorkCenter 4960 100.0%
82 Text y 4960 100.0%
83 ObjectTypeCR 4960 100.0%
84 Objectnumber OBJNR 4960 100.0%
85 ObjectID Profile 4960 100.0%
86 i ObjectID 4960 100.0%
87 i CostEstimateNo 4960 100.0%
88 Counter 4960 100.0%
89 Createdat 4960 100.0%
90 Createdby 4960 100.0%
91 i Createdon 4960 100.0%
92 DefQty(exter) 4960 100.0%
93 Defqty(int) 4960 100.0%
94 Deliveryitem 4960 100.0%
95 i Description 4960 100.0%
96 Estimated 4960 100.0%
97 Handle 4960 100.0%
98 ID 4960 100.0%
99 InspectionLot 4960 100.0%

100 Item 4960 100.0%
101 Itemmatdoc 4960 100.0%
102 Itempurdoc 4960 100.0%
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103 Nodenumber 4960 100.0%
104 Notifdate 4960 100.0%
105 Notification 4960 100.0%
106 Notifictntype 4960 100.0%
107 Notiforigin 4960 100.0%
108 NotifTime 4960 100.0%
109 Notiftimezone 4960 100.0%
110 Locationplant 4960 100.0%
111 Failure code joined 4960 100.0%
112 CostEstimateNo 4960 100.0%
113 CostingSheet 4960 100.0%
114 Changedat 4960 100.0%
115 Changedby 4960 100.0%
116 Changedon 4960 100.0%
117 Client 4960 100.0%
118 Close 4960 100.0%
119 COArea 4960 100.0%
120 CompanyCode 4960 100.0%
121 PM ActivityType 4960 100.0%
122 Costcollector CCKEY 4960 100.0%
123 Createdon 4960 100.0%
124 BacklgDat 4960 100.0%
125 MainWorkCenter 4960 100.0%
126 Planningplant 4960 100.0%
127 PlannerGroup 4960 100.0%
128 Currency 4960 100.0%
129 Description x 4960 100.0%
130 OrderNumber 4960 100.0%
131 OrderType x 4960 100.0%
132 Workorder Id 4960 100.0%
133 Description y 4960 100.0%
134 BaselineCompletion 4960 100.0%
135 BasicStartDate 4960 100.0%
136 EndofWork 4960 100.0%
137 Workorder Id Order AUFNR 4960 100.0%
138 Location Id Plant 4960 100.0%
139 Location Id Locationplant 4960 100.0%
140 GeneralObjectNumber Id 4960 100.0%
141 CompanyCodes Id Reqcocode 4960 100.0%
142 CompanyCodes Id CompanyCode 4960 100.0%
143 eventReferenceKey 4960 100.0%
144 Plants Id Locationplant 4960 100.0%
145 Plants Id Plant 4960 100.0%
146 WBS Elements Id 4960 100.0%
147 Workorder Id Order REFNR 4960 100.0%
148 BasicFinDate 4960 100.0%
149 eventTransformerId 4960 100.0%
150 tagIds 4960 100.0%
151 MaintenanceType 4960 100.0%
152 Description OrderTypes 4960 100.0%
153 OrderTypes 4960 100.0%
154 Plant x 4960 100.0%
155 Application 4960 100.0%
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156 ApplicDate 4960 100.0%
157 FunctionalLocation 4960 100.0%
158 index 4960 100.0%
159 OrderTypes Id 4960 100.0%
160 JointVenture 4960 100.0%
161 endTime 4960 100.0%
162 description 4960 100.0%
163 Equitytype 4960 100.0%
164 JVObjectType 4960 100.0%
165 Enteredby 4960 100.0%
166 type 4960 100.0%
167 originalId 4960 100.0%
168 Estimatedcosts 4960 100.0%
169 Priority x 4959 99.98%
170 Reportedby 4936 99.516%
171 NotificationNumber 4925 99.294%
172 RAKey 4905 98.891%
173 Costcenter 4905 98.891%
174 Longtext 4772 96.21%
175 Longtxtexists 4758 95.927%
176 Text x 4758 95.927%
177 Closed 4585 92.44%
178 Errorrecords 3277 66.069%
179 ApproverID ZZAPPROVER 2342 47.218%
180 ApproverID ZZAPPROVER POST 2342 47.218%
181 ApprovDateandTime ZZDATZEIT POST 2342 47.218%
182 ApprovDateandTime ZZDATZEIT 2342 47.218%
183 Location 2189 44.133%
184 SystemCondition 2171 43.77%
185 LaborST ZZMTCLST POST 665 13.407%
186 LaborST ZZMTCLST 665 13.407%
187 Materials ZZMTCMAT 596 12.016%
188 Materials ZZMTCMAT POST 596 12.016%
189 Completed 319 6.431%
190 JIB/JIBEClass 201 4.052%
191 JIB/JIBESbClsA 201 4.052%
192 Misc ZZMTCMIS POST 159 3.206%
193 Misc ZZMTCMIS 159 3.206%
194 Released 56 1.129%
195 WBSelement 55 1.109%
196 FunctionalArea 55 1.109%
197 PlntWorkCenter 55 1.109%
198 NotifPhase 54 1.089%
199 SynergiReference 51 1.028%
200 Scenario 47 0.948%
201 Services ZZMTCSVC 27 0.544%
202 Services ZZMTCSVC POST 27 0.544%
203 BusinessArea 20 0.403%
204 TMRNo 9 0.181%
205 Referencenotif 7 0.141%
206 Tasks 6 0.121%
207 Order REFNR 5 0.101%
208 LaborOT ZZMTCLOT POST 1 0.02%
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209 LaborOT ZZMTCLOT 1 0.02%
210 Addressnumber 1 0.02%
211 Vendor 0 0.0%
212 VendorBatch 0 0.0%
213 ObjectType 0 0.0%
214 VendorMatNo 0 0.0%
215 Usageofparts 0 0.0%
216 Operatingsys 0 0.0%
217 Objectautom 0 0.0%
218 i WBSElement 0 0.0%
219 Objnorealact 0 0.0%
220 Objectnumber /ISDFPS/OBJNR 0 0.0%
221 ObjectTypeProfile 0 0.0%
222 PartnerType 0 0.0%
223 SalesGroup 0 0.0%
224 Plantformat 0 0.0%
225 SAPSystemID 0 0.0%
226 R/3Systemtype 0 0.0%
227 Referenceno 0 0.0%
228 MPNMaterial 0 0.0%
229 MainWorkCenterPlant 0 0.0%
230 SerialNumber 0 0.0%
231 ReportType 0 0.0%
232 SAPcomponent 0 0.0%
233 Plantversions 0 0.0%
234 SalesOrg 0 0.0%
235 SalesOrderLS 0 0.0%
236 i SalesOrder 0 0.0%
237 SalesOffice 0 0.0%
238 RevisionLevel 0 0.0%
239 RSheader 0 0.0%
240 R/3Release 0 0.0%
241 QMOrder 0 0.0%
242 PurchGroup 0 0.0%
243 PurchasingOrg 0 0.0%
244 PurchasingDoc 0 0.0%
245 ProdVersion 0 0.0%
246 Prodorder 0 0.0%
247 Prodhierarchy 0 0.0%
248 StatusSAPNotif 0 0.0%
249 StLocILotStock 0 0.0%
250 StorLocation 0 0.0%
251 Devicedata x 0 0.0%
252 Timezoneorig 0 0.0%
253 TSegmentexists 0 0.0%
254 POnumber 0 0.0%
255 UII 0 0.0%
256 Unitofmeasure 0 0.0%
257 Template 0 0.0%
258 Delete 0 0.0%
259 Matofversion 0 0.0%
260 DisTranGroup 0 0.0%
261 Reqcocode 0 0.0%
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262 Reqcostcenter 0 0.0%
263 Reqorder 0 0.0%
264 Envirinvest 0 0.0%
265 SalesOrder 0 0.0%
266 Scale 0 0.0%
267 SettlementCE 0 0.0%
268 Statistical 0 0.0%
269 TaxJur 0 0.0%
270 CostingVariant 0 0.0%
271 Department 0 0.0%
272 Telephone USER1 0 0.0%
273 Deletionflag 0 0.0%
274 CUOrder 0 0.0%
275 UserResponsible 0 0.0%
276 CUDesignNo 0 0.0%
277 Variancekey 0 0.0%
278 Workpermit 0 0.0%
279 EqRental ZZMTCEQR 0 0.0%
280 Regindicator 0 0.0%
281 Refurbishment 0 0.0%
282 EqRental ZZMTCEQR POST 0 0.0%
283 LogicalSystem 0 0.0%
284 MultipleItms 0 0.0%
285 ObjectID 0 0.0%
286 Isolation 0 0.0%
287 IsoDescription 0 0.0%
288 Investreason 0 0.0%
289 Investprofile 0 0.0%
290 InterestProf 0 0.0%
291 Overheadkey 0 0.0%
292 Personresp 0 0.0%
293 Planlineitems 0 0.0%
294 Integplanning 0 0.0%
295 Identification 0 0.0%
296 HandlingType 0 0.0%
297 G/Laccount 0 0.0%
298 Processcat 0 0.0%
299 Extorderno 0 0.0%
300 Created 0 0.0%
301 Costcollector PKOSA 0 0.0%
302 MaterialGroup 0 0.0%
303 Function 0 0.0%
304 Applicant 0 0.0%
305 Allocationset 0 0.0%
306 Devicedata y 0 0.0%
307 DistrChannel 0 0.0%
308 Division 0 0.0%
309 Docrequired 0 0.0%
310 Equipment 0 0.0%
311 Frontend 0 0.0%
312 Functionalloc 0 0.0%
313 Costcollector KSTEMPF 0 0.0%
314 AcctgIndicator 0 0.0%
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315 Installation 0 0.0%
316 i LogicalSystem 0 0.0%
317 Manufacturer 0 0.0%
318 MasterEquip 0 0.0%
319 MatDocYear 0 0.0%
320 Material 0 0.0%
321 MaterialDoc 0 0.0%
322 Delivery 0 0.0%
323 Databasesystem 0 0.0%
324 Customer 0 0.0%
325 CustMaterial 0 0.0%
326 ContLaborST ZZMTCCST POST 0 0.0%
327 ContLaborST ZZMTCCST 0 0.0%
328 ContLaborOT ZZMTCCOT POST 0 0.0%
329 ContLaborOT ZZMTCCOT 0 0.0%
330 Add-onID 0 0.0%
331 Add-OnRelease 0 0.0%
332 i Adressnumber 0 0.0%
333 Author 0 0.0%
334 AuxAcctAsmnt 1 0 0.0%
335 Batch 0 0.0%
336 CMNumber 0 0.0%
337 ClientID 0 0.0%
338 CCtr:Truepost 0 0.0%
339 AutoEstCosts 0 0.0%
340 i CostingVariant 0 0.0%
341 CriticalPart 0 0.0%
342 i Currency 0 0.0%
343 Telephone USER3 0 0.0%
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Table B.2: Failure Mode Codes with description and count.

Code Description Count % of total

OTH Other 1178 18.50%
ELU External leakage utility medium 466 7.32%
SER Minor in-service problems 414 6.51%
SPO Spurious operation 413 6.49%
FTF Fail to function on demand 383 6.02%
ELP External leakage process medium 303 4.76%
ERO Erratic output 279 4.38%
FTO Fail to open on demand 271 4.26%
LOO Low output 269 4.23%
FTC Fail to close on demand 268 4.21%
INL Internal leakage 251 3.94%
AIR Abnormal instrument reading 221 3.47%
BRD Breakdown 214 3.36%
STD Structural deficiency 197 3.10%
UNK Unknown 188 2.95%
NOO No output 171 2.69%
HIO High output 154 2.42%
FTS Fail to start on demand 144 2.26%
LCP Leakage in closed position 102 1.60%
PLU Plugged/choked 98 1.54%
NOI Noise 77 1.21%
VIB Vibration 61 0.96%
FTI Fail to function as intended 50 0.79%
DOP Delayed operation 36 0.57%
OHE Overheating 25 0.39%
UST Spurious stop 24 0.38%
SHH Spurious high alarm level 17 0.27%
EFF Electric failure 15 0.24%
IHT Insufficient heat transfer 14 0.22%
PDE Parameter deviation 12 0.19%
TEX Loss of EX-integrity 11 0.17%
ELF External leakage - fuel 9 0.14%
FOV Faulty output voltage 8 0.13%
LOA Load drop 5 0.08%
SLL Spurious low alarm level 5 0.08%
VLO Very low output 4 0.06%
FRO Fail to rotate 4 0.06%
FTR Fail to regulate 2 0.03%
STP Fail to stop on demand 1 0.02%
FDC Fail to disconnect 1 0.02%
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Table B.3: Full list of domain terms used for feature extraction from the Text field.

aapne
aapner
abnormal
alarm
alarmnivaa
avik
avlesning
avvik
batteri
block
brann
breakdown
brent
broken
bytte
choked
clogged
close
closed
closing
compressor
cool
corrosion
daglig
daily
damaged
defect
defekt
deficiency
degree
delayed
demand
detector
detektor
deviation
diesel
drain
drivstoff
drop
e-
ekstern
electric
elektrisk
erratic

ex
ex-
ex-integrity
external
fail
failure
falsk
falskt
fast
fault
faulty
feedback
feil
feiler
feilmaaling
flow
forventet
fuel
function
grader
ground
havari
heat
high
hoey
hoeyt
hot
i/o
ikke
in-service
indicator
indikator
ingen
insp-monitor-repair
inspection
inspeksjon
instrument
insufficient
integritet
intended
intern
internal
jordfeil
kjoeler

kjoeling
knekt
kommando
kompressor
kvelt
last
lav
lavt
leak
leakage
lekasje
lekk
lekkasje
level
load
loss
low
lukke
lukker
lukket
lyd
maaling
maanedtlig
mangel
medium
minor
mistet
monthly
moving
mulighet
next
nivaa
no
noise
nytte
olje
open
operasjon
operation
opportunity
output
overfoering
overhaul
overheating

overoppheting
paa
parameter
plugg
plugged
plugget
point
posisjon
position
powersupply
pressure
problemer
problems
process
prosess
pumpe
punktsegment
reading
repair
reparer
sammenbrudd
sas
segment
sensor
sent
service
setting
shutdown
siger
sikring
skad
skade
skru
slow
smaa
spenning
sprekk
sprukket
spurious
start
starter
stenge
stengt
stoey

stop
stopp
structural
struktuell
stuck
svett
sweat
tap
tar
temperatur
tett
tilbakemelding
transfer
treg
trip
trykk
turbin
uberegnelig
ulyd
unormal
unstable
ustabil
utility
utilstrikkelig
utsatt
value
valve
varm
varme
vent
ventil
verdi
vibrasjon
vibration
virker
voltage
weekly
within
0,
0.
=
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Table B.4: TF-IDF terms, sorted by weight. Some terms are censored on request from the providers
of the dataset.

detektor
ringo

dect
dg
tg
ab
vcm
observed
seal
pump
alt
tank
linje
linser
vasket
stengt

feedback
sb
stenger
kapasitet

damper
pumpen
ronny
lekasje
virker
vann
olje

tar
foerste
ventiler
kah
change
trykk
filter
garten
vud

skiftet
historik

hvad
lt
open
job
deck
leak
actuator
morten
testet
el
aapen
stk
trond
rom
arne
vifte
start
helt
sjekk
stb
hv
mulig
sensor
flow
tor
fast
aktuator
ar
sjekke
dine
aapne
instrument
stenge

nr
erik
rtl
item
steam
flere
kalibrere

new
uten
aapner
tommy
line
tu
oil
needed
bs
fejlen
nei
mellom
ba
af
noe
vaskat
location
drain
dekk
ned
bf
close
brannpumpe
fuel
sap
diesel
safety
flyttes
feilsoeke
magne
tanker

ingvar

mange
mot
bar
uke
lst
litt
bestille
fwd

aft
geir
gas
johnny

feilsoeking
isolere
ute
positioner
kom
parts

production
eksempel
bestilt
ref
kort
service
noen
mekanisk
boer
mangler
nivaa
water
flens
type
pakning
impact
untill
similar
ser
heater
jeg
samme
repairing

vadoy
respect
gir
environment
sendt
signal
pm
mech

previously
lagt
siden
solenoid
tid
resatt
problemer

problem
slange
gear
fungerer
alvheim
nytt
till
closed
suggest
mye
bestilling
ccr
activities
aktre
luft
jobbet
spjeld
xv
notifikation
proevd
valves
level
lekkasjen
fejl
manometer
intern
skiftat
batteri
pries
kjoert
ola
felt
room
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