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Abstract

Bike-Sharing Systems (BSSs) have rapidly grown in popularity worldwide in re-
cent years. The driving forces of this explosive growth are attributed to access
to modern ubiquitous technology, increased urbanization, a desire to decrease
pollution, and the need for flexible and integrated mobility in city environments.
However, in order to keep BSSs in a balanced state where bikes and stations
are readily available for users, companies are seeking ways to accurately predict
future demand.

This project aims to objectively compare and evaluate various machine learn-
ing algorithms for the problem of predicting cluster-level BSS traffic flow. All
models are evaluated using two different station clustering techniques, zone-based
and grid-based, representing ways to group stations both with and without expert
knowledge of the system.

Furthermore, this thesis presents a rigorous state-of-the-art review of current
research on demand prediction in BSSs and other on-demand transport services.
Random Forest (RF), Feed-Forward Neural Network (FFNN) and Deep Residual
Network (ResNet) emerged as the most promising models from this review, and
were therefore implemented. Additionally, this thesis presents the first evaluation
of using Recurrent Neural Networks within the context of BSSs demand predic-
tion. FFNN proved to be the most successful model, reaching 21.1% and 36.65%
improvements over the best baseline using grid-based- and zone-based clustering
respectively. The developed system is designed to run in a cloud production en-
vironment, and elaborations are made as to how it can be extended to handle
real-time streaming data from Oslo City Bike users.
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Sammendrag

Bysykkelsystemer har opplevd en eksplosiv vekst verden rundt de siste årene.
Drivkreftene bak denne enorme utviklingen har vært tilgang til moderne teknologi,
økt urbanisering, et ønske om å redusere forurensning og behov for fleksibel og
integrert mobilitet i bymiljøer.

Dette prosjektet tar sikte p̊a å objektivt sammenligne og evaluere en rekke
maskinlæringsalgoritmer for å predikere bysykkelflyt p̊a klyngeniv̊a. Alle mod-
eller er evaluert ved å bruke to forskjellige teknikker for å gruppere sykkelstasjoner
i klynger, sone-basert og rutenett-basert, som representerer m̊ater å gruppere
stasjoner b̊ade med og uten ekspertisekunnskap om systemet.

Denne masteroppgaven presenterer en grundig gjennomgang av dagens forskn-
ing p̊a etterspørselsprediksjon i bysykkelsystemer og andre transporttjenester.
Random Forests (RF), Feed-Forward Neural Networks (FFNNs) og Deep Resid-
ual Networks (ResNets) viste seg å være de mest lovende modellene fra denne
gjennomgangen, og ble derfor implementert. I tillegg fremlegges den første eval-
ueringen av å bruke Recurrent Neural Networks (RNNs) i kontekst av etterspørsel-
sprediksjon i bysykkelsystemer i denne oppgaven. FFNN var den mest vellykkede
modellen, og n̊adde 21.1% og 36.65% forbedring over den beste baselinemodellen
for henholdsvis rutenett-basert og sone-basert gruppering. Det utviklede sys-
temet er designet for å kjøre i et skybasert produksjonsmiljø, og utdypninger
foreligger for hvordan systemet kan utvides til å h̊andtere strømmende sanntids-
data fra Oslo Bysykkel sine brukere.
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Chapter 1

Introduction

In this thesis, the problem of predicting the flow1 of bikes in a bike-sharing sys-
tem is explored through the use of machine learning algorithms. Several machine
learning algorithms are evaluated and compared, and are implemented based on
state-of-the-art techniques from the literature. This chapter introduces the back-
ground and motivation for carrying out this research, followed by a description
of the goals and research questions defined, and the research method applied. A
short summary of the contributions of this thesis is also presented, before finally
the outlining of the thesis structure is described.

1.1 Background and Motivation

As major cities are increasingly facing difficulties regarding energy dependence,
air pollution and climate change issues, governments are seeking alternative en-
vironmentally friendly means of transportation. Bike-Sharing Systems (BSSs)
have grown exponentially in popularity in recent years, spreading from 17 BSSs
worldwide in 2005 to more than 2000 currently operating or under planning or
construction in 2018 (Metrobike [2012], Meddin and DeMaio [2018]). BSSs offer
users a flexible, efficient and affordable means of transportation, while simul-
taneously reducing CO2-emission and providing health benefits. According to
Shaheen et al. [2010], for every kilometer someone rides a bike instead of driving
a car, about 0.72 kilograms of carbon dioxide is kept out of the atmosphere. Oslo
City Bike users rode an estimated total of 3.9 million kilometers spread across
2.65 million trips in 2017, which would equal a reduction of 2808 metric tons of
carbon dioxide emission, assuming every bike trip replaced a car ride.

1see Chapter 2.1 for a definition of flow.

1
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However, the provided flexibility of BSSs comes at the price of uncertainty;
bike stations have limited capacity, so users are not guaranteed that bikes or
locks are available when needed. Figure 1.1 shows heatmaps of the Oslo BSS
demand during morning and evening rush hours. It is clear from the figures that
the Oslo BSS follows a typical bike-sharing system usage pattern, where demand
for bikes tends to increase in residential areas during morning rush hours and in
downtown areas during evening rush hours. Likewise, demand for locks increases
in downtown areas during morning rush hours and in residential areas during
evening rush hours. Every time the system is unable to meet the demand, i.e.
when there are no available bikes for a user to lend or there are no available locks
for a user to return a bike, a violation occurs, represented as lighter shaded circles
in the figures.

(a) Morning rush hour demand
for bikes.

(b) Morning rush hour demand
for locks.

(c) Evening rush hour demand for
bikes.

(d) Evening rush hour demand
for locks.

Figure 1.1: Oslo City Bike demand during morning and evening rush hour Tues-
day, 27th of June 2017, from 08:00 - 09:00 (a, b) and 16:00 - 17:00 (c, d). Lighter
shaded circles indicate violations.
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In order to keep the system in a balanced state where as few violations as pos-
sible occur, most BSSs use service vehicles (shown in figure 1.2) to redistribute
bikes within the system from nearly full stations to nearly empty stations. The
redistribution process at Oslo City Bike today is done on an ad-hoc basis or by
using naive demand estimators. By using more sophisticated Machine Learning
(ML) approaches to accurately predict demand, the goal is that service vehicles
can more precisely redistribute bikes in order to reduce the number of violations.
The machine learning regressors presented in this thesis are able to accurately
predict the flow of bikes within every clustered area of a BSS, and can be used
either as direct way of dispatching service vehicles to areas where the predicted
flow of bikes results in suboptimal states, or as input features to more fine-grained
demand estimators which predict station-level demand.

Figure 1.2: A Oslo City Bike service vehicle. Credits: OsloCityBike [2016].

1.2 Goals and Research Questions

The research conducted during the course of this thesis aims to establish a
thorough understanding of current state-of-the-art demand prediction solutions
within BSSs and to apply ideas and algorithms from these studies in the context
of flow prediction using machine learning methods. The overarching goal that
the result of this thesis aims to accomplish is defined below.

Goal To enable Bike-Sharing System decision makers to proactively rebalance
service stations based on accurate predictions of future bicycle flow.

The goal will specifically be achieved by performing experiments on a mul-
titude of machine learning algorithms in order to objectively determine which
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type of algorithm is best suited for the problem of bicycle flow prediction in
BSSs. The current state-of-the-art literature will be rigorously examined to both
identify unexplored areas of machine learning which may be suitable for such a
problem, and to build upon existing solutions. Four Research Questions (RQs)
have been defined to approach this goal:

Research question 1 What is state-of-the-art within on-demand transport ser-
vices demand prediction?

Research question 2 Which neural network based techniques have been used
within the domain of on-demand transport services demand prediction?

These two RQs relate to the structured literature review part of this thesis.
By choosing to focus on the broader area of on-demand transport services, rather
than restricting the area of research to bike-sharing systems, the idea is that
state-of-the-art solutions within other domains (such as car-sharing services like
Uber) will be retrieved in the literature search, which will likely be transferrable
to the domain of BSSs.

Research question 3 How can machine learning be used to predict the flow of
bikes in bike-sharing systems?

Research question 4 Which features have the highest impact on the learning
algorithm’s ability to accurately perform predictions?

RQ3 and RQ4 concerns the experimental part of this thesis, and are defined
to ensure that the experiments performed are strictly objective.

1.3 Research Method

In order to address these research questions, a Structured Literature Review
(SLR) (presented in Chapter 3) will be conducted to systematically explore rele-
vant research to this thesis. The review will be used as the foundation to design
experiments for machine learning algorithms that address RQ3 and RQ4. Con-
clusions will then be drawn based on the results of the experiments.

1.4 Contributions

The contributions of this thesis are primarily:

1. A state-of-the-art review of on-demand transport services demand predic-
tion using machine learning models, with a primary focus on the domain
of bike-sharing systems.
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2. A comparison of the performance of multiple machine learning algorithms
evaluated on real BSS data provided by Oslo City Bike.

3. A proposed machine learning model that is designed to run in a cloud
environment and that is potentially capable of serving real-time predictions
on streaming flow data provided by Oslo City Bike.

These contributions are described in greater detail in Chapter 6.3.

1.5 Thesis Structure

The rest of this thesis is structured as follows. Chapter 2 introduces the relevant
background theory needed to gain sufficient understanding of the contributions
of this thesis. Chapter 3 presents a thorough synthetization and discussion of
state-of-the-art research within on-demand transport service demand prediction
through the results of a rigorous SLR process. Chapter 4 presents the different
models that were used for the experiments and how they were implemented.
The experiment details and results are described in Chapter 5. Finally, Chapter
6 presents an evaluation and discussion of the experiment results, a detailed
description of the contributions of this thesis, and some proposed extensions.
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Chapter 2

Background Theory

This chapter introduces background theory and ideas that are relevant to this
thesis in order for the reader to acquire adequate knowledge to understand the
contributions. Section 2.1 describes the definitions of clustering and flow in the
context of Bike-Sharing Systems. Section 2.2 introduces the general concepts of
machine learning, and Section 2.3 presents an introduction in each of the neural
network models implemented in this thesis, as well as some more general concepts
related to neural networks. Random Forests (RF), a different type of machine
learning algorithm which has been implemented in this thesis, is explained in
Section 2.4. Finally, Hyperparameter Optimization is described in section 2.5.

2.1 Definition of clustering and flow

In the BSSs literature on demand prediction, there are predominantly four lev-
els of abstraction by which a BSS is viewed. The highest level of abstraction
is system-level where the entire BSS, with all of its stations, is regarded as one
entity and predictions are performed on the system as a whole, e.g. predicting
the total number of bike trips that will occur in a city during a specific hour.
The next level is cluster-level, where groups of stations are clustered together
based on some criteria such as usage pattern similarity or spatial proximity, and
predictions are performed on a per-cluster basis. Station-level is the third level of
abstraction, handling prediction-related tasks on individual stations. The lowest
level of abstraction, bike-level, is less prevalent in the literature. Predicting the
end station of a recently picked up bike is a prediction task that is handled on
bike-level.

Cluster-level, the second level of abstraction, is the primary topic of this the-

7
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sis. Two different types of clustering methods are explored and evaluated against
each other; grid-based clustering (shown in figure 2.1a) and zone-based clustering
(shown in figure 2.1b). Grid-based was chosen as a naive clustering method be-
cause it does not require any prior domain knowledge of a BSS, and can easily be
implemented in any BSS. For this thesis, 216 cells were defined in a 12x18 grid,
where each cell is approximately 500× 500 meters in size. As explained in Chap-
ter 4.1.1, grid-based clustering also happens to be well suited for Convolutional
Neural Networks (CNNs) due to the fact that the BSS at a specific point in time
can easily be represented as an image with three dimensions. The zone-based
clustering is how stations are clustered today by Oslo City Bike in order to more
effectively visualize demand and to convey inventory-related information to rebal-
ancing employees. The stations are clustered in 14 zones of approximately equal
size based on multiple criteria, including similar demand patterns, spatial prox-
imity, input from rebalancing truck drivers, Oslo’s geography and topography,
and several other soft criteria.

(a) Grid-based clustering (216 cells, of
which 81 contain stations.)

(b) Zone-based clustering (14 zones)

Figure 2.1: Grid- vs. zone-based clustering

Furthermore, the focus of this thesis is to predict the flow of bikes within each
clustering area (grid cell or zone) for some time interval. Three different types
of flow is covered; outflow, inflow and internal flow. Informally, for an area ai,
outflow is defined as the number of trips that originated in area ai and ended
in an area aj where i 6= j, for some time interval t. Similarly, inflow is defined
as the number of trips that originated in an area aj and ended in area ai where
j 6= i, for some time interval t. Finally, internal flow is defined as the number
of trips that originated in area ai and ended in area ai for some time interval t.
A formal definition of outflow, inflow and internal flow is given in Definition 1.
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The three types of flow are conceptualized in figure 2.2, where a single grid cell
is shown.

Definition 1. Let C be a collection of trips at the tth time step. For a clustered
area (zone or grid cell) a, the outflow, inflow and internal flow at time step t is
defined respectively as

xout,at =
∑
T∈C
|{(go ∈ ga) ∧ (gd /∈ ga)}|

xin,at =
∑
T∈C
|{(go /∈ ga) ∧ (gd ∈ ga)}|

xinternal,at =
∑
T∈C
|{(go ∈ ga) ∧ (gd ∈ ga)}|

where T : go → gd is a trip in C, go is the geographical coordinates for the
origin station and gd is the geographical coordinates for the destination station;
go|d ∈ ga means the station go|d lies within the geographic boundaries of ga
(definition adapted from Zhang et al. [2016]).

Figure 2.2: This figure shows the three different types of flow which are handled
in this thesis: outflow is the number of trips that started in this cell and ended in
another cell, inflow is the number of trips that started in another cell and ended
in this cell, and finally internal flow is the number of trips that started and ended
in this cell.
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2.2 Machine Learning

Machine Learning (ML) is a subset of Artificial Intelligence (AI) focused on the
science of using statistical methods to make a computer system autonomously
learn some function by feeding it data of real-world events, without explicitly be-
ing programmed. The most commonly quoted definition of machine learning was
given by Michalski, Carbonell and Mitchell in ”Machine Learning: An Artificial
Intelligence Approach” (Michalski et al. [2013]):

A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P if its performance
at tasks in T, as measured by P, improves with experience E.

When defined within the bounds of this thesis, experience E relates to the
historical data of bike trips transformed to flow as the number of incoming, out-
going and internal trips within each grid cell or zone per hour, tasks T is the
task of predicting some future flow for a given grid cell or zone, and performance
P is how well the network approximates the non-linear function of flow.

Machine learning methods are typically categorized as either supervised or
unsupervised.

Supervised machine learning methods works by presenting the program
with numerous example inputs and their accompanying labels. The learning algo-
rithm produces a function that maps inputs to outputs, and iteratively modifies
its own weights based on the error between its produced output and the correct
provided output. After a sufficient amount of training iterations, the model is
able to apply the learned function to make predictions about previously unseen
inputs. The classic example of supervised learning is the MNIST classification
task (LeCun [2007]), where the program is presented multiple images of hand-
written digits and their associated labels.

When it comes to unsupervised machine learning methods, the program
is not presented with any labels for its examples. The goal is for the learning
algorithm to construct some function that describes the hidden structure in its
data. A typical example of unsupervised learning is anomaly detection to auto-
matically identify characteristics of fraud, where the learning algorithm is given
large amounts of unlabeled credit card transactions, and the goal is to identify
outliers which can be regarded as fraudulent.

There are multiple applications of machine learning, and thus it can also be
categorized based on what the desired output should be.

Classification is the problem of assigning one or more labels to some unseen
input. The classic example of classification problems in supervised learning is
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spam filtering, where the learner is fed multiple examples of email and their
associated label of spam or not spam, and the goal is to predict the correct label
for unseen examples.

For regression problems, the goal is to predict some continuous output.
For example, a common regression problem in supervised machine learning is to
predict the price of a household based on its location, size, number of rooms etc.

Clustering is another common problem in machine learning, where the goal
is to assign some example input to a group based on similarity to other examples.

This thesis focuses mainly on supervised machine learning for a regression
problem. It is supervised because we present the learning algorithm with histor-
ical data of flow per grid cell or zone per hour, and it is regression because the
goal is to predict the future continuous values for inflow, outflow and internal
flow. There are many different approaches within machine learning to model
this problem. The main branch of models used in this thesis, Artificial Neural
Networks (ANNs), is explained in section 2.3.

2.3 Artificial Neural Networks

Artificial neural networks are computational models mimicking the way biological
neural networks process information in the human brain. At the most basic
level, artificial neural networks consist of multiple neurons. A neuron i receives a
number of input signals x1, ..., xn from other neurons, each of which is multiplied
by a weight wi which is computed based on the input’s relative importance to
other inputs, and finally summed. A bias weight w0 is also added to provide an
extra trainable parameter which leads to a better fit. The output z (called the
pre-activation value) of a single neuron is defined by equation 2.1.

zi = w0 +

N∑
j=1

xjwij (2.1)

The final output signal of neuron i is computed by feeding the pre-activation
value zi through an activation function g(z). The simplest type of neuron, called
a perceptron, uses a simple binary activation function called the Heaviside step
function (Bracewell and Bracewell [1986]), which outputs 1 if its input is positive
and 0 if it is negative (see equation 2.2).

step(z) =

{
1 if z > 0

0 otherwise
(2.2)
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The perceptron is able to approximate linear functions, and is therefore only
useful in cases where data is linearly separable. However, most real-world data
(including the BSS data used in this thesis) is non-linear. See figure 2.3 for the
difference between linearly vs. not linearly separable data.

Figure 2.3: Linearly vs. not linearly separable data

There exist other activation functions which enable neural networks to ap-
proximate non-linear functions. The most commonly used are:

• sigmoid, which takes a real-valued input x ∈ R and squashes it to a range
between 0 and 1.

sigmoid(z) =
1

1 + e−z
(2.3)

• hyperbolic tangent, which takes a real-valued input x ∈ R and squashes it
to a range between -1 and 1.

tanh(z) =
ez − e−z

ez + e−z
(2.4)

• rectified linear unit, which simply replaces negative values with 0.

ReLU(z) = max(0, z) (2.5)

See figure 2.4 for a graphical representation of the previously mentioned ac-
tivation functions and figure 2.5 for a diagram of how a neuron computes its
output.
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Figure 2.4: Comparison of activation functions

Figure 2.5: How a neuron computes its output

2.3.1 Multi-Layer Perceptron

A single perceptron is able to approximate linear functions. However, by con-
structing a network of perceptrons arranged in one or more hidden layers us-
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ing a non-linear activation function, the network is able to compute non-trivial
problems. In fact, the universal approximation theorem states that Multi-Layer
Perceptrons (MLPs) can approximate any continuous function from one finite di-
mensional space to another, provided enough hidden units (Hornik et al. [1989]).

The output of every neuron in layer i is strictly dependant on the output
of all neurons in layers i − 1, and every neuron in layer i is fully connected to
all neurons in layer i − 1 through edges with an associated weight. See figure
2.6 for an example of a simple multi-layer perceptron with one hidden layer. A
multi-layer perceptron is also called a Feed-Forward Neural Network (FFNN),
because information only flows in one direction; from input, to hidden layers,
to output. The edges between each neuron do not form cycles, as opposed to
Recurrent Neural Networks (RNNs).

Figure 2.6: Diagram of a multi-layer perceptron with n input nodes, m hidden
nodes in a single hidden layer and k output nodes. For regression tasks, the
output layer activation function is usually linear, while for classification tasks
softmax is used. Bias nodes are not shown in this diagram for simplicity.

2.3.2 Training artificial neural networks

The main goal when training an artificial neural network is to optimize the net-
work’s weights in order to minimize the error produced, such that the constructed
non-linear function best fits the data. This is usually done in a two-step process.
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In supervised learning, the network first processes a single vector of input fea-
tures, and the attached known target for that vector of input features. Initially,
the network weights are arbitrarily initialized. Given this example of data, and
these weights, the network produces some output. The error between the pro-
duced output and the actual target value is then calculated by computing the
Mean Squared Error (MSE), as shown in equation 2.6. One such calculation is
called forward-propagation.

MSE =
1

2
(output− target)2 (2.6)

Next, the summed errors in the output layer is propagated back through
the network in order to calculate the gradients by using the back-propagation
algorithm, popularized by Rumelhart et al. [1986]. These gradients are in turn
used by some optimization technique, such as Stochastic Gradient Descent, Adam,
Adagrad or RMSProp, in order to minimize the loss function by adjusting the
network weights with the goal of reducing the error in the output layer. To find
the function minimum, most optimization techniques use some form of gradient
descent, which works by taking steps proportional to the negative direction of the
gradient at the current point. Specifically, given an error function F (x) at point
a, the fastest way to decrease F (x) is given by equation 2.7

an+1 = an − γ∇F (an) (2.7)

where γ is the learning rate, which represents the speed in which we move in
a given direction.

When all rows of the provided dataset have been processed in this manner, the
network has completed one epoch. This procedure can be repeated for multiple
epochs in order to fine-tune the weights.

2.3.3 Bias-variance trade-off

In supervised machine learning, the objective is to construct a model of the
underlying process that produces the given training data in order to capture
the patterns present in that data, while simultaneously managing to generalize
to previously unseen data (the test data). The bias-variance trade-off is the
problem of minimizing two metrics of error:

• error due to bias, which happens when the model is not complex enough
to capture core patterns that are present in the training data.

• error due to variance, which is the result of an overly complex model
that is able to represent the training data well, but also captures the noise
present in the training data, leading to lower accuracy on unseen examples.
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In common machine learning terms, models with high bias and low variance
are underfitting their training data, while models with high variance and low
bias are overfitting their training data. Moore, McCabe and Craig represents the
bias-variance trade-off problem visually through a bulls-eye diagram, as seen in
figure 2.7. The center of the bulls-eye diagram represents a model that perfectly
captures the underlying process that produces some training data. A model with
low bias and low variance will produce outputs that are consistently within the
center of the bulls-eye. However, if the training data contains a lot of noise,
the predicted outputs produced by the model will likely be poorer, leading to a
model that either underfits or overfits. Figure 2.8 further illustrates the cases of
underfitting and overfitting when modelling the function f(x) = cos( 3

2πx) with
some added noise. The optimal model complexity to capture some underlying
process results in the lowest prediction error, which occurs at the intersection of
bias and variance, as illustrated in figure 2.9.

Figure 2.7: Visual representation of bias vs. variance (adapted from Moore et al.
[2009])
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Figure 2.8: Illustration of underfitting vs. overfitting when modelling the function
f(x) = cos( 3

2πx) with some added noise. A linear function underfits the training
data, and a 15-degree polynomial function overfits the training data. A 4-degree
polynomial function seems to fit the true function just right (adapted from the
online scikit-learn documentation (Scikit-Learn [2011]))

Figure 2.9: Optimal model complexity occurs at the intersection of variance and
bias (adapted from the machinelearning-wiki website (MachineLearning-Wiki
[2011]))

In practice, overfitting is a more prevalent issue than underfitting. There are
many ways to avoid overfitting, including regularization, batch normalization and
early stopping. Early stopping was primarily used in this thesis.

Early stopping The standard way to assess the performance of a machine learn-
ing model is to divide the training data into a training set, a validation set
and a test set. The machine learning model is presented with a num-
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ber of samples from the training set in order to reduce the loss function
with respect to this dataset. After training on this dataset for some num-
ber of steps, the model is evaluated on the validation set, which contains
previously unseen examples. The loss on the validation set is used as an
indication of generalization capability. When employing validation-based
early stopping this process is repeated until the error on the validation set
ceases to decrease. This tends to happen when the model starts to overfit
to the training set. Ultimately, the weights of the model at the step with
best validation loss is used on the test set to assess the final generalization
ability of the network.

2.3.4 Recurrent Neural Networks

A Recurrent Neural Network differs from a traditional Feed-Forward Neural Net-
work by forming cycles between the edges of each neuron. By allowing the net-
work to propagate information back through itself, the network obtains a form of
memory which captures important information about what has been previously
computed. This type of neural network architecture is designed to learn from
sequential data. Intuitively, a recurrent neural network should perform well on
the task of predicting bicycle traffic flow of a given zone or grid cell, as this data
is inherently sequential, where the flow at each time step is at least partially
dependent on the flow of the preceding N time steps.

Figure 2.10: An unfolded representation of a recurrent neural network (original
illustration by Hochreiter and Schmidhuber [1997])

Figure 2.10 illustrates how a typical RNN unfolds into a network for a sequence
of length 3. xt is the input data passed to the network at time step t, e.g. the
inflow, outflow and internal flow of a zone at a specific hour. st is the hidden
state at time step t. Each hidden state st is computed based on based on the
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previous hidden state, where each computation follows equation 2.8, where Θ
is an activation function such as Rectified Linear Unit (ReLU) or Hyperbolic
Tangent (Tanh). s0 is usually a zero-vector. ot is the output at step t, e.q. the
predicted inflow, outflow and internal flow for the next hour.

st = Θ(Uxt +Wst−1) (2.8)

Training a Recurrent Neural Network requires using a modified version of the
back-propagation algorithm called Back-Propagation Through Time (BPTT), be-
cause the network weights are shared by all time steps in the current sequence.
This involves calculating and summing up all gradients for the previous time
steps in a sequence in order to compute the gradient for time step t + 1. In
practice, Recurrent Neural Networks suffer from loss of long term context due
to the vanishing/exploding gradient problem. However, several modified versions
of RNNs, such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU), have been engineered to address this issue.

LSTMs and GRUs are simply a different way of computing the hidden state
given the previous hidden state and the current input. An illustration of a single
LSTM cell is shown in figure 2.11, and all of its computing steps are shown in
equation 2.9.

it = σ(xtUi + ht−1Wi)

ft = σ(xtUf + ht−1Wf )

ot = σ(xtUo + ht−1Wo)

C̃ = tanh(xtUC + ht−1WC)

Ct = Ct−1 � ft + C̃t � it
ht = tanh(Ct)� ot

(2.9)

U and W are the input weights and recurrent weights, respectively. The input
gate it controls how to squash the computed state for the current input. The
forget gate ft controls how to squash the previous state. The output gate ot
controls how much of the internal state that is let through to the rest of the
network. The candidate hidden state C̃t defines what can be added to the next
state. The cell state Ct is the internal memory, and is a combination of what
should be forgotten from the previous cell state Ct−1 and the candidate hidden
state C̃t. The final hidden state ht is the Hadamard product (� element-wise
multiplication) of the memory Ct and the squashed output gate. Note that σ is
the sigmoidal activation function. The GRU cell computes its hidden state in a
similar fashion, except it has two gates instead of three. The reader is referred



20 CHAPTER 2. BACKGROUND THEORY

to the original paper on LSTMs (Hochreiter and Schmidhuber [1997]) and GRUs
(Cho et al. [2014]) for further details on these RNN architectures.

Figure 2.11: Diagram of a single Long Short-Term Memory cell (original illustra-
tion by Graves et al. [2013])

2.3.5 Convolutional Neural Networks

In contrast to traditional feed-forward neural networks, Convolutional Neural
Networks (CNNs) are not fully connected; every neuron in layer i is only par-
tially connected to the neurons in layer i + 1, except for the last layer. CNNs
are usually applied to problems where the network input can be represented as
an image with a width dimension, a height dimension, and a depth dimension
(corresponding to for example the pixel color intensities). Feed-Forward Neu-
ral Networks can also be applied to such problems, but their performance suffer
greatly due to the fact that network complexity (e.g. number of parameters)
grows exponentially with larger image sizes (due to its fully-connected nature).
CNNs aim to solve this problem by reducing the network parameters through a
sequence of computational layers; convolution, activation, pooling (subsampling),
and fully-connected.

In a convolution layer, filters are applied to the input matrix iteratively
with a pre-defined stride length, which over a number of training steps learn to
recognize a specific feature, such as the edges in an image. Multiple filters can be
applied in a convolutional layer to create feature maps. In figure 2.12, an image of
size 32x32x3 is passed through a single convolutional filter of size 5x5x3 and stride
length 1. The Hadamard product is taken of the pixel intensities in all channels
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for that filter, and results in a scalar, which is then passed through an activation
function, and corresponds to one ”pixel” in the output of the convolutional layer.
When the filter is slid across the entire input image, the output feature map is
of size 28x28x1. In this example, N filters of size 5x5x3 could be applied to the
input image, which would result in an output of dimension 28x28xN .

Figure 2.12: Diagram of how a convolutional layer works in a Convolutional
Neural Network.

The output of the convolutional layer is then passed through a pooling layer
to reduce the dimensionality of the image, allowing for faster training. In a
pooling layer, a number of input nodes are pooled together, and some singular
value is passed on. A popular choice is max pooling, which simply picks the
highest value in the current window. A simple illustration of max pooling is
shown in figure 2.13. If the output of the convolution layer has size 28x28x10
and is passed through a max pooling layer with window size 2x2 and stride 2,
the result is of size 14x14x10, effectively reducing the number of parameters to
1
4 of the input.

Finally, the output of the max pooling layer is flattened to a 1-dimensional
vector and passed through to a fully-connected layer, which is the same type of
layer as those used in traditional feed-forward neural networks. For more details
on how Convolutional Neural Networks work, the reader is referred to the original
paper by LeCun et al. [1998].

2.3.6 Deep Residual Networks

Recent advances in the annual ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) show that deeper convolutional networks tend to perform better
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Figure 2.13: Diagram of how a max pooling layer works in a Convolutional Neural
Network.

than shallow networks. This is also supported by the research performed by
Eldan and Shamir [2016], Szegedy et al. [2015] and Simonyan and Zisserman
[2014]. However, simply adding ten-folds of layers to a CNN tends to lead to
vanishing/exploding gradients, and saturated degrading accuracy as the network
depth increases. It is also very expensive to train such very deep CNNs. Deep
Residual Networks (ResNets), first introduced by He et al. [2016] at the Ima-
geNet competition in 2015 with a 152-layer deep network, allow for extremely
deep CNNs by learning the residual functions with reference to the layer inputs,
as opposed to learning unreferenced functions. The main idea is that by stacking
a few non-linear layers in a network, it can fit an underlying function H(x), and
thus it can also fit another function F (x) = H(x) − x. This can be written as
H(x) = F (x)+x, where F (x) is a residual function and x is the layer input (called
a skipped connection, or identity mapping). The stacked non-linear layers are
then used to fit the residual function F (x), as opposed traditional CNNs which
approximate H(x). The authors show that it is easier to optimize the residual
function F (x) than the unreferenced function H(x). Figure 2.14 conceptualizes
this idea through what the authors call a residual block. The reader is referred
to the original paper by He et al. [2016] for further reading on Deep Residual
Networks. The details of how Deep Residual Convolutional Neural Networks can
be applied to the problem of predicting bicycle flow is described in Chapter 4.1.1.

2.4 Random Forest

Random Forest is an ensemble machine learning algorithm first introduced by
Leo Breiman in 2001 (Breiman [2001]). It works by constructing multiple Classi-
fication and Regression Trees (CARTs) where each individual tree outputs some
classification or regression prediction, and the final output of the random forest
is either the mode of the classes or the mean prediction of all trees. Random
Forests are less prone to overfitting than regular decision trees due to this voting
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Figure 2.14: Diagram of how residual learning works in a Deep Residual Network
with multiple such Residual blocks (original diagram by He et al. [2016]).

mechanism. Training a Random Forest algorithm involves a slightly modified
version of the bootstrap aggregating (bagging) technique. Given a training set
X of size n, bagging produces K new training sets Xi of size n where Xi is a
random sample with replacement from X. A CART tree fi is then trained to fit
Xi. Random sampling with replacement ensures that about n

3 examples, called
the Out-of-Bag samples x′ are unseen to the learner, which is used to evaluate
the forest by averaging the predictions of all individual trees, as seen in equation
2.10.

f̂ =
1

K

K∑
i=1

fi(x
′) (2.10)

In the standard bagging technique, the set of features used at split j are all
the features not used at split j − 1. Random Forests instead choose a random
subset of all features at each candidate split j in a method called feature bagging,
first introduced by Ho in 1995 (Ho [1995]). For regression problems, it is typical
to choose p

3 random features at each candidate split j, where p is the total number
of features. Random Forests have become very popular lately due to its short
training time, no need for data preprocessing in the form of normalization, few
hyperparameters to tweak and its ability to measure feature importance during
training.

2.5 Hyperparameter Optimization

When working with neural networks, two types of parameters become apparent;
network parameters (i.e. weights) and hyperparameters (e.g. learning rate or
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number of layers). The whole point of training neural networks is to optimize the
network weights through the use of some optimizer such as Stochastic Gradient
Descent or RMSProp. However, determining which hyperparameters to use is
a non-trivial task, usually requiring many years of experience in implementing
neural networks and expertise knowledge in the domain of application. However,
this process of determining optimal hyperparameters for some network for some
problem can be automated by utilizing a form of meta-optimization called hy-
perparameter optimization. A hyperparameter optimization algorithm searches
the hyperparameter space for a combination of hyperparameters that optimizes
some objective function, typically the mean squared error on a validation set
for regression problems. For neural networks, the model is usually trained on a
training set with some combination of hyperparameters for a number of epochs,
before being evaluated on a validation set, and then repeats the process with a
different combination of hyperparameters. Finally, the combination that yielded
the best performance on the validation set is returned. There are mainly three
types of hyperparameter optimization:

Figure 2.15: Illustrations of how different hyperparameter optimization algo-
rithms work. In the diagrams, the x and y dimensions represent two different
hyperparameters (e.g. learning rate and number of layers), and the z dimension
represents performance on a validation set. The hill surface is the true perfor-
mance for all combinations of hyperparameters. Each yellow dot is the result on
the validation set for one combination of hyperparameters. Illustration adapted
from a SIGOPT blog post by Alexandra Johnson [2017].

• Grid search, shown on the left in figure 2.15, is an exhaustive search
through a manually selected subset of the hyperparameter space. Given a
neural network model with two hyperparameters to optimize, learning rate
and number of layers, the practitioner selects a finite set of values for each
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parameters, e.g. learning rate η ∈ {0.1, 0.001, 0.0001} and number of layers
L ∈ {2, 4, 6}. Consequently, grid search trains the model with each pair
(η, L) of the Cartesian product of these sets and returns the combination
that yielded the best performance on the validation set.

• Random search, shown in the middle in figure 2.15, instead searches on
some randomly selected values from the range {η ∈ R : 0.1 ≤ η ≤ 0.0001}
and {L ∈ Z : 2 ≤ L ≤ 6}. Random search is usually a better choice than
Grid search when the hyperparameter search space is of high dimensionality.

• In contrast to Grid Search and Random Search, Bayesian Optimization
(BO) searches the hyperparameter space intelligently by modelling distri-
butions over objective functions as Gaussian Processes. Given the model
performance on a validation set as a function of hyperparameters, f(x), the
task is to optimize f(x) by picking the best hyperparameters, as shown in
equation 2.11.

x∗ = argmax
x∈χ f(x) (2.11)

In figure 2.16, the dotted line represents an unknown objective function
which BO tries to find the max of. BO selects some point on the graph
where the mean is high (exploitation) and the variance is high (exploration),
which creates a exploitation-exploration trade-off which is encoded in an ac-
quisition function, shown as the green surface in the figure. Expected Im-
provement (EI) is a popular choice of acquisition function, which measures
the expected increase in objective function given the next point picked. EI
is defined as EI(x) = E[max{0, f(x)− f(x̂)}], where x̂ is the current best
combination of hyperparameters. In summary, the following steps are run
for N iterations when using Bayesian Optimization:

1. Update posterior expectation of f given observed values f(x) using
GP.

2. Find some xj which optimizes EI: xj = argmaxEI(x)

3. Compute value of f for xj

This technique has been used extensively throughout this thesis through
Google CloudML’s HyperparameterTuning module, as explained in Chap-
ter 5.3.
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Figure 2.16: Gaussian process approximation of objective function (original figure
by Brochu et al. [2010]).



Chapter 3

Structured Literature
Review

This section discusses the results of the Structured Literature Review (SLR).
A structured literature review is a systematic approach to collect and critically
examine research studies related to a set of research questions. The goals of an
SLR are primarily to map out existing solutions to some problem, identify gaps
of knowledge, highlight areas where further research is necessary, and synthesize
available information in order to build upon existing research (Kofod-Petersen
[2012]).

3.1 Structured Literature Review Protocol

In order to ensure objectiveness of the review, a protocol was developed defining
how the review was to be conducted. The primary goals of the SLR protocol
were 1) to thoroughly cover as much of the relevant literature as possible given
the time constraints on this thesis, and 2) to ensure the results of the literature
search were reproducible. The developed SLR protocol was heavily inspired by
the guidelines presented in Keele et al. [2007] and can be reviewed in its entirety
in Appendix A. Table 3.1 presents the final set of papers after a rigorous SLR
process.

3.2 State of the Art Review

This section discusses the synthesized information from the final set of papers
presented in table 3.1. The discussions presented here are to be considered as

27
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Authors Title

Ashqar et al. [2017] Modeling bike availability in a bike-sharing system using
machine learning

Bacciu et al. [2017] An experience in using machine learning for short-term
predictions in smart transportation systems

Bei et al. [2013] Uncertainty in urban mobility: Predicting waiting times
for shared bicycles and parking lots

Caggiani et al. [2017] Spatio-temporal clustering and forecasting method for
free-floating bike sharing systems

Dali and Mladenic [2012] BICIKELJ: Environmental data mining on the bicycle
Fei et al. [2017] Predicting public bicycle rental number using multi-source

data
Froehlich et al. [2009] Sensing and predicting the pulse of the city through shared

bicycling
Gallop et al. [2011] A seasonal autoregressive model of Vancouver bicycle traf-

fic using weather variables
Ghanem et al. [2017] Bike share travel time modeling: San Francisco bay area

case study
Giot and Cherrier [2014] Predicting bikeshare system usage up to one day ahead
Han et al. [2014] Towards bicycle demand prediction of large-scale bicycle

sharing system
Kaltenbrunner et al. [2010] Urban cycles and mobility patterns: Exploring and pre-

dicting trends in a bicycle-based public transport system
Li et al. [2015] Traffic prediction in a bike-sharing system
Liu et al. [2015] Station Site Optimization in Bike Sharing Systems
Malani et al. [2013] Forecasting Bike Sharing Demand
Milenković et al. [2014] Comparison of SARIMA-ANN and SARIMA-Kalman

methods for railway passenger flow forecasting
Moreira-Matias et al. [2013] Predicting taxi-passenger demand using streaming data
Rudloff and Lackner [2014] Modeling demand for bikesharing systems: neighboring

stations as source for demand and reason for structural
breaks

Salaken et al. [2015] Forecasting Bike Sharing Demand Using Fuzzy Inference
Mechanism

Wang et al. [2017] DeepSD: Supply-demand prediction for online car-hailing
services using deep neural networks

Yang et al. [2015] Public bicycle prediction based on generalized regression
neural network

Yang and Zhang [2016] A Novel Travel Adviser Based on Improved Back-
Propagation Neural Network

Yoon et al. [2012] Cityride: a predictive bike sharing journey advisor
Zhang et al. [2016] Deep Spatio-Temporal Residual Networks for Citywide

Crowd Flows Prediction

Table 3.1: The final set of primary studies after a rigorous SLR process.
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answers to RQ1 and RQ2, and will be further summarized in Chapter 6.

Introduction

Transport demand forecasting is a vital core function to all transportation com-
panies as it provides the basic input for planning and controlling all functional
areas including transport operations planning, marketing and finance. Temporal
demand patterns and their intensities significantly influences capacity levels and
financial needs of any transportation business (Milenković et al. [2014]).

The fundamental issue within the domain of BSS research is to understand
mobility patterns (Han et al. [2014]), and thus, the bike redistribution strategy is
an essential part of the operational level. Because the distribution of rides is not
uniform, certain stations may fill up or become empty, leading to a demand for
bikes that cannot be fulfilled. Two approaches to redistribution are suggested by
Rudloff and Lackner [2014]; incentive-based user redistribution and truck-based
redistribution. The authors claim that although incentive-based user redistribu-
tion is cheap and sustainable, two major problems exist; stations in close proxim-
ity to transportation hubs tend to be at max capacity, and monetary incentives
may be ineffective due to the already low cost of BSSs.

Truck-based redistribution can either be solved as a static optimization prob-
lem during the night, or as a more complex dynamic optimization problem during
the day where user traffic must be taken into consideration. Although the dy-
namic rebalancing problem is well studied in the literature (Pillac et al. [2013]),
most dynamic rebalancing algorithms use past demand as a proxy for future de-
mand. The underlying current demand is not modeled to improve distribution.
Obtaining an accurate approximation of future demand may be a crucial compo-
nent to both dynamic rebalancing schemes and to increase user satisfaction.

The problem of forecasting BSS traffic flow has been very moderately studied.
However, because the underlying goal of such a forecast is to predict demand,
other types of problems that have been well researched within BSSs forecasting
are very likely to yield insightful knowledge. Therefore, this literature review
will cover a range of issues within BSSs, such as analysis of mobility patterns,
system- and station-level demand forecasting, how to cluster stations to increase
prediction accuracy, and other prediction tasks. In addition, because demand
forecasting has been extensively studied in other related domains, some state-of-
the-art solutions within these related domains are also presented.
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Spatio-Temporal Usage Patterns

The majority of BSSs exhibit identical spatio-temporal usage patterns; during
morning rush hours, the demand for bike rentals tends to surge in residential ar-
eas of the system, while the demand for bike rentals in city centres and business
areas declines. Conversely, demand for bike rentals tends to surge in city centres
and business areas during evening rush hours, while the demand for locks tends to
increase in residential areas (Bei et al. [2013], Dali and Mladenic [2012], Froehlich
et al. [2009], Han et al. [2014], Kaltenbrunner et al. [2010], Li et al. [2015], Rudloff
and Lackner [2014]). Froehlich et al. [2009] argue that understanding and mod-
elling these mobility patterns is essential in order to successfully predict future
demand within the BSS

The Bicing system has been thoroughly studied in the literature (Froehlich
et al. [2009], Kaltenbrunner et al. [2010], Yang and Zhang [2016], Yang et al.
[2015]) and closely resembles the BSS in Oslo in terms of geography and topog-
raphy, where residential areas are located on an outer incline edge of the city and
business areas are located in the city centre close to sea-level. Froehlich et al.
[2009] developed two separate clustering methods for this system focusing on two
different metrics;

• activity clustering measuring how active a station is. This clustering al-
gorithm resulted in five activity clusters, where the number of stations
for each cluster increased as one moves from the outer edges of the city
and inwards, confirming the intuition that stations on the outer edges of
Barcelona’s incline topography are less active than the inner stations.

• bicycle clustering measuring the average number of available bikes at each
station. This clustering algorithm resulted in six clusters with three classes
of behavior: outgoing (C1, C2), incoming (C3, C4), and flat (C5, C6). The
outgoing clusters show a sharp drop in number of available bikes during
morning rush hour, and an increase during evening rush hour, and are lo-
cated around residential areas. The incoming clusters show a sharp increase
in number of available bikes during morning rush hour and a decrease dur-
ing evening rush hours, and are located around business areas. Cluster C6
tends to have a relatively flat usage pattern with an average of 66% avail-
able bikes, and is located in high altitudes. Cluster C5 has an average of
only 15% available bikes, and are located at sea-level.

Dali and Mladenic [2012] simulated the most common bike paths by using
a stochastic cumulative Gaussian distribution method and found similar usage
patterns. However, since each record of the BICIKELJ dataset only describes the
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number of available bikes at each station, not information per individual bike,
their results could not be verified.

Critically Influential Variables

Several factors have been shown to impact bike-sharing demand significantly.
The most obvious and intuitive exogenous factor is weather, which has been ex-
tensively studied in the literature (Ashqar et al. [2017], Caggiani et al. [2017],
Dali and Mladenic [2012], Fei et al. [2017], Gallop et al. [2011], Ghanem et al.
[2017], Giot and Cherrier [2014], Li et al. [2015], Malani et al. [2013], Rudloff
and Lackner [2014], Salaken et al. [2015]). However, other variables such as traf-
fic, spatio-temporal correlations between stations, and a station’s proximity to
transportation hubs or points of interest have also been researched to some extent.

Gallop et al. [2011] principally studied impact of weather on bicycle traffic by
analyzing the findings of a Seasonal Autoregressive Integrated Moving Average
(SARIMA) model of the bicycle traffic in Vancouver. The authors conclude that
temperature and precipitation are particularly significant factors, where bike traf-
fic counts increase by 1.65% per degree Celsius increase from the mean, whereas
rain in the previous three hours decreases traffic counts by 23.54%, which is
more impactful than it being a holiday or Saturday (-13.8%) or a day during the
Olympics (+15.7%). Interestingly, the authors found that rain during the previ-
ous hour was more impactful than rain during the current hour, decreasing traffic
counts by 8.86% and 3.68% respectively. Ashqar et al. [2017] and Malani et al.
[2013] agrees that temperature considerably influences bike-sharing demand, and
adds that humidity is negatively correlated with demand.

Variables related to geography and the internal structure of a BSS have also
been shown to be highly correlated with station-level demand. Results presented
by Ashqar et al. [2017] and Liu et al. [2015] indicate that the demand of nearby
stations in terms of geographical proximity is positively correlated with the de-
mand of an individual station. Malani et al. [2013] further studied station-level
demand in Washington D.C. with a socio-economic perspective and found that
population size within the census tract associated with a particular station is
highly correlated with the amount of rentals.

Liu et al. [2015] were the first researchers to demonstrate a clear correlation
between otherwise unexplored factors and station-level demand:

• Transportation related variables: the number of taxi pick-ups in a stations
associated Voronoi region, and walking distance to nearby parking lots,
subway stations or bus hubs
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• Point-Of-Interest (POI) related one-hot encoded variables: four POI cate-
gories (entertainment, restaurant, shopping, education) where, if the POI
is within some threshold distance, its value is 1.

Other factors related to the actual experimental details of a machine learning
demand prediction approach have also been shown to influence prediction accu-
racy. Results presented by Ashqar et al. [2017], Froehlich et al. [2009], Yang and
Zhang [2016], and Bei et al. [2013] indicate that accuracy decreases as the predic-
tion window increases, with best performances observed at very short prediction
windows (less than 10 minutes). However, Giot and Cherrier [2014] found that
prediction accuracy is roughly the same for prediction windows of size 1 hour and
25 hours, due to the regularity of temporal patterns observed at a single station
throughout weekdays.

Furthermore, a machine learning algorithm’s prediction performance may suf-
fer if the utilized dataset spans a relatively short period of time. Bacciu et al.
[2017] emphasizes that BSS user behaviors may exhibit regularity in the initial
months which is later lost due to seasonality effects in the process being modeled.

System-level Demand Prediction

System-level demand can be defined as either the total number of rentals during
some time interval, or the total number of available bicycles or locks at some point
in time, for the entire BSS as a whole. Having an estimate of future system-level
demand may be beneficial on an operational level in order to approximate the
number of redistribution trucks that must be in service during a particular time
interval. Giot and Cherrier [2014] claim that future system-level demand cannot
be predicted based solely on the historical mean. System-level demand is influ-
enced by a range of external factors, making it highly non-linear, as confirmed in
the findings presented by Froehlich et al. [2009].

In research performed by Giot and Cherrier [2014] to predict system-level
rental amount per hour, the authors assume that the system follows a time se-
ries pattern where each record is at least partially temporally dependent on the
previous. Thus, the authors augment each record in the original dataset by
adding 24 autoregressive features; the number of available bikes from one hour
to twenty-four hours ago. Results show that Ridge Regression achieved a lower
Root Mean Squared Error (RMSE) than all other regressors (Adaptive Boosting
(AdaBoost), Support Vector Regression (SVR), RF, Gradient Boosted Decision
Tree (GBDT)) for all 24 hour lags.

Interestingly, because Ridge Regression is a linear regressor, their model as-
signed a low Pearson coefficient to the time-of-day feature. However, in line with
what Ghanem et al. [2017] found about breaking assumptions of homoscedasticity
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(see Similar Problems in Bike-Sharing Systems), Ridge Regression fails to grasp
the impact of time-of-day because it is highly non-linear.

Salaken et al. [2015] built a fuzzy inference model using the Wang-Mendel rule
generation method on data from the Capital Bikeshare program in Washington
D.C., which contained both date- and weather-related information. The authors
suggest that fuzzy inference predictors can potentially outperform FFNNs in
terms of prediction accuracy when it comes to predicting the total number of
available bicycles at a future time. However, the authors emphasize the fact that
work was not carried out to optimize the baseline single-layered 10-neuron neural
network, hence it can be argued that the obtained results may not be comparable.

Station-level Demand Prediction

Station-level demand prediction has been widely researched in the literature and
far outweighs research on system-level demand prediction. This may be due to
the fact that the obtained predictive demand granularity for station-level models
would be more advantageous on an operational level because it allows for more
accurate bike redistribution and provides rebalancing trucks information about
expected city activity (Froehlich et al. [2009]).

Autoregressive Moving Average (ARMA) is a statistical forecasting model for
time series data that is inadequate for station-level demand prediction because
it fails to capture the non-stationary nature of station availability caused by
the fact that the mean and variance of availability changes over time (Yoon et al.
[2012]). However, Yoon et al. [2012] dealt with this problem by using Autoregres-
sive Integrated Moving Average (ARIMA), which captures the spatio-temporal
correlations between stations, i.e. a reduction of bikes in an origin station is cor-
related with the increase of bikes in a destination station. ARIMA has also been
successfully used to predict demand for other transportation modes (Milenković
et al. [2014], Moreira-Matias et al. [2013]). Kaltenbrunner et al. [2010] used an
ARIMA approach to predict station-level availability for a 30-minute horizon by
using the autoregressive features of past availability data for both the station in
question, and the 15 nearest neighbors in terms of geographical proximity. The
authors highlight that modelling neighboring stations decreases prediction error
considerably. However, a substantial flaw in this study is that meteorological fac-
tors, which have been shown to significantly influence demand, are not integrated
in the prediction model.

Froehlich et al. [2009] used a Bayesian Network (BN) with only three features;
time of day, last known number of bicycles and a prediction window of 10 to 120
minutes. However, the model was only trained on weekdays, which follow a pe-
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riodic temporal pattern, and thus demand prediction for weekends and holidays
would most likely perform worse due to the irregular nature of the usage patterns.
Additionally, like Kaltenbrunner et al. [2010], the BN model fails to incorporate
exogenous contextual features such as weather and seasonality. Yoon et al. [2012]
further argues that Froehlich and Neumann’s results are only marginally better
than the baseline Last Value (LV) prediction because too few features are used,
and that adding more features to the BN would lead to an exponential increase
of the probability table, leading to infeasible training times.

Bei et al. [2013] proposes a statistical approach to model spatio-temporal
features of bike availability at station-level using a class of statistical algorithms
called Generalized Additive Models (GAMs). The models are trained on three
prediction horizons:

• Short-term (5 minutes): uses current weather

• Medium-term (1 hr): uses current weather and autoregressive features,
namely yt−1 and yt−2 as available bikes 30 min and 60 min ago.

• Long-term (24 hr): no weather or autoregressive features; rather uses His-
torical Average (HA) at the given time of day as exogenous variable.

Results show that the proposed GAM method outperforms LV, HA and
ARMA baselines for both short-, medium-, and long-term predictions, obtain-
ing up to 50% lower RMSE and WRMSE (mean average error of all stations as
a function of station size) than ARMA. If the algorithm outputs an availability
of zero, the waiting time before a bike arrives is calculated (see Similar Problems
in Bike-Sharing Systems).

Ashqar et al. [2017] uses ensemble and bagging methods, specifically RF and
Least Squares Boosting (LSBoost), as univariate regression algorithms to predict
station-level availability. RF achieved the best score with a Mean Absolute Error
(MAE) of 0.37 bikes per station, outperforming LSBoost with an MAE of 0.58
bikes per station for a time horizon of 15 minutes.

Many scholars use normalized values to measure station-level availability;
Yang and Zhang [2016] and Yang et al. [2015] calculates the Normalized Available
Bikes (NAB) for each station at each timestep to reflect percentage of available
bikes by dividing the number of bikes by the sum of the number of bikes and
locks. In addition, Normalized Activity Score (NAS) is calculated to indicate the
activeness of a station. The authors show that the temporal patterns for NAB
and NAS differ greatly from weekdays to weekends, and therefore concentrate on
only one of those situations.
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NABt =
αt

αt + βt

NASt =
|αt−1 − αt|
αt + βt

where α is the number of available bikes and β is the number of available locks.

ANNs have been widely used in the literature either as baseline or primary
methods to predict future station-level demand. Yang and Zhang [2016] employs
a ANN with a single hidden layer of 25 neurons, where the initial weights and
biases are configured using a genetic algorithm. The authors show that for short
time horizons (30 minutes), the model achieves a MAE of 1.15 when including
the NAB scores of the 10 nearest neighbors in terms of temporal patterns, as
opposed to 1.86 when including the NAB score of the 10 geographically near-
est neighbors. A major drawback of their model is that it fails to incorporate
meteorological features. In another study, Yang et al. [2015] used a Generalized
Regression Neural Network (GRNN) on the exact same problem and dataset, but
found that a classic ANN performed better.

Fei et al. [2017] also predicts station availability by using a neural network,
where the network’s hyperparameters are computationally tweaked by employ-
ing a particle swarm optimization approach, bearing resemblance to Yang and
Zhang’s genetic algorithm approach to initializing hyperparameters. Liu et al.
[2015] observes a faster convergence rate when training their neural network us-
ing the Levenberg-Marquardt algorithm as opposed to SGD, but the authors fail
to describe the network architecture. Nonetheless, their solution performs well
with an Coefficient of Determination (R2) score of 0.88, while baselines such as
AdaBoost, SVR and CART achieve below 0.75.

A problem uncovered by Rudloff and Lackner [2014] is the complex issue of
estimating demand when there are no available bikes or locks, named censored
demand by the authors. A simple solution offered is to add a dummy variable of
1 if there are no available bikes or locks. Similarly, an equivalent dummy variable
is added to the three geographically closest stations to see if demand shifts to
these neighboring stations in the case of censored demand.

Dali and Mladenic [2012] states that since the problem of availability pre-
diction exhibits properties such as few features, no sparsity, and non-linearity, a
Support Vector Machine (SVM) with Radial Basis Function (RBF)-kernel may
be an appropriate fit for such a regression problem.
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Clustering

Clustering techniques have been explored extensively in the literature as a method
to gain insight to activity patterns within BSSs. The overall aim of clustering
is to partition a group of dissimilar patterns into multiple smaller homogeneous
groups, where there is low correlation between different clusters, and a high cor-
relation between the elements within each cluster (Caggiani et al. [2017]).

Li et al. [2015] discovered that by grouping stations into clusters based on
geographical and temporal patterns, the periodicity and regularity of each cluster
becomes much easier to predict than that of a single station. In addition, both
check-out proportions and inter-cluster transitions is more robust for clusters than
for individual stations. This is confirmed by graphing the standard deviation of
check-out proportion and inter-cluster transition for clusters and stations for
each hour of the day, where it is observed that the standard deviation is lower
for clusters than for individual stations for all hours.

Furthermore, Li et al. [2015] argue that the number of clusters must be care-
fully chosen based on expertise. Having as many clusters as there are stations
means that the clustering algorithm fails to capture the underlying patterns in
the system, while having just one large cluster offers no applicable information
to redistribution trucks.

Cluster Analysis in Bike-Sharing Systems

Froehlich et al. [2009] investigates how the spatio-temporal usage patterns are
affected by geographical layout and topography within Barcelona by using hier-
archical agglomerative clustering over the average station activity for each station
(activity clusters) and the average percentage of available bikes for each station
(bicycle clusters). At each iteration of the clustering algorithm, the two most
similar clusters were grouped together by calculating the cluster-to-cluster simi-
larity matrix using a Dynamic Time Warping (DTW) distance metric (which, in
contrast to Euclidean distance, captures the temporal patterns), until a cluster-
to-cluster distance threshold was reached. The authors emphasize that the clus-
tering algorithm had no prior knowledge of the station’s three-dimensional geo-
coordinates.

Similarly, Dali and Mladenic [2012] observed that different groups of stations
showed similar behavioral patterns, and therefore clustered the stations based on
hourly activity using hierarchical agglomerative clustering.

Fei et al. [2017] used a classic centroid-based clustering method called K-
means to partition the 3000-station Hangzhou dataset into 4 temporally distinct
classes.

Malani et al. [2013] use a simpler approach and cluster each station to its
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associated census tract, which is a geographical region defined by socio-economic
studies, in Washington. The total number of rentals for each census tract in the
next hour is then predicted using Extreme Gradient Boosting (XGBoost), which
outperformed all other regressors with a Root Mean Squared Logarithmic Error
(RMSLE) of 0.405.

Ashqar et al. [2017] introduced Partial Least Squares Regression (PLSR) as
a dimensionality reduction technique in order to reduce the number of required
models from 70 (corresponding to each station) to 5. The authors examined an
adjacency matrix of bike trips by finding the highest 10 in-degree stations for
station i originating from stations j 6= i, where they found that each of the 5
resulting regions corresponded to 5 different zip codes, indicating that the ma-
jority of trips occurred within the same spatial region. Without using PLSR,
their ensemble prediction algorithm had an MAE of 0.37 bikes per station. Using
PLSR, the authors achieved a MAE of 0.6 bikes per station, which the authors
argue is still within acceptable limits for a large-scale BSS prediction system,
and is more feasible in a production setting due to the considerable decrease in
amount of models that must be maintained.

Yoon et al. [2012] explored three different clustering strategies to integrate in
their ARIMA model;

• Voronoi regions, generated via geographical proximity.

• K-Nearest Neighbors (KNN) by comparing the temporal patterns of the
number of available bikes for all stations, with K = 3.

• Since a user can pick up a bike at station i and return it at station j, there
exists both positive (similar patterns) and negative (opposite pattern) cor-
relations. The authors cluster stations into significantly positive, signifi-
cantly negative and non-significant using a Generalized Linear Regression
model to calculate the correlation coefficients for the two aforementioned
correlations.

However, it is shown that all three clustering strategies yield almost identical
results in terms of prediction accuracy.

Rudloff and Lackner [2014] argues that surrounding stations significantly in-
fluences an individual station’s demand. The authors tested their Poisson count
model for demand forecasting on both individual stations and on spatially clus-
tered stations, and found that their model significantly improved on individual
stations. Rudloff and Lackner claims that this finding is due to the fact that
spatial clustering groups stations with highly dissimilar temporal patterns, thus
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leading to poor forecasting capabilities. Li et al. [2015] also observed poor results
when only considering spatial similarities when clustering.

Similar Problems in Bike-Sharing Systems

Bacciu et al. [2017] aims to solve a classification task rather than a regression
task; namely to predict the destination station of circulating bikes within the
Pisa BSS. The task at hand is divided into three levels of granularity: city-level,
station-level and user-level. SVM with Gaussian kernel and RF are the two pro-
posed machine learning methods for each level. City-level uses a single unified
model to predict destination station given a new rental, and achieves an F1 score
of 0.2. Station-level uses a separate model tailored to each specific departure
station, and achieves an F1 score of 0.28. User-level partitions the rental data
by each of the 2999 user’s rental history and trains a separate model tailored to
each user, and achieves an F1 score of 0.64. The authors note that the user-level
model tends to perform significantly worse for holidays and Sundays, as these
days break the seasonality of the data. Another interesting point is that if users
with less than 100 total rentals are excluded from the data set, the user-level
prediction model performs extremely well with an F1-score of over 0.95.

The second stage of the two-stage GAM in Bei et al. [2013] computes the dis-
tribution of waiting time until a bike becomes available if the first stage predicts
an availability of zero bikes for a given station. The fundamental assumption
is that bike arrival times follow an exponential distribution with time-varying
intensity, explained by the fact that demand rises during rush hours. As such,
the model significantly underperforms at computing waiting time during periods
where the amount of arrivals is low.

Ghanem et al. [2017] found that using Multiple Linear Regression (MLR)
to predict travel time on the Bay Area dataset containing 33 features, includ-
ing weather, time-of-day, distance, and subscription type, was infeasible due to
the fact that the studentized residuals violates the underlying assumption of ho-
moscedasticity within the data. Because RF does not assume normality of the
data, the authors instead used this to predict travel time and it outperformed
other methods such as LSBoost and ANN.

Similar Problems in Related Domains

Other transport industries such as bus, taxi or car-sharing services (Uber, Lyft)
also benefit greatly by having an estimate of future demand. The demand pat-
terns for both car-related services and bike sharing systems share similar charac-
teristics;



3.2. STATE OF THE ART REVIEW 39

• It is periodical, meaning that demand on a Monday afternoon for a taxi
stand, car-sharing region or bike station does not deviate by much from its
mean.

• It is seasonal, meaning that demand for a taxi stand, car-sharing region or
bike station may surge during specific seasons, such as stations near parks
during summer.

• Both follow the same spatio-temporal patterns; outwards demand tends to
surge in residential areas during morning rush hours and inwards demand
surges in residential areas during evening rush hours. Conversely, outwards
demand surges in business areas during evening rush hours, and inwards
demand surges during morning rush hours.

However, the influence of meteorological factors exhibits inverse effects on de-
mand for car-related services compared to bike sharing systems; demand tends
to increase during periods of precipitation, as opposed to bike sharing systems
where demand decreases during precipitation.

Thus, the problem of predicting the number of orders that will emerge at a
given taxi stand or in a car-sharing region at a future time point can be seen as
analogous to station-level demand prediction for BSSs, as they both share many
of the same characteristics.

Moreira-Matias et al. [2013] presented a model to predict the spatio-temporal
distribution of taxi-passenger demand on a 30-minute horizon using an ensemble
learning method, modeling the number of orders that will emerge at a given taxi
stand at a given future time duration. The authors ensemble method achieved
better results than Poisson, Weighted Poisson and ARIMA.

Wang et al. [2017] investigates how a ResNet performs compared to classical
ensemble methods such as RF and XGBoost on the problem of predicting demand
for the car sharing service Didi in Hangzhou, China. The problem is analogous to
demand prediction in BSSs because of the aforementioned similar characteristics,
demand is predicted for a cell in a city-wide N-sized grid which can be compared
to predicting demand for a bike station, and the dataset used for order data is
exactly the same as trip data in BSSs.

Compared to other machine learning methods, the ResNet proposed by Wang
et al. [2017] requires little to no feature engineering, as the network is able to
learn patterns across several spatio-temporal attributes (e.g. geolocation, time
intervals, day of week) on its own using embedding layers. Exogenous factors
such as meteorology and traffic are easily incorporated into the model, and the



40 CHAPTER 3. STRUCTURED LITERATURE REVIEW

model is easily extendable by simply fine-tuning an already trained network if
new data attributes are available, making it suitable for online learning.

Instead of one-hot encoding categorical values, the authors introduce an em-
bedding layer which maps each categorical value to a low-dimensional space (rel-
ative to its vocabulary size), where the parameters of the embedding matrix are
trained alongside the entire network, not separately. This leads to two benefits;
categorical values with a large vocabulary is significantly cheaper to represent
using embedding compared to one-hot encoding, and spatio-temporal attributes
(such as location or timeslot) are not treated independently (as with one-hot
encoding), but are clustered together based on similarity using embedding. Em-
bedding categorical features results in a lower MAE and RMSE, and a lower
training time, compared to one-hot encoding categorical values. The ResNet
achieved an MAE of 3.56 and RMSE of 15.57, outperforming RF, GBDT, Least
Absolute Shrinkage and Selection Operator (LASSO) and HA.

Flow Prediction

Li et al. [2015] used a novel approach to predict the traffic flow between clusters of
bike stations in both New York and Washington. The authors describe a five-step
process.

1. In order to mitigate to issue of fluctuating traffic at individual stations,
the authors use a bipartite clustering algorithm based on the stations geo-
graphical locations and historical transition patterns.

2. The total number of rentals within the bike sharing system within a period
is predicted by feeding temporal and meteorological features into a GBDT.

3. The traffic is allocated to each cluster by predicting each cluster’s check-out
proportions by calculating temporal, weather and temperature similarities
using a multi-similarity inference model.

4. Each cluster’s check-in is predicted based on the check-outs calculated in the
previous step. The authors use the same multi-similarity-based inference
model to predict an inter-cluster transition matrix, e.g. a matrix Tt,m∗m
(m = # clusters) corresponding to period t, where each entry Tt,Ci,Cj

is a
transition probability from cluster Ci to Cj in time t.

5. Finally, trip duration between each pair of clusters is obtained by using
maximum likelihood estimation on a lognormal distribution.

The proposed method achieved better results than HA and ARMA for both
common and anomalous periods.
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Zhang et al. [2016] aims to solve a different, but similar problem, namely
crowd flows prediction. The authors propose a deep spatio-temporal residual
network (ST-ResNet) to simultaneously predict inflow and outflow of crowds in
every region of a city. The flow within a region is affected by three factors:

• spatial dependencies: the inflow of some region is affected by the outflow
of other regions. Likewise, the outflow of some region, affects the inflow of
other regions.

• temporal dependencies: flow is largely affected by periodicity and season-
ality.

• exogenous factors: weather and events may drastically affect the flow of
crowds.

The authors emphasize the fact that the flow of a given region is dependant on
the flow of other regions in spatial proximity, and formulates the prediction task
using CNNs which have been shown to hierarchically capture spatial structural
information. Every region in the city is represented as a cell in a grid with two
channels; inflow and outflow. Hence, the historical flow data for the city can be
encoded as multiple images with two channels, where every region at a specific
time step corresponds to one pixel in an image, and CNNs can be used to capture
spatial dependencies within each ”image”. By employing a ResNet-type of CNN,
the authors are able to train a very deep network in a feasible amount of time.

The authors show that their ST-ResNet model outperforms a relatively simple
ANN, as well as ARIMA and SARIMA, on the Citibike data set.

Gaps in the Literature

Demand forecasting in BSSs has been widely researched in the last decade, fol-
lowing the rapid development of such systems in urban environments around the
world. However, several gaps within the literature have been uncovered in this
literature review, and must be further studied to gain a more complete under-
standing of the dynamics within BSSs.

Many demand prediction algorithms in the literature are based on the fact
that the underlying data follows a time series pattern. As such, many scholars
have attempted to use typical time series analysis tools such as ARIMA to fore-
cast demand with varying levels of success. Recurrent Neural Networks (RNNs)
however, have not been studied at all in the literature, despite the promising
results that have been shown for time series prediction with RNNs and LSTMs.
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ResNet is a relatively new neural network model, and is therefore sparingly
studied within the literature. Nonetheless, it has been shown to be very effective
at both predicting demand for car-sharing services (Wang et al. [2017]) and pre-
dicting crowd flows between regions of cities (Zhang et al. [2016]). This calls for
further research on ResNets within the context of BSSs.

The impact of events on a BSSs demand patterns has not been studied, pos-
sibly due to the fact that obtaining accurate event information has been difficult.

In addition, it was observed during the course of this literature review that
there is no unified frame for testing models within the research community. This
is problematic because results cannot be properly validated.

Another problem is that some researchers opt to include weather as exogenous
factors, while others do not. This also causes different results to be incomparable.



Chapter 4

Architecture and Models

This chapter describes the overall system architecture and the individual models
implemented in this thesis.

4.1 Architecture

An overview of the system architecture is presented in Figure 4.1. The system
is divided into several modules, each responsible for handling a specific part
of the system. This modular architecture allows for easy modification in each
module without having to be worried about breaking functionality in the other
modules. In addition, new custom modules developed in future work can easily
be integrated. The stapled lines and rectangles in the figure represent parts of the
system that are not within the scope of this thesis, but are proposed extensions
that are suitable in a production setting, described in Chapter 6.4.

Everything related to data handling is managed by the Data Module, includ-
ing querying the Google BigQuery1 databases for station locations and historical
trips, transforming this into a flow format, extracting features, and building ML-
ready datasets.

The Machine Learning Module consumes datasets produced by the Data Mod-
ule. All baseline- and ML-models are implemented in the Machine Learning
Module, which uses Google CloudML2 capabilities to optimize hyperparameters
in some of the models, and consequently trains and evaluates each model.

The visualization module was used during implementation to better under-
stand the dynamics of the BSS, and visualizes the historical flow through the use

1https://cloud.google.com/bigquery/
2https://cloud.google.com/ml-engine/
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of a Google Maps3 application. In the future, this module will also be responsible
for presenting predicted flow.

Sections 4.1.1, 4.1.2 and 4.1.3 describe each module in greater detail.

4.1.1 Data Module

The Data Module is responsible for handling all data-related tasks. All bike
trips from April 4th 2016 to November 22nd 2017 were registered and stored in a
BigQuery database, and was used as the base dataset in this thesis. In addition,
a database containing all stations was used to aggregate bike trips into zones
or grid cells, and a database containing hourly meteorological data was used to
supply the final datasets with important weather information. See Table B1, B2
and B3 in Appendix B for an overview of what types of relevant data each of
these databases contain. This section describes how these three datasets were
combined, how features were extracted, and finally how this data was processed
in order to produce the final datasets used in the Machine Learning Module.

Data Aggregation

Recall from Chapter 2.1 that the primary focus of this thesis is cluster-level flow
prediction. Two different types of clustering methods were applied; grid-based
(figure 2.1a) and zone-based (figure 2.1b). Two additional tables are presented in
Table B4 and B5 in Appendix B describing the format of the JSON4 files defining
which stations belong to which clustering area. In order to assign every station
to a grid cell or zone, the procedure described in Algorithm 1 was used.

Algorithm 1: Assigning stations to grid cells or zones

inputs: A list of grid cells or zones C = c1 . . . cn; a list of stations
S = s1 . . . sn

foreach ci ∈ C do
foreach si ∈ S do

if si.coordinates is within ci.bounds then
ci.stations← si.id;

By having an overview of which stations belong to which grid cells or zones,
the Oslo City Bike Trip dataset can be grouped by clustered areas. The procedure
to do this for both grid-based clustering and zone-based clustering is equivalent,
and therefore only the procedure for zone-based clustering will be explained here.
A Structured Query Language (SQL) query, shown in Listing 4.1, was ran in a for-
loop iterating over every zone in the clustering-by-zone.json dataset, where the

3https://cloud.google.com/maps-platform/
4JavaScript Object Notation: an alternative to CSV.
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result was appended to a CSV-file after every iteration. Note that the timestamp
is truncated hourly and grouped, so that the resulting CSV-file has an hourly time
interval. index is the current iteration and stations is the list of stations for the
current zone. If the stations list was empty, the iteration was skipped. All zones
had a non-empty stations lists, but only 81 of 216 cells had non-empty stations
lists. The resulting CSV-file contained 125 356 rows for zone-based clustering,
and 725 274 rows for grid-based clustering. Finally, the grid-flow and zone-flow
CSV-files were left joined with the weather CSV (Table B3) on the timestamp
field using pandas5.

Listing 4.1: SQL query to extract the hourly outflow, inflow and internal flow for
a zone.

SELECT
{index} as zone ,

TIMESTAMP TRUNC(
TIMESTAMP(DATETIME( s t a r t e d a t , ’ Europe/ Oslo ’ ) ) ,
HOUR) AS timestamp ,

COUNTIF( t r i p s . s t a r t s t a t i o n i d IN ({ s t a t i o n s }) AND
t r i p s . e n d s t a t i o n i d NOT IN ({ s t a t i o n s } ) )
AS outf low ,

COUNTIF( t r i p s . s t a r t s t a t i o n i d NOT IN ({ s t a t i o n s }) AND
t r i p s . e n d s t a t i o n i d IN ({ s t a t i o n s } ) )
AS in f low ,

COUNTIF( t r i p s . s t a r t s t a t i o n i d IN ({ s t a t i o n s }) AND
t r i p s . e n d s t a t i o n i d IN ({ s t a t i o n s } ) )
AS i n t e r n a l f l o w

FROM ‘ o s l o b y s y k k e l t r i p s ‘ as t r i p s
GROUP BY timestamp
ORDER BY timestamp

Feature Engineering

Feature engineering is a fundamental part of machine learning research to make
a learning algorithm work efficiently. It requires domain knowledge of the data

5pandas is a data structuring library for Python
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used, and is often used to generalize certain features of a dataset to a format
that is understood by the learning algorithm. This section will describe some
of the feature engineering techniques that were applied in this thesis. Feature
engineering was performed on the two CSV-files described in the previous section,
hereby denoted as flow-by-grid and flow-by-zone.

First, a number of datetime-related features were extracted from the times-
tamp field. This includes the year, month, week number, day of the week, and
hour. In addition, whether or not that date was a Norwegian holiday was ex-
tracted, and the season in which the date belongs to (winter, spring, summer or
autumn).

In Vancouver, Canada, Gallop et al. [2011] found that bike traffic counts for
the current hour decreases by 23.54% if there was rain in the previous three hours.
This was found to be one of the most significantly influential variables for the
Vancouver dataset, and hence it was also chosen to include it in this dataset. A
boolean feature rain last 3 was added to encode this information. It is set to
true if there was measured more than 0.8mm rain in the previous three hours
combined. Additionally, other meteorological features used include current rain
in millimeters, temperature in Celsius, wind speed in km/h and whether it was
sunny or not.

Next, a number of features capturing the temporal dependencies of past flow
were engineered, inspired by research conducted by Zhang et al. [2017] where the
authors used Convolutional ResNets to predict city-wide crowd flows. Specifically,
closeness, period and trend were calculated as moving averages for the outflow,
inflow and internal flow of a grid cell or zone for a given hour, resulting in nine
added features (see Table B6 in Appendix B).

Closeness is defined as the average outflow, inflow or internal flow of the previ-
ous three hours of a given cell or zone at a given hour, and hence captures
very recent temporal dependencies.

Period is defined as the average outflow, inflow or internal flow of the previous
four days at the same hour of a given cell or zone at a given hour, and
hence captures temporal dependencies related to daily periodicity, i.e. that
flow tends to be relatively equal for 24 hour intervals.

Trend is defined as the average outflow, inflow or internal flow of the previous
four weeks at the same day at the same hour of a given cell or zone at a
given hour, and hence captures the trend in the data, i.e. that flow steadily
increases as peak season approaches.

Figure 4.2 shows the outflow of zone ”St. Hanshaugen Nedre” for three differ-
ent time intervals. Figure 4.2a indicates that outflow of recent time intervals are
more relevant than outflow of distant time intervals, implying temporal closeness.
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Figure 4.2b shows the clear pattern of daily periodicity (period) in this area. Fig-
ure 4.2c shows how the flow increases as the year approaches peak season (trend).

(a) Closeness of St. Han-
shaugen Nedre (20.04.2017
05:00 - 23:00)

(b) Period of St. Han-
shaugen Nedre (17.04.2017
- 23.04.2017)

(c) Trend of St. Han-
shaugen Nedre (03.04.2017
- 04.06.2017)

Figure 4.2: Closeness, period and trend temporal patterns of outflow for zone St.
Hanshaugen Nedre

Producing the Final Datasets

The final feature engineered datasets flow-by-grid and flow-by-zone were then
split into a training set, a validation set and a test set. The validation set is used
for early stopping. 75% of the dataset is used as a training set, 10% as validation
set and 15% as test set. The split was performed a total of four times; before the
first two splits the datasets were ordered first by cell or zone, then by timestamp.
This is a suitable format for RNNs which expect sequential data, as well as many
of the baselines. Before the last two splits, the datasets were shuffled randomly.
This format is suitable for FFNNs. Ordering does not affect RF performance,
so either can be used for this algorithm. See Table B6 in Appendix B for a
description of every feature in the final datasets. The ResNet model however
expects the data to be structured in an image-like manner. This is explained in
the following section.

Transforming Flow Datasets to Images for ResNet

The ResNet used in this thesis is actually a CNN with a slightly different archi-
tecture. Since it is a CNN, it expects input in the form of images with a height
dimension, width dimension and depth dimension. Every image represents one
timestep (one hour in the case of this thesis). Every pixel in an image represents
the flow of a specific cell or zone. In addition, every pixel has three channels;
outflow, inflow and internal flow. All temporal features described in Table B6 are
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discarded, and the images are rather sequenced by each timestamp. In addition,
all meteorological features are also discarded due to time constrains in this thesis,
but Chapter 6.4 describes how this can be added in the future. All moving aver-
age features are calculated in the actual ResNet model itself, rather than being
pre-calculated in this module. Figure 4.3 shows a conceptual diagram of how the
data is structured for the ResNet-model. The ResNet-model that was used in
this thesis expects data for every ”pixel” and every hour; therefore, all 216 cells
were used for grid clustering, and all 14 zones were used for zone clustering. The
original data only included data for hours where the BSS actually was open, but
this had to be upsampled to include all 24 hours. The upsampled rows were given
flow values of 0. Furthermore, to limit the sparsity of the dataset such that most
images actually contain flow values, the time span of the dataset was limited to
April 16th 2017 - October 15th 2017.

(a) A single input image for the ResNet
representing the flow of all grid cells for a
specific hour

(b) Multiple input images arranged in se-
quence.

Figure 4.3: Conceptual diagram showing the expected input for the ResNet-
model. These figures show how the input is structured when using grid clustering.

Grid clustering was rather trivial to represent as an image, as the BSS is
already grouped in an ”image-like” manner when using grid clustering. However,
zone clustering uses polygons defining the bounds of each area, and was therefore
not trivial to represent as images. Ultimately, zone-based clustering was chosen
to be represented as a 2x7 image, which means that the CNN is not able to
accurately capture spatial dependencies between each zone. This is explained in
further detail in Chapter 5. The ResNet-compatible datasets are 4D tensors of
shape (T, d, h, w) where T = timesteps = 4392 and d = dimensions = 3 for both
grid and zone, h = height = 12 and w = width = 18 for grid, and h = 2 and
w = 7 for zone.
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4.1.2 Machine Learning Module

The Machine Learning Module is, as the name implies, responsible for han-
dling everything related to ML. All baselines, RF, FFNN, RNN/LSTM/GRU
and ResNet models are implemented, trained and evaluated in this module using
TensorFlow, Keras or SKLearn. All models consume datasets produced in the
Data Module. The FFNN and RNN-models are factored out to their own sepa-
rate packages within this module in order to have a code structure that complies
with the requirements of Google CloudML. Each model is described in greater
detail in Section 4.2.

4.1.3 Visualization Module

The Visualization Module was developed to get a greater understanding of the
flow dynamics of the Oslo BSS. Albeit not within the scope of this thesis, this
module is proposed as a visual front-end for the predictions made by the ML
Module. A Node.js6 application using the Google Maps Platform API was ini-
tially developed to visualize historical flow. As this module is not a central part
of this thesis, further elaborations will not be made in this section. Chapter 6.4
describes how this module is intended to be used in the future. Figure 4.4 shows
a screenshot of the application.

4.2 Models

This section describes the models implemented in this thesis.

4.2.1 Baselines

It is crucial to establish baselines in machine learning projects from which models
can be compared with. Baselines serve as a simple reference point of the complex-
ity of the problem modelled. The more sophisticated machine learning models
implemented in this thesis were iteratively improved and compared with the base-
lines in order to determine whether the predictive power of the ML-models was
stronger than naive prediction methods. The three baselines implemented are
described below.

Random Algorithm

Random Algorithm (RA) is frequently used in the literature as a very naive
baseline. It is the baseline with the least predictive power in this thesis. RA

6Node.js is a JavaScript run-time environment for building web applications
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Figure 4.4: Screenshot from the Visualization Module using Grid mode. The
overall flow in Oslo is here shown for a morning rush hour. Green cells indicate
positive net flow (higher amount of inflow than outflow). Red cells indicate
negative net flow. Darker colors represent a larger difference. Internal flow is
shown by clicking on a cell.

simply samples a random target value from the distribution of target values
within the training set. Since there are three target values in this thesis, RA
picks an inflow value between inmin and inmax, an outflow value between outmin
and outmax and internal flow value between internalmin and internalmax.

Historical Average

Historical Average (HA) is one of the most popular choices of baseline in the
literature. HA calculates the average outflow, inflow and internal flow for all
clustered areas for all time steps in the training set. Given the historical collection
of flow F = Y1, Y2, . . . , Yt, the predicted value Ŷt+h is the mean of the values in
F .

Ŷt+h =
Y1 + Y2 + · · ·+ Yt

t
(4.1)
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Last Value

In the BSS industry, Last Value (LV) is commonly used as a naive prediction
method because it tends to perform well in this domain, where traffic counts
usually do not fluctuate significantly every hour. LV works by setting the last
observed value Yt as the estimate of Ŷt+h, where h is the prediction horizon (one
hour in this thesis).

Ŷt+h = Yt (4.2)

In machine learning, a problem that may occur is that models predict the
identity function for the last observed value, effectively rendering the model equal
in performance to a LV algorithm. This baseline is used to identify if such an
issue arises. In addition, the machine learning models implemented must perform
better than this baseline in order to be of any business value.

4.2.2 Random Forest

RF differs from the other machine learning algorithms implemented in that it is
not a neural network. RF has been used with great success when it comes to
prediction tasks within the context of BSS (Ashqar et al. [2017], Bacciu et al.
[2017], Ghanem et al. [2017], Wang et al. [2017]). It is a machine learning model
that requires little feature engineering, data preprocessing and hyperparameter
optimization, while still being able to achieve promising results. In addition, RF
enables the practicioner to get an overview of which features contributed the most
by performing feature importance calculation during training. In this thesis, the
SciKit-Learn implementation of RF was used. The only hyperparameter that
was optimized using Grid Search (see Chapter 2.5) was the number of trees in
the forest. The reader is referred to Chapter 2.4 for more details on Random
Forests.

4.2.3 Feed-Forward Neural Network

FFNNs have been used extensively in the literature, either as a main contri-
bution, or to serve as baselines for other models (Fei et al. [2017], Milenković
et al. [2014], Yang et al. [2015], Yang and Zhang [2016], Zhang et al. [2016]).
The FFNN models implemented in this thesis are commonly referred to as Deep
Neural Networks (DNNs) because they consist of more than one hidden layer. Nu-
merous configurations were evaluated through the use of Bayesian Optimization
on Google CloudML’s Hyperparameter Tuning7 service. Common for all con-
figurations was that the ReLU activation function (see Chapter 2.3) was used.

7https://cloud.google.com/ml-engine/docs/tensorflow/hyperparameter-tuning-overview
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In addition, the features were processed in the same manner for all configurations.

Categorical features with few classes were encoded as one-hot vectors. This
is important because without one-hot encoding, high categorical values would
effectively be perceived as more important by the neural network. For example,
a value of 21 for the hour feature would be more important than a value of 8,
which in reality may not be the case. One-hot encoding performs binarization on
a categorical feature, such that a feature with N categorical values translates to
a binary vector of length N where only one value is 1, the rest are 0. Only binary
categorical features (F10, F11, F14 and F16 in Table B6) were one-hot encoded
in this thesis.

Categorical features with many classes were mapped to dense real-valued vec-
tors using embeddings. Neural networks do not train particularly well when using
sparse high-dimensional one-hot encoded vectors for features with many cate-
gories. Therefore, features with a large vocabulary size (i.e. many categories)
were transformed into dense low-dimensional continuous vectors. A general rule
of thumb for the dimensions of the embedding vector is to use the square root
of the number of categories in the original feature vector, e.g. a feature vector
with 64 categories would be transformed to an 8-dimensional embedding vector.
Embedding mapping was performed on features F1, F6, F7, F8, F9 and F12 in
Table B6.

Finally, continuous features (F13, F15, F16, F18-F26 in Table B6) were nor-
malized using standardization. Standardization works by first determining the
distribution mean and standard deviation of each feature, then subtracting the
mean for each feature before finally dividing the values of each feature by its
standard deviation. This is shown in Equation 4.3.

x′ =
x− x̄
σ

(4.3)

where x is the original feature vector, x̄ is the mean of that vector and σ is
the standard deviation.

Every model had a different configuration of the following hyperparameters
as they were optimized by BO: batch size, size of first hidden layer, number of
hidden layers, layer size decay rate, optimizer, and learning rate. The layers
in the network were constructed with exponential decay, meaning that with a
decay rate of 0.5 and a first layer size of 512, the second layer would be of size
512× 0.5 = 256, the third of size 256× 0.5 = 128 and so on.
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4.2.4 Recurrent Neural Network

As explained in Chapter 3.2, one of the major gaps in the literature that was
identified during the SLR process was the lack of RNNs. RNNs have been shown
to excel when applied to sequential data. Since the flow data used in this thesis
is inherently sequential, and due to the fact that RNNs have not been used in
the BSS literature, it was decided to implement two RNN variations, LSTM and
GRU, and evaluate their performance against both each other and other models.
Several model hyperparameters were optimized using BO; the type of RNN cell
(LSTM or GRU), the number of units for the RNN cell, learning rate, sequence
length, and batch size. Common for all model configurations was the use of RM-
Sprop as optimizer and tanh as the activation function. Initially, ReLU was used
as the activation function, but this caused the model to diverge quickly, resulting
in exploding gradients. The tanh function fixes this problem by squashing the
output to a value in the range (−1, 1). All the same feature processing steps as
FFNNs were used for this model.

A considerable limitation of using RNN models for this prediction problem
was uncovered in this thesis. Due to the fact that each clustered area (grid cell
or zone) is represented as a sequence in and of itself, and that the dataset used
contains the flow for all areas for all timesteps, RNNs can not be directly used
on this dataset. This is because the RNNs may use sequences that span multiple
areas, which intuitively is not desirable. Instead, a separate RNN model has to
be trained and optimized for each clustering area since the sequence patterns are
unique for each area. Naturally, this is far more computationally expensive than
other models, requiring 14 or 216 models to be optimized, trained and maintained
for zone-based clustering and grid-based clustering respectively, as opposed to a
single unified model for each of the clustering methods when using RF, FFNN
or ResNet. Nevertheless, RNNs modelling individual clustered areas did perform
well on the validation set, as described in Chapter 5. Due to time constraints in
this thesis, only three zones and three cells were modelled using RNN variations.

4.2.5 Deep Residual Network

In Zhang et al. [2016] the authors show that a Deep Residual Network is able
to effectively model crowd flows using data from both taxi trips and bike trips
in New York City. Additionally, Wang et al. [2017] demonstrated that ResNets
outperformed all other models when used to predict demand in a car-sharing
service company in China. Based on this, it was decided to use ResNet in this
thesis, and evaluate its performance when applied to the Oslo City Bike flow
dataset. The author of this thesis strongly emphasizes that the ResNet model
used in this thesis is a clone of a publicly available implementation by Zhang et al.
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[2016], and the only modifications made is the dataset used and simple manual
tuning of a few select hyperparameters, specifically the optimizer and number
of residual units. The ResNet implementation by Zhang et al. is available at
https://github.com/lucktroy/DeepST. It is included as a candidate model in
this thesis to establish a solid foundation on which objective conclusions can be
made as to which machine learning algorithm is best suited for the problem of
predicting cluster-level flow. Because this model essentially is a copy of Zhang et
al’s implementation, the reader is referred to the original study by Zhang et al.
[2016] and their GitHub repository for further implementation details.

4.3 Frameworks, libraries and programming lan-
guages

All development concerning the data- and machine learning modules is done using
Python 3.5. Python has become the standard language to use when working with
machine learning, because most ML libraries are developed primarily for this
language. Furthermore, it is an easily readable programming language that has
powerful interoperability with low-level C code, making it efficient for complex
mathematical operations. The visualization module was built using JavaScript,
and is built as a Node.js application.

For data structuring and analysis, the Pandas8 library was used. Pandas
has exceptionally high performance when handling large datasets, and includes
a wide range of operations to transform data.

The data module utilizes pandas-gbq9, which is a Pandas-supported data
querying library for Google BigQuery. All data provided by Oslo City Bike
in this thesis is stored in Google BigQuery10. pandas-gbq queries the databases
using SQL syntax and returns the data in Pandas data structures, which can
then be transformed and easily exported to different file formats.

The RF model is implemented using Scikit-Learn11 which provides high-level
interfaces for various regression, classification and clustering algorithms.

The other ML models are implemented with TensorFlow12, which has become
the most popular framework for machine learning. TensorFlow is developed by
Google and features multiple levels of abstractions for implementing a wide range
of machine learning models. Developers can make use of prebuilt Estimators,
which are fully-equipped ML models following best practices that require very
little actual coding, or choose to use one of the low-level libraries which provides

8https://pandas.pydata.org/
9https://github.com/pydata/pandas-gbq

10https://cloud.google.com/bigquery/
11http://scikit-learn.org/
12https://www.tensorflow.org/

https://github.com/lucktroy/DeepST
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endless options for customization. TensorFlow works by building computational
graphs where every node is a mathematical operation and every edge represents
flow of data between nodes. By using a predefined computational graph to repre-
sent computational steps, TensorFlow is able to organize operations in the most
efficient manner, allowing high performance computation. TensorFlow models
can also be trained in the cloud, where large clusters of GPU-equipped comput-
ers can train and optimize models in a fraction of the time it would have taken
on a regular desktop.

The RNN and ResNet models are also essentially TensorFlow models, but
are implemented using Keras13, which is a high-level neural networks API that
runs on top of TensorFlow. Keras provides very high level abstractions of popular
neural network implementations, and was designed to enable developers to quickly
test various models. Since Keras uses TensorFlow as the backend, the developed
models are also capable of being trained and optimized on Google CloudML.

13https://keras.io/



Chapter 5

Experiments and Results

This chapter describes the experiments performed in this thesis. First, Section
5.1 introduces the experimental plan. Next, the experimental setup is described
in Section 5.2. Finally, the experiment results are presented in Section 5.3.

5.1 Experimental Plan

The experiments performed in this thesis are designed to answer RQ3 and RQ4
through rigorous testing of multiple models and configurations.

Research question 3 How can machine learning be used to predict the flow of
bikes in bike-sharing systems?

In order to answer RQ3, several machine learning algorithms originally in-
tended for different applications were implemented: RNNs are intended for data
of sequential nature and can model the process responsible for every consequence.
ResNets, which are variants of CNNs, are intended for data structured in an
image-like manner and can identify spatial and temporal relationships between
data. DNNs are the classical type of neural networks and can be used in various
scenarios to model complex non-linear relationships by mapping a set of input
features to some output. RF, unlike the other models implemented, are not neu-
ral network-based models, but can nevertheless be used for many of the same
applications as DNNs. Evaluating a wide range of different machine learning
algorithms ensures that RQ3 can be answered objectively.

Experiment 1: Hyperparameter Optimization involves finding the op-
timal hyperparameters for each machine learning algorithm, and was specifically
designed to answer RQ3. RF uses Grid Search, described in Chapter 2.5, to
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find the optimal number of trees in the forest, which is the only hyperparame-
ter for this model. The DNN and RNN models are implemented in TensorFlow
and structured in compliance with Google CloudML’s packaging requirements in
order to use CloudML’s Hyperparameter Tuning service. Cloud ML Hyperpa-
rameter Tuning uses Bayesian Optimization as the optimization technique and
allows for parallel optimization of multiple models which saves a lot of time. The
hyperparameters tuned for DNN and RNN can be found in Table 5.1 in Section
5.2. Since the ResNet model used in this thesis is the same as in Zhang et al.
[2016], where the authors optimized the model on a very similar dataset, not
much work was put into optimizing this model. Manual hyperparameter search
was performed by evaluating a few different combinations of hyperparameters,
described in Table 5.1 in Section 5.2.

Since this thesis focuses on two different types of clustering methods, hy-
perparameter optimization was performed for both zone-based clustering and
grid-based clustering for each model. Additionally, because the number of fea-
tures used in each of the sub-experiments in Experiment 2 varies from 8 features
to 22 features, separate models were optimized for experiments with few fea-
tures (NONE, M ) and many features (C, CP, CPT, CPTM ). Furthermore, as
explained in Section 5.2.2, separate RNN models had to be optimized for low-,
mid- and high-traffic volume areas. This resulted in a total of 24 optimized mod-
els ((3 RNN models + 3 other ML models) × 2 clustering methods × 2 levels of
feature amount).

Research question 4 Which features have the highest impact on the learning
algorithm’s ability to accurately perform predictions?

In order to determine which features are most influential both for each in-
dividual model and across all models, two approaches are taken. The first ap-
proach is to evaluate every model with different feature configurations. In Ex-
periment 2: Determining Influential Features, all models are evaluated in
sub-experiments with 6 different sets of features for both zone-based clustering
and grid-based clustering:

• NONE uses only temporal features F6-F12 and the zone/cell feature F1
described in Table B6 in Appendix B.

• M uses F1, temporal features F6-12 and meteorological features F13-F17.

• C uses F1, temporal features F6-12 and moving average closeness features
F18, F21, and F24.

• CP uses F1, temporal features F6-12, moving average closeness features
F18, F21 and F24, and moving average period features F19, F22 and F25.
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• CPT uses F1, temporal features F6-12, moving average closeness features
F18, F21 and F24, moving average period features F19, F22 and F25, and
moving average trend features F20, F23 and F26.

• CPTM uses all features.

These sub-experiments will also supply answers to RQ3 by determining which
configuration of features are optimal for each model.

The second approach to answering RQ4 is to make use of the built-in feature
importance computation in SciKit-Learn’s Random Forest implementation. This
is done for both zone-based and grid-based clustering using the NONE, M and
CPTM configurations of features. However, some drawbacks of this approach
are discussed in Chapter 6.

Evaluation Metrics

The standard method for measuring performance of machine learning models
in the BSS literature is to use Root Mean Squared Error (RMSE), shown in
Equation 5.1.

RMSE =

√∑n
i=1(ŷi − yi)2

n
(5.1)

RMSE, in contrast to MAE, punishes large errors heavily. If the predicted
flow deviates by much from the true flow, it could ultimately lead to a completely
false sense of the BSS demand, so punishing large errors is desired. Furthermore,
RMSE outputs values in the same units as the dependant variables being mod-
elled, e.g. RMSE of 10 means that the predicted outflow, inflow and internal
flow was off by 10 trips on average across all flows, which is an easy measure to
understand.
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5.2 Experimental Setup

5.2.1 Hyperparameters

As mentioned earlier, several hyperparameters were optimized through different
optimization techniques for each model. The model configurations and hyperpa-
rameters are summarized in Table 5.1. The final selected hyperparameters for
each model after optimization is presented in Table 5.2 and 5.3.

Parameter RF RNN DNN ResNet
num trees [50, . . . , 200] - - -
rnn cell1 - gru ∨ lstm - -
rnn units - [16, . . . , 256] - -
learning rate - [5e-4, . . . , 8e-3] [1e-4, . . . , 5e-2] 2e-4
seq length - [18, 54, 126, 252] - -
activation fn - tanh ReLU ReLU
optimizer2 - ΘR ΘR ∨Θadam ∨Θag Θadam ∨ΘR

first layer size - - [64, . . . , 700] -
num layers - 1 [1, . . . , 6] -
decay rate - - [0.1, . . . , 0.8] -
batch size - [128, . . . , 1024] [128, . . . , 1024] 32
residual units - - - [4, . . . , 12]

1 CG = GRU, CL = LSTM
2 ΘR = RMSprop, Θadam = Adam, Θag = AdaGrad

Table 5.1: Parameters for every model. Parameters with continuous parame-
ter ranges that were optimized are denoted with brackets []. Parameters with
categorical parameters that were optimized are denoted with logical ORs ∨ in
between. RF used Grid Search, RNN and DNN used Bayesian Optimization,
ResNet used manual search.

5.2.2 Dataset alterations

The datasets used in the experiments and how they were produced are described
in greater detail in Chapter 4.1.1. For each dataset flow-by-grid and flow-by-zone,
multiple different combinations of features were used as described in Section 5.1.
However, some alterations had to be made to the datasets in order for them to
be used by RNN and ResNet.

Recall from Chapter 4.2.4 that a limitation of the RNN model is that a sepa-
rate model must be optimized and trained for every clustered area (cell or zone).
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Due to time constraints it was not feasible to train and optimize separate RNN
models for all 216 grid cells and 14 zones. Therefore, it was decided to choose
three different grid cells and three different zones with varying levels of traffic
volume and optimize models for these areas, which is used as a proxy for the pre-
diction performance of all areas. Low-, medium- and high-traffic volume areas
were chosen for each of the clustering methods. Figure 5.1 shows the geospatial
locations for each of the areas highlighted in black. The traffic volumes for each
of the selected areas is presented in pie charts in Figure 5.2, which shows that
the three different areas chosen for each clustering method are of different levels
of traffic volume.

(a) Cell 154 (high-volume, near
Youngstorget), cell 97 (mid-volume,
near Majorstuen) and cell 139 (low-
volume, Herslebs gate)

(b) Zone 1 (high-volume, Sentrum Øst),
zone 7 (mid-volume, Majorstuen) and
zone 10 (low-volume, Skøyen)

Figure 5.1: Low-, medium- and high-traffic volume grid cells and zones used for
the RNN model.
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(a) Grid cell inflow (b) Grid cell outflow (c) Grid cell internal flow

(d) Zone inflow (e) Zone outflow (f) Zone internal flow

Figure 5.2: Pie charts describing the traffic volumes for each of the zones and
grid cells chosen for the RNN model. The data is sampled from the period April
4th 2017 - August 4th 2017. The charts clearly show that low-, medium- and
high-traffic volume areas were chosen.

Additionally, as explained in the section titled Transforming Flow Datasets
to Images for ResNet in Chapter 4.1.1, the ResNet datasets were limited in time
span from April 16th 2017 - October 15th 2017 in order to reduce sparsity.
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5.2.3 Environment

Development and prototyping of all models was done on a personal MacBook Pro
laptop. Optimization, training and experiments for the RF and ResNet models
was also done on this laptop. Optimization, training and experiments for the
DNN and RNN models was done on a Google CloudML virtual machine. In
total, 435 hours was spent on optimization and training of the RNN and DNN
models on Google CloudML.

MacBook Pro running macOS High Sierra version 10.13.3. 2.7 GHz Intel Core
i5 processor, 16 GB 1867 MHz DDR3 memory, Intel Iris Graphics 6100
1536 MB GPU.

Google CloudML Virtual Machine running a single BASIC GPU worker in-
stance on a standard gpu Compute Engine machine. It has one NVIDIA
Tesla K80 GPU.

5.3 Experimental Results

5.3.1 Experiment 1: Hyperparameter Optimization

Hyperparameter Selection Charts

This section presents multiple charts showing the selections of hyperparameters
that were chosen by Bayesian Optimization for the DNN (Figure 5.3) and RNN
(Figure 5.4) high-feature models for both grid- and zone-based clustering. Low-
feature models were optimized in the same manner, but charts for these are
omitted due to similarity. Charts are not presented for the RF and ResNet
hyperparameter selection process due to the fact that grid search and manual
search was performed on these models. Bayesian Optimization was run for 50
trials for DNN models and 30 trials for RNN models. Please note that the charts
of RNN hyperparameter selections (Figure 5.4) are for the medium-traffic models
(cell 97 / zone 7).
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(a) Optimizer selection distribution
(b) Number of layers selection distribu-
tion

(c) Batch size selection distribution (d) Learning rate selection per trial

(e) First layer size selection per trial (f) Layer decay rate selection per trial

Figure 5.3: Hyperparameter selections using Bayesian Optimization for DNN.
Grid-based models in dark blue, zone-based models in yellow. Figure a, b, and
c shows the number of times the respective categorical parameters were selected
over 50 trials. Figure d, e and f shows the respective parameter values per trial
run for continuous parameters.
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(a) Cell type selection distribution (b) Sequence length selection distribution

(c) Batch size selection distribution (d) Learning rate selection per trial

(e) Number of units selection per trial

Figure 5.4: Hyperparameter selections using Bayesian Optimization for RNN
(medium-traffic model). Grid-based models in dark blue, zone-based models in
yellow. Figures a, b, and c shows the number of times the respective categorical
parameters were selected over 30 trials. Figures d and e shows the respective
parameter values per trial run for continuous parameters.
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Optimal Hyperparameters

After running Bayesian Optimization for RNN and DNN, the hyperparameters
in the trial that yielded the lowest RMSE were picked. Figure 5.5a shows the
RMSE per trial of Bayesian Optimization for zone-based clustering, while Fig-
ure 5.5b shows the same for grid-based clustering. Note that the RNN graphs
show the average RMSE of low-, medium- and high-traffic volume models. For
reproducibility, the final optimal hyperparameters for most models are presented
in Table 5.2 for zone-based clustering and Table 5.3 for grid-based clustering,
except the hyperparameters for low- and high-traffic RNN models, which can be
found in Appendix C due to space limitations.



5.3. EXPERIMENTAL RESULTS 67

(a) RMSE for every trial of hyperparameter optimization for zone-
based DNN and RNN.

(b) RMSE for every trial of hyperparameter optimization for grid-based
DNN and RNN.

Figure 5.5: RMSE for every trial of hyperparameter optimization for both zone-,
and grid-based clustering for DNN and RNN. Note that the RNN graphs are the
average of low-, mid- and high-traffic volume models.
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Optimal hyperparameters for zone-based models
Format: low-feature models (NONE, M) / high-feature models (C, CP, CPT, CPTM)
Parameter RF RNNmedium-traffic DNN ResNet
num trees 100 / 200 - - -
rnn cell - gru / gru - -
rnn units - 232 / 249 - -
learning rate - 0.005 / 0.0058 0.0499 / 0.0403 2e-4
seq length - 126 / 126 - -
activation fn - tanh ReLU ReLU
optimizer1 - ΘR Θadam / Θag Θadam

first layer size - - 572 / 589 -
num layers - 1 3 / 2 -
decay rate - - 0.2215 / 0.1955 -
batch size - 512 / 512 512 / 256 32
residual units - - - 4

1 ΘR = RMSprop, Θadam = Adam, Θag = AdaGrad

Table 5.2: Optimal hyperparameters for every model when using zone-based
clustering. Low-feature models (NONE, M) on the left side of the slash (/),
high-feature models (C, CP, CPT, CPTM) on the right. Note that only the
hyperparameters for medium-traffic RNN-models is presented; hyperparameters
for low-traffic and high-traffic RNN-models can be found in Appendix C.

Optimal hyperparameters for grid-based models
Format: low-feature models (NONE, M) / high-feature models (C, CP, CPT, CPTM)
Parameter RF RNNmedium-traffic DNN ResNet
num trees 100 / 200 - - -
rnn cell - lstm / gru - -
rnn units - 154 / 251 - -
learning rate - 0.00046 / 0.00054 0.0417 / 0.0462 2e-4
seq length - 126 / 126 - -
activation fn - tanh ReLU ReLU
optimizer1 - ΘR Θag / Θag Θadam

first layer size - - 655 / 671 -
num layers - 1 5 / 2 -
decay rate - - 0.792 / 0.7381 -
batch size - 256 / 512 128 / 256 32
residual units - - - 8

1 ΘR = RMSprop, Θadam = Adam, Θag = AdaGrad

Table 5.3: Optimal hyperparameters for every model when using grid-based clus-
tering. Low-feature models (NONE, M) on the left side of the slash (/), high-
feature models (C, CP, CPT, CPTM) on the right. Note that only the hyper-
parameters for medium-traffic RNN-models is presented; hyperparameters for
low-traffic and high-traffic RNN-models can be found in Appendix C.
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5.3.2 Experiment 2: Determining Influential Features

Two approaches were taken in order to determine which features were most influ-
ential. The first approach was to use the built-in feature importance measurement
that comes with Scikit-Learns RF implementation. Figure 5.6a, 5.6b and 5.6c
shows the measured feature importances when running RF using the NONE, M
and CPTM feature configurations respectively. The second approach was to test
all models using all six configurations of features. RMSE was used as a per-
formance metric for all tests. Results for all models using grid-based clustering
is presented in Table 5.4, and using zone-based clustering is presented in Table
5.5. Note that the values presented for RNN are the averages of low-, medium-
and high-traffic RNN models. This experiment also provides answers to RQ3
by determining which model and feature configuration combination yields the
lowest RMSE value for both zone- and grid-based clustering. Experiments using
meteorological information was not performed for the ResNet model due to time
constraints, and is proposed as future work in Chapter 6.4.
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(a) RF feature importance using NONE feature configuration

(b) RF feature importance using M feature configuration

(c) RF feature importance using CPTM feature configuration

Figure 5.6: Random Forest feature importance measurements for grid- and zone-
based clustering. Figure a shows feature importance using the NONE configu-
ration of features, Figure b using the M configuration and Figure C using the
CPTM configuration.
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RMSE Evaluation metrics for grid-based clustering
Features RA HA LV RF RNN1 ResNet DNN
NONE 100.01 8.58 3.60 3.46 4.65 4.60 4.33
M - - - 3.18 3.85 - 3.16
C - - - 3.27 3.94 4.58 3.26
CP - - - 3.28 3.91 4.57 3.00
CPT - - - 3.28 3.87 4.58 2.95
CPTM - - - 3.18 4.13 - 2.84

1 Shows the average RMSE of low-, medium- and high-traffic RNN models

Table 5.4: RMSE of all models for all configurations of features when using grid-
based clustering. DNN performed best with the CPTM configuration, reaching
an RMSE of 2.84.

RMSE Evaluation metrics for zone-based clustering
Features RA HA LV RF RNN1 ResNet DNN
NONE 221.02 30.34 11.76 10.6 7.62 12.49 14.62
M - - - 9.22 7.74 - 9.56
C - - - 9.11 7.5 10.65 9.00
CP - - - 9.40 8.22 10.23 8.26
CPT - - - 9.41 9.11 9.85 7.96
CPTM - - - 9.06 8.54 - 7.45

1 Shows the average RMSE of low-, medium- and high-traffic RNN models

Table 5.5: RMSE of all models for all configurations of features when using zone-
based clustering. DNN performed best with the CPTM configuration, reaching
an RMSE of 7.45.
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Chapter 6

Evaluation and Conclusion

Recall from Chapter 1 the overarching goal of this thesis:

Goal To enable Bike-Sharing System decision makers to proactively rebalance
service stations based on accurate predictions of future bicycle flow.

In order to accomplish this goal, it was decided to focus on cluster-level flow
prediction using machine learning techniques. Both grid-based clustering and
zone-based clustering was explored, where grid-based clustering can be regarded
as a naive clustering method which requires no prior knowledge of the Bike-
Sharing System (BSS), while zone-based clustering can more accurately define
regions based on spatial and temporal patterns, but requires expert knowledge
of the system. Several machine learning algorithms principally intended for dif-
ferent use cases were implemented and rigorously optimized, trained and tested
in order to determine which ML algorithm is most suitable for the problem of
predicting cluster-level flow in BSSs. The entire system architecture, as well as
the implementation details of each ML model and how these can potentially be
used in a production setting, was described in detail in Chapter 4.

In this chapter, an evaluation of the experiment results from Chapter 5 is
presented in Section 6.1. The results of the experiments, as well as the overall
merits and limitations of this thesis, is discussed in Section 6.2. Section 6.3 de-
scribes the contributions of this thesis, before finally Section 6.4 describes several
proposed extensions and solutions to limitations of this work.

6.1 Evaluation

This section presents an evaluation of the experiment results presented in Chapter
5. The first experiment was designed to empirically find the best hyperparameters

73
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for every model such that optimal performance was ensured for each one, so that
the models could be objectively compared against each other. The results for
this experiment are evaluated in Section 6.1.1. The second experiment relates to
the feature processing part of this thesis, and was designed to thoroughly test
which variables were most important in order to obtain satisfactory prediction
performance. The results of this experiment are evaluated in Section 6.1.2.

6.1.1 Experiment 1: Hyperparameter Optimization

This experiment was mainly designed to provide answers to RQ3.

Research question 3 How can machine learning be used to predict the flow of
bikes in bike-sharing systems?

It was decided to implement four machine learning algorithms originally in-
tended for different use cases. Random Forest and Deep Neural Network had
been used in the literature with success for a range of different problems related
to BSS prediction. Additionally, it was decided to adapt the Deep Residual Net-
work (ResNet) model by Zhang et al. [2016] for this thesis for two reasons; first,
because of the authors compelling results when applying the model to a BSS
use case, and secondly due to the fact that ResNet is currently one of the best
performing models in the ILSVRC image recognition competition. Finally, be-
cause the problem of predicting flow in BSSs is naturally a time series prediction
problem, and due to the fact that RNNs had not been used in the literature, two
unique RNN variants were also tested.

In order to ensure that every model would perform well, a lot of time was
spent optimizing each model. From the experiment details provided in Chapter
5, it is clear that the primary focus was on Bayesian Optimization (BO) for the
RNN and DNN models. The RF model only had a single parameter to optimize,
num trees, so a simple grid search sufficed for this model. Furthermore, it was
assumed that the ResNet model adapted from Zhang et al. [2016] already was
optimized to some extent - however, some manual optimization was performed
on this model by trying out different combinations of a few hyperparameters.

From the hyperparameter selection charts for DNN and RNN in Figure 5.3
and Figure 5.4 respectively, a few insights from the BO process becomes apparent.

• During initial prototyping of the DNN model, RMSProp was mainly used.
However, it is clear that BO favored Adagrad for both grid- and zone-based
clustering.

• There seems to be no apparent pattern for the number of layers used in
the DNN models, but two and six layers were chosen marginally more often
than the others.
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• For grid-based clustering using the DNN model, 256 as batch size was by far
the most popular choice, while the extremes at 128 and 1024 were almost
not chosen at all. Interestingly, there does not seem to be a clear favor of
batch size when using zone-based clustering.

• For the RNN model, GRU was a more frequent choice for zone-based clus-
tering, while LSTM was more frequent for grid-based clustering.

• A sequence length of 126 was most frequently picked for both clustering
methods for RNN. This may be due to the fact that a sequence length of
126 equals approximately seven days of recurrent behavior. It is intuitive
to think that a sequence length of seven days would be desirable due to the
periodicity of BSS traffic flow (ref Figure 4.2).

However, perhaps the most interesting take-away from this experiment can
be found by looking at the graph of RMSE per trial of BO, presented in Figure
5.5. As explained in Chapter 2.5, BO is supposed to search the hyperparameter
space intelligently, as opposed to Grid Search and Random Search. Therefore,
it should be expected that the graph of RMSE per trial of BO should gradu-
ally converge towards a lower RMSE as the search continues. Some fluctuations
should appear due to the exploitation/exploration trade-off that BO makes use
of. Nevertheless, it is clear from the graphs in Figure 5.5 that BO searches the
hyperparameter space rather randomly for both RNN and DNN. The RMSE per
trial run fluctuates wildly, and does not steadily decrease. This suggests that
BO did not work as intended, but rather performed similarly to how Random
Search would have performed. It is unclear why this is the case, but the author
of this thesis speculates that it may be because too many hyperparameters were
optimized simultaneously. If the number of hyperparameters to optimize was
reduced, or the optimization process was allowed to continue for more trials, the
RMSE may have steadily decreased as expected. Nevertheless, Random Search
is widely used with great success in the ML community, so even if BO behaved
like Random Search, it can be expected that near-optimal hyperparameters were
found.

6.1.2 Experiment 2: Determining Influential Features

This experiment simultaneously aimed to provide answers to RQ3 and RQ4. This
is because during this experiment, all models were tested with different feature
configurations in order to determine which model and feature combination yielded
the lowest RMSE on the test set.

Research question 4 Which features have the highest impact on the learning
algorithm’s ability to accurately perform predictions?
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Two approaches were taken in order to answer this question. First, feature
importance measurement was performed using the built-in functionality provided
by Random Forest. RF was run with three different configurations of features:
NONE, M and CPTM. The results of these three runs are presented in Figure
5.6 in Chapter 5.3.2. However, a major limitation of using RF to measure fea-
ture importance was identified in this experiment, which in essence rendered all
measured importances invalid. A general pattern in the RF feature importance
sub-experiments is that features with a high number of categorical values or with
a wide range of continuous values are consistently weighted heavier than other
features. For example, when introducing moving average features in the CPTM
experiment, these CPT features generally dwarf the importance of most other
features. This has to do with how importance is measured in Scikit-Learns RF
implementation, where the Gini impurity measure artificially prefers potentially
suboptimal predictors solely because of the scale of measurement or number of
categories (Strobl et al. [2007]). Unfortunately, a consequence of this is that the
feature importances measured by RF can not be deemed as accurate, because
this thesis uses a combination of both categorical features with as few as two pos-
sible values, and continuous features with a much wider range of possible values,
which skews the results in favor of the latter.

Nevertheless, the second approach to answer RQ4 does provide some answers
as to which features were most influential on the prediction performance, while
simultaneously determining how machine learning best can be used to predict
flow in BSSs. In this approach, all ML models were evaluated using six different
configurations of features; NONE, M, C, CP, CPT, and CPTM. In order for a
model to be regarded as successful, it had to perform better than all baselines.

It is clear from the final RMSE tables presented in Table 5.4 and Table 5.5
that Last Value is decidedly the best baseline for both grid- and zone-based
clustering, outperforming Historical Average and Random Algorithm. Note that
all baselines simply perform predictions based on past values of flow, and therefore
do not make use of any extra features. In order for an ML model to be regarded
as successful, it had to perform better than all baselines.

Grid-based clustering experiments

For grid-based clustering, only RF and DNN actually performed better than the
best baseline LV. RNN did not perform better than LV with any of the feature
configurations; in fact, the best configuration for RNN was M, which yielded a
RMSE of 3.85. By adding moving average features CPT to the RNN model,
we are essentially adding features that the network is supposed to learn through
recurrent unfolding. Hence, adding these features manually may just add noise to
the network, which in turn reduces the prediction accuracy. For the DNN model
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the opposite is observed; prediction performance increases as more features are
added.

Surprisingly, ResNet does not perform well when using grid-based clustering,
although the findings presented by Zhang et al. [2016] suggests otherwise. This
may be due to the fact that the ResNet model does not make use of meteoro-
logical information in any of the experiments. However, in the C, CP, and CPT
experiments, it is observed that ResNet performs worse than all other ML models.

RF performs best with the M and CPTM configurations, with a RMSE value
of 3.18. This suggests that RF is not able to make full use of the moving aver-
age features CPT, and that meteorological features are more important to this
particular model.

The best performance of all models when using grid-based clustering is found
using DNN with the CPTM configuration, which yielded an RMSE value of 2.84,
outperforming LV. It is observed that when integrating meteorological features in
the M experiment, the performance drastically increases. When moving average
features CPT are included as well in the CPTM experiment, the performance
increases further. This suggests that for the DNN model, the flow of bikes is
strongly dependant on both the current weather and temporal patterns of close-
ness, period and trend.

Zone-based clustering experiments

In the zone-based clustering experiments, all ML models with some feature con-
figuration are able to perform better than the best baseline LV. ResNet is the
worst ML model, but still manages to perform quite well with an RMSE value
of 9.85 using the CPT configuration, outperforming LV with an RMSE of 11.76.
Prior to the experiments, it was assumed that ResNet would perform much worse
using zone-based clustering than grid-based clustering, due to the fact that the
”image” supplied as the dataset has a much lower resolution using zone-based
clustering (2 × 7) than grid-based clustering (12 × 18). Although ResNet did
perform worse than all other ML models in this experiment, it still managed to
beat the best baseline.

RNN showed some of the same symptoms as in the grid-based experiments,
namely that adding moving average features CPT resulted in added noise. How-
ever, it is observed that using the C configuration actually yielded better results
than M or NONE. Additionally, the NONE experiment had better results than
M, which indicates that the network was unable to make full use of meteorolog-
ical information. It is unclear why this is the case, and further testing using all
zones is required to gain knowledge on this subject.

When using the DNN model, the same pattern as in the grid-based experi-
ments is observed; the model performance increases as more features are added.
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There is a significant jump in performance when adding meteorological informa-
tion, but the decidedly best performance presents itself when using all features
in the CPTM experiment, which resulted in an RMSE of 7.45, outperforming
all other models.

From the grid- and zone-based experiments, it becomes apparent that bike
flow is generally dependant on both meteorological factors and temporal pat-
terns of closeness, period and trend. This finding presents itself most clearly
when testing the DNN model using different configurations of features. Meteoro-
logical features seem to be most important for RF. A shortcoming of this thesis
is that ResNet was not tested with meteorological features, so it could not be
decided whether these features are important to this model. However, from the
zone-based experiments, it is clear that ResNet benefits greatly from introducing
closeness, period and trend features. RNN performs well when introducing mete-
orological features, but performance declines when using moving average features,
indicating that this is just seen as noise for this model.

In conclusion, the machine learning model that is best suited for the task
of predicting both grid- and zone-level flow is a standard DNN model using
meteorological features and information on temporal closeness, period and trend.

6.2 Discussion

One of the most crucial aspects of operating any transportation company is the
ability to predict future demand, as it provides essential input to a wide range
of functional areas within the business. Bike-Sharing Systems are a relatively
new mode of transport in the modern urban world, and benefits from accurate
demand prediction just as much as any other transportation mode. The research
conducted in this thesis aims to predict future cluster-level flow in BSSs by lever-
aging machine learning techniques. In order to get an overview of the current
research literature on demand prediction, two research questions were defined.
Because BSSs are in their industrial infancy compared to other transportation
industries, it was decided to broaden the literature search by including the more
general topic of on-demand transport services demand prediction, but focusing
on mainly BSSs. The idea was that demand prediction research in other trans-
portation industries is likely to use techniques that are applicable to the domain
of BSSs.

Research question 1 What is state-of-the-art within on-demand transport ser-
vices demand prediction?

Research question 2 Which neural network based techniques have been used
within the domain of on-demand transport services demand prediction?
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These research questions were explored by conducting a thorough Structured
Literature Review (SLR), presented in Chapter 3. A wide range of aspects re-
lated to demand prediction were considered, including analysis of spatio-temporal
usage patterns, examination of critically influential variables, different levels of
granularity on which prediction is performed, how entities can be clustered to
increase accuracy, and other similar problems related to demand prediction. Sev-
eral prediction techniques have been used in the literature, ranging from classical
statistical forecasting tools such as Autoregressive Integrated Moving Average
(ARIMA), to very recent advances in neural network research using ResNets.

In the BSS domain, the research community agrees that bike traffic is strongly
affected by primarily two factors; weather and spatio-temporal patterns. Bad
weather intuitively reduces system usage drastically, so integrating meteorological
information in prediction systems is crucial. Additionally, traffic in one area
is spatially affected by traffic in other areas, and temporally affected by past
patterns of traffic in the system. These factors were tightly integrated in the
models implemented in this thesis through the M and CPT features. However,
the SLR uncovered that no researchers had studied the impact of events, which
is likely a strong influencer on bike traffic. Unfortunately, due to both technical
details and time constraints, this was not studied in this thesis either, but is left
as an important area of research for the community.

A fundamental issue with the current state-of-the-art on BSS demand pre-
diction is that there is no universal frame for testing models within the research
community. Models are evaluated on different datasets, causing an inability to
properly compare results between researchers.

Several neural network based techniques has been used in the literature, in-
cluding classic FFNNs using various methods of initializing the weights, GRNN,
BN and more recently ResNets. Of the neural network based models reviewed,
ResNet emerged as the model with most potential due to the overwhelming suc-
cess when applied to car-sharing services demand prediction by Wang et al. [2017]
and crowd flow prediction by Zhang et al. [2016]. Additionally, variations of
FFNN has been widely applied with promising results. RF, although strictly not
neural network based, has also been widely used, and generally delivers good
performance without the need for tedious feature preprocessing or hyperparam-
eter optimization. Surprisingly, usage of RNN was not found during the SLR,
despite the fact that demand in all transportation industries follows a time series
pattern. It was decided to implement these four ML models in order to answer
RQ3 and RQ4 by performing the experiments described in Section 6.1.

Despite the promising results achieved by Wang et al. [2017] and Zhang et al.
[2016], ResNet actually turned out to be worst performing model for both grid-
and zone-based clustering in this thesis. The best performance for grid-based
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clustering was seen using the CPT feature configuration at 4.58 RMSE, whereas
LV achieved 3.60. Using zone-based clustering, ResNet with CPT beat LV with
an RMSE of 9.85 against 11.76, but still performed worse than all other ML
models. There are several reasons as to why this may be the case. The ResNet
model does not use meteorological information, which is shown to be important
for the other ML models. Furthermore, the model hyperparameters used by
Zhang et al. [2016] were assumed to work well for this dataset too, and therefore
little time was spent on optimization.

RF is commonly used within the research community with good reason. The
algorithm requires little to no feature processing or hyperparameter tuning, and
still performs well. In this thesis, RF was found to be better than the best
baseline using all feature combinations, and CPTM achieved the best results
for both clustering methods. RF was the second best predictor for grid-based
clustering and third best for zone-based. However, a major limitation of utilizing
feature importance measurements was uncovered. The unfortunate consequence
of this was that we could not measure the importance of each feature individually.
Furthermore, because this model is implemented using Scikit-Learn, it is not a
straight-forward task to serve it in the cloud for online batch predictions using
Oslo City Bike’s Google Cloud environment.

The RNN model was the second best model in the zone-based experiments,
but did not perform better than LV in the grid-based experiments. This may
be due to the prominent limitation of this model, namely that a separate RNN
model must be optimized and trained for each area. Due to time constraints
in this thesis, the RNN model was only tested on three areas in each clustering
method, which were picked to serve as representative areas of three different levels
of traffic volume. Since there are far more areas using grid-based clustering than
zone-based clustering, the three grid cells picked may not have been enough to
accurately represent the entire system, which caused the RMSE to be artificially
large. However, this can also be said for the opposite case; RNN performed very
well in the zone-based experiments, but this can be an artificially low RMSE based
on the same reasons as for grid-based. Thus, further testing of this model using
all clustering areas is required to conclusively determine the feasibility of using
RNNs for this prediction task. The RNN model is implemented using Google
Cloud-compliant TensorFlow code, and can therefore be extended to be used
in a production setting managing online batch predictions. However, because a
separate model is required for each area, this model is far more complicated and
expensive to maintain than DNN in such a production environment.

DNN was found to be the best performing machine learning model for predict-
ing both grid- and zone-level flow. In the grid-based clustering experiments, DNN
achieved a RMSE of 2.84 using the CPTM configuration of features, whereas LV
achieved 3.60, resulting in 21.1% improvement over the best baseline. For zone-
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based clustering, DNN with the same feature configuration achieved 7.45 RMSE,
while LV achieved 11.76, which is an improvement of 36.65%. In contrast to
RNN, the DNN model is a single unified model capable of modelling flow pro-
cesses of all areas simultaneously, as opposed each area individually. This makes
DNN a suitable candidate as a production-ready predictor. The DNN model is
also implemented with Google Cloud-compliant TensorFlow code, and can easily
be extended to receive and handle online batch predictions in a production envi-
ronment.

In conclusion, this thesis found that there are multiple feasible machine learn-
ing algorithms to predict cluster-level flow in the Oslo bike-sharing system. DNN
proved to be most successful for both grid-based and zone-based clustering, with
improvements of 21.1% and 36.65% respectively over the leading baseline. The
developed system is designed to run on Google Cloud, and can potentially serve as
a handler for online batch prediction jobs where the results can be fed through to
a proposed flow visualization module. In a production setting, this enables bike-
sharing system decision makers to proactively rebalance service stations more
precisely than the current naive baseline predictor LV. The predictions made by
this system can also be used as input to other demand prediction systems that
work on the more granular station level.

6.3 Contributions

There are primarily three contributions presented in this thesis:

1. An in-depth exploration and discussion of current state-of-the-art solu-
tions within on-demand transport services demand prediction using ma-
chine learning models, with a primary focus on the domain of bike-sharing
systems. A thorough reproducible structured literature review was con-
ducted in Chapter 3 in order to gain insights to what models could be
studied further in this thesis.

2. A comparison of RF, RNN, DNN and ResNet when applied to real BSS
data provided by Oslo City Bike. The comparison discusses strengths and
weaknesses regarding performance, implementation details and applicabil-
ity to the problem of predicting cluster-level flow. Based on the literature
search, this thesis presents the first evaluation of using RNNs within the
domain of BSSs. Furthermore, an examination of important features is
provided, concluding that meteorological factors and temporal features of
closeness, period and trend have a strong impact on prediction performance
for most models.
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3. A DNN-based machine learning model that outperforms the best baseline
and all other ML models. The DNN model is optimized, trained and tested
on Google CloudML using TensorFlow, and can with few modifications be
capable of serving real-time predictions on streaming flow data provided
by Oslo City Bike, making the model a suitable candidate that fits into
Oslo City Bike’s existing cloud environment. A description of the model
architecture and the proposed production pipeline was described in Chapter
4.

6.4 Future Work

This section presents potential extensions that can be made to the system, im-
provements that can increase prediction accuracy and possible solutions to limi-
tations that were uncovered in this thesis.

6.4.1 Deep Residual Network

The ResNet model used in this thesis was a fork an open-source repository by
Zhang et al. [2016], and it was assumed that the model would work well for this
dataset without much optimization. However, ResNet turned out to be inferior to
the other models, despite promising results by Zhang et al. [2016] and Wang et al.
[2017]. Further exploration on optimal hyperparameters and network topology
for this particular dataset, as well as inclusion of meteorological information, is
suggested as an open research area for the future.

6.4.2 Modelling spatial dependencies

The ResNet model is the only model that inherently models spatial dependencies
between neighboring stations due to the fact that it is a convolutional neural
network. The traffic of neighboring stations has been shown to be positively
correlated with the traffic of an individual station (Ashqar et al. [2017], Liu
et al. [2015], Zhang et al. [2016]). In order for the RF, RNN and DNN models
to exploit spatial dependencies, a proposed extension is to include the outflow,
inflow and internal flow of the X nearest neighbors as input features to these
models. The number of neighbors to include can be found be found by using
K-Nearest Neighbors analysis in terms of either spatial proximity or temporal
usage pattern similarity.
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6.4.3 Events and point-of-interest features

Using events and point-of-interest proximity as features would also be interesting
to explore. If there are 200 people attending an event in an area at some time,
that is highly likely to influence bike flow in that area. One way to include
include events as features would be to exploit Facebook Events, as this is likely
to yield the most accurate data on events. However, to the best of this author’s
knowledge, it is currently not possible to access information on Facebook Events
through public APIs. Google measures the activity of certain areas at certain
times by determining the number of GPS signals received from mobile phones, but
is unclear whether this information is publicly available or not. Liu et al. [2015]
used a station’s proximity to several points of interest as features to increase
prediction accuracy, so this is also proposed as an extension to this thesis.

6.4.4 Production environment pipeline

The recommended model to predict cluster-level flow was found to be DNN.
The DNN model is implemented using Google CloudML-compliant code, and is
trained and optimized on Google CloudML. In order for the model to be used
in a production setting, a few modifications to the code must be implemented.
Specifically, the predict function must be rewritten to handle a prediction batch
which is supplied to the model in a specific format through API calls. The
model can then be deployed to TensorFlow Serving, Google’s production envi-
ronment for TensorFlow models. All trips in the Oslo City Bike BSS are recorded
and streamed through a data logging service. In a production setting, Google
Dataflow1 could be used to periodically batch process all previous X trips and
transform them to a flow format following the description laid out in Chapter
4.1.1. This data, combined with information on the current weather status, could
then be used to make predictions of flow in all areas for the next hour. These pre-
dictions could be propagated through to the visualization module, which would
be hosted as a Node.js app, and could serve as vital information to rebalancing
trucks. Additionally, the predictions made by this system could be used as in-
put to an algorithm which predicts station-level demand, which could drastically
improve accuracy of such an algorithm.

6.4.5 Predicting flow trajectory

This thesis focuses only on predicting the number of incoming, outgoing and
internal trips in each area of the Oslo BSS. An interesting extension of this is
to not only predict the amount of trips in each area, but to predict where these

1https://cloud.google.com/dataflow/
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trips are going or coming from. For example, if it is predicted 300 incoming trips
to the Sentrum Vest zone, it would be desirable to know how many of these trips
originated in each of the other zones. This would allow BSS management to not
only estimate the demand in each zone individually, but provide greater insight
to which zones rebalancing trucks should pick up bikes from and deliver bikes to,
which would likely result in a greater balance across the entire system.
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Appendices

A Structured Literature Review Protocol

A.1 Framework for search in academic search engines

Multiple academic search engines were selected to ensure that all studies relevant
to the domain and problem were retrieved. These search engines are presented
in Table A1. To keep the resulting document size manageable, some additional
search constrains were introduced. Since the field of machine learning is rapidly
evolving, all studies published before the year 2000 were excluded. In addition,
where applicable, only studies within the disciplines of either Computer Science,
Artificial Intelligence or Engineering were included.

Academic search engine URL

Scopus https://www.scopus.com/
ACM Digital Library https://dl.acm.org/
Engineering Village https://www.engineeringvillage.com/

IEEE Xplore Digital Library https://ieeexplore.ieee.org/
ProQuest https://www.proquest.com//

Web of Science https://www.webofknowledge.com/
ScienceDirect https://www.sciencedirect.com/

Table A1: Academic search engines used

The searches were performed by grouping key terms in a boolean search
string. Each group contains terms that are either synonyms or semantically
related within the domain, and each term is chosen based on relatedness to the
research questions. Only studies that were at the intersection of the sets (see
Figure A1) were retrieved, i.e. studies that contained at least one term from
every group. Table A2 presents the groups of terms.

Group 1 focuses on the domain of the problem; the term transportation was
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included in this group to capture forecasting solutions to other closely related
modes of transportation, such as car-sharing services.

Group 2 targets the variable that is predicted; studies that perform prediction
on these variables likely apply similar forecasting techniques on similar data sets,
and are therefore valuable to this study. Furthermore, it is reasonable to assume
that studies that address other issues related to BSSs, such as optimal vehicle
rebalancing (Labadi et al. [2015]), include methods or references relevant to this
study.

Group 3 focuses on the problem the study aims to solve.

Group 4 addresses the techniques used to solve the problem; the primary
subject of this study is machine learning, but because statistical methods are
extensively used within the research community for forecasting problems, the
terms statistical analysis and big data are included.

Figure A1: Venn diagram representing relevant studies

The terms were combined using boolean operators, specifically OR-operators
within the groups and AND-operators between the groups. Subsequently, the
resulting boolean query string is:

([G1, T1] ∨ [G1, T2] ∨ [G1, T3]) ∧ ([G2, T1] ∨ [G2, T2] ∨ [G2, T3] ∨ [G2, T4] ∨
[G2, T5] ∨ [G2, T6] ∨ [G2, T7])([G3, T1] ∨ [G3, T2] ∨ [G3, T3])([G4, T1] ∨

[G4, T2] ∨ [G4, T3] ∨ [G4, T4] ∨ [G1, T5])
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Group 1 Group 2 Group 3 Group 4

Term 1 transportation demand predict* machine learning
Term 2 bike congestion forecast* deep learning
Term 3 bicycle balance estimat* neural network
Term 4 flow statistical analysis
Term 5 rental big data
Term 6 trip
Term 7 availab*

Table A2: Groups of synonymously or semantically related terms used for boolean
search string in academic search engines. Terms suffixed with an asterisk (*)
utilizes the search engine’s capability to perform stemming, i.e. predict* searches
for predicted, predicting, prediction etc.

Running this query string on every academic search engine listed in Table A1
resulted in a total of 491 studies. Duplicates were removed either automatically
by Microsoft EndNote, or manually by keeping the highest ranking source. In
addition, studies of the wrong document type, e.g. entire books, were removed.
The number of studies retrieved from each source after duplicate and document
type filtration is presented in Table A3.

Academic search engine Number of studies retrieved

Scopus 112
ACM Digital Library 7
Engineering Village 27

IEEE Xplore Digital Library 23
ProQuest 24

Web of Science 45
ScienceDirect 6

Total 244

Table A3: The number of studies retrieved from each academic search engine
after duplicate and document type filtration.

A.2 Selection of primary studies

This step was carried out in order to further reduce the set of studies to a manage-
able size, and ensure that the final set of primary studies were topically relevant
to this thesis. This was accomplished by systematically reviewing all remaining
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studies by following a three-step filtration strategy:

1. Title inclusion criteria filtration

2. Abstract inclusion criteria filtration

3. Full-text inclusion criteria filtration

The inclusion criteria defined are presented in the list below and are conditions
that must be met for each study in order to not be excluded. In the first step of
the three-step filtration strategy, title inclusion criteria filtration, only the titles
of every study were reviewed and required only IC1 to be satisfied. In the next
step, abstract inclusion criteria filtration, the abstracts were reviewed and needed
to satisfy IC1, IC2 and IC3. In the final step of the inclusion criteria filtration,
the complete full texts were reviewed and had to satisfy all six inclusion criteria.
Following this three-step strategy allowed to author of this thesis to spend less
time evaluating each study.

IC1 The study is performed with a Computer Science perspective.

IC2 The study’s main focus is forecasting or prediction of some future value,
preferably related to bike-sharing systems, but transferrable domains are
also accepted.

IC3 The study is a primary study presenting empirical results.

IC4 The study clearly describes the models used in a reproducible manner.

IC5 The study uses machine learning methods.

IC6 The study performs prediction on aggregated data sources, such as bike-
sharing systems data combined with weather data.

The resulting number of studies from each source after each step is presented
in Table A4. Additionally, because some relevant studies may have failed to be
retrieved during the initial searches, all references of the remaining 15 studies af-
ter full-text filtration were processed in the same three-step manner. Ultimately,
27 studies remained after inclusion criteria filtration.

A.3 Quality assessment

All remaining studies were assessed with respect to their quality. Nine quality
criteria, presented below, were defined to evaluate the strength of the evidence
presented in each study. Each quality criterion received received a score of either
1 if it was fully satisfied, 0.5 if it was partially satisfied, or 0 if it was not satisfied.
Studies that received a total score of 6.5 or lower were regarded as low-quality
studies and dismissed.
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Number of studies remaining after
IC filtration step

Source Title Abstract Full-text Final

Scopus 49 15 4 13
ACM Digital Library 2 0 0 0
Engineering Village 12 7 6 8

IEEE Xplore 14 3 3 3
ProQuest 5 1 1 1

Web of Science 19 5 1 1
ScienceDirect 2 1 0 0

Total 103 32 15 27

Table A4: The resulting number of primary studies from each academic search
engine after each step of the three-stage filtration process. The Final column
presents the number of studies remaining after all references of all studies in the
Full-text column went through the same three-step filtration process.

QC1 There is a clear statement of the aim of the research.

QC2 The study is put into context of other studies and research.

QC3 It is clearly stated which other methods/algorithms the study’s
algorithm(s) has been compared with.

QC4 System- or algorithmic design decisions are justified.

QC5 The test data set is reproducible.

QC6 The experimental procedure is thoroughly explained and repro-
ducible.

QC7 The performance metrics used in the study are explained and jus-
tified.

QC8 The test results are thoroughly analyzed.

QC9 The test evidence supports the findings presented.

The first quality criterion, QC1, ensures that there is a clear purpose for the
study. This is important, because some initially retrieved papers were summaries
of other studies, not independent research. The second and third quality critera,
QC2 and QC3, ensures that the author(s) have compared their research to other
similar studies, and that it is state-of-the-art. To be able to justify all reason-
ing and design choices in this thesis, it is essential that research of which this
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thesis builds upon also justify their choices. QC4 ensures that design choices
are justified. Quality criterion 4 and 5 makes certain whether or not the study
is reproducible. Studies that are not reproducible cannot be empirically proven
wrong, which limits the quality of the study. The final three quality critera, QC7,
QC8 AND QC9, ensures that the results presented, the metrics for measuring
success, and the conclusions drawn are thoroughly justified.

Three studies did not pass the quality assessment, and conclusively, 24 studies
remained after the complete filtration process. These studies are presented in
Table 3.1. The complete matrix of quality assessment scores for each study is
shown in figure A2.
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Figure A2: [4] Borgnat, P., et al. (2011), [15] Lin, F., et al. (2016), and [23]
Xu, J. X. and J. S. Lim (2007) received scores lower than 6.5, and were therefore
dismissed from the final set of papers. Total number of papers in final set: 24.
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B Datasets

Dataset: Oslo Bysykkel Trips
Time span: 20.04.2016 - 22.11.2017
Number of records: 4 993 801
Column Description
id A unique identification number for a trip.
start station id The unique identification number for the station a

trip originated from.
end station id The unique identification number for the destination

station of a trip.
started at A ISO-8601 datetime in UTC format specifying the

exact start time of a trip.
ended at A ISO-8601 datetime in UTC format specifying the

exact end time of a trip.
end method How a trip ended. Can be one of null, cancelled,

lost from station, forced or delivered.

Table B1: Description of the Oslo Bysykkel Trips dataset.

Dataset: Oslo Bysykkel Stations
Number of records: 528
Column Description
id A unique identification number for a station.
title The name of the geographic location where a station

is placed (used in the Visualization Module).
latitude The latitudinal coordinate of a station with a preci-

sion of 6 decimals.
longitude The longitudinal coordinate of a station with a pre-

cision of 6 decimals.
deleted Boolean specifying whether the station is deleted or

not.

Table B2: Description of the Oslo Bysykkel Stations dataset.
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Dataset: Oslo Weather
Time span: 01.01.2016 - 31.12.2017
Time interval: 1 hour
Number of records: 17 544
Column Description
rain The amount of rain in millimeters that was measured

at an hour.
timestamp A ISO-8601 datetime in UTC format.
temp The average temperature in Celsius that was mea-

sured at an hour.
wind speed The average wind speed in km/h that was measured

at an hour.
sunny Boolean, set to true if the amount of sun minutes at

an hour exceeded 30 minutes.

Table B3: Description of the Oslo Weather dataset.

Dataset: Stations by Grid Cells
Type: JSON
Number of records: 216
Column Description
cell A cell number of the 12x18 grid used to cluster sta-

tions.
bounds The geographical bounds that define a cell expressed

as the latitudinal and longitudinal coordinates of the
lower left and upper right corner of the cell.

stations An array of station IDs. A station is added to this
list if that station’s coordinates lie within the bounds
of the respective cell.

Table B4: Description of the Stations by Grid Cell JSON-file.
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Dataset: Stations by Zones
Type: JSON
Number of records: 14
Column Description
zone A unique zone number.
name The name of the city district a zone encompasses,

such as ”Oslo City Centre West”.
bounds A list of latitudinal and longitudinal coordinates that

defines the geographical polygon shape of a zone .
stations An array of station IDs. A station is added to this

list if that station’s coordinates lie within the bounds
of the respective zone.

Table B5: Description of the Stations by Zones JSON-file.

Dataset: Feature-engineered flow-by-zone and flow-by-grid
Type: CSV
Total number of features: 26
Total number of records: 125 356 (zone) / 725 274 (grid)
Training set examples: 94 017 / 543 955
Validation set examples: 12 535 / 72 527
Test set examples: 18 804 / 108 792
ID Feature Description
F1 zone/cell A unique zone or cell number.
F2 outflow The total number of outgoing trips during an hour

that originated in this zone or cell and ended in an-
other zone or cell.

F3 inflow The total number of incoming trips during an hour
that ended in this zone or cell and originated in an-
other zone or cell.

F4 internal flow The total number of trips that originated in this zone
or cell and ended in this zone or cell.

Temporal features

F5 year The year extracted from the timestamp.
F6 month The month extracted from the timestamp.
F7 weeknum The week number extracted from the timestamp.
F8 season The season (winter, spring, summer or autumn) ex-

tracted from the timestamp.
F9 weekday The day of the week extracted from the timestamp.
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F10 weekend Boolean indicating if this day is a Saturday or Sun-
day.

F11 holiday Boolean indicating if this day is a Norwegian holiday.
F12 hour The hour extracted from the timestamp.

Meteorological features

F13 rain The amount of rain in millimeters that was measured
at an hour.

F14 rain last 3 Boolean indicating if there was measured more than
0.8mm rain in the previous three hours combined.

F15 temp The average temperature in Celsius that was mea-
sured at an hour.

F16 wind speed The average wind speed in km/h that was measured
at an hour.

F17 sunny Boolean, set to true if the amount of sun minutes at
an hour exceeded 30 minutes.

Moving average features

F18 outflow c Outflow closeness; the average outflow of the previ-
ous three hours.

F19 outflow p Outflow period; the average outflow of the previous
four days at the same hour.

F20 outflow t Outflow trend; the average outflow of the previous
four weeks at the same day at the same hour.

F21 inflow c Inflow closeness; the average inflow of the previous
three hours.

F22 inflow p Inflow period; the average inflow of the previous four
days at the same hour.

F23 inflow t Inflow trend; the average inflow of the previous four
weeks at the same day at the same hour.

F24 internal flow c Internal flow closeness; the average internal flow of
the previous three hours.

F25 internal flow p Internal flow period; the average internal flow of the
previous four days at the same hour.

F26 internal flow t Internal flow trend; the average internal flow of the
previous four weeks at the same day at the same
hour.

Table B6: Descriptions of every feature in the final feature engineered datasets.
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C Optimal hyperparameters for RNN models

Optimal hyperparameters for zone-based RNN models
Format: low-feature models (NONE, M) / high-feature models (C, CP, CPT, CPTM)
Parameter RNNlow-traffic RNNmedium-traffic RNNhigh-traffic

rnn cell gru / lstm gru / gru gru / gru
rnn units 168 / 133 232 / 249 242 / 245
learning rate 0.0063 / 0.0061 0.005 / 0.0058 0.007 / 0.0059
seq length 54 / 126 126 / 126 126 / 126
activation fn tanh tanh tanh
optimizer1 ΘR ΘR ΘR

num layers 1 1 1
batch size 256 / 256 512 / 512 256 / 512

1 ΘR = RMSprop, Θadam = Adam, Θag = AdaGrad

Table C1: Optimal hyperparameters for every RNN model when using zone-
based clustering. Low-feature models (NONE, M) on the left side of the slash
(/), high-feature models (C, CP, CPT, CPTM) on the right. Note that only the
hyperparameters for medium-traffic RNN-models is presented; hyperparameters
for low-traffic and high-traffic RNN-models can be found in Appendix C.
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Optimal hyperparameters for grid-based RNN models
Format: low-feature models (NONE, M) / high-feature models (C, CP, CPT, CPTM)
Parameter RNNlow-traffic RNNmedium-traffic RNNhigh-traffic

rnn cell lstm / gru lstm / gru gru / gru
rnn units 145 / 187 154 / 251 201 / 243
learning rate 0.007 / 0.00048 0.00046 / 0.00054 0.00049 / 0.0005
seq length 54 / 126 126 / 126 126 / 126
activation fn tanh tanh tanh
optimizer1 ΘR ΘR ΘR

num layers 1 1 1
batch size 512 / 256 256 / 512 256 / 512

1 ΘR = RMSprop, Θadam = Adam, Θag = AdaGrad

Table C2: Optimal hyperparameters for every RNN model when using zone-
based clustering. Low-feature models (NONE, M) on the left side of the slash
(/), high-feature models (C, CP, CPT, CPTM) on the right. Note that only the
hyperparameters for medium-traffic RNN-models is presented; hyperparameters
for low-traffic and high-traffic RNN-models can be found in Appendix C.
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