@NTNU

Norwegian University of
Science and Technology

Developing an Autonomous Tracking
System for the Atlantic Salmon

August Ekanger

Marine Technology
Submission date: June 2018
Supervisor: Martin Ludvigsen, IMT

Norwegian University of Science and Technology
Department of Marine Technology

Abstract

This thesis presents an autonomous fish tracking system for a tagged Atlantic Salmon us-
ing four unmanned surface vehicles equipped with acoustic receivers. The system can be
used to monitor both hatchery farmed and wild Atlantic salmon in an open ocean envi-
ronment, and scientists can use the data to develop a better understanding of the species
and the way it interacts with its environment. Error sources associated with the purposed
system are presented. A target localization method based on the principle of time differ-
ence of arrival positioning (multilateration), i.e an extended Kalman filter using acoustic
data, is implemented and tested in a unified navigation environment (DUNE). The results
reveal successful real-time localization of a target fish in a simulation located in the Trond-
heimsfjord. The hardware implementations presented in this thesis involves the integration
of a GPS-receiver, CAN-controller, motor controller and Torqeedo thrusters with a single
board computer. Thrust commands and thruster response is successfully tested at NTNU
Glgshaugen, Trondheim, Norway.

This thesis examines how important control system components of a fish tracking sys-
tem can be developed to optimize system performance. A conceptual control system with
objectives of keeping receivers within transmission range while minimizing geometric di-
lution of precision (GDOP), travel distance and need for inter-vehicle communication, is
presented. A conceptual formation controller unifies these system objectives in a single
algorithm, and positions USVs in circular and circle-arc shaped formations depending on
whether the target is located within a restricted area or in the open ocean. The need for
inter-vehicle communication is significantly reduced by allowing vessels to operate with
independent guidance systems. Positioning models for a cable-connected and fixed acous-
tic receiver configuration are developed with the purpose of accurately determining their
position relative to a GPS aboard the vessel, while being subject to hydrodynamic forces.

Sammendrag

Denne oppgaven presenterer et autonomt fiskesporingssystem for Atlantisk laks bestaende
av fire ubemannede overflatefartgy utstyrt med akustiske mottakere. Systemet kan brukes
til & overvake bade villaks og oppdrettslaks i et apent havmiljg, og forskere kan bruke
dataene til & danne en bedre forstelse av arten og méten den samhandler med omgivelsene
pa. De stgrste feilkildene for systemet knyttet til lokalisering av malets posisjon er presen-
tert. En mélposisjoneringsalgoritme basert pa prinsippet om multilaterasjon, mer presist et
utvidet Kalman-filter for lgsningsestimering av TDOA likninger, implementeres og testes
i et enhetlig navigasjonsmiljg (DUNE). Resultatene indikerer vellykket sanntidslokalis-
ering av en fisk i en simulering lagt til Trondheimsfjorden. Maskinvareimplementerin-
gene som presenteres i denne oppgaven innebarer integrering av en GPS-mottaker, CAN-
kontroller, motorkontroller og Torgeedo-thrustere med en datamaskin. Thrustkommandoer
og thrusterrespons er p NTNU Glgshaugen, Trondheim, med tilfredsstillende resultater.

Denne oppgaven undersgker hvordan viktige systemkomponenter i et optimalt fiskesystem
kan utvikles. Et konseptuelt kontrollsystem er presentert med malsetning om a holde mot-
takerne innenfor akustisk rekkevidde og minimere reiseavstand, systemkommunikasjon og
geometriens innflytelse pa posisjoneringsngyaktigheten. En formasjonskontroller forener
systemmalene i en felles algoritme og posisjonerer systemknutepunkter i sirkel- og sirkelbue-
formede formasjoner avhengig av om malet ligger innenfor et avgrenset omrade eller i
det apne hav. Modeller for kabelforbundne og faste konfigurasjoner presenteres med det
formal & posisjonere akustiske mottakerne relativt til en GPS ombord i de ubemannede
overflatefartyene, mens motakeren er utsatt for hydrodynamiske krefter.

ii

Preface

This master’s thesis is a part of the Master of Science (M.Sc) in Marine Technology at the
Norwegian University of Science and Technology (NTNU) with specialization in marine
cybernetics. The following is written in its entirety by August Ekanger during the spring
of 2018.

My desire to understand more about the oceans, where so much is yet to be explored,
served as the main motivation throughout this project. I believe the NTNU fish tracking
project is important because it can help us understand how human actions impacts ocean
environments and wildlife.

I want to thank professor Tor Arne Johansen and professor Martin Ludvigsen for super-
vising my project. I also want to thank students Artur Piotr Zolich and especially Stian
Fredheim for their assistance in implementing hardware solutions and allowing me to learn
from them. I want to thank all my friends and especially Axel Berggraf Egenas whom de-
signed the illustration on the front page of this thesis.

I want to thank my dear Maja for her love and support. Finally, I want to thank my loving
family for our very special bond. My dear parents, Tina and Harald, for raising me with

love and inspiring me to become the best version of myself. My brother Henrik, for being
the funnies and kindest little brother anyone could ever wish for.

0 %\(@W

August Ekanger

iii

iv

Table of Contents

Abstract i
Preface iii
Table of Contents vii
List of Figures X
Abbreviations xi
1 Introduction 1
1.1 Background 1

1.2 Aquatictelemetry 2

1.3 Context e e e 4

1.4 Motivation o e e e e e e 5

1.5 Problem Definition 6

1.6 Method 7

1.7 ThesiS Structure o v v i i e e e e e e 7

2 Theory 9
2.1 Coordinate Systems & Transformations 9

2.2 Localization e e 13
2.2.1 GNSSPositioning 14

2.2.2 AcousticPositioning 15

223 TDOA Localization 15

2.2.4 Single Measurement Localization 19

2.2.5 Geometric Dilution of Precision 20

2.3 Communication i e 21
2.3.1 Serial Communication 21

232 4G Communicationo e e 22

2.3.3 Satellite Communication 22

3

2.3.4 Underwater Acoustic Communication

Fish Tracking System
3.1 Schematics
32 Otter USVs o e
33 Hardware
331 Sensors . ..o e
332 Computers & Controllers
333 Communicationo
34 Software L.
34.1 LSTSToolchain
342 Neptus o e
3.4.3 Inter-Module Communication
3.4.4 DUNE: Unified Navigation Environment
3.5 SystemObjectives
3.6 Proposed Control System
3.7 Target ObServer o v v v v e e e e e
371 KalmanFilter L
3.7.2 Extended KalmanFilter
3.7.3 Additional Kalman Filter Functionality
3.8 Supervisory Control System
3.9 Formation Control
3.10 Guidance System e e e
3.10.1 Lookahead-Based Steering
3.11 Vessel Modeling and Heading Control
3.11.1 Thrust Allocation,
3.11.2 PIDController,
3.12 Acoustic Receiver Position Modelling
3.12.1 Force Analysis
3.12.2 Cable-connected Positioning Model
3.12.3 Fixed PositioningModel 0oL,
Implementations
4.1 Hardware
411 GPS . .o
4.12 Controller AreaNetwork
4.1.3 Thrustertest e
42 Software
Simulation
5.0 Datao e
52 Assumptions L. e
5.3 Software e
54 Results.

63
63
63
64
65
66

vi

6 Discussion 75
6.1 FirstResearchQuestion 75

6.2 Second Research Question 78

6.3 Validity of Underlying Assumptions in Receiver Positioning Models . . . 82

6.4 Suggestions For Further Research 83

7 Conclusions 85
Bibliography 87
Appendix 91
A Communication protocols Lo 91

B Hardware & Software Guidelines 94
B.1 Raspberry Pi3 94

B2 DUNE e 95

B3 Garmin SHz-18xGPS o, 97

B4 CANlnterface 101

C Schematics 106

D DUNEsoftware 107
D.1 INIfile & DUNE taskexample 107

D2 CVSdata(txt) 108

D3 INIfileso 109

D.4 DUNE Task: createTOAdataFromECEFdata 110

D5 DUNETask: EKF2 116

D.6 DUNE Task: createErrorPlots 124

D.7 funkytions.h 126

D.8 funkytions.cpp 130

E MATLABcode 141
E.1 TDOA localizationinR? 141

E.2 TDOA localization in R? with 4 receivers 142

E.3 TDOA localization in R? with 3 receivers and a depth measurement 143

E4 Single measurement localizationin R3 145

vii

viii

List of Figures

2.1
22
23

3.1
32
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15

4.1
4.2
4.3
44
4.5
4.6
4.7

5.1
52
53

Otter USV o e 10
TDOA localization solutions 18
Signal strength localization, 20
Proposed Fish Tracking System 23
Hardware Schematics 24
Connections schematics 25
CommunicationFlow, 26
Cable-connected acoustic receiver 26
Acoustic receiver & transmitter 27
GPS . . e 29
COMPULETS v v ot e e e e e e e e e e e e e 30
AGLTEmodem e 32
LSTStoolchain 33
DUNEtasks o e 34
Proposed Control System 36
Formation control along restrictedarea 49
Line of Sight Guidance 52
Forces actingonreceiver 56
GPS Experimentsetup 64
GPSsetupschematics 64
GPS ConnectionI 64
GPS ConnectionIl, 64
CAN interface testing with thruster 65
Lab setup schematics 65
Digital Oscilloscope Analysis 66
Trondheim Location 69
Trondheimsfjord SeaMap, 69
DUNE fish tracking simulation 71

54
5.5
5.6

O S O S

ECEF ErrorPlots e 72

LLHErorPlots 72
ECEF Velocity Estimates 72
North-EastPlot 72
Torgeedo interface board communication protocol 93
GPS connection schematics 98
Otter USV Schematics 106
GPS Wire Pinout 107
Raspberry PiI3 GPIOchart 107

Abbreviations

TDOA
TOA
DPPM
GDOP
GNSS
GPS
USv
LOS
FPR
SNR
Timestamp

Time Difference of Arrival

Time Of Arrival

Differential pulse-position modulation
Geometric Dilution Of Precision

Global Navigations Satellite System

Global positioning system (American system)
Unmanned Surface Vehicle

Line-of-sight

Formation reference point

Signal to noise ratio

Reception time at single node associated with signal

Xi

Xii

Chapter

Introduction

1.1 Background

Lack of effective implementation of monitoring, control and surveillance in the fishery
and aquaculture industry is a global problem. According to the food and agriculture or-
ganization of the united nations (FAO) the number of fish within biologically sustainable
levels decreased from 90 to 68.6 percent in 2013, i.e the overfished share amounted to 31.4
percent. [1]

The Atlantic Salmon is a large pelagic ray-finned fish within the family of Salmonidae.
Pelagic fish live in the Pelagic zone in the ocean, which is often referred to as the open
ocean. Species within the Salmonidae family, including other species such as trout and
freshwater whitefish, spawn in fresh water but spend the majority of their lives at sea. The
sea wandering phase is very important for the Atlantic Salmon being the phase in which
most of its individual growth occur, however, it is the phase scientists know the least about.
Salmon are known to school when leaving the estuary and tend to live in the Pelagic zone.
Fish in the Salmonidae family tend to return to their original habitat to reproduce migrating
long distances up rivers. Atlantic salmon is therefore known as an anadromous species.
The salmon related tourist industry began in 1830 in Norway when English tourist trav-
elled to Norway to fish. Every year about 100 000 people participate in salmon fjord and
river fishing.

Numbers from the Statistics Norway (Statistisk Sentralbyra) indicate that approximately
1234 tonnes of farmed salmon was produced by aquaculture companies in Norway during
2016, with salmon amounting to 93 percent of the total export in terms of weight. [2] Also
according to SSB Norwegian fish farms sold fish and shellfish for a total amount of ap-
proximately 43.6 billion Norwegian krones (NOK) in 2014. Aquaculture continues to be
the fastest growing animal-food-producing sector in the world, and Norway is the seconds
largest fish exporter, after China. [1] Norwegian authorities regulate the aquaculture indus-
try through policies, regulations and required standards. To achieve sustainable growth in

1

Chapter 1. Introduction

the aquaculture industry new incentives to improve technology, development and research
must be introduced.

In mainstream media is the relationship between the aquaculture industry and local au-
thorities often portrayed as bad, and public discussions addressing the problems are often
associated with polarizing parts from the aquaculture industry and environmental organi-
zations. A report from 2012 published by the Norwegian aquaculture and fishery research
firm Nofima, however, shows that the majority of municipalities in Norway are positive to-
wards the industry and in favour of more aquaculture in their respective coastal zones. [3]
Municipalities are mainly concerned with the lack of repercussions in the local economies
and want compensation for the lack of value creation for local authorities.

Many fishermen and environmentalists are concerned about the environmental implica-
tions of the industry with genetical influence and escape, contamination and emissions,
diseases and parasites, use of coastal areas and fish feed being major concerns. Many
sports-fishers are afraid that the wild river stocks eventually will go extinct. A report
from 2013 by the Norwegian research group SINTEF supports this claim. [4] This study
presents a bio-economic model that describes the impacts of genetic interactions between
wild and escaped farmed salmon. The results from the study indicate that the composition
of the spawning population will change dramatically when escaped farmed salmon partic-
ipate in the river spawning, with a complete replacement of the wild stock with farmed
offspring being the worst case scenario. Others argue that the wild Arctic Salmon is not
a threatened species despite loss of several wild stocks in some areas. Skeptics claim that
factors such as electricity production, the parasite gyrodactylus salaris and acidification
due to physical engagement in rivers serves as the main reasons to decline in fish stocks,
and that the aquaculture industry is not to blame. Analyses from a study conducted in the
Muchalat Inlet region of Canada over a period of 10 years, however, indicated a signif-
icant positive association between the sea lice abundance on Atlantic salmon farms and
out-migrating infested wild Chum salmon. [5] Scientists within the field, such as R. Hill-
born from School of Aquatic and Fishery Sciences at the University of Washington Seattle,
stress the importance of analyzing the number of wild salmon migrating past fish farms.
[6] Hillborn further wants estimate the total wild populations that are exposed using this
data.

1.2 Aquatic telemetry

In a report from 1987 by NASA telemetry is defined to be the process of “reliably and
transparently convey measurement information from a remotely located data generating
source to users located in space or on Earth.” [7] The word telemetry is derived from two
words with Greek origin: tele and metron, which translate to remote and measure, respec-
tively. Aquatic telemetry is the process of collecting measurements in a remote marine
environment. Aquatic animals are defined to be the animals which are living solely or
chiefly in water.

This section is mainly based upon the 2015 science magazine article “Aquatic animal

2

1.2 Aquatic telemetry

telemetry: A panoramic window into the underwater world” by N. E. Hussey et al. [8]
As pointed out by this article aquatic telemetry has transformed our ability to observe
and measure the behaviour of animals living in water environments. Recent technological
advances in ultra-low powered electronic systems, digital signal processing and MEMS
sensors offers new and exciting possibilities within the field of aquatic telemetry. [9]
Telemetry data coupled with genetics, biochemical tracers and biologgers provides new
and innovative insight into the behaviour of marine species. As radio waves lack the ability
to penetrate water the field of aquatic telemetry is divided into two principle approaches;
satellite and acoustic telemetry.

Satellite telemetry is suitable for tracking a variety of animals ranging from fish to ma-
rine mammals and reptiles. It is complementary to acoustic telemetry in the sense that
a GNSS array of transmitters provide the data necessary to determine the animal’s posi-
tion and only a single receiver is needed. Satellite tags can transmit real-time position
estimates and the data logged during dive each time the tagged animal surfaces. Satel-
lite tags are, however, unable to determine the horizontal position of animals during their
dives. The size of the tags often limit the possibility of tracking smaller fish and mammals.

Acoustic telemetry is based on the principle of using hydrophones to record the trans-
mitted signal from a tagged animal. Acoustic transmitter tags (also known as fish tags)
originating from the aquaculture industry are used to monitor the behavior of fish. These
tags are able to measure a variety of variables such as temperature, depth, acceleration,
dissolved oxygen, salinity and tilt/inclination. Some tags are able to both store and trans-
mit the data. A tag only able to store data is often referred to as a biologger. Fish tags
transmit data through an acoustic signal. One or several acoustic receivers (also known as
hydrophones) can be used to gather the signal. It is possible to estimate the horizontal lo-
cation of the fish tag using time of arrival measurements. Time of arrival is for the purpose
of this thesis defined as the time an acoustic receiver obtains the signal transmitted by a
fish tag. A large variety of position estimation techniques exist but due to the difficulties
introduced by the harsh environment of underwater communication channels are TDOA
localization methods recognized as the most rigorous. Acoustic telemetry is divided into
two primary approaches: 1) receivers moored at fixed locations, and; 2) mobile receivers.

Moored receivers are applicable for monitoring fish in limited environments, e.g. farm
cages in marine aquaculture or rivers. Fixed receiver networks have also proven useful
in open environments to measure predictable behaviour of animals such as the Atlantic
salmon Salmo salar. In an experiment performed in the river Lerdalselva, in Western
Norway, the differences in behavioural patterns and migration timing between wild and
hatchery-reared salmon smolts was examined using a receiver network of this kind. [10]
A downside of moored receivers, however, is their inability to reconstruct detailed be-
haviour pattern for fish migrating over large ocean areas.

In recent years have acoustic receivers been attached to marine vessels forming a receiver
network able to detect and track tagged animals. In august 2011 was a tagged leopard
shark tracked by an AUV equipped with two acoustic receivers in the SeaPlane Lagoon in

Chapter 1. Introduction

Los Angeles, California. [11] A study conducted in southern Portugal involved satellite
tags in addition to underwater and surface robotic vehicles to measure both the movements
and the contextual environment of an Ocean Sun fish Mola mola. [12] The study reports
“near-real time monitoring of finescale (< 10 m) behaviour of sunfish”. An AUV was
used for video recording of the fish and a WaveGlider USV was used for measuring the
contextual environment of the fish. The project is a perfect example of how several types
of unmanned vehicles can collaborate in obtaining data in an open sea environment.

1.3 Context

This section aims to put this thesis in a contextual setting. Some of the results presented
in a specialization project Examining Use of Various Unmanned Vehicles in Single Fish
Tracking, written by this author in December 2017, are presented. [13] Related work by
other peers at NTNU is presented.

Different unmanned vehicles can be used in an attempt of creating an optimal tracking
system. Some of the advantages and disadvantages associated with the use of various un-
manned vehicles in an autonomous fish tracking system are presented in Examining Use of
Various Unmanned Vehicles in Single Fish Tracking. The paper considers use of unmanned
surface vehicles (USVs), unmanned aerial vehicles (UAVs) and autonomous underwater
vehicles (AUVs) as vehicle-hosts for acoustic receivers in a mobile tracking system. The
following sections present the results which are relevant and to some extent form a basis
for the control system presented in this master’s thesis.

One of the main reasons why it is beneficial to use unmanned surfaces vessels (USVs)
lay in their unique ability to communicate with both submerged, floating and flying nodes
simultaneously. A surface vehicle connected to a submerged cable-connected hydrophone
has the ability of sharing acoustic data through radio-communication, only limited by
software and instrumental-induced delays and the speed of light. Near co-planar receiver-
arrays are expected for a USV constellation, and associated with high geometric dilution
of precision values in the orthogonal direction of the surface plane, i.e the depth direction.

UAVs and AUVs are possible mobile vehicle-hosts for acoustic receivers, with the main
advantages being high speed and maneuverability for the former and possibility of obtain-
ing receiver formations associated with lower degrees of geometric dilution of precision
for the latter. Dynamic forces and noise induced by surface waves decay exponentially
with increasing depth and submerged AUVs are therefore expected to have both a larger
operational window and be subject to less noise. The main disadvantage of using UAVs
is their inability to communicate acoustically while airborne. Communication delays and
less accurate receiver clock synchronization are expected to be large sources of error using
AUVs.

An unmanned fish tracking system should ideally be designed with respect to charac-
teristics of the animal it is supposed to monitor and examine. A large variety of moni-
toring scenarios can be envisioned, e.g. tracking a pelagic fish along the shore or a coral

4

1.4 Motivation

reef fish in a tropic environment. The behavior of a fish is dependent upon many vari-
ables such as species, age and surrounding environment. A variety of unforeseen events
leading to demanding tracking conditions and potential target loss exist. Some examples
are predator-prey interactions involving the target fish, sudden malfunction in one of the
acoustic receivers or increased acoustic noise in the surrounding environment. If a target
fish is lost in an open sea environment is it likely to never be detected again.

Research within the field of autonomous monitoring operations and acoustic telemetry
have been the subject of several NTNU projects of recent. Two master’s thesis’ by Efteland
[14] and Lgvskar [15] from 2016 and 2017 examine use of TBR 700-RT acoustic receivers
in underwater acoustic positioning systems. The former also examines time synchroniza-
tion using GPS technology. A paper by Norgren and Ludvigsen from 2015 presents results
from a tracking and remote monitoring experiment of an autonomous AUV, using an un-
manned surface vehicle. [16] A paper from 2016 by Zolich, Johansen, Alfredsen and peers
from KTH Royal Institute of Technology in Stockholm Sweden examines tracking of an
acoustic fish-tag using unmanned vehicles, with a field validation giving proof-of-concept.
A field experiment took place in Agdenes, Norway, during September 2016 monitoring a
target AUV equipped with an acoustic transmitter. [9]

An extensive area of the Trondheimsfjord has been designated for testing of autonomous
ships, with several projects planned and already conducted. Projects are often held in co-
operation between commercial companies and academic research groups, such as NTNU’s
Centre for Autonomous Operations and Services (AMOS) and the Norwegian Marine
Technology Reasearch Institute (MARINTEK). This test area is the first of its kind and
it can be argued that projects held at this site are taking lead in transforming the maritime
industry towards an autonomous future.

The Department of Engineering Cybernetics at the Norwegian University of Science and
Technology (NTNU) has recently received funding for a fish tracking project involving
the Atlantic salmon. The current project outline is to monitor a fish tagged with an acous-
tic transmitter utilizing a formation of four Otter USVs. Two Trondheim-based compa-
nies Thelma Biotel and Maritime Robotics deliver acoustic equipment and vessels to the
project, respectively. The ultimate project goal is to conduct a tracking experiment with
a wild salmon, likely located in the Trondheimsfjord, giving proof-of-concept. NTNU
professor Tor Arne Johansen and PhD candidate Arthur Piotr Zolich are responsible for
the project. The cost of the fish tracking system is significantly reduced by employing
open-source software, low-cost acoustic systems, controllers and computers.

1.4 Motivation

The system presented in this thesis can be used as a surveillance tool for fish, and hence
participate in developing a better understanding of interactions between species and en-
vironment. The fish tracking system could potentially contribute to global knowledge
building by tracking a variety of species. A broader knowledge base and access to more
data will ultimately result in better regulations for traditional fishery, locally and glob-

5

Chapter 1. Introduction

ally. Accurate geospatial data, coupled with other sources of data such as geologgers and
weather data can be used by marine biologists to develop biological models for various
species, e.g the Atlantic Salmon. Geospartial data is defined as geographic locations of a
natural or constructed features above or below the earth’s surface.

The Atlantic salmon is a natural target of the proposed tracking system because of the
many stakeholders the species involves in Norway. Stakeholders involve sports fishermen,
environmentalists, the aquaculture industry and its costumers. The presented system can
gather data of wild salmon migrating close to fish farms. Scientist can further use this data
to examine the exposure of the aquaculture industry and determine whether it should be
held partially responsible for the declining number of wild Atlantic salmon.

A study from 2012 [17] discusses movements and dispersal of farmed Atlantic salmon
following a simulated-escape event. Understanding the ecological impact and dispersal
pattern of escaped farmed Atlantic salmon are stated as a major challenges, and the study
suggests spreading recapture efforts over a relatively large area. The fish-tracking system
presented in this thesis might serve as an important tool in examining the natural dispersal
pattern of escaped Salmon from fish farms, and hence tactically narrow down the recap-
turing search area. The aquaculture industry is often obligated to pay fines in the event of
fish farm escape events, in addition to costs associated with recapturing programs. In the
future, stricter regulations regarding environmental impact of the aquaculture industry are
expected. The industry itself therefore might have an economical incentive to invest in the
development of, or data provided by, systems such as the one presented in this thesis.

1.5 Problem Definition

Aim
Contribute to developing an autonomous fish tracking system for Atlantic salmon.

Research Questions

1. How can important control system components of an optimal fish tracking system
be developed?

2. What are the error sources associated with the proposed system?

This thesis presents a fish tracking system consisting of affordable vessels, acoustic sys-
tem, software, computers and controllers. For the purpose of this thesis, an optimal fish
tracking system is defined as a system delivering accurate and reliable geospatial data
of its target during the entire operation, whilst being affordable and practically imple-
mentable. A proposed control system is optimized towards 5 objectives, and it is based
on its performance in unifying these objectives that the quality of the system is assessed.
Control system components, e.g a target estimator, formation controller, guidance system
and receiver positioning models, are developed with the aim of optimizing the fish track-
ing system. Determining error sources of the proposed fish system is an important step
towards understanding how the system can be further enhanced.

6

1.6 Method

1.6 Method

Conclusions presented in this thesis are based upon results obtained by this author, other
NTNU master’s thesis’ and credible literature within the fields of cybernetics and marine
science. The university library of Norwegian University of Science and Technology has
an online search engine, www.oria.no, where research articles and books are available in
electronic versions. This search engine has been used to a large extent to acquire relevant
and trustworthy information in the process of writing this thesis. Literature from the fol-
lowing scientific journals and conferences are used:

Conferences:

e IEEE OCEANS 2013, 2015 & 2017
o IEEE International Conference on Robotics and Automation
Journals:
e Proceedings of the National Academy of Sciences of the United States of America
(PNAS)
e Environmental Biology of Fishes

e Science

Fisheries Management and Ecology

Fish and Fisheries

e ASME Journal of Basic Engineering
e Control Engineering Practice

The citations and bibliography presented in this thesis follow the Vancouver reference
style. Pictures are cited with the associated URL addresses of where they are acquired and
in general collected from the websites of the original manufacturer.

The developed extended Kalman filter is tested in a real-time simulation in DUNE: Uni-
fied Navigation Environment. Experiments and hardware implementations are conducted
at forsgkshallen experiment lab, elektrobygg D at NTNU Glshaugen, Trondheim, Norway.

1.7 Thesis structure

The overall structure of this thesis is presented followingly.

e The second chapter elaborates on relevant theory: coordinates systems, localization
and communication.

Chapter 1. Introduction

e A proposed fish tracking system is presented in the third chapter. An overview of the
current system components and associated equipment precision is presented. Impor-
tant control system components of an optimal fish tracking system are developed,
i.e answering the first research question.

e The fourth chapter presents hardware implementations of a GPS receiver (Garmin
18x 5Hz), CAN controller (PiCAN2), motor controller (Torgeedo interface board)
and Torgeedo thrusters with a Raspberry Pi 3 single-board computer. The developed
target localization software in DUNE is presented.

o The fifth chapter presents a fish tracking simulation located in the Trondheimsfjord,
with the aim of testing and verifying the developed software.

e Both research questions are further examined in the sixth chapter, i.e the discussion
chapter. An evaluation of the validity of underlying assumptions leading to the
developed receiver positioning models are presented.

e Conclusions are presented in the seventh chapter.

e The appendix contains documentation on developed software and hardware imple-
mentations presented in this thesis, including relevant information on various system
components. The appendix aims to assist readers and future students in reusing and
replicate solutions.

Chapter

Theory

2.1 Coordinate Systems & Transformations

The mathematics necessary for denoting a vector in various coordinate systems are pre-
sented in this section. This section is largely based upon theory presented in the book
Handbook of Marine Craft Hydrodynamics and Motion Control by Fossen. [18]

ECEF Coordinate System

The Earth-centered Earth-fixed (ECEF) coordinate system has its origin in the center of the
earth, i.e earth centered, with its axis fixed towards a reference pole, meridian and surface
of the earth, i.e earth fixed. The coordinate system is often used by global guidance,
navigation and control systems. The ECEF reference frame coincides with the Earth-
centered inertial (ECI) frame once every 23 hours, 56 minutes, and 4 seconds.

NED Coordinate System

The North-East-Down (NED) coordinate system is defined with an origin CO relative to
the World Geodetic System 1984 (WGS84), with axis’ oriented towards North, East and
towards the centre of the earth. The reference frame is frequently used to describe the
position of objects on the surface of the earth.

Chapter 2. Theory

Body Coordinate System

The body-fixed coordinate sys-
tem has its origin in CO, a
point which is usually set mid-
ships in the waterline. [18] The
body coordinate system con-
sist of three axis’: x, y and
z; the longitudinal, transver-
sal(starboard), and normal, re-
spectively. Motion of ves-
sels in x, y and z direction
are frequently referred to as
surge, sway and heave, and ro-
tation about the axis’ as roll(¢),
pitch(f) and yaw(z)), respec-
tively. Figure 2.1: Otter USV: Body and NED coordinate frame [19]

By allowing the origins of the NED and body coordinate systems to coincide in the CO
point can the yaw-angle 1) be defined as the necessary rotation for the X 5 (North) axis to
coincide with the x; axis, i.e the axis pointing in surge direction. The center of flotation
denoted CF is a point which coincides with the vessel centroid point in the waterline, and
is the point a surface ship roll and pitch around. An Otter USV with a corresponding body
and NED coordinate system is presented in figure 2.1. The yaw angle ¢ is indicated by a
red angle in CO.

LLH Coordinate System

In everyday life people normally navigate referring to their terrestrial position in ellipsoidal
parameters longitude and latitude. Measurements from a Global Navigation Satellite Sys-
tem (GNSS) are usually presented to the user in ellipsoidal parameters. Geographical
coordinates longitude, latitude and ellipsoidal height defines the position of an objective
in the LLH coordinate system. A reference ellipsoid which is frequently used for naviga-
tion systems is the rotating ellipse WGS-84.

The WGS-84 is a global ellipsoid which can be used as an approximation of the mean
sea level of the earth. The geoid is defined as the equipotential surface which coincides
with the mean surface of the Earths oceans while not being subject to any forces, such as
wind or tides, except the Earth’s gravity and spin. The true topography of the earth does
however rarely coincide with either of these models and the ellipsoidal height h is often
approximated by the orthometric height, as given in equation 2.1,

haH+G @.1)

where H is the orthometric height and G is the geoidal height. The deflection of the verti-
cal is a measure of gravity field shift due to local anomalies such as mountains, and must

10

2.1 Coordinate Systems & Transformations

be taken into account in order to calculate the exact value of the ellipsoidal height. The
deflection of the vertical is the angle between the true zenith and the line perpendicular
to the surface of the reference ellipsoid. The associated errors from not considering the
deflection of the vertical are small and can be neglected for practical purposes.

Notation

Let the position an object in the ECEF coordinate system be denoted by vector p~.

pf = [x Y z] r 2.2)

Let the position an object in the NED coordinate system be denoted by vector p*¥

p=[N E D]’ 2.3)
Let the position an object in the body coordinate system be denoted by p°.
T
p’ = [xb y° zb] 2.4

Coordinate Transformations

From Body to NED coordinates
A position in the body frame can be transformed to the NED frame by three principal
rotations about the x, y and z axis’, as given in equation 2.5,

N —RNp® (2.5)

where the rotation matrix from body to NED coordinates denoted R} is given by equation
2.6.
cos(¢p)cos(0) —sin(tp)cos(¢) + cos(p)sin(0)sin(¢) sm()sin(¢) + cos(1))cos(¢)sin()
Ry = [sin(¢))cos(8) cos(y)cos(¢) + sin(¢)sin(f)sin(¢p) —cos(th)sin(¢) + sin(6)sin(1))cos(¢)
—sin(0) cos()sin(¢) cos(f)cos(¢)
(2.6)

Flat Earth Navigation

For navigation in a local and limited area can the NED tangent plane be assumed to be
fixed to the surface of the Earth. This is often referred to as flat earth navigation and gives
a simple relationship between positions denoted in the NED and ECEF coordinate system.

= (R%)T(pE - pref) 2.7
where RY is the rotation Matrix denoting the position of an object from NED to the ECEF
coordinate system, given by equation 2.8,

—cos({)sin(u) —sin(l) —cos(l)cos(p)
RE = | —sin(l)sin(p) cos(l) —sin(l)cos(u) (2.8)
cos () 0 —sin(pu)

11

Chapter 2. Theory

where 1 is longitude, p is latitude and R is part of a special orthogonal group of ro-
tation matrices denoted SO(3) where the following mathematical conditions are valid:
R € R3*% det(R)=1,and R’TR = RR” = 1.

From NED to ECEF coordinates
Transformation from NED to ECEF reference frame is given by equation 2.9,

p” =R%(©)p" 2.9)
where O = [1 u] " and 1 and 1 is longitude and latitude, respectively.

From ECEF to LLH coordinates

When transforming from ECEF to LLH coordinates are latitude and ellipsoidal height cal-
culated implicitly whereas longitude can be found directly. The radius of curvature in the
prime vertical is denoted N and is calculated using equation 2.10,

re?

N =

2.10
r2c0s2 () + rp2sin? (1) (2-10)

where 7, and r. denotes the Polar axis and Equatorial radius of the WGS 84 ellipsoid,
respectively.

Longitude 1 is found using equation 2.11,
_ Y
[= atan(=Z) (2.11)
x

and latitude and ellipsoidal height using implicit equations 2.12 and 2.13,

tan(p) = ;;(1 e N]i)7 2.12)
o
"= o =N 2.13)

where p is /22 + y2 and e is the eccentricity of ellipsoid. The two implicit equations can
be solved iteratively using a six-step algorithm presented in Fossen [18] given in equation

2.14,
Step 1) p=+/z2+ 9?2
z _
Step 2) tan(j(g)) = 5(1 —eHt
re?
Step 3) N = Y S 3
7e2c0s?(f1(0)) + rp?sin” (o)) 2.14)
» .
Step 4) h =
cos(k(0)) — Noo)
Step 5) tan(p) = E(1 - 62& -1
P N(O) +h

Step 6) if(|u — p(0y| < tol) — exit loop

12

2.2 Localization

where tol is the error tolerance ending the iterative process.

From LLH to ECEF coordinates
Transforming positions in the ECEF reference system to LLLH coordinates is done using
the direct relationships presented in equation 2.15.

;v (N + h)cos(u)cos(l)
y| = (N2—|— h)cos(u)sin(l) (2.15)
z 2 (N + h)sin(pu)

2.2 Localization

For the purposes of this thesis let localization be defined as the process of positioning an
object in four dimensions in time and space. Three important measures in localization are
time of transmission (TOT), time of arrival (TOA) and pseudorange. TOT is the time it
takes for a signal to propagate from the transmitter to the receiver. TOA is the time-stamp
a receiver conducts a signal. A pseudorange is an estimate of the distance between a re-
ceiver and a transmitter.

TOA and TDOA localization

TOA and TDOA localization are two different positioning methods. The main difference is
that TOA localization methods rely on the absolute time of arrival measurements whereas
TDOA methods uses time difference of arrival measurements. The position of receivers
obtaining measurements must be estimated with sufficient precision as they appear directly
in positioning equations for both methods. The corresponding equations are quadratic of
nature for both methods and an additional equation with regard to the number of dimen-
sions is therefore needed to determine distinct solution.

A major difference between TOA and TDOA localization methods is the nature of the
solutions. In TOA localization methods are solutions found as the intersections of circles
and spheres in R? and R3, respectively. The position of the signal source coincides with
the intersection of these circles or spheres. The solutions of TDOA equations correspond
to hyperbolic curves in R? and hyperbolic surfaces in R?. The position of the signal source
coincides with the intersection point of these curves or surfaces.

TOA localization methods estimate the pseudorange distance in between receivers and
source of transmitted signal, using an estimate of the time in which the signal was sent.
TDOA localization can be used in situations where the time of which a signals is sent
is unknown. By subtracting two TOA measurements is this term eliminated. A TOA
measurement obtained by one the receivers must used as a reference for comparison with
other measurements, and TDOA methods therefore require an additional TOA measure-
ment compared to TOA localization methods. A TDOA measurement corresponds to the
Euclidean distance difference in between two observers and the source of the signal di-
vided by the speed of the signal.

13

Chapter 2. Theory

2.2.1 GNSS Positioning

Global Navigation Satellite Systems (GNSS) utilize atomic clocks aboard satellites to
time-stamp signals, and satellite positioning is based upon the principle of TOA local-
ization. This section is largely based upon theory from the book Integrated Satellite and
Inertial Navigation Systems by Vik [20].

Nowadays, refers a Global Navitation Satellite System (GNSS) to any satellite-based sys-
tem providing global real-time positioning and timing services to users. Most commercial
GNSS receivers generate position, velocity and heading estimates. A GNSS consist of
three main segments: the space, control and user segment. In the world today are the
American and Russian systems Global Positioning System (GPS) and Globalnaja navi-
gatsionnaja sputnikovaja sistema (GLONASS) fully operational, with the European and
Chinese systems Galileo and Beidou currently under development. The foundation for the
Global Positioning System was laid by the U.S army in the late sixties, and has developed
from military purposes to include a large variety of civilian applications and hence turned
into a big industry. A large variety of space (SBAS) - and ground (GBAS/LAAS) - based
augmentation systems exist, and have the objective of enhancing GNSS accuracy and in-
tegrity. SBAS systems determine errors and transmit corrections and ionospheric maps to
satellites, and integrity data for users. Ground stations main objective are to determine and
broadcast local errors, mainly used in precision operations.

GNSS use two main sources of raw data in estimating the pseudorange distance in be-
tween the user and a satellite; pseudo-random sequences and carrier-phase measurements.
A Doppler measurement and carrier to noise density is also available. In general is the
carrier phase measurement more accurate but less reliable than the pseudorange measure-
ment, because the carrier-phase measurement demands satellite lock and loss of lock occur
quite frequently.

The main sources of error in GNSS are satellite based errors; clock and orbit error, prop-
agation channel errors; multipath, interference, ionospheric and troposphere effects, re-
ceiver related errors; antenna effects, receiver clock error and bias, noise, and finally di-
lation of precision due to poor satellite geometry. From these many error sources are
ionospheric delay and scintillation (due to free electrons in upper atmosphere) and geo-
metric dilution of precision the main contributors. Many methods for enhanced accuracy
exists, such as ionospheric compensation (frequency dispersive phenomena which allows
modeling) and timing corrections provided by various systems.

The strength of GNSS signals are low due to heavy propagation loss traveling long dis-
tances from satellites to receivers. GNSS signals lack the ability of penetrating electrical
conductive materials, such as water, which is the reason to why GNSS can not be used
for underwater positioning. The signals are naturally able to penetrate non-conductive
materials such as air, and to some extent also thin walls and glass (windows).

14

2.2 Localization

2.2.2 Acoustic Positioning

As GNSS signals are unable to penetrate water are other localization methods needed for
monitoring of submerged fish. Methods utilizing acoustic signals are widely used in un-
derwater operations. Fish tags are able to transmit acoustic signals containing messages
of a large variety of data, such as ID and depth. These tags are, however, not capable of
time-stamping their signals due to the fact that atomic clocks are too large and expensive
this purpose. TDOA localization is the natural choice for fish tracking applications.

2.2.3 TDOA Localization

This chapter examines TDOA equations and their solutions in Ry and Rg3. Firstly, is the
concept of noise amplification in TDOA localization examined. Secondly, are TDOA
equations for three separate localization scenarios presented: i) four receivers in a hori-
zontal plane, ii) four receivers in 3-space and iii) three receivers with a depth measurement
in 3-space. Finally, are their solutions examined and graphically illustrated.

TDOA noise amplification

Noise is always present in acoustic signals. This section illustrates how noise is ampli-
fied in the process of subtracting TOA measurements, i.e creating a TDOA measurement.
Noise amplification is one of the disadvantages of utilizing TDOA localization methods.
Let y; and y5 and be two TOA measurements given in equations 2.16 and 2.17,

1

Y1 = EHXR1 —x|| +wy (2.16)
1

y2=E|\XR2—X||+w2 .17

where w; and wsy are zero-mean Gaussian white noise, X, and xp, are the positions of
two acoustic receivers and x is the position of the target. The resulting TDOA measure-
ment is given by equation 2.18,

TDOA = (y2 — y1)

1 (2.18)
= Jlxr, —xll = llxp, —x||) + (w2 —w1)

In the process of subtracting TOA measurements increases the mean value of the noise
term (wo — w;) by a factor v/2 and its variance by a factor of 2.

TDOA Equations

i) Four receivers in R>
. . . . T
Let Ry, Rz, R3 and R4 be four receivers in a two-dimensional plane. Letxgr, = [;z: R, Y Rj]

15

Chapter 2. Theory

for j=1,2,3,4, where xg; € R? denotes the position of a single receiver, and let a target

fish at an unknown target be: x = [:L’ y] T € R2. Let the target emit an acoustic signal
with constant propagation speed c. By assigning the TOA measurement obtained by the
receiver in position xp, to be the reference receiver three TDOA measurements can be
obtained, as indicated in equation 2.19,

TDOA;_; = TOA; — TOA, (2.19)

for j = 2,3,4. Utilizing the linear relationship between speed, time and position, the can
equation 2.19 can be transformed into equation 2.20

TDOAFlc:V/xR—f@2+(WQ*yV

—\/ (xR, —2)* + (Yr, —y)?

(2.20)

forj=2,34.

ii) Four receivers in R3

Let Ry, R2, R3 and R, be four receivers in a three-dimensional space, and let x R, =
T

[2r, wyr, =zr,] forj=1234, andxp, € R* denote their positions. Let the position

. T 3
of target fish at an unknown location be denoted by x = [x Y z] ,x € R3. Given
similar constraints and assumptions as presented in equation 2.19, three TDOA equations
are obtained and presented in equation 2.21

TDOAj,1 c= \/ .’I,'R. — LL’)2 + (ij - y)2 + (ZR]. — 2)2

2

2.21)

_\/ le _T (yR1 _y) +(ZR1 _Z)
for j=2,3,4.
iii) Three receivers in R? with a depth measurement

Let R, R, and Rj3 be three receivers in a three-dimensional space such as described above.
Two TDOA equations can be obtained and are presented in equation 2.22,

TDOA;_; ¢ = \/ (rR, — a:)2 + (yr, —y)? + (2r;, — 2)?

—/(zR, — + (Yr, —y)* + (2R, — 2)?

(2.22)

forj=2,3.

Let z denote a horizontal plane in three-dimensions and D denote a depth measurement
as presented in equation 2.23.

z= f(z,y) (2.23)
D (2.24)

16

2.2 Localization

TDOA Solutions

i) TDOA Solutions: four receivers in R>

Four receivers are needed to determine the distinct solution of a transmitter in R?, i.e
finding solutions to equation 2.19 for j = 2,3,4. Each TDOA equations have two solution
functions y(x) as a result of its quadratic nature and 6 y(x) solutions in R? can therefore
be found. Let Ry, Ry, R3 and R, be fixed in point locations (0,1), (7,1), (2,5) and (5,4),
respectively. Let the position of the transmitter be (3,3). The distinct solution to the equa-
tions is given in the intersection of three hyperbolas in (3,3) as indicated in upper figure
in figure 2.2. The corresponding MATLAB script creating the plot is included appendix
section E.1.

ii) TDOA Solutions: four receivers in R>

In three dimensions are TDOA solutions hyperbolic surfaces in R?, hereby denoted f(x,y,z).
Four receivers are normally sufficient to obtain a distinct solution. However, in some con-
figurations can the distinct solution not be obtained. The plot in the middle of figure 2.2
illustrates four receivers and an unknown target indicated by blue and red colored dots,
respectively. The solutions are indicated by 3 hyperbolic surfaces in yellow color. A si-
nusoidal surface plot with mean value 0 in yellow color was included to illustrate a fictive
ocean surface. The target location of the fish is given as the intersection of the three TDOA
surface solutions. The corresponding MATLAB script is provided in the appendix section
E.2.

iii) TDOA Solutions: three receivers in R? with a depth measurement

When a depth measurement is available is one less receiver needed to locate a target fish
in three-dimensional space. A constellation of three receivers and a target fish with cor-
responding TDOA solution surfaces and depth measurement plane is illustrated in the
bottom plot of figure 2.2. The solution and location of the target is found as the intersec-
tion between two TDOA hyperbolic surface solutions and the horizontal depth plane. The
corresponding MATLAB script is included in appendix section E.3.

17

Chapter 2. Theory

- T T T
—— Time difference R2 with R1 reference: solution 1
~—— Time difference R2 with R1 reference: solution 2
~— Time difference R3 with R1 reference: solution 1| _|
—— Time difference R3 with R1 reference: solution 2
—— Time difference R4 with R1 reference: solution 1
——— Time difference R4 with R1 reference: solution 2

AR

T
M“(’ ‘)“ ‘v"'

AR
i

i
Al

Figure 2.2: TDOA localization solutions: 2D with 4 receivers, and 3D with 4 receiver and 3 re-
ceivers & depth measurement

18

2.2 Localization

2.2.4 Single Measurement Localization

In some situations is potentially only one receiver able to acquire the acoustic signal trans-
mitted by a fish tag. The principle of TDOA localization demands at least two TOA mea-
surements and is therefore not applicable. A positioning technique using signal strength
can be applied.

Let P, and P; denote the signal strength of the received and transmitted signal, respec-
tively. Let r denote the Euclidean distance from transmitter to receiver and A denote the
wavelength of the signal. Path loss in free space of an electromagnetic signal is given
as the dB-ratio of the relationship %‘, which further is proportional to the relationship
presented in equation 2.25.

b, N
P, 167212

P, A
= 10log,((— 2 ") oc 10log, o (——)? (2.25)

4mr
Let the signal strength loss in decibels be donated by L as given in equation 2.26.

L 2010g10(4%7a) (2.26)

By assuming that the acoustic signal transmitted by a fish tag decays as electromagnetic
signals do in free space, with receiver & transmitter gains equal to one, can a pseudorange
estimate p be found through the relationship presented in equation 2.27.

A
p= Ew% (2.27)

Wavelength of the acoustic signal is given by the linear relationship A = %, where c is the
speed of sound in water and f is signal frequency (~ 69 kHz for most fish tags).

Imagine a situation in which a single acoustic receiver has acquired an acoustic signal
and the associated depth measurement. In this situation can the location of the target can
be determined to be within a circle set of solutions in R? as the intersection of a horizontal
plane z = f(z,y) = C and a spherical solution set, presented in equation 2.28. Only
locations on the bottom dome of the sphere are valid solution due to the fact that the fish
is submerged.

p =%z, fcu

=/(zr, —2)2 + (yr, — ¥)? + (2r, — 2)? (2.28)

19

Chapter 2. Theory

In figure 2.3,
a yellow dome
represents a
spherical solution
set derived by a
pseudorange. A
horizontal plane
determines the
location of the
target in depth
direction, with
an intersection
solution circle
indicated with red
color.

Figure 2.3: Signal strength localization

The true target and receiver position is indicated by a red and blue sphere, respectively.

2.2.5 Geometric Dilution of Precision

Geometric dilution of precision (GDOP) is a measure which represents the degree the
relative geometry of the transmitter and receivers, i.e the receiver formation constellation,
dilutes the solution accuracy of an estimator. [20] GDOP is defined as the sum of the

diagonal elements in a co-factor matrix G, i.€ @zz + qyy + ¢, as presented in equation
2.29,

G=HH)!
Qzx Qxy Yxz (2.29)
= |92y Qyy Qyz
ez Gyz Qzz

where HH is the Grammian matrix. H is the geometry matrix connecting TDOA mea-
surements and states and is presented in an equation later in this thesis: equation 3.7.

The optimal receiver constellation is the one which minimizes the sum of diagonal ele-
ments in the dilution of precision matrix G:

min (Tr(HTH)™!) (2.30)

XRE]RS

where Tr is the trace operator of the matrix (sum of its diagonal elements), and xg € R3
is the positions of receivers in 3-space, e.g. a USV constellation.

The constellation which minimizes dilution of precision is a receiver array evenly dis-
tributed on the surface of a sphere, with target in the sphere origin. Constellations with
aligned or co-planar receivers should ideally be avoided, as singularities in the H matrix
give large dilutions of precision values. In the case of using USVs for fish tracking are
receivers more or less bound to the surface plane, i.e co-planar, and the ideal constellation
is therefore not realizable. A depth measurement is needed to determine target position in

20

2.3 Communication

depth direction.

2.3 Communication

2.3.1 Serial Communication

Serial communication can be defined as the process of sending data bit-wise through an
electric circuit. A serial bus is defined as a shared channel using serial communication.
Serial communication is normally divided into two principle groups: synchronous or asyn-
chronous.

Synchronous serial communication pairs the data with a clock signal and all devices con-
nected to the bus share a common clock. In asynchronous serial communication is data
transferred without clock synchronization data which minimizes the required wires and
I/O (input/output) pins.

Serial communication protocols

Both bit and byte oriented protocols exist. A byte is a 8 bit data message, allowing
28 = 256 unique variables or symbols. The hexadecimal numeral system is widely used
in computer science to represent binary coded values using 16 distinct symbols (0-9 and
A-F) to represent 4 binary values. Two hexadecimal digits are therefore able to represent
8 bits, i.e 256 various symbols.

Baud rate is often confused with bit-rate (or bps - bits per second), despite the fact that
they are only equivalent when there is two symbols in the Baud alphabet (often 1 or 0),
which often is not the case.

Serial communication protocols and standards used by the fish tracking system presented
in this thesis, such as SPI, ASCII, RS-232, RS-485, USB and UART, are briefly described
in the appendix section A. The Controller Area Network protocol is presented in the fol-
lowing section due to its distinctive relevance for the hardware implementations presented
in chapter 4.1.

Controller Area Network

A Controller Area Network (CAN bus) is a multi master serial bus standard which enables
micro controllers and other devices to communicate with each other without a host com-
puter. CAN is a broadcast type of bus, in which all nodes invariably pick up messages,
and local hardware filtering is therefore needed to ensure that components only react to
interesting messages. CAN bus uses two wires, one for CAN high and another for CAN
low signals. In idle mode are both lines carrying 2.5 volts (recessive voltage). While trans-
mitting data are the high and low line carrying 3.75 and 1.25 volts (dominant voltages),
respectively, and hence generating a 2.5 voltage differential.

21

Chapter 2. Theory

The CAN bus utilizes a lossless bitwise arbitration method for transmitting data. The
method requires nodes to be synchronized for every bit in the network. This is the reason
to why CAN networks are sometimes referred to as synchronous despite not transmitting a
clock signal with the data. CAN frequently used in the automotive industry and automation
environments in general due to the low cost of CAN controllers and processors.

2.3.2 4G Communication

4G is a broadband cellular network, more specifically a distributed network over land areas
(cells) where the last link is wireless (antenna). 4G referrers to the fourth generation of
mobile communications. The first release Long Term Evolution (LTE) is a standard for
wireless communication and has existed commercially in Norway since 2009. 4G LTE
is based upon the principle of orthogonal frequency-division multiple access (OFDMA),
grating multiple access through assigning users subsets of the radio wave carrier.

2.3.3 Satellite Communication

The GPS signal structure as presented in [20] is given in equation 2.31,

Ly = Aip(t)d(t)cos(fit) + Aic(t)d(t)sin(fit)
Lo = Asp(t)d(t)cos(fat) (2.31)

where f; = 1575.42 MHz and f> = 1227.6 MHz which corresponds to the K, band (band
within microwaves spectrum) in the electromagnetic spectrum. The K, band involve sig-
nals with frequencies ranging from 12 to 18 gigahertz (GHz).

GPS signals transmit navigation messages with ephemeris and almanac data which in-
cludes satellite orbit parameters and satellite constellation parameters, respectively. When
a GNSS signal reaches a receiver various signal processing and decoding stages take place
inside the receiver hardware to make use of the data. This involves a two-dimensional
acquisition process, signal tracking, signal monitoring, signal observation (pseudorange
determination), navigational message decoding, and finally a navigation solution solver.

2.3.4 Underwater Acoustic Communication

DPPM is a form of signal modulation where message bits are encoded by transmitting
acoustic waves where each pulse is positioned and encoded relative to the previous pulse.
The acoustic receiver measures difference in pulse arrival time to decode the data mes-
sage. DPPM is inherently less sensitive to multipath interference than other modulation
techniques, e.g the pulse-position modulation method, which is a big problem in acoustic
communication.

22

Chapter

Fish Tracking System

Acoustic
Receiver

Acoustic
Transmitter

-

Figure 3.1: Proposed Fish Tracking System

This chapter presents a tracking system which can be used to monitor and track an At-
lantic Salmon, utilizing four Otter USVs and acoustic receivers. Its objective is to create
accurate geospatial data of the target fish by timestamping and decoding acoustic DPPM
signals transmitted by a fish tag.

23

Chapter 3. Fish Tracking System

In theory, the proposed fish tracking system has guaranteed ability of calculating distinct
fish position in R? as long as a depth and four TOA measurements, i.e three TDOA mea-
surements, are successfully received whilst obtaining formations in which receivers are not
aligned and measurements are perfect. In many configurations three TOA measurements,
i.e two TDOA measurements, are also sufficient to calculate distinct target position. How-
ever, it is greater robustness and less geometric dilution of precision expected using four
Otters USVs.

This chapter introduce the various system components currently intended for the NTNU
fish tracking system, and describe their purpose in the proposed control system. First,
schematics demonstrating the current hardware setup, information flow, communication
protocols and connections are presented. Secondly, five system objectives for a proposed
control system to fulfill are presented. Finally, are the different layers of control elaborated
upon in separate sections.

3.1 Schematics

Garmin GPS

Garmin GPS
. TBR board H i4G LTE
. H 4G LTE . uawei
Raspberry Pi3 |+ uar\‘;lvc?cliem " Raspberry Pi3 [er| o

T 7 * ¥ f

v v
PiCAN2 - ‘ Huawe 4G ‘ Torgeedo 4{ PiCAN2

LTE Modem
Otter USV #1 v Otter USV #2

Main Linux
. t .
TBR700 Garmin GPS computer TBR700 Garmin GPS

Manned Boat or

TBR board - Huawei 4G LTE Basestation TBR board] Huawei 4G LTE
Raspberry Pi3 |« Modem Raspberry Pi3 |+ Modem
i ¥ i 3 ¥ T
~| PiCAN2 - ’ Torqeedo <~{ PiCAN2
Otter USV #3 Otter USV #3

Figure 3.2: Hardware Schematics

TBR700 TBR700

TBR board

) g
a]
® e ®
o ®
Q. <%
o o
£ &

(RGN

The current hardware configurations of the NTNU fishtracking system is presented in fig-
ure 3.2. Sensor data obtained by four client nodes (Otter USVs) is transmitted to the
centralized system node using 4G LTE communication. The centralized node is a com-
puter running operation software and explained in further detail in the following sections.
This computer can be placed in a mission center on land or aboard a vessel. In develop-
ment stages is it natural to obtain this computer aboard a manned vessel in which operators
can interfere through a user interface depending on what they observe during operation.
Ideally, as the degree of autonomy in the system increases, it can be possible to position
the centralized node aboard one of the four Otter USVs.

)
=

3.1 Schematics

A schematics indicating the physical connections in the proposed system is presented in
figure 3.3. Note that the PICAN2 CAN controller can be connected to the Raspberry Pi 3
through two different connections, a 9-way sub-D connector or a 4-way screw terminal.

TBR700

| RS-485cable |

MAX3232

board 4G Modem
TBR board
GPIO pins USB
——

Raspberry Pi3

GPIO pins
A-way screw -
terminal IEI

|RS—485cabIe | ‘ Thruster 1 |
Torgeedo board

‘ RS5-485 cable ‘ ‘ Thruster 2 |

Figure 3.3: Otter USV: Connections schematics

25

Chapter 3. Fish Tracking System

Figure 3.4 indicates in-
Fish Tag

formation flow from an |
acoustic transmitter (fish '
tag) to an acoustic re-

ceiver aboard a single Ot- [DPPS | Acoustic | Satellites

ter USV. Serial communi- ' _i__,
cation is indicated by ar-
rows while analog commu- [Rsass | [Radio | L1&12 | A
nication methods (FM & v —
acoustic) are indicated by GTS 4G | RadioFreq

‘

a wave symbol. Color-
. . nterne
coded boxes indicate se-

rial, acoustic and radio | .,
communication for blue,

green and yellow color, [CAN | serial]
respectively. Additional
boxes indicating commu-
nication protocols used in
each communication link
are placed next to their as-
sociated links. Further de-
tails regarding communi-
cation protocols used by Figure 3.4: Otter USV: communication flow
the system can be found in

the appendix section A.

h
Serial | —

[serial | Rs-232 |

——| Thruster1 | [pican2 |

—»| Thruster 2
+
RS-485
Torgeedo board

Serial -

3.2 Otter USVs

Purpose:

The main purpose of the
Otter USVs is to enable
positioning of acoustic
receivers in time and
space.

Connection:

The TBR 700 real-time
acoustic receiver must
be connected to the
Otter USV through a
cable-connected or fixed

configuration, including .
a RS-485 cable for serial
communication. Figure 3.5: Otter USV: cable-connected acoustic receiver [21] [19]

The acoustic sensor must be submerged throughout the entire operation to enable detec-

26

3.3 Hardware

tion of acoustic signals transmitted by a fish tag. The final receiver configuration, i.e the
physical mechanism connecting the receiver to the vessel, is yet to be decided upon.

Specifications:

The Otter USV is an autonomous catamaran-shaped vessel equipped with two fixed elec-
tric thrusters weighing about 95 kilo with a max speed of 6 knots. The dimensions of
the vessel are 105x200x85 cm for width, overall length and height, respectively. The ves-
sel is conveniently transported through being equipped with detachable pontoons, and is
indented for operations in sheltered waters such as smaller lakes, canals, rivers, harbour
areas and sheltered fjords in calm weather conditions. The long endurance vessel is pow-
ered by up to four interchangeable battery packs with a capability of travelling 2 knots for
up to 20 hours. According to the manufacturer is it theoretically possible to get up to 100
hours of endurance in 1,5 knots, with no payload and zero energy reserves, using four 30
Volt (915 Watt hour) batteries. The catamaran-shape of the Otter USV allows it to carry a
large variety of sensors for environmental mapping between its pontoons, e€.g an acoustic
receiver.

Torqgeedo thrusters

The Otter USV is delivered with two detachable fixed-position Torqeedo thrusters with a
maximum propulsive power of 180 Watts. The thruster is powered by electricity of ap-
proximately 28.8 Volts with maximum propeller speed and power supply of 1200 rounds
per minute (rpm) and 1200 Watts, respectively.

3.3 Hardware

3.3.1 Sensors
Fish Tag

A Norwegian manufacturer Thelma Biotel delivers fish tags which can be used in fish-
tracking experiments, with weights ranging from 17.5 to 2.1 grams. The ADT-16 fish tag
is a depth transmitter developed for migrating Atlantic salmon smolt, and a potential can-
didate for the final system.

. ApT;
'"”’@flvolmagm o

Figure 3.6: Acoustic receiver & transmitter: TBR 700 RT & ADT-16 fish tag [22] [23]

27

Chapter 3. Fish Tracking System

Purpose

The purpose of the fish tag is to transmit acoustic signals omnidirectionally through the
water column using a piezoelectric transducter. Depth data is transmitted by the principle
of acoustic Differential Pulse Position Modulating (DPPM) and carried by acoustic signals
with a frequency of 69 kHz.

Connection
The fish tag is either connected to the skin of the fish in a place in which it does not pro-
hibit its movement, or injected into the belly of the animal.

Specifications

According to the manufacturer do their fish tags have a size dependent transmission range
up to 290 meters. The depth measurements of the ADT-16 tags have a maximum offset er-
ror of +/- 50 cm. The tag has a cylindrical shape with a length and diameter of 55 mm and
16 mm, respectively, and weighs approximately 17.5 grams. Measured depth is continu-
ously encoded as the time delay between two acoustic pulses (DPPS). A delay of 1000 ms
corresponds to O m and increases by 100 ms per meter. The resolution of the transmitted
signal is 10 cm which corresponds to 10 ms.

Acoustic Receiver - TBR 700 RT

Purpose

The purpose of the acoustic receiver is to timestamp, i.e create TOA measurements, and
decode DPPM acoustic signals transmitted by a fish tag. Variables such as ID, timestamp
in Linux time seconds and milliseconds, code type, pressure data (depth) and signal to
noise ratio (SNR) are logged and transmitted in real-time.

Connection
The receiver is communicating serially through a standard multipoint RS-485 cable en-
abling real-time data acquisition. A transceiver chip which converts UART from the Rasp-
berry Pi 3 to RS-485 is necessary to enable communication with the receiver. Data can
also be gathered from the equipment through USB or Bluetooth if used as a standalone
logger unit.

Specifications

TBR 700 has full multi-frequency reception in the 63-77 kHz band with advanced digital
signal processing for noise reduction, enabling maximum reception. The hydrophone dy-
namically adjusts threshold levels in order to optimize reception in harsh sound conditions.
Acoustic signals are timestamped with an associated uncertainty of approximately = 1 ms.
The receiver is a long endurance equipment with battery life capability of as high as 16-18
months, weighs about 1.14 kg and is 75 and 230 mm in diameter and length, respectively.

Data message

28

3.3 Hardware

A data message from the TBR 700 has the following form,

$ (TBR ID), (timestamp[s]),(timestamp[ms]),{ code type),(tagID),(Pressure data),(
SNR)

and an example message can be,

$ TBROS5,1446716612,123,5256,2,233,50

where receiver number is 05, 1446716612 is seconds, 123 is milliseconds, code type is
5256, tag ID is 2, pressure data is 233 and SNR ratio is 50. The timestamp is a 32 bit
signed variable in Unix time, i.e number of seconds since 1 January 1970. The pressure
data is a data value ranging from O to 255.

Garmin 18x SHz Outdoor GPS

Figure 3.7: Garmin 18x SHz outdoor GPS & MAX3232 line driver [24] [25]

Purpose
A Garmin GPS 18x 5Hz provides position and velocity estimates of its position aboard an
Otter USV.

Connection

The GPS comes with a 5 meter connection cable with 6 wires, Measurement Pulse Output
(#1, yellow), Power Vin (#2, red), Ground (#3, black), Transmit Data (#4, white), Ground
(#5, black) and Receive Data (#6, green). CMOS serial output level from 0 Vdc to Win,
with 4-5.5 Vdc (Asynchrounous serial). The input voltage and current of the Garmin GPS
is 4.4-5.5 Vdc (voltage direct current) and 100 mA, provided by the general-purpose in-
put/output (GPIO) pins of a Raspberry Pi 3 in this project. The GPS cannot be connected
directly to the GPIO pins of a Raspberry Pi 3. A RS-232 conversion board is needed be-
tween the devices to make use of serial GPS data. A Mikroelektronika MAX3232 is an
electrical circuit board which enables RS-232 performance from a 3.0 to 5.5 volt operating
range which is used for this purpose.

Specifications

The update rate is 5 Hz, i.e 5 measurements per second, with a user equivalent error
(UERE) less than 15 meters 95% of the time. The GPS is designed to withstand rugged
operating conditions and should be waterproof to about 1 meter for 30 minutes, which
allows use in prevailing weather conditions. A clear view to GPS satellites is preferable
as GNSS signals in general lack the ability to penetrate mediums between satellite and

29

Chapter 3. Fish Tracking System

receiver. The minimum GPS receiver sensitivity is -185 dBW.

Data

The data format is NMEAO183 electrical and data specification for serial communication,
which is often used in marine sensor systems. The default setting is 19200 baud.Data mes-
sages from the GPS are transmitted on the following form,

$ ID, timestamp, latitude, longitude,fix quality, No. of satellites, HDOP

where latitude and longitude are given on the form 6435.99677,N and 1051.23965,E, cor-
responding to 64° and 35.99677 minutes latitude and 10° and 51.239625 minutes longi-
tude. Fix quality is a number between O and 8, where 0 = invalid, 1 = GPS fix (SPS), 2
= DGPS fix, 3 = PPS fix, 4 = Real Time Kinematic, 5 = Float RTK, 6 = estimated (dead
reckoning), 7 = Manual input mode, 8 = Simulation mode. No. of satellites is the num-
ber of visable satellites and horizontal dilution of precision (HDOP) is a measure of the
horizontal satellite geometry accuracy.

3.3.2 Computers & Controllers
Raspberry Pi 3

Figure 3.8: Computers: PICAN2, Raspberry Pi 3 Model B, & Torqeedo interface board [26] [27]
[28]

Purpose
The purpose of the Raspberry Pi 3 board is to run Unified Navigation Environment (DUNE)
software and connect and communicate with various hardware devices of the system; GPS,
PiCAN2, Huawei E3372, and TBR 700 board.

Connections

During fish tracking operation is the Raspberry Pi 3 Model B (RP3) powered by the
Torgeedo interface board 5V outlet "H_5V” through a Molex Nano-Fit 2-ways recepta-
cle connector. In test phases can it be powered by a regular micro USB (phone-charger).
A number of GPIO pins provide lower-level output and can be used for serial communica-
tion, as indicated in GPIO header schematics in appendix figure 5.

Specifications
The Raspberry Pi 3 Model B is a small single-board computer. The board has a 64 bit
quad core processor with a speed of 1.4 GHz and 1 GB RAM. Raspbian is a Debian-based

30

3.3 Hardware

operating system for Raspberry Pi computers.

Can controller - PICAN 2

Purpose

The PiCAN 2 controller provides CAN-bus capability to Raspberry Pi 3. The objective of
the CAN controller is to store received serial bits from the CAN bus and in that way fetch
data messages which can be utilized by the host micro processor (RP3). The host micro
processor transmits messages to the CAN controller which is serially transmitted onto the
CAN bus.

Connection
PiCAN2 communicates with RP3 through its GPIO pins and with the Torqeedo interface

board through a 2-wire CAN-cable connected to a 4-way screw terminal.

Specifications
PiCAN 2 has high speed SPI interface (10 MHz) with CAN v2.0B at 1 MB/s.

Torgeedo Interface Board

Purpose

The main purpose of the Torgeedo interface board is to provide power and control to the
thrusters by communicating with the motors and batteries through implementing a gate-
way between six Torqeedo RS-485 buses and a CAN interface. The motor controller board
acts as an intermediary board between the micro-controller boards, batteries and thruster.
The Torgeedo board provides a variable d.c (direct current) to the thruster through a series
of pulses, i.e pulse width modulation (PWM).

Specifications
The Torqeedo interface board has a total of 4 power rails and 10 controllable outputs,
e.g current, voltage, power, temperature, RPM, status and error flags. The board con-
trols power individually to two Torqeedo Ultralight motors and protects the motors with
ultra-fast fuses.

3.3.3 Communication

Huawei E3372 LTE 4G Modem

Purpose

Enable communication between the Raspberry Pi 3 computers aboard Otter USVs and a
centralized unit, sharing IMC messages containing sensor data and allow system nodes to
receive formation control messages.

Connection

31

Chapter 3. Fish Tracking System

Figure 3.9: Huawei E3372 modem ([29])

RP3 USB port

Specifications
The Huawei E3372 is a 4G USB Stick which supports LTE download speed to 150 Mbps
and upload speed to 50 Mbps.

3.4 Software

The vessels are delivered without the original navigation system intended and created by
the manufacturer. The current plan is therefore to develop a navigation and control system
using the LSTS toolchain. LSTS toolchain is open-source for non-commercial users and
has been used in several projects at the University of Porto and NTNU. Implementation
and testing of a target estimator in DUNE is presented in this thesis.

32

3.4 Software

3.4.1 LSTS Toolchain

Ripples

LSTS is a software of Ak b Communications hub for
toolchain developed for Pty data dissemination and
Supporting networked . e : F) Sitwation awdareness
heterogeneous air and ' '
ocean Yehlcles. [30] The PP _ ; Neptus
toolchain supports the de- iy P
ployment of air and ocean e - v World Represantation

. . . ¥ H d 2 ____I_ Planning
vehicles interacting over y = R o
limited acoustic and wire- - |:| G
less networks combined : : : Arialic

with disruption tolerant
networking protocols. The : 3)
LSTS Toolchain for Net- : : : IMC

worked Vehicle Systems : Iriter- Ml
originated in underwater : : F Communicatian

robotics. The toolchain - : : protocs
consists of three main :
parts: DUNE, Neptus

(command and control *r z L DUNE
software) and IMC (inter- . .] Unifor
module communication . :
protocol). The different Ea - 0

components are briefly
presented in figure 3.10.

ﬂ i

Figure 3.10: LSTS toolchain [31]

3.4.2 Neptus

Purpose
Neptus is used to monitor the tracking system and create a user interface which enables
operators to interfere with DUNE.

Communications
Neptus communicates with DUNE through IMC messages.

Specifications

Neptus is a flexible system built to encompass diverse vehicles and scenarios. The soft-
ware can be installed on a Linux or Microsoft computer. An operator is needed in order to
visually plan and review the mission while being executed.

33

Chapter 3. Fish Tracking System

3.4.3 Inter-Module Communication

An IMC specification (message) includes two Extensible Markup Language (XML) docu-
ments which are consumed by DUNE at compile time. XML is a software- and hardware-
independent tool which is used for data transmission in both a human- and machine-
readable format. DUNE tasks communicate with one another, and other instances such
as Neptus using the IMC protocol, which acts like a local bus. A figure which indicates
how DUNE tasks communicate is presented in figure 3.11.

1———_——_—_1—--1
Actuator Speed PID Inertial :
Driver Controller Navigation [

Figure 3.11: IMC bus & DUNE tasks [32]

3.4.4 DUNE: Unified Navigation Environment

Purpose
DUNE is used to write embedded software code for control, navigation, actuators and sen-
SOrS.

Communications

The DUNE functions consume, bind and dispatch are used to gather and dispatch data to
the IMC BUS. The dispatch function allows a task to dispatch any type of IMC message to
the bus, whereas the consume function allows a task to subscribe to specific IMC message
relevant to the task. The bind and consume function instantaneously load IMC message
from the bus, and the developer can adjust how the task should make use of the data.

DUNE tasks

DUNE is built upon a large number of predefined tasks within main folder groups such as
Actuators, Autonomy, Control, DUNE, Main, Maneuver, Navigation, Plan, Power, Sim-
ulators, Supervisors, Transports, User Interfaces. DUNE tasks are created in the object-
oriented programming language C++. The level of software portability in C++ is high and

34

3.5 System Objectives

the language allows developers to manipulate individual bits at specific memory locations,
which makes it suitable for writing to hardware device drivers. DUNE runs on a very low
footprint and on a variety of operating systems. DUNE runs on a Raspbian operating sys-
tem in this thesis project.

DUNE task life cycle
All tasks in DUNE executes accordingly to a predefined cycle, involving 8 cycle steps:

Step 1) Task(const std:string name, Tasks::Context ctx) - Task constructor used to set
default parameter values from INI files

Step 2) onResourceAquisition(void) - Used for communication with serial ports and in-
ternet sockets, etc.

Step 3) onResourcelnitialization(void) - Initialization of the aquired resources, determin-
ing hardware parameters such as Baud rate, start and stop bits, and parity.

Step 4) onResourceRelease(void) - Called at end of task

Step 5) onUpdateParameters(void) - Called when parameters are changed

Step 6) onEntityReservation(void) - Used to reserve entities and avoid name collisions
Step 7) onEntityResolution(void) - Resolve reserved task entities

Step 8) onMain(void) - Main loop for functions and code executed continuously in real-
time

INI files

INI files are used to initialize and execute DUNE tasks. INI files exist under the DUNE
folder ETC. Task parameters can be set and changed directly in the INI file without having
to remake DUNE. An example which explains how INI files are used to initialize DUNE
tasks is included in appendix section D.1.

3.5 System Objectives

In order for the proposed control system to be deemed optimal, it must meet the require-
ments of five key system objectives:

1. Keep USVs within acoustic transmission range of target

2. Struggle to maintain vessels in formations which minimizes associated geometric
dilution of precision for the receiver array

3. Minimize distance travelled by the USVs
4. Prevent USVs from grounding and operating in restricted areas

5. Minimize radio communication

35

Chapter 3. Fish Tracking System

3.6 Proposed Control System

The control system presented in this section aims to optimize its performance based on the
five system objectives presented in the previous section. This section briefly presents the
layers of control, and in the following sections are the various control system components
described in further detail. The components are described in a clockwise manner as in
figure 3.12, beginning with the target observer and ending with the receiver positioning
models.

User Interface

(Neptus)
Ll
X Supervisory Control
Centralized J Target Observer — System
: EKF
Unit =5 }“{R | Formation Controller
I %n j
J XI?;
- TBR 700 data USV waypoints
| 4G LTE Modem
Communication .~
layer - XR; " |
Receiver XR; Waypoint
Positioning Model Xn. 7 ve
~ ~ J"‘ J
-L.;f: T “"T Vessel pos
» ozizsri:er » Guidance System

TBR 700 data

GNSS 1

Client

Units Sensors [er} Desired
(x4) 1 “ Forces
. Vessel
w Dynamics
T Uq Autopilot

Thrust Allocation |« | Control System

Figure 3.12: Proposed Control System

e Centralized Unit

36

3.7 Target Observer

— Target Estimator (EKF)
— Supervisory Control & Decision Making

— Formation Controller

e Client Units

Guidance & Path-planning system

Autopilot & Control Laws

Sensor data acquisition

Receiver positioning model

Centralized unit

The centralized unit computer runs the distributed command and control infrastructure
system Neptus, a user interface for system operators. The operators must have the ability
to abort mission and retake control over the autonomous vessels throughout the entire op-
eration. The main purpose of the centralized unit is to provide four independent guidance
systems aboard the Otter USVs with waypoints, which optimizes the system objectives.
The inputs to the centralized unit are TBR 700 messages and position estimates provided
by GPS.

Client units
Four client units (Raspberry Pi 3 single-board computers) are distributed on four un-
manned surface vessels (Otters USVs).

3.7 Target Observer

The target estimator can be view upon as the most vital part of the system, and additional
emphasis put on developing and testing an estimator which enables accurate real-time po-
sitioning of a target fish.

Estimating the position of a target fish using TDOA measurements is a non-linear prob-
lem. A large variety of estimation techniques exist and could be employed to solve the
problem. A robust estimation technique based on a dynamic model is preferable as signal
loss and out of range situations are expected to occur frequently.

3.7.1 Kalman Filter

The Kalman filter is an optimal processing algorithm and is chosen based upon its ability
to cope with noisy data. Through implementing a dynamic model can transmitter position
be estimated also when only parts of the acoustic receiver data-set is available. The method
is recursive which enables new measurements to be processed as they arrive, i.e real-time
localization. The Kalman filter is based upon two main assumptions [33]:

1. Both the target motion and measurement model is linear

37

Chapter 3. Fish Tracking System

2. The probability distribution of the associated errors of the motion and measurement
model are Gaussian

In the case of TDOA localization are neither the motion nor measurement model linear.
However, can a variant of the Extended Kalman Filter be employed to estimate the non
linear problem. [34] A drawback is that only the first order approximations of the optimal
errors are provided which can lead to sub-optimal estimator performance and divergence.

3.7.2 Extended Kalman Filter

An extended Kalman filter algorithm which provides estimated solutions to the time dif-
ference of arrival equations is presented in the following section, and given in equations
3.1 and 3.2.

{ﬁkﬂk =F %y G.1)
Piiie =FPy FT 4+Qy

Ky =PppH (HPyyy, H' +Ry)

Ree = Xpgrp + Ki(y — h(Rpga)r)) (3.2)
Pk:\k = (I - K Hk)PkJrl\k

Equation 3.1 and 3.2 are referred to as the Kalman prediction and measurement update
steps, respectively. First, are the predicted state vector Xy 1|5, and projected error covari-
ance matrix Py, calculated. In the next step are the Kalman gain Ky, state estimate
X% and error covariance matrix Py, updated.

The state estimate vector Xy, is a 6x1 vector with position and velocities estimates of the
target in the ECEF coordinate system.

o W~ s . . qT
xk:[x Yy oz u 0 w] 3.3)
Py 1)x and Py, is the predicted and updated error covariance matrix, respectively. The
values represents the confidence level of the solution.

Qj, is the process noise covariance matrix. The elements of the matrix amount to the
associated uncertainty in the process model. The size of the matrix is equal to the number
of states in the system.

R, is the measurement noise spectral density matrix. The elements of the matrix amount
to the associated confidence in each measurement. The size of the matrix is equal to the
number of available measurements R, 7.

K is the Kalman gain matrix, which is a weighting factor matrix. The factor elements of
the matrix amount to weighting factor between the filter’s use of predicted state estimates
and the available measurements.

38

3.7 Target Observer

F; and H;, are the state transition and observation matrix, respectively. Fy is the lin-
earized nonlinear process function matrix and Hy is the linearized nonlinear measure-
ment/observation matrix, as given in equations 3.4 and 3.12,

of
Fr = 55{|;¢:ﬁk
1 0 0 AT 0 0
01 0 0 AT 0
oo 1 0o o AT Sh
10 0 0 1 0 0
0 0 O 0 1 0
0 0 0 O 0 1

where X, is the priori state estimate at time step k and A T is the size of the time step,

H 5h|
= — g —
10
Sh; &h; h; Sh; Shy; Ohy
5% 59 52 56 5o ow
. . (3.5)
=M

Shy S6hy Shy Shn Shn Shy
5% 59 52 54 50 5
dhae gdhae dhae Shae Shae Shae
5% 59 52 54, 50 X%

for j € J. X~ denotes the posterior state estimate at time step k and J denotes a vector
of size Nx1, with N being the total number of TDOA measurements: J = [j ... N]
hae denotes the measured depth function. M denotes the sum of TDOA measurements in
addition to the depth measurement. The width of the H matrix is equal to the number of
states in the state matrix; 6. The height of the H matrix, i.e M, is given by equation 3.6,

M=N+D (3.6)

where N is the number of TDOA measurements and D holds the value of 0 or 1 depending
of whether the depth measurement is available or not.

The measurement function elements h; ... hy are created using equation 3.7,

hj(z) =

VR, =22+ (yr, —)2 + (2, — 2)?

7\/(xRT€f - :/i,)Q + (eref - Q)Z + (ZRref - 2)2

3.7)

for j € J with xg,,;, yr,., and zg,, being the position of a reference receiver xg,,, €
R3.
T
XRyey — [mchf YRt ZRref] (3.8)

Most fish tags do not measure and transmit target velocity data and as a result are elements

Sh Sh Sh]
550 55 and 57 equal to zero for h; ... hy.

39

Chapter 3. Fish Tracking System

The depth measurement is originally derived from a pressure measurement by the rela-
tionship presented in equation 3.9,

Pm = PgZm + Patm

1 3.9
= Zm = 7(pm 7patm)
Pryg

where p,, is the absolute measured pressure, p is the density of seawater and pgy, is the
atmospheric pressure.

Assuming that the direct depth measurement is provided by the emitted fish tag signal
as a negative value and that the WGS 84 frame coincides with the local sea level, is it pos-
sible to estimate the value of the height above ellipsoid directly, and a reduced observation
matrix Hy can now be obtained as presented in equation 3.10,

sh; Sh; Ohy
% o s 000

H; = (3.10)
Shy Shy Shy :
oz oy 0z .
0 0 1 0 00
Sdh; Oh; dh; . . .
where the elements 2., ¥ and 7 are given as in equation 3.11,
V2(zr,,, 1) _ V2(zR,; —2) T
ﬂj r \/(eref_i)Z‘f‘(leref —Q)2+(2R7,ef —2)2 \/(;pRj _j)2+(ij _:0)2+(sz —2)2
ﬁ _ V2(yr,.; —9) B V2(yr; —9)
5}2 | VR *i)2+(yRN,f*@?2+(2Rmf*5)2 V(@r; —2)2+(yr, —Q)?'*'(ZRJ- —2)?
FE V2(2r,.; —%) B Va(zr, —2)
(V@ =8 F R, — 02+ R,y —2)° /@R, —2)2+(yr; —5)°+ (2R, —2)2
(3.11)
forj € J.

Measurement vector y consists of TDOA measurements and a depth measurement as pre-
sented in 3.12,

¢ (TOA; — TOA,)

1 (3.12)
¢ (TOAy — TOAcf)

hae

for 7 € J. Where M is the number from equation 3.6, c is the propagation speed of the
acoustic signal, TOA; is the time of arrival at receiver j, and TOA,..; is the time of ar-
rival at the reference reciever. The measurement vector is naturally available only when
receivers have received a signal.

40

3.7 Target Observer

The estimated measurements vector (X)) is presented in equation 3.13,
by (&g g1))

h(Rp 1) = M k (3.13)
hy (Z41)

haey. 1,

for j € J, where h; is the estimated range difference between receiver j and the reference
receiver given by the measurement function from equation 3.7, and héek+1| & 18 the pre-
dicted depth (or height above ellipsoid) of the target provided by the Kalman filter. The
predicted depth is created using the estimated target position in ECEF coordinates.

§j2+g2

haey 1, =

where hae is the height above the ellipsoid assumed to coincide with the local depth, and
N denotes the estimated radius of curvature in the prime vertical and estimated latitude [
given as:

2
r
N _ €

= 3.15
72082 (1) + 7 2sin’ (1) G-15)

N z N
tan(,u) = W(l — ezm) 1 (316)

which must be solved iteratively using the method presented in equation 2.14

3.7.3 Additional Kalman Filter Functionality

The following sections emphasize upon some additional functionality which can be im-
plemented to further enhance the performance of a Kalman filter.

Filter Algorithm

A simple filter algorithm can be implemented to prevent the Kalman filter from using mal-
functioning TDOA measurements which should not be possible to obtain from a physical
point of view. The distance between two receivers, i.e a pseudorange, can be estimated
using data messages provided by client units. The quotient of the euclidean distance (divi-
dend) between two receivers, divided by the speed of the signal (divisor), serves as a upper
limit value for any valid TDOA measurement. A filter algorithm prevents the Kalman filter
from using a measurement in which this inequality does not hold. Simply put is there an
upper bound to what the value of a TDOA measurement can be, and this upper bound can
be calculated using GNSS data.

Kalman Filter Tuning

Kalman filter tuning is known as the problem of adaptive filter tuning, estimating the mea-
surement and state process noise covariance matrices R, and Qn,ny. M and N are
the number of measurements and states in the system, respectively. Diagonal elements

41

Chapter 3. Fish Tracking System

in R and Q. y amount to the confidence associated with a measurement and un-
certainty associated with a state in the process model, respectively. Kalman filters are
generally tuned offline using simulated data and later used to process real data online or in
real-time. In general are initial values for both R/, as and Q. set, and later adaptively
updated and estimated. Tuning of Q values can be seen as a trade-off between retaining
learning potential from measurements and valuing current filter estimates.

Data from USV data messages can be used by the Kalman filter to tune the noise spec-
tral density matrix R, in real-time. The horizontal dilution of precision (HDOP) and
number of satellites provided by NMEA 0183 data are indicators of the GPS measurement
quality. The SNR (signal to noise) included in TBR 700 data messages are indicators of
the quality of the acoustic measurement. The Kalman filter can use this data to tune the
noise spectral density Matrix R in real-time.

An analytic/practical approach can be used to determine initial values of Ry, s and
Qn.~. By looking into error sources associated with the measurements and using sensor
performance specifications provided by manufacturers is it possible to make some adju-
dicate assumptions regarding measurement accuracy and tune matrices based upon these
assumptions.

Depth measurements: weighted average

Depth measurements which originate from the same transmitter ping should in theory not
deviate from receiver to receiver. However, can they in practice deviate due to distur-
bances in the transmission channel affecting the DPPM acoustic signals. To implement a
weighted average model of the depth measurements where the SNR associated with each
measurement is valued is a rigours method to cope with this ambiguity.

Adaptive Filter

The Kalman filter can be designed in an adaptive way which enables the filter to cope with
situations in which only a subset of the measurements are available. A rigours way of
creating the Jacobian matrix H in situations where one or several TOA measurements are
missing is presented in algorithm 1. Let the available measurements vector be denoted V,
and indicate the available measurements during a Kalman filter iteration, containing solely
ones and zeros. An adaptive filter makes adjustments to the content and dimensions of
the Kalman filter matrix H and § vector, with respect to V. In addition changes the mea-
surement noise spectral density matrix R ., where N is equal to the number of available
measurements; or the sum of vector elements in V. Changes in H and R inevitably changes
the Kalman gain matrix K, which is derived using this matrices. The vector containing the

42

3.8 Supervisory Control System

estimated measurements, ¥, must match the measurements in the measurement vector y.

Data: V: Available Measurements Vector
J: Adaptive Measurement Vector
X: Current Estimated Target Position
b'e R;: for j €[1,2,3,4] Estimated Receiver Positions
Result: H: Jacobian Matrix
createJacobian(Xg;, %X, V)
for k < 1 to size(V) do
if (V == 1) then
| J=1[1 &

end

H = zeros(size(V) — 1,6)

[xref Yref ZTEf] = [iR.I(l)(l))’\(RJ(I)(2) iR,I(l)(3)]

for j « 1tosize(V) —1do

[mRJ Yr; ZRJ] = [iRJ(jJrl)(l) Ry (2) &RJ(7+1)(3)}
H(j,1:3) = [(mj Shy 5h1}

6r 6y 6z

Va(er,,) V(e n, ~#)

V@R, =8+ W, =02 +(GR, =27 f(wr;—2)2+(yr; —9)*+(zr; —2)2
V2(yr,.;—9) V2(yr,; —9)

V@R, —2)+WR, D)+ (2R, —2)7 [(ar;—2)*+(yr; —9)*+(2r; —%)?
V2(en,., —%) Vi(wr, %)

(V@R ; =2+ WR,. s —9)?+ (2R, —2)? B (@R, —2)2+(yr,; —9)?+(zr; —2)?
end

Algorithm 1: Adaptive Kalman Filter

3.8 Supervisory Control System

The Supervisory control system can be a custom-created module in Neptus. This module
would support the operators during the different phases of a typical mission life cycle:
planning, simulation, execution and post-mission analysis. The user interface provided by
Neptus is especially important during phases of the operation in which something goes
wrong and is not detected by the autonomous system. In these critical situations should
the operators be able to shut down the operation and safeguard the vessels and equipment,
including people involved in the operation.

3.9 Formation Control

The proposed formation control system presented in this thesis can be determined as a
Single-Master Multi-Slave teleoperation of heterogeneous robots for single target track-
ing, which is a subset of operations within the field of Multi-agent formation control.
Multi-agent formation control is a research area of which extensive work have been pub-
lished in resent years, with many applications in unmanned operations. The system com-

43

end

Chapter 3. Fish Tracking System

puter which runs the formation controller and supervisory control software is the selected
leader node of the system, and is autonomously coordinating and teleoperating follower
robots or nodes, referred to as client nodes in this thesis, in a formation pursuing the target.

The objective of the formation control algorithm is to calculate USV waypoints which
fulfills the system objectives of the system as stated in section 3.5. This section elaborates
on how a formation control which compromises in an attempt to satisfy and unify these
constraints in the best releasable way can be designed.

System objective 1: Keep USVs within acoustic transmission range

The first objective of the formation controller is to keep USVs within acoustic transmis-
sion range of target fish. This is an important system objective as there is no other way
of localizing the object without the TBR 700 data messages. The transmission range is
set to a constant approximated value in the simulations provided in this thesis, but in re-
ality the transmission range will vary as it is dependent on the receiver, transmitter and
transmission channel. The transmission channel constantly changes in time and space. An
estimator should ideally estimate the transmission range throughout the operation in real-
time. The estimated transmission range is an important parameter, and the system strives
to keep the Euclidian distance between each receiver and the target smaller than this value.
Equation 3.17 formulates the first system objective mathematically,

157 = %5, || < P (3.17)

where x¥ and xg denote the position of the target and a USV in ECEF coordinates, re-

spectively, and p; denotes the estimated transmission range.

System objective 2: Minimize geometric dilution of precision

The optimal constellation with respect to geometric dilution of precision, i.e the constel-

lation which fulfills the second system objective, is the one which minimizes the diagonal

values of the matrix mem (Tr(HTH)~!). The unmanned surface vessels are restricted
X

to the surface plane and should preferably be positioned equally distributed on a circle
surrounding projection of target in the horizontal plane.

A formation reference point (FRP), as defined in a PhD thesis by Skjetne [35], is a refer-
ence point needed in order to set up a formation. The horizontal surface plane projection
point of the most recent target estimate serves as a natural FRP candidate in fish tracking
systems.

For the purpose of this thesis is the FPR as a moving point in R? given in ECEF coor-
dinates, indicating the centre of the desired USV formation. The FRP is defined as the
horizontal projection point of the target fish estimate. In order to fulfill the second system
objective, i.e form a square formation surrounding the target’s projection in the surface
plane, can desired position offsets for each USV be defined relatively to the FRP. How
often the FRP should be updated and changed is a design parameter determining a trade-
off between system tracking ability and energy-use. Let the USV formation geometry be

44

3.9 Formation Control

determined by a 4x3 offset matrix O in the NED frame.

O117 O12 O3
O21 Oz2 033
O31 O3z Os33
041 Osp Osps

oV = (3.18)

The matrix values correspond to desired position offsets in directions north, east and down.
The third column solely consist of zeros as the USVs are bound to the surface plane.

Combining system objective 1 & 2:
This section present a mathematical condition of which the formation controller can be
designed to optimize, satisfying the two first system objectives.

Let the estimated depth be defined as a positive value and assume that the surface of
the ocean coincides with the WGS84 ellipsoid. Further, allow the assumption of flat earth
navigation to hold. Equation 3.19 calculates desired waypoints in the NED frame,

)_(ﬁj pm] + ON()
0
A N e
hae
(3.19)
where R; denotes the position of an Otter USV with number j = 1,2,3,4, iﬁj is the desired

ﬁmj is the projection of the target

fish position in the horizontal plane (linearized ocean surface), x* is the target fish posi-
tion in NED frame and hae is the estimated depth of the target fish in NED frame (height
above WGS84 ellipsoid) and ON(j)T = [Oj’l Ojo Ojﬁg] " s row number j = 1,2,3,4
of the USV offset matrix in NED frame.

position (waypoint) of USV number j in NED frame, x

The desired USV positions, given in equation 3.19, must be transformed into ECEF co-
ordinates and transmitted to each USV node of the system. By replacing terms iﬁj and

x and with their respective relationships according to the flat earth equation 2.7 can
equations 3.20 and 3.21 be obtained,

xgr, = RT(XE, —x;) (3.20)

N =R"(&" —x[Lf) (3.21)

where R is short for the rotation matrix R% (I, 1) from NED to ECEF frame as given in
equation 2.8 and 1 and ¢ are estimated longitude and latitude coordinates, respectively. Let
equations 3.20 and 3.21 be inserted into equation 3.19 as presented in equation 3.22.

0 0
xy =&Y+ | 0 [+OV(j)" = RT(xE L) =RT&"—xE,)+| 0 [+OV())
hae hae

(3.22)

45

T

Chapter 3. Fish Tracking System

The reference position xZ, ¢ 1.e the centre of the flat earth linearized plane, disappears as

it appears on both sides of the equation. By multiplying both sides of the equation with
the rotation matrix and recalling that the matrix R is part of a special orthogonal group
of rotation matrices denoted SO(3) where the following mathematical condition holds
RTR = RRT =1, can equation 3.23 be obtained.

0
x5, = %7 +Ry(Lp) | | 0 | +ON()) (3.23)
hae

This equation calculates desired USV positions in the ECEF coordinate system. However,
to satisfy the first system objective, must the equation also satisfy the mathematical in-
equality presented in equation 3.17. By combining equation 3.23 and 3.17 is the following
obtained;

T T
) | =Ry

0
0 [+0%(j (xg, — %) (3.24)
a

hae
(xR, —%") (3.25)

Ojl
T\, - o
Oj2| | = det(R (I, 1))(|%R, — X7) (3.26)
hae
and by recalling that det(R% (I, ,u)T) =1 and that the transmission inequality constraint
[|%F — f(%j || < B¢ must hold, can the inequality in equation 3.27 be obtained.

~ 2
\/oﬂ2 +0j2% +hae” < p (3.27)
Let the formation controller radius in the horizontal plane be defined as in equation 3.28,
_ 2 2
7 = 0j1” + Oj2 (3.28)

then the radius must satisfy the constraint presented in 3.29 to stay within estimated trans-

mission range of the target fish.
. ~ 2
r; <\/p? —hae (3.29)

The finalized mathematical conditions for the formation controller to solve and optimize

46

3.9 Formation Control

are therefore:
0

xg, ="+ R | 0 | +0ON()) (3.30)
a

r; <\ p? — hae (3.31)

for j =1, 2, 3, 4, when the receiver is assumed to coincide with the position of the vessel
in a single point.

System objective 3: Minimize distance travelled by USVs

This thesis presents three main concepts in an attempt of minimizing distance travelled by
USVs: guidance radius of acceptance target, radius of acceptance and function for picking
the shortest paths. The first is presented in the guidance section, while the second and third
are presented followingly.

A rigorous way to limit the distance travelled by the USVs is to weight the distance be-
tween current receiver positions and desired constellation positions. Some vectors and
matrices are defined followingly.

e X - A matrix containing four desired constellation positions, i.e four positions in R3.

® Xp. - A matrix assigning four desired constellation positions to each USV for j =
1,2,3,4, i.e a matrix containing waypoints for each USV vessel.

¢ A minimize function denoted by X, = min(X, Xr;) which picks distinct paths (or
pseudoranges) p;; which minimize the sum of the four paths, i.e minimizes the total
distance travelled by four USVs.

USVs must be assigned distinct waypoints i = 1,2,3,4, which can be mathematically de-
scribed as i1 # i2 # i3 # i4 where every i is distinct, and j = 1,2,3,4 denote numbers of
four separate USVs. This constraint narrows down the possible solutions to the faculty of
four (4!), i.e 24 valid solutions as i = 1,2,3,4 can be oriented in 24 different ways. The sum
function is described by equation 3.32,

il;éig;i%;éizl (sum(pi1 + piz + piz + pia)) (3.32)

where p;; denotes elements in the pseudorange matrix consisting of 24 pseudoranges,

P11 P12 P1,3 P14
P2,1 P2,2 P2,3 P2,3 (3.33)
P31 P32 P33 P34
P41 P42 P43 P44

with every element being the solution to equation 3.34.

pij = |Xi — Xp,| = \/(iRj —)%+ (Jr; — 0:)* + (g, — 2)? (3.34)

47

Chapter 3. Fish Tracking System

Data: Xg, and X;
Result: xg,
fori < 1to4do
for j < 1to4do
| pij = euclidean distance(X;, Xg,)
end
end

(sum(pi1 + piz + piz + pia))

XR, = min
T i1#£i2#443#44
Algorithm 2: Function for picking shortest paths

The path picking function is presented as pseudocode in algorithm 2.

In an attempt to limit the distance travelled by the USVs can a formation radius of accep-
tance constraint be implemented. The formation radius of acceptance denotes a circular
area of acceptance surrounding the horizontal projection of the estimated fish position in
the surface plane. If the estimated target position projection moves out of this area should
the formation controller assign a new FRP and new waypoints for all vessels. The radius
of acceptance is a design parameter and determining its value is a trade-off between energy
consumption and tracking ability of the system.

System objective 4: Prevent USVs from operating in restricted areas

Situations in which the Atlantic salmon, i.e target fish, swims along the shoreline or in
water areas with shallow water or restrictions, can occur. A situation awareness model
which alerts the system and switches the mode of the formation controller is needed to
determine whether this is the case. This model can use USV position data and sea maps of
the operation area.

Combining system objective 1, 2, 3 & 4:

The most desirable receiver constellation a circle formation surrounding the target might
not be feasible as the position of the vessel is limited by the shoreline or restricted area. A
formation algorithm which attempts to minimize the associated dilution of precision while
being subject to limitations in positioning is presented in this section.

While being restricted to a certain area of operation can the FRP be defined as the point
closest to the estimated fish position within non restricted water areas. A rigorous posi-
tioning method is to evenly distribute the vessels on a circle arc surrounding the FRP. The
end points of the circle arc should preferably coincide with the intersection of a circle sur-
rounding the FRP and the curve defining the border to the restricted area.

Final formation control algorithm

48

3.9 Formation Control

A formation con-
troller which attempts
to satisfy all system
objectives, includ-
ing navigation in
restricted areas, is
presented in this
section. Firstly,
some properties are
defined, secondly, is
pseudocode for the
formation control
presented in algorithm
3.

N . N -~
XR3 @ XRy

Figure 3.13: Formation control along restricted area

Properties used in the final formation controller, also indicated in figure 3.13, are defined

followingly.

e Let Z denote an area of restricted waters in the horizontal plane in R2.

Let S denote a curve in R?, in the horizontal surface plane, which defines a border
between restricted and open waters.

Let X be the horizontal projection of the estimated target position in the surface
plane, currently within a restricted water area.

Let the FRP be defined as the intersection point of the orthogonal projection in R?
from X to the curve S.

Let r denote the radius of the formation, determined by estimated transmission range
and target depth.

Let €2 denote the horizontal circle defined in FRP with radius r.

Let C be defined as the circle arc, the arc of €2 within unrestricted waters, defined
by the intersection points between 2 and S.

Let p; denote estimated ranges between the vessel positions and waypoints. p de-
notes a 4x4 Matrix, which corresponds to 16 pseudoranges between current vessel
positions and waypoints.

The final formation controller algorithm presented in algorithm 3 assigns USVs waypoints
depending on whether target position is within an restricted area Z or not, forming either
circular or circle-arc receiver constellations to minimize GDOP.

49

Chapter 3. Fish Tracking System

Data: j, hae, Z, S, g, and X
Result: X

~ 2
r </ p? — hae
if X € Z then
FRP = OrthonogalProjection(X, S)
Q = DefineCircle(r, FRP)
C = GetCircleArc(92, Z)
X = EvenDistrubution(C)
else

0
=% +REWLp (| 0 | +0YG)" |
hae

end
fori < 1to4 do
for j + 1to4do
| pij = euclidean_distance(X;, Xg,)
end

end
Xp, =, min_ (sum(pi1 + piz + pis + pia))
Algorithm 3: Final Formation Control Algorithm

System objective 5: Minimize radio communication
The necessary data flow in the proposed control system is quite small including only way-
points and potential abort messages from the centralized unit to clients, and TBR 700 and
GNSS data in return. Communication between the centralized unit and client units is re-
duced by allowing the clients to operate with four independent guidance system. Proposed
guidance systems are briefly introduced in the next chapter.

3.10 Guidance System

The purpose of a guidance system is to guide the path an Otter USVs towards a given
waypoint, i.e assigning motion control objectives during transient motion. This section
presents a guidance system which aims to satisfy system objectives 3 and 5; minimize
distance traveled by vessels and communication demand. The orientation of the vessel,
i.e heading angle 1), is not affecting acoustic receiver performance due to their omnidirec-
tional nature. An argument can therefore be made that orientation of vessels whilst not
in transit between waypoints are not of interest in this fish-tracking system. However, a
counterargument can be made that the receivers should be oriented towards the direction
they are most likely to travel next, especially in cases of large formation radii of accep-
tance.

By employing the Otter USVs independent guidance systems is the need of communi-
cation between the centralized and client nodes significantly reduced. A single waypoint
is the only input such a guidance system needs and no further feedback from the central-

50

3.10 Guidance System

ized node is needed until the vessel is assigned a new waypoint.

Guidance radius of acceptance

A guidance radius of acceptance, a circular area in the surface plane surrounding the way-
point of a USV, can be defined to limit energy consumption of the USVs. Whilst a for-
mation controller radius of acceptance is taken into account by the centralized node is
the guidance radius of acceptance associated with client nodes. Some operations, e.g for
Floating Production, Storage and Offloading ships, demand very accurate positioning. An
argument can be made that a fish-tracking system is not dependent on extremely accuracy
positioning. As long as a receiver is within transmission range, and the formation of 4
USVs fairly represents a circle surrounding the target fish, deviations in dimension of sev-
eral meters from the waypoints should be acceptable. Deviations in the order of 10 percent
of the formation-radius can be assumed to be acceptable without compromising dilution
of precision values to any significant degree. The formation radius can be assumed to be
approximately 200 meters for most open ocean operations, resulting in a radius of accep-
tance of approximately 20 meters following this rule of thumb. A lower guidance radius of
acceptance should, however, be assigned to vessels operating close to a restricted boarder.

Path parameterization and maneuvering problem

New waypoints from the formation controller are dispatched to the receivers with arbi-
trary intervals, and since the target position is not known apriori must the path of each
Otter USV be parameterized in real-time. Two possible approaches exist for straight line
parameterization to a new waypoint Xy :

e Parametrize from current position of the USV: X to Xr;
. . . 7pI‘CV —
e Parametrize from the previous waypoint X R, OXR;

Depending on whether the first or second approach is chosen does the resulting total path
consist of piece-wise linear paths and piece-wise continuous linear paths, respectively.
Situations in which USVs are assigned new waypoints before having reached its previous
waypoint XP'® are likely to occur and the first approach is therefore the preferable choice
for the fish tracking system through limiting the distance traveled by USVs.

The maneuvering problem for an Otter USV can be defined as the task of converging to
and follow piece-wise parameterized paths until its position is within the guidance radius
of acceptance. Let equation 3.35 define the geometric task, such as given in Skjetne [35],
forcing the position of an Otter USV denoted y(t) to converge to a desired path y,(6(¢)):

Jim Jy(t) — ya(6(1))] = 0 (3.35)

Straight Line Parameterization
Letx = [E; Nl]T denote a newly assigned waypoint and i{%jv = [Eo NO]T denote
the estimated position USV in the time instant the waypoint is received by the client node.

The angle oy, of a straight line parameterization between these two points in a horizontal

51

Chapter 3. Fish Tracking System

surface plane is given in 3.36

Ni — N,
o, = arctan (Ei—ES) (3.36)

3.10.1 Lookahead-Based Steering

A lookahead-based steering law for 2-D horizontal plane motions as presented in Fossen
[18] can be to ensure proper path following from the current position to a new waypoint.
The control objective for straight-line path following is defined in equation 3.37,

th—fgo e(t)=0 (3.37)

where e is the cross-track error which is the shortest distance from the current position to
the path.

Let Xr; and Xr; be the latest position estimate of the Otter USV and the newly assigned
waypoint given by the formation controller, respectively. A straight line in R? defines a
desired path in the surface plane of which the Otter USV should propagate along with.
A figure showing the principle of Line of Sight (LOS) guidance is presented in figure
3.14. A is the along-track distance. R is the LOS circle of acceptance and the geomet-

XN
X R;
/ ak A A
./ Xd R
. c
XR;)
Yg

Figure 3.14: Line of Sight Guidance

ric relationship e(t)2 + A? = R? holds throughout the entire operation. A steering law
which ensures asymptotically convergence of the cross-track error towards zero as time
goes towards infinity such as indicated in equation 3.37, is presented in equation 3.38 and
3.39.

xda(e) = xp + xele) (3.38)

52

3.11 Vessel Modeling and Heading Control

where x, = oy, and x.(e) as given in the following equation.

t
Xe(e) = arctan(—K,e — K; | e(r)dr) (3.39)

0
This steering law includes integral action which is useful for under-actuated crafts such
as the Otter USVs while being subject to ocean currents and a nonzero sideslip angle 3.
The integral gain should however, be set with care as a high value might lead to windup
effects and overshoot. According to Fossen [18] should the integral term only be used
when a steady-state off-track is detected. A function for steady-state off-track detection is

therefore needed if this control law were to be used in the real system.

The lookahead-based steering law is chosen because of the benefits associated with both
convergence and computational intensity for this method. Lookahead-Based Steering does
not demand R > |e(t)|, while other methods such as enclosed-based strategy do.

3.11 Vessel Modeling and Heading Control

Under the hypothesis that the Otter USVs are passively stable in roll ¢, pitch § and heave
is no actuators needed nor exist to create forces in these degrees of freedom. The working
space of the presented model therefore solely consists of surge, sway and yaw. If we
assume that the Otter vessels have homogeneous mass distribution and xz-plane symmetry
(centerline-vertical-plane) will the associated inertia matrices be equal to zero I, = I,
= 0, and surge is therefore decoupled from sway and yaw is due to symmetry. A 3 DOF
nonlinear maneuvering model in the form presented in Fossen [18] is presented in equation

3.40.
0= R(¢)v

) (3.40)
Mvyv+ Dv=r

l.n= [N E 1/)] " _ motions in north, east and yaw. These variables are defined in
the global frame.

2. v = [u v T]T - velocity in surge, sway and angular velocity in yaw. These
variables are defined in the body frame.

3. 7= [X Y N } T surge and sway forces and momentum in yaw. These variables
are defined in the body frame. Because the Otter only have two fixed thrusters

pointing in surge directioncan T = [r; 0 73] " be obtained.
4. M - mass matrix (rigid body and added mass)
5. D - linear damping matrix

6. R(v) - rotation matrix

53

Chapter 3. Fish Tracking System

cos(yp) —sin(y)) 0O
R(y) = |sin(yp) cos(yp) 0O (3.41)
0 0 1
mi1 0 0
M = 0 Mmoo Mo3 (342)
0 m32 ma3
d11 0 0
D=0 dyy dos (3.43)
0 d32 ds3

Non-linear damping effects DNL are not taken account for in this model. The velocity-
components v of the USV are assumed to be low and it is therefore fair to neglect the
contribution from the Coriolis effect terms C(v)v = Crp(v)v + Ca(V)v.

Other models can be used to represent the dynamics of the Otters USVs, e.g the dynamic
positioning (DP) model given in Fossen [18]. The DP model is valid for station-keeping
and low-speed maneuvering vessels up to approximately 2 m/s which is the march speed
of the Otter vessel.

3.11.1 Thrust Allocation

The principle of thrust allocation is to translate the required forces in DOF to force re-
quirements and subsequently to setpoints for the individual thrusters. The thrust allocation

is mapping 7 — u.
_ X (3.44)
=N .

X is force in surge direction and N is momentum in v (yaw).

The Otter USV is equipped with two fixed thruster propellers in surge direction. Let

u= [ul uz] " denote the thrust force vector where u1 and wuo are the apparent thruster
force on port and starboard side, respectively. u; and uo are equally spaced from the center
line of the vessel with a £ 0.397875 meters deflection, denoted by d. 3 The Otter USV
is not equipped with any actuators to produce thrust in sway direction Y and momentum
in) direction is possible only through assigning a thrust forces difference u; # uy. The
resulting relationship between force in surge, momentum and thruster forces is given by
equation 3.45,

[x
T=IN

_ i U1 + usg :l
(u1 —u2)d (3.45)

Sl

=Tu

54

3.12 Acoustic Receiver Position Modelling

where T is the thrust allocation matrix. By inverting the thrust allocation matrix can the
desired thrust be found, which is followingly fed to the control system.

Tu

e)
<
|

l\’)\b—‘(\')\»—‘

3.11.2 PID Controller

A PID controller heading autopilot is presented in equation 3.47,
~ ~ t ~
T=—-Kyp—Kgp — Ki/ P(r)dr) (3.47)
0

where ¢ = ¥ — ¢4 and K,, K4 and K; the proportional, derivative and integral gain,
respectively, are all larger than zero. A speed assignment in addition to a heading controller
are needed to navigate a vessel, however, are speed models not examined in this thesis.

3.12 Acoustic Receiver Position Modelling

The section examines how the acoustic receiver can be positioned relative to the body
coordinate system while being subject to hydrodynamic forces. The first section examines
forces acting on the acoustic receiver while being submerged. The two following sections
presents models for receiver positioning depending on whether the acoustic receiver is
cable-connected or fixed to some non-deflecting structure.

3.12.1 Force Analysis

This section examines the forces acting on an submerged acoustic receiver in a current and
wave field.

55

Chapter 3. Fish Tracking System

Let the acoustic receiver presented in figure

3.15 (TBR 700) be subject to a hydrody-

namic forces inducing a drag force D. Let)
G, B and S be gravity, buoyancy and string

forces, respectively. Lets assume that the re- g

ceiver is not accelerating, then Newton’s sec- . [
ond law demands the sum of forces to be g
equal to zero in x and y direction, and rela- =Y
tionships presented in equation 3.48 can be

obtained. B I

S,+B=G (3.48) g
ke, -:r
S, =D (3.49)

By utilizing the relationships S = 52 + 52 «
and tan(a) = 2= is it possible to obtain the
result presented in equation 3.12.1.

D
a=tan"! <> (3.50)
G-B G

By assuming a perfect cylindrical shape of
the acoustic receiver can results in equation
3.51 be obtained for buoyancy and gravity
force,

v

Figure 3.15: Forces acting on receiver [21]

G =mg (3.51)
B =p,Vg (3.52)

where g is the gravity of the Earth, m is the mass of the acoustic receiver, p,, is the density
of seawater and V is the displaced volume.

Drag Force Modeling

To estimate the hydrodynamic forces is complicated and a study field of its own. The
acoustic receiver can be modeled as vertical rigid fixed circular cylinder in a incident wave
field using Morison’s equation, as presented in the book Sea Loads on Ships and Off-
shore Structures by Faltinsen [36]. Morison’s equation is a semi-empirical formula used
to calculate forces in the in-line direction, along the wave-direction. Elongated body, strip
theory and long-wave approximation is applied in this approach. The drag force acting on
a cylinder segment dz is given by equation 3.53,

e e
dF = p%Cmaldz - p%(C’M ~ 1)iidz + gC’Dd|u dllu—)dz (3.53)

where a1 and u are the horizontal incident-wave acceleration and velocity, d is the diameter
of the receiver and C'p and C'); are mass and drag coefficients, which must be estimated
empirically. Typical values for C'p and Cjy in transcritical flow past a smooth cylinder
are 0.7 and 1.8 as given in Faltinsen [36], and is used for approximation in this example.

56

3.12 Acoustic Receiver Position Modelling

Transcritical flow regime corresponds to a Reynolds number larger than 3x103, with the
Reynolds number (denoted R,,) being a measure of the importance of inertial forces rela-
tive to viscous forces. R, = % where L is the characteristic body length of the receiver,
v is the kinematic viscosity and U the flow velocity. 7 and 7 denote the velocity and
acceleration in surge direction of the acoustic receiver. As equation 3.53 indicate is the
drag-force contribution connected with the relative velocity between incident waves and
acoustic receiver.

Assume no incident waves, i.e a; = 0, constant surge speed u of the cylinder, i.e 1) = 0
and 17 = wu, and a constant current 3 in negative surge direction, i.e u = 3. Equation 3.54
presents an expression for the drag force under these assumptions,

dF = chdlﬂ —u|(8 — u)dz (3.54)
where § — w is the relative speed between surge speed u and current speed S3.

Approximate Inclination Angle

This example aims to approximate the displacement angle of an acoustic receiver cable-
connected to an Otter USV propagating at speed u. A speed dependent model for the
inclination angle « is presented.

Lets assume no current, transcritical flow and that the assumptions resulting in equation
3.54 hold. Let the acoustic receiver be connected to a cable of length 1 and assume that no
drag forces are induced by the cable itself. The drag force acting on a cylinder segment dz
is then given by equation 3.55.

dF = —gcpdu\uwz (3.55)

The diameter, height and weight of the receiver in freshwater is 0.075 m, 0.23 m and 0.26
kg. Weight in water G, multiplied by the gravity of the Earth corresponds to the difference
in weight and buoyancy force G — B, given in equation 3.12.1. Density of freshwater is
1000 kg/m3. Let Cp = 0.7 be the proposed drag coefficient for smooth cylinders as given
in Faltinsen [36]. By integrating the dz force over the height of the cylinder in equation
3.56 can the total drag force F be found.

h
F= / dFdh (3.56)
0
" p
:/ —EdCDu|u|dh (3.57)
0
" p
= |u|u/ —ZdCpdh (3.58)
0 2
= —6.0375]ulu (3.59)

57

Chapter 3. Fish Tracking System

Lets assume the receiver connection-cable to be straight throughout the entire operation
with a length 1. Further assume that the relationship from equation holds. The inclination
angle of the receiver cable can then be found by equation 3.60.

F
o = tan71 (H) (360)
F
=tan ' — 3.61
" (Gw9> b
_1 { —6.0375N|u|u
=tan | ———— 3.62
an (0.26kg9.812%) (362)
(3.63)
An empirical model for alpha is given in equation 3.64,
§2
a =tan ! <—2.3671 [2] uu|) (3.64)
m

where u is the relative flow speed between the receiver and current, and |u] is its absolute
magnitude.

3.12.2 Cable-connected Positioning Model

A position model of a submerged cable-connected acoustic receiver such as indicated in
figure 3.5 is presented in this section. The model assumes that the cable is straight and
that momentum is not transferred through the cable, only axial forces in the z body frame
direction. The deflection of the receiver is given as a point relative to the centre of flotation
of the vessel. The flotation point is positioned using relative positioning with respect to a
GNSS aboard the vessel. The GNSS has a fixed relative position to the CF and CO, with
the latter serving as the centre of the body coordinate system.

Positioning Model

e Let a point x2 = [xc Ye zC]T be a fixed point in the body frame on an Otter
USV in which the cable connecting the acoustic receiver is attached to. From now
on is this point referred to as the connection point. z., y. and z, represents constant
displacements in x,y and z direction parallel to the body axis’ of the USV.

e Let the horizontal plane which intersects the connection point x? in z direction be
referred to as the connection plane.

e Letaline which is parallel to the cable-connector and intersects the connection point
x% be referred to as the connection line.

e Let the projection of the acoustic receiver’s position in the connection plane be re-
ferred to as the connection projection point.

58

3.12 Acoustic Receiver Position Modelling

e Let a line between the connection point and the connection projection point be re-
ferred to as the projection line.

e Let a denote the smallest angle between the horizontal plane and the connection
line. The vertex of this vertical angle is the connection point x%.

e Let v, denote the angle between the longitudinal body axis of the USV (aft to
fore) and the projection line.

A proposed model of the displacements the the origin of an acoustic receiver denoted

b

T
X, = [aca Ya za} , relative to the flotation point CF, is presented in equation 3.65.

The model is on the form: x’ = CF + MODEL.

T 0 cos(Prer)cos(a) (I + z¢)
xb =CF+ |y.| + 0 + | sin(tper)cos(a) (I + z¢) (3.65)
Ze O + yed sin(a)(l + z¢)

1 is the length of the cable and 6 and ¢ are the pitch and roll angles of the vessel, re-
spectively. The flotation point CF is the point of which the vessel pitch and roll around,
indicated in figure 2.1. Assuming that the cable is straight with a length 1, and x2, v,.; and
« are known exact can the cable-connected receiver hypothetically be positioned relative
to the USV body without errors using equation 3.65.

Position Model with no current

In the case of no current can a simplified speed model be obtained. With no current is
the 1,.¢; expected to be 0 or 180 degrees depending on whether the USV is propagating
in positive or negative surge direction. This is due to the fact that the drag force points in
opposite direction of the surge direction when there is no current. Lets assume the USV
only propagate in positive surge direction. When these assumptions hold can a simplified
speed model based upon the original model in equation 3.65 be obtained:

Zc 0 cos(a) (I + z¢)
xt =CF+ |y.| + 0 + 0 (3.66)
Ze el + Yy sin(a) (I + z¢)

Reduced Positioning Model
With the current sensor configuration aboard the Otter USVs is there no way of measuring
the horizontal or vertical cable angles v,..; and «, neither the vessel orientation angles 6
and ¢. A reduced version of the model presented in equation 3.65 is presented in equation
3.67.

Te cos(a)(l + z¢)

xb =CF+ |y.| + 0 (3.67)
Ze sin(a) (I + z¢)

The proposed model can use the alpha angle model presented in equation 3.64 with o =
tan~1 (—2.3671ulul).

59

Chapter 3. Fish Tracking System

Conversion to ECEF coordinates
The target observer needs position estimates of acoustic receivers in ECEF coordinates
in order to estimate target position. The position of a body-fixed GNSS receiver aboard
the vessel is denoted ngSThe position an acoustic receiver relative to the CO is given by
equation 3.68,

x® = CO 4 LCF + MODEL (3.68)

where LCF is a vector pointing from the CO to CF point. The position of the acoustic

receiver is given by the equation 3.69.

x? = —xgps + LCF + MODEL (3.69)

o=

The position transformation of an object from body to NED and NED to ECEF are given
by equations 2.5 and 2.9, and the position of the acoustic receiver in ECEF coordinates is
given by equation 3.70.

Xy = Xgps + Ry (L, n)xg (3.70)
= xbs + RY (1, 1)RY (©)(—x8ps + LCF + MODEL) (3.71)

As the current configuration of the Otters have no way of measuring pitch, roll, or current
can a simplified model can be used,

xZ = xEs + RS (1,)R (4)(—x4ps + LCF + MODEL) (3.72)

where MODEL = Cable Model + Receiver Model, as the dynamic forces will act on both
the cable and receiver body. However for the purpose of this thesis lets assume that the
cable dynamics can be neglected, and that the dynamics of the receiver can be described by
the simplified straight cable with vertical axial forces - model proposed in equation 3.67.

Ze cos(a)(l + z.)
MODEL = |y, | + 0 (3.73)
Zc sin(a)(l + z.)

By employing the estimated oo model from equation 3.64 is a proposed cable-connected
receiver model presented in equation 3.74,

Te cos(tan~! (—2.36714a|a|)) (I + 2.)
iaE = X(E}PSJ’_RE (17 /’L)RIIJV (172) _XIC)}PS + LCF + Ye | + 0
2 sin(tan—! (—2.36714a|a|)) (I + 2.)
(3.74)

where 4 and zﬁ is the estimated surge speed and heading, respectively, R (¢, 0,1)) is the
body to NED rotation matrix given in equation 2.6, R% (I, 1) is the NED to ECEF rota-
tion matrix given in equation 2.8 and x&p is the direct measurement provided by Garmin
18x-5Hz GPS aboard each Otter USV.

Inclination angle at cruising-speed
At cruising speed of the Otter USVs 2 m/s is an inclination angle of -1.466 radians ex-
pected, corresponding -83.971 degrees, using equation 3.64 and the relationship rad =

60

3.12 Acoustic Receiver Position Modelling

Z° 155~ This result indicates that drag induced forces on the receiver can create a relative
cable-angle o between negative surge direction and depth of approximately 90 degrees.
At angles close 90 degrees « is the receiver barley submerged, which is undesirable due
to a variety of reasons. The acoustic receivers or cables can intertwine with the rotating
Torgeedo propellers which is naturally unacceptable as equipment can be damaged. Con-
cerns related to high noise levels close to the surface, induced by propeller-cavitation or
breaking waves, further stresses the importance of connecting the receiver to the USV in
a way which ensures sufficient submergence throughout the entire operation. Connect-
ing additional weight to either the receiver or the cable is a possible solution. Additional
weight will however effect the speed performance of the Otter USVs negatively. This
problem can also be solved through employing a fixed receiver configuration.

3.12.3 Fixed Positioning Model

Imagine a construction fixing the acoustic receiver to the Otter. The construction can be
created a stainless steel material or other appropriate material for seawater interaction. In
the following models is its material assumed to be non deflecting, i.e the hydrodynamic
forces acting on the construction and receiver does not bend the material.

Let xl]’c = [z yr = f]T be the point of which the centre of the acoustic receiver is
fixed to relative to the centre of flotation in the body frame. This point is defined rela-
tive to the flotation point CF, x., y. and z. represents constant displacements in x,y and z
direction parallel to the body axis’ of the USV, given in equation 3.79.

x}, = CO + LCF + x} (3.75)

Conversion to ECEF coordinates
The real position of the acoustic receiver is given by equation 3.76,

x2 = COP + RY (I,) RY (4,0, v) (LCF + x54) (3.76)

where the position of the receiver is decomposed in principle rotations around the body
axis’ of the vessel; 6, ¢ and 1) and CO® is the origin of the body coordinate system in
ECEF coordinates (as presented in Fossen [18]). Because the craft pitch and roll around
the CF (flotation point) can R} (¢, 0, %) be simplified to R} (1) for the LCF term,

x} = CO¥ + Ry (I,)Ry (V)LCF + R (L)R (¢,0,4)x; (3.77)

0 and 1) angles are not measurable by the current sensor configuration and only rotations
around the z principle axis are therefore considered. For a catamaran vessel types such as
the Otter USVs which have a large metacentric height are angular displacements in roll
significantly reduced. If roll and pitch deflections are neglected can the model in 3.78 be
obtained.

xP = CO” + Ry (I, n)R}) (¥)(LCF + x}) (3.78)

The location of CO must be positioned relative to a GPS receiver aboard the vessel. Equa-
tion 3.79 positions an acoustic receiver relative to the a GPS, CO and CF.

x} = —x{pg + LCF + x4 (3.79)

61

Chapter 3. Fish Tracking System

A fair assumption, is that the receiver is fixed to the xz plane (body coordinate system),
i.e positioned along the center-line of the vessel, y? = 0. Other configurations where
yS’c # 0 are undesirable as hydrodynamic forces acting on the receiver and construction
will induce a momentum in yaw direction %, i.e corrupting vessel straight-line stability. A
final fixed-configuration position model is presented in equation 3.80.

b
X
R f
%25 = x{ps + Ry (L)Ry (¥) | —x&ps + LCF + 0 (3.80)
z
f

62

Chapter

Implementations

The practical implementations presented in this thesis involves the integration of a GPS re-
ceiver (Garmin 18x SHz), CAN controller (PiCAN2), motor controller (Torgeedo interface
board) and Torgeedo thrusters with a Raspberry Pi 3 single-board computer. The deliv-
ery time of the Otter USVs unfortunately was delayed due to a fire in the manufacturer
warehouse. The vessels are expected to be delivered during the summer of 2018, i.e prior
to the master’s thesis project of this author. Work and tests on the vessels, e.g payload
installation and ocean testing, are therefore not subject of this thesis. Because the acoustic
receivers TBR 700 have proven successful in other NTNU projects (e.g [14], [15] and [9])
is testing and calibration of the receiver not a subject of this thesis.Time synchronization
of the receivers is the main theme of the master’s thesis by Efteland [14], and therefore
neither examined significantly in this thesis.

4.1 Hardware

41.1 GPS

A Garmin GPS 18x-5Hz is integrated with a Raspberry Pi 3 single-board computer using
its GPIO (general-purpose input/output) interface, enabling the devices to communicate
using UART. A test run revealed successful real-time positioning at NTNU Glgshaugen,
Trondheim, Norway. The Garmin 18x-5Hz GPS cannot be connected directly to the GPIO
pins on the Raspberry Pi and receive meaningful data as the devices do not operate on sim-
ilar voltage levels. A Mikroelektronika MAX3232 RS-232 converter board can be used
as voltage converter device. Solder tin is a fusible metal alloy which creates a permanent
bond between metal work pieces and wires. A soldering iron is used to create the neces-
sary electrical connections for the GPS, with more practical instructions including wiring
and communication schematics included in appendix section B.3.

A variety of software alterations in the core of the Raspbian (Linux distribution) opera-
tive system running on the Raspberry Pi 3 are necessary to enable communication with the

63

Chapter 4. Implementations

Garmin GPS, and detailed instructions are included in the appendix section B.3. Real-time
GPS data acquisition in DUNE is enabled using the DUNE task [Sensors.GPS], which de-
codes NMEAO183 data and dispatches GPS data messages to the IMC bus.The baud-rate
of the Garmin GPS is specified to its correct value of 19200 Baud in its initialization file,
and more details regarding GPS data acquisition are included in appendix section B.3. RS-
232 converter board connections are indicated in figures 4.3 and 4.4.

Garmin GPS
18x-5Hz
¥
MAX3232 Serial
board
AN | GPIOpins | Serial
l ’., i {RL} Raspberry Pi 3
zu' \.\f‘\
Figure 4.1: GPS Experiment setup Figure 4.2: GPS setup schematics
Garmin GPS 3o : —_ e oo s

18x-5Hz L s 5 . ¥ - T

GPIO22 15 16 GPIO23

17 16 GPIO24.

EEY
GPIo10 19 20 [N

GPIOS 21 22 GPIO25
GPIOL1 73 24 GPIO8
25 26 GPIOZ
DNC 27 28 DNC
GPIoS 29 30 EICHE
GPIOB 31 32 GPIO12
GPIO13 33 34
GPIO18 35 36 GPIO16
GPI026 37 38 GPIO20
[0 39 40 GRIO2L

Key
B
s

Fi 4.4: GPS C tion II [25] [37
Figure 4.3: GPS Connection I [25] lgure onnection IT [25] [37]

4.1.2 Controller Area Network

This section presents a possible hardware configuration which enables the autonomous
vessel to control its thrusters by adjusting the pulse-width modulated voltage. A Raspberry
Pi 3 single-board computers communicates with a motor controller board, i.e Torqeedo
interface board, using Controller Area Network (CAN) bus communication. A CAN con-
troller, i.e PiICAN2, provides CAN-bus capability to Raspberry Pi 3.

A variety of software and hardware implementations are necessary to enable thruster com-
munication and are explained in further detail in appendix section B.4. First, a CAN
interface in the single-board computer is set up to enable CAN communication. Secondly,
a 120€2 Terminator solder jumper is inserted terminating both ends of the PICAN2. Fi-

64

4.1 Hardware

nally, the PICAN2 is connected to the GPIO pins of the single-board computer and by a
CAN cable to the Torgeedo interface board.

Can messages are sent to the Torqeedo board on its hexadecimal address 0xAB, and are
sequentially ordered in a little-endian format in which the most significant byte, i.e con-
taining the lowest address value, is sent first. Seven various messages types from the
board exist whereas only two types of messages can be sent to the board. Messages from
the board contains information of various system components such as current, voltage, up-
time, power, temperature, battery capacity and error messages among others. Messages to
the board are sent to initialize and set throttle value for both motors.

Thrust is set as an integer value in the interval -1000 and 1000 indicating maximum thrust
in forward (surge) and backwards (-surge) direction, respectively. A single CAN message
sets desired thrust for both propellers in the following manner:

00 DO FE AB C8 00 C8 00

where 00 DO corresponds to the ID of thrust messages (D = 13) and AB referrers to the
address of the board. The first out of two C8 00 messages corresponds to 200, i.e one fifth
of maximum thrust, for the first thruster, and similarly for the second. Full thrust is given
by 03 E8 (1000). By setting these two values to distinct values can a momentum in the v
(yaw) direction be created, and hence adjust the heading of the vessel.

4.1.3 Thruster test

Conv
[230V |{ 5V |[GPIO |«*] PicaN2]
t

h 4

Raspberry Pi3 [« | 3-wayscrew
terminal
!
" Serial [cAN |
h 4
[Thruster1 || Toraeedo {30V 1 [o30y
board Conv

Figure 4.5: CAN interface testing with thruster

Figure 4.6: Lab setup schematics

65

Chapter 4. Implementations

A Torgeedo thruster with supple-
mentary hardware setup is tested
in “forsgkshallen” experiment lab,
elektrobygg D at NTNU Glshaugen,
Trondheim, Norway. Thrust commands
is set in Raspberry Pi 3 with propeller
response, i.e Torqeedo thruster and
hardware system behaves satisfactory.
A picture and schematics of the lab
setup is included in figure 4.5 and 4.6,
consisting of four main components;

Tektronix DS 201405,

Figure 4.7: Digital Oscilloscope Analysis:

Raspberry Pi 3, PICAN2, Torqeedo CAN signal from PiICAN2 to Torgeedo board
interface board and a Torgeedo thruster.

A EA-PS 7032 100 power supply (0-32 Volts, 0-10 Ampere) is powering the Torqueedo
board, and normal 5 Volt cellphone charger powers the Raspberry Pi and PICAN2 shield.
The thruster is powered directly by the Torqueedo interface board. Please note that the
thruster is equipped with a tilt sensor which prohibits propeller rotation for tilt angles
larger than about 20 to 30 degrees. Thrust can therefore not be given in a variety if config-
urations, e.g the initial configuration presented in 4.5, and a lot of time was therefore spent
error searching prior to knowing this fact in the lab.

Messages sent from the Torqueedo board are analyzed using the candump function in
Raspberry Pi terminal. All messages from the board, i.e messages with ID 3, 6, 10, 12,
14, 15, and 16 are successfully received by the Raspberry Pi. A digital oscilloscope, i.e
Tektronix TDS 2014, is used to analyze and verify high and low CAN signals provided
by the PICAN2 shield. Figure 4.7 displays the differential signaling nature of CAN bus
signals. An analysis of the data from the terminal dump and digital oscilloscope shows
that signals from and to the board are successfully transmitted and received with correct
voltage levels for both high and low CAN signals. A simple python script provided by the
manufacturer is ran to set throttle vales for the thruster with satisfactory thruster response.

4.2 Software

Modem

The Huawei E3372 4G LTE modem is successfully tested to be directly compliant with
the Raspberry Pi 3, and can therefore be used for inter-vehicle communication in client
nodes. SD and SIM cards are however needed to get internet capabilities.

Structs

Various C++ structs are defined to enable data storage in DUNE. In C++ is a struct a group
of data elements stored under a common name. Data structures are created for the target
fish, USVs, TOA, TDOA and USV data messages. A struct containing Kalman filter data
using the predefined Matrix-Class in DUNE, i.e in src/DUNE/Math/, is created.

66

4.2 Software

Functions
Some of the most important functions used by the TOA data generator and Kalman Filter
tasks are explained briefly in this section. A list of the most important functions follows:

e Functions for importing CVS (.txt) data.

e Functions for transforming vectors from LLH and ECEF coordinates, based upon
the DUNE task WGS84.

e Data string parsing of client node messages containing position estimates of the
vessel and TBR 700 data

e Kalman filter functions creating the Jacobian matrix H and estimated measurement
vector y.

DUNE Tasks

Data Message Creator (TBR 700)

This DUNE task calculates transmission times of an acoustic signal to multiple receiver
nodes, and dispatches messages to the IMC-bus in real-time. This task converts comma-
separated values (CSV) files, i.e comma-delimited text (.txt) files, into TBR 700 data mes-
sages. Messages are dispatched to and available on the IMC bus with realistic timing, i.e as
they would in a real system. This task can be used in simulation phases to analyze perfor-
mance and tracking ability of an unmanned tracking system using TBR 700 receivers. The
task is tested and verified in a simulation presented in chapter 5. The task simulation speed
is an adjustable variable which allows the user to have results created and debug messages
printed to the console (terminal) in any speed desirable. 1 indicates normal speed whereas
100 would speed up the time of the simulation by a factor of 100.

The CVS files must contain position data of receivers and transmitter and be stored in
a specific data format. This data format is described in the appendix in section D.2. Po-
sition data must be in ECEF or LLH coordinates. Developers can also change the data
format specifications by manipulating the data storage functions presented in 4.2.

Let a data message containing TBR 700 acoustic data and the associated ECEF position
be referred to as a client node data message. The DUNE task dispatches client node data
messages to the IMC bus on the form;

$TBRO2, 1521394325, 253, S256, 2, -19.999420, 50, USV2, 2811417.889201, 515365.680904,
5682720.780954

where the comma-separated elements correspond to: acoustic receiver ID, timestamp in
seconds (unixtime) and milliseconds, code type, tag ID, pressure data (depth), signal to
noise ratio, USV receiver ID and x,y and z in ECEF coordinates, respectively. Please
note that the timestamp is simplified to a single double value containing both seconds an
milliseconds in the simulation presented in chapter 5 and corresponding code in appendix

67

Chapter 4. Implementations

section D.1.

Real-time Extended Kalman Filter

A DUNE task which estimates the position of a target fish in real-time by consuming client
node data messages is implemented. Position estimates of the target are dispatched to the
IMC bus in ECEF or LLH coordinates and other navigation tasks in DUNE, e.g a forma-
tion controller, can use the data as input. The performance of the Extended Kalman filter
is verified and tested with fake-data in chapter 5. The filter can hypothetically be used in a
real fish-tracking experiment.

68

Chapter

Simulation

Goal

The following simulation aims to verify and test the performance of the real-time Kalman
filter implemented in DUNE using generated TBR 700 data.

Time and place

SSSSS

nnnnnnn
NNNNN

mmmmm

;;;;;;

.....

Figure 5.1: Trondheim Location ([38]) Figure 5.2: Trondheimsfjord Sea Map ([39])

A hypothetical tracking simulation is set to be located in the Trondheimsfjord, indicated
by the map in figure 5.2. The initial position of a target fish is set to 10.382645 °E and
63.450705 °N in longitude and latitude coordinates. Four USVs initially form a quadri-
lateral shape surrounding the targets projection on the surface plane with an offset matrix
Or; as indicated in equation 5.1,

—250 250 350 250]"

Orj = | 350 —250 —250 250

5.1)

69

Chapter 5. Simulation

where matrix elements corresponds to offsets in North and East direction in the unit of
meters. The initial time of the simulation is set to Wed, 04 Apr 2018 04:04:04 (+0000),
or 04/04/2018 @ 4:04am universal time (UTC), which corresponds to Unix timestamp
1521394325. Unix time is equivalent to the number of seconds since +0000 first of January
1970 (UTC).

5.1 Data

The fake position data used in this simulation has its origin from a fish tracking simula-
tion in the project thesis paper Examining use of various vehicles in a single fish tracking
system [13] written by this author in December 2017. The original data set consists of po-
sition values in xyz coordinates (three-space) for a target fish and four USVs. The duration
of the simulation is 6000 seconds with a time-step of 0.5 seconds, resulting in 12000 data
points for each degree of freedom, i.e 36000 data points per vessel.

The four USVs are tracking the target using a formation controller and straight-line guid-
ance. The final fish trajectory is created by piece-wise sinusoidal trajectories and a slowly
varying bias model. The target fish moves along the trajectory with varying speed propa-
gating mainly in one direction relatively close to the surface. The bias model is a 1st order
Markov process in R3. This method creates a trajectory which seemingly represent “the
natural behavior of a fish” with some randomness introduced. A slowly varying Markov
process is created by allowing white noise to travel through a low-pass filter as presented

in equation 5.2,
-1
where x € R? is the velocity of the target, x € R? is the position of the target, T is the

Markov time constant and w € R? is Gaussian white noise.

The data is manipulated from its original format and stored in comma-separated values
(CVS) text-files (.txt) enabling testing of the developed C++/DUNE software presented in
this thesis. Data is firstly transformed into the NED frame from xyz coordinates by mod-
ifications where x corresponds to North, — y to East and — z to Down in the NED-frame.
The data is converted from the NED frame to both ECEF and LLH coordinates utiliz-
ing the relationships presented in section 2 in a MATLAB script. Position data in ECEF
and LLH coordinates are saved in CVS text-files (.txt): usv_pos_ecef.txt, usv_pos_llh.txt,
target_ecef.txt and target_llh.txt.

5.2 Assumptions

Four USVs are assumed to host acoustic receivers with positions coinciding with vessel
point-mass in R3. USV position and orientation estimates are assumed to be perfect, and
velocity and heading directly manipulative u = i—f, v = % and w = %. Acoustic re-
ceiver clocks are assumed to be perfectly synchronized.

70

5.3 Software

A fish tag tagged to a target fish is transmitting a signal every 0.5 seconds, i.e with a
frequency of 2 Hertz, propagating at the speed of sound in seawater set to a constant 1484
meters per second. Depth measurements are transmitted with the acoustic signal and as-
sumed to be available without any delays except the transmission time of the signal itself.
The WGS-84 ellipsoid is assumed to coincide with the ocean surface and depth measure-
ments are therefore direct measurements of the height above ellipsoid (hae), with depth
defined as a negative property.

Radio communication links between client nodes (computer aboard USVs) and the cen-
tralized computer hosting the target observer are assumed to be stable and instantaneous.

5.3 Software

target_pos.txt

| createTOAdata . — > EKF2

> (Extended Kalman
FromECEFdata
Inter-Module
Communication Protocol

Filter)
v

R .| createErrorPlots

L]

error_ecefixt
error_llh.txt

x_hat_ecefitxt
x_hat_llh.txt

Figure 5.3: DUNE fish tracking simulation: data flow

Figure 5.3 indicates the implemented software and data-flow during simulation. DUNE
tasks are indicated by red boxes and communicate using the IMC protocol.

Two DUNE tasks createTOAdataFromECEFdata and EKF2 operate like producer and
consumer tasks, respectively. A third DUNE task createErrorPlots creates CVS error
data using estimated and true target position values prior to a simulation. Estimated target
positions and errors in ECEF and LLH coordinates are stored in text files. DUNE tasks
use various C++ functions for calculations which are defined in the header and source file
Sfunkytions.h and funkytions.h, respectively. The data format, DUNE tasks, INI files and
C++ functions used in the simulations are described in further detail in the appendix sec-
tions D.2, D.3, D.4 and D.5.

The acoustic data obtained by a client node is combined with the latest receiver position
estimate provided by a Garmin 18x-5Hz GPS and receiver positioning model, and sent as

a single IMC message (IMC::DevDataText) on the form presented followingly.

$TBROx, 1446716612, 123, S256, 2,233, 50, USVX, 2811674.127,515158.467, 5682591.148

71

Chapter 5. Simulation

where X is the receiver and USV number x = 1,2,3,4. The first part is acoustic TOA
data similar to the form of TBR 700 data messages as presented in 3.3.1, whereas the last
part are the estimated receiver position in ECEF coordinates. Spacing between commas
are not included in the real messages.

The Kalman Filter is tuned and designed in a way where depth measurements are val-
ued with a higher priority than the TDOA measurements. More specifically is the associ-
ated depth measurement value in the noise spectral density matrix R lower than the values
associated with the TDOA measurements.

5.4 Results

T T T T T T T — -3
0 _ g 50 : : : : : :
e § M A~ v
0 5 10 15 20 25 30 35 40) 5 10 15 20 25 30 35 40
s] [s]
5 T T T T T T T — - x108
_ - - —_— =7 ° = -
Tol ATV iyl 2N]
- M g \/\,,/ - ‘j T - T
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
[s] [s]
5 " T T T T T T T
Eof AN - - Tol/ S~ [tae s e]
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Is] [s]
Figure 5.4: ECEF Error Plots Figure 5.5: LLH Error Plots
1 3
EI 63.45076 - A:JZ}
%o
— o et
0 — — - t=31 oo
7 ,,\ B e ~— t=24 o ©
€0\ - oo o ARl
\\ :170 @ O oﬁﬂfc@’ggg’oo% o
- X Q¢
-2 v R T
0 5 10 15 20 25 30 35 40 o= o
ssasorz|- i
[s] 45 o
4 t=4
—u O’s4 o
63.4507
_2 — T 135
T / N g 550
E L - . £
. — o =3
N — 7 63.45088 - EE RN
2
0 5 10 15 20 25 30 35 40 os =25
ts] g
1ot ssas0m8|- ”
10 &2 o
5 ; - =15
g T 63245064 - oo
£ — (11505
o kRl
5 ! ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 5 10 15 20 25 30 35 40 10.3824 10.38245 10.3825 10.38255 10.3826 10.38265 10.3827 10.38275 10.3828 10.38285
[s] [* longitude]

Figure 5.6: ECEF Velocity Estimates

Figure 5.7: North-East Plot

72

5.4 Results

The true errors in ECEF coordinates are plotted in figure 5.4. The initial errors are ap-
proximately 10, 2, and 5 meters in X,y and z direction, respectively. The plots indicate that
the Extended Kalman filter is converging, i.e the total error is decreasing with time. The
error in y direction is however somewhat fluctuating (noisy).

The true errors in LLH coordinates, longitude and latitude degrees and height above WGS
84 ellipsoid (meters) are presented in figure 5.5. The errors in hae direction and latitude
are quickly converging towards zero from their initial offset of approximately 0.5 meters
and 5x10~3 degrees latitude. The Kalman filter consumes depth measurements which en-
ables accurate positioning in the hae direction, and the results shows that the error in hae
direction is small throughout the entire simulation.

Estimated velocities in x,y and z direction in ECEF coordinates, i.e @, v and w, are pre-
sented in figure 5.6. Error plots are not included because the original data-set only includes
position values. The velocity estimates indicates a target fish which initially propagates
in —x direction and mainly in +y direction towards the end of the simulation. Angular-
velocities in longitude and latitude, and velocities in hae can be derived using ECEF ve-
locity estimates and the relationships presented in equations 2.11, 2.12, and 2.13.

Figure 5.7 presents 2D scatter plots of the true and estimated target trajectories in a North
- East coordinate system, where red and blue color indicate real and estimated position,
respectively. The axis’ indicate longitude and latitude degrees, and scatters are plotted
with additional text indicating the time associated with the specific positions. Time-plots
indicate time past since the beginning of the simulation.

73

Chapter 5. Simulation

74

Chapter

Discussion

The research questions presented in section 1.5 are discussed and answered in this chapter.
The chapter also includes an evaluation of the validity of underlying assumptions in the
developed models. Finally, suggestions for further research is presented.

6.1 First Research Question

How can important control system components of an optimal fish tracking

system be developed?

A proposed control system unifies five system objectives in a single formation control al-
gorithm, and is designed in an adaptable way in which receiver are positioned in a tactical
manner depending on whether the target is located close to the surface, at great depth, close
to the shoreline or in an open ocean environment. Both the proposed guidance system and
formation controller contribute to create a more reliable control system by allowing vessels
to operate close to a restricted boarder and be less dependent on inter-vehicle communi-
cation, respectively. A target estimator and receiver positioning models are specifically
designed to increase the accuracy of the target estimates.

The following paragraphs elaborate upon why the system objectives are chosen and how a
formation controller attempts to unify them, as presented in algorithm 3. First, a recap on
what the system objectives are is presented:

1. Keep USVs within acoustic transmission range of target

2. Struggle to maintain vessels in formations which minimizes associated geometric
dilution of precision for the receiver array

3. Minimize distance travelled by USVs

75

Chapter 6. Discussion

4. Prevent USVs from grounding and operating within restricted areas

5. Minimize radio communication

The first objective is chosen based upon the fact that there is no way of using the developed
TDOA estimator with all receivers being outside transmission range. A dead-reckoning es-
timator can be implemented in an attempt to reallocate the target in such situations. Dead-
reckoning is implemented in this thesis through allowing the developed Kalman filter to
simply integrate the latest velocity estimates of the target fish. However, dead-reckoning
navigation is assumed to be somewhat unlikely of reallocating a target fish in an open sea
environment, which emphasizes the importance of keeping receivers within transmission
range. The second system objective is satisfied by positioning USVs in circular and circle-
arc shaped formations depending on whether the target is located within a restricted area or
in the open ocean, surrounding the horizontal target projection point FRP. In this way are
receivers obtaining configurations which minimizes geometric dilution of precision and
maximizes quality and resolution of target geospatial data. Receiver constellations which
have a large formation radius are closer to realizing the optimal receiver array arrangement.

System objectives one and two are partly contradictory through demanding a small and
big formation radius, respectively, and combining them in a unified formation control al-
gorithm is therefore a trade-off. Maximum formation radius is dependent on estimated
transmission range and estimated target depth, as given in equation 3.17. Hypothetically,
as a target fish dives to great depth or transmission range decreases USVs are forced to
move significantly closer towards the formation reference/centre point (FPR), i.e decrease
formation radius to stay within transmission range. In contrast, increased formation radius
is allowed whilst the target is located close to the surface.

The third system objective is to minimize distance traveled by vessels, which includes
preventing USVs from performing unnecessary station-keeping. This system objective
is particularly important for long-endurance tracking missions as the batteries aboard the
Otter USVs have limited power. These objectives can be satisfied through implementing
concepts presented in this thesis: target & guidance radius of acceptance and a path picking
function. The first and second allow estimated target and USV positions to deviate from
their respective FPR and waypoint localizations within a limited area without assigning
new waypoints or demanding station-keeping, respectively. Tuning the radii of acceptance
is a trade-off between energy-use, GDOP and tracking ability of the system. Positioning
within guidance radii of acceptance is assured locally by client nodes. Ideally, the cen-
tralized system should be able to tune the guidance radii of client nodes independently
through inter-vehicle communication. In general, the guidance radii of acceptance should
be smaller in situations where the vessels are close to one another or close to restricted
areas. The path picking function consequently assigns USVs paths which minimize the
distance sum traveled by vessels by weighing the distance from their current positions.

The fourth objective is to prevent USVs from operating in restricted areas, e.g shoreline
or harbour areas. The objective is important for obvious reasons; prevent the vessels and
surrounding environment from taking damage from collisions, and allow tracking near re-
stricted areas. This can be implemented using the concept presented in figure 3.13 and

76

6.1 First Research Question

algorithm 3, using sea maps of the sea-bottom and surrounding environment in areas of
operation. Straight-line guidance is often not feasible whilst operating in restricted areas
and methods for curved path-following and terrain avoidance must be implemented. This
will eventually allow vessels to navigate parallel along restricted area boarders to their
waypoints provided by algorithm 3.

The fifth system objective is to minimize the use of radio communications. Radio commu-
nication can be costly, difficult to implement and the reception of mobile communications
is often limited in ocean areas. Vulnerability to slow communication links can be reduced
for a fish tracking system by assigning the suggested guidance system presented in this the-
sis. The need for inter-vehicle communication is significantly reduced by allowing client
nodes (Otter USVs) to operate with independent guidance systems. Communication from
a client node to the centralized node is solely necessary when the client node has received
an acoustic measurement. The acoustic data is decoded and combined with the latest re-
ceiver position estimate, provided by a Garmin 18x-5Hz GPS and receiver positioning
model, and sent as a single IMC message on the form as presented in 5.3. Communication
from the centralized node to client nodes is only necessary when the system picks a new
FRP assigning new vessel waypoints. Accurate formation tracking cannot be expected
for this system as vessels are likely to be oriented with different heading angles whilst
performing station-keeping, and expected to be subject to independent disturbances dur-
ing transit. Client nodes are therefore not expected be aligned with their respective paths
nor arrive at new waypoints simultaneously. A more complicated formation control algo-
rithm, e.g assigning trajectory tracking and speed control objectives, can be implemented
to ensure more accurate formation tracking. This, however, introduces a higher demand
for feedback from the centralized computer. To minimize the demand for inter-vehicle
communication and achieve accurate formation tracking are therefore to some extent con-
tradictory objectives.

The Kalman filter implemented in DUNE converges and delivers satisfactory position es-
timates of a target fish using generated TBR 700 data in real-time, and can therefore be
used in a real experiment. Results presented in section 5.4 and figures 5.4, 5.5, 5.6 and 5.7
indicate convergence and successful real-time localization in a simulation located in the
Trondheimsfjord. The errors are very small throughout the entire simulation, with errors in
estimated height above WGS 84 ellipsoid (hae) in the order of decimeters. The developed
DUNE software can be used to simulate tracking scenarios, test system performance, and
tune estimator and formation control parameters prior to a real experiment. The proposed
additional estimator functionality presented in section 3.7.3, i.e adaptiveness, filtering al-
gorithm, filter tuning and weighted average depth method, can be implemented to further
enhance the filter’s ability to deliver robust and accurate position estimates.

Two models for a body fixed and cable-connected TBR 700 receiver are presented in this
thesis, and can be used in a real system depending on the final connection configuration.
This thesis argues that better positioning, but more noise, can be expected from a fixed re-
ceiver configuration compared to a cable-connected alternative. This argument is mainly
based upon the assumption that an acoustic receiver mounted by a stiff construction (e.g

77

Chapter 6. Discussion

metal rod) fixed to the Otter USV is significantly more affected by relative motion with
water, due to deflections in sync with vessel roll and pitch periods. A cable-connected
configuration can be beneficial in sea states in which large roll and pitch deflections are
expected. These aspects are further elaborated upon in the following section.

6.2 Second Research Question

What are the error sources associated with the proposed system?

This chapter presents some of the expected error sources for the proposed fish tracking
system presented in 3. Error sources are in this context defined as all phenomena which
prohibits the localization estimator from accurately determining the true position of its tar-
get. Two types of measurements are used in positioning of a target fish: TDOA and depth
measurements. The following sections presents the error sources associated with both
types of measurements and to some extent also their significance. The expected perfor-
mance of various system components and sensors and their implications on the estimator
are discussed in the following section.

A variety of error sources are expected to limit the accuracy of TDOA and depth measure-
ments. The sources of error can be divided into three main groups; 1) environmental-, 2)
acoustic receiver-, 3) transmitter - related errors.

1) Environmental Error Sources
Environmental error sources can be divided into subgroups i) transmission path - and ii)
noise - related errors.

1) i) Transmission Path

Transmission path errors are mainly associated with varying signal speed and multipath
phenomena. The position algorithm (EKF) assumes uniform transmission paths with a
constant signal speed and errors in the TDOA measurements are created by differentiating
TOA measurements associated with unmodeled dynamics. In reality transmission paths
are unique as acoustic signals pursue independent trajectories through the water column
before reaching receiver destinations. Transmission path variations in both time and space
are expected. The speed of an acoustic signal in water varies non-linearly with properties
such as salinity, pressure and temperature, with Del Grosso’s formula being a sufficient ap-
proximation displaying this relationship. Large variations in water properties are expected
in operations located close to a river estuary, e.g in a salmon tracking operation, with tem-
perature and salinity differences between freshwater outlets and seawater expected to be
high.

Transmitted signals can differ with various acoustic receivers due to reflection patterns
from surrounding objects and the sea bed causing multi-path interference. timestamping
by first wave-front is a method for guaranteeing accuracy, or a consistent margin of error,
in acoustic communication. This is because straight paths are shorter than any transmis-
sion paths associated with multi-path.

78

6.2 Second Research Question

1) ii) Noise

The TBR 700 hydrophones use advanced digital signal processing and dynamically ad-
just threshold levels to optimize reception and maximize noise reduction. Noise in the
environment is expected to limit the performance of acoustic receivers and potentially
jeopardize their ability in decoding DPPM signals and timestamping correctly. In acoustic
communications literature, e.g the book Autonomous Underwater Vehicles by Burrows
and Khan [40], environmental noise in an acoustic environment is normally divided into
three groups: ambient or background noise of the ocean, self-noise of the vehicle and in-
termittent noise (including biological noises). Self-noise and intermittent noise levels are
expected to be high as a result of phenomena such as breaking waves and rain.

In a study performed at NTNU the transmission range of the acoustic signal was lower
than expected and previously observed, with the reason assumed to be noise from an in-
tensive rain shower. [9] Results showed that the reception of an acoustic receiver on a USV
platform is significantly influenced by the depth of the submerged hydrophone, indicating
better performance with increased depth. The study showed that a system performed sat-
isfactory if the USV travelled at speeds below 3 knots, despite noise generated by the
propeller and travelling hull being one of the major concerns ahead of the field trail. By
employing tracking missions on days with calm weather and no rain associated with sea
states with small significant wave heights, intermittent noise from breaking waves and
rain, and self noise levels induced by hull slamming are expected to be low.

A book about the fundamentals of acoustics from 1982 [41] states that self-noise from
cavitation effects on the propeller is significant for higher frequencies. In this context, high
frequencies are noted as acoustic signals with a frequency higher than 10 kHz. As most
acoustic transmitter signals have a mean frequency of about 70-80 kHz, self noise from
propellers are expected to have an impact on the performance of the acoustic receivers.
Cavitation levels and associated induced noise is expected to be high for the propellers
aboard the Otter USVs, as they operate closely to the surface. Cavitation, defined as the
process of air bubble generation on the propeller blades, is a pressure related phenomena
which decays with increasing depth. This stresses the importance of prohibiting the re-
ceivers from operating close to the propellers.

Water moving past an acoustic receiver is assumed to induce noise with a magnitude (deci-
bel) increasing with the relative speed difference between the receiver and surrounding
water. This stresses the importance of choosing a connection configuration which reduces
displacements of the acoustic receiver and relative speed difference with water.

A cable-connected acoustic receiver can be assumed to be less subject to noise than a
fixed configuration through being less affected by rapid water-interaction induced by roll
and pitch rotations of the vessel. Deflections in heave direction (z) due to surface waves are
instantaneous in upwards direction (pull force) in a cable-connected configuration. Deflec-
tion in downwards direction (USV moving from wave crest to wave trough) are damped
due to a “sink delay” or inertia phenomena as pressure forces (push) are not converted

79

Chapter 6. Discussion

through a sufficiently elastic cable. The sinking latency phenomena can be expected when
the cable is not entirely straight (stretched). Sinking latency can be positive as the relative
speed of water passing over the receiver surface is damped, compared to a fixed configu-
ration. However irregular bursts of activity, by fits and starts, due to sudden cable stretch
from wave-induced heave motion can induce high noise-levels. A cable-connected acous-
tic receiver is not affected by roll and pitch rotations of the vessel if momentum is assumed
to not be transferred through the cable. Pitch and roll rotations could however induce a
pull force in upward direction unless the cable is connected in the flotation point of the
vessel, which is a preferable connection point reducing noise.

2) Acoustic Receiver Errors
Acoustic receiver - related errors mitigating the accuracy measurements can be divided
into subgroups of i) positioning, ii) timestamping and iii) time-synchronization.

2) i) Acoustic receiver positioning

Position estimates of the acoustic receivers are directly used by the extended Kalman filter
to estimate the target fish position, and positioning errors are therefore directly influencing
its performance. The position of the acoustic receiver is defined relative to the body of
the USV vessel body coordinate system. The error in acoustic receiver positioning can be
considered as the sum of GNSS positioning errors and errors in positioning the receiver
relative to the GPS.

The UERE(User Equivalent Range Error) of the Garmin 18x-5Hz GPS is less than 15
meters 95% of the time according to the manufacturer. [24] Other enhancement tech-
niques for more accurate GNSS positioning, e.g RTK, could be employed as the current
GPS configuration is one of the most significant error sources in the system.

The error in positioning of a cable-connected receiver relative to the connection point
in the body coordinate system is only limited by the length of the cable itself. In configu-
rations in which the system has no possibility of measuring current direction or amplitude,
which is the case for the current sensor configuration aboard the Otter USVs, the errors in
positioning can grow significantly large. In tracking scenarios in which there is no current,
e.g tracking in a lake, a surge-model can give accurate estimates of the receiver position
if the hydrodynamic forces are modeled accurately. Hydrodynamic forces, are however,
difficult to model as they are dependent on many variables which are difficult to measure,
such as the Reynolds number. Other phenomena, such as vortex induced vibrations, are
also expected to affect the movement of the receiver. The error in positioning of a cable
connected acoustic receiver can be reduced if the receiver is connected to a heavy device,
or to a heavy cable, as the range of possible cable-angles « are reduced due to increased
gravity.

Good positioning precision is expected for a fixed receiver as it is not expected to be
significantly deflected by hydrodynamic forces. The apparent deflection is determined by
the construction’s ability to resist deformation (stiffness) and magnitude of the applied
hydrodynamic forces. Deflections in heave direction (z), e.g due to surface waves, are

80

6.2 Second Research Question

instantaneous and in sync with the movement of the craft. An acoustic receiver connected
to a fixed structure is subject to deflections in the x and y direction in the body frame in-
duced by roll and pitch rotations of vessel, and are proportional with the length (or depth)
of the fixed construction. A deeply submerged receiver therefore comes with the cost
of larger deflections in the horizontal plane due to roll and pitch. By applying sensors
for measuring roll and angles the deflections can be compensated for using equation 3.76,
however the current configuration of the Otter USV payload does not include such sensors.

2) ii) timestamping

As addressed and stated in Efteland [14] the reception resolution of the TBR 700 receivers
is about 1 ms, due to a cycle time of 1 ms while in listening mode. timestamps are found
to be within 1 ms 90 % of the time. A 1 ms error margin corresponds to about 1.5 meters
error in positioning with a signal speed of 1500 meters per second.

2) iii) Time-synchronization

As presented in a NTNU master thesis by Efteland [14] TBR 700 receivers can be time-
synchronized using GPS technology through integrating a GPS module with the TBR
board. GPS technology can provide time synchronization down to 60 nanoseconds, which
is sufficient with respect to the TBR 700 receiver resolution of 1 ms. [14] The Garmin
18x-5Hz GPS outputs time and date in coordinated universal time (UTC) data and could
hypothetically be used for time-synchronization. According to the manufacturer the tim-
ing precision is limited to a tenth-of-a-second. [24] The accuracy of Garmin 18x-5Hz
time measurements is therefore clearly insufficient for the purpose fish tracking, as an
acoustic signal can travel up to 150 meters within the time-interval of a-tenth-of-a-second.
Other solutions and sensor configurations must therefore be considered. The use of a sur-
face support module (SSM), GPS/Tinymesh expansion circuit board and a Raspberry Pi 3
single-board computer, as presented in Efteland [14], can be considered.

3) Transmitter Error Sources

The total errors associated with depth measurements can be considered as the sum of the
depth measurement offset and depth signal resolution. According to the manufacturer of
ADT-16 the fish tag should be sensitive to depth changes down to as little 1 cm, with a
maximum depth measurement offset of + 50 cm. [23] Measured depth is continuously en-
coded as the time delay between two acoustic pulses (DPPS) by a piezoelectric transducter,
and the resolution of the transmitted signals are 10 cm corresponding to 10 ms. A delay of
1000 ms corresponds to 0 m increases with 100 ms per meter, e.g if the target is located at
a depth of 100 meters will DPPM signals be transmitted with a delay of 1000 ms + 100ms
* depth = 11 seconds. The transmitted DPPM will be affected by changes in acoustic sig-
nal speed due to transmission path variations for two subsequent waves reaching the same
receiver after a time delay. Transmission variations in the relevant time spans are however
expected to be small and should not limit the accuracy of the depth measurements in any
significant way.

81

Chapter 6. Discussion

6.3 Validity of Underlying Assumptions in Receiver Posi-
tioning Models

This section aim to evaluate the validity of underlying assumptions leading to the acous-
tic receiver positioning models presented in section 3.12. Firstly, the hydrodynamic force
analysis presented in section 3.12.1 is discussed. Secondly, additional assumptions result-
ing in the cable-connected positioning model are presented.

Force analysis assumptions

In general the force analysis presented in this thesis is very simplified, and a more de-
tailed study should be conducted if more accurate results are needed. Models are, how-
ever, based upon a force analysis using data from the manufacturer, and estimates of the
buoyancy force should therefore be quite accurate. The receiver weight in water (buoy-
ancy subtracted by gravity force) provided by the manufacturer is given in freshwater, and
small adjustments (in order of ~ 2.5 %) are therefore expected in seawater due to changes
in water density. The induced drag forces, however, are severely simplified by a variety of
assumptions which are stated followingly:

1. Long-wave approximation

2. Receiver fixed with respect to incoming current field

3. Receiver perfectly cylindrical with suffciently smooth surface

4. Transcritical flow regime

5. No forces from vortex-induced vibration phenomena acting on receiver

The validity of the assumptions is expected to be high for 1,2 and 3, and low for 4 and 5,
based upon arguments presented followingly. Long-wave approximation can be used when
the incident waves tend to be unaffected by the interaction with a structure. Faltinsen [36]
states that long-wave approximation can be used when A > 5D, i.e the wavelength of
the incident waves are five times longer than the diameter of the acoustic receiver. This
corresponds to a wavelength of 0.375 meters in the case of TBR 700 RT. This holds for
the majority of sea states expected during operation as most sea states are associated with
wave-lengths larger than 0.375 meters. The force analysis assumes that the acoustic re-
ceiver is fixed and not tilted with respect to the incoming current-field. Small tilt-angles
are not expected for a fixed receiver-configuration unless pitch and roll angles of the ves-
sel are very large, whereas tilt-angles for a cable-connected configuration is expected to
be significantly larger due to receiver and cable deflection. Faltinsen, however, states that
the semi-empirical formula Morison’s equation can be used also in situations where the
cylinder is tilted [36], which further validates the assumption for both configurations. Re-
ceiver positioning models assume that the receiver has a perfect cylindrical shape with a
sufficiently smooth surface, such as presented in Faltinsen, and that the associated drag-
coefficient (also presented in Faltinsen) can be applied. [36] The real receiver is quite
close to having a perfect cylindrical shape, and is expected to have a relatively smooth
surface. The model assumes a transcritical flow regime, whereas in a real experiment the

82

6.4 Suggestions For Further Research

flow regime surrounding the receiver is expected to be weather dependant and constantly
changing. The validity of this assumption is therefore low. The vortex-induced vibration
(VIV) phenomena is not taken into account when developing the receiver positioning mod-
els.

Cable-connected model assumptions

Additional assumptions are necessary for obtaining the cable-connected positioning model
presented in equation 3.74. The model neglects the effects of weight and drag induced
forces on the cable connecting the receiver to the USV. However, cable induced drag forces
can grow severely large with increasing diameter of the cable, and should be modeled for
better positioning. The model assumes the cable to be straight, whilst it in real life is
expected to bend with increasing depth in a current field. The model assumes that both
pull and push axial forces are conducted through the cable line, and that no momentum is
transferred through the cable. In real life only stretch forces are expected to be conducted
through the cable.

6.4 Suggestions For Further Research

e Implement the remaining DUNE tasks towards finalizing the proposed control sys-
tem in section 3.6, this involves all control system components except the target
estimator.

e A variety of practical tasks remain towards finalizing the system and can be con-
ducted as soon as the Otter USVs are delivered. This involves payload implemen-
tation in the vessels and deciding upon a receiver configuration. In determining
whether a fixed or a cable-connected configuration is more beneficial for the Otter
USVs some of the arguments presented in this thesis can be taken into account.

e Examine and develop anti-collision for the Otter USVs in DUNE. A function which
aims to guarantee non-intersecting USV paths with a sufficient margin distance be-
tween vessels should be implemented to further prevent the likelihood of collisions.
This function can incrementally evaluate the feasibility of USV path-combinations
from shortest to longest, using the presented path picking function in equation 3.32,
and assign the first combination which satisfies inter-vehicle distance requirements.
Such a function would have to consider the speed performance and orientation of
each vessel in anticipating their paths.

e Convert the script provided by maritime robotics giving thrust commands to the
Torgeedo thruster from python to C++ and implement it in DUNE.

e Examine methods for station-keeping of the Otter USVs. A loitering-like station-
keeping technique can perhaps be used to keep USVs within guidance radius of
acceptance whilst being subject to current. Implementing a bow-thruster in sway-
direction on the Otter USVs will allow the vessel to be less under-actuated, decou-
pling momentum in yaw and surge force, and dynamical positioning with higher
precision can be expected. In this configuration will Otters USVs be able to rotate
without creating large horizontal circles.

83

Chapter 6. Discussion

Increase system integrity by creating user interface error messages in Neptus based
upon data returned by the Torgeedo interface board. The Torgeedo board returns
a variety of messages, e.g status, power levels, temperature, safety and error flags
for thrusters and batteries, and the client nodes could notify the system operators by
forwarding important error messages through 4G communication.

Study feasibility of various guidance methods close to the shoreline and terrain, and
implement a suitable method in DUNE which allows maneuvering along a restricted
between waypoints provided by algorithm 3.

Develop a model for estimating acoustic transmission range in real-time. The output
of this model would be used directly used by the proposed formation controller
presented in this thesis. This model can use data such as pseudorange estimates,
available measurement vector (i.e indicating receivers which have received acoustic
signal) and SNR-ratio.

Examine benefits and possibility of using a hybrid localization estimator, based upon
both the principle of TDOA and signal strength localization, as presented in 2.2.4.
In general there is more uncertainty involved with using a signal strength based
technique in comparison with TDOA localization, with only the latter being imple-
mented in this thesis. Combinations of utilizing both techniques could potentially
increase the robustness of an estimator and result in enhanced tracking performance
during critical phases of operation in which few receivers are within transmission
range. Pseudorange estimation based upon signal strength is difficult in marine en-
vironments due to a varying transmission channel and background noise. Through
having obtained TDOA measurements for some time, however, a model of measured
signal strength (or SNR) as a function of range can be derived. Such a model and its
parameters can be tuned in real-time.

In this thesis, dead-reckoning navigation is implemented through allowing the Kalman
filter to simply integrate the latest velocity estimates of the target. However, dead-
reckoning can be implemented in a more advanced manner, e.g a tactical search pat-
tern for moving targets or based upon some apriori knowledge (biological model) of
where the fish is likely to be located. However, apriori knowledge about the target
fish is often very limited and to some extent also what the system is supposed to
deliver. A more detailed study examining the feasibility of already-existing search
methods within other fields, e.g avalanche search rescue, should be conducted as
they possibly could be employed in fish tracking.

84

Chapter

Conclusions

This thesis contributes to the development of an autonomous fish tracking system for At-
lantic Salmon through presenting various hardware and software implementations and a
proposed control system. However, a variety of tasks remain to be solved towards finaliz-
ing the proposed fish tracking system, due to the limited time of this master’s thesis and
vast number of tasks which have to be conducted. The developed models presented in
this thesis can be used as inspiration for other peers working on the NTNU fish tracking
project, e.g future master’s and PhD students. The final system can be used to monitor both
hatchery farmed and wild Atlantic salmon in an open ocean environment, and scientists
can use the data to develop a better understanding of the species and the way it interacts
with its environment. Scientist can further use this data to examine the exposure of the
aquaculture industry on wild stocks, and tactically narrow down the recapturing search
area in the event of fish farm escapes.

A target positioning algorithm based upon the principle of time difference of arrival po-
sitioning (multilateration), i.e an extended Kalman filter using data from four TBR 700
acoustic receivers, is implemented and tested in a unified navigation environment (DUNE).
The results reveal filter convergence and successful real-time localization of a target fish in
a simulation located in the Trondheimsfjord. The developed DUNE software can be used
to simulate tracking scenarios, test system performance in critical phases of operations
and tune estimator and formation control parameters, prior to a real experiment. Proposed
additional functionality, i.e adaptiveness, filtering algorithm, filter tuning and weighted
average depth method, can be implemented to further enhance the filter’s ability to deliver
robust position estimates. Positioning models for a cable-connected and fixed acoustic
receiver configuration are presented with the intention of accurately position the acoustic
receiver relative to a GPS aboard the vessels, whilst being subject to hydrodynamic forces.
The position estimates of receivers are directly used by the target estimator, hence the pro-
posed models can limit the errors which results in more accurate geospatial data.

Hardware implementations and software solutions integrating affordable components are

85

Chapter 7. Conclusions

presented, hence this thesis is contributing towards finalizing the physical system. This
involves the integrating a GPS receiver (Garmin 18x-5Hz), CAN controller (PiICAN2),
motor controller (Torgeedo interface board) and Torgeedo thrusters with a Raspberry Pi 3
single-board computer. Thrust commands and thruster response is successfully tested in
“forsgkshallen” experiment lab, elektrobygg D at NTNU Glgshaugen, Trondheim, Nor-
way, with all system components behaving satisfactory.

Important components of a fish tracking control system are developed and optimized to-
wards 5 objectives; keeping receivers within transmission range, enabling USVs to operate
in restricted areas, minimizing geometric dilution of precision (GDOP), distance traveled
by system nodes and need for inter-vehicle communication. A proposed formation con-
troller unifies the system objectives in a single algorithm positioning USVs in circular and
circle-arc shaped formations surrounding the target fish, whilst in non-restricted and re-
stricted waters, respectively. Distance traveled by vessels is minimized through applying
three concepts; target & guidance radius of acceptance and a path picking function. The
need for inter-vehicle communication is significantly reduced by allowing client nodes
(Otter USVs) to operate with independent guidance systems. Target & guidance radius of
acceptance allow estimated target and receiver positions to deviate from their respective
FPR and waypoint localizations within a limited area without assigning new waypoints
or demanding station-keeping, respectively. Tuning of radii of acceptance is a trade-off
between energy-use, GDOP and tracking ability of the system. The path picking function
is a function which consequently picks paths that minimize the distance sum traveled by
vessels, weighting the distance from their current positions.

The most significant error sources associated with positioning of a target fish for the
proposed fish tracking system are presented in this thesis. This involves environmental-,
acoustic receiver- and transmitter- related errors, with subgroups transmission path-, noise-
, receiver positioning-, timestamping- and time-synchronization- related errors. Errors in
timestamping and time-synchronization are scaled with the speed of the acoustic signal
itself. Errors associated with the current GPS configuration aboard vessels are expected
to be significant and other positioning methods should be assessed to assure better target
tracking.

86

Bibliography

(1]

(2]

(4]

(5]

(7]

(8]

Food and Agriculture Organization of the United Nations (FAO). The State of World
Fisheries and Aquaculture 2016. Rome: 2016.

SSB - Statistics Norway (Statistisk sentralbyra). Aquaculture, 2016, prelimi-
nary figures [Internet]. Oslo: SSB; 2017 May 29 [cited 2018 June O1]. Avail-
able from: https://www.ssb.no/jord-skog-jakt-og-fiskeri/statistikker/fiskeoppdrett/aar-
forelopige/2017-05-29content

Isaksen JR, Andreassen O, Robertsen R. Kommunenes holdning
til gkt oppdrettsvirksomhet. Nofima; 2012 April. 18/2012. Availble
from: https://www.nofima.no/filearchive/kommunenes-holdning-til-okt-
oppdrettsvirksomhet.pdf

Liu y, Diserud OH, Hindar K, Skonhoft A. An ecologicaleconomic model on the ef-
fects of interactions between escaped farmed and wild salmon (Salmo salar). Fish and
Fisheries; 2013;14(2):158-173.

Nekouei O, Vanderstichel R, Thakur K, Arriagada G, Patanasatienkul T, Whittaker
P, et al. Association between sea lice (Lepeophtheirus salmonis) infestation on At-
lantic salmon farms and wild Pacific salmon in Muchalat Inlet, Canada. Sci Rep.
2018;8(1):4023-4023.

Ray Hilborn. Salmon-farming impacts on wild salmon. PNAS. 2016;103(42):15277.

Communications and Data Systems Division, National Aeronautics and Space Ad-
ministration (NASA). Telemetry Summary Of Concept And Rationale. Frascati, Italy:
CCSDS Secretariat Communications and Data Systems Division; November 1986
[cited 2018 May 12]. 6.

Hussey NE, Kessel ST, Aarestrup K, Cooke SJ, Cowley PD, Fisk AT, et. al. ECOL-
OGY. Aquatic animal telemetry: A panoramic window into the underwater world.
Science. 2015;348(6240):125564.

87

BIBLIOGRAPHY

[9] Zolich AP, Johansen TA, Alfredsen JA, Kuttenkeuler J, Erstrop E. A Formation of
Unmanned Vehicles for Tracking of an Acoustic Fish-Tag. IEEE OCEANS 2017. An-
chorage, Alaska: Institute of Electrical and Electronics Engineers (IEEE); 2017. pp.
1-6.

[10] Urke HA, Kristensen T, Ulvund JB, Alfredsen JA. Riverine and fjord migration of
wild and hatchery-reared Atlantic salmon smolts. Fisheries Management and Ecology.
2013;20(6):544-552.

[11] Forney C, Manii E, Farris M, Moline MA, Lowe CG, Clark CM. Tracking of a tagged
leopard shark with an AUV: Sensor calibration and state estimation. 2012 IEEE Inter-
national Conference on Robotics and Automation. Saint Paul, MN: 2012. p. 5315-
5321.

[12] Sousa LL, Lpez-Castejn F, Gilabert J, Relvas P, Couto A, Queiroz N, et al. Integrated
Monitoring of Mola mola Behaviour in Space and Time. Porto, Portugal: Public Li-
brary of Science; 2016.

[13] Ekanger A. Examining Use of Various Unmanned Vehicles in Single Fish Tracking
[unpublished]. (Specialization Project in Marine Control Systems). Trondheim: 2017
December.

[14] Efteland J@. Underwater Acoustic Positioning System for Real-time Fish Tracking
[Master’s Thesis]. Trondheim: NTNU; 2016.

[15] Lgvskar SS. Positioning of periodic acoustic emitters using an omnidirectional hy-
drophone on an AUV platform [Master’s Thesis]. Trondheim: NTNU; 2017.

[16] Norgren P, Ludvigsen M, Ingebretsen T, Hovstein VE. Tracking and remote moni-
toring of an autonomous underwater vehicle using an unmanned surface vehicle in the
Trondheim fjord. Washington, DC, USA: IEEE OCEANS 15; 2015.

[17] Solem @&, Hedger R, Urke H, Kristensen T, F, Ulvan E, et. al. Movements and dis-
persal of farmed Atlantic salmon following a simulated-escape event. Environmental
Biology of Fishes. 2013; 96(8):927939.

[18] Fossen TI. Handbook of Marine Craft Hydrodynamics and Motion Control. 1st Edi-
tion. Chichester, UK: John Wiley Sons, Ltd; 2013.

[19] Maritime Robotics AS. Otter USV [Internet]. Trondheim: Maritime
Robotics AS; unknown date [cited 2018 May O01]. Available from:
https://maritimerobotics.com/mariner-usv/otter/

[20] Vik B. Integrated Satellite and Inertial Navigation Systems. Trondheim: NTNU.
2014.

[21] Thelma Biotel AS. TBR 700 ACOUSTIC RECEIVER [Internet]. Trondheim:
Thelma Biotel AS; unknown date [cited 2018 February 06]. Available from:
http://www.thelmabiotel.com/tbr-700/

88

BIBLIOGRAPHY

[22] Thelma Biotel AS. TBR 700 RT [Internet]. Trondheim: Thelma Biotel AS; unknown
date [cited 2018 February 07]. Available from: http://www.thelmabiotel.com/tbr-700-
real-time/

[23] Thelma Biotel AS. Pressure/Depth [Internet]. Trondheim: Thelma
Biotel AS; unknown date [cited 2018 February 07]. Available from:
http://www.thelmabiotel.com/depth-tags/

[24] Garmin International, Inc. GPS 18x Technical Specifications. Olathe, Kansas, USA:
Garmin International, Inc; 2011.

[25] MikroElektronika. MAX3232 Board [Internet]. [unknown location]:
MikroElektronika; unknown date [cited 2018 February 02]. Available from:
https://www.mikroe.com/max3232-board

[26] SK Pang electronics. PICAN2 CAN-Bus Board for Raspberry Pi 2/3 [Internet].
[unknown location]: SK Pang electronics; unknown date [cited 2018 February
12]. Available from: http://skpang.co.uk/catalog/pican2-canbus-board-for-raspberry-
pi-23-p-1475.html

[27] Raspberry Pi Foundation. RASPBERRY PI 3 MODEL B [Internet]. [unknown lo-
cation]: Raspberry Pi Foundation; unknown date [cited 2018 February 24]. Available
from: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

[28] Maritime Robotics AS. Torgeedo interface board [not published].

[29] Huawei. E3372 [Internet]. Shenzhen, Guangdong: Huawei; unknown date
[cited 2018 January 17]. Available from: https://consumer.huawei.com/en/mobile-
broadband/e3372/specs/

[30] Pinto J, Dias PS, Martins R, Fortuna J, Marques E, Sousa J. The LSTS toolchain for
networked vehicle systems. OCEANS - Bergen, 2013 MTS/IEEE. Bergen, Norway:
IEEE; 2013.

[31] LSTS Toolchain. Our Toolchain [Internet]. Porto, Portugal: LSTS toolchain; un-
known date [cited 2018 February 17]. Available from: https://lsts.fe.up.pt/toolchain

[32] LSTS Toolchain. Dune Tasks interaction [Internet]. Porto, Portugal:
LSTS toolchain; unknown date [cited 2018 February 17]. Available from:
https://www.researchgate.net/figure/Message-passing-concept-behind-DUNE-tasks-
implementation_figl 259678296?_sg=7INMMHQYRj9wvN_fGmB70JxTeZ6Zn8LIPO
14565CjWStwJLuxD9K7b91 YbJpgaEeNF8crUMeoplHWne4Ri6CjA

[33] Kalman RE. A new approach to linear filtering prediction problems. ASME Journal
of Basic Engineering. 1960;82(1):35.

[34] Becerra VM, Roberts PD, Griffiths GW. Applying the extended Kalman filter to
systems described by nonlinear differential-algebraic equations. Control Engineering
Practice. 2001;9(3),267-281.

89

BIBLIOGRAPHY

[35] Skjetne R. The Maneuvering Problem [PhD]. Trondheim: NTNU; 2005.

[36] Faltinsen OM. Sea loads on ships and offshore structures. Cambridge: Cambridge
University Press; 1990.

[37] Big Mess o Wires. Raspberry Pi GPIO Programming in C. Unknown:
Big Mess 'o Wires; unknown date [cited 2018 June 04]. Available from:
https://www.bigmessowires.com/2018/05/26/raspberry-pi-gpio-programming-in-c/

[38] Google. Google Maps [Internet]. Mountain View, California, USA: unknown date
[cited 2018 May 06]. Available from: https://www.google.no/maps/

[39] Kartverket. Sjgkart [Internet]. Hgnefoss, Norway: unknown date [cited 2018 May
04]. Available from: https://www.kartverket.no/kart/sjokart/

[40] Burrowes G, JY. Khan. Chapter 8 Short-Range Underwater Acoustic Communication
Networks. Autonomous Underwater Vehicles. Croatia: InTech Europe; 2011. p. 173-
198.

[41] Kinsler, LE. Fundamentals of acoustics. 3rd ed. New York: Wiley; 1982.

90

Appendix

A Communication protocols

Some of the serial communication protocols used by the proposed system are presented
followingly.

NMEA 0183 protocol

The NMEA 0183 is a electrical and data specification which is widely used in marine
systems for communication with different electronic components, e.g sonars, compasses
and GPS receivers. NMEA 0183 uses a simple ASCII encoding for serial communication
which defines how the data is transmitted. The data is transmitted in ’data-sentences’’, with
a special start delimiter character, often set to the dollar sign: $. The messages have a maxi-
mum length of 82 ASCII characters, ranging from (space) to (), which corresponds to Ox7e
to 0x20 in hexadecimals. All data fields are separated by commas (comma-delimited).
The typical baud-rate for NMEA devices is 4800 baud with 8 bits (byte) of data, but varies
from different type of sensors and electrical devices. The method of parity is not used in
the NMEA 0183 protocol, and messages comes with one stop bit.

Serial Peripheral Interface
Serial Peripheral Interface is a synchronous serial communication. Connections can be
made with a D-subminiature (DB9) or a 3 way screw terminal.

American Standard Code for Information Interchange
American Standard Code for Information Interchange (ASCII) is a character encoding
standard for serial communication. ASCII code is often embedded in a byte, a eight bit

91

BIBLIOGRAPHY

field with seven information bits and a parity bit. Using the whole byte for information is
known as extended ASCII.

Universal Asynchronous Receiver-Transmitter communication
Universal Asynchronous Receiver-Transmitter (UART) communication is a computer hard-
ware device for asynchronous serial communication. The protocol is byte-oriented.

Universal Serial Bus
Universal Serial Bus (USB) is an industry standard for both asynchronous serial commu-
nication and power supply.

Recommended Standard 232

Recommended Standard 232 (RS-232) is a serial communication standard which was in-
troduced in 1960. In RS-323 is the data sent as time-seris of bits, and both synchronous
and asynchronous data transmission is supported by the standard. The standard have volt-
age levels which corresponds to logical one and zero in the range from +- 3 to 15 volts,
with respect to a “common ground” (GND) pin. A voltage within the range in between -3
to 3 volts is therefore not a valid RS-232 voltage. Two data transmission lines are included,
transmit (TxD) and receive (RxD). Some RS-232 devices come with a DE-9 socket outlet.

Recommended Standard 485

RS-485 is an electrical interface which is mainly used in asynchronous serial communi-
cation. RS-485 support multidrop communication (multidrop bus). The TBR700 com-
munication is based on half-duplex RS-485, a differential bus which is more robust than
single-ended serial protocols.

Torqeedo communication protocol

92

A Communication protocols

Description | PCB label Max current Voltage Rail Channel

Motor O H_MOTO 60 A 24-332V 0 0

Motor 1 H_MOT1 60 A 1 0

Aux 0 H_AUX0 10A 24-33,2V 2 0

Aux 1 H_AUX1 10A 1

12V out 0 H_12V0 3 A (total) 12V 3 0

12V out 1 H_12v1 1

12V out 2 H_12Vv2 2

Vreg. out 0 H_VRO 3 A (total) Adjustable 3
5-15V

Vreg. out 1 H_VR1 4

5V output H_5V 3A S5V 5

Name Rail Fuse

Motor O 0 60 A. Part of LT1910 driver, current set by shunt resistor. Reaction

time is a few hundred nanoseconds.

Motor 1 1 Same as above

Aux 2 10 A. Uses INA226 current alert to trigger interrupt. Reaction time is
a few hundred microseconds.

Other 3 None, but regulators are current limited to 3 A.

Name ID | Direction Description

MSG_TQ_MOTOR_ | 13 | To board Set throttle value for both motors. Motor

SET

power must be enabled with
MSG_OUTPUT_SET first!

MSG_OUTPUT_SE
T

9 To board Change output state (enable/disable). If fuse
is triggered, use this message to reset the
fuse.

MSG_RAIL

3 From board Current, voltage and more for each rail (0-3).

MSG_TQ_MOTOR_
DRIVE

12 | From board Power, temperature and RPM, per motor.

MSG_TQ_MOTOR_
STATUS_BITS

16 | From board Status and error flags, per motor.

MSG_TQ_BAT_STA
TUS

14 | From board Voltage, current, SoC, temperature and error
code, per battery.

MSG_TQ_BATCTL

15 | From board Meost recent error code from battery, kept
sticky by the battery controller in case of
power lass (small black box plugged into the

battery)

MSG_ID 6 From board |dentifies the board type (MR Torgeedo
Interface Board).

MSG_UPTIME 10 From board Uptime since boot, and cause of last reboot.

BIBLIOGRAPHY

B Hardware & Software Guidelines

This is a brief guide on how to replicate some of the work presented in this thesis.

B.1 Raspberry Pi3

Some general instructions follows.

Raspberry Pi 3 power supply

During operation, i.e while the Raspberry Pi 3 is operating aboard the Otter USV, the
micro-controller must be powered by the Torgeedo interface board. A connector from the
Torgeedo board to RP3 is therefore needed. The Raspberry Pi 3 can be powered through
a micro USB connector, the GPIO pins and a regular USB. A connector from the PCB
(Torgeedo board) 5V outlet "H_5V” is needed. The Molex Nano-Fit 2-ways receptacle
connector can be used for this purpose. A regular phone charger is sufficient for testing
purposes.

Micro SD Memory Card

The Pi is not delivered with a micro SD card, so the user has to buy a separate card of
minimum class 10. Class 10 card are able to transmit data with 10 MB/s. Make sure the
card has enough memory to hold both the Raspbian operating system (version Jessie full
~ 5 MB), and dune.

Reformat SD card and get NOOBS image

Use a SD card reader (either USB reader or computer with this functionality) to both refor-
mat and image NOOBS on to the SD card. NOOBS is an easy operating system installer
which contains Raspbian. When NOOBS is imaged on the SD card, the user can insert the
SD card on the bottom side of the Raspberry Pi 3.

First boot

Connect the Raspberry Pi 3 to a monitor or a tv through a HDMI cable, and connect a
mouse and a keyboard through the USB ports. The Pi boots automatically when a regular
micro usb is providing the Pi with 5V. Install Debian operating system on the Pi as guided
by NOOBS.

Setting correct keyboard language

After booting the Raspberry Pi 3 for the first time, the user might want to change the key-
board language into his preferable language. This can be done through the terminal by the
command:

$ sudo raspi-config

Then pick option 4 Localization Options, and then option I3 Change Keyboard Layout.

Freeze
The Raspberry Pi 3 occasionally freezes. Simply disconnecting the 5V power supply and
reconnecting the cable makes the Pi reboot.

94

B Hardware & Software Guidelines

SSH connection

There exist a variety of different ways to connect to the Raspberry Pi 3 externally from
another computer. One option is to use PuTTY software on a Windows computer. In order
to do this, the user must know the host name or IP adress of the Pi, which can be done
by writing the command “ip config” in the Raspberry Pi terminal. In this way the user
have access to the terminal in the Raspberry Pi externally, and is able to use the computer
without projecting a window through the HDMI cable.

Power sign / low power

If the power sign is shown, it means that the Pi is almost using all the power of which it
is supplied with. A way to provide the Pi with additional power is to connect it with a
USB cable in addition to the micro USB. In general, make sure to only run one power de-
manding operation on the PI at once. For example, do not browse in a web browser while
running the make task or installing some software, as this may cause the Pi to overuse its
electricity or freeze.

Connect to Eudoram (NTNU internet)

$ pi@raspberrypi: /Desktop $ cd

$ pi@raspberrypi: $ cd Downloads

$ pi@raspberrypi: /Downloads $./eduroam-linux-Ntu-N.sh

By using the commands above and typing in your username and password can the user
connect to the Eudoroam internet using the RP3.

B.2 DUNE

This is a simple guide to how Unified Navigation Environment (DUNE) can be installed
on a Raspberry Pi 3 single-board computer.

Access to dune source code in Github and Gitlab

A variety of different DUNE versions exist. However, in many cases the user needs access
to Github or Gitlab repository governing the source code. To clone a Github repository
is very simple through running the clone command directly in terminal. To clone a Git-
lab repository is somewhat harder, as the user might have to create an SSH key on their
Raspberry Pi. This is done in the terminal by running the code line $ ssh-keygen -t rsa.
When the key pair is created, the user can simply copy the public part of the SSH key
by using the terminal code line $ cat /.ssh/id_rsa.pub and manually copying the terminal
output. This output aka public part of the user’s SSH key, should then be added to the
”SSH keys” in the user’s Gitlab in a web browser. The ”SSH keys” menu is somewhat
hidden and could be hard to find the first time. By simply navigating to the top right part
of the Gitlab window, and click on the scroll down menu next to the user’s Gitlab picture
and click “settings”, the ”SSH keys” menu should be visible on the left side of the screen.

95

BIBLIOGRAPHY

Installation

The following command lines are written in RP3 terminal to install the official or NTNU
version of DUNE. $ mkdir /DUNE

$ cd /DUNE

$ git clone https://github.com/LSTS/dune.git

For NTNU version (demands SSH key access):

$ git clone git@uavlab.itk.ntnu.no:uavlab/dune.git

$ mkdir build

/DUNES$ cd build

/DUNE/build$ sudo apt-get install cmake

/DUNE/build$ sudo cmake -G “Eclipse CDT4 - Unix Makefiles”../dune
/DUNE/build$ cmake ../dune

/DUNE/build$ cmake ../dune

/DUNE/build$ make -j3

Creating a DUNE task
/DUNES$ python programs/scripts/dune-create-task.py DUNE_PATH AuthorName Name-
OfTheTask

Rebuild cache

In DUNE, the rebuild cache line must be run every time changes is made to a DUNE task
or a new INI file is created. If changes are made to an existing INI file, neither rebuild
cache nor make is needed. The following code line indicates how to rebuild cache and
then make:

/DUNE/build$ make rebuild_cache

/DUNE/build$ make -j3

A quicker way to do this is the command:

/DUNE/build$ make rebuild_cache make -j3

Run dune task

/DUNE/build$./dune -c ../etc/development/ CONFIGURATIONFILE.ini

make

”Make” is the function which creates the DUNE tasks, and must be run every time changes
in any DUNE tasks are made, or new instances of INI files are created. It is not necessary
to run “make” if changes to already existing INI files are made. The make command is
only using one core, and could be enhanced by the commands: make -j2, make -j3 and
make -j4, where 2,3 and 4 core are being used, respectively. Make -j4 is the fastest one,
but I would however recommend to use the make -j3 command (for RP3 Model B) as the
make -j4 quite frequently causes the Raspberry Pi to freeze.

96

B Hardware & Software Guidelines

Multimeter power tests

Through using a regular multimeter can the user test the voltage level provided to the RP3
to ensure that the micro USB power is sufficient. A similar test can be performed to test
the power outlet in the GPIO pins.

Overall power test

Set a multimeter to 20 Vdc (direct current) indicated by a V with straight line and a dotted
line on its right side, and let the red cable be connected to the Volt-omega-mA inlet, and
the black cable be connected to the COM outlet. Simply flip the raspberry pi. Touch and
connect the black cable pin to the ground indicated with PP5, and the red cable to either
the PP1 or PP2 connector. Read the power off the multimeter. If you somehow switched
up the cables or pinned the with opposite color pins, you will simply get a reading of the
negative voltage, in this case -5 volts. In this figure, PP1 and PP2 are 5V input from USB.
PP35 is 5V after the polyfuse. PP7 is 5V after the input circuit PP3 through PP6 are GND.

GPIO power test:

Set the multimeter to 20 Vdc. Orient the raspberry pi with the front side up, and touch and
connect the black cable pin to the ground GPIO ground pin 06, and touch and connect the
red cable pin to the GPIO 5V DC power pin 02 or 04. If the user somehow switches up the
cables or measures the with opposite color pins, no major danger occurs but the voltage
reading will simply be the negative voltage, in this case -5 volts. This test was mainly
performed to ensure that the input voltage of the GPS 18x 5Hz is 4.4 5.5 Vdc, which is
provided by the GPIO pin 2, was within the operation range given in the [24].

Testing Garmin SHz GPS voltages

Set the multimeter to 20 Vdc. Orient the raspberry pi with the front side up, and touch and
connect the black cable pin to any of the GPIO ground pins, and touch and connect the
red cable pin to green receive line while it is not connected to the GPIO port. If the user
want to test the transmitted voltage, connect the red cable pin to the white transmit line
instead. The GPS Wire Pinout is given in table 4. This test was successfully done by this
author measuring 5 volts in the green receive wire, and 3.3 volt in the white transmit wire.
These measures match the CMOS serial output levels specifications stated in the product
specifications [24].

B.3 Garmin SHz-18x GPS

This is a guide on software and hardware alteratioins which are necessary in order to
connect a Garmin 5Hz GPS to a Raspberry Pi 3 and gather GPS data through UART
communication.

Connection

The Garmin 5Hz-18x GPS can be connected to the GPIO pins of the Raspberry Pi 3 using
a Mikroelektronika MAX3232 power converter, as indicated in 2. A solder iron and some
additional wires are necessary to perform the hardware alterations. The three ground wires
from the Garmin GPS must be soldered together as one. Detailed information on each wire

97

BIBLIOGRAPHY

is indicated in the figure 2, where the colored wires going from the gps are equivalent to
the ones given by the manufacturer, as given in figure 4.

Garmin GPS
18x-5Hz

Pin No.

EEN 1 2 BY
GPIoz 3 4 B
GPIOZ 5 6 [

GPIO4 7 & GPIOL4
9 10 GPIO1S
GPIO17 11 12 GPIO18
GPIO27 13 14
GPIO2Z 15 156 GPIOZ3
IEED 17 18 GPIO24
GPID10 19 20
GPIOS 21 22 GPIO25
GPIO11 23 24 GPIOB
25 25 GPIOT
DNC 27 28 DNC
GPIOS 29 30
GPIOE 31 32 GPIOL2
GPIO13 33 34
GPIO19 35 35 GPIO16
GPIO26 37 38 GPIOZ0
[29 40 GPIO2L

Key
LS UART DNC
GND SPI
FC GPIO

Figure 2: GPS connection schematics [25] [37]

Software alterations

Enabling UART

GPIO serial port is disabled by default in the Raspberry Pi 3 running a normal Jessie Rasp-
bian operating system. This is solved by editing the file config.txt. Run the command:

$ sudo nano /boot/config.txt

in the RP3 Terminal window, and add the line “enable_uart=1" at the bottom of the file.
Save the file (press Ctrl-O, then enter) and exit (press Ctrl-X).

UART workaround

In earlier versions of Raspberry Pi and Linux in general, COM1 equivalent is found on
pins 14 and 15 of the GPIO header and is called /dev/ttyAMAOQ. However, for Raspberry
Pi 3 the new Bluetooth functionality have taken the /dev/tty AMAOQ from the GPIO header
and an inferior second one has been substituted in its place. /dev/ttyAMAO was a hard-
ware serial port (uart) and high performance. The second serial port is referred to as mini
uart in /dev/ttyS0. /dev/ttySO calculates the bit timing from the CPU cores frequency, but
if the CPU is under heavy load, sometimes the serial communications get corrupted. A
way to work around this is provided further, but unfortunately comes with a slight loss in
performance, although normally not noticeable by the user. This work around switches the
Bluetooth and GPIO serial port in the following manner: before switch/workaround:

98

B Hardware & Software Guidelines

/dev/tty AMAO — Bluetooth
/dev/ttySO — GPIO serial port

after switch/workaround:

/dev/tty AMAO — GPIO serial port
/dev/ttySO — Bluetooth

To see what configuration which is running on the Raspberry, simply run the command
”’ls -1 /dev”’in Terminal, and see where the serial ports are pointing.

Disabling the Console
Because the serial port is used for anything other than the console, it must be disabled.
The following changes must be performed:

$ sudo systemctl stop serial-getty @ttySO.service
$ sudo systemctl disable serial-getty @ttyS0.service

and make changes to the cmdline.txt file. To edit the file write:

$ sudo nano /boot/cmdline.txt In the cmdline.txt the user will normally find something like
this:

dwc_otg.lpm_enable=0 console=serial0, 115200 console=tty 1 root=/dev/mmcblkOp2 rootf-
stype=ext4 elevator=deadline fsck.repair=yes root wait

In order to not encounter a lag problem, the user must remove the line:

console=serial0,115200
then save and reboot for changes to take effect.

GPS data acquisition software

GPS 18x 5Hz has a default setting of Baudrate 19200 [24], databits 8, parity none, and
1 stopbit. A number of different software can be used for data acquisition and analysis.
Minicom or microcom are two possible options for which can be used to analyze and read
data. It is also possible to read data directly to the Terminal through by using any of the
following commands:

$ screen /dev/tty AMAO

$ Sudo screen /dev/serial0

$ screen /dev/ttySO speed,,

$ screen /dev/ttyS0 19200y,

However, for real-time data acquisition in DUNE, a very simple INI file code segment
must be added:

99

R L S S R

BIBLIOGRAPHY

[Sensors.GPS]

Enabled = Hardware

Debug Level = Spew

Entity Label = GPS

Serial Port - Device = /dev/ttyAMAO
Serial Port - Baud Rate = 19200
Sentence Order = GPGGA, GPRMC

Please note that the baud rate must be correct in order to receive useful data.

Potential error messages and solutions

In the process of alternating the Raspbian cmdline.txt and config.txt, small errors might
affect the Raspberry’s ability to boot as normal. In the following section is some of the
associated errors this author experienced.

ERROR MSG: ttyAMAQO is busy
This error can be solved by killing the task. $ screen -d -m /dev/ttySO
$ screen -Is

There is a screen on: 5207..host (10/04/2011 10:16:50 AM) (Detached) 1 Socket in /var/run/screen/S-

user.
$ screen -r 5207 -X kill

$ screen -Is

No Sockets found in /var/run/screen/S-user.

The name of the process is often name in front of ”host..”. In this author’s case, the fol-
lowing code segment solved the problem:

$ screen r 884 X kill

Kernel panic - not syncing: VFS: Unable to mount root fs on unknown-block(179,2)

This problem was solved by removing the SD card from the raspberry pi 3 and opening the
boot folder in windows, where the user have access to the altered files cmdline.txt con-
fig.txt. However, the problem was that the original cmdline.txt was changed into a format
named cmdline.txt.orig, and standard windows have no capability of opening a file of this
kind. A simple online converter was sufficient to change the message back into .txt, and
by reverse the config.txt changes in windows, the problem was solved. After altering the
changes back into its original state, the SD card was dismounted and put in to the RP3.
The system then rebooted as normal.

Python: could not open port.
$ sudo chmod 666 /dev/tty AMAO

100

B Hardware & Software Guidelines

B.4 CAN Interface

This section aims to provide some guidelines in how to setup the CAN interface on a Rasp-
berry Pi 3 with a PICAN2 (CAN controller), and integrate it with the Torgeedo interface
board.

Extended GPIO pins and spacing

In the ~out of box” configuration of which the Raspberry Pi 3 and PiICAN2 micro-controller
boards are delivered in, is no additional space on the GPIO connection left for other pur-
poses as the CAN shield fully covers the pins. Extended GPIO pins are therefore needed
to enable the Raspberry Pi to be connected to the Garmin 18x-5Hz GPS, PiICAN2 and a
Molex Nano-Fit power supply connector from the PCB, simultaneously during tracking
operations. It therefore suggested that an additional stacking header, e.g 40-pin GPIO ex-
tra long stacking header, is purchased and connected to the computer. To ensure a steady
distance in-between the micro-controller boards can 11 mm standoff spacers be purchased
and connected to the Raspberry Pi.

Bringing up the CAN interface

The definition of “bringing up the interface” is the availability of a can0 port device on
the Raspberry Pi 3 computer (“ifconfig can0” command in Linux). Please note that the
PiCAN2 board must be connected when using this command in order for the interface to
show up. When the interface is successfully setup, should this command give a input sim-
ilar to the following:

pi@raspberrypi:$ ifconfig

$ can0: flags=193(UP,RUNNING,NOARP) mtu 16

$ unspec 00-00-00-00-00-00-00-00-00-00-00-00-00-00-00-00 txqueuelen 10 (UNSPEC)
$ RX packets 866 bytes 6682 (6.5 KiB)

$ RX errors 0 dropped 866 overruns 0 frame 0

$ TX packets 0 bytes 0 (0.0 B)

$ TX errors 0 dropped 0 overruns O carrier O collisions 0

Installing CAN utilities

The first step is to install the CAN utilities and add some loadable Kernel modules to Linux
by using the modprobe command. The following command prompt lines are necessary to
enable the CAN interface:

$ sudo apt-get update

$ sudo apt-get install can-utils

$ sudo modprobe can

$ sudo modprobe vcan

$ sudo modprobe slcan

Changes to /boot/config.txt
$ sudo nano /boot/config.txt
Then add the following lines to the bottom of the file:

101

BIBLIOGRAPHY

dtoverlay=mcp2515-can0,oscillator=16000000,interrupt=25
dtoverlay=spi-bcm2835
Save the file (press Ctrl-O, then enter) and exit (press Ctrl-X).

Changes to /etc/network/interfaces.txt $ sudo nano /etc/network/interfaces.txt
Then add the following lines to the bottom of the file:

auto can0

Iface can0 inet manual

Save the file (press Ctrl-O, then enter) and exit (press Ctrl-X).

Python thrust commands

Python-can can be used to create thrust-commands for the Torqeedo thrusters. The follow-
ing commands installs pythons-can on RP3.

$ pi@raspberrypi: /Desktop $ sudo apt-get install cremod

$ sudo easy_install -U pip

$ pi@raspberrypi: /Desktop $ sudo pip install -U crcmod

$ pi@raspberrypi: /Desktop $ sudo pip install python-can

Raspberry Pi 3 to PiCAN2 connection
The PiICAN2 board can be directly connected on-top of the Raspberry Pi 3 board GPIO
pins.

PiCAN2 to Torqeedo board connection

The PiICAN2 board is connected to the Torqeedo board through a two-wire CAN-cable,
for high and low CAN current. The connections are directly connected to the 4-way screw
terminal on the PICAN2 board from the Torgeedo board.

12052 Terminator

A terminator solder, i.e a 2way header pin to JP3 on the PICAN2 board, and a jumper is
inserted on the board to terminate both ends of the PICAN2 board. This must be done
because the CAN bus is a voltage-differential dependent serial communication method.

Torgeedo board communication protocol

CAN bus messages consist of pair-wise hexadecimals, each able to express 256 (16%) var-
ious symbols. Two important destinations of the CAN bus is the address of where the
Torgeedo board broadcasts messages, and the address of the board itself. Additional infor-
mation regarding the Torqeedo board and its communication protocol is found in Appendix
table 1.

Messages from board
The board broadcasts seven various ID messages to the MRCAN_BC with the hexadecimal

102

B Hardware & Software Guidelines

address (OxFF), and are all explained in the following list.
e ID 3: 0x03 - Current, voltage and more for each rail
e ID 6: 0x06 - Identifies the board type (MR Torgeedo Interface Board).
e ID 10: 0x0A - Uptime since boot, and cause of last reboot.
e ID 12: 0x0C - Power, temperature and RPM, per motor.
e ID 14: OxOE - Voltage, current, SoC, temperature and error code, per battery.

e ID 15: 0xOF - Most recent error code from battery, kept sticky by the battery con-
troller in case of power loss.

e ID 16: OxOF - Status and error flags, per motor.

Messages to board
Two types of messages are sent to the board at its board address 0xAB:

e ID 9: 0x09 - Change output state (enable/disable). If fuse is triggered, message is
used to reset the fuse. Motor power must be enabled with this message first.

e ID 13: 0x0OD - Set throttle value for both motors.

Endianness

CAN bus messages sent from and to the Torqeedo board are sequentially ordered in a
little-endian format, in which the most siginificant byte, i.e the byte containing the lowest
address value, is sent first, in a decreasing significance order. An example being that the
byte FF (255) is sent after Al (161).

Set thrust

The ID 13: 0x0D - message is of further study in the following section, as this is a very
important message being used by the control system in DUNE to set thrust. Thrust is given
as a value in the interval -1000 and 1000 for the Torgeedo thrusters aboard the Otters, indi-
cating maximum thrust in forward (surge) and backwards (-surge) direction, respectively.
A single CAN ID 13 message sets desired thrust for both propellers in the following man-
ner: 00 DO FE AB C8 00 C8 00

where 00 DO corresponds to the ID of the message, and AB referrers to the address of the
board. The first C8 00 corresponds to 200 thrust for motor 1, and the second C8 00 to 200
for motor 2, in little endian format. Full thrust is given by 03 E8 (1000), leaving a large
variety of combinations unused as four hexadecimals have 65536 possible combinations
(16%).

Useful CAN functions

Some functions which can be used to both print and create CAN messages are candump
and cansend, respectively. candump can be specified to only show messages with specific
ID, i.e 0x123 or Ox7FF on vcan0, through the following command:

$ candump vcan0,0x123:0x7FF

cansend sends a single CAN frame onto the bus, with a specified device, identifier and

103

BIBLIOGRAPHY

data bytes. An example is:

$ cansend can0 123223366

Where 0x123 is the identifier, and 22, 33, and 66 represents the data bytes 0x22, 0x33, and
0x66. Values are assumed to be hexidecimal.

The “can” command only refers to interfaces that already exist, such as a physical can0,
an example being a CAN-to-USB dongle. Virtual CAN interfaces are referred to through
the command “vcan”, and can be used to simulate a CAN bus without real hardware. A
virtual CAN interface can be useful for simulation and testing, and Can-utils can be tested
without having an actual CAN device. A vcan device is created by running the following
lines:

$ sudo modprobe vcan

$ sudo ip link add dev vcan0 type vcan

Once the device is created, it can be used like any other CAN device.

104

B Hardware & Software Guidelines

105

BIBLIOGRAPHY

C Schematics

[£4°]

Figure 3: Otter USV schematics [19]

wmn
=@
EINe)
vz 0O
o >
.2 35
H < —
0 o
3 -—
5
"o
\/ HE
0 <
¢ls

D DUNE software

GPS 18x Pin Color Signal Name Wire Gauge
1 Yellow Measurement Pulse Output 28
2 Red Vin 26
3 Black Ground 28
4 White Transnut Data 28
5 Black Ground 26
6 Green Receive Data 28

Figure 4: GPS 18x-5Hz Wire Pinout [24]

Pin No.

1

3

5 8

7 8 GPIO14

9 10 GPIO15

11 12 GPIO18

GPi027 13 14 [N

GPIO22 15 16 GPIO23

17 18 GPIO24

GPIO10 19 20

GPIO9 21 22 GPIO25

GPIO11 23 24 GPIO8

25 26 GPIO7

DNC 27 28 DNC

GPIO5 29 30

GPIO6 31 32 GPIO12

GPIO13 33 34

GPIO19 35 36 GPIO16

GPIO26 37 38 GPIO20
[E1T 3¢ 40 GPIO21

Figure 5: Raspberry Pi 3 GPIO chart [37]

D DUNE software

This section include information about DUNE and software as presented in simulation
chapter 5. Firstly is an example of how DUNE tasks and ini-files interact presented. Then
follows an explination about how the CVS files are built, and code of the developed INI
files and DUNE tasks. Finally are aid functions used by DUNE tasks presented in a header
and source code file; funkytions.h and funkytions.cpp.

D.1 INI file & DUNE task example

An example of how INI files and DUNE tasks work together, and how task parameters can
be manipulated in the INI files, follows. By including the following code snippets in the
two hypothetical DUNE tasks; Sensors/TBR700/task.cpp & Control/HeadingAndSpeed/-
Task.cpp, can the value of the ID of an acoustic receiver or a PID integral gain be tuned
and set directly from a INI file:

Changes in Sensors/TBR700/task.cpp (onUpdateParameters(void)):
param(”’Acoustic Receiver ID”, tbrID)
.description(”Name/ID of TBR700 Acoustic Receiver”)

107

BIBLIOGRAPHY

.defaultValue("TBR02”)
param(”’Integral Gain”, K_i)

Changes in Control/HeadingAndSpeed/Task.cpp (onUpdateParameters(void)):
param(”’Integral gain”, K_i)

.description("PID integral gain”)

.defaultValue(”0”)

ottThe receiver ID and integral gain is set to "TBR02” and 0 by default, respectively.

Initializing Sensor/TBR700 Task and receiver ID in INI file:
[Sensors.TBR700]

Acoustic Receiver ID = TBRO1

Enabled = Always

Entity Label = Acoustic receiver

Debug Level = Debug

Initializing Control/HeadingAndSpeed Task and integral gain in INI file:
[Control.HeadingAndSpeed]

Enabled = Always

Integral Gain = 1 Entity Label = Heading and Speed Controller

Debug Level = None

A DUNE task is initialized by initializing the tasks in brackets, and setting the Enabled
value to Always (instead of Never). The Debug Level is a custom parameter which adjusts
the amount of information which is printed to the terminal and can be set equal to the vari-
bles None, Debug or Spew. tbrID and K_i refers to the variable names within the DUNE
task, while the identifiers ”Acoustic Receiver ID” and Integral gain” are used in the INI
file. If no values are set in the INI files are the default values used.

D.2 CVS data (.txt)

usv_pos_ecef.txt & usv_pos_llh.txt

The data format of CVS files used in the creation of the simulation presented in chapter
5 follows. Position data in ECEF and LLH coordinates for four USVs are saved in the
Comma-separated values (CVS) text-files, target_ecef.txt and target_llh.txt. Both the data
sets consist of 3 times 4 times 12000 data points, corresponding to x,y,z dimension, re-
ceiver 1,2,3,4, and total number of iterations, respectively.

In the file usv_pos_ecef.txt, are double values/elements within the CVS file given as xz y;
and z; represents x,y,z coordinates in the ECEF frame for an USV/receiver with number

J €1[1,2,3,4], and iteration i j € [0, 12000]. The data is stored in the following manner:

108

D DUNE software

e R e
zg’ yg’ Zg, $%, y%’ Z%, , 1.%2000, y%20007 Z%ZOOO
xg, yg’ Z:())), xlls’ yé, Zé, , 1.§2000’ y§2000’ 2%2000
372, yg’ 22’ lel’ yi7 Zi’ , lel2000’ yiQOOO’ Zi2000

In the file usv_pos_llh.txt are double values/elements within the CVS file given as loné,

latj- and hae;’- represents longitude, latitude, and height above WGS84 ellipsoid (hae),
the LLH frame, for an USV/receiver with number j € [1,2,3,4], and iteration i j €
[0,12000]. The data is stored in the following manner:

1y o1 1 1 1 1
lond, lat?, hael, lon, laty, haey, ..., 1lon1?*%, 1at1?""°, hae®**°
lond, laty, hael, long, laty, haey, ..., lony?®", 1at3?""°, haed?*"”

long, latg, haeg, loné, laté, haeé, s Zonzlfooo, latémoo, haeémoo

lon, 1atY, hael, lon), lat}, haej, ..., 1oni?*%, 1at?°%°, hael?0"

The target_ecef.txt & usv_llh.txt Position data in ecef and 1lh coordinates for four usvs are
saved in the Comma-separated values (CVS) text-files , target_ecef.txt and target_llh.txt.
Both the data sets consist of 3 times 4 times 12000 data points, corresponding to X,y,z
dimension, receiver 1,2,3,4, and total number of iterations, respectively.

D.3 INI files

The simulation parameters and debug-settings are set in the .INI files using DUNE. Fol-
lowingly are the INI files initializing the simulations presented in chapter 5. INI files are
ran using the ”./dune -c “configFileName” in the dune folder build: dune/build, i.e is the
following file ran by the command: ”./dune -c “fishpath”.

fishpath.ini

[Include ../common/transports.ini]
[august .createTOAdataFromECEFdatal]
Enabled Always

Entity Label Producer
Debug Level Debug #Debug #None

[august .EKF2]
TBR700 receiver 1 ID TBRO1

109

BIBLIOGRAPHY

TBR700 receiver 2 1ID TBRO2
TBR700 receiver 3 ID TBRO3
TBR700 receiver 4 1ID TBRO4
Enabled Always

Entity Label Consumer?7
Debug Level Spew f#None

[Transports.Logging]
Enabled Always

Entity Label Logger
Transports DevDataText

fishpath_createErrors.ini

[august .createErrorPlots]
Enabled Always

Entity Label Consumer?7
Debug Level Spew #None

D.4 DUNE Task: createTOAdataFromECEFdata

Code description:

Firstly, the task saves CVS data from .txt files in vector containers, with "USVs” and
’fish” struct elements, in which is easier accessible. Secondly, is the position data of both
the target and USVs used to calculate a TOA measurement for each receiver. The data is
stored in a tupple vector-container, where each tupple contains the data indicated in the
data message below. Finally, are the vector-containers sorted with respect to their TOA
measurement, to enable real-time message dispatching to the bus as it would occur in a
real system.

// Author: August

/1 Cpp headers
#include <cstdlib >
#include <cmath>
#include <cstring>
#include <string>
#include <vector>
//#include <iostream >
#include <fstream>
#include <cctype>
#include <algorithm>
#include <fstream>
#include <vector>
#include <iostream >
#include <algorithm>
#include <sstream>

110

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

D DUNE software

#include <utility >
#include ”funkytions.cpp”
#include <tuple>

// DUNE headers .

#include <DUNE/DUNE.hpp>

namespace

{

namespace august

{

namespace createTOAdataFromECEFdata

{
using DUNENAMESPACES;

double period;

double simspeed;

double iterationend;

std :: ofstream outdata_realfish_LLH;
std :: ofstream outdata_realfish_ECEF;

std :: stringstream ss_target_ecef;
std :: stringstream ss_target_llh;
std :: string s_target_llh;
std ::string s_target_ecef;

struct Task: public DUNE:: Tasks :: Task
{

/1! Constructor.

//'! @param[in] name task name.

//'! @param[in] ctx context.

Task(const std::string& name, Tasks:: Context& ctx):
DUNE:: Tasks :: Task (name, ctx)

{
}

/'l Update internal state with new parameter values.
void

onUpdateParameters (void)

{

}

111

BIBLIOGRAPHY

63

« [//! Reserve entity identifiers.
s void

« onEntityReservation (void)

67 {
68 }

69

o //! Resolve entity names.
7 void

= onEntityResolution (void)

s
74 }

75

s //! Acquire resources.

7 void

s onResourceAcquisition (void)

w |
w)

81

2 //! Initialize resources.

83 VOid

s onResourcelnitialization (void)

85 {
86 }

87

s //! Release resources.

s void

o onResourceRelease (void)

a

92 }

93

o //! Main loop.

os void

o6 onMain(void)

97 {

98

% using namespace std;

100

o // SIMULATION: create 1lh data covert 2 ecef then Kalman
return target in llh

w int tot_time_steps_target = 11999;

03 int tot_time_steps_-usvs = 12000;

w double time_step = 0.5;

s double speedOfSound = 1484;

ws TOA_data TOAs;

112

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

128

129

130

132

133

134

135

136

137

138

139

141

142

D DUNE software

TDOA _data TDOAs;
vector <TOA_data> toa_data_vector;
vector <double> depthvector;

// fetching MATLAB data

vector <double> target_data_ecef =
createTarget_PosData _ECEF () ;

vector <double> target_data_llh = createTarget_PosData_LLH
03

vector <double> usv_GPSdata_ecef = createUSV_PosData_ECEF ()

)

usvs receivers;
fish target_ecef;
fish target_llh;

tuple <int ,double,double, double, double, double> tot.msg;
// receiver_number , timestep, depth, x,y,z (ecef)

vector <tuple <int, double, double, double, double, double
>> tot_msg_unsorted;

/!l day: 04/04/2018 time: 04.04 (+00.00)
double unixtime = 1521394325;

// create data

int iterationend = 100;

for (int timestep = 0; timestep < iterationend; timestep++)
{ //timestep <1 when debug 13 when normal

usvspos2 (usv_GPSdata_ecef , &receivers , timestep,
tot_time_steps_usvs);

fishpos2 (target_data_ecef , &target_ecef , timestep,
tot_time_steps_target);

fishpos2 (target_data_llh , &target_llh , timestep,
tot_time_steps_target);

depthvector.push_back(target_llh.z);

getUsvsDist2Target(&target_ecef , &receivers);

TOA_data temp;

//createTOA (&temp, &receivers , timestep, speedOfSound);

temp . TOA _recl receivers.recl.dist2target / speedOfSound;

temp.TOA_rec2 = receivers.rec2.dist2target / speedOfSound;
temp.TOA_rec3 = receivers.rec3.dist2target / speedOfSound;
temp. TOA_rec4 = receivers.rec4.dist2target / speedOfSound;

temp.TOA_recl = temp.TOA_recl + 0.5% timestep + unixtime;
temp.TOA_rec2 = temp.TOA_rec2 + 0.5% timestep + unixtime;

113

143

144

145

146

147

148

149

150

152

153

154

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

172

173

BIBLIOGRAPHY

temp . TOA_rec3
temp . TOA _rec4

tot_msg =

receivers.recl .x,

tot_msg =

receivers .rec2 .x,

tot_msg =

receivers.rec3.x,

tot_msg =

receivers.recd .x,

}

//'sort with respect
vector <tuple <int,

make_tuple (1, temp.TOA_recl,

temp.TOA_rec3 + 0.5% timestep + unixtime;
temp.TOA_rec4 + 0.5% timestep + unixtime;

target_llh .z,

receivers.recl .y, receivers.recl.z);
tot_msg_unsorted . push_back (tot_msg);
make_tuple (2, temp.TOA_rec2, target_llh.z,
receivers.rec2.y, receivers.rec2.z);
tot_msg_unsorted . push_back(tot_msg);
make_tuple (3, temp.TOA_rec3, target_llh.z,
receivers.rec3.y, receivers.rec3.z);
tot_msg_unsorted.push_back(tot_msg);
make_tuple (4, temp.TOA_rec4, target_llh.z,
receivers .recd .y, receivers.recd.z);
tot_msg_unsorted . push_back(tot_msg);
to TOA for real time dispatchment
double , double, double, double, double
sorted = tot,msg,unsorted;

>> tot_msg._
sort(tot_msg_sorted.begin (),

tot_msg_sorted.end (),

compare_tupple);

// create

string messages

vector <string> TOAmessagesOut;

std :: stringstream ss;

std ::string s;

for (int i = 0; i < iterationend — 10; i ++) {

for (int j = 0; j < 4; j++) {

ss << "$TBRO” << to_string ((get<O0O>(tot_-msg_sorted[4 * i + j
1))) << 7, 7 << to_string (get<I>(tot_msg_sorted[4 * i +
i) << 7”7, 7 << 0<<”, 8256, 2, 7 << to_string (get<2>(
tot_msg_sorted[4 * i + j])) << 7, 7 << to_string (50) <<
7, 7 << "USV” << to_string ((get<O0O>(tot_msg_sorted[4 * i
+ jJ]))) << 7, 7 << to_string (get<3>(tot_msg_sorted[4 * i
+ j])) << 7, 7 << to_string (get<4>(tot_msg_sorted[4 * i
+ j])) << 7, 7 << to_string (get<5>(tot_msg_sorted[4 * i
+ j])) << endl;

s = ss.str();

TOAmessagesOut. push_back(s);

ss.str(””);

}
}

114

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

D DUNE software

// creating delay vector (aka wait vector)
vector<double> wait_vec;

vector <double> toa_vector;

toa_vector.push_back (unixtime);

vector <tuple <int, double, double, double, double, double
>>:iterator x = tot_msg_sorted.begin();

// first wait

wait_vec .push_back(get <2>(xx)—unixtime) ;

X++;

// the rest

while (x!=tot_.msg_sorted.end()){
wait_vec.push_back(get <2>(x(x+1))—get <2>(xx));
X++;

}

// saving messages

std :: ofstream tbrmsgesout;

tbrmsgesout.open(”/home/pi/dune/src/august/results/
tbrmsgesout.txt”, std::ios_base::app);

vector <string >::iterator q = TOAmessagesOut.begin () ;

while (q != TOAmessagesOut.end()) {

tbrmsgesout << *q ;

q++;

}

tbrmsgesout.close () ;

// dispatching msges to the IMC bus

vector <double >::iterator k = wait_vec.begin();

vector <string >::iterator i = TOAmessagesOut.begin () ;

while (!stopping())

{

int simspeed=1;

IMC:: DevDataText msg;

msg.value = x*i;

Delay :: wait(xk / simspeed);

dispatch (msg);

debug (DTR(” Dispatching receiver TOA message: %s”), msg.
value.c_str());

//inf (" Dispatching receiver TOA message: %s”, msg—>value.
cstr());

i++;

k++;

// waitForMessages (1.0);

}

115

215

216

217

218

219

220

221

222

BIBLIOGRAPHY

}

// vet ikke om denne skal v re her
I

}

}

}

DUNE_TASK

D.5 DUNE Task: EKF2

Code description

The main objective of the DUNE task EKF?2 is the estimate the position of the target fish
and dispatch the data to the local bus. The task produce solution estimates to the TDOA
localization equations using an extended Kalman filter algorithm. The task consumes IMC
messages of the type DevDataText (device data text) in real-time as they are dispatched
to the IMC bus. The task differentiates between messages using IDs, where "TBRO01”,
”TBR02”, "TBR03” and "TBR04” corresponds to messages sent from USV 1,2,3 and 4,
respectively. When a message is consumed, the data is saved, and the corresponding re-
ceiver data is set to be active. When four measurements are active, the Kalman filter runs
after being initialized.

// Author: August

*
// DUNE headers.
#include <DUNE/DUNE. hpp>

#include ”../createTOAdataFromECEFdata/funkytions.h”
#include <string>
#include <sstream>

namespace

{

namespace august

{

namespace EKF2

{
using DUNENAMESPACES;

struct Task: public DUNE:: Tasks :: Task

{

116

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

2

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

D DUNE software

//'! Constructor.
//'! @param[in] name task name.
//'! @param[in] ctx context.

EKF matrixxes;

datamsges datastruct;

std :: string TBR_ID;

std :: string USV.ID;

std :: vector <std::string> tempStringVec;
std :: string temp_position;

std :: stringstream ss;

std ::string s;

std:: string TBR_receiverl_ID;

std:: string TBR_receiver2_ID;

std :: string TBR_receiver3_ID;

std :: string TBR_receiver4_ID;

IMC:: DevDataText msg_out;

double speedOfSound = 1484;

Task(const std::string& name, Tasks:: Context& ctx):
DUNE:: Tasks :: Task (name, ctx)

{

// PARAMETERS

param ("TBR700 receiver 1 ID”, TBR_receiverl_ID)
.description ("TBR700 receiver 1 ID”)
.defaultValue (”TBRO1”) ;

param ("TBR700 receiver 2 ID”, TBR_receiver2_ID)
.description ("TBR700 receiver 2 ID”)
.defaultValue ("TBR02”) ;

param ("TBR700 receiver 3 ID”, TBR_receiver3_ID)
.description ("TBR700 receiver 3 ID”)
.defaultValue (”TBR03”) ;

param ("TBR700 receiver 4 ID”, TBR_receiver4_ID)
.description ("TBR700 receiver 4 ID”)
.defaultValue ("TBR04”) ;

bind<IMC:: DevDataText >(this) ;

}

//'! Update internal state with new parameter values.
void
onUpdateParameters (void)

{

117

BIBLIOGRAPHY

“ }

67

s //! Reserve entity identifiers.
o void

n onEntityReservation (void)
71 {

n }

73

u //! Resolve entity names.
s void

s onEntityResolution (void)

7 q

78 }

79

o //! Acquire resources.

s void

22 onResourceAcquisition(void)

o q

84 }

85

s //! Initialize resources.
s void

s onResourcelnitialization (void)
89 {

90 }

91

o [//! Release resources.

s void

o« onResourceRelease (void)
95 {

96 }

o void initEKF2 (EKF % matrixxes, fish % x_hat_init) {
o¢ matrixxes—>init = 1;

99

w double x_hatty[] = { x_hat_init—x,

101 x,hat,initf>y,

w2 X_hat_init—>z,

w0,

w0,

s 0 };

e matrixxes—>x_hat. fill (6, 1, x_hatty);

w7 matrixxes —>x_hat_pred = matrixxes—>x_hat;

w double time_step = 0.5;
o double Fd[] = { 1, 0, O, time_step, 0, O,

118

111

112

113

114

115

116

117

118

119

130

131

132

133

134

135

136

137

138

139

140

141

142

144

145

146

147

148

149

150

151

153

154

D DUNE software

0, 1, 0, 0, time_step, O,
0, 0, 1, 0, 0, time_step ,
0o, o0, 0, 1, 0, O,

0o, 0, 0, 0, 1, O,

0, 0, 0, 0, 0, 1 };

// Matrix F;
matrixxes—>F. fill (6, 6, Fd);

double Dd[] = { time_step, 0, 0, 0, 0, O,
0, time_ step, 0, 0 0, O,
0, 0, time_step, 0, 0, O
0, 0, 0, time_step, 0, O,
0, 0, 0, 0, time_step, O,
0, 0, 0, 0, 0, time_step };
// Matrix D;
matrixxes—>D. fill (6, 6, Dd);
double P_factor = 0.01;
ouble P_hatd[] = { P
P_factor, 0, O,
0

d actor, 0, 0, 0, 0, O,
0

0, 0, P_factor,

0

0

0,

, 0,

0, 0, P_factor, O,
0, 0, 0, P_factor,

o, 0, 0, 0, 0, P_facto

s
// Matrix P_hat;
matrixxes —>P_hat. fill (6, 6, P_hatd);

_f
0,
0,
0,
0,
r

double Qd[] = { P_factor, 0, 0, 0, 0, O,

0, P_factor, 0, 0, 0, O,

0, 0, 1000, 0, O, O,

0, , 0, P_factor, 0, O,

0 , 0, 0, P_factor, O,

0 , 0, 0, 0, P_factor }; // trust depth more.

b}

oS O O

b}

double Rd[] = { 1, 0, 0, O,

0o, 1, 0, 0,

0, 0, 1, 0,

0, 0, 0, 0.001 }; //we trust fourth measurement alot
because its the depth meassurement.

matrixxes—>R. fill (4, 4, Rd);

// Matrix Q;

matrixxes —>Q. fill (6, 6, Qd);

}

void runEKF(EKF % matrixxes , datamsges *x datastruct, fish x

119

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

187

188

189

190

191

193

194

195

197

BIBLIOGRAPHY

x_hat_init) {
if (matrixxes—>init != 1) {
initEKF2 (matrixxes , x_hat_init);

debug (DTR(”EKF is initialized: 7));

usvs boats;

boats.recl.x = datastruct—>datal .lon;
boats.recl.y = datastruct —>datal . lat;
boats.recl .z = datastruct—>datal . hae;
boats.rec2.x = datastruct—>data2.lon;
boats.rec2.y = datastruct —>data2.lat;
boats.rec2.z = datastruct —>data2.hae;
boats.rec3.x = datastruct—>data3 .lon;
boats.rec3.y = datastruct —>data3.lat;
boats.rec3.z = datastruct —>data3 . hae;
boats.rec4 .x = datastruct—>data4.lon;
boats.rec4.y = datastruct —>data4.lat;
boats.rec4 .z = datastruct —>data4 .hae;

fish x_hatie;

x _hatie .x = matrixxes—>x_hat (0, 0);
x _hatie .y matrixxes —>x _hat (1, 0);
X _hatie .z matrixxes —>x_hat (2, 0);

pseudoranges pseudos;
createPseudorange(&pseudos, &x_hatie, &boats);

double depth = datastruct—>datal.depth;

double y_hat_d[] = { pseudos.rec2 — pseudos.recl,

pseudos.rec3 — pseudos.recl,
pseudos.rec4 — pseudos.recl,
depth };

matrixxes —>y_hat. fill (4, 1, y_hat_d);
createJacobian6(&matrixxes —>H, &boats, &x_hatie);

double lat, lon, hae;
fromECEF (matrixxes —>x_hat (0, 0), matrixxes—>x_hat (1,
matrixxes —>x_hat (2, 0), &lat, &lon, &hae);

0),

120

198

199

200

201

202

203

204

205

206

208

209

210

212

213

214

215

216

218

224

226

227

228

D DUNE software

double TDOA21 = datastruct—>data2.seconds — datastruct—>
datal . seconds;

double TDOA31 = datastruct—>data3.seconds — datastruct—>
datal . seconds;

double TDOA41 = datastruct —>datad4.seconds — datastruct—>
datal . seconds;

double speedOfSound = 1484;

double y-d[] = { speedOfSoundx TDOA2I,

speedOfSound «TDOA31,

speedOfSound *TDOA41,

hae };

matrixxes—>y. fill (4, 1, y_.d);

matrixxes —>x_hat_pred = matrixxes —>Fsmatrixxes —>x_hat;
matrixxes —>P_pred = matrixxes —>Fxmatrixxes —>P_hatxtranspose

(matrixxes —>F) + matrixxes—>Dxmatrixxes —>Qxtranspose (
matrixxes —>D) ;

matrixxes —>K = matrixxes —>P_predxtranspose (matrixxes —H)
inverse (matrixxes —>Hsmatrixxes —>P_predxtranspose (
matrixxes —>H) + matrixxes —>R);

matrixxes —>P_hat = matrixxes —>P_pred — matrixxes —>Kx
matrixxes —>Hsxmatrixxes —>P _pred;

matrixxes —>x_hat = matrixxes —>x_hat_pred + matrixxes —>Kx(
matrixxes —>y_hat — matrixxes —>y);

/1 1/ DISPATCHING & saving ECEF x_hat
ss << "$x_hat_ ECEF, "<< setprecision (16)<< matrixxes—>x_hat

(0, 0) << 7, ” << matrixxes—>x_hat(1, 0) << 7, 7 <
matrixxes —>x_hat(2, 0) <<”, 7 << matrixxes—>x_hat(3, 0)
<< 7, 7 << matrixxes—>x_hat(4, 0) << 7, ” << matrixxes
—>x_hat (5, 0) ;

s = ss.str();

msg_out.value = s;

//saving ECEF messages

ofstream ecefmsgesout;

ecefmsgesout.open(”/home/pi/dune/src/august/results/x_hat—
ecef.txt”, std::ios_base::app);

ecefmsgesout << s <<endl;

ecefmsgesout.close () ;

dispatch (msg_out);

debug (DTR(”%s”), msg_out.value.c_str());

ss.str(””);

121

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

BIBLIOGRAPHY

/1 DISPATCHING LLH x_hat

fish temp;

temp.x = matrixxes—>x_hat(0, 0);
temp.y = matrixxes—>x_hat(1l, 0);
temp.z = matrixxes—>x_hat(2, 0);
ecef211hFISH (&temp) ;

ss << ”$x_hat LLH, "<<setprecision(16)<< temp.x << 7, "<<
temp.y << 7, << temp.z;

s = ss.str();

//saving LLH messages

ofstream llhmsgesout;

Ilhmsgesout.open(”/home/pi/dune/src/august/results/x_hat—
ITh.txt”, std::ios_base::app);

Ilhmsgesout << s <<endl;

llhmsgesout.close () ;

msg_out.value = s;

dispatch (msg_out);

debug (DTR(”%s”), msg_out.value.c_str());

ss.str(””);

//resetting EKF
datastruct —>datal . active =
datastruct —>data2 . active
datastruct —>data3 . active
datastruct —>data4 .active =

}

void
consume (const IMC:: DevDataTextx msg){

I
(=N el e)

fish target;

target.x = 2811674.127241466;
target.y = 515158.4675443817;
target.z = 5682591.148048251;

// creating offset

fish x_hat_init = target;

Xx_hat_init.x++; x_hat_init.x++; x_hat_init.x++; x_hat_init.
y++; x_hat_init.x++; x_hat_init.z++;

x_hat_init.x++; x_hat_init.x++; x_hat_init.x++; x_hat_init.
y++; x_hat_init.x++; x_hat_init.z++;

122

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

D DUNE software

fish x_hat = x_hat_init;

tempStringVec = splitString (msg—>value);

if (tempStringVec[0] == TBR_receiverl_ID){
datastruct.datal = parseFakeFishTagData2 (msg—>value);
datastruct.datal .active = 1;

else if (tempStringVec[0] == TBR_receiver2_ID){
datastruct.data2 = parseFakeFishTagData2 (msg—>value);
datastruct.data2.active = 1;

}

else if (tempStringVec[0] == TBR_receiver3_ID){
datastruct.data3 = parseFakeFishTagData2 (msg—>value);
datastruct.data3.active = 1;

}

else if (tempStringVec[0] == TBR_receiver4_ID){
datastruct.data4 = parseFakeFishTagData2 (msg—>value);
datastruct.datad . active = 1;

}

if ((datastruct.datal.active ==1) && (datastruct.data2.
active == 1) && (datastruct.data3.active == 1) && (
datastruct.data4.active == 1)) {

runEKF(& matrixxes , & datastruct , &x_hat_init);

}
}

//'! Main loop.

void

onMain(void)

{

while (!stopping())

{
waitForMessages (1.0);

e e e M

DUNE_TASK

123

28

29

30

31

32

33

34

35

36

37

38

39

40

41

4

BIBLIOGRAPHY

D.6 DUNE Task: createErrorPlots

/1 Author: August

#include <DUNE/DUNE.hpp>

#include ”../createTOAdataFromECEFdata/funkytions.h”
#include <string>

#include <sstream>

namespace august

{

namespace createErrorPlots

{
using DUNE_NAMESPACES;

struct Task: public DUNE:: Tasks :: Task

{

//'! Constructor.

//'! @param[in] name task name.

//'! @param[in] ctx context.

Task(const std::string& name, Tasks:: Context& ctx):
DUNE:: Tasks :: Task (name, ctx)

{
}

/'l Update internal state with new parameter values.
void

onUpdateParameters (void)

{

}

//'! Reserve entity identifiers.
void

onEntityReservation (void)

{

}

//'! Resolve entity names.
void
onEntityResolution (void)
{

¥

/'l Acquire resources.
void

124

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

80

81

D DUNE software

onResourceAcquisition (void)

{
}

//! Initialize resources.
void
onResourcelnitialization (void)

//'! Release resources.
void
onResourceRelease (void)
{

}

//'! Main loop.
void
onMain(void)

{

vector <double> target_data_ecef =
createTarget_PosData _ECEF () ;

vector <double> target_data_llh = createTarget_PosData_LLH
03

usvs receivers;

fish target_ecef;

fish target_llh;

double tot_time_steps_target = 11999;

std ::string line;

std ::ifstream x_hat_ecef_data(”/home/pi/dune/src/august/
results/x_hat—ecef.txt”);

std ::ifstream x_hat_llh_data(”/home/pi/dune/src/august/
results/x_hat—I11h.txt”);

for (int i = 0; i < 80; i++) {

fishpos2 (target_data_ecef , &target_ecef , i,
tot_time_steps_target);

fishpos2 (target_data_1l1h , &target_llh , i,
tot_time_steps_target);

string s;

std :: stringstream ss;

// creating ecef errors

getline (x_hat_ecef_data, line);

125

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

107

108

109

110

111

112

113

BIBLIOGRAPHY

vector <string> x_hat_ecef_-msg = splitString (line);

ss << setprecision (16)<< target_ecef.x — atof(
x_hat_ecef_msg[1l].c_str()) << 7, 7 << target_ecef.y —
atof (x_hat_ecef_msg[2].c_str()) << 7, ” << target_ecef.z
— atof (x_hat_ecef_-msg[3].c_str());

s = ss.str();

// saving ECEF error

ofstream ecefmsgesout;

ecefmsgesout.open(”/home/pi/dune/src/august/results/
ecef_errors.txt”, std::ios_base::app);

ecefmsgesout << s <<endl;

ecefmsgesout.close () ;

ss.str(””);

// creating 1lh errors

getline (x_hat_Ilh_data , line);

vector <string> x_hat_llh_msg = splitString (line);

ss << setprecision(16)<< target_llh.x — atof(x_hat_llh_msg
[1].c_str()) << 7, ” << target_llh.y — atof(
x_hat_Ilh _msg[2].c_str()) << 7, ” << target_llh.z — atof
(x_-hat_1lh_msg [3].c_str());

s = ss.str();

//saving LLH error

ofstream llhmsgesout;

Ilhmsgesout.open(”/home/pi/dune/src/august/results/
Ilh_errors . txt”, std::ios_base ::app);

Ilhmsgesout << s <<endl;

llhmsgesout.close () ;

ss.str(””);

¥

while (!stopping())

{

waitForMessages (1.0) ;

e o

DUNE_TASK

D.7 funkytions.h

#include <cstdlib >
#include <cmath>
#include <cstring>

126

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

D DUNE software

#include <string >
#include <vector>
//#include <iostream >
#include <fstream >
#include <cctype>
#include <algorithm>
#include <fstream>
#include <vector>
#include <iostream >
#include <algorithm>
#include <sstream>
#include <math.h>
#include <utility >
#include <tuple>
#include <fstream>
using namespace std;
#include <DUNE/DUNE. hpp>

struct fish {
double
double
double

}s

struct usv {
double
double
double
double

s

struct usvs {

y:
Z;

X3
Yy
Z;
dist2target;

usv recl;
usv rec?2;
usv rec3;
usv rec4;

b

struct TOA_data {

double
double
double
double

TOA_recl;
TOA_rec2;
TOA _rec3;
TOA _rec4;

127

49

50

51

52

53

54

55

56

57

58

59

60

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

BIBLIOGRAPHY

struct TDOA _data {
double TDOA_21;
double TDOA_31;
double TDOA 41 ;

+s

struct receiver_data

{
std:: string msg;
int receiver_number;
double seconds;
int milliseconds;
int fishtaglID;
double depth;
int SNRratio;
double lon;
double lat;
double hae;
int active;

s

struct range_real {
double recl;
double rec2;
double rec3;
double rec4d;

}s

struct pseudoranges {
double recl;
double rec?2;
double rec3;
double rec4;

}s

struct EKF {
int init;
Matrix x_hat;
Matrix F;
Matrix D;
Matrix P_hat;
Matrix R;
Matrix Q;
Matrix H

128

D DUNE software

o4 Matrix y_hat;

o Matrix x_hat_pred;
% Matrix y;

o7 Matrix P_pred;

o8 Matrix K;

9 fish testfish;

100 };

101

w struct datamsges {

103 receiver_data datal;
104 receiver_data data2;
105 receiver_data data3;
106 receiver_data data4;
107 };

108

w vector <double> createUSV _PosData_ LLH () ;

o vector <double> createUSV _PosData_ECEF () ;

m vector <double> createTarget_PosData ECEF () ;

2 vector <double> createTarget_PosData LLH () ;

3 bool compare_tupple(const tuple<int, double, double, double
, double, double>&i, const tuple<int, double, double,
double , double, double>&j);

ms void fishpos2(vector <double> target_data , fish x
fishobject , int timestep, int tot_timesteps);

s void usvpos2(vector <double> usv_data, usv * usvobject, int
timestep , int receiver , int tot_timesteps);

s void usvspos2(vector <double> usv_data, usvs % usvobjects,
int timestep, int tot_timesteps);

w7 double euclid3 (fish * fish_pos, usv % usv_pos) ;

us double euclid3mat(Matrix x_hat, usv % usv_pos);

s void getUsvsDist2Target(fish % fishobject, usvs x
usvobjects) ;

0 void createTOA (TOA_data x TOAs, usvs * receivers , double
timestep , double speedOfSound) ;

21 void createTDOA (TOA_data x TOAs, TDOA_data x TDOAs) ;

2 vector<string> splitString (string s);

3 receiver_data parseFakeFishTagData2(string msg);

2+ void calculate_y_hat(Matrix % y_hat, Matrix x_hat, usvs =
receivers , double depth);

s void createJacobian2 (Matrix * H, usvs % receivers , fish x
x_hat);

s void create_y (Matrix x y, TDOA_data * TDOAs, Matrix
x_hat_pred , double speedOfSound);

7 double computeRn(double lat);

s void fromECEF(double x, double y, double z, doublex lat,

129

129

130

131

132

133

BIBLIOGRAPHY

double* lon, doublex hae);

void toECEF(double lat, double lon, double hae, doublex x,
doublex y, doublex z);

void createJacobian6 (Matrix x H, usvs % receivers , fish x
x_hat)

void getRange(range_real * ranges, fish * target, usvs x
boats);

void getTDOAs(TDOA _data * tdoas, range_real x ranges,
double soundspeed);

void createPseudorange (pseudoranges * pseudos, fish *x x_hat
, usvs x boats);

D.8 funkytions.cpp

#include <cstdlib >

#include <cmath>

#include <cstring>

#include <string>

#include <vector>

//#include <iostream >

#include <fstream>

#include <cctype>

#include <algorithm>

#include <fstream>

#include <vector>

#include <iostream >

#include <algorithm>

#include <sstream>

#include <math.h>

#include <utility >

#include <tuple>

#include ”funkytions.h”

using namespace std;

#include <DUNE/DUNE.hpp>

double computeRn(double lat)

{

// Code from Dune/Coordinates/WGS84

static const double c_wgs84_a = 6378137.0;

static const double c_wgs84_e2 = 0.00669437999013;

double lat_sin = std::sin(lat);

return c_.wgs84_a / std::sqrt(l — c_wgs84_e2 x (lat_sin x
lat_sin));

}

void fishpos2(vector <double> target_data , fish =
fishobject , int timestep, int tot_timesteps) {

130

31

32

33

34

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

54

55

56

57

58

60

61

62

63

64

65

66

67

D DUNE software

vector <double >::const_iterator i = target_data.begin();
fishobject —>x = (i + timestep);

fishobject—>y = *(i + 1 + timestep + tot_timesteps);
fishobject —>z *(1 + 2 + timestep + tot_timesteps * 2);

}

void usvpos2(vector <double> usv_data, usv x usvobject, int
timestep , int receiver, int tot_timesteps) {

vector<double >::const_iterator i = usv_data.begin() +
timestep % 3 + 3 % tot_timesteps x (receiver — 1);

usvobject —>x x1;

usvobject—>y = (i + 1);

usvobject—>z = x(i + 2);

// return usvobject;

}

void usvspos2(vector <double> usv_data, usvs *x usvobjects ,
int timestep, int tot_timesteps) {

usvpos2 (usv_data, &usvobjects —>recl, timestep, 1,
tot_timesteps);

usvpos2 (usv_data , &usvobjects —>rec2, timestep, 2,
tot_timesteps);

usvpos2(usv_data, &usvobjects —>rec3, timestep , 3,
tot_timesteps);

usvpos2 (usv_data, &usvobjects —>rec4 , timestep, 4,
tot_timesteps);

}

void fromECEF(double x, double y, double z, doublex lat,
double* lon, doublex hae)
{

// Code from Dune/Coordinates /WGS84

//'! Semi—major axis.

static const double c_wgs84_a = 6378137.0;

//! Semi—minor axis.

static const double c_wgs84 b = 6356752.3142;

/1! First eccentricity squared.

static const double c_wgs84_e2 = 0.00669437999013;
//'! Second (prime) eccentricity squared.

static const double c_wgs84_ep2 = 0.00673949674228;
/1! Flattening .

static const double c_wgs84_f = 0.0033528106647475;
// assert(lat != 0);

//assert(lon != 0);

// assert (hae != 0);

131

BIBLIOGRAPHY

68

o double p = std::sqrt(x *= X +y * y);
o *xlon = std::atan2(y, X);

n xlat = std::atan2(z / p, 0.01);

n double n = computeRn(xlat);

7 +hae = p / std::cos(xlat) — n;

% double old_hae = —1e—9;

s double num = z / p;

76

7 while (std:: fabs(xhae — old_hae) > le—4)

78 {

» old_hae = xhae;

o double den = 1 — c_wgs84_e2 x n / (n + xhae);
si klat = std::atan2 (num, den);

2 n = computeRn(xlat);

53 +hae = p / std::cos(xlat) — n;

.

&)

86

7 void toECEF(double lat, double lon, double hae, doublex x,
doublex y, doublex z)
o q{

g [// Code from Dune/Coordinates/WGS84

o //! Semi—major axis.

s static const double c_wgs84_a = 6378137.0;

o //! Semi—minor axis.

03 static const double c_wgs84_b = 6356752.3142;

w [//! First eccentricity squared.

os static const double c_wgs84_e2 = 0.00669437999013;
s //! Second (prime) eccentricity squared.

o7 static const double c_wgs84_ep2 = 0.00673949674228;
s //! Flattening.

o static const double c_wgs84_f = 0.0033528106647475;
w /xassert(x != 0);

o assert(y !'= 0);

w assert(z !'= 0);x/

03 double cos_lat = std::cos(lat);

ws double sin_lat std ::sin(lat);

s double cos_lon = std::cos(lon);

ws double sin_lon = std::sin(lon);

w7 double rn = computeRn(lat);

e *X = (rn + hae) % cos_lat * cos_lon;

w *y = (rn + hae) % cos_lat % sin_lon;

m *xz = (((1.0 — c_wgs84_e2) « rn) + hae) *x sin_lat;

111 }

132

112

113

114

130

D DUNE software

vector <double> createUSV_PosData_ LLH () {

ifstream infile2 (”/home/pi/dune/src/august/data/usv_pos_llh
Ltxt”)

if (infile2.is_open()) {

cout << ”fila usv_pos_llh.txt er pna 7 << endl;

}

else {

cout << 7fila wusv_pos_llh.txt er ikke funnet ” << endl;

}

vector<double> record?2;
while (infile2) {
string s;

if (!getline(infile2 , s))break;
istringstream ss(s);

while (ss)
{
string s;

if (!getline(ss, s, ’,’))break;
record2 . push_back(atof(s.c_str()));

}
}

return record?2;

}

vector <double> createUSV _PosData_ECEF () {

ifstream infile2 (”/home/pi/dune/src/august/data/
usv_pos_ecef.txt”);

if (infile2.is_open()) {

cout << ”fila er usv_pos_.ECEF.txt pna” << endl;

}

else {

cout << 7fila usv_pos_ECEF.txt er ikke funnet ” << endl;

}

vector<double> record?2;
while (infile2) {

133

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

187

188

189

190

191

192

193

194

195

196

197

198

BIBLIOGRAPHY

string s;

if (!getline(infile2 , s))break;
istringstream ss(s);

while (ss)

{

string s;
if (!getline(ss, s, ’,’))break;
record2 . push_back(atof(s.c_str()));

}
}

return record?2;

}

vector <double> createTarget_-PosData_ECEF () {

ifstream infile2 (”/home/pi/dune/src/august/data/target_ecef
Ltxt”)

if (infile2.is_open()) {

cout << ”fila target_ecef.txt er pna 7 << endl;

}

else {

cout << ”fila target_ecef.txt er ikke funnet ” << endl;

}

vector <double> record?2;
while (infile2) {
string s;

if (!getline(infile2 , s))break;
istringstream ss(s);

while (ss)
{
string s;

if (!getline(ss, s, ’,’))break;
record2 . push_back(atof(s.c_str()));

134

199

201

202

203

205

206

207

208

209

210

211

212

213

215

216

217

218

219

220

221

222

224

225

226

227

229

230

232

233

234

236

237

238

239

240

D DUNE software

}
}

return record?;

}

vector <double> createTarget_PosData_LLH () {

ifstream infile2 (”/home/pi/dune/src/august/data/target_llh.
txt”);

if (infile2.is_open()) {

cout << 7fila target_llh.txt er pna” << endl;

¥

else {

cout << ”fila target_ll1h.txt er ikke funnet ” << endl;

}

vector <double> record?2;
while (infile2) {
string s;

if (!getline(infile2 , s))break;
istringstream ss(s);

while (ss)
{

string s;
if (!getline(ss, s, ’,’))break;
record2 . push_back(atof(s.c_str()));

}
}

return record?;

}

bool compare_tupple(const tuple<int, double, double, double
, double, double>&i, const tuple<int, double, double,
double , double, double>&j)

{

return get<I>(i) < get<1>(j);

// return i.second < j.second;

135

241

242

243

244

245

246

247

248

249

250

251

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

BIBLIOGRAPHY

}

double euclid3 (fish * fish_pos, usv x usv_pos) {
return (sqrt(pow((fish_pos—>x — usv_pos—>x), 2) + pow ((
fish_pos—>y — usv_pos—>y), 2) + pow((fish_pos—>z —

usv_pos—>z), 2)));

}

double euclid3mat(Matrix x_hat, usv x usv_pos) {
return (sqrt(pow((x_-hat(0, 0) — usv_pos—>x), 2) + pow ((

x_hat(1, 0) — usv_pos—>y), 2) + pow ((x_

usv_pos—>z), 2)));

}

void getUsvsDist2Target(fish
usvobjects) {

usvobjects —>recl . dist2target
usvobjects —>recl));

usvobjects —>rec2 . dist2target
usvobjects —>rec2));

usvobjects —>rec3 . dist2target
usvobjects —>rec3));

usvobjects —>rec4 . dist2target
usvobjects —>rec4d));

}

*

fishobject ,

(euclid3 (fishobject ,
(euclid3 (fishobject ,
(euclid3 (fishobject ,

(euclid3 (fishobject ,

hat(2, 0) —

usvs x

(S I A

void createTOA(TOA_data * TOAs, usvs % receivers , double

timestep , double speedOfSound) {
TOAs—>TOA _recl = (double)(receivers —>recl.
double)speedOfSound + timestep x0.5;
TOAs—>TOA _rec2 = (double)(receivers —>rec?2.
double)speedOfSound + timestep x0.5;
TOAs—>TOA _rec3 = (double)(receivers —>rec3.
double)speedOfSound + timestep x0.5;
TOAs—>TOA _rec4 = (double)(receivers —>rec4.
double)speedOfSound + timestep x0.5;
}

dist2target) / (
dist2target) / (
dist2target) / (

dist2target) / (

void createTDOA (TOA_data x TOAs, TDOA_data * TDOAs) {
TDOAs—>TDOA 21 = 1484 x (TOAs—>TOA_rec2 — TOAs—>TOA_recl);

TDOAs—TDOA 31

1484 % (TOAs—>TOA_rec3 — TOAs—>TOA_recl);

TDOAs—TDOA 41 = 1484 x (TOAs—>TOA_rec4 — TOAs—>TOA_recl);

}

vector<string >

136

D DUNE software

m splitString (string s)//$TBRO5, 1446716612, 123, S256, 2,
233, 50
273 {

» replace(s.begin(), s.end(), '$°, °)
»s replace(s.begin(), s.end(), "%, > ’);
»s rteplace(s.begin(), s.end(), ., ,)

o size_t found = s.find(” 7);
o 1f (found != string ::npos)
279 {

w s.replace(found, 2, 7 7);
w //debug (DTR(”Found double space™));
282 }'

283

w4 [/ debug (DTR(”MSG %s ™), s.c_str());
285

w6 istringstream stream(s);

w vector<string> result;

x for (53)

289 {

w0 string word;

w if (! (stream >> word))

292 {

w3 break;

294 }

»s result.push_back(word);
296 }

w7 return result;

298 }

w receiver_data parseFakeFishTagData2(string msg) {

s receiver_data data;

s vector<string> data_fields = splitString (msg);

s //$1TBRO5, 1446716612, 123, S256, 2, 233, 50, lat, lon, hae
ws if (data_fields.size() == 11) {

ws data.msg = msg.c_str ();

w7 data.seconds = atof(data_fields[1].c_str());

s data.milliseconds = atof(data_fields [2].c_str());

w data.fishtaglD = atof(data_fields [4].c_str());

s data.depth = atof(data_fields [5].c_str()); // assumed depth
sn data.SNRratio = atof(data_fields [6].c_str());

a2 data.lon atof (data_fields [8].c_str());

sz data.lat = atof(data_fields[9].c_str());

e data . hae atof (data_fields[10].c_str());

315 }

137

BIBLIOGRAPHY

s else

317 {

sis //inf (DTR(” Wrong number of fields in the message, received
%d”), (int)data_fields.size());

319 }

320

s return data;

322 }

323

2 void calculate_y_hat(Matrix * y_hat, Matrix x_hat, usvs x
receivers , double depth) {

»s double pseudorangeRef = euclid3mat(x_hat, &receivers —>recl)

»s double pseudorange?2 euclid3mat (x_hat, &receivers —>rec2);

s double pseudorange3 = euclid3mat(x_hat, &receivers—>rec3);
»s double pseudorange4 = euclid3mat(x_hat, &receivers—>rec4);
329

s double y_21 = pseudorange2 — pseudorangeRef;

s double y_31 = pseudorange3 — pseudorangeRef;

i double y_41 = pseudorange4 — pseudorangeRef;

s //double y_depth = target—>z; // assume perfect depth
measurement for now

334

us double temp[] = { y-21,

336 y,31 .
337 y,41 N
338 depth };

339

w y_hat—>fill (4, 1, temp);

341 }

342

ws void createJacobian6 (Matrix x H, usvs % receivers , fish x
x_hat) {

a double x = x_hat—>Xx;

us double y = x_hat—>y;

us double z = x_hat—>z;

w //temp = zeros(m — 1, 6);

us double x_ref = receivers-—>recl .x;
sw double y_ref = receivers—>recl.y;
0 double z_ref = receivers—>recl.z;

351

w2 [/ /for j = 1lim — 1

3 double x._rj = receivers —>rec2.x;
i« double y_rj = receivers—>rec2.y;
s double z_rj = receivers—>rec2.z;

138

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

D DUNE software

double h_topl = (2 * x — 2 % x_ref) / (2 % sqrt(pow((x —
x_ref), 2) + pow((y — y_ref), 2) + pow((z — z_ref), 2)))
— (2 *x x — 2 % x_rj) / (2 % sqrt(pow((x — x_rj), 2) +
pow((y — y_rj), 2) + pow((z — z_rj), 2)));

double h_top2 = (2 * y — 2 % y_ref) / (2 % sqrt(pow((x —
x_ref), 2) + pow((y — y-ref), 2) + pow((z — z_ref), 2)))
- (2 xy —2x y_rj) /I (2 % sqrt(pow((x — x_rj), 2) +
pow((y — y-rj). 2) + pow((z — z_rj), 2)));

double h_top3 = (2 % z — 2 % z_ref) / (2 % sqrt(pow((x —
x_ref), 2) + pow((y — y-ref), 2) + pow((z — z_ref), 2)))
- (2 %z -2 % z_rj) /I (2 x sqrt(pow((x — x_rj), 2) +
pow ((y — y-rj), 2) + pow((z — z_rj), 2)));

X_rj = receivers —>rec3 .x;
y_rj = receivers—>rec3.y;
z_rj = receivers —>rec3.z;

double h_midl = (2 * x — 2 % x_ref) / (2 % sqrt(pow((x —
x_ref), 2) + pow((y — y_ref), 2) + pow((z — z_ref), 2)))
— (2 *+ x — 2 % x_rj) / (2 % sqrt(pow((x — x_rj), 2) +
pow((y — y_rj), 2) + pow((z — z_rj), 2)));

double h.mid2 = (2 * y — 2 % y_ref) / (2 % sqrt(pow((x —
x_ref), 2) + pow((y — y-ref), 2) + pow((z — z_ref), 2)))
- (2 xy —2 % y_rj) /I (2 % sqrt(pow((x — x_rj), 2) +
pow ((y — y-rj), 2) + pow((z — z_rj), 2)));

double h.mid3 = (2 % z — 2 % z_ref) / (2 % sqrt(pow((x —
x_ref), 2) + pow((y — y-ref), 2) + pow((z — z_ref), 2)))
- (2 %z -2 % z_rj) /I (2 x sqrt(pow((x — x_rj), 2) +
pow ((y — y-rj), 2) + pow((z — z_rj), 2)));

X_rj = receivers —>rec4 .x;
y_rj = receivers—>rec4.y;
z_rj = receivers —>rec4.z;

double h_botl = (2 * x — 2 % x_ref) / (2 % sqrt(pow((x —
x_ref), 2) + pow((y — y_ref), 2) + pow((z — z_ref), 2)))
— (2 x x — 2 % x_rj) / (2 % sqrt(pow((x — x_rj), 2) +
pow((y — y_rj), 2) + pow((z — z_1tj), 2)));

double h_bot2 = (2 *y — 2 x y_ref) / (2 % sqrt(pow((x —
x_ref), 2) + pow((y — y-ref), 2) + pow((z — z_ref), 2)))
- (2 xy —2 % y_rj) /I (2 % sqrt(pow((x — x_rj), 2) +
pow ((y — y-rj). 2) + pow((z — z_1j), 2)));

double h_bot3 = (2 % z — 2 % z_ref) / (2 % sqrt(pow((x —
x_ref), 2) + pow((y — y-ref), 2) + pow((z — z_ref), 2)))
- (2 %z -2 % z_rj) /I (2 x sqrt(pow((x — x_rj), 2) +
pow((y — y-rj), 2) + pow((z — z_rj), 2)));

139

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

402

403

404

405

406

407

408

409

410

412

BIBLIOGRAPHY

double temp[] = { h_topl, h_top2, h_top3, 0, 0, O,
h_midl, h_mid2, h_mid3, 0, 0, O,

h_botl, h_bot2, h_bot3, 0, 0, O,

0, 0, 1, 0, 0, 0 };

/*xdouble h_temp = { h_top, 0, 0, O,
h_mid, 0, 0, O,

h_bot, 0, 0, O,

0,0,1, 0, 0, 0 };x/

H—>fill (4, 6, temp);

s

void create_y (Matrix x y, TDOA_data * TDOAs, Matrix
x_hat_pred , double speedOfSound) {
double y_-1 = TDOAs—TDOA_21;

double y_-2 = TDOAs—TDOA_31;
double y_3 = TDOAs—>TDOA _41;
double lat;
double lon;
double hae;

fromECEF (x_hat_pred (0, 0), x_hat_pred(l, 0), x_hat_pred(2,
0), &lat , &lon, &hae);

double y_4 = hae;

double yd[] = { y-1,

y2,

y-3,

y-4 1

y—=>fill (4, 1, yd);

}

void getRange(range_real % ranges, fish * target, usvs x

boats) {
ranges —>rec|
ranges —>rec?2
ranges —>rec3
ranges —>rec4

}

void getTDOAs(TDOA _data * tdoas, range_real x ranges,
double soundspeed) {
tdoas —>TDOA 21 = (ranges—>rec2 — ranges—>recl) / soundspeed

euclid3 (target , &boats—>recl);
euclid3 (target , &boats—>rec2);
euclid3 (target , &boats—>rec3);
euclid3 (target , &boats—>rec4);

tdoas —>TDOA_31 (ranges—>rec3 — ranges—>recl) / soundspeed

tdoas —>TDOA _41

(ranges—>rec4 — ranges—>recl) / soundspeed

140

413

414

415

416

417

418

419

420

22

23

24

25

26

E MATLAB code

}

void createPseudorange (pseudoranges * pseudos,

, usvs * boats) {
pseudos—>recl = euclid3 (x_-hat, &boats—>recl);
pseudos—>rec2 = euclid3 (x_hat, &boats—>rec2);
pseudos—>rec3 euclid3 (x_hat, &boats—>rec3);
pseudos—>rec4 euclid3 (x_hat, &boats—>rec4);

}
E MATLAB code

E.1 TDOA localization in R?

Listing 1:
clear;clc;
c = 1484; %[m/s] speed of sound in water
Y%point locations
A=[0,1];
B=1[7,1];
C=[2,5];
D=[5,4];
T = [3,3]; %pretended unknow target.
x_points= [0,7,2,5,3];
y_points= [1,1,5,4,3];
scatter (x_points ,y_points)
hold on
ab = euclid (A(1) ,A(2).,B(1),B(2));
ac = euclid(A(1) ,A(2),C(1).,C(2));
bc = euclid (B(1),B(2),C(1),C(2));
at = euclid (A(1) ,A(2),T(1),T(2));
bt = euclid(B(1) ,B(2).,T(1).,T(2));
ct = euclid(C(1),C(2),T(1),T(2));
dt = euclid(D(1),D(2),T(1),T(2));

fish * x_hat

Jcalculating the actual difference of arrival time
experienced by the receivers. Delta T is the difference

in distance travelled by the actual signal

the value of the speed of the signal.
deltaTab = (at—bt) / c;
deltaTac (at—ct) / c;
deltaTad (dt—at) / c;

syms X;syms y;

divided by

141

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

BIBLIOGRAPHY

y_solved_ab = solve (cxdeltaTab == sqrt((x—-A(1))."2 + (y
—A(2)).72) — sqrt ((x-B(1))."2+(y-B(2)).72), y);
fplot(y_-solved_ab (1))

hold on

fplot(y-solved_ab(2))

hold on

y_solved_ac = solve (cxdeltaTac == sqrt((x-A(1))."2 + (y

—A(2)).72) — sqrt((x—C(1))."2+(y—C(2))."2), y);
fplot(y-solved_ac (1))

hold on

fplot(y_-solved_ac(2))

hold on

y-solved_ad = solve (cxdeltaTad == sqrt((x-A(1))."2 + (y—

A(2)).72) — sqrt ((x-D(1))."2+(y-D(2)).72), y);

fplot(y_-solved_ad (1))

hold on

fplot(y_-solved_ad (2))

hold on

legend (*Time difference Rl and R2: solution 1°,’Time
difference R1 and R2: solution 2’ ,’Time difference RI1
and R3: solution 1’ ,’Time difference R1 and R3: solution

2’ ,’Time difference R2 and R3: solution 1’ , Time

difference R2 and R3: solution 27)

axis([—2,8,—2,8])

E.2 TDOA localization in R? with 4 receivers

Listing 2:
clear;clc; clf;
9% Initialization
c = 1484;
receiver_pos = [0,1,—2;
7,1,0;
2.,5,—4;
5.,4,—-6];
target_pos = [3.,3,—-3];
range=zeros (4,1);

for j = 1:4
range(j) = euclid3(target_pos,
receiver_pos(j,:));
end
TDOA = zeros(3,j):
range_ref = range(l);
for j = 2:4

142

23

24

25

26

28

29

30

31

32

33

34

35

36

37

38

39

40

41

43

44

45

46

47

E MATLAB code

TDOA(j—1) = (range(j) — range_ref)/c;
end

9% Calculating true solutions

for j = 2:4

syms X y z;

S = solve (cxTDOA(j —1) == sqrt((x—receiver_pos(j,1)) " 2+(y—
receiver_pos(j,2)) " 2+(z—receiver_pos(j,3))"2) — sqrt((x—
receiver_pos(1,1))"2+(y—receiver_pos(1,2))"2+(z—
receiver_pos (1,3))72), z);

f(x,y)=S(1);

r=1:0.25:5;

[X,Y] = meshgrid(r);

Z = double (f(X,Y));

surf(X,Y,Z, FaceAlpha’ ,0.5);

zZlim([-3,—1]);

hold on

end

9% Plots
scatter3 (receiver_pos (:,1) ,receiver_pos(:,2),receiver_pos
(:,3),200,’b”,’ filled ’)

hold on

scatter3 (target_pos (1) ,target_pos(2),target_pos(3),300,’r’,
>filled)

hold on

object_-names = {’RI1’,’R2’,’R3’,’R4’, Target’} ;

cellstring = cellstr (object_names);

for j = 1:4

text(receiver_pos(j,l)—3,receiver_pos(j.,2)+2,receiver_pos (]
,3), cellstring(j)); %name plotting.

hold on

end

text(target_pos (l)—3,target_pos(2)+2,target_pos(3),
cellstring (5)); %name plotting.

axis([—-2,10,-2,10,-8,2])

xlabel (’x7)

ylabel (’y’)

zlabel (’z)

E.3 TDOA localization in R? with 3 receivers and a depth measure-

ment

Listing 3:
clear;clc; clf;

143

22

23

25

26

27

28

30

31

32

33

34

35

36

37

38

39

40

41

4

BIBLIOGRAPHY

%% Initialization

c = 1484,

receiver_pos = [0,1,—2;
7,1,0;

2,5,-0.5 ;1;

target_pos = [3,3,-3];
range=zeros (4,1);
for j = 1:3

range(j) = euclid3(target_pos , receiver_pos(j.:));

end
TDOA = zeros(3,j);

range_ref = range(1l);

for j = 2:3

TDOA(j—1) = (range(j) — range_ref)/c;
end

9% Calculating true solutions
for j = 2:3
syms X y z;

S = solve (c¥TDOA(j —1) == sqrt((x—receiver_pos(j,1)) " 2+(y—
receiver_pos(j,2)) " 2+(z—receiver_pos(j,3))"2) — sqrt((x—

receiver_pos (1,1))"2+(y—receiver_pos(1,2))"2+(z—
receiver_pos(1,3))72), z);

f(x,y)=S(1);

r= 1:0.25:5;

[X,Y] = meshgrid(r);

Z = double (f(X,Y));

surf (X,Y,Z, FaceAlpha’ ,0.5);

hold on

end

[X,Y] = meshgrid(—2:0.3:10,—-2:0.3:10);

height = 0.2;

Z = height*xsin(X) + heightxcos(Y);

C = XxZxY;

s= surf(X,Y,Z, FaceAlpha’ ,0.1);
9% Depth
r= 1:0.25:5;

[X,Y] = meshgrid(r);
Z = ones(size(X))xtarget_pos(3);
surf (X,Y,Z, FaceAlpha’ ,0.4);

9% Plots

scatter3 (receiver_pos (:,1) ,receiver_pos (:,2),receiver_pos

(:,3),200,’b’,’ filled ”)

144

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

E MATLAB code

hold on

scatter3 (target_pos (1) ,target_pos(2),target_pos(3),300,’r’,
“filled)

hold on

object_-names = {’RI1’,’R2’,’R3’, Target’} ;

cellstring = cellstr (object_-names);

dx=-0.;

for j = 1:3

text(receiver_pos(j,l)+dx,receiver_pos(j,2)+dx,receiver_pos
(j,3)—0.5, cellstring(j)); %name plotting .

hold on

end

text(target_pos (1) —0.5,target_pos (2) —0.5+dx, target_pos (3)
—0.5, cellstring (4)); %name plotting.

axis([—-2,10,-2,10,-8,2])

xlabel (’x7)

ylabel (’y’)

zlabel (’z’)

E.4 Single measurement localization in R3

Listing 4:
clear;clc; clf;
9% Initialization
c = 1484,
receiver_pos = [0,0,0];
target_pos = [3.,3,—6];
domeRadius = euclid3(target_pos, receiver_-pos);

9% Dome plot
[x,y,z] = sphere(20);

xEast = domeRadius * Xx;
yNorth = domeRadius * y;
zUp = domeRadius * z;

zUp(zUp < 0) = O0;

figure (’Renderer’, opengl’)

surf (xEast, yNorth, —zUp, ’ FaceColor’,’yellow’,’ FaceAlpha’
,0.3)

hold on

[X,Y] = meshgrid(—10:0.3:10,—-10:0.3:10);

height = 0.2;

Z = heightxsin(X) + heightxcos(Y);

s= surf(X,Y,Z, FaceAlpha’ ,0.1);

9% Disc plot

radius = sqrt(target_pos(1)"2 + target_pos(2)"2);

[T,R] = meshgrid(linspace (0,2%pi,64),linspace (0, radius ,16))

b}

145

23

24

25

26

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

BIBLIOGRAPHY

X = R.xcos(T);

Y = R.xsin(T);

Z = ones(size(X))xtarget_pos (3);
surf(X,Y,Z)

9% Receiver and transmitter plot

scatter3 (receiver_pos (:,l),receiver_pos(:,2),receiver_pos
(:,3),400,°’b”,’ filled ’)

hold on

scatter3 (target_pos (1) .,target_pos(2),target_pos(3).400,’r’,

“filled)

hold on

object_.names = {’RI’,’Target’} ;

cellstring = cellstr (object_names);

dx=-0.;

text(receiver_pos (1l)+1+dx,receiver_pos(2)+dx,receiver_pos
(3)—-2, cellstring (1)); %name plot.

hold on

text(target_pos(l)+1,target_pos (2)+dx,target_pos(3)+1,
cellstring (2)); %name plot.

hold on

9% Red line circle plot

theta = 0:pi/50:2x%pi;
xunit = radius * cos(theta);
yunit = radius x sin(theta);

h = plot3 (xunit, yunit, target_pos(3)*ones(size(theta)),’r’

)
set(h,’linewidth’ ,3);
axis([—10,10,—10,10,—10,10])
xlabel (’x7)
ylabel (’y’)
zlabel (’z’)

146

	Abstract
	Preface
	Table of Contents
	List of Figures
	Abbreviations
	Introduction
	Background
	Aquatic telemetry
	Context
	Motivation
	Problem Definition
	Method
	Thesis structure

	Theory
	Coordinate Systems & Transformations
	Localization
	GNSS Positioning
	Acoustic Positioning
	TDOA Localization
	Single Measurement Localization
	Geometric Dilution of Precision

	Communication
	Serial Communication
	4G Communication
	Satellite Communication
	Underwater Acoustic Communication

	Fish Tracking System
	Schematics
	Otter USVs
	Hardware
	Sensors
	Computers & Controllers
	Communication

	Software
	LSTS Toolchain
	Neptus
	Inter-Module Communication
	DUNE: Unified Navigation Environment

	System Objectives
	Proposed Control System
	Target Observer
	Kalman Filter
	Extended Kalman Filter
	Additional Kalman Filter Functionality

	Supervisory Control System
	Formation Control
	Guidance System
	Lookahead-Based Steering

	Vessel Modeling and Heading Control
	Thrust Allocation
	PID Controller

	Acoustic Receiver Position Modelling
	Force Analysis
	Cable-connected Positioning Model
	Fixed Positioning Model

	Implementations
	Hardware
	GPS
	Controller Area Network
	Thruster test

	Software

	Simulation
	Data
	Assumptions
	Software
	Results

	Discussion
	First Research Question
	Second Research Question
	Validity of Underlying Assumptions in Receiver Positioning Models
	Suggestions For Further Research

	Conclusions
	Bibliography
	Appendix
	Communication protocols
	Hardware & Software Guidelines
	Raspberry Pi 3
	DUNE
	Garmin 5Hz-18x GPS
	CAN Interface

	Schematics
	DUNE software
	INI file & DUNE task example
	CVS data (.txt)
	INI files
	DUNE Task: createTOAdataFromECEFdata
	DUNE Task: EKF2
	DUNE Task: createErrorPlots
	funkytions.h
	funkytions.cpp

	MATLAB code
	TDOA localization in R2
	TDOA localization in R3 with 4 receivers
	TDOA localization in R3 with 3 receivers and a depth measurement
	Single measurement localization in R3

