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Preface

This is a master’s thesis written during the spring of 2018 at Norwegian University of Science

and Technology (NTNU), Department of Marine Technology. This thesis concerns thrust allo-

cation for underwater snake robots, and simulations are done in Matlab/SIMULINK using an

underwater snake robot simulation model. Results are given in the thesis.

Although I have previously studied underwater snake robots, the exact idea for the topic of

this thesis was given to me by my supervisor Dong Trong Nguyen, and the problem description

was formulated in collaboration with him and my co-supervisor Henrik Schmidt-Didlaukies.

For reading and understanding this report, no extensive knowledge of marine technology or

control theory is needed as all subjects will be properly introduced and described throughout

the text. However, general engineering knowledge is an advantage.

Trondheim, 2018-06-25

....................................................................................

Siri Bjørkedal Øvregård
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Summary

Although the concept of underwater vehicles has existed for a very long time, the technology

within the field has progressed substantially over the recent decades. As more and more oil and

gas installations and operations are performed subsea, the need for more developed underwater

vehicles is still present. A new concept which has the potential to fulfill these demands is the

Underwater Underwater Snake Robot. The fact that the robot is shaped as a snake makes it

ideal for moving in high viscosity environments such as water. In addition, the robot’s ability

to alter configuration provides a large workspace, and its slender and articulate body allows the

robot to access narrow spaces. The fact that the underwater snake robot is, itself, a manipulator

arm capable of performing light intervention tasks, makes it a powerful tool.

In this thesis, methods for thrust allocation for underwater snake robots are evaluated. Two

iterative methods, using linear and quadratic programming, are presented, developed and im-

plemented. This is also done for an explicit method for constrained thrust allocation, using re-

distributed pseudo-inverse. The methods are implemented into an existing underwater snake

robot simulation model in Matlab/SIMULINK. Simulations are performed for unconstrained

and constrained thrust allocation, simulating planar and thee-dimensional motion. In the un-

constrained case, simulations are also performed using a pre-implemented standard damped

inverse algorithm. This is done in order to compare thrust allocation algorithm performances.

It is found that all developed algorithms produce satisfactory simulation results, although

some variations in performance is found. The linear programming algorithm produces a small

error between commanded and actual thrust, but tends to favor using a low amount of thrusters,

which is not ideal. In the constrained case, the performance of this algorithm is better.

The redistributed pseudo-inverse algorithm produces a large error compared to the other

methods. The performance is therefore found to be sub-optimal. The quadratic programming

algorithm produces low errors for all simulation cases. The algorithm also tends to distribute

the commanded thrust more evenly amongst the thrusters. This is a significant up-side as it

reduces wear and tear on the thrusters.

Thus, it is concluded that the quadratic programming algorithm for thrust allocation pro-

duces the most satisfactory results, although all thrust allocation methods have proven to be

viable for use on underwater snake robots.
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Samandrag

Sjølv om undervassfartøy-konseptet har eksistert i svært lang tid, har teknologien innan feltet

utvikla seg kraftig først dei siste tiåra. Etter kvart som fleire og fleire olje- og gassinstallasjonar og

operasjonar utførast subsea, er behovet for meir utvikla undervassfartøy framleis tilstades. Eit

nytt konsept som har potensiale til å oppfylle desse krava er undervass-slangeroboten. Det fak-

tum at roboten er forma som ein slange gjer den ideell til å bevege seg i miljø med høg viskositet,

slik som vatn. I tillegg gjer roboten si evne til å endre konfigurasjon at den har eit stort arbeid-

sområde, og den slanke og artikulerte kroppen gjer det mogeleg for roboten å få tilgang til smale

passasjar. Det faktum at undervass-slangeroboten i seg sjølv er ein manipulatorarm, noko som

gjer den istand til å utføre lette intervensjonsoppgåver, gjer den til eit kraftig verktøy.

I denne oppgåve blir metodar for thrustallokering for undervass-slangerobotar vurdert. To

iterative metodar, lineær og kvadratisk programmering, er presentert og implementert. Det

same gjeld for omfordelt pseudo-invers, ein eksplisitt metode for begrensa thrustallokering. Meto-

dane blir implementert i ein eksisterande simuleringsmodell for undervass-slangerobotar ved

bruk av Matlab/SIMULINK. Simuleringane blir utført for både ubegrensa og begrensa thrustal-

lokering, der både plan bevegelse og tre-dimensjonal bevegelse blir simulert. I tilfellet med

ubegrensa thrustallokering blir det også utført simuleringar med ein pre-implementert stan-

dard dempa invers algorithme. Dette blir gjort for å kunne samanlikne og vurdere ytelsen til dei

forskjellige thrustallokeringsalgoritmane.

Det blir funne at alle dei implementerte algoritmane gir tilfredsstillande simuleringsresultat,

sjølv om ytelsen frameleis varierer noko. Den lineære programmeringsalgoritmen produserer

ein lav verdi for feilen mellom thrust-kommando og faktisk thrust, men har ein tendens til å

favorisere bruk av færre thrusterar, noko som ikkje er ideelt. I tilfellet med begrensa thrustallok-

ering er ytelsen noko betre.

Den omfordelte pseudo-invers algoritma gir ein stor feilverdi samanlikna med dei andre

metodane. Resultatet kan derfor seiast å vere sub-optimalt. Algoritma med kvadratisk pro-

grammering produserer derimot lave feilverdiar ved alle simuleringar. Algoritmen har også ein

tendens til å distribuere thrust-kommando krefter meir jevnt mellom thrusterane. Dette er eit

signifikant fortrinn med metoden, sidan det fører til mindre slitasje på enkelte trusterar.

Det kan dermed konkluderast at algorithmen som brukar kvadratisk programmering gir dei

mest tilfredsstillande resultata, sjølv om alle thrustallokeringsmetodane har vist seg å vere lev-

edyktige for bruk på undervass-slangerobotar.
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Nomenclature and Abbreviations

The following lists describes several abbreviations and symbols that will be used within the body

of this thesis. For mathematical symbols, scalars are generally given by normal lowercase (a) or

uppercase (A) letters, while vectors are given by boldface lowercase letters (b) and matrices are

given by boldface uppercase letters (B).

Abbreviations

AUV Autonomous Underwater Vehicle

DOF Degrees of Freedom

IMR Inspection, Maintenance and Repair

LP Linear Programming

QP Quadratic Programming

ROV Remotely Operated Vehicle

RPI Redistributed Pseudo-Inverse

RSI Redistributed Pseudo-Inverse

SDI Standard Damped Inverse

SVD Singular Value Decomposition

USM Underwater Swimming Manipulator

USR Underwater Snake Robot

UVMS Underwater Vehicle-Manipulator Systems

Nomenclature

¥=
h

t q
iT

Position and orientation of the base frame in inertial frame
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∞0 Vector giving direction of gravity in inertial frame

∞i Unit vector giving direction of gravity for link i

∫ Body velocity vector of base frame

!b Body-fixed angular velocity vector

ß Diagonal singular value matrix

øc Commanded thrust

øq Joint torque vector

µ Joint angle vector

≥=
h
∫T µ̇T

iT
Global body velocity vector

Ai (µi ) Transformation matrix for transformation between link i +1 frame and link i

frame

B Thrust configuration matrix

B † Moore-Penrose pseudo-inverse

Ba Thrust configuration matrix for angular motion

Bl Thrust configuration matrix for linear motion

C (µ,≥)≥ Centripetal and coriolis effects

C" Standard damped inverse

Ca Standard damped inverse for angular motion

Cl Standard damped inverse for linear motion

D(µ,≥)≥ Drag effects

DL,i Linear drag force contribution

DN L,i (µ,≥) Nonlinear drag force contribution

g (¥,µ) Hydrostatic forces

Hi Special Euclidean group for link i
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J Jacobian matrix

Js Cost function

M(µ)≥̇ Mass forces

Mi Total mass of link i

MA,i Added mass of link i

MR,i Rigid body mass of link i

q =

2

66664

¥

"1

"2

"3

3

77775
Unit quaternions

q Error weight vector

R Rotation matrix

Ri Rotation matrix for link i

Rµi Euler angle rotation matrix

rb,i Location of the centre of buoyancy of link i

Rn
b (q) Quaternion transformation matrix between base and inertial frame

rg ,i Location of the centre of gravity of link i in the local link frame

SE (3) Special Euclidean group of order 3

SO(3) Special orthogonal group of order 3

S(·) Skew-symmetric matrix

smax Maximum error vector

t Translation vector

T (¥) Transformation matrix for all motion between base and inertial frame

T (Hi ) Transformation matrix for transformation between link i frame and inertial

frame

ti Translation vector for link i
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Tq (q) Transformation matrix for angular velocities between base and inertial frame

U Left unitary matrix

u Thrust vector

umax Maximum thrust vector

umi n Minimum thrust vector

V Rights unitary matrix

v b Body-fixed velocity vector

w Thrust weight vector

Wa Diagonal matrix with weights for angular motion

Wl Diagonal matrix with weights for linear motion

¥̇ Velocity vector of base frame in inertial frame

µ̇ Joint angle velocity vector

J̇i Time derivative of the Jacobian

ṗn Inertial frame (NED) velocity vector

q̇ Angular body velocity in inertial frame

∞ Boundary limit

Ω Density of water

æi Singular value

µi Individual joint angle

" Damping constant

{b} BODY (Body-Fixed Reference Frame)

{n} NED (Earth-Fixed Reference Frame)

Ca Added mass coefficient

Cd ,i Drag coefficient
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g Gravitational acceleration constant

IR,i Rigid body inertia matrix of link i

li Length of link i

m Number of forces and moments equal to the number of degrees of freedom

in a system

mi Mass of link i

n Number of links

p Number of thrusters

r Radius of links

s+i , s°i , u+
i , u°

i Auxiliary variables

Vi Volume of link i

vr e f Reference velocity
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Chapter 1

Introduction

1.1 Motivation

Although the concept of underwater vehicles has existed for a very long time, the technology

within the field has progressed substantially over the recent decades. Both Remotely Operated

Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs) exist today in a vast variety of

shapes and forms and operational functionality. ROVs equipped with manipulator arms, often

referred to as Underwater Vehicle-Manipulator Systems (UVMS), have been essential for de-

velopment and maintenance of subsea installations. However, as more and more oil and gas

installations and operations are performed subsea, the need for even more developed under-

water vehicles that can perform increasingly complex tasks and operations such as installation

support and inspection, maintenance and repair (IMR) is still present.

A relatively new concept, which has the potential to fulfill these demands, is the Underwater

Swimming Manipulator (USM), which is also referred to as the Underwater Snake Robot (USR).

The USR is an AUV with the properties of an UVSM where the snake itself is a manipulator arm

with a floating base. The fact that the robot is shaped as a snake makes it ideal for moving in

high viscosity environments such as water. In addition, the robot’s ability to alter configuration

provides a large workspace, and its slender and articulate body allows the robot to access narrow

spaces.

The USR is made up of links interconnected by actuated joints. Research on snake robot

locomotion has previously been concentrated on locomotion forms similar to the ones found

for biological snakes. These locomotion forms are produced by joint actuation, which allows

for the snake robot to move silently and with minimal power consumption. However, for the

USR as a UVMS, the biological snake locomotion forms require a body configuration pattern

which might not be consistent with the task at hand. Adding thruster modules to the USR thus

opens up a whole new range of application areas as the robot can achieve forward, vertical and

sideways motion without performing undulatory motion.

1
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The fact that the USRs have a floating base and links interconnected by actuated joints, poses

challenges in terms of controlling the autonomous snake robot. One part of the controlling

scheme is the control allocation where control commands are distributed to actuators. The

control allocation problem for a USR with thrusters concerns both joint control allocation and

thrust allocation. While the joint control allocation can be handled using inverse kinematics,

the thrust allocation is handled using a thrust allocation algorithm. The thrust allocation of

USRs is the topic of this master thesis.

1.2 Problem Description

As the USR in general is implemented with a larger number of actuators than DOFs, it can be

classified as an overactuated system. For overactuated systems, thrust allocation can be formu-

lated as an optimization problem where the primary objective is to minimize the error between

commanded and achievable thrust. A secondary objective would be to also minimize power

consumption. A common approach for thrust allocation is using Standard Inverse Matrix meth-

ods. However, the effect of using other optimization methods such as linear and quadratic pro-

gramming for thrust allocation in USRs has, to the authors best knowledge, not yet been inves-

tigated. Also, the topic of constrained thrust allocation for USRs, due to saturation, rate limit or

physical limitations, has not been previously addressed.

The objective of this thesis is to study thrust allocation algorithms for USRs using linear pro-

gramming and quadratic programming. The scope of this thesis is:

• Perform a literature review on snake robots and control allocation methods

• Develop a Mixed Error Minimization algorithm using Linear Programming (LP)

• Develop an Error Minimization algorithm using Quadratic Programming (QP)

• Develop a Redistributed Standard Inverse (RSI) algorithm for constrained thrust alloca-

tion

• Implement methods and review performance

1.3 Contributions

The main contribution of this thesis is the implementation of several alternative thrust alloca-

tion algorithms for USRs. Algorithms for mixed error minimization using linear programming,

and error minimization using quadratic programming are developed and implemented for sim-

ulation. An algorithm for constrained thrust allocation using Redistributed Standard Inverse is
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also developed and implemented for simulation. The implementation and simulation is done

in Matlab/SIMULINK. The performance of the algorithms is analyzed and discussed.

1.4 Thesis Outline

The thesis report is organized as follows. Chapter 2 provides a literature review on snake robots,

underwater snake robots and control allocation. In this chapter, previous work related to snake

robots and control allocation is presented. Chapter 3 gives a description of the underwater

snake robot simulation model which is used for simulation. Both kinematics, kinetics and rel-

evant parameters are presented. In Chapter 4, thrust allocation methods are presented, in-

cluding the methods that are implemented by the author. The simulation set-up and result are

presented in Chapter 5. Discussion of the results can also be found in this chapter. Conclusions

and thoughts on further work can be found in Chapter 6.
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Chapter 2

Literature Review

In order to get a better view on the problem at hand in this thesis, a literature study is presented

in the following sections. In section 2.1, studies concerning land-based snake robots, amphibi-

ous snake robots and underwater snake robots are reviewed with a focus on modeling and kine-

matics. Several examples of implementation are also discussed. More extensive surveys can be

found in Transeth et al. (2008) and Liljebäck et al. (2012). Section 2.2 concerns literature studies

on control allocation for linear control algorithms, which includes both explicit and iterative so-

lutions to the control allocation problem. More extensive surveys on control allocation can be

found in Fossen and Johansen (2006) and Johansen and Fossen (2013).

2.1 Snake Robots

2.1.1 Biomechanical Studies of Biological Snakes

The source of inspiration for developing snake robots is largely due to the locomotion, and thus

physiology, of biological snakes. Analytic studies and mathematical descriptions of snake loco-

motion were proposed as early as in the 1940s (Grey (1946)). The snake skeleton consists of a

large amount of vertebrae (from 130 to over 400 pieces) where the range of movement for joints

are about 10°-20° sideways and a few degrees up-and-down (Transeth et al. (2009)). Even though

the range of movement is relatively small, the high amount of vertebrae allows the snake body to

achieve a large total curvature. In addition to this, the biological snake is dependent on friction

in order to generate forward motion, thus the skin surface plays an important role. The skin of

snakes usually have scales which provides a smooth surface when moving forward and a coarse

surface providing friction when moving backwards (Bauchot (1994)).

Research in the field of snake robots has been done for several decades. One of the pioneers

within the field is Professor Shigeo Hirose at the Tokyo Institute of Technology, who developed

what is considered the world’s first snake robot as early as in 1972 (Hirose (1993)). One of the

5
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well-known results of Hirose is the development of the serpenoid curve formulation, a mathe-

matical description of lateral undulation. He also proposed mathematical descriptions for ex-

ternal factors affecting snake locomotion, such as ground friction and temperature.

Another formulation for lateral undulation, called serpentine curve was developed by Ma

(1999). This formulation was based on mathematical modeling of the snake muscle character-

istics, which was employed to derive the form of the snake body during lateral undulation mo-

tion. Ma also investigated the force required for snake locomotion. He argued that the proposed

serpentine curve gave more valid results than previously proposed formulations.

Moon and Gans (1998) studied the mechanisms by which muscular activity produces cur-

vature and propulsion. This was done by using patch electrodes to record response from the

muscles of a snake body pushing against pegs. A study of the frictional properties of snake skin

was performed by Hu et al. (2009). By experimentally measuring the friction coefficient of the

skin, it was found that the friction coefficient on the transverse direction of the body was larger

than the friction coefficient in the tangential direction.

Some of the most important movement patterns for biological snakes are described below,

and are mainly based on Liljebäck et al. (2013).

• Lateral Undulation (also called serpentine crawling) is maybe the most common snake

locomotion form. The snake glides in a wave-like pattern where no part of the snake body

is still-standing at any time. The propulsion is achieved by slightly lifting areas of the body

off the ground, while generating ground contact forces at other areas of the body. The

ground contact forces result from the body pushing against irregularities in the ground

surface, thus using these as push-points to achieve forward motion. Lateral Undulation is

illustrated in Fig. 2.1a.

• Concertina Locomotion is a form of locomotion often used in narrow spaces where the

room for movement is small. The snake uses one part of the body as anchor points by

extending the curves across the available space as shown in Fig. 2.1b, while moving the

rest of the body ahead. By altering which part of the body that provides anchor points, the

snake achieves forward motion.

• Rectilinear Crawling is a snake locomotion that allows the snake to move in a line instead

of in wave-like patterns. The forward motion is achieved by using the nature of the scales

as previously described in this section. The snake uses the edges of the scales to provide

anchor points against the ground at some parts of the body while moving other parts of

the body ahead. This is done by contracting and extending muscles at respective parts of

the body. The locomotion is illustrated in Fig. 2.1c.

• Sidewinding Locomotion is maybe one of the more fascinating forms of snake locomo-

tion. The mechanism is similar to concertina locomotion in that one part of the body
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provides anchor points while the rest of the body moves ahead, but in this case, the sur-

face is not the walls of a narrow space, but loose ground material such as sand. As shown

in Fig. 2.1d, the snake moves in a sideways manner, leaving characteristic tracks. The

snake utilizes its elongated body to "step" forward using the back part of the body as one

"foot" and the front part of the body as another.

(a) Lateral Undulation (b) Concertina Locomotion

(c) Rectilinear Crawling (d) Sidewinding Locomotion

Figure 2.1: Biological snake locomotion forms, courtesy of Liljebäck et al. (2013)

2.1.2 Modeling and Analysis of Snake Robot Locomotion

Several of the early studies of snake robot locomotion was conducted for Flat Surface and Sideslip

Constraints. As it was found in Hirose (1993) that the biological snake body follows the path of

the head during lateral undulation, models of snake robots were developed such that the body

could not move sideways (i.e. sideslip constraints). A consequence of this assumption is that

nonholonomic constraints (Bloch et al. (2003)) are introduced in the equation of motion. Kr-

ishnaprasad and Tsakiris (1994) and Ostrowski and Burdick (1998) both considered the kine-

matics and relations between the body shape changes and the resulting body displacement for

snake robots with nonholonomic constraints, as well as assessing the controllability of such

mechanisms. In addition, Ostrowski and Burdick (1998) also consider the dynamics of such

robots. Others who have studied the kinematics of snake robots with sideslip constraints are

Matsuno and Mogi (2000) and Ma et al. (2003), while dynamics of snake robots with sideslip
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constraints have been considered by Prautsch and Mita (1999), Ute and Ono (2002), Matsuno

and Sato (2005), Tanaka and Matsuno (2008), Hirose (1993) and Date and Takita (2005).

Some studies have not been conducted assuming the sideslip constraints condition, but in-

stead with the assumption that the snake robot body exhibits anisotropic ground friction prop-

erties, which is more similar to the biological snake. Anisotropic ground friction properties im-

plies, as found by Hu et al. (2009), that the friction coefficients for the force tangential to the

snake link body is different from the friction coefficient for the force normal to the snake link

body. Models based in these properties are considered more complex and harder to analyze

than those based on the sideslip constraints condition (Liljebäck et al. (2012)).

Amongst those who have studied the dynamics of snake robots with anisotropic ground fric-

tion properties is Ma (2001), who employed the Newton-Euler formulation in order to develop

a two-dimensional dynamic model. In this model, both static and dynamic Coulomb ground

frictions are included, and in Ma and Tadokoro (2006) the model is also extended to investi-

gate snake locomotion on a slope. Saito et al. (2002) developed a two-dimensional model from

first principles, which was used to derive properties of snake robot dynamics as well as to study

controllability of joint action (Li and Shan (2008)). In Liljebäck et al. (2011) a partial feedback

linearization of the model in Saito et al. (2002) is proposed in order to reduce the complexity

of the model. A simplified model for snake locomotion can also be found in Liljebäck et al.

(2010b), and this model is employed in Liljebäck et al. (2010a) in order to derive properties of

the locomotion velocity during lateral undulation. Other two-dimensional models can be found

in Kane and Levinson (2000), Grabec (2002) and Hicks (2003). Also, in Mehta et al. (2008), a 2D

model including both viscous and Coulomb friction forces can be found. Models with isotropic

Coulomb friction forces has been considered by Chernousko (2005) and Nilsson (2004).

Also three-dimensional models have been developed for snake robots without the sideslip

constraints condition. Examples of this are Ma et al. (2004) who developed a model using Newton-

Euler formulations including static and dynamic Coulomb ground friction forces, Liljebäck et al.

(2008) who developed a model by using standard equations of motion of robotic manipulators,

and Transeth et al. (2008) who modeled snake robot dynamics by using the framework of non-

smooth dynamics.

2.1.3 Underwater Snake Robots

Although several solutions for underwater vehicle systems have existed for a long time, the bio-

mimetic (biologically based) approaches to underwater locomotion have been pursued only the

last decades. The increased interest is due to the several potential advantages bio-mimetic lo-

comotion systems can provide, such as increased efficiency and agility. McIsaac and Ostrowski

(1999) argued that the framework used for modeling land-based snake locomotion also can be

employed for eel-like locomotion. The authors approached the modeling of eel-like robots from
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a geometric perspective by using fluid drag forces to capture the effect of external forces on

aquatic eels. The work was extended to consider motion planning for eel-like robots and loco-

motion in McIsaac and Ostrowski (2000) and McIsaac and Ostrowski (2003).

In Kanso et al. (2005), a formulation of the governing equations of motion of a system of solid

bodies submerged in an ideal fluid was found in order to investigate the coupling between shape

changes and fluid dynamics. The model is significantly reduced considering fluid variables in

order to focus on the location of the bodies and not the fluid particles. Based on the results of

the study, the authors concluded it is important to consider the hydrodynamic interaction of the

links. Boyer et al. (2006) formulated a three-dimensional high level continuum model based on

beam theory, which allows for computing control torques as a function of the expected internal

deformation of the eel-like robot’s body. This model takes into account drag forces and viscous

forces, representing transversal and tangential forces on the body respectively, in addition to

inertial terms.

The work of Khalil et al. (2007) presented the dynamic modeling of a three-dimensional un-

derwater eel-like robot using recursive algorithms based on the Newton-Euler equations. Both

a direct dynamic model and an inverse dynamic model are considered, and the authors argued

that the algorithms developed provide a useful tool for simulation as they are easy to implement

for any numbers of degrees of freedom.

An amphibious snake robot was developed by Zuo et al. (2008) in order to realize the no-

ticeable features of a snake-like robot’s serpentine locomotion in water. The dynamic model

that was developed included external environmental forces such as added mass, drag, fluid ac-

celeration and buoyancy, which are the major hydrodynamic forces. The model is simple due

to an effective formulation of the generalized forces, and the final model is in a closed form.

In addition, the influence of the joint angle parameters on the underwater performance of the

amphibious robot are investigated, both through simulations and experiments.

Porez et al. (2014) applied a Newton-Euler modeling approach for anguilliform (or eel-like)

swimming robots, focusing on the hydrodynamic forces. This model was numerically integrated

in real time, and has, according to the authors, significantly superior accuracy compared to

computational speed ratio.

A particularly extensive model of the kinematics and dynamics of underwater snake robots

has been developed by Keladisi et al. (2014c). This model takes into account the fluid contact

forces such as linear and nonlinear drag forces, current effects, added mass and fluid torque

effects, as well as the hydrostatic forces, namely gravitational forces and buoyancy. The three-

dimensional model is for an underwater snake robot moving in a vertical plane, but can easily

be altered to simulate motion in the horizontal plane. The model is also given in closed-form,

which makes it well-suited and applicable for model-based control schemes.

Several studies have been done based on the model in Keladisi et al. (2014c). In Keladisi et al.
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(2014d), an integral line-of-sight guidance law is proposed, which compensates for the effects

of irrotational ocean currents. Keladisi et al. (2014a) presented a control-oriented version of the

model, which is less complex while still taking into account all the most essential properties of

the original model. An average model of the velocity dynamics suited for stability purposes was

presented in Keladisi et al. (2014b).

The question of locomotion efficiency has also been addressed in the recent years. Wiens

and Nahon (2012) conducted a study of how the efficiency of undulatory propulsion is affected

by system conditions such as swimming speed and energy recovery. The subjects of motion and

energy efficiency, or maybe rather the balance between the two, are also addressed in Keladisi

et al. (2015b), Keladisi et al. (2016a) and Keladisi et al. (2015a).

Some applications for underwater snake robots might require the robot to move while main-

taining a certain configuration (e.g. when hovering, performing light intervention tasks or ma-

neuvering in a cluttered environment). Since propulsion during lateral undulation or eel-like

swimming is achieved by the oscillatory motion itself, these locomotion forms alone might not

be sufficient for performing the tasks mentioned above. A solution to this is to install additional

effectors on underwater snake robots.

Sverdrup-Thygeson et al. (2016b) presented an underwater swimming manipulator (USM),

which is a hyper-redundant AUV potentially capable of performing tasks that today tradition-

ally are done by AUVs and ROVs. The USM is essentially a hyper-redundant underwater snake

robot equipped with additional effectors such as propellers and tunnel thrusters. The authors

presents models for the kinematics and dynamics of the USM as a rigid body (i.e. constant joint

angles), which, in contradiction to previous works, takes into account that the links can differ in

mass and length. The model is, to the authors best knowledge, the first modeling approach to

take into account both hydrodynamic effects and forces produced by additional effectors.

A framework for control of the USM was presented in Sverdrup-Thygeson et al. (2016a). This

control framework consists of a kinematic part which generates reference velocity signals for the

joints and the USM as a rigid body, and a dynamic part which calculates generalized forces and

moments and distributes these to the individual thrusters through a thrust allocation algorithm.

In Keladisi et al. (2016b) the locomotion efficiency of underwater snake robots with thrusters is

considered through experimental investigation.

2.1.4 Physical Implementation of Snake Robots

Over the years, many physical implementations of snake robots have been performed. When

implementing models with sideslip constraints, the condition has been achieved by installing

passive wheels on the snake body. An example of this is the first snake robot developed by Hi-

rose shown in Fig. 2.2a. Other examples of robots with passive wheels are Endo et al. (1999),

Togawa et al. (2000), Ma et al. (2001), Wiriyacharoensunthorn and Laowattana (2002), Mori and
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Hirose (2002), Ye et al. (2004), Yu et al. (2009) and Kamegawa et al. (2009). For snake robot

models without the sideslip constraint condition, the friction forces needed for propulsion are

more dependent on the surface of the robot body. Some examples of implementations of snake

robots without passive wheels are the PolyBot (Yim et al. (2002)), the GMD-Snake (Worst and

Linnemann (1996)), the Slim Slime Snake (Ohno and Hirose (2001)) and the ACM-R7 (Ohashi

et al. (2010)), which is shown in Fig. 2.2c. Other examples can be found in Nilsson (1998), Chen

et al. (2007), Wright et al. (2007) and Kuwada et al. (2008).

(a) ACM III (b) AmphiBot II

(c) ACM-R7 (d) Mamba

Figure 2.2: Examples of physical implementation of snake robots. a) shows ACM III, the first snake
robot developed by Prof. Shigeo Hirose in 1972 (Hirose and Yamada (2009)), b) shows AmphiBot II, an
amphibious snake robot (Crespi and Ijspeert (2006)), c) shows ACM-R7, a snake robot capable of forming
a wheel (Ohashi et al. (2010)), and d) shows Mamba, a snake robot developed as an experimental platform
(Liljebäck et al. (2014))

Examples of swimming robots are REEL I (McIsaac and Ostrowski (1999)) and REEL II (McIsaac

and Ostrowski (2002)), the AmphiBot series (Crespi et al. (2005), Crespi and Ijspeert (2006) and
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Porez et al. (2014)), Perambulator III (Li et al. (2011)), HELIX-I (Takayama and Hirose (2002))

and a bioinspired lamprey robot developed by Stafanini et al. (2012) as a part of the European

research project "Lampetra" (Lampetra project, SSSA). One of the snake robots in the AmphiBot

series, AmphiBot II, can be found in Fig. 2.2b.

The snake robot Mamba (Fig. 2.2d), presented by Liljebäck et al. (2014), is a modular, re-

configurable, and waterproof snake robot developed as an experimental platform to support

ongoing research. The authors argued that intelligent and efficient locomotion in unknown and

cluttered environments requires a robot that can sense and adapt. Thus, one of the novel con-

tributions of the snake robot is its ability to measure environmental contact forces acting along

the body by using custom-made sensors in the joints.

2.2 Linear Control Allocation

In general, control allocation is the task of distributing control commands to individual effectors

in order to achieve desired forces and moments. The overactuated control allocation problem

can be identified as a control allocation problem containing a larger number of effectors than

DOFs to be controlled. It is usually desirable to choose control allocation model such that it is

on a linear form, i.e. on the form b = ax (Johansen and Fossen (2013)). One way of obtaining a

linear model is by using the extended thrust formulation, e.g. Lindfors (1993), Sørdalen (1997).

For the case of unconstrained overactuated linear control allocation, there are virtually an

infinite number of solutions solving the allocation problem. The control allocation problem

can therefore be viewed as an optimization problem with the objective of finding the optimal

solution amongst all the solutions. The optimal solution can be found explicitly by minimizing

a least-squares cost function using generalized inverses, which can be derived using Lagrange

multipliers (Fossen (1994), Bordignon and Durham (1995)). However, a generalized inverse

might not be found if singularities occur in the problem. In such cases, regularization methods

such as damped least-squares inverse (Berge and Fossen (1997)) and singular value decomposi-

tion (Sørdalen (1997)) can be applied in order to handle singularities. Both of these methods

handle singularities without resorting to iterations, and therefore provides explicit solutions.

In reality, constraints have to be considered when handling control allocation problems. The

constrained optimization problem takes into account system constraints such as physical effec-

tor limitations, actuator saturation, forbidden sectors and overload of the power system. The

redistributed pseudo-inverse method presented in Virnig and Bodden (1994) is a constrained

allocation method which decomposes the allocation problem based on which elements are sat-

urated. This method is simple and effective, but does not guarantee a feasible solution or that

the solution found is optimal. Another constrained allocation method is the daisy chain method

(Buffington and Enns (1996)). In this method, the effectors are divided into prioritized groups
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where the settings of the whole group are frozen if one or more of the effectors in the group are

saturated. A modified daisy chain method has been proposed by Kim et al. (2013), addressing

limitations of the original method. In Durham (1993), an explicit solution, referred to as the

"direct method", was presented. This method was also considered in Bordignon and Durham

(1995) where certain drawbacks of the method are addressed.

Another way of handling the constrained control allocation problem is by implementing the

constraints as input constraints and minimize the error between the allocated virtual control

input and the desired control input. This is done by implementing a slack variable represent-

ing the error to be minimized. By using the one-norm or the infinity-norm to formulate the

cost function, the optimization problem can be identified as a linear program which can be

solved iteratively using numerical linear programming algorithms (e.g. Paradiso (1991), Bod-

son (2002), Lindfors (1993), Bodson and Frost (2011)). Similarly, by using the two-norm, the

optimization problem can be identified as a quadratic program which can be solved iteratively

using numerical quadratic programming methods (e.g. Härkegård (2002), Petersen and Bodson

(2006), Petersen and Bodson (2005). Common numerical methods for solving the programs are

the simplex method, active set methods and interior point methods (Nocedal and Wright (2006)).
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Chapter 3

Snake Robot Simulation Model

In order to validate the thrust allocation scheme developed in this thesis, simulations are per-

formed using a snake robot simulation model implemented in Matlab/SIMULINK (Math Works

Inc.). The following sections give a description of the kinematics and kinetics formulations used

in this simulation model, in addition to relevant parameters and properties. The simulation

model is developed by researchers at NTNU (Sverdrup-Thygeson et al. (2018)).

3.1 Kinematics

The modeling can be divided into kinematics and kinetics. While kinetics concerns the forces

causing the motion, the kinematics describes the motion in a geometrical context by the use of

so called reference frames. When looking at a craft in a marine environment in 6 degrees of free-

dom (DOF), it is convenient to use two kinematic reference systems, one describing the position

of the craft in ocean space (earth-fixed coordinates) and one describing the craft motion in re-

lation to itself (body-fixed reference frame). However, for snake robots, which are made up of

several links, local reference frames for each link are also needed in order to obtain a complete

description of the craft motion.

3.1.1 Reference Frames

A general description of relevant reference frames are given in this section.

NED (Earth-Fixed Reference Frame)

The North-East-Down coordinate system describes position {n} = (xn , yn , zn) relative to the north,

east and down direction on the earth surface as defined in the World Geodetic System (1984).

The origin of this reference system is fixed and thus rotates with the earth. However, as the

15
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velocity of a marine craft usually is small, the NED frame can be approximated as an inertial

coordinate system which provides an inertial frame.

BODY (Body-Fixed Reference Frame)

This reference frame describes motion in a coordinate system {b} = (xb , yb , zb) that is body-fixed.

The origin is placed at some fixed point on the craft, usually the geometric center such that the

body axis coincides with the principle axis of inertia for the craft. This reference frame is suitable

for describing craft velocity in 6 DOF. Fig. 3.1 shows the general connection between the body-

fixed reference frame {b} and the 6 DOF velocities often called sway, surge, heave, roll, pitch and

yaw.

Figure 3.1: 6 DOF velocities in body-fixed reference frame {b} (Fossen (2011))

Local Reference Frames

A snake robot is made up of links interconnected by joints. This means that a snake robot with n

links has n °1 joints. In the case of this simulation model, all joints are revolute one-parameter

joints, i.e. they rotate around only one axis. The joint angle for each joint is defined as µi , for

i = 1. . .n ° 1. Each link has a local reference frame which can be related to the previous link

frame through the joint angle and the length of the link. Fig. 3.2 shows the local reference

frames relative to each other.
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Figure 3.2: Snake robot links with local coordinate systems shown in 2D

3.1.2 Transformation Between Reference Frames

In order to represent motion in the inertial frame, transformations between reference frames are

necessary. The rotation between two three-dimensional spaces are called the special orthogonal

group of order three and is defined by

SO(3) :=
n

R 2R3£3
ØØØdet(R) = 1,R°1 = RT

o
(3.1)

The rotation matrix R represents a rotation of the three-dimensional coordinate frame around

a fixed point. In addition, a translation of the reference frame can be added to the representa-

tion by adding a vector t 2 R3. Thus, a point v expressed in a certain three-dimensional refer-

ence frame can be expressed in another reference frame by the relation v 0 = R v + t where v 000

represents the same point. Consequently, a homogeneous representation can be formulated as

"
v 0

1

#

=
"

R t

0 1

#"
v

1

#

(3.2)

where the middle matrix is an element of the special Euclidean group of order three defined as

SE (3) :=
Ω"

R t

0 1

#

2R4£4
ØØØØR 2 SO(3), t 2R3

æ
(3.3)

Unit Quaternions

Unit quaternions can be used to express the motion of the body-fixed reference frame relative

to the inertial frame. This method of representation is used in order to avoid the possible rep-

resentation singularities of the more commonly used Euler angles (Fossen (2011)). The unit

quaternion q is made up of a complex number with on real part denoted ¥ and three imaginary

parts denoted " =
h
"1 "2 "3

iT
, and satisfies the property q T q = 1. A set of unit quaternions

are defined as
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Q :=
n

q
ØØØq T q = 1, q =

h
¥ "T

iT
, " 2R3 and ¥ 2R

o
(3.4)

The elements making up the unit quaternion are defined as

¥ := cos
Ø

2

" :=∏sin
Ø

2

(3.5)

where ∏ 2 R3 are unit vectors that are parallel to the axis of rotation and Ø is the angle NED is

rotated. The unit quaternion can thus be written as

q =

2

66664

¥

"1

"2

"3

3

77775
=

2

66664

cos Ø
2

∏1 sin Ø
2

∏2 sin Ø
2

∏3 sin Ø
2

3

77775
2Q , 0 ∑Ø∑ 2º (3.6)

The Cartesian body frame is defined at the first link of the snake robot, hereby called the

base frame. The transformation between the base frame {b} and the inertial frame {n} can be

represented by the quaternion transformation matrix defined as

Rn
b (q) := R¥," = I3£3 +2¥S(")+2S2(") (3.7)

where S(") is the skew-symmetric matrix defined as

S(") =°ST (") =

2

664

0 °"3 "2

"3 0 °"1

°"2 "1 0

3

775 , "=

2

664

"1

"2

"3

3

775 (3.8)

The transformation matrix allows for the body velocities to be expressed in the inertial frame.

The transformation of the linear velocities can be expressed as

ṗn = Rn
b (q)v b (3.9)

where v b is the body-fixed velocity vector and ṗn is the inertial frame (NED) velocity vector. The

transformation of the angular velocities can be expressed as

q̇ = Tq (q)!b (3.10)

where !b is the body-fixed angular velocity vector and Tq (q) is the transformation matrix for

angular velocities given by
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Tq (q) = 1
2

"
°"T

¥I3£3 +S(")

#

(3.11)

which is calculated using the differential equation for the transformation matrix in Eq. 3.7 (Fos-

sen (2011)). All body-fixed motion can thus be expressed in the inertial frame by the 6 DOF

kinematic equation of motion:

¥̇= T (¥)∫

m
"

ṗn

q̇

#

=
"

Rn
b (q) 03£3

04£3 Tq (q)

#"
v b

!b

# (3.12)

where the vector ¥ =
h

t q
iT

2 R7 describes the position and orientation of the base frame in

inertial frame and the vector ∫ 2 R6 contains all the body-fixed velocities of the base frame in 6

DOF; three translational velocities and three angular velocities. The matrix T (¥) is the transfor-

mation matrix for all motion between base and inertial frame, which, when using unit quater-

nions, is a nonquadratic matrix.

Transformation between local reference frames

The position and orientation of each link can be defined in the inertial frame by

Hi =
"

Ri ti

0 1

#

2 SE (3), i = 1. . .n (3.13)

The transformation between local link frame and inertial frame can thus be described using

the transformation matrix

T (Hi ) =
"

Ri S(ti )Ri

03£3 Ri

#

2R6£6 (3.14)

with the inverse explicitly given as

T °1(Hi ) =
"

RT
i °RT

i S(ti )

03£3 RT
i

#

(3.15)

Moreover, a mapping from one local frame of link i+1 to the frame of link i can be performed

by utilizing that the joint angle µi is known. Thus, the transformation Ai (µi ) can be defined as
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Ai (µi ) = Ai (0)

"
Rµi 0

0 1

#

2 SE (3), i = 1. . .n °1

Ai (0) =
"

I li e1

0 1

# (3.16)

where li is the length of the link and e1 =
h

1 0 0
iT

as the local x-axis always is defined along

the length of the link body. The matrix Rµi is the Euler angle rotation matrix:

Rx,µi =

2

664

1 0 0

0 cosµ °sinµ

0 sinµ cosµ

3

775 , Ry,µi =

2

664

cosµ 0 sinµ

0 1 0

°sinµ 0 cosµ

3

775 , Rz,µi =

2

664

cosµ °sinµ 0

sinµ cosµ 0

0 0 1

3

775 (3.17)

where the subscript denotes about which axis µi rotates. This mapping can be used to express

link i in the inertial frame by the recursive formula

Hi = H

Hi+1 = H A1(µ1)A2(µ2) . . . Ai (µi )
(3.18)

Finally, the 6 DOF body velocities of link i can be found recursively by

∫1 =∫
∫i+1 = T (Hi )(Ai (µi ))∫i +ai µ̇i

(3.19)

where ai describes about which axis the angular velocity of joint i is directed. The transforma-

tion may be expressed as a Jacobian matrix:

J1 =
h

I 0 . . . 0
i

Ji+1 = T (Hi )(Ai (µi ))Ji +
h

0 0 . . . 0 ai 0 . . . 0
i (3.20)

which maps the velocity vector ≥=
h
∫T µ̇T

iT
2Rn+5 containing the generalized 6 DOF velocity

vector ∫ in addition to the joint angle velocities µ̇ to the generalized 6 DOF velocity vector ∫i for

link i such that

∫i = Ji≥ (3.21)
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3.2 Kinetics

As previously mentioned the kinetics describes the forces causing the motion of a body. These

forces can be rigid body forces, hydrodynamic forces and excitation forces such as thrust and

waves. The equation of motion sums up all forces acting on the craft, and thus describes the

dynamics of the craft. For this simulation model, the equations of motion for the snake robot

expressed in base link frame is given as

¥̇= T (¥)∫

M(µ)≥̇+C (µ,≥)≥+D(µ,≥)≥+g (¥,µ) = B (µ)u +ø
(3.22)

The term M(µ)≥̇ describes the mass forces, the term C (µ,≥)≥ describes the centripetal and

coriolis effects, the term D(µ,≥)≥ describes the drag effects and g (¥,µ) describes the hydrostatic

forces. These terms will be more thoroughly explained in the following sections. The vector

ø=
h

0T øT
q

iT
2Rn+5 contains the joint torques applied by the motors. It can be noted that the

ø-vector contains a zero vector as the mechanical forces only acts on the joints. The term B(µ)u

describes the thruster forces, and will be thoroughly explained in Chap. 4.

3.2.1 Mass Forces

The mass forces are made up of rigid body forces and hydrodynamic forces, also called added

mass. The rigid body mass is simply the mass of the body itself, while the added mass forces are

hydrodynamic pressure induced forces developing when the craft accelerates (Faltinsen (1990)).

As the snake robot is made up of many links in a chain, the mass matrix contains the sum of the

mass for each link transformed to the base link reference frame through the link Jacobian found

in Eq. 3.20:

M(µ) =
nX

i=1
J T

i (µ)Mi Ji (µ), Mi = MR,i +MA,i (3.23)

The hydrodynamic interaction between links has been neglected in this model, which leaves

the link mass matrices independent of robot configuration. As the link bodies can be modeled

as cylinders, the matrices for the rigid body and added mass are given by
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MR,i =
"

mi I mi ST (rg ,i )

mi S(rg ,i ) IR,i

#

(3.24)

MA,i = Ωºr 2li Ca

2

66666666664

Æi 0 0 0 0 0

0 1 0 0 0 1
2 li

0 0 1 0 °1
2 li 0

0 0 0 0 0 0

0 0 °1
2 li 0 1

3 l 2
i 0

0 1
2 li 0 0 0 1

3 l 2
i

3

77777777775

(3.25)

where mi is the mass of link i , rg ,i is the location of the centre of gravity of link i in the local link

frame, IR,i is the rigid body inertia matrix of link i , Ω is the density of water, r is the radius of the

cylinder representing the link body, li is the link length and Ca is the added mass coefficient. Æi

is a parameter which allows added mass in surge to be added. It can be noted that the matrix

in Eq. 3.25 has off-diagonal terms due to the fact that is formulated in a reference frame which

does not give three planes of symmetry.

3.2.2 Centripetal and Coriolis Forces

The centripetal and Coriolis forces are described by

C (µ,≥) =
nX

i=1

h
J T

i (µ)Mi J̇i (µ, µ̇)° J T
i (µ)Wi (µ,≥)Ji (µ)

i

Wi (µ,≥) =
"

0 S({Mi∫i }∫)

S({Mi∫i }∫) S({Mi∫i }!)

# (3.26)

where {Mi∫i }∫ 2R3 and {Mi∫i }! 2R3 are the first three entries and the last three entries of Mi∫i

respectively, and J̇i is the time derivative of the Jacobian matrix found in Eq. 3.20. Although

the term traditionally is called the centripetal and Coriolis term, in reality, the term takes into

account forces that are more complex than the ones caused by only centripetal and Coriolis

effects (Spong et al. (2006)).

3.2.3 Drag Forces

Drag forces represent the hydrodynamic damping that occurs when a craft moves relative to a

fluid. The term is obtained by summing up the drag forces for the individual links transformed

to the base link reference frame:
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D(µ,¥) =
nX

i=1
J T

i (µ)Di (µ,≥)Ji (µ), Di (µ,≥) = DN L,i (µ,≥)+DL,i (3.27)

where DN L,i (µ,≥) is the nonlinear drag force contribution and DL,i is the linear drag force con-

tribution. The nonlinear drag forces are computed using strip theory (Faltinsen (1990)), where

the surface integral (which is hard to compute) is replaced by a line integral over the length of

the cylindrical body being partitioned into circular disk elements (McMillan et al. (1995)). The

linear drag effect contribution is given by

DL,i = Ωºli Cd ,i vr e f

2

66666666664

Øi 0 0 0 0 0

0 1 0 0 0 1
2 li

0 0 1 0 °1
2 li 0

0 0 0 ∞i r 2 0 0

0 0 °1
2 li 0 1

3 l 2
i 0

0 1
2 li 0 0 0 1

3 l 2
i

3

77777777775

(3.28)

where Øi and ∞i are parameters which allow linear drag effects to be added in surge and roll.

Cd ,i and vr e f are the drag coefficient and a reference velocity respectively. It should be noted

that determining these parameters is a challenging endeavor due to their dependence on other

parameters which might not be constant during craft motion.

3.2.4 Hydrostatic Forces

The hydrostatic forces are caused by the hydrostatic pressure over the craft when being in the

water. They are also called restoring forces. As the horizontal hydrostatic forces acting on the

link bodies cancel each other out, only the vertical hydrostatic forces make a contribution to

this term. Also this term is given as a sum of the hydrostatic force contribution to each link

transformed to the base link reference frame:

g (¥,µ) =
nX

i=1
J T

i (µ)gi (¥,µ) (3.29)

The force contribution to each link is given by

gi (¥,µ) =Gi∞i (¥) (3.30)

Gi =
"

(ΩVi g °mi g )I

ΩVi g S(rrr b,i )°mi g S(rrr g ,i )

#

, 2R6£3 (3.31)
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Figure 3.3: The local frame coordinate system for links

Table 3.1: Link parameters and properties

Link-type
Length

[m]
Radius

[m]
Number of thrusters Direction of thrust

Placement of thrusters
[x y z]

#1 0.75 0.1 2
y-direction [0.375 0 0]
z-direction [0.375 0 0]

#2 1 0.1 2
x-direction [0.375 0.15 0]
x-direction [0.375 -0.15 0]

where Vi is the volume of link i , g is the gravitational acceleration constant, rb,i is the location

of the centre of buoyancy of link i in the local link frame and ∞i 2 R3 is a unit vector giving the

direction of gravity (which is pointing downward) for link i . The direction of gravity in inertial

frame is constant and denoted ∞0, such that

∞i = RT
i ∞0 (3.32)

3.3 Definition of Parameters and Properties

The simulation model is implemented such that link and joint properties can be chosen freely,

as well as the combination of link and joint types. Two types of links are defined in the current

version of the simulation model. Link-type #1 has virtual tunnel thrusters giving thrust in y-

and z-direction when considering the link as a cylindrical body with the x-axis along the length

of the cylinder. Link-type #2 has two thrusters giving thrust in x-direction. These thrusters are

placed the outside of the link body, one on each side. The link parameters and properties can be

found in Tab. 3.1. The placement of the thrusters are given in local link frame coordinates as it is

shown in Fig. 3.3. It should be noted that the location of the y- and z-direction tunnel thrusters

are not physically possible, but adequate for the purpose of this simulation model.

All the links are neutrally buoyant, i.e. the mass of the link is equal to the mass of displaced
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water so that the hydrostatic pressure on the bottom is cancelled out by the gravity force. The

links are also defined so that the centre of gravity is placed below the centre of buoyancy. This

results in a naturally induced restoring moment when the link experiences roll displacement.

The joints are defined as revolute joints, i.e. they provide single-axis rotation and are either

x-revolute, y-revolute or z-revolute.
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Chapter 4

Control Allocation

The control allocation is the phase of the control system where a control signal from a controller

is allocated to the individual physical effectors on the vehicle. In general, effectors can be me-

chanical devices producing forces and moment such as rudders, fins, propellers and thrusters.

Actuators are electromechanical effectors such as propellers and thrusters. The controller out-

puts a virtual control vector øc 2 Rm using a high level motion control algorithm. This vector

usually represents a number of forces and moments, m, equal to the number of degrees of free-

dom (DOFs) in the system.

In the case of an underwater snake robot, the input to the Dynamic Controller, which con-

tains the high level motion control algorithm, is a set of tasks calculated using Inverse Kinemat-

ics. These tasks represent the snake robot joint angles required in order to achieve a certain

desired end position and/or geometric configuration. The output from the Dynamic Controller

is a vector containing commanded thrust in 6 DOF. These are subsequently allocated to the indi-

vidual underwater snake robot thrusters by the Thrust Allocation algorithm. A system diagram

for the snake robot control system can be found in Fig. 4.1. The contribution in this thesis

concerns the content of the "Thrust allocation" block in the diagram.

Figure 4.1: System diagram for snake robot control system

In order to calculate the thrust contribution from each thruster to the individual DOFs of the

vehicle, a thrust configuration matrix, denoted B , is required. This matrix maps the individual

thrusters contribution based on the geometric placement of the thrusters. This matrix might

be dependant on a variable B (Æ) where Æ is the thruster orientation vector. This is for example

the case for a vehicle with azimuth thrusters. In the case of the snake robot, the thrusters are

27
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assumed to be placed rigidly on the links making up the snake robot. This means that the thrust

configuration matrix is static in each time step, but is recalculated from one time step to the

next. This is because the directions of thrust for the rigidly placed thrusters are dependant on

the joint angles defining the snake robot configuration.

The objective of the control allocation algorithm is to distribute forces and moments such

that the desired end position and/or configuration is achieved. The algorithm is designed to

map the virtual (desired) control input øc into effector forces and moments such that the total

of these are equal to the total of øc . The number of effector forces and moments are denoted p.

The effector model is often modeled to be linear such that

ø= h(u, x , t ) = B (x , t )u (4.1)

where t is time, x 2 Rn is the state vector, u 2 U Ω Rp is the control output to the effectors and

ø 2 Rm is the virtual effector model input which should fulfill ø = øc in the ideal case. The

subset U represents the set of possible values of u, which is limited due to for example thruster

saturation and other physical constraints. For an overactuated system, p > m, there might not

be a unique solution to the inverse problem of calculating u given ø = øc . The main objective

of the control allocation algorithm is therefore to find the optimal solution for u given a certain

set of constraints.

4.1 Explicit Methods

One way of solving the control allocation problem is to calculate the inverse of the thrust con-

figuration matrix B . For an overactuated system, the B-matrix will not be square, i.e. it will have

more columns than rows, which means it can be assumed that it has a non-trivial null space.

This, in turn, means that there is an infinite number of vectors u that satisfy Eq. 4.1 for any

given ø. A common way of handling this problem is to use the generalized inverse (or pseudo-

inverse) in order to calculate a unique u. The much used Moore-Penrose pseudo-inverse (Golub

and Loan (1983)) can be used to obtain the solution u = B †øc , and is defined as

B † = B T (B B T )°1 (4.2)

The Moore-Penrose pseudoinverse is used in several algorithms for finding the optimal con-

trol allocation. Some of these are explained below.

4.1.1 Standard Damped Inverse

Usually, a system is designed such that desirable forces and moments are possible to generate.

However, in special cases, such as singularities or actuator failure, the B-matrix can become
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rank deficient. In such cases, the control algorithm should be able to handle the situation with

reallocating thrust to available thrusters. One way of doing this is to use the standard damped

inverse (or damped least-squares inverse). This method finds a solution to the equation

u =C"øc (4.3)

where

C" = B T (B B T +"I )°1 (4.4)

and " ∏ 0 is a small damping constant which acts as a regularization parameter handling sin-

gular thruster configurations. When implementing this algorithm using software computation

tools, it is also usual to include in the algorithm a segment making sure that entries in the in-

verse B-matrix with an absolute value smaller than a certain boundary limit ∞, is set to zero.

This is to prevent the computation of negligible thrust contribution to unnecessarily increase

computation time.

4.1.2 Prioritized Inverse

The prioritized inverse method largely resembles the standard damped inverse method in that it

contains the Moore-Penrose pseudo-inverse with a damping constant acting as a regularization

parameter. However, the method enables prioritizing of DOFs by splitting the thrust allocation

problem into subproblems. A typical example of a situation where prioritized inverse is used,

is for dynamic positioning of surface vessels where the heading control is prioritized over surge

and sway control. For a six DOF vehicle, the linear motions can be prioritized by splitting the

B into Bl 2 Rr£p and Ba 2 Rs£p where the subscript l denotes linear motion, the subscript a

denotes angular motion, r is the number of linear DOFs and s is the number of angular DOFs.

This way, the thruster outputs can be calculated by

u =Cløl + (Ip£p °Cl Bl )Caøa (4.5)

where

Cl = B T
l (Bl B T

l +"IWl )°1

Ca = B T
a (BaB T

a +"IWa)°1
(4.6)

are the weighted pseudo-inverse of each subproblem and Wl and Wa are diagonal matrices with

weights for linear motions and angular motions respectively.
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4.1.3 Inverse with Single Value Decomposition (SVD)

Another method for handling singularities in the inverse B-matrix is the Singular Value Decom-

position (SVD). This method performs a factorization of a real matrix (in this case the B-matrix

such that

B(m£p) =U(m£m)ß(m£p)V T
(p£p) (4.7)

where U and V are unitary matrices such that UU T = Im and V V T = Ip . The matrix ß is a

diagonal matrix containing the singular valuesæi of the matrix B . The inversion of the B-matrix

is obtained by

Bi nv =Vßi nvU T (4.8)

where

ßi nv =

2

666666666666664

1
æ1

0 . . . 0

0 1
æ2

. . .
... 1

æp?

...

0
. . .

0 . . . 0

3

777777777777775

(4.9)

Here, the singular values larger than a certain threshold (p? ∑ p) are inverted and gathered in

the upper left corner of the diagonal matrix while the singular values smaller than the threshold

are set to zero and gathered in the lower right corner. This way, the singularities in the system

are taken care of, and the resulting inverted B-matrix can be used for control allocation.

4.1.4 Redistributed Pseudo-Inverse (RPI)

Constrained control allocation allows for additional problem conditions to be included, namely

constraints due to thruster saturation and physical limitations. An explicit method for solv-

ing control allocation problems subjected to saturation limit constraints is the redistributed

pseudo-inverse method, which can be seen as an extension of the standard damped inverse

method. The approach is as follows: First, solution to Eq. 4.3 is found using the damped inverse

in Eq. 4.4. If any of the calculated thrust forces are above the saturation limit, the thrust vector

elements are set equal to the saturation limit. The thrust vector is then reduced to exclude the

saturated element. The thrust configuration matrix is also reduced, such that the columns cor-
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responding to the saturated thrust vector element is removed. The process of solving Eq. 4.3 is

then repeated. This is done until no more elements reach the saturation limit. The thrust vector

elements are then reassembled, and the resulting thrust vector is the final solution.

4.2 Iterative Methods

In an optimization problem, constraints can be included such that the algorithm searches for

the optimal solution within available solutions. This search can be done by using iterative meth-

ods. The objective is the same as above, i.e. to find a control output u 2U which fulfills ø= øc .

Given the constraints, this equality condition might not have a feasible solution. Therefore, a

slack variable s is introduced. This variable serves as an error variable such that

Bu =øc + s (4.10)

By using error minimization as the objective for the optimization algorithm, a cost function

can be formulated as

Js = ||Bu °øc || (4.11)

where umi n ∑ u ∑ umax . Alternatively, a secondary objective, such as control minimization, can

be included in the problem. This allows for the algorithm to find a unique optimal solution if

several solutions for the primary objective exist. In this case, the cost function would be

Js = q ||Bu °øc ||+w ||u °up || (4.12)

where umi n ∑ u ∑ umax , w and q are weight vectors and up is a vector with some preferred

thrust values. Here, the first term is dedicated to satisfy the primary objective of minimizing er-

ror, while the second term is dedicated to satisfy the secondary objective of minimizing control,

i.e. the usage of thrust and thus also the power consumption. By setting the weight value w

small compared to q , the algorithm greatly prioritizes the error minimization over the control

minimization.

4.2.1 Mixed Error Minimization using Linear Programming

The mixed error minimization algorithm is an optimization algorithm minimizing both error

and control. Based on the cost function in Eq. 4.12 the optimization problem can be formulated

as
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min
u2Rp ,s2Rm

q ||Bu °øc ||+w ||u °up ||

subject to øc °Bu = s, u 2U
(4.13)

One way of solving this optimization problem is by using Linear Programming. This prereq-

uisites that the norm used in the problem is the l1-norm. In order to perform the optimization,

auxiliary variables are defined to make sure the parameters to be optimized are always positive.

The auxiliary variables are defined as (Johansen and Fossen (2013))

s+i =

8
<

:
si , si ∏ 0

0, si ∑ 0
u+

i =

8
<

:
ui , ui ∏ 0

0, si ∑ 0

s°i =

8
<

:
°si , si ∑ 0

0, si ∏ 0
u°

i =

8
<

:
°ui , ui ∑ 0

0, si ∏ 0

(4.14)

where

ui = u+
i °u°

i +up,i si = s+i ° s°i (4.15)

The upper and lower bound for the variables can thus be defined by

0 ∑ u+ ∑ umax °up 0 ∑ s+ ∑ smax

0 ∑ u° ∑ up °umax 0 ∑ s° ∑ smax
(4.16)

where umax is determined by the capacity of the individual thrusters and smax is some boundary

constraint set to prohibit the slack variable from becoming to large. This way, the mixed error

optimization problem can be formulated in the form

min
x

f T x subject to

8
<

:
Aeq x = beq

bl ∑ x ∑ bu

(4.17)

where the matrices and vectors are defined as

f T =
h

q q w w
i

Aeq =
h

I °I °B B
i

x =
h

s+ s° u+ u°
iT

beq = Bup °øc

(4.18)

bl =
h

0 0 0 0
iT

bu =
h

smax smax umax °up up °umi n

iT
(4.19)

The expression Aeq x = beq represents the equality constraints, and as seen by inspection of
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Eq. 4.18, the equality constraints corresponds to the objective s °Bu = Bup °øc , B (up +u) =
øc + s. The vector x is the parameters to be optimized, and bl and bu are, respectively, the lower

and upper boundary constraints for these parameters.

4.2.2 Error Minimization using Quadratic Programming

Another way of solving the optimization problem is to use the Quadratic Programming method.

This is a way of error minimization using the squared of the l2-norm. The resulting cost function

thus becomes

Js = ||Bu °øc ||22 (4.20)

where umi n ∑ u ∑ umax . This leads to the following control allocation formulation:

min
s,u

≥ mX

i=1
qi s2

i +
pX

j=1
w j u2

j

¥

subject to Bu =øc + s, u 2U
(4.21)

Since the squared of the norm is used in the quadratic programming method, the parameters

to be optimized are always positive as long as the weights q and w are positive. This represents

an advantage when using the quadratic programming method compared to the linear program-

ming method as it follows that the quadratic programming problem is strictly convex, and no

auxiliary variables are needed. The problem can be transformed into a standard quadratic pro-

gramming form

min
x

1
2

xT H x subject to

8
<

:
Ax ∑ b

Aeq x = beq

(4.22)

where the matrices and vectors are defined as (Johansen and Fossen (2013))

H = 2diag(w1, ..., wp , q1, ..., qm) Aeq =
h

B °I
i

x =
h

u s
iT

beq =øc

A =
"
°I 0

I 0

#

b =
h
°umi n umax

iT

(4.23)

Here, the boundary constraints for u are implemented as inequality constraints. It can also

be noted that the slack variable s is not constrained. Constraining s is generally optional, and
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can be implemented in cases where it is thought to improve the functionality of the algorithm.

It can also be noted that this quadratic programming algorithm will always find a feasible and

unique solution due to the lack of auxiliary variables. A secondary objective is therefore not

needed, as opposed to in the linear programming method.



Chapter 5

Simulation and Results

Two optimization algorithms, mixed error minimization using linear programming (LP) and er-

ror minimization using quadratic programming (QP), are implemented in Matlab/SIMULINK

based on the methods described in section 4.2.1 and section 4.2.2 respectively. The LP and QP

source code can be found in App. B.1 and App. B.2 respectively. An algorithm for constrained

thrust allocation using redistributed pseudo-inverse (RPI) is also implemented based on the

method described in section 4.1.4. The RPI source code can be found in App. B.3. Simulations

are performed using the existing underwater snake robot simulation model described in Chap.

3. In order to analyze the performance of the developed algorithms, two simulation cases are

defined. In the first case, the thrust allocation is considered unconstrained, i.e. the thrusters

have virtually unlimited capacity. In the second case, the thrust allocation is constrained and

a saturation limit for the thrusters is implemented. In both cases, simulations are performed

for both planar (2D) and three-dimensional (3D) motion. In the first case, simulations are also

performed using a pre-implemented standard damped inverse (SDI) algorithm for comparison.

This algorithm is based on the method described in section 4.1.1.

5.1 Simulation Set-Up

All simulations are performed using the same configuration for the snake robot model. The

snake robot is made up of 5 links interconnected by four z-revolute joints. The first two and the

last two links are Link-type #1, while the middle link is Link-type #2. The link types are described

in section 3.3 and their properties can be found in Tab. 3.1. The simulations are performed

using a fixed time-step of 0.001 and an ode3 solver. The input to the simulation model is desired

positions for the end effector (i.e. the end of the last link), which changes at certain points in the

simulation time course. In both cases, two simulations are performed. The first simulates planar

motion, i.e. the z-coordinate for the desired positions is kept constant equal to zero. The second

simulation simulates three-dimensional motion. The desired positions for the simulations are

35
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listed in Tab. 5.1 and Tab. 5.2 respectively. In both simulations, the first position is the initial

position of the end effector i.e. the end of link 5, expressed in the base link reference frame.

Table 5.1: Desired positions for simulation of planar motion

Time (t) 0 … t < 5 5 … t < 20 20 … t < 40 40 … t … 70

Position

[x y z]
[4 0 0] [5 3 0] [7 3 0] [7 4 0]

Table 5.2: Desired positions for simulation of three-dimensional motion

Time (t) 0 … t < 5 5 … t < 20 20 … t < 40 40 … t … 70

Position

[x y z]
[4 0 0] [4 2 1] [4 2 2] [5 3 2]

The simulation parameters used in the thrust allocation algorithms can be found in Tab.

5.3. In the STI/RPI algorithm, " denotes the damping coefficient in the standard inverse matrix

and Æ denotes the boundary limit for which entries in the standard inverse matrix are set to

zero. In the LP algorithm, up , which is the preferred thrust values, is set to zero for all thrusters.

This represents that it is preferable to use as little thrust as possible in order to minimize power

consumption. smax denotes the maximum slack variable value. The slack variable represents

the error between the generalized commanded and actual thrust. The parameter is set to the

1-norm of the commanded thrust vector, i.e. the total magnitude of the commanded thrust. In

both the LP and QP algorithms, the weight coefficient w is set to a large value compared to the

weight coefficient q . This reflects the fact that the primary objective of both algorithms is to

minimize the slack variable, i.e. the error between commanded and actual thrust.

Table 5.3: Thrust allocation algorithm parameters

STI/RPI LP QP

" = 0.02 smax = ||øc ||1 w = 50

∞ = 10°15 up = 0 q = 1

w = 1

q = 10°5

5.2 CASE 1: Unconstrained Thrust Allocation

In CASE 1, the thrust allocation is considered unconstrained. This is done by setting a virtual

constraint on the individual thruster forces ui which is high enough that the saturation limit
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should never be reached. In the simulations performed in CASE 1, the constraints are set to

umax,i = 1000 N and umi n,i = °1000 N. Simulations are performed for both planar and three-

dimensional motion using standard damped inverse, linear programming and quadratic pro-

gramming algorithms for thrust allocation.

5.2.1 Results

The simulation results for planar motion can be found in Fig. 5.2-5.5, as well as Fig. 5.1a, 5.1c

and 5.1e. The simulation results for three-dimensional motion can be found in Fig. 5.8-5.11, as

well as Fig. 5.1b, 5.1d and 5.1f. Some simulation results are summed up in Tab. 5.4 and Tab. 5.5.

Additional simulation results can be found App. A.1.

Table 5.4: The absolute value of the largest errors from simulations in CASE 1

Motion
Alloc.

method

Surge

[N]

Sway

[N]

Heave

[N]

Roll

[Nm]

Pitch

[Nm]

Yaw

[Nm]

2D

SDI 0.8675 0.6238 0.1110 68.4428 0.2614 0.2279

LP 0 0 0 24.0650 0 0

QP 0.8675 0.6238 0.1110 68.4428 0.2614 0.2279

3D

SDI 0.6158 0.5736 2.6861 46.4057 2.4024 0.1978

LP 0 0 0 16.1217 0 0

QP 0.6158 0.5736 2.6861 46.4057 2.4024 0.1978

Table 5.5: Maximum and minimum values for thruster forces from simulations in CASE 1

Motion
Alloc.

method

Value

[N]
Thr. #1 Thr. #2 Thr. #3 Thr. #4 Thr. #5 Thr. #6 Thr. #7 Thr. #8 Thr. #9 Thr. #10

2D

SDI
ua,max 26.9167 0.6887 5.1852 2.0722 49.3103 45.9345 4.2088 6.6902 9.2462 7.7377

ua,mi n -8.2498 -1.0730 -7.0782 -2.8405 -1.8843 -1.7385 -12.8116 -10.2962 -2.3611 -4.6535

LP
ua,max 23.6135 538.3219 10.0265 0.6632 98.7889 56.8220 11.1153 1000.0 8.6217 2.0981

ua,mi n -8.5936 -1.6972 -11.0958 -1000.0 -2.4601 0 -4.1574 -2.4408 -4.4299 -699.9495

QP
ua,max 26.9167 0.6887 5.1852 2.0722 49.3103 45.9345 4.2088 6.6902 9.2462 7.7377

ua,mi n -8.2498 -1.0730 -7.0782 -2.8405 -1.8843 -1.7385 -12.8116 -10.2962 -2.3611 -4.6535

3D

SDI
ua,max 24.9688 89.2612 5.2620 56.7505 37.6405 34.6731 2.7389 27.6293 5.0224 7.2691

ua,mi n -5.5032 -0.6459 -5.2069 -2.6290 -1.2879 -1.1649 -9.9935 -3.3279 -0.2436 -41.9085

LP
ua,max 24.2739 640.5721 2.5047 12.8079 73.9194 19.1996 7.1975 1000 6.1827 4.8121

ua,mi n -7.4410 -1.0885 -4.9873 -1000 -2.3753 -0.2256 -2.2325 -15.9331 -0.5283 -742.3169

QP
ua,max 24.9688 89.2612 5.2620 56.7505 37.6405 34.6731 2.7389 27.6293 5.0224 7.2691

ua,mi n -5.5032 -0.6459 -5.2069 -2.6290 -1.2879 -1.1649 -9.9935 -3.3279 -0.2436 -41.9085
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Figure 5.1: Position and desired position (dashed line) for end effector during CASE 1 simula-
tions
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Planar Motion - Standard Damped Inverse
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Figure 5.2: Error between commanded and actual thrust for unconstrained thrust allocation for
planar motion using standard damped inverse
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Figure 5.3: Individual thruster forces for unconstrained thrust allocation for planar motion using
standard damped inverse
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Planar Motion - Linear Programming

0 20 40 60

Time [s]

-1

-0.5

0

0.5

1

T
h

ru
s

t 
[N

]

Surge

0 20 40 60

Time [s]

-1

-0.5

0

0.5

1

T
h

ru
s

t 
[N

]

Sway

0 20 40 60

Time [s]

-1

-0.5

0

0.5

1

T
h

ru
s

t 
[N

]

Heave

0 20 40 60

Time [s]

-25

-20

-15

-10

-5

0

T
h

ru
s

t 
[N

m
]

Roll

0 20 40 60

Time [s]

-1

-0.5

0

0.5

1

T
h

ru
s

t 
[N

m
]

Pitch

0 20 40 60

Time [s]

-1

-0.5

0

0.5

1

T
h

ru
s

t 
[N

m
]

Yaw

Figure 5.4: Error between commanded and actual thrust for unconstrained thrust allocation for
planar motion using linear programming
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Figure 5.5: Individual thruster forces for unconstrained thrust allocation for planar motion using
linear programming
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Planar Motion - Quadratic Programming

0 20 40 60

Time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

T
h

ru
s

t 
[N

]

Surge

0 20 40 60

Time [s]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

T
h

ru
s

t 
[N

]

Sway

0 20 40 60

Time [s]

-0.15

-0.1

-0.05

0

0.05

0.1

T
h

ru
s

t 
[N

]

Heave

0 20 40 60

Time [s]

-80

-60

-40

-20

0

20

40

T
h

ru
s

t 
[N

m
]

Roll

0 20 40 60

Time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

T
h

ru
s

t 
[N

m
]

Pitch

0 20 40 60

Time [s]

-0.1

-0.05

0

0.05

0.1

0.15

0.2

T
h

ru
s

t 
[N

m
]

Yaw

Figure 5.6: Error between commanded and actual thrust for unconstrained thrust allocation for
planar motion using quadratic programming
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Figure 5.7: Individual thruster forces for unconstrained thrust allocation for planar motion using
quadratic programming
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Three-Dimensional Motion - Standard Damped Inverse
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Figure 5.8: Error between commanded and actual thrust for unconstrained thrust allocation for
three-dimensional motion using standard damped inverse
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Figure 5.9: Individual thruster forces for unconstrained thrust allocation for three-dimensional
motion using standard damped inverse
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Three-Dimensional Motion - Linear Programming
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Figure 5.10: Error between commanded and actual thrust for unconstrained thrust allocation
for three-dimensional motion using linear programming
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Figure 5.11: Individual thruster forces for unconstrained thrust allocation for three-dimensional
motion using linear programming
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Three-Dimensional Motion - Quadratic Programming

0 20 40 60

Time [s]

-0.8

-0.6

-0.4

-0.2

0

0.2

T
h

ru
s

t 
[N

]

Surge

0 20 40 60

Time [s]

-0.6

-0.4

-0.2

0

0.2

T
h

ru
s

t 
[N

]

Sway

0 20 40 60

Time [s]

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

T
h

ru
s

t 
[N

]

Heave

0 20 40 60

Time [s]

-60

-40

-20

0

20

40

T
h

ru
s

t 
[N

m
]

Roll

0 20 40 60

Time [s]

-2.5

-2

-1.5

-1

-0.5

0

0.5

T
h

ru
s

t 
[N

m
]

Pitch

0 20 40 60

Time [s]

-0.1

-0.05

0

0.05

0.1

0.15

0.2

T
h

ru
s

t 
[N

m
]

Yaw

Figure 5.12: Error between commanded and actual thrust for unconstrained thrust allocation
for three-dimensional motion using linear programming
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Figure 5.13: Individual thruster forces for unconstrained thrust allocation for three-dimensional
motion using linear programming
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5.2.2 Discussion

Firstly, from the maximum slack variable values (i.e. error) in Tab. 5.4, it can be concluded that

all thrust allocation algorithms manage to allocate forces such that the commanded thrust is

obtained with good precision. It can also be seen in Fig. 5.2, 5.4, 5.6, 5.8, 5.10 and 5.12 that

the error is almost zero for most of the course of the simulation. From Fig. 5.1, it is evident

that the end effector manages to follow the desired position. In Fig. 5.4 and Fig. 5.10, is can be

observed that the error is equal to zero when using the LP algorithm for both planar and three-

dimensional motion. The exception in both cases is the roll motion where the error has a spike.

This is as expected due to the fact that the roll degree of freedom is not actuated, i.e. there are

no thrusters producing thrust in roll. However, as a result of the design of the snake robot, the

roll motion also converges to the initial state with time.

Although the LP algorithm manages to minimize the error to zero, it can be seen in Fig. 5.5

and Fig. 5.11, as well as in Tab. 5.5 that the force is poorly distributed amongst the thrusters.

In fact, although a virtual thruster saturation limit of 1000 N and -1000 N is set for all thrusters,

two of the thrusters actutually reach these limits. However, these thruster forces cancel each

other out, which is the reason for the zero error. It should be noted that in real life, the thrusters

would not achieve such a high force value as saturation and thruster dynamics would affect the

thruster performance. Further tuning of the weight values in the LP algorithm might improve

the performance and lower the maximum thrust values, although the cost would be a higher

error. However, the high individual thruster forces are a known problem when using the LP

algorithm. The optimal solutions of linear programs are found at the vertices of the feasible set.

A consequence of this is that the algorithm tends to favor the use of smaller numbers of thrusters

(Bodson (2002)). This is not ideal as wear and tear of the individual thrusters increase.

As opposed to the LP algorithm, the QP algorithm tends to use all thrusters, but to a smaller

degree. This coincides with the results shown in Fig. 5.7 and Fig. 5.13, as well as the data in

Tab. 5.5. As the QP algorithm manages to use all thrusters, while still maintaining low error

values, its performance can be considered satisfactory. It can also be noted that the QP algo-

rithm and the SDI algorithm produce the exact same thrust allocation results. This is expected

for the unconstrained case when the damping coefficient " in the SDI algorithm is equal to the

inverse of the weight w in the QP algorithm. Under these conditions, the two algorithms can be

mathematically deduced to each other (Fossen (2011)).

5.3 CASE 2: Constrained Thrust Allocation

In CASE 2, constrained thrust allocation is considered. The constraints implemented are thruster

saturation limits, which are set to umax,i = 40 N and umi n,i =°40 N for all individual thrusters.

This makes the simulations more equal to real-life conditions as all physical thrusters have sat-
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uration limits. Simulations are performed for both planar and three-dimensional motion using

redistributed pseudo-inverse, linear programming and quadratic programming algorithms for

thrust allocation.

5.3.1 Results

The simulation results for planar motion can be found in Fig. 5.15-5.18,as well as Fig. 5.14a,

5.14c and 5.14e. The simulation results for three-dimensional motion can be found in Fig. 5.21-

5.24, as well as Fig. 5.14b, 5.14d and 5.14f.. Some simulation results are summed up in Tab. 5.6

and Tab. 5.7. Additional simulation results can be found App. A.2.

Table 5.6: The absolute value of the largest errors from simulations in CASE 2

Motion
Alloc.

method

Surge

[N]

Sway

[N]

Heave

[N]

Roll

[Nm]

Pitch

[Nm]

Yaw

[Nm]

2D

RPI 26.2463 53.4438 0.4452 68.4428 1.0350 144.9228

LP 2.0385 0 0 59.5665 0 0

QP 3.0993 1.3539 0.1124 68.4428 0.2641 0.4411

3D

RPI 0.6158 0.5735 114.6970 55.4292 199.5821 0.1978

LP 0 0 44.9038 40.4113 0 0

QP 0.6158 0.5736 39.7435 46.3857 14.3447 0.1978

Table 5.7: Maximum and minimum values for thruster forces from simulations in CASE 2

Motion
Alloc.

method

Value

[N]
Thr. #1 Thr. #2 Thr. #3 Thr. #4 Thr. #5 Thr. #6 Thr. #7 Thr. #8 Thr. #9 Thr. #10

2D

RPI
ua,max 40.0000 3.0537 40.0000 2.0722 40.0000 40.0000 4.2088 20.5563 40.0000 7.7377

ua,mi n -8.2498 -1.9612 -40.0000 -11.0180 -1.8836 -1.7015 -40.0000 -10.2962 -2.6017 -13.1528

LP
ua,max 40.0000 21.5429 7.4686 40.0000 40.0000 40.0000 11.1254 40.0000 29.5301 21.7850

ua,mi n -10.0605 -21.8166 -11.0996 -40.0000 -2.4602 0 -40.0000 -40.0000 -4.4298 -27.9495

QP
ua,max 40.0000 0.7034 4.6576 2.0722 40.0000 40.0000 4.2088 6.6902 23.0544 7.7377

ua,mi n -8.2498 -1.0753 -10.3459 -2.8621 -1.8843 -1.7414 -35.1841 -10.2962 -2.3617 -4.6535

3D

RPI
ua,max 24.9679 40.0000 5.2618 40.0000 37.6404 34.6732 2.7391 40.0000 5.0226 7.2133

ua,mi n -5.5030 -0.6479 -5.2066 -2.6328 -1.2880 -1.1650 -9.9931 -40.0000 -0.2437 -40.0000

LP
ua,max 28.5687 40.0000 2.6072 40.0000 40.0000 32.6012 7.1983 40.000 6.1921 26.9877

ua,mi n -7.4567 -18.2657 -4.9883 -40.0000 -2.3755 -0.2815 -6.1545 -40.0000 -0.5286 -40.0000

QP
ua,max 24.9689 40.0000 5.2620 40.0000 37.6405 34.6731 2.7389 34.9545 5.0224 7.2700

ua,mi n -5.5030 -0.6463 -5.2069 -2.6264 -1.2879 -1.1649 -9.9936 -15.1324 -0.2436 -40.0000
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Figure 5.14: Position and desired position (dashed line) for end effector during CASE 2 simula-
tions
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Planar Motion - Standard Damped Inverse
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Figure 5.15: Error between commanded and actual thrust for constrained thrust allocation for
planar motion using redistributed pseudo-inverse
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Figure 5.16: Individual thruster forces for constrained thrust allocation for planar motion using
redistributed pseudo-inverse
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Planar Motion - Linear Programming
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Figure 5.17: Error between commanded and actual thrust for constrained thrust allocation for
planar motion using linear programming
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Figure 5.18: Individual thruster forces for constrained thrust allocation for planar motion using
linear programming
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Planar Motion - Quadratic Programming
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Figure 5.19: Error between commanded and actual thrust for constrained thrust allocation for
planar motion using quadratic programming
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Figure 5.20: Individual thruster forces for unconstrained thrust allocation for planar motion
using quadratic programming
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Three-Dimensional Motion - Redistributed Pseudo-Inverse
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Figure 5.21: Error between commanded and actual thrust for constrained thrust allocation for
three-dimensional motion using redistributed pseudo-inverse
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Figure 5.22: Individual thruster forces for constrained thrust allocation for three-dimensional
motion using redistributed pseudo-inverse



62 CHAPTER 5. SIMULATION AND RESULTS

Three-Dimensional Motion - Linear Programming

0 20 40 60

Time [s]

-1

-0.5

0

0.5

1

T
h

ru
s

t 
[N

]

Surge

0 20 40 60

Time [s]

-1

-0.5

0

0.5

1

T
h

ru
s

t 
[N

]

Sway

0 20 40 60

Time [s]

-50

-40

-30

-20

-10

0

T
h

ru
s

t 
[N

]

Heave

0 20 40 60

Time [s]

-60

-40

-20

0

20

40

T
h

ru
s

t 
[N

m
]

Roll

0 20 40 60

Time [s]

-1

-0.5

0

0.5

1

T
h

ru
s

t 
[N

m
]

Pitch

0 20 40 60

Time [s]

-1

-0.5

0

0.5

1

T
h

ru
s

t 
[N

m
]

Yaw

Figure 5.23: Error between commanded and actual thrust for constrained thrust allocation for
three-dimensional motion using linear programming
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Figure 5.24: Individual thruster forces for constrained thrust allocation for three-dimensional
motion using linear programming



64 CHAPTER 5. SIMULATION AND RESULTS

Three-Dimensional Motion - Quadratic Programming

0 20 40 60

Time [s]

-0.8

-0.6

-0.4

-0.2

0

0.2

T
h

ru
s

t 
[N

]

Surge

0 20 40 60

Time [s]

-0.6

-0.4

-0.2

0

0.2

T
h

ru
s

t 
[N

]

Sway

0 20 40 60

Time [s]

-40

-30

-20

-10

0

10

T
h

ru
s

t 
[N

]

Heave

0 20 40 60

Time [s]

-60

-40

-20

0

20

40

T
h

ru
s

t 
[N

m
]

Roll

0 20 40 60

Time [s]

-15

-10

-5

0

5

T
h

ru
s

t 
[N

m
]

Pitch

0 20 40 60

Time [s]

-0.1

-0.05

0

0.05

0.1

0.15

0.2

T
h

ru
s

t 
[N

m
]

Yaw

Figure 5.25: Error between commanded and actual thrust for constrained thrust allocation for
three-dimensional motion using quadratic programming
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Figure 5.26: Individual thruster forces for constrained thrust allocation for three-dimensional
motion using quadratic programming
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5.3.2 Discussion

Also in CASE 2, it can be seen from Fig. 5.15, 5.17, 5.19, 5.21, 5.23 and 5.25, as well as the po-

sition plots in Fig. 5.14, that all thrust allocation algorithms manage to fulfill their purpose of

allocating thrust forces such that the commanded thrust is obtained. However, the maximum

error values in Tab. 5.6 are significantly larger than the ones in Tab. 5.4. This is as expected for

the constraint allocation case as commanded thrust that can not be allocated due to saturated

thrusters is accounted for by the slack variable.

When using the RPI algorithm, it can be seen in Tab. 5.6 that the extreme error values for

planar motion is large compared to the extreme values for three-dimensional motion. Also,

from Tab. 5.7 and Fig. 5.16 and 5.22, it can be observed that the unsaturated thrusters produce

low thrust in the planar motion simulation, compared to the simulation of three-dimensional

motion. This suggests that the performance of the algorithm may vary greatly dependent on the

task to be performed.

For the simulations using the LP algorithm, it can be seen in Fig. 5.17 and 5.23, that the

error is equal to zero for the most of the course of the simulation, as in CASE 1. In Fig. 5.17,

it can be noticed that the error has a spike in surge. From Fig. 5.18, it can be observed that

both thruster number five and thruster number six, which can be assumed to have the largest

contribution to the global surge thrust, are saturated. This suggests that the spike in error is due

to a lack of enough x-direction thrusters. There are also spikes in error in the results from the

three-dimensional motion simulation, as shown in Fig. 5.23, which can be assumed to be due

to the same reason. However, Fig. 5.18 and 5.24, as well as the results in Tab. 5.7, show that the

LP algorithm distributes force to thrusters more evenly in the constrained case than it did in the

unconstrained case.

When comparing the results in Tab. 5.7 for thrust allocation using QP with the results for

thrust allocation using RPI and LP, it can be noticed that fewer thrusters reach saturation, al-

though the results in Tab. 5.6 show that the error is small for most generalized DOFs. This

suggests that the QP algorithm manages the task of distributing forces well. However, for the

tree-dimensional case, some errors in heave and pitch are still large. This might be because the

implemented USR only has z-revolute joints. Therefore, all vertical motion must be produced

by thrusters, which causes the thruster force demand relative to displacement to be higher than

it is for planar motion.

Although it is out of the scope of this thesis, it should also be mentioned that a substantial

challenge concerning USRs lies in the inverse kinematics and controller models. A dynamic

inverse kinematics model and a dynamic controller model might be stable separately. However,

getting the two to work well together can prove a challenging endeavor. A smoother controller

output would be preferable when analyzing the performance of thrust allocation algorithms.



Chapter 6

Concluding Remarks

6.1 Conclusion

The topic of this master thesis was to study thrust allocation algorithms for USRs using meth-

ods such as redistributed pseudo-inverse, linear programming and quadratic programming. A

study of previous literature concerning snake robots, underwater snake robots and control allo-

cation was performed. Also, a thorough description of the underwater snake robot simulation

model used in this thesis, was presented. Several thrust allocation methods, both explicit solu-

tion methods and iterative methods, were presented and described.

The algorithms were developed and implemented in Matlab/SIMULINK. Simulations were

performed using the underwater snake robot simulation model for several cases simulating un-

constrained and constrained thrust allocation for planar and three-dimensional motion. In the

unconstrained case, simulations using a pre-implemented standard damped inverse algorithm

was also performed for comparison. A redistributed pseudo-inverse algorithm was developed

and implemented for simulation of constrained thrust allocation.

From the simulation results, it could be concluded that all methods are viable for thrust al-

location of USRs. All methods managed to solve the thrust allocation problem in such a way

that the error between commanded and actual thrust was generally kept to a minimum. For

unconstrained thrust allocation, the performance of the QP algorithm proved to be equal to the

performance of the pre-implemented SDI algorithm. The LP algorithm tended to favor alloca-

tion to a small number of thrusters, which is a drawback considering thruster wear and tear.

However, the result also showed that the LP algorithm generally kept the error exceptionally low

in all actuated DOFs.

The redistributed pseudo-inverse algorithm implemented for constrained allocation proved

to have a sub-optimal performance with high error values compared to the other methods. In

comparison, both the LP algorithm and the QP algorithm gave better results. The LP algorithm

had a better performance for constrained thrust allocation than it did in the unconstrained case,
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since it was forced to allocate between a larger number of thrusters when some thrusters got

saturated. The best performance was obtained when using the QP algorithm, which had the

most even allocation between individual thrusters while still keeping the error low. For QP, the

performance was also high when simulating three-dimensional motion, compared to the other

algorithms.

6.2 Further Work

In order to obtain more realistic simulation results, thruster dynamics should be implemented

in the simulation model. Also, additional constraints such as rate limits and forbidden sectors

should be added to the algorithms. A rate limit would prevent the thruster forces from unreal-

istically spiking, and forbidden sectors would prevent thruster forces from counteracting other

out.

Simulations should be performed using several snake robot configurations, i.e. different

combinations of link and joint types. Simulations of more complex motions, such as interven-

tion maneuvers and transit mode motion, should also be performed in order to obtain a more

thorough basis for algorithm evaluation.
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Appendix A

Additional Simulation Results

A.1 CASE 1 - Unconstrained Thrust Allocation

A.1.1 Planar Motion

Standard Damped Inverse
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Figure A.1: Commanded thrust øc and actual thrust øa for unconstrained thrust allocation for
planar motion using standard damped inverse
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Linear Programming
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Figure A.2: Commanded thrust øc and actual thrust øa for unconstrained thrust allocation for
planar motion using linear programming
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Quadratic Programming
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Figure A.3: Commanded thrust øc and actual thrust øa for unconstrained thrust allocation for
planar motion using quadratic programming
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A.1.2 Three-dimensional motion

Standard Damped Inverse
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Figure A.4: Commanded thrust øc and actual thrust øa for unconstrained thrust allocation for
three-dimensional using standard damped inverse
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Linear Programming
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Figure A.5: Commanded thrust øc and actual thrust øa for unconstrained thrust allocation for
three-dimensional motion using linear programming
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Quadratic Programming
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Figure A.6: Commanded thrust øc and actual thrust øa for unconstrained thrust allocation for
three-dimensional motion using linear programming
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A.2 CASE 2 - Constrained Thrust Allocation

A.2.1 Planar Motion

Redistributed Pseudo-Inverse
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Figure A.7: Commanded thrust øc and actual thrust øa for constrained thrust allocation for pla-
nar motion using redistributed pseudo-inverse
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Linear Programming
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Figure A.8: Commanded thrust øc and actual thrust øa for constrained thrust allocation for pla-
nar motion using linear programming
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Quadratic Programming
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Figure A.9: Commanded thrust øc and actual thrust øa for constrained thrust allocation for pla-
nar motion using quadratic programming
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A.2.2 Three-dimensional motion

Redistributed Pseudo-Inverse
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Figure A.10: Commanded thrust øc and actual thrust øa for constrained thrust allocation for
three-dimensional using redistributed pseudo-inverse
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Linear Programming
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Figure A.11: Commanded thrust øc and actual thrust øa for constrained thrust allocation for
three-dimensional motion using linear programming
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Quadratic Programming
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Figure A.12: Commanded thrust øc and actual thrust øa for constrained thrust allocation for
three-dimensional motion using quadratic programming



Appendix B

MATLAB Code

B.1 Linear Programming Algorithm

1 function [ f_thr , s ] = LPmixed ( tau_c , TCM, snake )

2 %=========================================================================

3 % LPmixed ° This function ca l cu l a t e s thruster forces using a l i n e a r

4 % programming algorithm . The s t a t e s to be optimized are x = [ s+ s° u+ u°] ’

5 %

6 % Syntax : [ f_thr , s ] = LPmixed ( tau_c ,TCM, snake )

7 %

8 % Inputs :

9 % tau_c ° Commanded thrust vector

10 % TCM ° Thrust configuration matrix

11 % snake ° Snake robot model properties

12 %

13 % Outputs :

14 % f _ t h r ° Thruster forces

15 % s ° Slack variable

16 %

17 % Author : S i r i Bjoerkedal OEvregaard

18 % Date : 23.06.18

19 %=========================================================================

20

21 % Total number of thrusters

22 N = snake . n_thruster_tot ;

23
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24 % Thruster saturation l i m i t

25 U_max = 1000; % 1000 for CASE 1 , 40 for CASE 2 ( constrained )

26 U_min = °1000; % °1000 for CASE 1 , °40 for CASE 2 ( constrained )

27

28 % Preferred thrust vector

29 u_p = zeros (N, 1 ) ;

30

31 % Slack variable l i m i t

32 s_max = norm(TCM*u_p°tau_c , 1 ) ;

33

34 % Weight parameter

35 e = 1e°5;

36

37 % Weight vectors

38 w = ones ( 6 , 1 ) ; % Error weight

39 q = ones (N, 1 ) *e ; % Thrust weight

40

41 I_s = eye ( 6 ) ;

42

43 %===================================

44

45 % Defining l i n e a r program model

46 f = [w; w; q ; q ] ;

47

48 A_eq = [ I_s °I_s °TCM TCM] ;

49

50 b_eq = TCM*u_p ° tau_c ;

51

52 lb = zeros (6*2+N*2 ,1) ;

53 ub = [ ones ( 6 , 1 ) *s_max ; ones ( 6 , 1 ) *s_max ; U_max°u_p ; u_p°U_min ] ;

54

55 % Deactivating writing to command window

56 options = optimoptions ( ’ l inprog ’ , ’ Display ’ , ’ o f f ’ ) ;

57

58 % Solving l i n e a r program

59 sol = linprog ( f , [ ] , [ ] , A_eq , b_eq , lb , ub , options ) ;

60
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61 % Extracting output var iables

62 s_pluss = sol ( 1 : 6 ) ;

63 s_minus = sol ( 7 : 1 2 ) ;

64 u_pluss = sol (13:12+N) ;

65 u_minus = sol (13+N:12+2*N) ;

66

67 s = s_pluss ° s_minus ;

68

69 f _ t h r = u_pluss ° u_minus + u_p ;
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B.2 Quadratic Programming Algorithm

1 function [ f_thr , s ] = QP( tau_c , TCM, snake )

2 %=========================================================================

3 % QP ° This function ca l cu l a t e s thruster forces using a quadratic

4 % programming algorithm . The s t a t e s to be optimized are x = [u s ] ’ .

5 %

6 % Syntax : [ f_thr , s ] = QP( tau_c ,TCM, snake )

7 %

8 % Inputs :

9 % tau_c ° Commanded thrust vector

10 % TCM ° Thrust configuration matrix

11 % snake ° Snake robot model properties

12 %

13 % Outputs :

14 % f _ t h r ° Thruster forces

15 % s ° Slack variable

16 %

17 % Author : S i r i Bjoerkedal OEvregaard

18 % Date : 23.06.18

19 %=========================================================================

20

21 % Total number of thrusters

22 N = snake . n_thruster_tot ;

23

24 % Thruster saturation l i m i t

25 u_max = 40; % 1000 for CASE 1 , 40 for CASE 2 ( constrained )

26 u_min = °40; % °1000 for CASE 1 , °40 for CASE 2 ( constrained )

27

28 % Weight parameter

29 Q = inv ( 0 . 0 2 ) ;

30

31 % Weight vectors

32 w = ones ( 6 , 1 ) *Q; %Error weights

33 q = ones (N, 1 ) * 1 ; %Thrust weights

34 weight = [ q ; w] ;

35
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36 I_u = eye (N) ;

37 I_s = eye ( 6 ) ;

38

39 %===================================

40

41 % Defining quadratic program model

42 H = 2* diag ( weight ) ;

43

44 f = zeros (N+6 ,1) ;

45

46 A = [°I_u zeros (N, 6 ) ;

47 I_u zeros (N, 6 ) ] ;

48 b = [ ones (N, 1 ) *°u_min ;

49 ones (N, 1 ) *u_max ] ;

50

51 A_eq = [TCM °I_s ] ;

52 b_eq = tau_c ;

53

54 % Deactivating writing to command window

55 options = optimoptions ( ’ quadprog ’ , ’ Display ’ , ’ o f f ’ ) ;

56

57 % Solving quadratic program

58 sol = quadprog (H, f , A , b , A_eq , b_eq , [ ] , [ ] , [ ] , options ) ;

59

60 % Extracting output var iables

61 u = sol ( 1 :N) ;

62 s = sol (N+1:N+6) ;

63

64 f _ t h r = u ;
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B.3 Redistributed Pseudo-Inverse Algorithm

1 function [ f _ t h r ] = RPI (TCM, Q_inv , tau_c )

2 %#codegen

3 %=========================================================================

4 % RPI ° This function ca l cu l a t e s thruster forces using a redistr ibuted

5 % pseudo°inverse algorithm .

6 %

7 % Syntax : [ f _ t h r ] = RPI (TCM, Q_inv , tau_c )

8 %

9 % Inputs :

10 % TCM ° Thrust configuration matrix

11 % Q_inv ° Damping c o e f f i c i e n t

12 % tau_c ° Commanded thrust vector

13 %

14 % Outputs :

15 % f _ t h r ° Thruster forces

16 %

17 % Author : S i r i Bjoerkedal OEvregaard

18 % Date : 23.06.18

19 %=========================================================================

20

21 % Declaring variable s i z e var iables

22 coder . vars ize ( ’ f_thr_curr ’ , ’TCM_curr ’ , ’ count_u_vector ’ , ’ f_th ’ )

23

24 % Thruster saturation l i m i t

25 u_max = 40; % 1000 for CASE 1 , 40 for CASE 2 ( constrained )

26 u_min = °40; % °1000 for CASE 1 , °40 for CASE 2 ( constrained )

27

28

29 %Calculating f i r s t standard inverse

30 TCM_inv = TCM’ / (TCM*TCM’ + Q_inv ) ;

31 TCM_inv( abs (TCM_inv) < 1e°15) = 0 ;

32

33 %Calculating f i r s t thrust vector

34 f_th_1 = TCM_inv * tau_c ;

35
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36 % Declaring vector counting unsaturated elements

37 count_u_vector = zeros ( length ( f_th_1 ) , 1 ) ;

38 for i = 1 : length ( f_th_1 )

39 count_u_vector ( i ) = i ;

40 end

41

42 % Defining a u x i l i a r y parameters

43 TCM_curr = TCM;

44 f _ t h r _ s a t = zeros ( length ( f_th_1 ) , 1 ) ;

45

46 f_th = f_th_1 ;

47

48 while max( f_th ) > u_max | | min( f_th ) < u_min

49

50 f_thr_curr = f_th ;

51 count = 0 ; % Counting saturated elements in current thrust vector

52

53 % Searching thrust vector for saturated elements

54 for k = 1 : length ( f_th )

55

56 i f f_th ( k ) >= u_max

57

58 %Sett ing value equal to saturation value

59 f_th ( k ) = u_max ;

60 f _ t h r _ s a t ( count_u_vector ( k°count ) ) = u_max ;

61

62 % Defining new s i z e of thrust vector and TCM matrix

63 f_thr_new = zeros ( length ( f_thr_curr ) °1 ,1) ;

64 TCM_new = zeros ( length ( tau_c ) , length ( f_thr_curr )°1) ;

65

66 % Reducing thrust vector and TCM matrix and TCM

67 for i = 1 : k°count°1

68 f_thr_new ( i ) = f_thr_curr ( i ) ;

69 TCM_new( : , i ) = TCM_curr ( : , i ) ;

70 end

71

72 for i = k°count +1: length ( f_thr_curr )



98 APPENDIX B. MATLAB CODE

73 f_thr_new ( i °1) = f_thr_curr ( i ) ;

74 TCM_new( : , i °1) = TCM_curr ( : , i ) ;

75 end

76

77 % Updating a u x i l i a r y var iables and count var iables

78 f_thr_curr = f_thr_new ;

79 TCM_curr = TCM_new;

80 count_u_vector ( k°count ) = [ ] ;

81 count = count +1;

82

83 e l s e i f f_th ( k ) <= u_min

84

85 %Sett ing value equal to saturation value

86 f_th ( k ) = u_min ;

87 f _ t h r _ s a t ( count_u_vector ( k°count ) ) = u_min ;

88

89 % Defining new s i z e of thrust vector and TCM matrix

90 f_thr_new = zeros ( length ( f_thr_curr ) °1 ,1) ;

91 TCM_new = zeros ( length ( tau_c ) , length ( f_thr_curr )°1) ;

92

93 %Reducing f _ t h r and TCM

94 for i = 1 : k°count°1

95 f_thr_new ( i ) = f_thr_curr ( i ) ;

96 TCM_new( : , i ) = TCM_curr ( : , i ) ;

97 end

98

99 for i = k°count +1: length ( f_thr_curr )

100 f_thr_new ( i °1) = f_thr_curr ( i ) ;

101 TCM_new( : , i °1) = TCM_curr ( : , i ) ;

102 end

103

104 % Updating a u x i l i a r y var iables and count var iables

105 f_thr_curr = f_thr_new ;

106 TCM_curr = TCM_new;

107 count_u_vector ( k°count ) = [ ] ;

108 count = count +1;

109
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110 e lse

111 f_th ( k ) = f_th ( k ) ;

112 f _ t h r _ s a t ( count_u_vector ( k°count ) ) = 0 ;

113 f_thr_curr ( k°count ) = f_th ( k ) ;

114 end

115 end

116

117 TCM = TCM_curr ;

118

119 % Calculating new standard inverse

120 TCM_inv = TCM’ / (TCM*TCM’ + Q_inv ) ;

121 TCM_inv( abs (TCM_inv) < 1e°15) = 0 ;

122

123 % Calculating new thrust vector

124 f_th = TCM_inv * tau_c ;

125

126 % Checking i f t r u s t vector i s empty

127 t f = isempty ( f_th ) ;

128 TF = double ( t f ) ;

129

130 % Exit ing loop i f thrust vector i s empty

131 i f TF == 1

132 break

133 end

134 end

135

136 % Reassembling thrust vector

137 for i = 1 : length ( count_u_vector )

138 f _ t h r _ s a t ( count_u_vector ( i ) ) = f_th ( i ) ;

139 end

140

141 f _ t h r = f _ t h r _ s a t ;
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