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Abstract
Several authors have indicated discrepancies in the third load harmonic obtained
by the inviscid FNV theory for computing higher order wave loads on vertical, non-
moving, surface-piercing circular cylinders. The present master thesis investigates
if these discrepancies may be explained by the occurrence of local flow separation
along the cylinder axis.

The generalized FNV theory is modified to account for viscous effects, by replac-
ing the linear forcing term with a viscous force term computed using a simpli-
fied numerical model assuming the cross-flow principle to be valid. To reduce
the computational cost related to the numerical solution of the two-dimensional
Navier-Stokes and continuity equations, the governing equations are restated in
terms of the stream function and vorticity transport equation and solved using the
mixed Eulerian-Lagrangian Vortex-In-Cell method in combination with the Oper-
ator Splitting Technique.

Computations of the horizontal wave forces acting on a circular cylinder is carried
out for wave conditions where the third harmonic of the FNV theory is known to
deviate from experimental results. The computed load harmonics of the horizontal
wave load are compared to estimates obtained by the generalized FNV theory and
experimental measurements. Results of the three first harmonics are presented,
while the main focus is on the amplitude of the third load harmonic. The com-
puted third harmonic is shown to be in good agreement with both the FNV theory
and empirical data for short waves. For longer waves the numerically predicted
harmonics are in general smaller than the theoretical predictions. However, the
numerical results overpredict the third harmonic for the steepest wave conditions
tested compared to the experimental data. Thus flow separation alone seems not
to explain the discrepancies in the FNV model.
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Sammendrag
Sammenlikning av eksperimentelle m̊alinger og analytiske modeller av ikke-lineære
bølgelaster p̊a sirkulære sylindere, som er festet til havbunnen og penetrerer den
frie overflaten, har vist at den tredje harmoniske lastkomponeten overpredikeres
av FNV teorien. Denne masteroppgaven undersøker om separasjon lokalt langs
sylinderaksen er opphavet til dette avviket.

Den generaliserte FNV teorien modifiseres slik at den tar høyde for viskøse effekter.
Dette utføres ved å erstatte det lineære lastleddet i FNV teorien med et forenklet
viskøst lastledd. Ved å neglisjere stømninger langs sentralaksen til sylinderen, kan
de viskøe kreftene beregnes ved å anvende den todimensjonale versjonen av Navier-
Stokes likninger og kontinuitetslikningen. For å redusere beregningstiden benyttes
en Eulersk-Lagrange metode kalt Vortex-In-Cell sammen med den matematiske
teknikken Operator Splitting Technique.

Beregninger av horisontale bølgelaster blir utført for sjøtilstander hvor det har blitt
observert at den generaliserte FNV teorien overpredikerer den tredje harmoniske
lastkomponenten. De beregnede lastene sammenliknes med analytiske estimater
og eksperimentelle m̊alinger. Beregniger av de tre første lastkomponentene pre-
senteres i denne oppgaven, men det fokuseres p̊a amplituden av den tredje har-
moniske lastkomponenten. Resultatene viser at den sistnevnte lastkomponenten
samsvarer meget bra med b̊ade analytiske og eksperimentelle data n̊ar de innkom-
mende bølgene er korte. For lengre bølger gir den modifiserte FNV teorien lavere es-
timater p̊a samtlige lastkomponenter sammenliknet med de analytiske resultatene.
Sammenliknet med eksperimentelle m̊alinger overpredikerer den modifiserte FNV
teorien den tredje harmoniske lastkomponenten n̊ar de innkommende bølgene ble
tilstrekkelig steile. Resultatene indikerer dermed at avvikene i den analytiske FNV
modellen ikke kun kan forklares ved separasjon.
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Chapter 1
Introduction

1.1 Motivation

Wind energy has so far been one of the most used sources of renewable energy,
mainly by means of onshore installations. However, the seemingly endless free area
at sea and better wind conditions have driven the wind industry offshore the last
decade.

One of the main disadvantages of offshore wind is the high cost related to the
construction and operation of such installations. Compared with onshore wind
farms, which are already are less cost-efficient than conventional sources energy
(Heptonstall (2007)), offshore installations have an even higher cost per megawatt
produced. The main difference between onshore and offshore installations is the en-
vironmental condition in which they operate, as offshore installation are subjected
to complex hydrodynamic loads.

At present and in the foreseeable future, see Figure 1.1, most offshore wind
turbines are mounted on bottom fixed structures in shallow or intermediate water
depth. Among them, monopiles and gravity based substructures are the most
commonly used offshore foundations. The first natural period of such structures is
typically around 4 seconds. In Ultimate Limit Stats conditions, peak wave periods
are typically in the range of 10-15 seconds. This means that higher order loads
become important as they may excite response at the eigen period of the wind
turbine. Wave load models which accurately describe such loads will therefore be
an essential tool in the further development of the offshore wind industry.
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Chapter 1. Introduction

Figure 1.1: Projecions for offshore wind development globally out to 2030 (GWEC
(2017)).

1.2 Ringing

Experiments have shown that large diameter monopile support structures for off-
shore wind turbines are susceptible to transient structural deflections at frequencies
substantially higher than the incident wave frequencies in severe seas (Suja-Thauvin
et al. (2017); Bachynski et al. (2017)). This phenomenon is often referred to as ring-
ing, and it is characterized as a transient response vibration following a high, steep
wave as illustrated in Figure 1.2 (Faltinsen et al. (1995)). This behavior can not
be explained by traditional wave diffraction theories, as presented by C. MacCamy
and A. Fuchs (1954), nor the Morison equation (Morison et al. (1950)). Many
efforts have thus been made to explain the rationale behind since the phenomenon
was first observed in the late 1980s and early 1990s (Natvig and Teigen (1993)).

Faltinsen et al. (1995) (FNV) presented analytic expressions of the forces acting
on a non-moving, circular cylinder in deep water incident waves. A perturbation
expansion in both wave number and wave slope was used leading to terms of up to
third order. Kristiansen and Faltinsen (2017) generalized the FNV method to finite
water depth. Another approach was presented by Malenica and Molin (1995). Ap-
plying the standard perturbation approach, they developed a complete third-order
diffraction model for a fixed cylinder in finite water depth. Both of the methods
mentioned above are based on the classical assumptions of inviscid, incompressible
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1.2 Ringing

and irrotational fluid flow. Thus neglecting the effect of flow separation.
Numerous authors have during the last two decades presented experimental

results of ringing. There are in particular two phenomena which have gained a lot
of attention. One is the so-called secondary load cycle which occurs in steep waves
and was first observed by Grue et al. (1993). The phenomenon is characterized
by a distinct load peak right after the main load peak with a duration of about
one-fifth to one-sixth of the wave period. The second phenomenon is a local run-up
at the rear face of the cylinder, which occurs as a large wave passes the cylinder, as
illustrated in Figure 1.3. The occurrence of this rear run-up was first described by
Chaplin et al. (1997). Attempts by Kristiansen and Faltinsen (2017) to visualize
the local rear run-up using confetti, made it clear that an upwelling from below
causes the phenomenon. It is thus believed that the rear run-up originates from a
high-pressure zone behind the cylinder due to flow separation.

Figure 1.2: Example of the occurrence of ringing on a tension-leg platform as a steep
wave passes the platform. The upper curve shows the time history of the surface eleva-
tion, while the lower shows the measured tension at the eigen frequency of the structure
(Faltinsen et al. (1995)).
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Chapter 1. Introduction

Figure 1.3: Example of water run-up behind the cylinder as a wave crest passes (Kris-
tiansen and Faltinsen (2017)).

Discrepancies between experimental and analytical forces obtained on monopiles
in long and steep waves have also been noted by several authors. Experimental
measurements of the in-line force on a vertical cylinder in deep water was carried
out by Huseby and Grue (2000). Results showed that the FNV model gave a rea-
sonable prediction of the first and second harmonic. However, the results indicated
that the phasing and amplitude of the third harmonic were incorrect. Kristiansen
and Faltinsen (2017) showed that the predicted forces and moments from the gener-
alized FNV model was in good agreement with experiments, both regarding phase
and amplitude, for small to medium steep waves. Noticeable discrepancies in the
third load harmonic were observed as the wave steepness exceeded a distinct limit.
This was attributed to the onset of flow separation along the cylinder axis.

1.3 Scope

This thesis examines the effect of flow separation on higher harmonic wave loads
on large diameter monopile in steep regular wave conditions. The main objec-
tive is to investigate if a simplified numerical model based on the two-dimensional
Navier-Stokes equations, using a strip theory approach and assuming the cross-flow
principle, can explain the discrepancies in the third load harmonic of the horizon-
tal wave load obtained by the generalized FNV theory. To keep the computational
cost low, viscous forces should be obtained using the Vortex-In-Cell method.

4



1.4 Report Structure

1.4 Report Structure

The first part of this thesis will present the theoretical background relevant to the
thesis. First, different aspects of flow past two-dimensional circular cylinders are
considered in Chapter 2. The reaming part of the chapter presents different regular
wave theories and wave force models, focusing on Stokes perturbation theory and
the generalized FNV theory. A brief outline is provided for both theories. Chapter
3 covers the theoretical foundation and the implementation of the Vortex-In-Cell
method. This chapter will also present numerical results for a two-dimensional
cylinder in impulsively started and planar oscillatory flows. The results are com-
pared to experimental data and existing numerical results. The combined VIC-
FNV method is presented in Chapter 4. Some comments to the test conditions
are also given. The results are presented in Chapter 5. The horizontal wave force
obtained by the combined VIC-FNV method are compared to experimental mea-
surements and the generalized FNV theory. Concluding remarks are presented in
Chapter 6.
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Chapter 2
Theory

2.1 Flow around two-dimensional cylinders

Flow past two-dimensional cylinders with circular cross-section is a widely studied
subject in research due to its practical importance in engineering application on
typical marine structures exposed to waves and currents. In this section, some
aspects of such flows are presented.

2.1.1 Flow separation

All solid objects traveling through a viscous fluid acquire a layer close to the surface
associated with viscous flow effects, usually referred to as the boundary layer.
The thickness of this layer is often defined as the normal distance from the wall
to a point where the tangential velocity is 99% of the local free stream velocity
(White (2006)). Shear stress caused by viscosity has a retarding effect on the
fluid, within the boundary layer. This may be overcome if there is a negative,
favorable, pressure gradient along the body contour, while a positive, adverse,
pressure gradient increase the local retardation of the flow.

Whether the local pressure gradient is positive or negative is determined by the
curvature of the body. In the case of a circular cylinder we have a favorable pressure
gradient on the side facing the incoming flow. The negative pressure gradient will
counteract the retarding effect of viscosity and the local velocity profile is preserved.
The pressure gradient gradually change along the cylinder surface and at one point
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Chapter 2. Theory

Figure 2.1: Effect of adverse pressure gradient (White (2006)).

the pressure gradient changes sign. Thus we get an adverse pressure gradient,
slowing down the wall flow and the boundary layer thickens as illustrated in Figure
2.1. Further retardation of the fluid brings the shear stress at some point to zero.
This is known as the separation point. From this point onwards the fluid velocity
close to the wall changes sign, moving upstream, and a region of recirculating flow
develop. The flow does no longer follow the body contour, thus we say that the
flow has separated. In general, the flow separates more easily in laminar than in
turbulent boundary layers. The reason for this is that the smaller eddies cause a
net momentum flux from the free stream to the boundary layer, thus increasing
the wall velocity.

2.1.2 Forces on a cylinder in uniform current

The total in-line force acting on a cylinder in a uniform current originate from two
terms. A pressure force, due to local pressure variations along the surface of the
cylinder, and a friction force, due to the viscous shear stresses within the boundary
layer. The total force in the flow direction is simply found as the sum of these two
contributions, Fx = Fp,x + Fs,x.

The total force Fx is usually presented in terms of a dimensionless force coeffi-
cient, CFx , defined as

CFx = Fx
1
2ρU

2D
(2.1)

in which D is the cylinder diameter, ρ is the density of the ambient fluid and U is
the flow velocity past the cylinder.

8



2.1 Flow around two-dimensional cylinders

2.1.3 Forces on cylinders in oscillatory flows

The in-line forces on cylinders in oscillatory flow are usually decomposed into two
terms, an inertia part proportional to the acceleration, and a drag part proportional
to velocity squared in the following manner

Fx = FI + FD

Fx = ρ
πD2

4 CM
∂U

∂t
+ ρ

2CDD|U |U
(2.2)

where FI and FD is the inertia and drag force respectively. The non-dimensional
inertia and drag coefficient CM and CD depends on both the Keulegan-Carpenter
Number KC and the Reynolds number Re as illustrated in Figure 2.2. These
non-dimensional numbers are defined as

KC = UoTw
D

(2.3)

Re = UoD

ν
(2.4)

where Uo and Tw are the flow velocity amplitude and period respectively, ν is the
kinematic viscosity. Equation 2.2 is formally known as the Morison equation and
was first proposed by Morison et al. (1950).

The ratio between the maximum of the two terms on the right hand side of
equation 2.2 can be expressed as

FIMax
FDMax

=
ρπ

2

2 CMD
2Uo

ρ 1
2CDDU

2
oTw

= π2

KC
CM
CD

(2.5)

At small values of KC, CM may be taken as CM = 2, see Figure 2.2b, while CD is
approximately equal to 1. Thus equation 2.5 gives

FIMax
FDMax

∝ 20
KC (2.6)

This means that for small KC numbers, the inertia term of the in-line forces
dominates and the drag term may be neglected. However, at larger values of KC,
viscous effects such as flow separation become more pronounced, and the drag term
become increasingly important.

9
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(a)

(b)

Figure 2.2: Drag (a) and inertia (b) coefficients dependence on Re and KC for a smooth
circular cylinder (Sarpkaya (1976)).

2.1.4 Force coefficients

When decomposing the in-line forces according to the Morison equation, the hy-
drodynamic problem reduces to obtain suitable values of CM and CD. As equation
2.2 does not account for the wake behavior, history of the flow, nor the frequency
at which the flow oscillates. Such effects must therefore be entirely accounted for
by the two force coefficients.

For smooth cylinders in planetary oscillatory flow, it is possible to obtain an-
alytical expressions for the two force coefficients as a function of the parameters

10



2.1 Flow around two-dimensional cylinders

KC and the the Stokes parameter β, defined in equation 2.7.

β = Re
KC = D2

νTw
(2.7)

One such solution was presented by Wang (1968) of order O((πβ)−3/2). However,
these expressions are only valid for small values of KC. Thus CM and CD must,
in general, be obtained from numerical simulations of the Navier-Stokes equations
or experiments. The two coefficients are usually calculated from the time history
of the in-line force, Fx, by applying a standard Fourier averaging process. For
an oscillatory flow represented by U = Uo sin (ωt), this is performed according to
equation 2.8 and 2.9 (Sarpkaya (1976)).

CD = 1
1
2ρU

2
oD

3ω
8

∫ Tw

0
Fx sinωtdt (2.8)

CM = 1
1
2ρU

2
oD

KCω
π3

∫ Tw

0
Fx cosωtdt (2.9)

Here, ω is the angular frequency.
For β < 1000 the drag coefficient initially decrease with KC until a certain

minimum. The inertia coefficient remains almost constant, approximately equal to
2, in the same region. The theory by Wang is in good agreement with experimental
data obtained by Bearman et al. (1985) as the KC number is sufficiently low.
However, as KC reach a value of about 2, the experimental data suddenly deviate
from the theoretical results. For higher values of β, the experiments carried out
by Sarpkaya (1986) indicated that the theoretically predicted CD diverge from the
experimental results at smaller values of KC. The discrepancies becoming larger
as β increases. This was credited to the onset of three-dimensional instabilities,
known as Honji instabilities (Honji (1981)), which leads to the formation of periodic
vortex structures along the cylinder axis. In the higher KC range, 2 . KC . 12,
CD was found to be directly proportional to the KC number, while CM decreased
with increasing KC.

Another important characteristic of in-line force is the root mean square (RMS)
value. The dimensionless RMS of the in-line force, denoted CFRMS , is computed
similarly to the drag and inertia coefficients by evaluating the integral given by

11



Chapter 2. Theory

Sarpkaya (1976) as

CFRMS = 1
Tw

∫ Tw

0

F 2
x

( 1
2ρDU

2
o )2 dt (2.10)

2.2 Regular wave theory

An important aspect when evaluating wave loads on marine structures is how one
chose to describe the waves kinematics. This section provides the basic knowledge
of regular water waves needed to evaluate such loads.

2.2.1 The boundary value problem

Sea water may be assumed to be a perfect fluid, with the fluid motion being irro-
tational. Thus, the flow can be described by the Laplace equation for a velocity
potential φ, in equation 2.11, which must hold throughout the fluid (Faltinsen
(1990)).

∇2φ = 0 (2.11)

Here ∇ denotes the del operator. To solve equation 2.11, one must provide
boundary conditions for φ everywhere along the boundaries of the flow field of
interest, as illustrated in Figure 2.3. At the free surface both the surface elevation
ζI and the potential function φ are unknown, therefore requiring two boundary
conditions. The two conditions enforced on the free surface are formally known
as the dynamic and kinematic free surface conditions and are a consequence of no
change in pressure and no flow across the fluid interface, respectively. The latter
of the two may be expressed as

∂ζI
∂t

= ∂φ

∂z
−∇φ · ∇ζI , z = ζI (2.12)

while the dynamic free surface condition is

∂φ

∂t
+∇φ · ∇φ+ gζI = 0, z = ζI (2.13)

Taking the time derivative of equation 2.13 and introducing equation 2.12, equation

12



2.2 Regular wave theory

Figure 2.3: Illustration of the boundary value problem, the Cartesian coordinate system,
water depth h, wave height H and wave length L.

2.14, known as the combined free surface boundary condition, can be obtained.

∂2φ

∂t2
+ g

∂φ

∂z
+ 2∇φ · ∇∂φ

∂t
+ 1

2∇φ · ∇
(
∇φ · ∇φ

)
= 0, z = ζI (2.14)

Finally, for waves propagating over a horizontal sea floor, the kinematic bottom
boundary condition states that the sea floor is impermeable and thus the vertical
fluid velocity has to be zero along the sea bed, according to equation 2.15.

∂φ

∂z
= 0, z = −h (2.15)

2.2.2 Linear wave theory

With the combined free surface condition (eq. 2.14), one does not know where the
free surface is before the problem is solved. However, by linearizing the free surface
condition, we are able to simplify the problem and still get an adequate description
of the surface waves in most cases. The linearized free surface condition, equation
2.16, is obtained by Taylor expansion of equation 2.14 around the mean free surface,
only including the linear terms.

∂2φ

∂t2
+ g

∂φ

∂z
= 0, z = 0 (2.16)

Solving the linearized boundary value problem, we obtain a velocity potential
proportional to the wave amplitude ζa valid up to the mean free surface. The use
of linear wave theory (Airy waves) is in general justified when the wave amplitude
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Chapter 2. Theory

is small. Consistent with linear theory the wave kinematics may be extrapolated
above the mean free surface by a zeroth order approximation, e.i. all properties
are assumed to be constant above z = 0. However, in extreme sea states, the dis-
crepancies of linear theory become more pronounced, especially in the free surface
zone. Thus in order to accurately predict the wave loads in such sea states more
sophisticated wave models are needed.

2.2.3 Stokes wave theory

In Stokes wave theory, the exact solution of the boundary value problem is approx-
imated using a so called perturbation series approach. The series expansions are in
terms of a small perturbation parameter ε, which according to the original Stokes
theory equals the wave steepness kζa1, where k is the wave number and ζa1 is the
wave amplitude to first order. Thus, the velocity potential φ and surface elevation
ζI can be expressed on the form

φ = εφ1 + ε2φ2 + ε3φ3 + ... (2.17)

ζI = εζ1 + ε2ζ2 + ε3ζ3 + ... (2.18)

The combined free surface boundary condition apply at the yet unknown free-
surface elevation. To resolve this problem, a Taylor series expansion of the free
surface condition in the vertical direction is performed about the mean free surface
z = 0. The Taylor development of a function f, evaluated at z = ζI , taken around
z = 0 is given in equation 2.19 below.

f(x, ζ, t) = f
∣∣∣
z=0

+ ζI
∂f

∂z

∣∣∣
z=0

+ ζ2
I

2!
∂2f

∂z2

∣∣∣
z=0

+ ζ3
I

3!
∂3f

∂z3

∣∣∣
z=0

+ ... (2.19)

Carrying out the Taylor expansion on the combined free surface condition,
equation 2.14, yields

∂2φ

∂t2

∣∣∣
z=0

+ g
∂φ

∂z

∣∣∣
z=0

+ζI
( ∂3φ

∂z∂t2

∣∣∣
z=0

+ g
∂2φ

∂z2

∣∣∣
z=0

)
+

2∇φ∇∂φ
∂t

∣∣∣
z=0

= 0 z = 0
(2.20)

showing terms up to double products of ζI and φ, representing the Stokes expansion
up to second order. By further introducing the series expansion given in equation
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2.17 and 2.18 we get

ε
{∂2φ1

∂t2

∣∣∣
z=0

+ g
∂φ1

∂z

∣∣∣
z=0

}
+ ε2

{∂2φ2

∂t2

∣∣∣
z=0

+ g
∂φ2

∂z

∣∣∣
z=0

+

ζ1

( ∂3φ1

∂z∂t2

∣∣∣
z=0

+ g
∂2φ1

∂z2

∣∣∣
z=0

)
+ 2∇φ1∇

∂φ1

∂t

∣∣∣
z=0

}
+O(ε3) = 0 z = 0

(2.21)

Introducing the series expansion of φ into the Laplace equation (eq. 2.11) and the
bottom boundary condition (eq. 2.15) we obtain the following expressions

ε∇2φ1 + ε2∇2φ2 + ... = 0 (2.22)

ε
∂φ1

∂z

∣∣∣
z=−h

+ ε2
∂φ2

∂z

∣∣∣
z=−h

+ ... = 0 (2.23)

The nonlinear boundary value problem has now been restated onto an infinite set
of linear equations. One for each order of ε. Gathering all terms that depend on
ε the linear boundary value problem is obtained, while the terms proportional to
ε2 yields the boundary value problem for the second order correction term. In
general, the nth order solution will depend on the solution of order n-1, creating a
hierarchy of equations which must be solved from lower to higher order. As a rule
of thumb, the accuracy of the velocity potential increases as more terms are added
in the perturbation expansion of φ and ζI .

2.2.4 Fifth order Stokes wave

The procedure described in Section 2.2.3 may, in principle, be used to derive Stokes
waves of any order. But as more terms are added in the of series of φ and ζI the
extent of calculations increases dramatically. Still, a fifth order theory was derived
by Skjelbreia and Hendrickson (1960). The assumption on which the derivation
is based is that both the velocity potential and surface profile can be described
as trigonometric series. This leads to the following expression for the velocity
potential

φ = cω
k

5∑
n=1

Dn cosh(nk(h+ z)) sin(n(kx− ωt)) (2.24)

where cω is the wave celerity given by

cω =
√
C2

0 (1 + λ2C1 + λ4C2)
k

(2.25)
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The surface elevation has the following form

ζI = 1
k

5∑
n=1

En cos(n(kx− ωt)) (2.26)

The coefficients Dn and En are introduced for convenience and are defined in Table
2.1.

Table 2.1: Definition of the coefficients Dn and En

n Dn En

1 λA11 + λ3A13 + λ5A15 λ

2 λ2A22 + λ4A24 λ2B22 + λ4B24

3 λ3A33 + λ5A35 λ3B33 + λ5B35

4 λ4A44 λ4B44

5 λ5A55 λ5B55

The coefficients Aij Bij and Ci are functions of the ratio of the water depth
to wave length, h/L, only and can be found in the original paper by Skjelbreia
and Hendrickson (1960). It should be noted that the original expression for C2,
the factor +2592 must be replaced with −2592, as pointed out by Fenton (1985).
Since the wave height H, the water depth h and the wave period T is assumed to
be known, the only unknowns are the wave length L and the coefficient λ. These
are found form the simultaneous solution of equation 2.27 and 2.28.

2πh
gT 2 = h

L
tanh

(
2πh
L

)(
1 + λ2C1 + λ4C2

)
(2.27)

πH

h
= L

h

(
λ+ λ3B33 + λ5

(
B35 +B55

))
(2.28)

Here g is the acceleration of gravity. When L and λ are known the wave celerity is
obtained from equation 2.25 and the wave number is found from equation 2.29.

k = 2π
L

(2.29)

Differentiation of 2.24, yields the following expressions for the horizontal and ver-
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tical velocity components in equation 2.30 and 2.31.

u = ∂φ

∂x
= cw

5∑
n=1

nDn cosh(nk(h+ z)) cos(n(kx− ωt)) (2.30)

w = ∂φ

∂z
= cw

5∑
n=1

nDn sinh(nk(h+ z)) sin(n(kx− ωt)) (2.31)

Further derivation of the above equations yields the following formulas for the
horizontal particle acceleration, horizontal velocity gradient and vertical velocity
gradient in equation 2.32, 2.33 and 2.34 respectively.

∂u

∂t
= cwω

5∑
n=1

n2Dn cosh(nk(h+ z)) sin(n(kx− ωt)) (2.32)

∂u

∂x
= −cwk

5∑
n=1

n2Dn cosh(nk(h+ z)) sin(n(kx− ωt)) (2.33)

∂w

∂z
= cwk

5∑
n=1

n2Dn cosh(nk(h+ z)) sin(n(kx− ωt)) (2.34)

2.2.5 Comments to higher order Stokes waves

Dean (1991) discusses the importance of the Ursell parameter, defined in equation
2.35, in connection with finite amplitude Stokes waves.

Ur = HL2

h3 (2.35)

An example of its importance was illustrated by studying the curvature at the wave
trough predicted by second order Stokes wave theory. At large values of Ur it was
shown that a secondary crest occurred in the theoretical predicted trough, due to
the largeness of the second order term. Under these conditions the assumption that
the second order term is much smaller then the corresponding first order term is no
longer valid. The advent of a secondary wave crest is not limited to second order
Stokes theory but may appear in any higher order Stokes solution (Hedges (1995)).
Thus, higher order Stokes theory should be used only when Ur is sufficiently small.

Fenton (1990) performed a comparative study between fifth order Stokes theory
and the more accurate Fourier solution. As a measure of accuracy, he used the
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integrated value of the horizontal particle velocity underneath the wave crest. From
his analysis he proposed equation 2.36 as an upper limit for the Stokes theory.

L

h
= 21.5e−1.87H/h (2.36)

Using the findings of Fenton (1990), Hedges (1995) showed that Ur = 40 is a
better approximation of the upper limit for the application of Stokes waves.

Provided that the wave length is less than two times the water depth the Ursell
number is of minor importance. In deep waters, the validity of Stokes wave theory
is limited by the wave steepness H/L, due to the occurrence of wave breaking.

Figure 2.4 indicates the approximate regions in which various analytical wave
theories may be regarded as valid. Note that the boundary between linear and
Stokes higher order theories for deep water has been assumed to apply for inter-
mediate water depth. This need not be true. The sea states used in the current
analysis of wave loads on large monopile support structures consists of steep, non-
breaking waves in deep and intermediate water. The use of fifth order Stokes wave
may be justified according to Figure 2.4, which will be further discussed.

Figure 2.4: Validity of different wave motion models with respect to the wave steepness
and the Ursell number in deep waters (Hedges (1995)).
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2.3 Wave forces

All marine units, whether floating or fixed to the sea floor, are subjected to wave
forces, and therefore these forces are of central interest to naval engineers. There
are in principle three approaches to solve this problem. The first approach is
based on experimental investigation. The second is based on the three fundamental
assumptions of potential flow theory. The last is based on the numerical solution
of the fundamental governing equations of a viscous fluid. In the following sections
three different wave load models, one for each approach, are introduced.

2.3.1 The Morison equation

The semi-empirical Morison equation, introduced in Section 2.1.3, combined with
first order wave theory is widely used in the prediction of hydrodynamic loads on
slender structures due to its simplicity and low computational cost.

Figure 2.5: Comparison of the analytic obtained CM and CM = 2. ( ), CM
as predicted by linear diffraction theory (C. MacCamy and A. Fuchs (1954)); ( ),
CM = 2 (Pettersen (2004)).
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To determine the total horizontal force acting on the cylinder, equation 2.2 must
be integrated over the immersed part of the cylinder. The waves are assumed to be
long compared to the cylinder diameter. The structure will not deform the wave
profile, and the wave kinematics is thus undisturbed by the pile. Moreover, the
two coefficients CD and CM are usually taken to be constant, which is in general
not true. Applying linear wave theory and evaluating the wave kinematics from an
undisturbed wave at the center axis of the pile, the integration can be carried out
up to the mean free surface to give an approximation of the total force.

Neglecting the drag term in equation 2.2, it can be shown analytically that the
Morison equation with CM = 2.0 is correct as the wave length-cylinder diameter
ratio tends to infinity, L/D → ∞ (Faltinsen (1990)). The difference between the
analytic solution of the linear diffraction problem, as presented by C. MacCamy
and A. Fuchs (1954), and the inertia term in the Morison equation with CM = 2
is less then 4% for L/D > 5 (Pettersen (2004)), as illustrated in Figure 2.5. Thus,
in practice one use L/D = 5 as the lower limit for the application of the Morison
equation. The wave forces on a monopile can then be expressed as equation 2.37,
neglecting viscous forces.

Fx = 2ρπa2
∫ 0

−h

∂u

∂t
,

L

D
> 5 (2.37)

2.3.2 Generalized FNV theory

To better describe the ringing phenomenon, Faltinsen, Newmann and Vinje de-
veloped an extended diffraction theory able to capture loads up to third order.
The FNV method uses a perturbation approach based on the assumption that the
wave amplitude ζa and the cylinder radius a is small relative to the wave length
L, similar to that of traditional diffraction theories. However, instead of assuming
the wave amplitude to be small relative to the column radius, they allowed the
two to be of the same order of magnitude. Thus making the theory applicable in
severe seas. Formally, we may formulate the main assumption of the FNV model
as follows; kζa = O(ε), ka = O(ε), ζa = O(a) and a/h = O(ε), where ε � 1. The
original FNV theory presented by Faltinsen et al. (1995) considered deep water
regular incident waves only. Kristiansen and Faltinsen (2017) generalized the FNV
theory to finite water depth by using wave kinematics for finite water depth.
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Figure 2.6: Description of the Cartesian coordinate system, load conversions, cylinder
radius a, angle θ and water depth h. R = (x2 + y2)1/2 is the distance from the cylinder
axis to a point in the fluid.

Derivation

A Cartesian coordinate system according to Figure 2.6 is defined. The total velocity
potential is written as φ = φI +φS + Ψ, where φI , φS and Ψ are the incident wave
potential, first order scattering potential and higher order scattering potential,
respectively. Further, a linear diffraction potential φD is defined as φD = φI + φS .

When solving the linear diffraction problem two complementary domains are
considered including the outer domain, where R = O(L), and the inner domain
where R = O(a). In the inner domain a are of order 1, whereas h are of order
1/ε. As ε → 0, the transverse length scale a remains fixed while the length of the
cylinder tends to infinity. The fluid velocity field appears almost constant along
the cylinder axis with ∂/∂z = O(ε). Consequently, the vertical derivative is much
smaller than the horizontal derivatives.

∂φ

∂z
� ∂φ

∂x
,
∂φ

∂y
(2.38)

Similar results apply to the second derivatives. Thus the Laplace equation
reduces to the two-dimensional form, and φ can be replaced by a two-dimensional
potential, φ = φ(x, y).

∂2φ

∂x2 + ∂2φ

∂y2 = 0 (2.39)

By Taylor expansion of the diffraction potential φD around the cylinder axis
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x = 0 and y = 0 one obtain the following solution in the near field of the cylinder
in equation 2.40.

φInner = φI

∣∣∣
x=0,y=0

+(x+ φ11)∂φI
∂x

∣∣∣
x=0,y=0

+

(1
2x

2 + φ21)∂
2φI
∂x2

∣∣∣
x=0,y=0

+ f(z, t) +O(ε4)
(2.40)

The terms φ11 and φ21 need only satisfy the two-dimensional Laplace equation
and are determined by satisfying the impermeability condition on the cylinder
surface.

∂

∂n
(x+ φ11) = 0 and ∂

∂n
(1
2x

2 + φ21) = 0, R = a (2.41)

Here, ~n is the two-dimensional normal vector of the body, pointing into the
fluid. A solution of equation 2.39 satisfying the body boundary conditions (eq.
2.41) can be obtained through the method of separation of variables. Since a far
field condition cannot be applied to the inner solution, the potential φInner contains
an arbitrary function f . The function is found by matching of the inner and outer
solution in an overlapping region. Thus the missing boundary condition is replaced
by the matching requirement.

φInner = φOuter, a� R� L (2.42)

The outer solution φOuter is governed by the three-dimensional Laplace equation
and by a suitable far field condition, but need not satisfy the body boundary
condition. The appropriate solution of φOuter is a source distribution, along the
z-axis (Newman (1977)). Applying the matching requirement (eq. 2.42) one obtain
the function f . It can be shown, see Faltinsen (1999), that the three-dimensional
hydrodynamic interaction potential f does not cause any horizontal force to O(ε5)
and is therefore negligible. Thus φD is expressed as equation 2.43.

φD = φI

∣∣∣
x=0,y=0

+ (x+ φ11)∂φI
∂x

∣∣∣
x=0,y=0

+ (1
2x

2 + φ21)∂
2φI
∂x2

∣∣∣
x=0,y=0

(2.43)

The nonlinear scattering potential Ψ is a consequence of the linear scattering
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potential φS not satisfying the free surface boundary conditions to correct order.
The solution of Ψ must satisfy the free surface condition, the three-dimensional
Laplace equation, and the body boundary condition. The combined free surface
boundary condition for the nonlinear scattering potential is according to equation
2.44.

∂2Ψ
∂t2

+ g
∂Ψ
∂z

= −2∇φ · ∇∂φ
∂t
− 1

2∇φ · ∇
(
∇φ · ∇φ

)
, z = ζI (2.44)

Since Ψ varies rapidly in the vertical direction in the surface region, the vertical
gradient of the potential is dominant. Thus the time derivative on the left-hand
side of equation 2.44 is negligible. However, this boundary condition cannot be
transferred to the mean water level, z = 0, and must instead be imposed on the
free surface. Since ka is assumed small and the domain where equation 2.44 must
be considered is confined to the inner region, the free surface condition for Ψ need
only be satisfied on a horizontal plane following ζI at x = y = 0. Solving the
boundary value problem we obtain the following expression for the horizontal force
due to Ψ (Faltinsen et al. (1995)),

FΨ = ρπa2 4
g
u2 ∂u

∂t
(2.45)

where the particle velocity and acceleration are evaluated at x = 0 and z =
0. The distributed force due to the linear diffraction potential φD is found by
integrating the pressure p along the cylinder wall in equation 2.46.

dF ′ = −
∫ 2π

0
pnxadθ (2.46)

Here nx is the x-component of the surface normal vector. The Bernoulli equation
is used to evaluate the pressure. Carrying out the integration yields,

dF ′ = ρπa2
(∂u
∂t

+ u
∂u

∂x
+ w

∂u

∂z

)
+ a11

(∂u
∂t

+ w
∂u

∂z

)
(2.47)

where a11 is the two-dimensional added mass in surge. The total load acting
on the cylinder in x-direction is obtained by integrating the distributed load term
dF ′ along the cylinder up to the free surface, and adding the load due to the higher
order scattering potential Ψ.
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Fx =
∫ ζ

−h
dF ′(z, t)dz + FΨ (2.48)

Discrepancies in the generalized FNV model

Kristiansen and Faltinsen (2017) carried out systematic regular wave experiments
on a vertical, free-surface piercing, bottom mounted, non-moving circular cylinder.
One model with typical dimensions of large monopile support structures was used
for all wave conditions at a model scale of 1:48. The full scale diameter of the pile
was 6.9m. Tests were performed at two water depths, being h/a = 7.83 and h/a =
5.51, and the wave conditions ranged from deep to intermediate water depths.
Horizontal forces and moments were measured and higher harmonic load terms
up to fifth order were studied, while the main focus was on the loads oscillating
with 3ω. In particular, the influence of the linear wave steepness H1/L and the
dimensionless wave number ka was considered.

The experimental results were compared to forces estimated by the generalized
FNV theory, using Stokes fifth order wave theory to obtain the wave kinematics.
An overall good agreement was observed, both regarding amplitude and phase for
the first, second and third load harmonic, for small to medium steep waves. More
precise, the first harmonic was found to be in general good agreement for all wave
conditions. Some deviations between the experimental and theoretical results were

Figure 2.7: Example of amplitude of the third harmonic of the horizontal force as a
function of wave steepness. ( ), FNV model; �, experimental results obtained by
Kristiansen and Faltinsen (2017)). The figure is taken from the same paper.
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observed for the second harmonic, regardless of the wave steepness, as the incident
waves became short, ka > 0.12 − 0.15. The theory overpredicts the force compo-
nent, and the discrepancy increases gradually as the dimensionless wave number
increases. This is expected since the FNV model does not include second order
wave diffraction. Further, the third harmonic obtained with the FNV model was
found to be in excellent agreement with the experimental results for the lowest
wave steepnesses for all wave lengths. However, the theory overpredicts for the
higher wave steepnesses. This is exemplified in Figure 2.7. Here, the amplitude of
the third harmonic of the horizontal force is presented as a function of the wave
steepness for ka = 0.105 and h/a = 7.83. There is a reasonably good agreement
up to about H1/L = 1/30. As the wave steepness further increases the theoret-
ical and experimental results deviates and noticeable discrepancies are observed.
The magnitude of these discrepancies change with the wave length, but a general
increase was observed with increasing wave steepness.

2.3.3 Computational fluid dynamics

The wave load models presented so far provide reasonable estimates for the in-line
forces as long as their respective assumptions are fulfilled. The low computational
cost related to these models makes these tools well suited for handling large test
matrices for design purposes. However, neither of the models can provide a com-
plete description of the force variation in extreme sea states.

The rapid growth of computer hardware in recent years have enabled scientists
and engineers to use the fundamental unsteady three dimensional Navier-Stokes
equations to predict nonlinear wave loads on marine structures. While using Com-
putational Fluid Dynamics (CFD) to simulate wave-structure interaction have been
going on for some time, most existing studies have remained in the research stage.
As an advanced numerical tool, CFD has its merits in applications where non-
linearities are of concern, as shown by Paulsen et al. (2014). Their CFD simulations
predicted the additional local force peak close to, and during, the time of minimum
loading, as well as the wave run-up on the downstream side of the cylinder. How-
ever, due to the high computational costs such computations impose, present-day
CFD technology is still not applicable as a widespread design tool in the offshore
industry.
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Chapter 3
The Vortex-In-Cell Method

At present, the most widely used CFD models are generally based on a direct
resolution of the Navier-Stokes equations. The usual numerical scheme being the
finite volume method. However, other methods such as the finite element and the
finite difference have gained much interest since they enable higher order approxi-
mations of the Naiver-Stokes equations. Although reliable, these Eulerian methods
are computationally demanding and were limited to moderate Reynolds numbers
and to laminar flow for some time. Other strategies were therefore developed in the
early days of CFD. Among these are the Lagrangian methods, which are related
to high Reynolds number flows and therefore characterized by regions of concen-
trated vorticity embedded in an otherwise irrotational fluid. However, in terms
of computational cost, these methods are rendered impractical for high-resolution
simulations. A thorough description of the different numerical schemes within this
class of solvers may be found in Lewis (1991).

The Vortex-In-Cell method presented in this chapter takes advantage of the best
features of both methods mentioned and is thus classified as a mixed Eulerian-
Lagrangian method. The Lagrangian treatment of the vortex elements is kept
while the resulting vorticity field is transported according to the full Navier-Stokes
equations solved in a fixed Eulerian mesh. The main advantages of such methods
are first of all the relatively low operational cost. Moreover, the dynamics are
computed on the particles, removing the Courant criterion traditionally limiting
the time step in Eulerian methods. Thus the hybrid methods can tackle much
greater time steps.
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The method presented in this chapter is based on the Vortex-In-Cell (VIC)
method first developed by Christiansen (1973) and applies the Operator Splitting
Technique (OST) proposed by Chorin (1973). A radially expanding polar mesh
coinciding with the cylinder surface is used, enabling the surface boundary con-
dition to be simply and precisely satisfied. The no-slip condition is enforced by
using a modified version of the well known Thom’s formula, as proposed by Smith
and Stansby (1988). Several higher order formulations can be found in the litera-
ture. One being the fourth order accurate formula derived by Briley (1971) using
a skewed seven point stencil and quadratic Lagrangian interpolation polynomials.
The circulation carried by each vortex particle is projected onto the polar mesh
using a second order Cloud-In-Cell (CIC) scheme (Birdsall and Fuss (1969)). The
method conserves both the total circulation and linear impulse, but not the angular
impulse. Higher accuracy may be achieved by applying higher order interpolation
schemes, such as the fourth order M4 scheme (Kudela and Kozlowski (2009)), or
by changing the discrete vortices into blobs with finite core and an inner Gaussian
distribution of vorticity as proposed by Leonard (1985).

The direct summation of the Nv vortices produces an operational count of N2
v

(Smith and Stansby (1988)). A large number of vortices are required to achieve a
good representation of the flow. The N2

v operation count will therefore significantly
reduce the efficiency of the VIC method presented here. More efficient methods
have been developed, such as the ”box-box” scheme, which has an operational
count as low as Nv (Koumoutsakos and Leonard (1995)), but is not implemented
in the present version of the program. To reduce the computational cost, a simpli-
fied version of the absorption procedure presented by Smith and Stansby (1989) is
implemented. Here the vortices that cross the body contour due to the diffusion
transport are removed from the flow. New particles, fewer in numbers, are then in-
troduced back into the flow carrying the same amount of circulation as the vortices
removed from the flow (Scolan and Faltinsen (1994)).

The following sections closely follow the excellent outline provided in the Lecture
notes by Yves-Marie Scolan, see Scolan (1991).

28



3.1 The numerical model

3.1 The numerical model

The flow of an incompressible fluid with constant kinematic viscosity and density
past a circular cylinder is governed by the Navier-Stokes equations and the conti-
nuity equation. In their primitive form they are formulated in terms of velocity ~u
and pressure P .

∇ · ~u = 0 (3.1)

∂~u

∂t
+ (~u · ∇)~u = −1

ρ
∇P + ν∇2~u (3.2)

If we only consider two dimensional flows, the Navier-Stokes equations may be
written in the form of the Poisson equation for the stream function ψ

∇2ψ = −ξ (3.3)

and the transport equation for the vorticity component normal to the flow plane

∂ξ

∂t
+ ~u · ∇ξ = ν∇2ξ (3.4)

where the vorticity ξ is given by

~ξ = ξ~k = ∇× ~u (3.5)

At the body both the impermeability and no-slip conditions must be respected.
The latter of the two may be expressed as

∂ψ

∂x
= 0, ∂ψ

∂y
= 0 At the body (3.6)

This implies that the body surface is a stream line

ψBody = C (3.7)

where C is an arbitrary constant generally set to zero. This formulation of the
cylinder prohibit any flux of fluid through the body surface and the impermeability
condition is therefore naturally introduced in the solution of the Poisson equation
(eq. 3.3).

At sufficiently large Reynolds numbers, the effect of viscosity becomes negligible
far from the cylinder. The vorticity also tends to zero far from the cylinder, leaving
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the flow nearly inviscid and irrotational (White (2006)). Therefore, far from the
body, the boundary conditions are

∂ψ

∂x
= 0, ∂ψ

∂y
= U, ξ = 0 At infinity (3.8)

3.2 The method

The distribution of the vorticity is approximated by a set of Nv discrete point
vortices of strength Γi, located at points (xi, yi) such that

ξ(x, y) =
Nv∑
i=1

Γiδ(x− xi)δ(y − yi) (3.9)

where δ(.) denotes the Dirac delta function. The distribution is advanced in time
by the method summarized below.

• The Poisson equation for the stream function is solved on the Eulerian grid.
The solution is used to create a set of new vortex particles along the cylinder,
which satisfy the no-slip condition.

• The flow velocity of each vortex particle is calculated by the Vortex-In-Cell
method and their position is updated by a first order scheme.

• New velocities are calculated again to give a second order correction for the
vortex position.

• Viscous diffusion is simulated by superimposing a random walk to the position
of the vortex particles. Vortices crossing the body surface are coalesced at
the nearest surface node and diffused into the flow.

A flow chart illustrating this process is presented in Figure 3.1.
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Figure 3.1: Flow chart illustrating the present implementation of the Vortex-In-Cell
method.
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3.2.1 Algorithm

The computational domain is defined over an annular region where the inner bound-
ary coincide with the cylinder surface of radius r = 1, and the outer boundary
located at a distance ro. Uniform spacing is used in the circumferential direction,
while a stretched mesh according to equation 3.10 is used in the radial direction.

r = Bm

(
eAmr

′

− 1
)

+ 1 (3.10)

The coefficients Am and Bm in equation 3.10 are found by the value of the outer
radius ro and the radial mesh spacing at the cylinder surface. The thickness of the
first layer is chosen to be

√
2ν∆t as proposed by Smith and Stansby (1988). We

will later see that this yields an adequate resolution of the boundary layer. The
outer radius ro must be sufficiently large such that the boundary conditions given
by equation 3.8 hold.

In the modified polar coordinate system (r′ , θ), the Poisson equation may be
written as

∂2ψ

∂θ2 + a(r
′
) ∂

2ψ

∂r′2
+ b(r

′
) ∂ψ
∂r′

= −r2ξ (3.11)

where
a(r

′
) =

(
r
dr
′

dr

)2
(3.12a)

b(r
′
) = r

dr
′

dr
+ r2 d

2r
′

dr2 (3.12b)

Equation 3.11 is solved using a Fast Fourier transform technique combined
with a finite difference method. Both ψ and −r2ξ are expanded as Fourier series
in the azimuthal θ-direction and substituted into the finite difference analogue of
equation 3.11. This yields a set of tridiagonal linear systems, one for each harmonic
amplitude of ψ. A thorough description of the solution of the Poisson equation is
found in Appendix A.

The CIC method, also known as the Area-Weighting scheme, proposed by Chris-
tiansen (1973) is used to project the circulation carried by each vortex onto the
nodes of the polar mesh. If ΓV ortex is the strength of a single vortex, the circula-
tion assigned to the four corner nodes of the cell of which the vortex is confined is
computed as follows
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Figure 3.2: Illustration of the Cloud-In-Cell scheme

Γnodei = AiΓV ortex
ACell

For i = 1, 2, 3, 4 (3.13)

where the areas Ak is defined in Figure 3.2 and ACell is the total area of the cell
in which the vortex is confined. For large number of particles the nodal circulation
at node (j, k) is obtained by summing up the contribution from all the individual
vortices.

Having done that, the nodal circulation Γ(j, k) is transformed in terms of vor-
ticity by the following formula

ξ(j, k) = Γ(j, k)
rj,k∆θ

dr
′

dr

∣∣∣
r′=j

(3.14)

To model the action of viscosity, new vortices are created along the cylinder
surface at each time increment such that the no-slip condition is satisfied. The
additional circulation ΓNew introduced at the surface nodes (0, k) is given by (Smith
and Stansby (1988))

ΓNew = ∆θξ(0, k) dr
dr′

∣∣∣
r′=0
− ΓOld (3.15)

where ΓOld is the circulation distributed onto the surface mesh from the existing
vortices. Since the cylinder surface is assumed to be a streamline, ψ is only a
function of r along the body and the finite difference analogue of equation 3.11
reduces to
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ξ(0, k) = −a(0)
(
ψ(1, k)−2ψ(0, k)+ψ(−1, k)

)
− 1

2b(0)
(
ψ(1, k)−ψ(−1, k)

)
(3.16)

In order to satisfy the body boundary condition the stream function must be
constant at all points inside the cylinder. Both ψ0,k and ψ−1,k is therefore set to
zero and equation 3.16 then becomes

ξ(0, k) = −
(
a(0) + 1

2b(0)
)
ψ(1, k) (3.17)

The additional circulation ΓNew generated at node (0, k) is shared equally
among nsv newly created vortices at each node. These sub-vortices are then spread
uniformly over the corresponding surface segment surrounding the point of vorticity
production.

To solve the vorticity transport equation (3.4) the Operator Splitting Technique
proposed by Chorin (1973) is employ. Here equation 3.4 is split into a linear
diffusion equation

∂ξ

∂t
= ν∇2ξ (3.18)

and the nonlinear Euler equation

∂ξ

∂t
= −~u · ∇ξ (3.19)

Equation 3.19 is solved by convecting the vortices. The vortices are moved
with their local velocity without changing their circulation. These velocities are
found through bilinear interpolation using the nodal values of the stream function
of the cell containing the vortex. More details are found in Appendix B. The
convection motion is calculated by a second order Runge-Kutta scheme in the
following manner. First, the new position of the vortices at the instant t + ∆t is
computed using the first order Euler scheme

~x1
2 = ~x1 + ~u∆t = ~x1 + d1 (3.20)

where ~u is the flow velocity at a vortex, ~x1 is its position before the displacement and
~x1

2 is the position after the displacement according to the first order scheme. The
vortices are moved to their new positions and new computations give a prediction
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of the velocity at the position ~x1
2. Then a second guess of the displacement is made

as follows
d2 = ~u(~x1

2, t+ ∆t)∆t (3.21)

The final position is calculated by averaging the two displacements.

~x2 = ~x1 + 1
2(d1 + d2) (3.22)

The linear diffusion equation (3.18) is solved by adding a random walk to the
motion of the discrete vortex particles. The random numbers are distributed ac-
cording to a Gaussian distribution with zero mean value and a standard deviation
of
√

2ν∆t. If g1 and g2 are two numbers selected form the normal distribution
mentioned above and (x1, y1) is the position of a point vortex before the displace-
ment, then the position of the vortex after the diffusion process, (x2, y2), is given
by equation 3.23.

x2 = x1 + g1

y2 = y1 + g2
(3.23)

In practice, a large sequence of random numbers (400000) is generated once and
for all at the beginning of the simulation. This is achieved by using a Box-Muller
scheme (Press et al. (1992)).

During the convection process, some vortices may enter the body. These vor-
tices are reflected to their mirror-images position (Smith and Stansby (1988)).
Further, vortices may also cross the cylinder surface due to the random walk, this
is especially true in the case of oscillating current at low values of KC. These
vortices, which enter the body, are coalesced at the nearest surface node. New
vortices are then re-injected into the fluid flow at a certain radial distance chosen
from the same Gaussian distribution as for the diffusion process. This technique
proposed by Scolan and Faltinsen (1994) drastically reduce the number of vortices
present in the flow and the CPU time is consequently reduced.

It should be noted that there exist no strong theoretical proof for the conver-
gence of the combined VIC-OST method when a solid boundary is present. In
cases where there exist no boundaries, it has been shown that the convergence of
the Operator Splitting Technique depends mainly on the Reynolds number, time
step and number of vortex particles (Scolan and Faltinsen (1994)). Furthermore,
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Chapter 3. The Vortex-In-Cell Method

since the diffusion process is modeled by imposing a random walk to the motion of
the vortices, all local variables such as pressure, vorticity, velocity and so on, have
a small random component proportional to

√
∆t/Re.

3.3 Calculation of forces

For viscous and incompressible flows, the forces originate from the pressure which
acts normal to the body surface and a purely viscous stress which acts tangentially.

Fx = −
∫
B

(p~nx + ρνξ~τx)dl = Fp,x + Fs,x (3.24)

Here, ~nx and ~τx is the x components of the normal and tangent vector of cylinder
surface respectively. Since the pressure is not determined in the present method,
an alternative way of calculating the surface pressure must be used to obtain the
pressure force. There exist several ways to derive such an expression. The following
is the outline of the most commonly used method, which is the method implemented
in the present VIC program.

Due to the no-slip condition both the velocity and acceleration are equal to zero
at the cylinder surface. Equation 3.2 therefore simplifies to equation 3.25 along the
body contour.

1
ρ
∇P = ν∇2~u (3.25)

By substituting equation 3.1 and 3.5 into the above equation and forming a scalar
product with the azimuthal unit vector ~θ, we get

∂P

∂θ
= ρν

∂ξ

∂n
(3.26)

Assuming that the pressure is piecewise constant along the body, the discretiza-
tion of equation 3.26 gives

Pk+ 1
2
− Pk− 1

2
= ρν∆θ ∂ξ

∂n
(3.27)

where the point k+1/2 is the midpoint of the segment [θk, θk+1]. The pressure force
is thus found by summation of the pressure distribution obtained from equation
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3.27
1
ρ
Fp,x = −νr(∆θ)2

Nθ∑
k=1

[
cos θk

k∑
i=1

∂ξ

∂n

∣∣∣
i

]
(3.28)

where the normal gradient of the vorticity at the cylinder surface, ∂ξ/∂n, may
be obtained by integrating the Navier-Stokes equation along a small closed loop
surrounding a point of vorticity production, namely a node at the cylinder surface
(Scolan (1991)). Performing this analysis yields the following expression

∂ξ

∂n

∣∣∣
k

= −νΓNew,k
∆θ∆t (3.29)

where ΓNew,k is the newly created circulation at the kth surface node. The validity
of equation 3.29 is somewhat questionable and may lead to inaccurate force calcula-
tions, as shown by Lin et al. (1996). Their results showed that the method presented
above significantly overpredicted the in-line force on a circular cylinder in planar
oscillatory flow when compared to Wang’s theory. They, therefore, recommended
using other methods based on the radial integration of pressure through the Navier-
Stokes equations or the generalized Blasius theorem. However, their investigation
of the present method was limited to small values of β (=76) and KC ≤ 2, whereas
the current study only considers large values of β and KC ≥ 1 − 2. Further, the
method has been implemented by several authors yielding adequate estimations of
the in-line forces (Smith and Stansby (1988), Scolan and Faltinsen (1994), Smith
and Stansby (1991), Skomedal et al. (1989)).

In order to obtain the friction force Fs,x, we have to provide the vorticity on
the cylinder. Since the area-weighting scheme smoothens the vorticity distribution
along the cylinder surface, the surface vorticity cannot be taken as the nodal value
of ξ along the body. Thus, the vorticity is found by using a Taylor development of ξ
along the normal direction on the body surface. We are then led to the development

ξ0,k = ξ1,k − (n1 − n0) ∂ξ
∂n

∣∣∣
k

(3.30)

where the indices 0 and 1 denote the position on the body contour and at a small
normal distance from the body, respectively. Introducing equation 3.30 into the
expression for the skin friction we obtain the following formula for Fs,x in equation
3.31.

1
ρ
Fs,x = ν∆θ

Nθ∑
k=1

[
ξ1,k − (n1 − n0) ∂ξ

∂n

∣∣∣
k

]
(3.31)
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3.4 Numerical implementation

A computer program in the program language Fortran 08 was developed incorpo-
rating the method outlined in the previous sections. The solution of the tridiagonal
matrix system was solved using the DGTTRS routine from LAPACK (Anderson
et al. (1991)), and the Fourier transform for were done using a double precision
version of the Fortran package FFTPack (Swarztrauber (1982)).

3.5 Impulsively started flow

The accuracy of the VIC-program was first tested by carrying out computations
of an impulsively started flow past a circular cylinder. A summary of the grid
parameters, time step and Re tested are presented in Table 3.1.

A characteristic feature of an impulsively started flow past a circular cylinder is
the appearance of two, recirculating bubbles, often referred to as the main eddy (
Bouard and Coutanceau (1980)). As the Reynolds number increases the velocities
in these circulating regions get larger, and then, for Re > 60 a secondary phenom-
ena occurs during the development of the flow. At first, the streamlines close to
the cylinder and about half-way between the rear stagnation point and separation
points show some distortion, as seen in Figure 3.3.

For higher values of Re (Re > 500) these small disturbances grow and form
small secondary eddies, which has a rotation opposite to that of the main eddy. As
Re further increases these small eddies increase in size, as seen in Figure 3.4 and
3.5, until the outer boundary touches the boundary of the main circulating bubble,
thus splitting the main eddy in two.

Table 3.1: Grid parameters and time step used in the simulation of impulsively started
flow past a circular cylinder.

Re Nr Nθ ∆t̃ ro

300 300 512 0.01 5D
550 300 512 0.01 5D
3000 400 1024 0.005 5D
9500 500 2048 0.0025 5D

38



3.5 Impulsively started flow

(a) (b)

Figure 3.3: Comparison of the streamlines from the VIC program (a) with the experi-
mental flow visualization of Bouard and Coutanceau (1980) (b) at t̃ = 2.5, Re = 300.

(a) (b)

Figure 3.4: Comparison of the streamlines from the VIC program (a) with the experi-
mental flow visualization of Bouard and Coutanceau (1980) (b) at t̃ = 2.5, Re = 550.

(a) (b)

Figure 3.5: Comparison of the streamlines from the VIC program (a) with the experi-
mental flow visualization of Bouard and Coutanceau (1980) (b) at t̃ = 2.5, Re = 3000.
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Figure 3.6: Time development of the dimensionless in-line force CFx . Lines represent
results obtained with the present VIC method, while the points correspond to the results
obtained by Koumoutsakos and Leonard (1995). ( ), �, Re = 550; ( ),  ,
Re = 3000; ( ), H, Re = 9500.

Figure 3.3 to 3.5 show comparisons between the numerical streamline distribu-
tion obtained with the present method with experiments (Bouard and Coutanceau
(1980)) at Re = 300, 550 and 3000 and t̃ = 2.5, where the dimensionless time,
t̃, is defined as t̃ = Ut/D. The figures show good qualitative agreement between
the numerical method and experimental visualization. The present VIC program
seems to predict the developments of the primary eddy, as well as the occurrence of
the small secondary eddies rather well. Both regarding size and position. However,
the numerical streamline distribution is not completely symmetric, whereas the
experimental data are symmetric. This is most noticeable at Re = 550, where the
secondary eddy on the upper side of the cylinder is smaller than that of the lower
side. These small deviations are believed to be due to the random walk imposed on
the vortex particles. As the Reynolds number increase, the flow becomes less vis-
cous, and the effect of the diffusion process becomes less pronounced. Thus the flow
field predicted by the present method becomes more symmetric as Re increases, as
shown in Figure 3.5a. For the two highest Reynolds numbers tested in this section,
a very dense mesh is required to correctly reproduce the complex flow features in
the vicinity of the cylinder, see Table 3.1. At the end of these simulations a large
number of computational elements, Nv ≈ 500000, was present. Visualization of
the flow at Re = 5000 and Re = 95000 can be found in Appendix E.

The results presented above give an indication of the accuracy of the present
method. However, as pointed out by Koumoutsakos and Leonard (1995), stream-

40



3.5 Impulsively started flow

line diagnostics are forgiving and may fail to detect deviations from the correct
solution, as they are a smooth function of the flow. The computed in-line force are
two derivatives less smooth then the streamlines and may therefore give a more pre-
cise measure of the accuracy of the present method. In Figure 3.6 a comparison of
the calculated in-line force coefficient with the results of the high-resolution simu-
lations carried out by Koumoutsakos and Leonard (1995) is presented. The general
agreement is good. However, some discrepancies are observed. This may be related
to how the body forces are computed. The present method uses the simple strat-
egy outlined in Section 3.3, whereas Koumoutsakos and Leonard (1995) obtained
the force by integrating the change of the linear impulse within the computational
domain.

Table 3.2: Force coefficients calculated cycle by cycle.

KC 2.0 6.0 10.0

Cycle CM CD CM CD CM CD

1 1.9637 0.6811 1.7263 1.1050 1.5006 1.4944
2 1.9603 0.7090 1.7293 1.2324 1.5112 1.7580
3 1.9523 0.6657 1.5783 1.6888 1.7376 1.4744
4 1.9427 0.7398 1.4926 0.7834 1.7116 1.7618
5 1.9360 0.7356 1.7793 1.1774 1.1543 1.5681
6 1.9215 0.7709 1.6833 1.4362 1.3384 2.7866
7 1.9541 0.7359 1.6402 1.3432 2.4300 0.2763
8 1.9474 0.6917 1.6020 1.2969 1.2928 1.6461
9 1.9459 0.7650 1.3591 2.1084 1.7558 1.9928
10 1.9385 0.7483 1.3753 1.3002 1.6837 1.5577
11 1.9493 0.8062 1.5633 1.8513 1.3499 2.2231
12 1.9514 0.6946 1.4916 1.8078 1.6081 1.9492
13 1.9561 0.8063 1.6843 1.9571 1.0851 1.5758
14 1.9429 0.7689 2.5004 1.2546 1.3534 1.8536
15 1.9426 0.7376 2.0175 1.0214 1.5878 2.0544
16 1.9141 0.7811 1.7157 1.2020 1.0934 1.6997
17 1.9200 0.7231 1.7794 1.5108 0.8754 1.6350
18 1.9395 0.6689 1.7942 0.9649 2.0004 1.5905
19 1.9523 0.7641 1.7335 1.3773 1.5748 1.7525
20 1.9262 0.7787 1.4070 1.8859 1.6570 2.1484
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3.6 Oscillatory flow

In order to further establish the accuracy of the method in predicting the in-
line forces, in particular the drag and inertia coefficients, a number of numerical
experiments were carried out for a cylinder in a mono-harmonic oscillatory flow.
Values of the force coefficients were obtained from the Morison equation applying
the standard Fourier averaging process presented in Section 2.1.4. Then values of
CM and CD are determined by averaging the two coefficients over a number of flow
cycles. The two first flow cycles were neglected when computing the mean of CM
and CD. The computation of the root mean square was performed in a similar
fashion. At small KC numbers the cyclic variation of the force coefficient is small.
As the KC number increases, stronger vortex structures are shedded, and larger
variations may occur. This is illustrated in Table 3.2, where results of the cycle to
cycle variation of the Morison force coefficients for KC = 2, 6 and 10, obtained by
the present VIC program is presented. The values of CM and CD presented in this
section will therefore somewhat depend on the number of flow cycles simulated.
For KC ≤ 4 6 - 8 flow cycles were usually simulated, while up to 20 cycles were
used for the largest KC numbers.

A direct comparison between the computed in-line force history and the Morison
equation is shown in Figure 3.7 for six different KC numbers covering the KC range
of interest. For small values of KC the agreement between the two models are very
close, while the results deviate at higher KC numbers. This is expected since the
Morison representation of the in-line force is good in the range of KC where inertia
forces dominate, but it is not able to capture the complete picture of the force
variation when the flow separation occurs (Sumer and Fredsøe (2006)). However,
the VIC-program seems also to struggle when the KC number become sufficiently
large. Looking at the time series obtained from the numerical simulation we observe
large, seemingly random, fluctuations in the force history for KC ≥ 6 − 8. The
fluctuations becoming larger as KC increase. Additionally, a pronounced phase-
difference is observed for the largest KC values. It is unclear to the author why
this occur, but it seems plausible that the accuracy of equation 3.29 decreases as
the vortex structures close to the cylinder increase in strength and size.
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3.6 Oscillatory flow

Figure 3.7: Examples of time variation of the in-line force. ( ), force calculated
by the VIC program; ( ), the Morison equation with experimentally obtained CM
and CD (Sarpkaya (1976)). (a) KC = 2. (b) KC = 4. (c) KC = 6. (d) KC = 8. (e) KC
= 10. (f) KC = 12

43



Chapter 3. The Vortex-In-Cell Method

Figure 3.8: Effect of time step on CM and CD. ( ), nt = 50; ( ), nt = 100;
( ), nt = 200; ( ), nt = 500. Nr = 200, Nθ = 256 and ro = 50D were used in
all simulations.

3.6.1 Sensitivity analysis

Several computations were made to determine the influence of the time step, grid
spacing and domain size. KC values ranging from 1 to 12 were tested at a Reynolds
number of 10000.

Effect of time step

The sensitivity analysis of the time step ∆t was performed using four different time
steps. The time steps tested are chosen in order to have a certain number of steps
per period. That is to say Uo∆t/D = KC/nt, where nt is the number of steps per
period. The development of CM and CD computed with nt = 50, 100, 200 and 500
are shown in Figure 3.8.
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Figure 3.9: Effect of time step on the root mean square of the in-line force. ( ),
nt = 50; ( ), nt = 100; ( ), nt = 200; ( ), nt = 500. Nr = 200,
Nθ = 256 and ro = 50D were used in all simulations.

It is clear from the figure that the time step has a great influence on the com-
puted force coefficients. As the time step decreases, we observe a drop of CD, while
CM increases for KC < 6. However, the difference in the predicted in-line force,
as shown by the RMS values in Figure 3.9, are small in the same KC range. It
therefore seems likely that the time step mainly affects the phasing of the computed
in-line force and not the force amplitude.

At higher KC values no apparent trends are observed. It is believed that the
large fluctuations observed in the times series, Figure 3.7, are the reason for the
inconsistent prediction of the two force coefficients at KC > 6.

Effect of grid refinement

The mesh resolution has a large influence on the computed result of all numerical
simulations. Especially within the boundary layer, where a fine mesh is necessary
to capture the rapid change of the vorticity and velocity field. To increase the
grid density close to the body, without increasing the computational time signifi-
cantly, an exponential grid distribution is employed in the radial direction. Thus
concentrating the number of grid cells close to the cylinder.

To get a rough estimate of how well the boundary layer is resolved, equation
3.32 is applied. It is an estimate of the boundary layer thickness δB for a circular
cylinder in oscillatory flow (Faltinsen (1990)).

δB = 4.6
√

2ν
ω

(3.32)
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Note that this formula is valid for non-separated flows only. However, as men-
tioned in Section 2.1.1, the boundary layer thickens when flow separation occurs.
Thus equation 3.32 provides us with a lower limit of δB . Remembering that the
width of the innermost cell is proportional to the diffusion transport,

√
2ν∆t. The

ratio between ∆r1, the first spacing close to the cylinder, and the boundary layer
thickness may be written as equation 3.33,

∆r1

δB
=
√

2ν∆t

4.6
√

2ν
ω

=

√
2KCUoD2

ReUont

4.6
√

2KCUoD2

2πUoRe

= 1
4.6

√
2π
nt

(3.33)

Figure 3.10: Effect of Nr on CM and CD. ( ), Nr = 100; ( ), Nr = 200;
( ), Nr = 300; ( ); Nr = 400. Nθ = 256, ro = 50D and nt = 100 were used
in all simulations.
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Figure 3.11: Effect of Nθ on CM and CD. ( ), Nθ = 64; ( ), Nθ = 128;
( ), Nθ = 256; ( ), Nθ = 512. Nr = 200, ro = 50D and nt = 100 were used
in all simulations.

where nt is of order 100. The first spacing near the cylinder along a radial line is
then approximately 5% of the boundary layer thickness, which indicates that the
boundary layer is adequately resolved. Note that the relative thickness of the first
layer estimated in the above equation is unaffected by the number of grid cells in
the radial direction.

To obtain accurate results, the quality of the mesh itself must also be evaluated.
One important factor determining the mesh quality is the aspect ratio of the cells,
defined as the ratio between the longest edge length to the shortest edge length.
At the surface cells, this ratio may be expressed as in equation 3.34.

∆θ
∆r1

=
2π
Nθ√
2ν∆t

=
2π
Nθ√

2KCD2

Rent

(3.34)
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Using Nθ = 100, KC = 10 and Re = 10000, equation 3.34 gives an aspect ratio of
approximately 7. Ideally, the aspect ratio should be equal to 1. To acquire such a
low aspect ratio Nθ must be of order 1000, which would result in a computational
effort deemed too high in the present study.

Figure 3.10 shows the development of CD and CM with four different grid
densities in the radial direction. It is apparent that the radial grid density is of
minor importance for KC < 6. This is expected since Nr mainly affect the grid
density far from the cylinder where grid refinement has less effect on the solution.
The results are once again inconclusive for the largest KC values.

The effect of the circumferential grid spacing is presented in Figure 3.11. In-
creasing the azimuthal grid density seems to have some effect on the predicted CD,
while the computed CM is less affected by Nθ.

Figure 3.12: Effect of ro on CM and CD. ( ), ro = 2.5D; ( ), ro = 5D;
( ), ro = 12.5D; ( ), ro = 50D. Nr = 200, Nθ = 256 and nt = 100 were used
in all simulations.
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Effect of domain size

The computational domain is defined in an annular region, with only the location
of the outer boundary ro as an input parameter. To determine the effect of the
domain size, four different domain sizes were examined; ro = 2.5D, ro = 5D, ro =
12.5D and ro = 50D.

Looking at Figure 3.12 one can observe a significant change in both CM and
CD with increasing domain size. The effect is especially noticeable for the smallest
domain, yielding significantly higher and lower values of CD and CM respectively.
The results from the two largest computational domains are indistinguishable for
KC < 6 and only minor differences are observed for KC ≤ 8.

Choice of simulation parameters

From the results presented till now, it is clear that the ability of the presented VIC
program to predict the in-line force depends on the KC number. The numerical
computation of the in-line force seems to be consistent up to KC ≈ 6. At higher
KC values large, seemingly random, variations of the computed force coefficients
are observed. It may indicate that a finer mesh and shorter time step is needed to
obtain an accurate representation of the force history for KC > 6 than what used
in the present investigation. A thorough study of the grid resolution and time step
at high KC numbers is needed to resolve this problem. However, as the CPU time
increases rapidly with both mesh density and time step, see Section 3.7, this has
not been performed in the present work. The choice of simulation parameters will
therefore be based on the results presented for KC < 6.

Figure 3.8 and 3.12 indicates that nt = 200 and ro = 12.5D is sufficiently large.
Further increasing these values did not affect the computed force coefficients. The
grid study showed that the radial grid density did not significantly affect the

Table 3.3: Summary of grid parameters and time step for oscillatory flow past a circular
cylinder.

Nr Nθ ro nt

100 256 12.5D 200
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computed in-line force. Thus to keep the computation cost as low as possible
Nr = 100 will be used in the remaining part of this study. For the circumferential
grid density Nθ = 256 is chosen, to reduce the computational burden. This choice
may be questionable as clear differences are observed between Nθ = 256 and Nθ

= 512 in Figure 3.11. However, the results obtained with the two grid densities
only differs with about 6% for KC < 6 and the choice is not believed to affect the
results presented in Chapter 5 significantly. The simulation parameters used in the
remainder of this work are summarized in Table 3.3.

3.6.2 Comparison with experimental results

Values of CD and CM computed by the present method are plotted together with
drag and inertia coefficients measured by Sarpkaya (1976) at Re = 10000, 20000
and 40000 in Figure 3.13 and 3.14. For small values of KC (≤ 5-6) the agreement
between the experimentally measured and computed CD is very close, regardless
of Re. Over the same KC range both the numerically predicted and experimental
measured inertia coefficient show the same general trend. However, the numerical
prediction of CM is approximately 5 − 10% smaller than the experimental data.
This indicates that the present method somewhat underpredicts the in-line forces
relative to the experimental measurements. Similar trends were also observed by
Skomedal et al. (1989) and Lin et al. (1996). The reason for this is not clear. It may
be related to three-dimensional flow features, which are present in the experiments
but cannot be reproduced in a two-dimensional simulation. Furthermore, results
presented by Sumer and Fredsøe (2006) suggest that one may expect the boundary
layer of a cylinder in oscillatory flow to be turbulent for Re as low as 5000 - 7000.
This fact is not accounted for in the numerical simulations but may have affected
the experimental measurements presented in Figure 3.13 and 3.14.

For KC above 6, differences between the experiment and numerical prediction
of CD appears. This is most apparent for the lowest Reynolds number, Re =
10000. Here the numerical prediction does not reproduce the rapid rise of the drag
coefficient. Instead, the computed drag coefficient, in general, decreases as KC
increases. Large local variation of the numerical predicted CD is also noticed in
this range of KC. For larger Reynolds numbers the computed CD increases almost
monotonically with KC. The agreement is good for Re = 20000, whereas the
present program overpredicts the drag coefficient at Re = 40000.
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3.6 Oscillatory flow

Figure 3.13: Computed and measured drag coefficients. ( ), experimental mea-
surements (Sarpkaya (1976)); �, VIC program.

Figure 3.14: Computed and measured inertia coefficients. ( ), experimental mea-
surements (Sarpkaya (1976)); �, VIC program.
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The numerical prediction of CM is in general closer to the experimental mea-
surements than those of CD. However, significant scattering is observed in the
numerical data for KC > 5. Furthermore, the numerical predicted inertia coeffi-
cient almost ceases to decrease for 6 < KC < 8 at Re = 10000 and 20000, whereas
the experimental data decrease significantly. The same trend is not seen at the
highest value of Re. Here both numerical and experimental follow similar trends
for the whole KC range.

In general, the numerically predicted drag and inertia coefficients seem to be
less sensitive to changes in the Reynolds number than that of the experimental
measurements obtained by Sarpkaya (1976).

3.6.3 Flow regimes

At small values of KC the fluid motion is small compared to the width of the
cylinder, and the vortex particles stay in the vicinity of the cylinder. This is
illustrated in Figure 3.15, where the position of the point vortices is shown for a
circular cylinder in a planer oscillatory flow with KC = 1.5. The arrows in the
figure indicate the direction and velocity magnitude of the surrounding fluid. We
observe that the vortex particles are concentrated into blobs on each side of the
cylinder, moving with the ambient flow.

As the value ofKC increases the flow separates from the cylinder, creating a pair
of symmetric, attach vortices at the downstream side of the cylinder (Williamson
(1985)). When the ambient flow change direction, these vortices are pushed on
either side of the cylinder, forming two vortex pairs with the newly created vortices.
These vortex pairs eventually leave the cylinder at the end of the half cycle. As

Figure 3.15: Point vortex positions for KC = 1.5 and β = 500. Arrows indicate the
direction and magnitude of the ambient flow.
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3.6 Oscillatory flow

Figure 3.16: Point vortex positions for KC = 4 and β = 2500. Arrows indicate the
direction and magnitude of the ambient flow.

KC reach approximately 4, dependent on the Reynolds number, the attach vortices
are no longer symmetric and do not form simultaneously. The vortex particle
positions for this case is shown in Figure 3.16.

When KC further increase the flow becomes less organized, and as KC becomes
larger then about 7 the vortex shedding pattern changes. This is illustrated in
Figure 3.17. Within this flow regime, 7 < KC < 15, the vortices are shedded
on either the upper or lower side of the cylinder. Shifting from one side to side
(Williamson (1985)). The newly shedded vortices create a vortex pair, which is
convected away from the cylinder by its self-induced velocity field. Experiments by
Williamson (1985) showed the development of a transverse vortex street in this KC
range. This is not seen in Figure 3.17. The reason may be that the simulation was
terminated too early for such a vortex street to form. The simulation was stopped
after only 8 complete flow cycles as the storing of the vortex particle positions took
a considerable amount of time and memory as the number of vortices increased.
There were approximately 600000 vortex particles at the end of the simulation.

53



Chapter 3. The Vortex-In-Cell Method

For caption see next page.
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3.6 Oscillatory flow

Figure 3.17: Point vortex positions for KC = 10 and β = 1000. Arrows indicate the
direction and magnitude of the ambient flow.
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3.7 Performance test

The motivation for implementing the Vortex-In-Cell algorithm instead of using
commercially available solvers such as STAR-CCM+ and ANSYS Fluent is the
relatively low computational cost related to the method. To get a notion of the
efficiency of the VIC method, timed numerical experiments were carried out, see
Table 3.4. All timed experiments were run over 6 complete flow cycles on a 2-core
Intel i7 machine with 8 GB of RAM. The implementation was compiled with the
gfortran compiler version 5.4.0 and optimization flag ‘-O2’. ro = 12.5D were used
in all simulations. Although of interest, no attempts to compare the execution time
of the present method with traditional Eulerian solvers were made.

It should be noted that the main focus during the present work has been to
implement the VIC method as presented by Scolan (1991). More efficient versions
of the VIC method have been developed, as mentioned in the introduction of this
chapter. Such strategies have not been explored due to time limitations and the
author’s limited programming experience.

Figure 3.18 shows the execution time in minutes as a function of the total num-
ber of grid points, M . The operational count of the present method increase with
M logM . Because of this, we expect the execution time to increase significantly as
the mesh is refined. This is observed when studying Figure 3.18.

Table 3.4: Summary of grid parameters and time step used to test the execution time
of the present VIC program.

Run Nr Nθ nt

1 100 128 100
2 300 256 100
3 400 512 100
4 100 256 100
5 100 256 200
6 100 256 300
7 100 256 400
8 100 256 500
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3.7 Performance test

Figure 3.18: Execution time in minutes versus number of grid nodes M = Nr · Nθ for
four different KC values. Run 1 to 3.

Figure 3.19: Execution time in minutes versus number of time steps per flow cycle, nt,
for four different KC values. Run 4 to 8.
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As KC increases the vortex particles move further away from the cylinder.
Fewer particles cross the cylinder surface and the simplified abortion scheme be-
come less effective. This in turn results in a larger number of computational el-
ements to be present in the computational domain. Thus suggesting an large
increase of the execution time as KC increase. This is also seen in Figure 3.18.
Comparing the execution time for the simulations carried out at KC = 2 and 12
we observe an increase of more than 50%, independent of grid refinement.

The execution time in minutes as a function of the time step is presented in Fig-
ure 3.19. The effect of decreasing the time step is clearly visible. As the time step
decrease, one may expect a linear increase of the execution time, since the number
of computation increase linearly with nt. However, the execution time seems to
be proportional to n2

t . As the VIC-program progress in time, more vortices are
produced along the surface of the cylinder to enforce the no-slip boundary condi-
tion. This implies that the number of vortex particles present in the computational
domain is proportional to nt. As the computational count of the present method
is proportional to N2

v , the increased number of vortex particles yields a significant
rise in the execution time.

It is worth noting that the execution time for run 5, representative for the
remaining part of the present work, was between 11 and 16 minutes.
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Computation of Wave Forces

4.1 Combined VIC-FNV model

Cartesian coordinates (x, y, z) are defined with positive x-direction in the wave
propagation direction. The z-axis coincide with the center axis of the cylinder,
with positive direction upwards. Furthermore, z = 0 and z = h corresponds to
the sea floor and the mean free surface, respectively. See Figure 4.1. Then the
expression for the total in-line force according to the generalized FNV theory (eq.
2.48) is restated in the following manner,

Fx = F 1 + F 2 + F 3 (4.1)

where F 1, F 2 and F 3 are defined in equation 4.2 to 4.4.

F 1 =
∫ ζ

0

(
2ρπa2 ∂u

∂t

)
dz (4.2)

F 2 =
∫ ζ

0

(
ρπa2

(
u
∂u

∂x
+ w

∂u

∂z

)
+ a11w

∂u

∂z

)
dz (4.3)

F 3 = ρπa2 4
g
u2 ∂u

∂t

∣∣∣
z=h,x=0

(4.4)

Here equation 4.2 represents the asymptotic solution of the Morison equation within
potential flow theory. 4.3 represents the nonlinear force terms due to the linear
diffraction potential φD and 4.4 represents the forces due to the nonlinear diffrac-
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tion potential ψ.

To account for viscous forces acting on the cylinder, the linear forcing term F 1,
is replaced by a force term FV IC , computed by the two-dimensional VIC program
presented in the previous chapter. Equation 4.1 then becomes equation 4.5,

Fx = FV IC + F 2 + F 3 (4.5)

which will be referred to as the combined VIC-FNV model.

To evaluate FV IC the cylinder is discretized into m strips, over which we assume
the forces to be constant, as illustrated in Figure 4.1. To reduce the computational
cost, a stretched mesh is used according to equation 4.6.

∆zi = αi−1∆z1 (4.6)

Here the ∆zi is the thickness of the ith strip counted from the sea floor, α is the
axial contraction factor and ∆z1 is the thickness of the strip touching the seabed,
defined as in equation 4.7.

Figure 4.1: Right; illustration of the discretization of the cylinder into m strips. Left;
description of the Cartesian coordinate system and load conversions.
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4.1 Combined VIC-FNV model

∆z1 = (α− 1)ζCrest
αm+1 − 1 (4.7)

Here ζCrest is the distance from the sea floor to the wave crest.
The use of a stretched mesh is explained by the fact that the wave kinematics

change more rapidly with z close to the surface than at the sea floor. Hence a finer
mesh is needed in the surface zone. We further define two separate computational
domains, D1 and D2. D1 covers the part of the cylinder where 0 ≤ z ≤ ζTrough, in
other words, the part of the cylinder which remains submerged during the complete
flow cycle. The reaming part of the cylinder is covered by D2 , that is to say,
ζTrough ≤ z ≤ ζCrest. In the submerged domain, D1, the ambient flow past a strip
is treated as a oscillatory flow. In the surface domain, D2, the flow is treated as
an abruptly started uniform current. This is illustrated in Figure 4.2.

In the submerged domain, D1, calculations are carried out over several flow
cycles, to remove transient effects occurring during the first few cycles. Typically,
6-8 were simulated. In the surface domain, D2, force calculations were only carried
out as long as the center of the strip was submerged, otherwise the forces were
assumed to be zero.

Figure 4.2: Illustration of the ambient flow past strips in the submerge domain D1 and
the surface domain D2.
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The boundary condition for each strip, u, was found using Stokes fifth order
wave theory, as presented in Section 2.2.4. The horizontal particle velocity was eval-
uated at the geometric center of each strip and extrapolated to the outer boundary
ro.

When the time history of the in-line force for each strip is computed, the total
force FV IC is simply found by summing the stripwise contributions in the following
manner.

FV IC =
m∑
i=1

Fi∆zi (4.8)

The distributed load term, F 2, is found by direct numerical integration of equa-
tion 4.3, while F 3 is found directly from equation 4.4. The wave kinematics and
free surface elevation is obtained using fifth order Stokes theory. Since Stokes wave
theory is only valid up to the mean free surface, all quantities contributing to the
load term F 2 and the boundary condition for FV IC must be Taylor expanded for
h < z 6 |ζ|. If f represent either u, w, ∂u/∂t, ∂u/∂x, ∂u/∂z, the Taylor expansion
consistent with fifth order Stokes theory is as follows

f(z) =(f1 + f2 + f3 + f4 + f5)
∣∣∣
z=0

+ z
∂(f1 + f2 + f3 + f4)

∂z

∣∣∣
z=0

+ ...

z2

2!
∂2(f1 + f2 + f3)

∂z2

∣∣∣
z=0

+ z3

3!
∂3(f1 + f2)

∂z3

∣∣∣
z=0

+ z4

4!
∂4f1

∂z4

∣∣∣
z=0

z > 0

(4.9)

where fi refers to the ith order Stokes wave theory. A time series of the total
horizontal load Fx is in turn constructed with equation 4.5, and the three first
harmonics are extracted by band-pass filtering.

4.2 Test conditions

The wave conditions used in the present work were chosen such that they match
the environmental condition tested by Kristiansen and Faltinsen (2017). Thus,
only regular waves were tested at two water depths, h/a = 7.83 and h/a = 5.51.
The main focus was on the wave conditions where discrepancies in the theoretical
third harmonic were observed.
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4.2 Test conditions

Table 4.1: Test condition parameters. T , KC, Ur and Re are given for a linear wave
steepness H1/L = 1/25, at two water depths.

h/a = 5.51 h/a = 7.83

ka T KC Ur Re/103 T KC Ur Re/103

0.30 3.73 1.62 2.22 33.3 3.67 1.50 0.77 31.6
0.28 3.93 1.78 2.73 35.1 3.81 1.62 0.95 32.9
0.26 4.12 1.99 3.42 37.2 3.97 1.77 1.19 34.4
0.24 4.35 2.24 4.35 39.9 4.15 1.95 1.51 36.3
0.22 4.61 2.58 5.67 43.3 4.37 2.18 1.96 38.5
0.20 4.93 3.05 7.60 47.7 4.64 2.48 2.61 41.4
0.18 5.33 3.71 10.52 53.9 4.96 2.89 3.59 45.0
0.16 5.81 4.74 15.25 63.0 5.37 3.47 5.13 50.0
0.14 6.42 6.45 23.55 77.8 5.90 4.37 7.72 52.0
0.12 7.16 9.71 40.21 104.8 6.61 5.88 12.46 68.8
0.10 8.00 15.94 80.63 154.0 7.56 8.85 22.41 90.4

The wave steepness H1/L range from 1/40 to 1/20, where H1 is the linear wave
height obtained from linear wave theory, whereas the ka range was 0.1 to 0.3. The
test condition parameters are summarized in Table 4.1.

Note that most of the presently considered wave conditions are within the sug-
gested upper limit provided by Hedges (1995). Significant distortions of the theo-
retical wave form was observed for the longest wave condition at h/a = 5.51. The
results from this wave condition were therefore neglected.

Values of the Keulegan-Carpenter numbers are illustrated for relevant wave
conditions in Figure 4.3. Solid lines represent KC where the maximum horizontal
velocity at the incident wave crest according to Stokes fifth order theory is used.
The dashed lines present KC obtained using the maximum velocity in the sub-
merged domain, D1, that is, the horizontal velocity at z = ζTrough underneath the
wave crest.

The results presented in Section 3.6 indicates that the accuracy of the present
VIC program is questionable as local KC numbers become larger than about 5−6.
Figure 4.3 illustrates that this will only occur for the longest and steepest wave
conditions tested in the present work. Further, the local KC number will generally
be less than what indicated in Figure 4.3 since the horizontal particle velocity
decreases as one moves downwards through the water column.
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Figure 4.3: Example illustrating different KC numbers for linear wave steepness ranging
from 0 to 1/20 at water depth h/a = 7.83, for two dimensionless wave numbers, ka = 0.15
(left) and ka = 0.105 (right). ( ), horizontal velocity at the incident wave crest
according to Stokes fifth order theory is used; ( ), the maximum velocity in the
submerge domain, D1, is used.

4.3 Scaling of viscosity

The experiments performed by Kristiansen and Faltinsen (2017) were executed on
a model with a diameter of 0.144m, whereas the current implementation of the VIC
method assumes the diameter to be 2m. To achieve similarity in forces between the
model scale and simulation scale, equality of KC and Re is needed. Equal KC in
the two scales is obtained through equality in Froude number, defined in equation
4.10.

Fn = Uo√
gD

(4.10)

Assuming constant Froude number and geometric similarity with scale ratio
Λ = Ds/Dm one can obtain the following relationship between velocities in model
scale, denoted by the subscript m, and simulation scale, denoted by the subscript
s.

Uo,m√
gDm

= Uo,s√
gDs

⇓

Uo,m =
√

ΛUo,s

(4.11)

Other physical parameters can be derived through dimensional analysis, some of
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which are presented in Table 4.2.
Similarity in Froude number will generally imply dissimilarity in Reynolds num-

ber. This problem may be overcome by introducing an artificial kinematic viscosity
through Froude scaling of ν. The relationship for the correct Froude scaling of vis-
cosity is derived from the basic relations of distance and time, given in Table 4.2,
as follows

νs[
m2

s
] = Λ2
√

Λ
ν = Λ3/2ν (4.12)

The viscosity of freshwater is approximately 10−6, neglecting variation due to tem-
perature, while the scale ratio Λ is found to be

Λ = Ds

Dm
= 2

0.144 = 13.9 (4.13)

Equation 4.12 then yields νs ≈ 5.2 · 10−5.

Table 4.2: Scaling factor for relevant parameters when applying Froude scaling (Steen
(2014)).

Length [m] Λ

Velocity [m/s]
√

Λ

Time [s]
√

Λ
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Chapter 5
Results
5.1 Comparison of F 1 and FV IC

An example of the time-history of the total in-line force acting on a monopile and
its three first harmonics over three wave periods are presented in Figure 5.1. The
dashed lines represent the in-line force as predicted by the asymptotic Morison
equation, the term F 1 in the FNV model. The solid lines show the in-line force ob-
tained using the VIC program stripwise along the cylinder, as described in Section
4.1.

From the comparison of the total horizontal force, the first plot in Figure 5.1, no-
ticeable differences between the two force calculation methods are observed. First
of all, one sees that the VIC method predict larger forces in the wave propaga-
tion direction than in the negative x-direction, whereas the asymptotic Morison
equation yields equal force amplitudes in both directions. Secondly, a slight phase
difference is observed. This phase shift is expected since the asymptotic Morison
equation does not account for viscous forces, which are usually assumed to be 90
degrees out of phase with the inertia force.

From the comparison of the three first load harmonics, a reduction of all har-
monics is observed. This reduction is associated with a decrease of the numerical
predicted inertia force as KC becomes sufficiently large. The largest reduction is
observed for the third load harmonic, whereas the differences in the first and second
harmonic are less noticeable. The phase shift previously mentioned is seen in all
three load harmonics. In general, there is a reduction in all load harmonics for the
longest waves, the difference increasing as the waves steepen. The phase difference
also increases as the waves become longer and steeper.
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Figure 5.1: Example of the total force, Fx, and the three first load harmonics, Fωx , F 2ω
x

and F 3ω
x , of the normalized horizontal force. ( ), asymptotic solution of the Morison

equation; ( ), force computed with the VIC-program. ka = 0.105, H1/L = 1/25
and water depth h/a = 7.83.
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5.2 Comparison of the FNV method and the com-
bined VIC-FNV model

The amplitude of the first three load harmonics of the horizontal force Fx, for
two selected wave steepnesses are shown in Figure 5.2. The dashed and solid lines
represent the load harmonics predicted by the generalized FNV method and the
combined VIC-FNV model, respectively. The water depth h/a = 7.83. Experimen-
tal measurements obtained by Kristiansen and Faltinsen (2017) are also provided
and are represented by circles.

For the shortest wave conditions the local KC number along the cylinder axis is
small. In this range of KC the in-line force is dominated by the inertia component
and the viscous force has little effect on the total force predicted by the combined
VIC-FNV method. This can be seen in Figure 5.2, as the results obtained by the
two methods are in good agreement for ka > 0.18, independent of wave steepness.
Small differences are observed in the first harmonic, as the results obtained by
the combined VIC-FNV model are larger than the results obtained with the FNV
model. The estimations of the second and third harmonic obtained by the two
methods are indistinguishable in this ka range.

For longer waves, ka < 0.18, the agreement between the combined VIC-FNV
method and the experimental measurements are good for the wave conditions where
no significant discrepancies are observed in the generalized FNV model. As men-
tioned in the previous section, the third harmonic obtained by the combined method
is in general smaller than what is predicted by the FNV model and the difference
between the two methods increases with the wave steepness. Note also that the
first and second harmonic are smaller for the steepest and longest wave conditions
when compared to the analytic FNV model.

For the steepest wave conditions the generalized FNV model, in general, over-
predicts the third harmonic. This is clearly seen in Figure 5.3, where a close-up of
the amplitude of the third harmonic for H1/L = 1/25 and ka ranging from 0.09 to
0.18 is shown. For the selected wave condition the theoretical prediction of F (3ω)

x

is about twice as large as the experimental measurements. Discrepancies between
the combined VIC-FNV method and the experimental measurements are also seen.
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Figure 5.2: Horizontal force amplitude of the first three harmonics due to regular waves
as a function of dimensionless wave number ka for wave steepnesses 1/40 and 1/25. Water
depth h/a = 7.83. ( ), FNV theory; ( ), combined VIC-FNV method; #,
experimental measurements (Kristiansen and Faltinsen (2017)).
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Figure 5.3: Close-up view of the 3rd harmonic versus ka for wave steepness 1/25 and
water depth h/a = 7.83. ( ), FNV theory; ( ), combined VIC-FNV method;
#, experimental measurements (Kristiansen and Faltinsen (2017)).

From the above figure it is observed that both the FNV and VIC-FNV methods
diverge from the experimental results at ka ≈ 0.18. For smaller wave numbers
the discrepancies for both methods increase gradually with decreasing ka. The
predicted third harmonic by the combined VIC-FNV method is in general closer
to the experimental results than that of the FNV method. The difference between
the two models being approximately 25% for ka = 0.1 − 0.13. This illustrates
the general trend in the prediction of the third harmonic: both methods are in
close agreement with experimental measurements up to a certain point. Beyond
this point both methods overpredict the third harmonic. The combined VIC-FNV
method yielding lower predictions of F (3ω)

x compared to the FNV theory. This
trend is further illustrated in Figure 5.4. Here, the amplitudes of the first three
harmonics as a function of the linear wave steepness for three different values of
ka,
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Figure 5.4: Amplitudes of the first three harmonics of the horizontal force due to regular
waves at water depth h/a = 7.83 versus linear wave steepness at three non-dimensional
wave numbers. ( ), FNV theory; ( ), combined VIC-FNV method; #, exper-
imental measurements (Kristiansen and Faltinsen (2017)).

corresponding to long waves, are presented. For ka = 0.105 we observe that the
combined method yields a somewhat better prediction of the third harmonic. This
is, however, not seen for ka = 0.163 and 0.127, where both methods diverge from the
experimental measurements at H1/L ≈ 0.03. Beyond this point, the discrepancies
increase gradually with increasing wave steepness for both methods. In Appendix
F, results are provided for water depth h/a = 5.51. Similar trends are observed.
However, the difference between the FNV theory and the combined VIC-FNV
method are in general smaller.

The noticeable differences observed between the inviscid FNV theory and the
viscous VIC-FNV method, indicate that viscous effects are important when evalu-
ating higher order wave loads on cylinders in long steep waves. It is, however, clear
that the combined VIC-FNV method is not able to accurately predict the third
harmonic for H1/L ≥ 1/30− 1/25.
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The current method assumes the cross-flow principle to be valid, thus neglecting
three-dimensional flow effects. Honji (1981) showed that the flow past a circular
cylinder in mono-harmonic ambient flow exhibit distinct three-dimensional struc-
ture for KC ≈ 1 − 2. Visual studies of similar flow conditions carried out by
Tatsuno and Bearman (1990) indicates that the flow stays three-dimensional as
KC further increases. Furthermore, the introduction of nonuniform in-flow con-
ditions poses yet another trigger for three-dimensional flow effects. Zdravkovich
(1997) reviews the effect of shear flow past fully submerged circular cylinders and
describes the occurrence of two secondary flows along the cylinder span. These
secondary flows are driven by spanwise pressure gradients established along both
the front and rear side of the cylinder. The local pressure is proportional to the lo-
cal inflow velocity squared. On the side facing the in-flow, the secondary spanwise
flow is driven downwards by the pressure gradient, whereas the flow runs upwards
at the hind-part of the cylinder.

There are obvious differences between the wave-structure interaction problem
and that of a submerged cylinder in mono-harmonic or shear flow, both regarding
the in-flow conditions and the effect of the free surface. However, it seems plausible
that the flow past a cylinder in waves may behave in a similar fashion. As the
waves become steeper the local KC number along the cylinder axis increase and
the velocity profile underneath the wave crest becomes more skewed, suggesting
that three-dimensional flow features become more pronounced. Thus the cross-
flow assumption may be questionable for the steepest wave conditions.

It shouted be noted that the present implementation of the generalized FNV
theory yields, in general, large estimates of the three first load harmonics when com-
pared to the results presented by Kristiansen and Faltinsen (2017). The differences
are noticeable for the longest and steepest wave conditions (H1/L > 0.035 − 0.04
and ka < 0.14 − 0.12). It is believed that the error originates from the imple-
mentation of the fifth order Stokes wave. If true, the load harmonics obtained by
the combined VIC-FNV method should also be smaller for these wave conditions,
as both methods are affected by the same error. This may imply that the com-
bined VIC-FNV method yields satisfactory estimates of the third load harmonic
for steeper wave conditions, then what indicated by Figure 5.2 to 5.4. However,
it would also imply that the combined method significantly underpredict the first
and second load harmonic for these wave conditions. Further, this does not explain
the discrepancies observed for the shorter wave conditions.
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5.3 Effect of Reynolds number

Until now, Reynolds numbers equivalent to those present in the experiments per-
formed by Kristiansen and Faltinsen (2017) have been studied. Experiments by
Kristiansen et al. (2017) indicated that there are notable Reynolds number effects
when evaluating higher harmonic wave loads. To investigate the effect of Re on the
combined VIC-FNV method several simulations were carried out. The Reynolds
number was changed by increasing or decreasing the kinematic viscosity, see Table
5.1. Simulations were performed for three different values of ka, 0.163, 0.127 and
0.105, at a water depth h/a = 7.83. The linear wave steepness ranged from 1/100
to 1/20. Results for all wave conditions are provided in Appendix G.

The first three load harmonics obtained by the combined VIC-FNV method
were not significantly affected by changing the Reynolds number. A small increase
of the third load harmonic were observed for ka = 0.105, illustrated in Figure 5.5,
whereas the experimental measurements (Kristiansen et al. (2017)) indicated an
distinct reduction of the third harmonic as Re increased. As mentioned before, the
KC number along the cylinder axis is in general small, which suggest that inertia
forces dominate. The results presented in Section 3.6 indicate that the numerical

Figure 5.5: Effect of Reynolds number on the third harmonic of the horizontal force as
a function of the linear wave steepness. ka = 0.105 at water depth h/a = 7.83. ( ),
vs = 2.59 · 10−5; ( ), vs = 5.18 · 10−5; ( ), vs = 1.04 · 10−4; ( ),
vs = 2.07 · 10−4.
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predicted inertia force does not change significantly with Re at small values of KC.
Implying that the force acting on the individual strips is only slightly affected by
changes of Re. It is believed that the differences between the experimental and
numerical obtained results are due to three-dimensional flow effects not captured
by the combined VIC-FNV method.

Table 5.1: Scaling of the kinematic viscosity.

Run νs

1 2.59 · 10−5

2 5.18 · 10−5

3 1.04 · 10−4

4 2.07 · 10−4
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Chapter 6
Conclusions and Further Work

In this thesis, a new partly numerical method for computing higher harmonic wave
loads on vertical, non-moving, surface-piercing circular cylinders based on the FNV
theory has been tested. Viscous forces are accounted for by replacing the linear
forcing term in the FNV method with a simplified numerical model assuming the
cross-flow principle to be valid. The two-dimensional Navier-Stokes equations are
solved using the hybrid Eulerian-Lagrangian Vortex-In-Cell method in combination
with the Operator Splitting Technique.

The Vortex-In-Cell program was verified by running several numerical experi-
ments of the flow past a circular cylinder in impulsively started and planar oscil-
latory flow. Comparison with visualization experiments (Bouard and Coutanceau
(1980)) showed that the present program accurately predicts the development of
both the large primary and the secondary eddies. However, as the Reynolds number
increased a fine grid was needed to correctly reproduce the complex flow features
in the vicinity of the cylinder. The time development of the in-line force was com-
puted at several Reynolds numbers. These were found to be in good agreement
with those obtained by Koumoutsakos and Leonard (1995). For oscillatory flows,
results were presented in the form of the Morison force coefficients, CD and CM ,
and compared to measurements by Sarpkaya (1976). The numerically predicted
drag coefficient was in good agreement with the empirical data for KC < 5 − 6,
whereas the inertia coefficient was underpredicted by 5%− 10% in this KC range.
For larger values of KC neither of the force coefficients were well described by the
present Vortex-In-Cell program. Discrepancies between the VIC-OST method and
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experimental data have been noted by several authors (Skomedal et al. (1989); Lin
et al. (1996)). These discrepancies may be due to three-dimensional effects or other
factors which may affect the experimental measurements, or it may be due to the
method itself. A comparative study of the VIC-OST method and other numerical
schemes is needed to resolve this question.

Computations of the in-line wave forces, using the partly numerical VIC-FNV
method, were performed for wave conditions where the third harmonic of the FNV
theory is known to deviate from experimental results. The load harmonics were
compared to the generalized FNV theory and experimental measurements (Kris-
tiansen and Faltinsen (2017)). Load terms oscillating with ω, 2ω and 3ω were
studied. The main focus was on the amplitude of the third load harmonic.

The first three load harmonics obtained by the combined VIC-FNV method
were indistinguishable from those obtained by the FNV method for short waves,
independent of wave steepness. For lower values of ka, the combined VIC-FNV
method gave, in general, lower estimates of all load harmonics. However, the
VIC-FNV method significantly overpredicted the third harmonic for the steepest
waves. Diverging from the experimental measurements at similar wave steepnesses
as the generalized FNV theory. Thus flow separation alone seems not to explain
the discrepancies in the FNV model. The rationale of the discrepancies has not
been investigated. However, it is believed that the onset of three-dimensional flow
effects may be the reason.

Some uncertainties are related to the accuracy of the current VIC program and
the implementation of the wave kinematics. It is therefore recommended to perform
wave computations using a similar approach applying a well proven Eulerian solver,
such as OpenFOAM. Different discretization strategies of the cylinder have not
been evaluated in the present study. As this may affect computed wave forces,
other strategies such as a Lagrangian discretization approach should be tested.
Future work should also seek to capture three-dimensional flow effects.
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Appendix

Appendix A : Solution of the Poisson equa-
tion
In polar coordinates the Poisson equation may be written as equation A.1.

∂2ψ

∂r2 + 1
r

∂ψ

∂r
+ 1
r2
∂2ψ

∂θ2 = −ξ (A.1)

Introducing the modified polar coordinate system (r′ , θ), with uniform mesh size
we get equation A.2

∂2ψ

∂θ2 + a(r
′
) ∂

2ψ

∂r′2
+ b(r

′
) ∂ψ
∂r′

= −r2ξ (A.2)

where
a(r

′
) =

(
r
dr
′

dr

)2
(A.3a)

b(r
′
) = r

dr
′

dr
+ r2 d

2r
′

dr2 (A.3b)

r = Bm

(
expAmr

′

− 1
)

+ 1 (A.3c)

Since ψ(r′ , θ) and ξ(r′ , θ) are periodic in the azimuthal direction, with period 2π,
we can approximate them by the truncated Fourier series given in equation A.4a
and A.4b,

ψ(r
′
, θ) = 1

Nθ

Nθ−1∑
k=0

ψ̃k(r
′
)eikθ (A.4a)

ξ(r
′
, θ) = 1

Nθ

Nθ−1∑
k=0

ξ̃k(r
′
)eikθ (A.4b)
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where i is the imaginary number defined as i2 = −1 and ψ̃k and ξ̃k are the kth

complex Fourier coefficients of ψ and ξ given by equation A.5.

ψ̃k(r
′
) =

Nθ−1∑
j=0

ψ(r
′
, θj)e−ikθj (A.5a)

ξ̃k(r
′
) =

Nθ−1∑
j=0

ξ(r
′
, θj)e−ikθj (A.5b)

θj = 2jπ/Nθ and Nθ is the number of grid points in the azimuthal direction. The
above transformation between the physical and the Fourier space can be efficiently
performed using the Fast Fourier Transform (FFT), which has an operational count
of O(Nθ logNθ). Substituting the expansion given in equation A.4a and A.4b
into the Poisson equation and equating the Fourier coefficients, ψ̃k(r′) and ξ̃k(r′)
satisfies the following second order differential equation

− k2ψ̃k(r
′
) + a(r

′
)∂

2ψ̃k(r′)
∂r′2

+ b(r
′
)∂ψ̃k(r′)

∂r′
= −r2ξ̃k(r

′
) (A.6)

This equation may be discretized applying the second-order three point difference
operators given in equation A.7a and A.7b.

∂ψ̃k(r′)
∂r′

≈
ψ̃k(r′j+1)− ψ̃k(r′j−1)

2∆r′ (A.7a)

∂2ψ̃k(r′)
∂r′2

≈
ψ̃k(r′j+1)− 2ψ̃k(r′j) + ψ̃k(r′j−1)

(∆r′)2 (A.7b)

Introducing the above approximations into equation A.6 yields

(aj −
bj
2 )ψ̃k(r

′

j−1)− (k2 + 2aj)ψ̃k(r
′

j) + (aj + bj
2 )ψ̃k(r

′

j+1) = −r2
j ξ̃k(r

′
) (A.8)

To complete the linear system, boundary conditions at the inner and outer bound-
aries must be introduced. At the cylinder surface the Dirichlet boundary condition,
equation A.9, is introduced.

ψ̃k(r
′

0) = 0 (A.9)
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To treat the Neumann boundary condition at the outer boundary accurately, we
apply a second order backward difference scheme.

∂ψ̃k(r′)
∂r

∣∣∣
Nr−1

= −ũθ,Nr−1 ≈
1
2
dr
′

dr

∣∣∣
Nr−1

(
ψ̃k(r

′

Nr−3
)− 4ψ̃k(r

′

Nr−2
) + 3ψ̃k(r

′

Nr−1
)
)

(A.10)
which implies

ψ̃k(r
′

Nr−1
) ≈

2ũθ,Nr−1

3
dr

dr′

∣∣∣
Nr−1

− 1
3 ψ̃k(r

′

Nr−3
) + 4

3 ψ̃k(r
′

Nr−2
) (A.11)

Here, the complex Fourier coefficients ũθ are defined in the same manner as
equation A.5 and Nr−1 is the radial position of the outer boundary.

Equation A.8, A.9 and A.11 result in the resolution of Nθ tridiagonal linear
systems of size (Nr − 1) × (Nr − 1), one for each harmonic mode k. However,
since both ψ and ξ are real functions the complex Fourier coefficients are related
by equation A.12a and A.12b,

ψ̃Nθ−k = ψ̃∗Nk (A.12a)

ξ̃Nθ−k = ξ̃∗Nk (A.12b)

for k = 0, 1, 2..., Nθ − 1, where ∗ denotes the complex conjugate. Thus it is
only needed to solve the linear systems for the Nθ/2 + 1 first modes, obtaining the
Nθ/2 − 1 last modes by equation A.12a and A.12b. Once the Fourier coefficients
are known, the nodal values of ψ and ξ are obtained by performing the inverse
Fourier Transform given in equation A.4a and A.4b.
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Appendix B: Calculation of the velocity
The velocity in polar coordinates is given by equation B.1.

~u = 1
r

∂ψ

∂θ
~r − ∂ψ

∂r
~θ (B.1)

Since ψ(r′ , θ) is periodic in the azimuthal direction, with period 2π, we can ap-
proximate it by the truncated Fourier series given in equation B.2.

ψ(r
′
, θ) = 1

Nθ

Nθ−1∑
k=0

ψ̃k(r
′
)eikθ (B.2)

Here where i is the imaginary number defined as i2 = −1, ψ̃k is the kth complex
Fourier coefficients of ψ, θj = 2jπ/Nθ and Nθ is the number of grid points in the
azimuthal direction. Derivation of both sides of equation B.2 with respect to θ

yields the relations between the complex Fourier coefficients and the derivative ψθ
in equation B.3.

∂ψ(r′ , θ)
∂θ

= 1
Nθ

Nθ−1∑
k=0

ψ̃k(r
′
)ikeikθ (B.3)

After calculating the first term, ψθ, there remains to calculate the tangential ve-
locity component. Consistent with the solution of the Poisson equation, a second
order central difference scheme is applied to approximate the radial derivative of
ψ as in equation B.4, without consideration of the boundary nodes.

∂ψ(r′ , θ)
∂r

∣∣∣
r
′
j
,θk

= 1
2
dr
′

dr

∣∣∣
r
′
j

(
ψ(r

′

j+1, θk)− ψ(r
′

j−1, θk)
)

(B.4)

On the cylinder surface the tangential velocity cannot be obtained by a central
difference scheme, since it would imply a non zero normal velocity along the body
contour. Then a second order forward difference scheme is used as in equation B.5.

∂ψ(r′ , θ)
∂r

∣∣∣
r
′
0,θk

= 1
2
dr
′

dr

∣∣∣
r
′
0

(
− 3ψ(r

′

0, θk) + 4ψ(r
′

1, θk)− ψ(r
′

2, θk)
)

= 1
2
dr
′

dr

∣∣∣
r
′
0

(
4ψ(r

′

1, θk)− ψ(r
′

2, θk)
) (B.5)

At the outermost ring the boundary condition may be used directly.
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For convenience, the velocity at each node of the mesh is expressed in Cartesian
coordinates according to equation B.6.

ux = cos θur − sin θuθ
uy = sin θur + cos θuθ

(B.6)

Then the velocity at each vortex particle is obtained by bi-linear interpolation in
equation B.7, as illustrated in Figure B1.

~ul = Aj,k · ~uj,k +Aj+1,k · ~uj+1,k +Aj,k+1 · ~uj,k+1 +Aj+1,k+1 · ~uj+1,k+1 (B.7)

Figure B1: Bi-linear interpolation of the nodal velocities
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Appendix C : Definition of the computational do-
main
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Appendix D : Flow visualization of impulsively started
flow past a circular cylinder

For caption see next page
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Figure D1: Comparison of the streamlines from the VIC program (left) with the ex-
perimental flow visualization of Bouard and Coutanceau (1980) (right) at Re = 9500 and
t̃ = 0.75, 1.00 and 1.25
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For caption see next page
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Figure D2: Vorticity field around a cylinder in an impulsively started flow at Re = 5000.
t̃ 6 2.5

94



Appendix E : Flow visualization for mono-harmonic
flow past a circular cylinder

For caption see next page.
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Figure E1: Visualization of flow using point vortex positions at KC = 2 and β = 5000.
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For caption see next page.
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Figure E2: Visualization of flow using point vortex positions at KC = 6 and β = 1650.
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For caption see next page.
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Figure E3: Visualization of flow using point vortex positions at KC = 8 and β = 1250.
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For caption see page 104.
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For caption see page 104.
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For caption see page 104.
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Figure E4: Visualization of flow using point vortex positions at KC = 12 and β = 850.
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Appendix F : Load harmonics for h/a = 5.51

Figure F1: Horizontal force amplitude of the first three harmonics due to regular waves
as a function of dimensionless wave number ka for wave steepnesses 1/40 and 1/25. Water
depth h/a = 5.51. ( ), FNV theory; ( ); combined VIC-FNV method; #,
experimental measurements (Kristiansen and Faltinsen (2017))
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Figure F2: Amplitudes of the first three harmonics of the horizontal force due to regular
waves at water depth h/a = 5.51 versus linear wave steepness at three non-dimensional
wave numbers. ( ), FNV theory; ( ), Combined VIC-FNV method; #, ex-
perimental measurements (Kristiansen and Faltinsen (2017)).
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Appendix G : Effect of Reynolds number

Figure G1: Effect of Reynolds number on the amplitude of the first three harmonics of
the horizontal force due to regular waves at water depth h/a = 7.78 versus linear wave
steepness at three non-dimensional wave numbers. ( ), vs = 2.59 · 10−5; ( ),
vs = 5.18 · 10−5; ( ), vs = 1.04 · 10−4; ( ), vs = 2.07 · 10−4.
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