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Background
There is a distinct trend within marine systems design to move away from traditional static de-
sign methods to more dynamic methods to understand value-driving aspects during early de-
sign stages (Fathi et al., 2013). Traditional design methods are unable to cope with increasingly
complex operational profiles since these methods normally depend on simplified calculations
based on an average or a few representative conditions (Hagen and Grimstad, 2010; Fathi et al.,
2013).

State-of-the-art design methods aims to understand the needs of the stakeholders and gener-
ate value-robust designs (Gaspar, 2013). Simulation-based design is one such state-of-the-art
method which focuses on optimization over a wide range of conditions, thus creating a system
that can deliver value over changing contexts (Fathi et al., 2013).

Simulation-based design approaches generally consists of an operation model combined with
metocean data to produce a realistic description of the operating conditions in the temporal
and spatial domain (Fathi et al., 2013). The availability and quality of metocean data therefore
becomes an integral part of simulation-based design.

A tremendous amount of data on wind and sea state conditions are collected each day, but it
remains relatively sparse to the size of the ocean space (Monbet et al., 2007). Hence, metocean
simulation models are necessary to produce multiple realistic scenarios for simulation-based
design applications.

Metocean simulation is most appropriately viewed in the context of stochastic metocean gen-
erators, which are statistical models whose realizations statistically match observed patterns
(Hering et al., 2015).

Deep learning methods have dramatically improved the state-of-the-art in speech recognition,
natural language processing, image recognition and many other domains (Krizhevsky et al.,
2012; LeCun et al., 2015). Several studies have shown that deep learning models improve pre-
diction performance for metocean data compared to traditional methods, but the potential of
deep learning models as stochastic metocean generators in simulation-based design remains
currently unknown (Monbet et al., 2007).
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Objective
The objective of the master’s thesis is to validate the quality of deep learning models as stochas-
tic metocean generators and their practicality in a simulation-based design context.

Scope of Work
The candidate should presumably cover the following main points:

1. Describe relevant aspects of metocean data with regards to simulation-based design.

2. Describe and compare current methodologies for metocean simulation.

3. Present an introduction to deep learning with a focus on methods for sequence process-
ing.

4. Develop stochastic generators for metocean simulation:

a. Traditional stochastic generators based on current methodologies.

b. Stochastic generator based on state-of-the-art deep learning methods.

5. Develop a realistic case study for validation of the stochastic generators developed in (4)
with a primary focus on:

a. Quality of results.

b. Practicality in a simulation-based design context.

6. Discuss and conclude on the quality of deep learning stochastic metocean generators and
their practicality in simulation-based design, based on the case study developed in (5).

Modus Operandi
Professor Bjørn Egil Asbjørnslett and PhD candidate Endre Sandvik will be the supervisors at
NTNU. The work shall follow the NTNU guidelines for master’s thesis work. The workload shall
correspond to 30 ECTS credits.
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Abstract

The objective of the master’s thesis was to validate the quality of deep learning models as stochas-
tic metocean generators and practicality in the context of simulation-based design. The avail-
ability and quality of metocean data is an integral part of simulation-based design and stochas-
tic metocean generators are necessary in many applications to produce synthetic metocean se-
ries. Deep learning has shown great results in many domains, but the potential of deep learn-
ing stochastic metocean generators is currently unknown. This was the foundation for the first
research question: How does the quality of a deep learning stochastic metocean generator com-
pare to simpler traditional stochastic metocean generators? The trade-off between practicality
and quality of results in simulation-based design was investigated through the second research
question: Can deep learning models be practically used as stochastic metocean generators in
simulation-based design applications?

To answer the research questions, a new type of deep learning model called stochastic autore-
gressive long short-term memory (SAR-LSTM) network model was developed. The SAR-LSTM
model was validated in a case study against traditional stochastic metocean generators: Markov
chains, VAR and VARMA models. The case study consisted of simulating and matching selected
statistical criteria of two bivariate series of significant wave height Hs and peak period Tp . The
metocean series were first made approximately Gaussian by a lognormal Rosenblatt transfor-
mation introduced in this thesis. Then, a seasonal transformation which removed the yearly
periodicity induced by the annual meteorological cycle was applied to make the series station-
ary. The resulting residuals were then simulated using the different model types before being
back-transformed and validated.

The results showed that the SAR-LSTM network model did not adequately match the statistical
criteria. The VAR and VARMA models performed exceptionally well in matching the statistical
criteria and were found to give a sufficient description of Hs and Tp . The Markov chain models
performed better than the SAR-LSTM model, but were subpar to the VAR and VARMA mod-
els. Thus, the conclusion to the first research question was that the SAR-LSTM network models
produce results of a much lower quality than traditional stochastic metocean generators. The
results further showed that the lognormal transformation introduced in this thesis should be
used in favor of the commonly applied Box-Cox transformation if matching the joint distribu-
tion of Hs and Tp is of importance in the application.

The SAR-LSTM models were found to be unpractical due to the significant time and computa-
tional cost for implementing a single stochastic generator. Thus, the conclusion to the second
research question was that deep learning stochastic metocean generators are not practical in
simulation-based design, unless only a very limited set of unique metocean generators are re-
quired. The other models types were found to be practical in simulation-based design.

The VAR and VARMA models were found to be the best choice of models since they had the high-
est quality of results and were found to be highly practical. The extension from VAR to VARMA
model produced better results on some criterion, but came at the price of a higher computa-
tional cost for estimating the model parameters.

iii



Sammendrag

Målsetningen med denne masteroppgaven var å validere kvaliteten til dyp læring modeller som
stokastiske havgeneratorer og deres praktikalitet i en simuleringsbasert designkontekst. Tilgjeng-
ligheten og kvaliteten på oseanografisk data er en essensiell del av simuleringsbasert design
og stokastiske havgeneratorer er nødvendig i mange applikasjoner for å produsere syntetiske
tidsserier. Dyp læring har vist gode resultater i mange domener, men potensialet til dyp læring
stokastiske havgeneratorer er enda ukjent. Dette var grunnlaget for det første forskningsspørsmålet:
Hvordan er kvaliteten til en dyp læring stokastisk havgenerator sammenlignet med enklere tradis-
jonelle stokastiske havgeneratorer. Avveiningen mellom praktikalitet og kvaliteten på resultater
ble undersøkt gjennom det andre forskningsspørsmålet: Kan dyp læring modeller praktisk brukes
som stokastiske havgeneratorer i simuleringsbasert design applikasjoner.

For å svare på forskningsspørsmålene ble en ny type dyp læring modell utviklet, kalt stokastisk
autoregressiv lang korttidshukommelse (SAR-LSTM). SAR-LSTM modellen ble validert i en cas-
estudie mot tradisjonelle stokastiske havgeneratorer: Markovkjeder, VAR og VARMA modeller.
Casestudien bestod av å simulere og gjenskape utvalgte statiske kriterier for to bivariate se-
rier bestående av signifikant bølgehøyde Hs og bølgetopp periode Tp . Havseriene ble først
tilnærmet Gaussiske ved en lognormal Rosenblatt transformasjon introdusert i denne oppgaven.
En sesong transformasjon som fjernet den årlige periodisiteten indusert av den årlige metrolo-
giske syklusen ble deretter brukt for å gjøre seriene stasjonære. De resulterende residuaene ble
deretter simulert med de forskjellige modelltypene før de ble tilbaketransformert og validert.

Resultatene viste at SAR-LSTM nettverksmodellen ikke tilstrekkelig gjenskapte de statistiske kri-
teriene. VAR og VARMA modellene gjenskapte kriteriene på en tilfredstillende måte og ga dermed
en god beskrivelse av Hs og Tp . Markovkjede modellen produserte bedre resultater enn SAR-
LSTM modellen, men dårligere enn VAR og VARMA modellene. Konklusjonen på det første
forskningsspørsmålet ble dermed at SAR-LSTM nettverksmodellen produserte resultater med
en lavere kvalitet enn tradisjonelle stokastiske havgeneratorer. Videre viste resultatene at den
lognormale Rosenblatt transformasjonen burde brukes til fordel for den oftere brukte Box-Cox
transformasjonen hvis det er viktig å gjenskape fellesfordelingen.

SAR-LSTM modellen ble vist å være upraktisk siden det kreves mye tid og ressurser for å imple-
mentere en stokastisk generator. Konklusjonen på det andre forskningsspørsmålet blir dermed
at dyp læring stokastiske havgeneratorer ikke er praktiske i simuleringsbasert design, med min-
dre kun et fåtall havgeneratorer er nødvendig. Det ble vist at de andre modelltypene var prak-
tiske i simuleringsbasert design.

VAR og VARMA modellene var det beste modellvalget siden de gav høyest kvalitet på resultatene
og var meget praktiske. Utvidelsen fra VAR til VARMA resulterte i bedre resultater på noen kri-
terier, men hadde den baksiden at det var mer krevende å estimere modell parameterne.
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Chapter 1

Introduction

1.1 Background

The complexity of maritime supply chains is ever increasing due to a higher degree of integra-
tion with onshore logistics, consolidation creating larger fleets and stricter environmental reg-
ulations (Fathi et al., 2013). The complexity is further driven by new market requirements such
as energy efficiency and increased flexibility (Gaspar, 2013).

This has led to a distinct trend within marine systems design to move away from traditional
static design methods to more dynamic methods in order to understand value-driving aspects
during early design stages (Fathi et al., 2013). Traditional design methods are unable to cope
with complex operational profiles since these methods normally depend on simplified calcu-
lations based on some average or a few representative conditions (Hagen and Grimstad, 2010;
Fathi et al., 2013). These methods fails in capturing the "complete" set of real-life operating
conditions. The resulting hyper-optimization often lead to a suboptimal solution relative to
a more simple and robust solution due to disruptions from neglecting real-world conditions
(Fathi et al., 2013).

State-of-the-art design methods aims to understand the needs of the stakeholders and gener-
ate value-robust designs (Gaspar, 2013). Simulation-based design is one such state-of-the-art
method which focuses on optimization over a wide range of conditions, thus creating a system
that can deliver value over changing contexts (Fathi et al., 2013). Simulation-based design ap-
proaches generally consists of an operation model, which includes relevant elements such as
ports, routes and mission-specific tasks (Fathi et al., 2013). The operation model is combined
with metocean data to produce a realistic description of the operating conditions in the tempo-
ral and spatial domain (Fathi et al., 2013).

Thus, the availability and quality of metocean data becomes an integral part of simulation-
based design. A tremendous amount of data on wind and sea state conditions are collected each
day, but it remains relatively sparse to the size of the ocean space (Monbet et al., 2007). Hence,
metocean simulation models are necessary to produce several realistic metocean scenarios for
simulation-based design applications. Several metocean scenarios are especially important for
applications which depends on repeated random sampling (Monte Carlo methods).
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CHAPTER 1. INTRODUCTION

Metocean simulation is most appropriately viewed in the context of stochastic metocean gen-
erators. A stochastic generator is a statistical model whose realizations statistically match ob-
served patterns (Hering et al., 2015). A stochastic generator in this context takes a time series as
input and generates one or more synthetic time series of realizations.

Deep learning methods have dramatically improved the state-of-the-art in speech recognition,
natural language processing, image recognition and many other domains (Krizhevsky et al.,
2012; LeCun et al., 2015). Several studies have shown that deep learning models improve pre-
diction performance for metocean data compared to traditional methods, but the potential of
deep learning models as stochastic generators in simulation-based design currently remains
unknown (Monbet et al., 2007).

1.2 Research Questions

The author was not able to find a single study on the use of deep learning models as stochastic
generators in the context of simulation-based design. Additionally, there is a lack of literature
on deep learning stochastic generators in general. Hence, there is a need for investigating the
potential of deep learning models as stochastic metocean generators. Thus, the first research
question becomes:

How does the quality of a deep learning stochastic metocean generator compare to
simpler traditional stochastic metocean generators?

Simulation-based design sets some practical restrictions for stochastic metocean generators. A
vessel transits through vast distances where it experiences different metocean characteristics,
dependent on the spatial and temporal domain. For instance, in deep-sea shipping applica-
tions the number of locations which a vessel transits with different metocean characteristics is
significant. In simulation-based design, the voyage is generally discretized into several areas,
where the ocean space in an area has approximately the same metocean conditions. The nec-
essary fidelity of the discretization is dependent on the application.

Several stochastic generators, one for each area, must therefore be designed and implemented.
This sets practical restrictions for the time and resources required for building a stochastic gen-
erator for a single area. Deep learning models require significant resources and time for training,
which may lead them to being unpractical in a simulation-based design context.

A more complex and time-consuming model may produce results of a higher quality than a
simpler model. This trade-off between practicality and quality of results must also be further
understood. This leads to the second research question:

Can deep learning models be practically used as stochastic metocean generators in
simulation-based design applications?
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1.3 Structure of the Master’s Thesis

The structure of the master’s thesis is as follows:

• Literature Review
Chapter 2 consists of a literature review of the state-of-the-art within stochastic metocean
simulation. The chapter begins with a description of relevant data sources, definition of
environmental parameters and the concepts of short-term and long-term wind and sea
state conditions. Literature on metocean simulation is then presented with emphasis on
methods which are most relevant for simulation-based design applications.

• Theory
Chapter 3 gives an introduction to deep learning with a focus on deep neural networks
for sequence processing. Chapter 4 details the theory of two commonly used methods
for metocean simulation: Discrete time finite-state Markov chains, vector autoregressive
processes (VAR) and vector autoregressive moving-average processes (VARMA).

• Method
Chapter 5 presents the methods used for implementation and validation of the stochastic
metocean generators. First, two hindcast time series to be used as case study for vali-
dation is presented. Then, the transformations applied before and after simulation are
introduced. Finally, the simulation method for each of the stochastic generators and the
quality of results validation criteria is presented.

• Results and Discussion
Chapter 6 presents the results of the case study given in Chapter 5. The results and meth-
ods used are then discussed, analyzed and validated in Chapter 7.

• Conclusion and Further Work
Chapter 8 concludes on the research questions posed in Chapter 1 and gives recommen-
dations for further work to be done within this topic.
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Chapter 2

Literature Review

This chapter sets the stage for the remainder of the thesis by first presenting an introduction to
the most common metocean conditions for simulation, wind and sea state conditions. Relevant
data sources, definition of environmental parameters and the concepts of short-term and long-
term wind and sea state conditions is then presented. This is followed by general requirements
for a stochastic metocean generator and a literature review on methods for wind and sea state
simulation, with emphasis on methods most relevant for simulation-based design applications.
Finally, methods for quality of results validation are presented.

2.1 Generalities of Wind and Sea State Conditions

2.1.1 Data Sources

Monbet et al. (2007) classifies data sources which detail wind and sea state conditions as:

• In-situ observations measured by e.g., buoys, ships and satellites

• Hindcast, nowcast or forecast data from meterological models

Woolf and Challenor (2002), Caires and Sterl (2005) and Izquierdo and Guedes (2005) compared
the quality of the aforementioned types of data sources. Buoy data series are seldom longer than
10 years and are often subject to missing and noisy data. The sampling frequency can vary from
10 minutes to 10 hours. Satellite data are sampled at a much higher frequency along the satel-
lites path, but the data generated for a specific location is sparse.

Data from numerical meteorological models are generally easier to use since the length of the
time series are much longer, up to 50 years, and generally contains no missing values. The main
drawback of numerical models is that they are often smoother than real data and tends to under-
estimate the occurrence of extreme events (Woolf and Challenor, 2002; Caires and Sterl, 2005).
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2.1.2 Environmental Parameters

There is a significant amount of environmental parameters with several possible definitions that
can be used to describe wind and sea state conditions. Below follows an introduction to the
most important environmental parameters and their definitions as given by Det Norske Veritas
(2010):

• Significant wave height Hs [m]: Average height (trough to crest) of the highest one-third
waves in the indicated time period.

• Peak period Tp [s]: Wave period determined by the inverse of the frequency at which a
wave energy spectrum has its maximum value.

• Zero-up-crossing period Tz [s]: Average time interval between two successive up-crossings
of the mean sea level.

• Mean wave direction θm [deg]: Direction which the waves are coming from (0/360 degrees
is from north, 180 degrees is from south).

• Wave peak direction θp [deg]: Direction which the wave peaks are coming from.

• Wind intensity U [m/s]: Mean wind speed at an elevation of 10 m over a fixed period (10
minutes to 3 hours in general).

• Mean wind direction φ [deg]: Mean direction from which the wind is blowing.

2.2 Temporal Scales of Wind and Sea State Conditions

2.2.1 Short-term Wind and Sea State Conditions

Spellman (2016) defines a sea state as the general condition of the free surface on a large body
of water, with respect to wind waves and swells, at a specific location and moment. Det Norske
Veritas (2010) states that the sea state is determined by a wave frequency spectrum, with a given
significant wave height Hs , a representative frequency T , a mean propagation direction and a
spreading function.

It is normally assumed that a sea state is a stationary stochastic process (Det Norske Veritas,
2010). A common assumption in relation to short-term wave conditions is that the sea surface
is stationary for a duration of 20 minutes to 3-6 hours, but the period of stationary can vary
from 30 minutes to 10 hours (Det Norske Veritas, 2010). Three hours has been introduced as the
standard time between each sample when measuring sea states (Det Norske Veritas, 2010). Det
Norske Veritas (2010) further states that the wave conditions during a sea state can be divided
into two classes: wind seas and swells. Local winds generate the wind seas while the swells have
no relationship to the local wind. Swells are waves which have traveled out of the area where
they were generated and several components may be present at a specific location.
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A wave spectrum is the power spectral density function of the vertical sea surface displacement
(Det Norske Veritas, 2010). These are either given in a table, measured spectra or by an ana-
lytic parameter function. The selection of appropriate wave spectra is dependent on the geo-
graphical area (Torsethaugen, 1996). Several standardized spectra are available and commonly
used in the maritime industry. The JONSWAP spectrum and Pierson-Moskowitz (PM) spectrum
are often applied when analyzing wind seas (Hasselmann et al., 1973; Pierson and Moskowitz,
1964). The Torsethaugen spectrum is two-peaked, meaning that it can be used to account for
both wind sea and swells, which is often the case in low to moderate sea states in open areas
(Torsethaugen, 1996).

The wind climate is also assumed to be stationary in the short-term, normally a shorter period
than for waves, often assumed to be 10 minutes (Det Norske Veritas, 2010). The short-term
mean representation is not intended to cover extreme conditions experienced in tropical re-
gions such as hurricanes, cyclones or typhoons. Neither is it intended for small scale extreme
events such as wind gusts, as these are transient in both speed and direction (Det Norske Veritas,
2010).

2.2.2 Long-term Wind and Sea State Conditions

The long-term variation of wave climate can be described in terms of generic distributions, or in
terms of scatter diagrams for governing sea state parameters (Det Norske Veritas, 2010). A scat-
ter diagram provides the frequency of occurrence for a given parameter pair, such as Hs and Tp .
Wave climate can be described by both marginal distributions and joint environmental models.
The generic models are generally established by fitting distributions to wave data from the ac-
tual area (Det Norske Veritas, 2010).

Det Norske Veritas (2010) states that long-term analysis is often dived into two different ap-
proaches, global and event models. Global models are based on all available data from a long-
term time series of observations in the given area, while event models looks at observations
which are above some threshold.

Before modeling any process, it is necessary to understand the underlying statistical structure of
the data series to recreate their fundamental qualitative and quantitative characteristics. Athanas-
soulis and Stefanakos (1995) states that for any long-term spectral wave parameter, and espe-
cially for times series of significant wave height Hs , the prevailing qualitative features are

1. Fluctuating character of the sequence of observations that prevents any exact reproducibil-
ity of the time series and calls for stochastic modeling.

2. Statistical dependency between observations separated by a relativly small time period.

3. Pronounced seasonal variability within the annual cycle.

4. Yearly statistical periodicity induced by the meteorological annual cycle.

5. An over-year trend which may be difficult to identify.
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Sampling Frequency

Studying sea state time series requires that the sampling frequency must not be greater than the
mean value of the stationary duration of the sea states (Det Norske Veritas, 2010). Hence, the
sampling frequency should be approximately 3-6 hours to be considered satisfactory (Athanas-
soulis and Stefanakos, 1995). The frequency for wind series should be less than that of sea states,
10 minutes to 1 hour, since they have a shorter stationary duration (Det Norske Veritas, 2010).

2.3 Stochastic Metocean Generator Requirements

Stochastic generators are built for a specific purpose and the definition of their goodness is
dependent on the process under consideration and the end-user of the model (Monbet et al.,
2007). When concerned with wind and sea state conditions, the primary uses of the models are
forecasting, hindcasting, simulation and reconstruction of missing values. Monbet et al. (2007)
states that the goodness of a model relies on the trade-off between its practicality and its accu-
racy in describing various features of the physical phenomenon, i.e., quality of results.

2.3.1 Practicality

The practicality can be assessed from a myriad of criteria. First, the model should be robust
against missing and errorous observations from the data source (Monbet et al., 2007). The data
may be observed at a very low frequency or only descriptive statistics may be available (Vik,
1981; Hogben and Standing, 1987).

Monbet et al. (2007) further states that the generator must be robust against the very nature of
the process it is modeling. Processes have their own specific characteristics such as spatial and
temporal dependencies. If the process is multivariate then it is important that the model can
recreate dependencies between the components.

There are also numerous mathematical and computational properties which must also be con-
sidered such as the required amount and fidelity of data, number of parameters required for
model type and amount of time needed for implementation and running (Monbet et al., 2007).

2.3.2 Quality of Results

Comparison statistics between the computed model and the observed time series can be used
to evaluate the quality of results. Several statistics and validation methods are available, but
often only graphical comparison is performed (Monbet et al., 2007). Section 2.6 presents several
methods for determining the quality of results.
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2.4 Statistical Models vs. Physics-based Models

An alternative to the statistical models presented in this chapter are physics-based models for
simulation. Erikstad (2017) states that physics-based models are models which are built on en-
gineering analysis with foundations in Newtonian mechanics. Erikstad (2017) further states that
machine learning models are based on very different principles than physics-based models. Ta-
ble 2.1 is adapted from Erikstad (2017) and shows a comparison between physics-based and
machine learning based models in the context of digital twins.

Table 2.1: Comparison of Physics-based and Machine Learning Based Models (Erikstad (2017)
Table 1)

Machine Learning Physics

Pro

• Model derived from data only - no need
for domain knowledge

• Models capture deep existing knowl-
edge based on Newtonian physic

• Generic and flexible - handles hetero-
geneous data streams (also non-physics)

• Causal relationships provide insight
and understanding

• Good at discovering complex relations
and patterns

• Uncertainty controlled by input and
modeling accuracy
• Model has universal validity - predict

any point covered by model

Con

• The availability of training data needed
to develop model

• Require extensive domain (physics)
knowledge

• Approximation methods, no exact
mathematics

• Computationally intensive, challenge in
real-time

• Correlations, not causality. Black-
box, no explanations (in particular, deep
learning)

• Complete assumptions about input-
output must be made upfront

• Predictive capabilities deteriorate
quickly outside training set scope
• Difficult to predict extreme/critical con-
ditions (few observations)

Much of what is presented in Table 2.1 also holds for statistical models in general. Statistical
models are generally derived from data only and have no requirements for domain knowledge.
Statistical models are further generic, flexible and good at discovering complex representations,
dependent on complexity of the model.

The drawback of statistical models is that they are often approximation methods which are lim-
ited by the availability of data and are based on correlations, not causality. Some statistical mod-
els also struggle with predicting extreme events due to the low number of observations of these
events.
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2.5 Stochastic Metocean Generators

The following section presents methods for metocean simulation. Emphasis has been placed
on the models which are most relevant for simulation-based design applications. The models
are classified according to the system set forth by Monbet et al. (2007).

2.5.1 Models Based on Gaussian Processes

The history of non-stationary modeling of wave time series start with the work of O‘Carroll
(1984) which presented ideas for univariate and bivariate modeling of wave heights. It was not
until the early 90s that literature concerning time series analysis of sea state parameters first
appeared with a focus on developing wave simulators (Medina et al., 1991; Bettencourt, 1993;
Borgman and Scheftne, 1991; Walton and Borgman, 1990). Ocean and marine engineers had
used times series data prior to this, but with a traditional focus on specific statistical events and
drew inference from these using simplified models which did not take into account the non-
stationarity and correlation between the parameters (Athanassoulis and Stefanakos, 1995).

Lognormal Models

Medina et al. (1991) measured significant wave height Hs and zero up-crossing period Tz at
the coast of Oregon which they used to simulate and study bivariate time series of the same
parameters. They assumed that both parameters followed a lognormal distribution. A seasonal
standardization transformation was applied

x(i ) = hs(i )− Ah(i )

Bh(i )
(2.1)

x(i ) = tz(i )− At (i )

Bt (i )
(2.2)

where hs = log (Hs), tz = log (Tz). Ah,t (i ) and Bh,t (i ) are annually periodic parameters. The pe-
riodic parameters were estimated on a month-by-month basis and were required to account for
seasonal variability. This transforms the time series into a normalized stationary Gaussian time
series, {(x(i ), y(i )), i = 1,2, . . .}. The series was then simulated with a first-order autoregressive
AR(1) model with constant coefficients. Autoregressive and moving-average models will be de-
tailed in Section 4.1.

Bettencourt (1993) continued the work of Medina et al. (1991) by first showing that significant
wave height Hs , spectral peak period fp and spectral moments m1 and m2 also follow a lognor-
mal distribution. Bettencourt (1993) then constructed models based the Medina et al. (1991)
approach for the pairs (Hs ,m1), (Hs ,m2) and (Hs , fp ). When validating the results, various in-
adequacies were reported which warranted further developments in modeling and estimation
techniques. The goal of Bettencourt (1993) was not to study the sea state time series structure
in detail, but to create fast and practical sea state simulators.
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Normal Scores

Borgman and Scheftne (1991) studied a trivariate 20-year hindcast time series of Hs , Tp and θm .
Instead of assuming a lognormal distribution, Borgman and Scheftne (1991) used a normal-
scores transformation and assumed piece-wise (month-by-month) stationarity of the series.
The data was transformed to a normal sequence and the mean monthly correlation structure
was calculated. This allowed for preserving the primary statistical properties of the dataset and
create a normal, piece-wise stationary model for simulating the trivariate series.

Walton and Borgman (1990) developed a procedure for simulating the water levels of the Great
Lakes, where the water level was assumed to be an univariate non-Gaussian and seasonally non-
stationary time series. The time series of seasonal trends for mean and standard deviation was
found by applying low-pass filtering. The time series was then seasonally standardized, by same
method as shown in Equation 2.1 and 2.2, and assumed stationary. The use of the empirical
distribution function combined with additional analytical representations for the tails allowed
for the normal score transformation to create a Gaussian time series.

Non-stationary Stochastic Processes

Athanassoulis and Stefanakos (1995) built on the work of the aforementioned and introduced a
method for modeling univariate long-term wind and wave data time series as a non-stationary
stochastic process with yearly periodic mean and standard deviation. As previously discussed,
Athanassoulis and Stefanakos (1995) showed that seasonal variability in long-term wind and
sea state time series becomes apparent within the annual cycle. Further, a non-negligible year-
to-year variability was also seen when comparing mean annual values. Athanassoulis and Ste-
fanakos (1995) showed that a univariate time series of wind and sea state condition can be rep-
resented by the decomposition

Yt = mt + st Wt (2.3)

where Wt is a zero-mean stationary (in general, non-Gaussian) stochastic process. Additionally,
st is assumed periodic with a period of one year, while mt could contain both periodic and non-
periodic terms. Methods for determining mt and st was also presented.

Athanassoulis and Stefanakos (1995) further showed that the stochastic process Yt is not peri-
odic, but periodically correlated (cyclostationary), meaning the associated probability distribu-
tions vary periodically with time. A stochastic process Zt is said to be cyclostationary if and only
if Zt can be represented on the form

Zt =
+∞∑

k=−∞
Wk,t e i kw0t (2.4)

where the processes Wk,t are all stationary and stationary correlated (Athanassoulis and Ste-
fanakos, 1995). Cyclostationary processes are widely applicable for modeling several environ-
mental phenomenons and the underlying mathematical theory is well-developed and advanta-
geous for simulation and extreme-value prediction (Konstant and Piterbar, 1993).
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Stefanakos and Belibassakis (2005) extended the work done on univariate non-stationary stochas-
tic models in Athanassoulis and Stefanakos (1995) to the multivariate domain, by developing a
non-stationary stochastic model, suitable for the analysis and simulation of multivariate time
series of wind and sea states. The result was a model belonging to the class of periodically cor-
related stochastic processes with yearly periodic mean value and standard deviation (cyclosta-
tionary stochastic process).

First, an appropriate Box-Cox transformation was applied to the wind and sea state data, which
transforms the data into an approximately Gaussian series. The univariate decomposition of a
long-term time series, as shown in 2.3, can be extended to the multivariate case

Y t = M t +Σt W t (2.5)

where M t is a N ×1 vector and Σt is an N ×N matrix. Both are deterministic periodic functions
with period of one-year and describe the seasonal patterns in the data. In the multivariate case,
the seasonal deviation st has been replaced by Σt which is the square root of the covariance
matrix. W t is a N ×1 zero-mean, stationary stochastic process vector.

Stefanakos and Athanassoulis (2003) previously showed that the residual component W t can be
considered stationary. This gives W t the structure of a periodically correlated stochastic pro-
cess. Finally, due to the Box-Cox transform of the original series, W t is Gaussian stationary and
a suitable multivariate parametric model can then be fitted.

Stefanakos and Belibassakis (2005) fitted a vector autoregressive moving average (VARMA) model
to the stationary Gaussian process. This method allows for effective reproduction of available
information about wind and sea state conditions. The output from the VARMA model was
shown to be of good quality and enables calculation of all common wind and sea state statistics.

2.5.2 Markov Chains

Hagen et al. (2013) presented a multivariate Markov chain model for generating sea state time
series based on observed time series. Stationarity is a requirement for a Markov chain model
and Hagen et al. (2013) presented two distinct models to deal with the seasonality of the ob-
served time series.

The first model was based on assuming piece-wise (month-by-month) stationary of the series
and then generating a transition matrix for each month. This approach for handling seasonality
has been frequently used in previous studies (Scheu et al., 2012a,b).

The second model followed the work of Jim and Chou (2002) and normalized the observed time
series by

y∗
t ,p = yt ,p − ȳp

Sp
, p = 1,2, . . . ,12 (2.6)

where yt ,p is an observed sea state parameter at time t in month p. ȳp and Sp are the mean
and standard deviation for the observed values in the month p. The resulting transformed time
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series was assumed to be stationary due to that the seasonal variation in the mean and stan-
dard deviation are the dominant components of the time series non-stationarity (Hagen et al.,
2013). The transition probabilities for the multivariate sea state states were estimated from ob-
served data, and each sea state parameter was discretized by dividing their range into equally
sized bins. The inverse transform was applied after simulation and both models were able to
reproduce the lower order statistical moments and persistence.

2.5.3 Parametric Models

Time-varying Autoregressive Models

Huang and Chalabi (1995) proposed a linear, time-varying autoregressive process to forecast
wind speed which accounted for the non-stationary nature of wind speed. The time-varying
parameters are modeled by smoothed, integrated random walk processes and estimated by a
Kalman filter. The time-varying autoregressive model of order r is given by

Ut =
r∑

i=1
at ,iUt−i +εt (2.7)

where Ω is a zero-mean white noise vector and Γ is a dummy vector of parameters which are
either white noise or random walk processes. Let Ψ = (at ,1, . . . , at ,r ), then Ψt =ψt−1 +Γt−1 and
Γt = HΓt−1 +Ωt . Ψ is an unknown parameter vector which is a type of random walk dependent
on the diagonal matrix H .

Scotto and Guedes Soares (2000) proposed a self-exciting threshold autoregressive (SETAR) model
to overcome some of the weaknesses of the linear models. Linear models have a symmetric joint
distribution which leads to stationary Gaussian ARMA models being unsuitable to model data
exhibiting strong asymmetry (Monbet et al., 2007). Long-term time series of significant wave
height has been shown to be described by lognormal, Weibull or other asymmetrical distribu-
tions (Ferreira and Guedes Soares, 1999).

Scotto and Guedes Soares (2000) states that a time series follows a TAR model with threshold
variable X t−d if it satisfies:

X t =φk
0 +

p∑
i−1

φk
i X t−1 +εk

t rk−1 ≤ X t−d ≤ rk (2.8)

where k = 1, . . . , g and d are positive integers. εk
t are a sequence of independent, identically dis-

tributed normal random variables with zero-mean and variance σ2
k . The real numbers ri satisfy

−∞= r0 < r1 . . . < rg =∞.

Scotto and Guedes Soares (2000) applied the transformation Yt = ln(X t ) to fit the SETAR model
to observed significant wave heights.

12
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Thus the model becomes

Yt =
r∑

i=1
a(St )

i Yt−i +b(St ) +σ(St )εt (2.9)

with St = i if and only if Yt−d ∈ [ri ,ri+1] for a fixed integer d . Here, r1 < r2 . . . < rM are parameters
of the model and εt is Gaussian white noise.

The SETAR model was evaluated against a linear autoregressive model, AR(22). Scotto and
Guedes Soares (2000) showed that the difference in the lower order statistical moments where
negligible and this also applied to the autocorrelation function. For higher order moments, the
non-linear model provides a better approximation of the skewness and kurtosis of the original
data then the linear model.

Hidden Markov-switching Autoregressive Models

Ailliot and Monbet (2012) proposed the use of Markov-switching autoregressive (MS-AR) mod-
els to describe wind time series. The MS-AR model was initially proposed in (Hamilton, 1989)
to describe economic time series and is a generalization of hidden Markov-switching (HMM)
models and autoregressive models. Several autoregressive models are used to describe the evo-
lution of the processes and the transition between the different AR models is controlled by a
hidden Markov chain (Ailliot and Monbet, 2012).

Ailliot and Monbet (2012) showed that MS-AR models have the ability to model diverse time
scales and improve the description of important dynamic properties such as the persistence of
weather states. The MS-AR model was able to match statistical properties of the underlying data
such as marginal distributions, second order moments and persistence. The main drawbacks
was that the model failed in reproducing the lowest part of the marginal distribution and the
inner-annual variability.

Hering et al. (2015) built on the aforementioned MS-AR model and introduced a Markov-switching
vector autoregressive (MS-VAR) model for wind vector simulation. The model was able to sim-
ulate wind vectors at multiple locations simultaneously. In order to capture the seasonality and
diurnal cycles (any pattern that recurs daily) the algorithm was generalized and a nonparamet-
ric transformation of the components to normality captured higher order statistical moments.
The MS-VAR model showed promise in simultaneous simulation at multiple locations while
maintaining the proper spatial relationships.

GARCH

Toll (1997) introduced the use of generalized autoregressive conditional heteroskedasticity (GARCH)
models for wind speed. Random variables exhibits heteroscedastic if there are sub-populations
that have different variabilities from others (Toll, 1997). The variability is in this case quantified
by the variance. GARCH models describe the variance of the current error term as a function
of the previous error terms. (Toll, 1997) let the conditional variance of an observation depend
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linearly on the conditional variances of the previous observations and prediction errors.

Toll (1997) assumed that the wind speed U was Markovian of order r and the conditional distri-
bution of Yt given (Yt−1, . . . ,Yt−r ) is described by a gamma distribution with mean

µt =
r∑

i=1
ai Yt−i +b (2.10)

and variance

σ2
t =α+

p∑
i=1

λi (Yt−i −µt−i )2 +
q∑

i=1
kiσ

2
t−i (2.11)

The model in Toll (1997) was shown to outperform the homoscedastic alternative.

Copula-Based Models

Vanem (2016) studied various bivariate modeling techniques for the joint distribution of sig-
nificant wave height and zero-crossing wave period. The models in the study consisted of a
conditional lognormal model and several meta-models based on parametric copulas.

Vanem (2016) defines a copula as a multivariate probability distribution, whose variables have
uniform marginals. More formally, Vanem (2016) states that the copula of two or more variables
(X ,Y ) is the joint cumulative function (FX (x),FY (y)). Vanem (2016) defines the copula as

C (u, v) = P [FX (x) ≤ u,FY (y) ≤ v] (2.12)

with a corresponding copula density c(u, v), which is defined as the derivative of C with respect
to each of its arguments. As a consequence, the joint probability density can be written as

h(x, y) = f (x)g (y)c(F (x),G(y)) (2.13)

Vanem (2016) further showed that the copula models failed to capture the dependencies in the
data and that the conditional model performed better. However, Vanem (2016) states that sig-
nificant improvements could be made with more advanced copula construction techniques.

Leontaris et al. (2016) presented an alternative copula-based method for simulation of wind
speed and significant wave height. The copulas were constructed to take into account the au-
tocorrelation and dependence between the metocean parameters. The method was evaluated
using a realistic cable installation scenario in addition to observed wind and sea state time series
from the installation area. Leontaris et al. (2016) showed that the simulated time series from the
copula model provided better insights in the operation compared to when only observed time
series was used. The added insight arose from the ability to take more possible realizations into
account. Additionally, the method adequately replicated the persistence, seasonality and work-
ability in the observed time series.
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2.5.4 Machine Learning

The most prevalent form of machine learning methods in metocean simulation and forecast-
ing are artificial neural networks (Monbet et al., 2007), see (Goodfellow et al., 2016) for more
information on ANN and deep learning in general. The first use of neural networks the author
could find for wind and sea state parameters was a model comparison study for short-term fore-
casting of wind speed (Stephos, 2000). Several different neural networks were compared to an
ARMA model and Stephos (2000) found that the neural networks performed better in validation
and had several advantages over the traditional forecasting methods such as adaptability and
error tolerance.

More and Deo (2003) presented another technique to forecast wind speed on daily to monthly
temporal scales. The result showed that the neural networks were more accurate than tradi-
tional forecasting methods, including a higher correlation and lower deviations with observed
data. Makarynskyy et al. (2004) proposed the use of neural networks to forecast significant wave
heights and zero-up-crossing wave periods. Tsai et al. (2002) used a neural network for predic-
tion of Hs given the highest one-tenth wave height H1/10, the highest wave height Hmax and the
mean wave height Hmean . The results showed a satisfactory accuracy for wave prediction.

Bazargan et al. (2007) proposed a deep neural network for prediction of the mean zero-up-
crossing wave period Tz for 3-hourly sea states. Several networks were trained by simulated
annealing and the output was used to estimate parameters of a new conditional distribution
for Tz , given mean zero-up-crossing wave periods and significant wave heights. The distribu-
tion was then used for forecasting. Bazargan et al. (2007) concluded that neural networks were
effective for estimating the conditional distribution and that the model performed well for fore-
casting values of Tz in the near future.

Several other authors have also studied the use of neural networks for wind speed forecasting
and a commonality is that neural network models generally obtain better short-term forecasts
than those obtained by linear autoregressive moving-average models (Monfared et al., 2009; Ca-
denas and Rivera, 2009; Li and Jing, 2010).

In the last few years, the focus within machine learning has shifted towards the use of more com-
plex neural networks, recurrent neural networks (RNN), for prediction of wind and sea states.
Recurrent neural networks are generally better at processing sequential data than feedforward
neural networks (Goodfellow et al., 2016).

Balluff et al. (2015) investigated the use of recurrent neural networks for forecasting short-term
wind speed and pressure. The authors showed that this was indeed possible and the RNN model
produced satisfactory results. Balluff et al. (2015) also concluded that a long short-term memory
network (LSTM) model, a model in the RNN family, could further improve the results.

Xiaoyun et al. (2016) introduced the use of a deep long short-term memory (LSTM) model for
prediction of wind power. The results showed that the LSTM model had a higher prediction ac-
curacy and greater potential for engineering applications, compared to simpler machine learn-
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ing methods such as feedforward networks and support vector machines (SVM). Lopez et al.
(2016) used two recurrent networks models, LSTM and echo state networks, for wind speed
forecasting. The results supported the findings of Xiaoyun et al. (2016) as the LSTM network
model outperformed feedforward networks in forecasting several steps ahead.

The most relevant studies in the context of stochastic metocean generators by Aminzadeh-
Gohari et al. (2008) and Toarmina et al. (2012). Aminzadeh-Gohari et al. (2008) built on the
work done in Bazargan et al. (2007) in order to simulate the univariate series of Hs using seven
deep feedforward neural networks. The neural networks were trained using simulated anneal-
ing and then used to estimate the parameters of a conditional probability density distribution
for Hs , given preceding values of Hs . Aminzadeh-Gohari et al. (2008) states that the probability
distribution for Hs at time step t was given by its eight past 3-hourly Hs values

fHs |Hs (ti−1) = hi−1, . . . , Hs(ti−8) (2.14)

where ti the day of the i th 3-hourly Hs . The random variable Hs(ti ) denotes the significant wave
height at ti and hi is the observed value for Hs(ti ).

The seven neural networks were used to determine a hepta-parameter spline distribution which
approximated the probability distribution of Hs . This probability density function was then
used for simulation. Aminzadeh-Gohari et al. (2008) concluded that feedforward neural net-
works were suitable for determining the parameters of the hepta-spline distribution and that
the resulting simulation of Hs performed well when validated in an extreme value analysis con-
text.

Toarmina et al. (2012) presented a method for long-term simulation of groundwater levels with
feedforward networks. A feedforward network was first trained to predict 1-hour ahead ground-
water levels using past observed groundwater levels, rainfall and evapotranspiration. Then the
simulation was carried out by iteratively feeding back predicted groundwater levels, in addition
to real external data; rainfall and evapotranspiration. The feedforward network was able to ac-
curately reproduce groundwater levels for several months.

The majors drawbacks of neural networks are the large number of parameters they involve and
their lack of interpretability (Monbet et al., 2007). Further, training a neural network requires
significant time and resources (Goodfellow et al., 2016).

2.5.5 Combination Models

Guanche et al. (2013) presented an ambitious methodology for simulating hourly sea state time
series by combining several different techniques such as univariate ARMAs, autoregressive lo-
gistic regression and K-means clustering algorithms.

The methodology consists of three steps. First, Guanche et al. (2013) decomposed synthetic
daily sea level pressure fields in to its principal components and simulated these using a mul-
tivariate technique first introduced by Morales et al. (2010). Then, a K-means clustering algo-
rithm, as proposed by Camus et al. (2011), was applied to the daily mean sea conditions and
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simulated by an autoregressive logistics regression model with previously simulated daily sea
level pressure fields as covariates. Finally, the hourly sea states were conditioned on the pre-
viously generated daily mean sea condition patterns and simulated. The methodology proved
very successful in reproducing the multivariate sea state time series of dependent variables.
Guanche et al. (2013) states that the methodology could be extended to simulate multiple loca-
tion simultaneously and incorporate climate change issues.

2.6 Model Validation Methods

The stochastic metocean simulators previously detailed in this chapter uses several different
validation methods dependent on the application of the synthetic time series. Monbet et al.
(2007) states that the validation method depends on the features of interest for the end user and
many different characteristics of the synthetic series could be investigated .

Monbet et al. (2007) further states that the most common validation methods consists of criteria
based on comparing specific statistics calculated from the observations with those correspond-
ing to the realizations of the stochastic generator. There exists a large amount of possible statis-
tics, such as statistical moments, distributions and dependencies.

In many applications there exists some temporal dependence, and in these applications the per-
sistence below (or above) some given threshold becomes of great interest (Monbet et al., 2007).
The persistence of weather windows and the waiting times between these weather windows is
an importation property for many applications (Hagen et al., 2013). The persistence of weather
windows can be defined as the amount of hours that the environmental parameters do not ex-
ceed some environmental thresholds (Leontaris et al., 2016). Additionally, the temporal varia-
tions in the statistical properties as a results of seasonal variations is also of interest for many
applications.
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Chapter 3

Introduction to Deep Learning

This chapter gives an introduction to the theory of deep learning and starts with an introduction
to essential machine learning concepts. The quintessential deep learning model deep feedfor-
ward networks (FNN) is presented to provide an understanding of deep learning algorithms.
The theory is then extended to recurrent neural networks (RNN) with emphasis on long short-
term memory (LSTM) networks.

It should be noted that this chapter on deep learning draws significantly from the excellent book
on deep learning by Goodfellow et al. (2016). The general structure of this chapter and the math-
ematical notation is based on Chapter 5-8 and 10-11 in Goodfellow et al. (2016).

3.1 Learning Algorithms

This section is based on Chapter 5 in Goodfellow et al. (2016) and presents fundamental learn-
ing theory which is necessary for understanding the deep learning algorithms presented later.

Mitchell (1997) defines learning in the context machine learning as:

“A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P , if its performance at tasks in T , as measured by
P , improves with experience E .”

3.1.1 Task

Goodfellow et al. (2016) states that tasks (T) are normally determined by how the algorithm pro-
cesses an example, where an example is a set of quantitatively measured features from some
event or object. More formally, a feature x i is one entry in an example vector x ∈Rn (Goodfellow
et al., 2016).
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The range of machine learning tasks is quite diverse and Goodfellow et al. (2016) provides some
examples of machine learning tasks including, but not limited to:

• Classification: Determine which category or class some input belongs in

• Regression or Prediction: Predict a numerical value based on some input

• Clustering: Grouping inputs into clusters such that the members of a cluster are more
similar to each other than those of another cluster

• Anomaly detection: Detect atypical events or objects

3.1.2 Performance

Goodfellow et al. (2016) defines performance (P) as a quantitative measure which must be spec-
ified to evaluate the goodness of the algorithm and is usually determined by the task. For a
classification task, the performance could be the accuracy of the model, i.e., the percentage of
examples which are classified correctly (Goodfellow et al., 2016). For a prediction algorithm, the
performance measure could be the amount of deviation or error (Nielsen, 2015). The perfor-
mance is in most cases evaluated on a set of data which is distinct from the set used for training
the algorithm (Goodfellow et al., 2016).

3.1.3 Experience

Finally, Goodfellow et al. (2016) defines experience (E) as the experience the algorithm gets dur-
ing the learning process and can mainly be classified into either supervised or unsupervised.
Supervised learning is the most common form of machine learning and also most prevalent
within deep learning (LeCun et al., 2015).

Goodfellow et al. (2016) makes a separation of the terms by defining supervised learning as when
the experience for the algorithm is a dataset of features where each example in the dataset is ac-
companied by a corresponding target or label. The supervised experience comes from training
on examples x with a label y with the goal of learning to predict y from x , usually from the dis-
tribution p(y |x) (Goodfellow et al., 2016).

Goodfellow et al. (2016) defines unsupervised learning as when the algorithm experiences ex-
amples without labels. The unsupervised experience consist of training on examples of x with
the goal of learning p(x) or some property of that distribution (Goodfellow et al., 2016).

3.2 Goodness of Fit

This section introduces several basic machine learning concepts of high importance for most
deep learning algorithms. The concepts in Goodfellow et al. (2016) Chapter 5 most relevant for
understanding deep learning algorithms are presented in this section.
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A machine learning algorithm must be able to perform well not only on the data which it was
trained, but on new unseen data. Goodfellow et al. (2016) defines generalization as the ability of
the algorithm to perform well on unseen data.

The available dataset is usually split into a training set and a test set (Goodfellow et al., 2016).
The training set is used to train the model and from this an error measure called the training
error can be computed. Goodfellow et al. (2016) defines the generalization error or test error as
the expected error of a previously unseen input computed from the test set. A machine learn-
ing algorithm aims to have both a low training and generalization error (Goodfellow et al., 2016).

Goodfellow et al. (2016) further defines the data-generating process as the probability distribu-
tion over the dataset that generates the training and test data. Goodfellow et al. (2016) assumes
that the examples in each dataset are independent from each other. Further, Goodfellow et al.
(2016) assumes that the training set and test set have the same probability distribution, i.e.,
identically distributed. This is the commonly used statistical assumption abbreviated as i.i.d.
(independently, identically distributed) (Wei, 1990; Goodfellow et al., 2016). Each example used
for training and testing has then the same probability distribution called the data-generating
distribution denoted pd at a (Goodfellow et al., 2016).

Goodfellow et al. (2016) states that the goodness of a learning algorithm is therefore often mea-
sured by its ability to:

1. Make the training error small

2. Make the gap between the training and test error small

Figure 3.1: Idealized Examples of Machine Learning Fit (Goodfellow et al. (2016) Figure 5.5 Sec-
tion 5.2)

These abilities are closely linked to appropriate fitting, which is one of the main challenges in
machine learning (LeCun et al., 2015; Goodfellow et al., 2016). Figure 3.1, adapted from Good-
fellow et al. (2016) Chapter 5, depicts the three idealized main cases of fitting which can occur.
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Goodfellow et al. (2016) explains that the left figure shows the overfitting case, which is the result
of excessive distance between the generalization and training error, i.e., too high variance. The
right figure shows the underfitting case which is the result of insufficiently low training error,
i.e., too high bias. Variance and bias will be further detailed in Section 3.2.2 below. The middle
case depicts appropriate fitting.

3.2.1 Model Capacity

Goodfellow et al. (2016) defines the capacity of a model as its ability to effectively fit a range
of functions and altering this determines whether the model is more likely to over- or underfit.
The capacity of a model is not only determined by the choice of model family, but also by the
corresponding design decisions related to the model family (Goodfellow et al., 2016).

Too low capacity generally lead to reduced ability to fit the training set, while too high capacity
can cause the model to learn non-general and irrelevant patterns from the training set which
does not extend to the test set (Goodfellow et al., 2016). The optimal capacity is therefore rela-
tive to the complexity of the task and the availability of training data (Goodfellow et al., 2016).

Figure 3.2, adapted from Goodfellow et al. (2016) Chapter 5, depicts the general development of
the training and generalization error with increasing capacity. Goodfellow et al. (2016) explains
that the generalization error normally decreases to a minima before it starts increasing again.
This is due to that excessive capacity leads to overfitting and resulting poor generalization. The
training error generally decreases with increasing capacity until it reaches a minima where it
forms an asymptote. (Goodfellow et al., 2016) emphasizes that this requires that the model have
some minima for the training error which may not always be the case.

Figure 3.2: General Development of Training and Generalization Error as a Function of Capacity
(Goodfellow et al. (2016) Figure 5.3 Section 5.2)
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3.2.2 Bias and Variance in Learning

Goodfellow et al. (2016) states that estimators in machine learning are primarily point estima-
tors. Lehmann and Casella (1998) defines a point estimator as a rule, which gives a single-valued
result, for determining the estimate of a given quantity based on observed data. The quantity
could be a single vector-valued result or any result given by a single function (Lehmann and
Casella, 1998).

Goodfellow et al. (2016) gives a very general definition of a point estimator

θ̂m = g (x (1), . . . , x (m)) (3.1)

where θ̂ is the point estimate of the true value θ. The relationship between inputs and labels in
a machine learning algorithm can be estimated by a point estimator (Goodfellow et al., 2016).

Goodfellow et al. (2016) further defines the bias of an estimator as

bi as(θ̂m) = Ed at a(θ̂m)−θ (3.2)

An unbiased estimator is an estimator θ̂m where Bi as(θ̂m) = 0, which implies E(θ̂m) = θ (Good-
fellow et al., 2016).

Goodfellow et al. (2016) states that the variance of an estimator determines how much it is ex-
pected to vary as a function of the data sample and is given as the variance of the training data
as a random variable

V ar (θ̂) (3.3)

Overfitting and underfitting is closely connected to bias and variance. Goodfellow et al. (2016)
uses as an example the case of prediction algorithms, where the generalization error is often
measured by the mean squared error (MSE), given by

MSE = E[θ̂m −θ2] = Bi as(θ̂m)2 +V ar (θ̂m) (3.4)

MSE measures a specific type of error between the estimator and the true value. Figure 3.3,
adapted from Goodfellow et al. (2016) Chapter 5, depicts the close relationship between appro-
priate fitting, bias and variance. Figure 3.3 shows that increasing capacity generally decreases
bias and increases variance. A good estimator has a low MSE and therefore must manage to
avoid excessive variance or bias (Goodfellow et al., 2016).
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Figure 3.3: General Development of Bias and Variance as a Function of Capacity (Goodfellow
et al. (2016) Figure 5.6 Section 5.4.4)

3.2.3 Hyperparameters and Datasets

Goodfellow et al. (2016) defines a hyperparameter as some setting of a machine learning algo-
rithm that is determined outside the learning algorithm. These are in general not adjusted by
the learning algorithm and control some aspect of the behavior of the algorithm (Goodfellow
et al., 2016). Deep learning algorithms contain a wide range of different hyperparameters which
will be detailed in the following sections.

Goodfellow et al. (2016) emphasizes that hyperparameters that determine the model capacity
can not be learned on the training set as the algorithm would choose the maximum achievable
capacity, which will result in overfitting.

Goodfellow et al. (2016) states that the dataset is therefore often further split into three disjoint
sets:

• Training set

• Validation set

• Test set

The previously discussed test set must not be used for making any decision related to the al-
gorithm, while the training set and validation set are used for just this purpose (Goodfellow
et al., 2016). The combination of the training set and validation set is often referred to only as
the training set, which understandably causes some confusion (Goodfellow et al., 2016). The
training set is then composed of two subsets which comes from from the same data-generating
process as the test set. Goodfellow et al. (2016) states that it is common for practitioners to split
the training data by the 80-20 rule, 80 percent for training and 20 percent for validation. The
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split between the full training set and test set is dependent on the practitioner and availability
of data (LeCun et al., 2015; Brownlee, 2017).

Goodfellow et al. (2016) emphasizes that the generalization error on the validation set will be un-
derestimated since it was used to find the correct setting of the hyperparameters. Therefore, af-
ter the hyperparameters are determined, the "true" generalization error can be estimated from
the previously unseen test set (Goodfellow et al., 2016).

3.3 Feedforward Neural Networks

This section defines and details essential concepts for feedforward networks and is based on
Chapter 6 in Goodfellow et al. (2016). Feedforward neural networks are presented since the
concepts builds a foundation for understanding the more complex recurrent neural networks
presented in Section 3.6.

Bengio et al. (2013) defines deep learning as a subset of the broader family of machine learning
methods based on representation learning. Representation learning is a set of techniques that
enables a system to automatically discover the representations needed when fed with training
data (LeCun et al., 2015).

Goodfellow et al. (2016) separates deep learning methods from other representation models
by that deep learning methods have multiple levels of representation, obtained by combining
several simple, mostly non-linear modules. LeCun et al. (2015) explains that each module trans-
form the representation at one level into a representation at a higher, slightly more abstract level.
The combination of several such transformations enables deep learning models to learn very
complex functions (LeCun et al., 2015). Deep methods have dramatically improved the state-of-
the-art in speech recognition, natural language processing, image recognition and many other
domains such as drug design (Ghasemi et al., 2017; Krizhevsky et al., 2012; LeCun et al., 2015).

According to Goodfellow et al. (2016), the most commonly used deep learning models are deep
feedforward neural networks (FNN), also known as multilayer perceptrons (MLP). Goodfellow
et al. (2016) states that a deep feedforward network defines the mapping y = f (x ;θ) which aims
to approximate some function f ∗(x). The value of the parameters θ are determined as those
that result in the best approximation of f ∗(x). The determination of the parameters is referred
to as training the network (LeCun et al., 2015).

Feedforward network derives its name from that information flows from x through the interme-
diate mapping f (x ;θ) to the output y (Goodfellow et al., 2016). Hence, there are no connection
which enables information to flow from y back into the model itself.
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Goodfellow et al. (2016) states that a deep learning algorithm consists of the following compo-
nents:

• A dataset

• A deep learning model

• A cost function

• An optimization method

These components will be detailed in the following sections.

3.3.1 Feedforward Neural Network Architecture

Goodfellow et al. (2016) present that deep neural networks are normally composed of several
functions connected in chain structure. Using the notation and terminology of Goodfellow
et al. (2016), let f (1), f (2) and f (3) be some functions connected in a chain, to form f (x) =
f (3)( f (2)( f (1)(x))). On this form, f (1) is called the first layer and f (2) is called the second layer,
and so on. The final layer is called output layer. The inputs are in some cases denoted as its
own layer, input layer, but it is important to note that the input layer is not associated with a
function. The layers between the input and output layer are called hidden layers. The number
of hidden layers determines the depth of the model.

Each layer consists of several units, also known as neurons. Each unit represents a vector-to-
scalar function and the dimensionality of the hidden layers determines the width of the model
(Goodfellow et al., 2016). These units compute their own activation value based on input from
several other units. The activation value is given by the choice of unit function, also known as
activation function. Goodfellow et al. (2016) divides unit functions into hidden unit functions
and output unit functions, where the name refers to the position of the unit in the network. Unit
functions are covered in detail in Section 3.3.3 and 3.3.4.

Figure 3.4 depicts a graph representation of a feedforward network with two hidden layers and
a single output. The circles denote the units in each layer, while the arrows denotes the weights.
Thus, the depth of the model is two and the width is five. The mathematical definition of weights
is given below. Note that there are no units in the input layer.

Goodfellow et al. (2016) specifies that in each point of training, the output layer is directly con-
trolled and must produce a value that is close to y , while the hidden layers are not subject to
such control. The learning algorithm must therefore decide on how to best use the hidden lay-
ers to implement an approximation of f ∗(x) (Goodfellow et al., 2016).
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Figure 3.4: Graph Representation of Feedforward Network (Adapted from Nielsen (2015) Chap-
ter 1)

Goodfellow et al. (2016) comments that deep learning can be understood as an extension of lin-
ear models. More formally, Goodfellow et al. (2016) explains that in order to represent nonlinear
functions of x one can apply a linear model to a nonlinear transformation φ(x). Goodfellow
et al. (2016) presents that deep learning aims to learn the mapping φ and the model thus be-
comes y = f (x ;θ, w ) = φ(x ;θ)T w . The mapping φ is then learned from a class of functions
using the parameters θ. The transform φ(x) maps to the desired output, given parameters w .
The hidden layer is here defined by the mapping φ and a good representation of φ(x ;θ) is then
found by optimizing θ.

Continuing with the notation and approach in Goodfellow et al. (2016), let θ be a linear function
consisting of w and b and the choice of form for f (x ;θ). Further, let h(1) be a vector of the units
in the first hidden layer, determined by a function f (1)(x ;W (1),b(1)). Goodfellow et al. (2016)
remarks that most deep learning algorithms use the strategy of applying an affine transforma-
tion given by learned parameters w and b, and then use a nonlinear activation function g (z).
Goodfellow et al. (2016) expresses the first hidden layer as

h(1) = g (1)(W (1)T x +b(1)) (3.5)

where matrix W (i ) and vector b(i ) are the weights and the biases of a linear transformation.

Goodfellow et al. (2016) generalizes Equation 3.5 for hidden layer i as

h(i ) = g (i )(W (i )T h(i−1) +b(i )) (3.6)

where i is an integer larger than one.
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To simplify the notation over several hidden layers, Goodfellow et al. (2016) lets matrix W denote
the mapping from x to h and vector w denote the mapping from h to y .

3.3.2 Cost Functions

Nielsen (2015) state that learning algorithms for deep networks are generally based on itera-
tive, gradient-based optimizers that drive some cost function to a low value. The cost function
computes some metric calculated from comparing the labels and values provided by the output
layer (Nielsen, 2015). The exact application of the cost function will become clear in Section 3.4
when optimization procedures for deep learning are presented. This section serves as an intro-
duction to cost functions for real-valued prediction tasks.

Most modern neural networks are trained using maximum likelihood since the parametric model
in most cases defines a distribution p(y |x ;θ) (Goodfellow et al., 2016). In that case, Goodfellow
et al. (2016) defines the cost function as the negative log-likelihood

J (θ) =−Ex ,y∼p̂d at a log pmodel (y |x) (3.7)

Thereby, the form of log pmodel determines the particular form of the cost function J . Goodfel-
low et al. (2016) notes that utilizing maximum likelihood is highly beneficial as the cost function
log p(y |x) is automatically determined by specifying a model p(y |x).

In the context of prediction, Goodfellow et al. (2016) remarks that the cost function should be
designed such that the minimum lie on the function that maps x to the expected value of y given
x . Nielsen (2015) and Goodfellow et al. (2016) states that two common cost function for predic-
tion problems are mean square error (MSE) and mean absolute error (MAE), given in Equation
3.8 and 3.9, respectively.

J (θ) = 1

2
Ex ,y∼p̂d at a‖y − f (x ;θ)‖2 (3.8)

J (θ) = 1

2
Ex ,y∼p̂d at a‖y − f (x ;θ)‖1 (3.9)

Both functions are frequently used as cost functions in time series prediction applications, as
seen in Brownlee (2017).

3.3.3 Output Unit Functions

The units in the output layer are associated with an output unit function which provide the
values for the cost function (Nielsen, 2015). This means that the choice of output unit function
significantly influences the choice of cost function and reverse (Nielsen, 2015). Goodfellow et al.
(2016) states that the most frequently used output units are linear, sigmoid and rectified linear
outputs. Nielsen (2015) remarks that any output unit function can also be used for the hidden
units.
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Linear Units

Goodfellow et al. (2016) defines a linear output unit as the affine transformation

ŷ =W T h +b (3.10)

Goodfellow et al. (2016) states that a common application of linear output layers is to generate
the mean of a conditional Gaussian distribution, p(y |x) = N (y ; ŷ , I ). A benefit of linear units
is that the algorithm is likely to learn the covariance of a Gaussian or to make the covariance a
function of the input, due to the maximum likelihood approach (Goodfellow et al., 2016).

Sigmoid Units

Sigmoid units are often applied when the goal is predicting the value of a binary variable y ,
i.e., Bernoulli output distributions (Goodfellow et al., 2016). Goodfellow et al. (2016) defines a
sigmoid unit as

σ(z) = 1

1+exp(−z)
(3.11)

where the sigmoid unit first computes z = W T h +b, similar to a linear output unit. The output
of a sigmoid unit thus becomes a probability.

Softmax Units

Softmax units are a generalization of sigmoid units and are commonly used when predicting
the probability distribution over a discrete variable with n possible values, i.e, Multinoulli out-
put distributions (Goodfellow et al., 2016). Goodfellow et al. (2016) defines softmax units as a
unit which first predicts z = W T h +b, where zi = l og P̃ (y = i |x), and then applies the softmax
function

so f tmax(z)i = exp(zi )∑
j exp(z j )

(3.12)

The output is then a probability vector ŷ , where ŷi = P (y = i |x) (Goodfellow et al., 2016).

3.3.4 Hidden Unit Functions

Most hidden units takes an input x or h, dependent on the location of the layer, and computes
the affine transformation and then apply some element-wise nonlinear activation function g (z)
(Goodfellow et al., 2016).

Rectified Linear Units (ReLU)

Nair and Hinton (2010) defines the rectified linear activation function as

g (z) = max{0, z} (3.13)

ReLU is the preferred default choice of hidden units for several model families and applications
(Goodfellow et al., 2016).
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Hyperbolic Tangent Unit Function

Goodfellow et al. (2016) states that the hyperbolic tangent activation function is simply given by

g (z) = t anh(z) (3.14)

3.4 Optimization of Deep Learning Algorithms

This section is based on the methods detailed in Goodfellow et al. (2016) Chapter 8. Goodfel-
low et al. (2016) emphasizes that optimization is a central part of deep learning since problems
can require days to months of training, on hundreds of machines. This section focuses on the
frequently used stochastic gradient descent optimization technique and the Adam extension.

3.4.1 Batch and Minibatch algorithms

Goodfellow et al. (2016) specifies that training optimization differs significantly from traditional
optimization. Traditional optimization has a direct approach, it aims to minimize some cost
function J (θ), while in training optimization it is common to have some performance criteria P
that must be indirectly optimized by minimizing a different (cost) function J (θ).

Goodfellow et al. (2016) further states that another major difference from pure optimization is
that the parameters in a machine learning algorithm are updated on a subset of the terms of
the full cost function to compute an expected value of the cost function. Maximum likelihood
estimation problems are, as previously explained, prevalent in deep learning. Goodfellow et al.
(2016) states that these problems can be decomposed into

θML = argmax
θ

m∑
i=1

l og pmodel (x (i ), y (i );θ) (3.15)

Goodfellow et al. (2016) further shows that maximizing this sum is equivalent to maximizing the
expectation over the empirical distribution defined by the training set

J (θ) = Ex ,y∼p̂d at a l og pmodel (x , y ;θ) (3.16)

The most commonly used property of the cost function J is the gradient which Goodfellow et al.
(2016) states can also found as an expectation of the training set

∇θ J (θ) = Ex ,y∼p̂d at a∇θlog pmodel (x , y ;θ) (3.17)

Using every example in the dataset to compute exact expectations is computationally expensive
and in practice the expectations are computed by the average of a randomly sampled subset of
the dataset (Goodfellow et al., 2016).
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Goodfellow et al. (2016) presents a classification of optimization algorithms by the number of
examples they process simultaneously:

• Batch or deterministic methods: Process all training examples

• Stochastic or online methods: Process one training example

• Minibatch or minibatch stochastic methods: Process more than one and less then all
training examples

Minibatch stochastic methods are most prevalent and are commonly referred to only as stochas-
tic methods (Goodfellow et al., 2016).

Goodfellow et al. (2016) states that in practice the batch size is between 32- 512 examples and
Keskar et al. (2016) found that larger batch sizes lead to a significant degradation in the ability of
models to generalize. Further, Wilson and Martinez (2013) found that small batches can offer a
regularizing effect and the generalization error is often lowest for a batch size of one. Small batch
sizes increases the number of steps and requires a small learning rate, thus the total runtime can
become very high (Wilson and Martinez, 2013). Learning rate will be formally defined in Section
3.4.3.

3.4.2 Epochs and Iterations

Before presenting the optimization algorithms, a separation must be made between the terms
iteration and epoch in machine learning. An epoch is a complete pass through the training
set, while an iteration is simply one update of the learning model’s parameters (Patterson and
Gibson, 2017). Hence, when using stochastic and minibatch methods, several iterations will
take place during one epoch. Iteration and epoch are indistinguishable for batch methods, i.e.,
updating the parameters after processing all training data at once.

3.4.3 Stochastic Gradient Descent Algorithm

Stochastic gradient descent (SDG) and its extensions are the optimization methods of choice
for machine learning and especially for deep learning (Goodfellow et al., 2016). Robbins and
Monro (1951) first presented the method and the full algorithm, as given in Goodfellow et al.
(2016) Chapter 8, can be found in Algorithm 1 below.

The algorithm, as explained by Goodfellow et al. (2016), first samples a minibatch of m indepen-
dently and identically distributed (i.i.d) examples from the data-generating distribution. The
minibatch is then used to find an unbiased estimate of the gradient g by taking the average of
the gradient of the minibatch. The algorithm then follows the gradient downhill dependent on
the value of the learning rate ε. To simplify the notation, Goodfellow et al. (2016) lets L denote
the per-example loss L(x , y,θ) =−log p(y |x ;θ).
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Algorithm 1 Stochastic Gradient Descent (SDG) (Goodfellow et al. (2016) Algorithm 8.1 Section
8.3.1)

Require: Learning rate schedule ε1,ε2, . . .
Require: Initial parameter θ

k ← 1
while stopping criterion not met do

Sample a minibatch of m examples from the training set {x (1), . . . , x (m)} with targets y (i )

Compute gradient estimate: ĝ ← 1
m∇θ

∑
i L( f (x (i );θ), y (i ))

Apply update: θ← θ−εk ĝ
k ← k +1

end while

The learning rate is another hyperparameter which must be chosen before training and is often
either fixed or set to gradually decay over time (Goodfellow et al., 2016). The value of the learning
rate has a significant influence on the quality of the model and is most often chosen by trail and
error (Nielsen, 2015). One approach is to monitor the objective function as function of time, but
as Goodfellow et al. (2016) so eloquently puts it:

"This is more of an art than a science, and most guidance on this subject should be
regarded with some skepticism."

Goodfellow et al. (2016) remarks that stochastic gradient descent often finds a very low value of
the cost function, but it is not guaranteed to find a local minima in a reasonable amount of time.
Despite this, the low value of the cost function is found quickly enough for the algorithm to be
very useful (Goodfellow et al., 2016). SGD has the important property that the computation time
for each update does not increase with the number of training examples (Nielsen, 2015).

3.4.4 Adam Algorithm

Adaptive learning rate algorithms were introduced to handle the complexity of determining the
learning rate, as it is one of the most complicated hyperparameters to determine due to its sig-
nificant effect on model performance (Goodfellow et al., 2016). Most of these algorithms can
be seen as extensions of stochastic gradient descent. Kingma and Ba (2014) presented such an
adaptive algorithm called Adam (adaptive moments). Adam combines parts of a previous adap-
tive learning algorithm called RMSProp (Hinton, 2012) with the concept of momentum (Good-
fellow et al., 2016). Momentum drives the algorithm to move in the direction of the accumu-
lation of an exponentially decaying moving average of past gradients (Goodfellow et al., 2016).
Momentum improves learning when dealing with high curvature, noisy gradients or small but
consistent gradients (Hinton, 2012).

It is sometimes necessary to adjust the learning rate of Adam from the suggested default, but it
is generally regarded as being quite robust to the choice of hyperparameters (Goodfellow et al.,
2016). The full algorithm, as given in Goodfellow et al. (2016) Chapter 8, can be found in Algo-
rithm 2 below.
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Algorithm 2 Adam Algorithm (Goodfellow et al. (2016) Algorithm 8.7 Section 8.5.4)

Require: Step size ε (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, ρ1 and ρ1 in [0,1). (Suggested defaults:

0.9 and 0.999 respectively)
Require: Small constant δ used for numerical stabilization (Suggested default: 10−8)
Require: Initial parameter θ

Initialize 1st and 2nd moment variables s = 0,r = 0
Initialize time step t = 0
while stopping criterion not met do

Sample a minibatch of m examples from the training set {x (1), . . . , x (m)} with targets y (i )

Compute gradient: ĝ ← 1
m∇θ

∑
i L( f (x (i );θ), y (i ))

t ← t +1
Update biased first moment estimate: s ← ρ1s + (1−ρ1)g
Update biased second moment estimate: r ← ρ2r + (1−ρ2)g ¯g
Correct bias in first moment: ŝ ← s

1−ρt
1

Correct bias in second moment: r̂ ← r
1−ρt

2

Compute update: ∆θ =−ε ŝp
r̂+δ

Apply update: θ← θ−∆θ
k ← k +1

end while

3.4.5 Back-propagation Algorithm for Computing the Gradient

Adam and most other learning algorithms require the gradient of the cost function (Hinton,
2012; Kingma and Ba, 2014; Goodfellow et al., 2016). The gradient is in nearly all cases com-
puted by the back-propagation (backprop) algorithm (Rumelhart et al., 1986).

(Goodfellow et al., 2016) defines forward propagation as the process in which information flows
forward through a network, from input x to output ŷ . The forward propagation generally con-
tinues until it results in a scalar cost J (θ) (Goodfellow et al., 2016). The idea of back-propagation
is then to let the information flow back through the network and use this to compute the gradi-
ent (Rumelhart et al., 1986).

The full algorithm will not be presented here as is not necessary within the scope of the thesis.
It is sufficient to understand that the backprop algorithm can efficiently compute the gradient.
The original algorithm can be found in Rumelhart et al. (1986).

3.4.6 Optimization Algorithm Selection

Goodfellow et al. (2016) states that there is currently no consensus for selecting the "right" op-
timization algorithm. Schaul et al. (2013) tested a wide range of optimization algorithms on
different learning tasks and found that the adaptive learning rate algorithms performed fairly
robust. No clear winner was chosen and most popular are SGD, RMSProp, AdaDelta (Duchi
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et al., 2011) and Adam. Goodfellow et al. (2016) remarks that the choice of algorithm depends
mostly on the user familiarity with tuning the hyperparameters of the algorithm.

3.5 Regularization

This section is based on Chapter 7 in Goodfellow et al. (2016), where Goodfellow et al. (2016)
starts with defining regularization as:

"any modification we make to a learning algorithm that is intended to reduce its gen-
eralization error, but not its training error"

The goal of an effective regularizer is then to reduce the variance significantly, while not at the
same time increasing the bias too much (Goodfellow et al., 2016). This should increase the
model’s ability to generalize for new data without underfitting (Goodfellow et al., 2016).

3.5.1 Parameter Norm Penalties (L1 and L2)

LeCun et al. (2015) states that several regularization methods utilize the strategy of limiting the
capacity of the deep learning model by adding a parameter norm penalty termΩ(θ) to the cost
function J . Goodfellow et al. (2016) defines the regularized cost function J̃ as

J̃ (θ; X , y) = J (θ; X , y)+αΩ(θ) (3.18)

where the norm penalty term Ω is weighted by the hyperparameter α ∈ [0,∞). Exactly what Ω
penalizes is dependent on the algorithm design and model family (Goodfellow et al., 2016). This
section focus on regularizers which only penalizes the weights of the affine transformation from
layer to layer. The bias is thereby left unregulated, but biases generally require less data to be fit
accurately (Goodfellow et al., 2016).

L2 regularization, also known as weight decay or ridge regression, is the most common form
of parameter norm penalty regularizer (Goodfellow et al., 2016). In the notation of Goodfellow
et al. (2016), let w denote all the weights in θ affected by a norm penalty. Goodfellow et al. (2016)
then defines the L2 norm penalty as

Ω(θ) = 1

2
‖w‖2

2 (3.19)

A learning algorithm optimizing a cost function with L2 regularization will shrink the weights
on features which have a low covariance with the output target compared to the added variance
(Goodfellow et al., 2016).

Goodfellow et al. (2016) defines another common norm penalty L1, also known as lasso, as

Ω(θ) = 1

2
‖w‖1 =

∑
i
|wi | (3.20)
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L1 regularization results in a solution that is more sparse. The regularization drives some of the
parameters to have an optimal value of zero (Goodfellow et al., 2016).

Zou and Hastie (2005) combined the L1 and L2 norm penalty regularizers to form a norm penalty
function called elastic net

Ω(θ) = 1

2
‖w‖1 + 1

2
‖w‖2

2 (3.21)

Zou and Hastie (2005) states that elastic net overcomes some of the drawbacks associated with
L1 regularization. If the number of examples is a small integer n and the dimension of the data
is much larger than n, then L1 becomes saturated when selecting at most n variables Zou and
Hastie (2005). L1 also tends to only select one variable in a group of highly correlated variables,
ignoring the rest (Zou and Hastie, 2005).

Zou and Hastie (2005) showed that in an elastic net, L1 generates a sparse model while L2 re-
moves the limit on selected variables, allows for grouping and stabilizes the regularization path.

3.5.2 Dropout

Srivastava et al. (2014) introduced the concept of dropout regularization, which is a very pow-
erful method for regularizing several model types and has the great benefit of being computa-
tionally inexpensive. Srivastava et al. (2014) showed that dropout is more effective than other
regularization methods and Goodfellow et al. (2016) notes that dropout can effectively be com-
bined with other regularizers for further improvements.

Goodfellow et al. (2016) explains that the essence of dropout is to train the set of all subnetworks
that can be formed by temporarily disabling hidden or input units from the total network un-
der consideration. This can be achieved by multiplying the output of a unit by zero since most
modern neural networks are, as detailed above, formed by a series of affine transformations and
non-linear functions (Srivastava et al., 2014).

More formally, Goodfellow et al. (2016) defines dropout by the following procedure. Let µ be
a mask vector that specifies which units to include and J (θ,µ) be the cost of a model defined
by parameters θ and mask µ. Training with dropout relies then on minimizing EµJ (θ,µ). The
binary mask is sampled for each example into a mini-batch and then applied to all the hidden
or input units in the network.

In practice, values of µ are sampled to obtain an unbiased estimate of the gradient of J since
the expectation contains exponentially many terms (Srivastava et al., 2014). The sampling is
independent for each unit and the probability of a unit being included is a hyperparameter
determined before training (Goodfellow et al., 2016). An inclusion probability of 50 percent and
80 percent is often used for hidden and input units, respectively (Goodfellow et al., 2016).
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3.5.3 Early Stopping

Early stopping is another regularization strategy that is highly popular due to its simplicity and
effectiveness (Goodfellow et al., 2016). Recall the general development of the validation error as
shown in Figure 3.2 above. The validation error decreases at first and after reaching a minima
it steadily starts to rise again. Goodfellow et al. (2016) remarks that this happens frequently in
deep learning.

Goodfellow et al. (2016) states that the strategy of early stopping is simply to save the model pa-
rameters each time there is an improvement in the validation error and then returning the best
parameters after training is completed. In some applications, the training processes is termi-
nated if there is no improvement for a set number of iterations or epochs (Chollet, 2015). Early
stopping can be combined effectively with other regularization strategies (Goodfellow et al.,
2016).

3.6 Recurrent Neural Networks

Goodfellow et al. (2016) defines recurrent neural networks (RNN) as a family of models spe-
cialized for processing a sequence of values x (1), . . . , x (τ). Recurrent networks are scalable with
longer sequences than practical for other non-specialized networks and have the ability to pro-
cess sequences of different length (Goodfellow et al., 2016).

Goodfellow et al. (2016) states that the main benefit of recurrent networks is that they utilize pa-
rameters sharing across the model, where each member of the output is given by applying the
same update rule to the previous members of the output. Goodfellow et al. (2016) further states
that long short-term memory (LSTM) networks are the most effective recurrent models used
in practical applications. LSTM networks were first presented in Hochreiter and Schmidhuber
(1997).

The section is based in Chapter 10 in Goodfellow et al. (2016) and starts with the basic concepts
of unfolding computational graphs before presenting recurrent neural networks with emphasis
on LSTM networks.

3.6.1 Computational Graphs and Unfolding

Goodfellow et al. (2016) defines computational graphs as a directed graph where each node cor-
respond to a variable, where the variable can be of many types, such as but not limited to vector,
matrix, tensor or scalar. In addition to the nodes, there is a set of allowed operations which are
simple functions of one or more variable and more complex operations are built by combining
the allowed set of simple operations (Goodfellow et al., 2016). Computational graphs are com-
monly used to structure a set of computations (Goodfellow et al., 2016).

Goodfellow et al. (2016) gives the classical form of a recurrent dynamic system

s(t ) = f (s(t−1);θ) (3.22)
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where s(t ) is the state of the system at time t . The recurrence comes from that the definition s
refers back to the same definition at time t−1 (Goodfellow et al., 2016). This recurrent computa-
tion can be unfolded into a repetitive computational graph and for a given number of time step
τ, the graph can be unfolded τ−1 times by repeating the definition in Equation 3.22 (Goodfellow
et al., 2016). Goodfellow et al. (2016) shows that for τ= 3 the unfolding becomes

s(3) = f (s(2);θ) = f ( f (s(1);θ);θ) (3.23)

Goodfellow et al. (2016) states that since Equation 3.23 no longer involve any recurrence it can
therefore be represented as a traditional directed acyclic graph. The same approach is com-
monly used for values of hidden units, where the state is here the hidden unit (Goodfellow et al.,
2016).

Let x (t ) be an input signal and h(t ) be the state, then Goodfellow et al. (2016) states that 3.22
becomes

h(t ) = f (h(t−1), x (t );θ) (3.24)

Goodfellow et al. (2016) explains that in prediction algorithms, the recurrent model normally
learns a lossy summary of the relevant aspects of the previous input sequence. It becomes lossy
since the fixed length vector h(t ) is mapped from the non-fixed length input sequence. The
summary often contain some particular characteristic of the past sequence with a high preci-
sion compared to other characteristics.

Goodfellow et al. (2016) defines the function g (t ) to represent the unfolded recurrence after t
time steps

h(t ) = g (t )(x (t ), x (t−1), . . . , x (2), x (1)) = f (h(t−1), x (t );θ) (3.25)

The past sequence (x (t ), x (t−1), . . . , x (2), x (1)) is used as an input to function g (t ) which produces
the current state and function g (t ) can further be factorized by repeatedly applying the function
f (Goodfellow et al., 2016).

Goodfellow et al. (2016) explains that the unfolding, which gives the parameter sharing, results
in two major advantages:

1. The input size of the model is constant as it is given in terms of transition from one state
to another.

2. The same parameters are used with the same function f at all time steps.

These components enable the algorithm to learn a single shared model f that allows for gener-
alization to sequence lengths that did not appear in the training set (Goodfellow et al., 2016). Far
more training examples would be required if the model did not share parameters, as the model
would need to learn a new model g (t ) for all possible time steps (Goodfellow et al., 2016).

Figure 3.5, adapted from Goodfellow et al. (2016) Chapter 10, depict two common ways to repre-
sent recurrent models, unfolded computational graph and circuit diagram. The left figure shows
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a circuit diagram where the black square denotes a single time step delay. The right figure shows
the unfolded graph representation of the same network. Here, each node is connected to a spe-
cific time instance.

Figure 3.5: Unfolded Computational Graph and Circuit Diagram Representation (Goodfellow
et al. (2016) Figure 10.2 Section 10.1)

3.6.2 General Recurrent Neural Network

Recurrent networks can be configured in several different ways. Figure 3.6, from Goodfellow
et al. (2016) Chapter 10, depicts the unfolded computational graph and circuit diagram of a re-
current network which have recurrent connections between hidden units and for each time step
outputs a value.

Goodfellow et al. (2016) explains that the network in Figure 3.6 takes an input sequence x and
maps it to a corresponding sequence of outputs o. The distance between the output sequence o
and the training label y is measured by the loss L. Depending on the choice of output unit func-
tion and cost function, the loss y computes some loss metric from the output o and label y . The
weight matrix U parametrizes the input-to-hidden connections, while matrix V parametrizes
the hidden-to-output connections.

This is a general depiction of a simple recurrent network and thus the loss function and hidden
units are not specified. Recurrent neural networks utilize several different configurations and
functions dependent on the task (Goodfellow et al., 2016).

3.6.3 The Gradient in Recurrent Neural Networks

Computing the Gradient in Recurrent Network

Determining the gradient in a recurrent network does not differ from that of a feedforward net-
work (Goodfellow et al., 2016). The generalized back-prop algorithm described in Section 3.4.5
can be applied to the unfolded computational graph (Goodfellow et al., 2016). Any general-
purpose gradient-based optimization method may use the gradient to train the recurrent net-
work, such as the previously discussed SDG and Adam (Goodfellow et al., 2016; Kingma and Ba,
2014; Robbins and Monro, 1951).
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Figure 3.6: Circuit Diagram and Unfolded Computational Graph of General Recurrent Network
(Goodfellow et al. (2016) Figure 10.3 Section 10.2)

Long-term Dependencies in Recurrent Networks

Goodfellow et al. (2016) states that the main challenge with learning long-term dependencies in
recurrent networks comes from that gradients flowing through many stages tend to either ex-
plode or vanish. Gradients vanish much more frequently than they explode (Goodfellow et al.,
2016).

Goodfellow et al. (2016) explains that the problem arises from the fact that the long-term in-
teraction gradient has a magnitude that is exponentially smaller than the short-term gradient.
This leads to a tremendous training time for learning long-term dependencies as these depen-
dencies tend to be hidden by even minor fluctuations in short-term dependencies (Goodfellow
et al., 2016).

3.6.4 Long Short-term Memory (LSTM) Network

Long short-term memory models introduced the concept of self-loops (Hochreiter and Schmid-
huber, 1997). The self-loops helps avoid the vanishing or exploding gradient problem by gener-
ating paths where the gradient can flow for a long duration (Goodfellow et al., 2016). This allows
for a model that can handle fine details in the immediate past, while at the same time efficiently
transfer relevant information from the far past (Goodfellow et al., 2016).

Goodfellow et al. (2016) explains that LSTM models deviate from feedforward networks in that
there is no longer a unit, which computes the affine transformation of inputs, and then apply a
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nonlinear function. Instead, LSTM networks have special type of cell (layer) called LSTM cells.
These LSTM cells have a self-loop, internal recurrence, combined with an additional outer re-
currence.

Each cell is connected to three types of gating units and the flow of information in the network
is controlled by these gating units (Goodfellow et al., 2016). Using the notation and method as
described in Goodfellow et al. (2016) let s(t )

i denote the state unit in cell i at time step t . A forget

gate f (t )
i controls the self-loop weight, through a sigmoid unit, by setting the corresponding

weight to a value between 0 and 1. Goodfellow et al. (2016) defines the forget gate function as

f (t )
i =σ(b f

i +∑
j

U f
i , j x(t )

j +∑
j

W f
i , j h(t−1)

j ) (3.26)

The current input and hidden layer vector is denoted x (t ) and h(t ), respectively. The hidden layer
vector contains the entirety of the LSTM cell’s outputs. The total weights of the forget gate are
split into recurrent weights U f and input weights W f . The bias of the forget gate is denoted b f .

Goodfellow et al. (2016) gives the function for second type of gate unit, external input gate g (t )
i ,

as

g (t )
i =σ(bg

i +∑
j

U g
i , j x(t )

j +∑
j

W g
i , j h(t−1)

j ) (3.27)

The superscript g here denotes that the weights and biases belong to the internal input gates.

Goodfellow et al. (2016) states that the update of the internal state of the of the LSTM cell is then
given by

s(t )
i = f (t )

i s(t−1)
i + g (t )

i σ(bi +
∑

j
Ui , j x(t )

j +∑
j

Wi , j h(t−1)
j ) (3.28)

Note that the conditional self-loop, given in Equation 3.26 above, is included in the expression
and multiplied with the previous state unit, thus acting as a self-controlled weight. The same
applies to the external input gate, but it controls the sigmoid value into the LSTM cell.

The final type of gate, output gate q (t )
i , is used to control the output of the LSTM cell through

another sigmoid function

q (t )
i =σ(bo

i +
∑

j
U o

i , j x(t )
j +∑

j
W o

i , j h(t−1)
j ) (3.29)

where the superscript o denotes that the weights and biases belong to output gate unit (Good-
fellow et al., 2016).

The function for the output gate of the LSTM cell is given by Goodfellow et al. (2016) as

h(t )
i = t anh(s(t )

i )q (t )
i (3.30)
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Figure 3.7, adapted from Goodfellow et al. (2016) Chapter 10, shows a block diagram of a LSTM
cell.

Figure 3.7: Block Diagram of LSTM Network Cell (Adapted from Goodfellow et al. (2016) Figure
10.16 Section 10.10.1)

Goodfellow et al. (2016) explains that the input gate in Figure 3.7 uses a sigmoid unit to compute
a value from the inputs which can be accumulated to the state depending on the sigmoid value
of the input gate. The sigmoid value of the forget gate controls the linear self-loop of the state
unit, where the black square denotes a single time step. The output from the state is controlled
by the sigmoid value of the output gate. The self-loop results in an unfolding similar, but more
complex due to the added connections, to the unfolding of the general recurrent neural network
as shown in Figure 3.6 (Goodfellow et al., 2016).

Stacking LSTM Layers

Pascanu et al. (2013) introduced that LSTM networks can be used with a deeper architecture by
connecting together, often referred to as stacking (Brownlee, 2017), multiple LSTM cells. The
output sequence of a LSTM cell is then returned to the next cell until the output layer. Graves
et al. (2013) showed that increased depth improve model performance on several tasks. As with
feedforward networks, the additional layers provide increased levels of abstraction, thus gives
the possibility to further represent the problem at different time scales (Pascanu et al., 2013).
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Chapter 4

Traditional Methods for Metocean
Simulation

This chapter introduces the theory of two traditional methods used for metocean simulation:
Vector autoregressive moving-average (VARMA) models and discrete-time finite-state Markov
chain models. These models were chosen as they are frequently applied as stochastic generators
in metocean simulation (Monbet et al., 2007). The models are therefore suitable comparison
models for a deep learning stochastic metocean generator.

4.1 Vector Autoregressive Moving-average Models

The models in this section are from Wei (1990), but the notation follows Percival (1993). The
change in notation was due to better readability and for maintaining notational consistency in
the thesis.

4.1.1 Autoregressive (AR) Model

Wei (1990) defines the auto-regressive AR(p) model of order p as

X t = c +
p∑

i=1
φi X t−1 +εt (4.1)

where φi are the AR parameters, c is a constant and εt is white noise. Wei (1990) states that AR
models are useful for modeling processes where the present value depends linearly on preced-
ing values in addition to a random shock. The model is stationary if the roots of the polynomial
zp −∑p

i=1φi zp−i lie outside the unit circle (Wei, 1990).

4.1.2 Moving-average (MA) Model

Wei (1990) defines the moving-average MA(q) model of order q as

X t = εt +
q∑

i=1
θiεt−i (4.2)
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where θi are the MA parameters and εt ,εt−1, . . . are white noise (Wei, 1990). The moving-average
model is always stationary (Wei, 1990).

4.1.3 Vector Autoregressive Moving-average (VARMA) model

Wei (1990) defines the univariate ARMA(p, q) model with orders p, q as

X t = c +εt +
p∑

i=1
φi X t−1 +

q∑
i=1

θiεt−i (4.3)

The ARMA model is thus simply a composite of the AR and MA model. It should be noted that it
is common in the literature to refer to the order of p and q as number of p and q lags (Wei, 1990).

Wei (1990) states that all of the models presented in this section can be extended to the multi-
variate case. The multivariate ARMA is often called vector ARMA (VARMA) and defined by Wei
(1990) as

X t = c +εt +
p∑

i=1
φi X t−1 +

q∑
i=1

θiεt−i (4.4)

where the AR and MA parameters φi and θi are N ×N matrices and N is the number of vari-
ables. The remaining terms are N ×1 vectors.

Wei (1990) and Percival (1993) both shorten and simplify the notation by introducing the lag
operator L. Wei (1990) defines the lag operator as an operator which shifts an element given the
integer it is raised to

Lk X t = X t+k (4.5)

Using the lag operator, Wei (1990) states that the VARMA model can be written as

Φ(L)X t = c +Θ(L)εt (4.6)

where the AR component is given by

Φ(L) = 1−
p∑

i=1
φi Li (4.7)

and the MA component is given by

Θ(L) = 1+
q∑

i=1
θi Li (4.8)

Only the AR part influences stationary and a multivariate VARMA(p, q) is stationary if the roots
of the polynomialΦ(L) lie outside the unit circle (Wei, 1990).

Wei (1990) states that the parameters of a VARMA model are generally found by optimization
methods based on maximizing the log-likelihood while ensuring stationarity. The exact proce-
dure is not presented here, but the maximum likelihood estimation method and other estima-
tion methods can found in Wei (1990) Chapter 7. The parameter estimation procedure estimates
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the most likely parameters from the data which is to be modeled and is commonly known as fit-
ting the model (Wei, 1990).

4.1.4 White Noise

Wei (1990) states that the white noise is generally assumed to be independent identically dis-
tributed (i.i.d.) random variables. Wei (1990) further remarks that the white noise is generally
sampled from a zero mean normal distribution ε∼N (0,σ2). Weakening these assumptions, in
particular the i.i.d. assumption, would lead to fundamental difference in the model (Wei, 1990).

4.2 Discrete-Time, Finite-State Markov Chains

Kirkwood (2015) defines a discrete Markov chain or Markov process as a discrete stochastic pro-
cess which satisfies the Markov property. The Markov property is also known as the memory-less
property and Kirkwood (2015) states it as:

"for a Markov process, conditioning a future event on a given set of previous out-
comes is equivalent to conditioning only on the most recent of the outcomes in the
set."

Let S denote the discrete and finite state space of a Markov chain and X is a random time in-
dexed variable. Kirkwood (2015) then formally defines the Markov property as

P (Xn+m = s|Xn−1 = in−1, . . . , X1 = i1, X0 = i0) = P (Xn+m = s|Xn−1 = in−1) (4.9)

where s, i0, i1, . . . , in−1 ∈ S and n ≥ 1,m ≥ 0.

Kirkwood (2015) further states that all conditional transition probabilities can be expressed in a
transition matrix

P =


P1,1 P1,2 · · · P1,n

p2,1 P2,2 · · · P2,n
...

...
. . .

...
Pn,1 Pn,2 · · · Pn,n

 (4.10)

where Pi , j is the transition probability from state i to state j and n denotes the number of states.
Kirkwood (2015) remarks that Pi , j ≥ 0 and

n∑
j=1

Pi , j = 1 (4.11)

for all i = 1, . . . ,n.

The transition matrix P combined with the probability distribution of the initial condition P (X1 =
x1) defines the Markov chain model (Hagen et al., 2013).
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Anastasiou and Tsekos (1996) states that a maximum likelihood estimator for the transition
probabilities for such a process is given by

p̂i j =
Ni j

Ni
(4.12)

where Ni j is the number of observed transitions from state i to state j , and Ni is the total num-
ber of occurrences of the state i in the sequence.

An important property of Markov chains for this thesis are absorbing states. Kirkwood (2015)
defines an absorbing state as a state where once the process enters that state, it never leaves.
This is true if and only if Pi ,i = 1 (Kirkwood, 2015).
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Chapter 5

Method

This chapter details the methods used for implementation and validation of the stochastic meto-
cean generators. Three model families were selected for validation:

• Discrete-time finite-state Markov chains

• Vector autoregressive (VAR) and vector autoregressive moving-average (VARMA) models

• Stochastic autoregressive long short-term memory (SAR-LSTM) neural networks

The chapter starts with detailing the observed metocean series used as case study and the trans-
formations applied to the metocean time series before and after simulation. Then, the design
decisions and simulation algorithms for each model family is presented. Finally, the validation
criteria for quality of results are presented.

5.1 Description and Preprocessing of Observed Time Series

The quality of the models was evaluated based on their ability to replicate specific statistical
properties of two different hindcast metocean time series. The statistical properties were cho-
sen based on the use of the synthetic time series in marine simulation-based design and the
validation criteria are described in Section 5.6. Only the bivariate time series of significant wave
height Hs and peak period Tp was considered in this thesis.

The two metocean time series used as case study were from different hindcast archives, meaning
that a different hindcast model was used to generate the hindcast data. See Section 7.1.1 for a
discussion on the validity of building metocean generators on hindcast data and a comparison
of the different hindcast models.

5.1.1 North Sea Series

The first metocean time series was from an area of the North Sea with coordinates 56.5°N 3.2°E.
The location was chosen as it is a commonly used time series at the Department of Marine Tech-
nology (IMT) at NTNU.
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The time series was provided from the WAM10 hindcast archive and contains wind and sea state
parameters from 1958-2016, sampled at three hour intervals (Norwegian Meterological Insti-
tute, 2009). Only the observations from year 1990 to 2015 were used in this thesis. The time
series contained 75968 observations of Hs and Tp .

Observed significant wave heights in the hindcast data were discretized into 111 unique val-
ues, while peak periods were discretized into 23 unique values. The Hs values were linearly
spaced, while the Tp values were spaced logarithmic. Due to logarithmic spacing, the difference
between the observed values increases with increasing TP . There were no missing values or ap-
parent errors in the hindcast data.

The Tp values were distributed within the range of the class which it belongs to (i.e., the dis-
crete values) and Andersen (2009) states that it can be assumed that the values are uniformly
distributed within its class and randomly distributed by

Tp,di str i buted = 3.244e0.09525(n−0.5−ε), n ∈ Z (5.1)

where ε is a random variable uniformly distributed in range [0,1] and

n = r ound(1+ ln( TP
3.244 )

0.9525
) (5.2)

5.1.2 Mediterranean Sea Series

The second time series was from an area of the Mediterranean Sea with coordinates 41°N 6°E.
The location was chosen as it is a commonly used area in the literature concerning metocean
simulation (Soares and Cunha, 2000). Further, it was desirable to have an area with calmer meto-
cean conditions and a different time scale than the North Sea series.

The time series was provided from the ERA5 hindcast archive and contains wind and sea state
parameters from 1990-2015, sampled at six hour intervals (ECMWF, 2018). The time series con-
tained 37984 observations of Hs and Tp .

The values of Hs were not discretized, but the Tp values were discretized in 372 classes. The
classes were inconsistently logarithmic spaced. Several classes were very close to each other
and the number of observations in a class varied significantly. No general uniform distribution
function such as equation 5.1 could therefore be applied.

In order to distribute the Tp classes, the classes with the highest amount of observations, which
were very close to another large class, were merged such that the location of the new class was
at the middle point between the two classes. The classes were then distributed by an uniform
distribution weighted by the number of observations in the class before and after the current
class. The same approach was then applied to classes with a lower number of observations.
Different values for the number of observations in large and small classes, in addition to the
distance between them, were evaluated until a satisfactory distribution was achieved.

46



CHAPTER 5. METHOD

5.2 Data Transformations

The goal of the transformation was to produce stationary Gaussian residuals W . The data trans-
formation was similar for the VAR, VARMA and SAR-LSTM models, while the Markov models
differs in that it only transforms Hs before simulation and has no requirements for Gaussian
distribution. Therefore, the data transformation for VAR, VARMA and SAR-LSTM will be pre-
sented first, followed by the transformation used for the Markov models.

The data was first transformed and the resulting residuals were simulated using one of the
model families before being back-transformed. The back-transform was performed by applying
the inverse of the transformations in the reverse order.

5.2.1 VAR, VARMA and SAR-LSTM Network Transformation

The VAR, VARMA and SAR-LSTM models require that the series is stationary. Both metocean se-
ries have a yearly statistical periodicity induced by the annual meteorological cycle, which must
be removed before simulation. Further, VAR and VARMA assumes that the stationary process is
approximately Gaussian. It was assumed that the SAR-LSTM models generalization would be
improved by the same process.

This section follows the order of operations for producing the stationary Gaussian residuals.
First, a lognormal Rosenblatt transformation to Gaussian space is presented, followed by the
seasonal transformation to stationarity.

Lognormal Rosenblatt transform

The traditional approach for transforming a time series to approximately Gaussian in metocean
simulation is to apply the logarithmic transformation or the multivariate Box-Cox transforma-
tion (Stefanakos and Belibassakis, 2005; Box and Cox, 1964; Monbet et al., 2007). This thesis in-
troduces the use of a lognormal Rosenblatt transformation for producing approximately Gaus-
sian residuals (Rosenblatt, 1952). The goal of the lognormal Rosenblatt transformation was to
improve the model’s ability to maintain dependencies throughout simulation. Previous test per-
formed by the author had shown that the Box-Cox transformation resulted in a weak replication
of the observed joint distribution.

The lognormal Rosenblatt transformation is based the Conditional Modeling Approach (CMA)
as given in Det Norske Veritas (2010). In CMA, the joint density function of Hs and Tp is given by
a marginal distribution and a conditional density function (Det Norske Veritas, 2010). The log-
normal Rosenblatt transformation deviates from the CMA method by changing the assumptions
that Hs follows a 3-parameter Weibull distribution to that it follows a lognormal distribution.

First, the significant wave height Hs was modeled by a lognormal cumulative distribution func-
tion

FHs (h) =Φ(
(ln(h)−µHs )

σHs

) (5.3)
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where µHs and σHs are the parameters of the lognormal distribution estimated from the ob-
served data and h is the significant wave height Hs . Φ(z) is the cumulative distribution function
of the standard normal distribution.

Next, the peak period Tp was modeled by a lognormal cumulative distribution function condi-
tioned on Hs

FTp |Hs (t |h) =Φ(
(ln(t )−µTp |Hs )

σTp |Hs

) (5.4)

where t is the peak period Tp . The conditional mean µTp |Hs and conditional variance σTp |Hs are
given as functions of Hs . Det Norske Veritas (2010) states that the following functions often give
a good fit for the conditioned lognormal parameters

µTp |Hs = E[lnTp ] = a0 +a1ha2 (5.5)

and

σTp |Hs = std [lnTp ] = b0 +b1exp(b2h) (5.6)

where the parameters ai and bi are estimated from the observed data.

The data was then transformed to standard normalized U-space by

u1 =Φ−1(FHs (h)) (5.7)

u2 =Φ−1(FTp |Hs (t |h)) (5.8)

The back-transform thus becomes

h =Φ(F−1
Hs

(u1)) (5.9)

t =Φ(F−1
Tp |Hs

(u2)) (5.10)

Multivariate Seasonal Transform

The next step was to to make the series stationary by removing the yearly meteorologic period-
icity from u1 and u2. The seasonal transformation follows the approach set forth in Stefanakos
and Belibassakis (2005). It was assumed that the series of approximately Gaussian variables u1

and u2 admits the decomposition

Y t = M t +Σt ·W t (5.11)

where Y t is a vector of the bivariate series of u1 and u2. The mean vector M t and standard de-
viation matrix Σt are deterministic periodic functions with period of one year. Note that in this
notation, Σt denotes the square root of the covariance matrix.
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The terms of the seasonal patterns M t and Σt were estimated by first reindexing the approxi-
mately Gaussian series in terms of Y t according to the triple notation introduced in Stefanakos
and Belibassakis (2005)

Yn( j ,k,τk ), n = 1, . . . , N (5.12)

where J is the number of years, km is the number of observations within the mth month. The
indexes are given by j = 1, . . . , J , m = 1, . . . ,12 and k = 1, . . . ,Km . The variable indexes are given by
n, l = 1,2 for the bivariate series. The time series of monthly mean and covariance can then be
determined from

Mn( j ,m) = 1

Km

Km∑
k=1

Yn( j ,m,τk ), n = 1, . . . , N (5.13)

and

Snl ( j ,m) = 1

Km

Km∑
k=1

[
Yn( j ,m,τk )−M3,n( j ,m)

][
Yl ( j ,m,τk )−M3,l ( j ,m)

]
, n, l = 1, . . . , N (5.14)

The mean and covariance of the seasonal patterns can be obtained from

M̃n(m) = 1

J

J∑
j=1

Mv,n( j ,m), n = 1, . . . , N (5.15)

and

S̃nl (m) = 1

J

J∑
j=1

Sv,nl ( j ,m), n, l = 1, . . . , N (5.16)

Stefanakos and Athanassoulis (2001) and Stefanakos and Athanassoulis (2003) presented that
periodic extensions of M̃n(m) and S̃nl (m) are good estimates of Mn,t andΣnl ,t , respectively. The
deterministic periodic extensions Mn,t and Σnl ,t were then found by fitting Fourier series with
period of one year to the inner-annual seasonal patterns M̃n(m) and S̃nl (m).

The residual component W t was then assumed stationary and approximately Gaussian, given
by

W t = Y t −M t

Σt
(5.17)

Soares and Cunha (2000) states that for some metocean series the seasonal transform

W t = Y t −M t (5.18)

yields better results.

To avoid any confusion, the seasonal transformations in Equation 5.17 and 5.18 will be denoted
as the full seasonal transform and mean seasonal transform, respectively.
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Both forms of the seasonal transform were evaluated for the VAR and VARMA models, while
only the mean transform was used with the SAR-LSTM models. The lack of access to computa-
tional power led to that it was only feasible to evaluate one of the transformations. The mean
transform was chosen since it produces less extreme values and is more consistent than the full
transform. It was assumed that this would result in the best generalization.

The mean monthly covariance between u1 and u2 used for estimating the periodic function Σt

were found to be very small and in some cases negative. Taking the square root of the covariance
matrix then produces complex numbers which must be avoided. It was found that setting the
covariances to zero would not significantly influence the results. See Section 7.2.3 for further
discussion.

5.2.2 Markov Chain Transformation

The Markov model does not need to fulfill any Gaussian assumptions, but requires that the dis-
tribution used to generate the transition matrix P is stationary. Thus, only the seasonal trans-
form to stationarity was applied to Hs . The dependency between the variables was maintained
by a coupling matrix that did not require that Tp was stationary or Gaussian.

The seasonal transform for the Markov model was thus in the univariate case and the decom-
position assumed to be

Yt = Mt +St ·Wt (5.19)

where Yt is the Hs time series. The determination of the deterministic periodic function for
mean Mt and standard deviation St were found by the same approach as the multivariate case
above. The transform to stationary residuals W thus becomes

Wt = Yt −Mt

St
(5.20)

and the mean only transform

Wt = Yt −Mt (5.21)

was also evaluated due to the statements in Soares and Cunha (2000).

5.3 Markov Chain Stochastic Generator

The Markov chain models are based on the models from the preceding project thesis and fol-
lows the same approach, except that Fourier approximation functions are applied instead of a
seasonal transform with constant values for each month. A Markov chain is not inherently able
to recreate dependencies between parameters and as such requires some method for maintain-
ing the dependencies throughout a simulation. Several different methods are available such as
correlation matrices, splines or other coupling methods (Hagen et al., 2013).
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A coupling matrix was found to be a good alternative since Hs and Tp were discretized into
relatively few values. The coupling matrix C was given by

C =


c1,1 c1,2 · · · c1,NT

c2,1 c2,2 · · · c2,NT
...

...
. . .

...
cNH ,1 cNH ,2 · · · cNH ,NT

 (5.22)

where NT and NH are the number of unique discrete values of peak period and significant wave
height, respectively. Ci j denotes the probability of the peak period being in state j when the
significant wave height is in state i .

Anastasiou and Tsekos (1996) states that a maximum likelihood estimator for such a process is
given by

ĉi j =
Ni j

Ni
(5.23)

where Ni j is the total number of observed state j when in state i , and Ni is the total number of
occurrences of state i . This estimator was then used to determine the coupling probabilities.

The distribution functions in Section 5.1 were applied to the peak periods after coupling. The
number of unique values in the Mediterranean Sea series was much higher than in the North
Sea series, and thus the Hs values in the Mediterranean Sea were rounded to one decimal place
when estimating C . This was done to reduce the size of C such that the sampling from this
distribution would be more realistic. It also avoids problems related to absorbing states.

Algorithm 3 Markov Simulation Algorithm

Require: Time series Y
Require: Number of replications N

Build Coupling matrix: C

Apply transformation: Wt = Hs,t−Mt
St

or Wt = Hs,t −Mt

Build transition matrix: P
Sample initial condition Ŵ0 from Wt distribution
Initialize time step: t = 1
while t ≤ N do

Sample: Ŵt = P (Ŵt−1)
Back-transform: Ĥs,t = Mt +Ŵt or Ĥs,t = Mt +St Ŵt

Sample: T̂p,t =C (Ĥs,t )
t ← t +1

end while

The number of possible states in the transition matrix P is a parameter that must be determined
before simulation. It was assumed that increasing the number of states would result in a model
of a higher quality. This was shown to be the case for the Markov chain models in the project
thesis. Thus, the number of states was found by finding the maximum number of states before
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absorbing states appeared. The simulation method is summarized in Algorithm 3 as a pseudo-
alogrithm.

5.4 VAR and VARMA Stochastic Generator

The data was first transformed by the lognormal Rosenblatt transformation and the seasonal
transformation as detailed in Section 5.2.1. Let tr ans(Y ) =W denote the complete transforma-
tion from environmental space Y to residual space W . The residuals W t were assumed station-
ary and Gaussian, which means that an appropriate VAR or VARMA model could be fitted to the
stochastic process. In addition to determining the parameters c , φ and θ, the optimal number
of lags p and q for the AR and MA component, respectively, must also be determined.

Based on the results of Stefanakos and Belibassakis (2005), VARMA(p, q) models with lag values
p, q = 1, . . . ,4 were evaluated. Pure VAR(p) models with lags p = 1, . . . ,30 were also evaluated.
Higher order VAR(p) models showed comparable results to VARMA(p, q) in Soares and Cunha
(2000). The number of evaluated lags were much higher for the VAR(p) models since it is sig-
nificantly less computationally expensive to determine the parameters of a VAR(p) model com-
pared to a VARMA(p, q) model (Wei, 1990).

The parameters of the VAR models were found by maximum likelihood estimation (MLE) (Wei,
1990). VAR models for all lag values were estimated by MLE and the optimal number of lags p∗

was found by Akaike information criterion (AIC). Akaike (1973) defines AIC as

AIC = 2k −2ln(L̂) (5.24)

where k is the number of estimated parameters and L̂ is the maximum value of the likelihood
function. AIC is commonly used for selecting a model from a set of candidates, where the model
with the lowest AIC minimizes the information loss (Wei, 1990). Brockwell and Davis (2009) rec-
ommends using AIC to find the optimal number of lags for both VAR(p) and VARMA(p, q). The
optimal number of lags was then found as p∗ = mi n(AIC (V AR(p))) for p = 1, . . . ,30.

The VARMA models followed a different procedure than the VAR models. The determination of
number of VARMA(p, q) lags followed the approach of Tiao and Tsay (1983). The two-way table
of the P-values of the extended cross-correlation matrices was first computed by the multivari-
ate Ljung-Box statistics of the series (Tsay, 2014). The optimal number of lags were chosen as
those that had the lowest P-value at the 5% significance level (Tsay, 2014). AIC could not be used
as it was too time consuming, due to available computational power, to estimate the parame-
ters φ and θ for each possible combination of p and q . The parameters of the model with the
optimal lags p, q was then estimated by maximum likelihood (Wei, 1990).

The process could now be simulated using either of the model types. It is common to let the sim-
ulation run for some amount of time steps from the initial conditions to remove the influence
of the initial conditions (Martin et al., 2012). This is called the burn-in phase of the simulation.
Both models used burn-in with a length of 400 time steps.
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The pseudo-algorithms for simulation with VAR and VARMA models are summarized in Algo-
rithm 4 and 5, respectively.

Algorithm 4 VAR Simulation Algorithm

Require: Time series Y , maximum number of lags to be evaluated P
Require: Number of replications N , burn-in length B

Apply transformation: W = tr ans(Y )
Estimate parameters of VAR(p) for p = 1, . . . ,P by MLE
Select optimal lag: p∗ = mi n(AIC (V AR(p)))
Initialize time step: t = 1
Initialize initial condition: L =W 1, . . . ,W p∗

while t ≤ N +B do
Sample: Ŵ t =V AR(p∗,L)
Update lookback: Lτ+1 = Lτ for τ= 1, . . . , (p∗−1) and L1 = Ŵ t

Back-transform: Ŷ t = tr ans−1(Ŵ t )
t ← t +1

end while
Drop Ŷ 1, . . . , Ŷ B from Ŷ

Algorithm 5 VARMA Simulation Algorithm

Require: Time series Y , maximum number of lags to be evaluated P,Q
Require: Number of replications N , burn-in length B , Significance level α

Apply transformation: W = tr ans(Y )
Determine P-values of extended crosscorrelation matrix: pECC M(p, q) for p, q = 1, . . . ,P,Q
Determine optimal lags: p∗, q∗ = mi n(pECC M(p, q) ≥α)
Estimate parameters of VARMA(p∗, q∗) by MLE
Initialize time step: t = 1
Initialize initial condition: L =W 1, . . . ,W p∗

while t ≤ N +B do
Sample: Ŵt =V ARM A(p∗, q∗,L)
Update lookback: Lτ+1 = Lτ for τ= 1, . . . , (p∗−1) and L1 = Ŵ t

Back-transform: Ŷ t = tr ans−1(Ŵ t )
t ← t +1

end while
Drop Ŷ 1, . . . , Ŷ B from Ŷ
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5.5 SAR-LSTM Stochastic Generator

There currently exist no standard method for using deep learning models as stochastic gener-
ators. Therefore a new method for using deep learning models as stochastic generators is pre-
sented in this thesis, stochastic autoregressive long short-term memory (SAR-LSTM) generators.
The general idea for the SAR-LSTM model was to use a prediction network with a white noise
component. The SAR-LSTM model is conceptually similar to an AR model, in that there is a
deterministic autoregressive component which gives the predicted value given past values and
another stochastic white noise component given by the marginal distributions of the process.

Training the SAR-LSTM model required that some performance measure was specified. It was
assumed that the deep learning model which had the lowest error in prediction generalization
would also be the best stochastic generator. LSTM neural networks were chosen as the model
type since they are the state-of-the-art within prediction problems and has shown great results
in this area (Goodfellow et al., 2016).

Designing a SAR-LSTM stochastic metocean generator forces the designer to make several de-
sign decisions. The problem must first be framed in a way which the algorithm is able to learn.
A model family must then be chosen which has it own design decisions for architecture, cost
function, optimization method, units, hyperparameters and so on. This section details the as-
sumptions, design decisions and proposed method for metocean simulation with SAR-LSTM
network stochastic generators.

5.5.1 Supervised Learning Problem

Transformation and Scaling

The metocean data was first transformed to stationary approximately Gaussian residuals W by
the transformation in Section 5.2.1. A LSTM network generally performs better when all features
are in the range [0,1] (Brownlee, 2017). A minmax scaler was therefore applied to W , which nor-
malizes each feature individually, such that the range of the training set is [0,1] (Chollet, 2015).
Additionally, the minmax scaler was applied to the month indexes which were then concate-
nated to their corresponding position in W .

Reshaping Metocean Data to Supervised Learning Problem

The scaled residuals and month indexes were then transformed into a task which the algorithm
may be able to learn. The metocean dataset was framed as a supervised learning prediction
problem where the goal was to predict Hs and Tp at the current hour t , given some features at
prior time steps t −1, t −2, . . . . The features chosen from the metocean data were

• Past observations of Hs

• Past observations of Tp

• Past observations of month number
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Each of the features forms a set of past values, where each feature set has equal length. The
number of past values used as input was determined by the length of the look-back window L,
i.e, how many lags are used for prediction of the next value. The length of the look-back window
L was assumed to significantly influence the performance and was therefore chosen as a hyper-
parameter. A look-back window of features thus forms an example x of the dataset. The current
observations of Hs and Tp becomes the labels y .

The month was only used as a feature, as it was the monthly variability which was interesting
and not the prediction of this value. This was included as a feature to model any remaining
monthly statistical properties.

The examples and labels were generated by shifting the series back in time for each time step
of the look-back window. The exact shape of the inputs x depends on the machine learning
algorithm. In this thesis, the high-level neural networks API Keras was used (Chollet, 2015).
TensorFlow, an open source library for for high performance numerical computation, was used
as back-end (Abadi et al., 2015). Keras assumes that the examples x for LSTM networks are on
the form [samples, timesteps, features] (Chollet, 2015).

Training and Validation Data

Next, the supervised learning problem formulation of the metocean series was split into a train-
ing set and a validation set. The training set was used to train the model while the validation set
was used to find the best values of the hyperparameters. The data set was split by the 80-20 rule,
such that 80 percent was used for training and 20 percent for validation.

There was no need for a test set since the model was to be validated based on its quality as a
stochastic generator, not how good it performed in predictions on unseen data. Regardless, the
North Sea observations for year 1989, note that these values were not part of the training or
validation set, were used as a test set to test the prediction performance.

5.5.2 LSTM Network Architecture and Functions

Deeper LSTM networks have been shown to have improved performance over shallow networks
(Pascanu et al., 2013). Therefore, the number of LSTM cells (layers) was selected as another
hyperparameter. When LSTM cells are stacked, they return their sequences to the next cell until
the final LSTM cell. This cell output the hidden states to an output layer, similar to a feedforward
layer, with two output units. Two output units were required since there were two labels. The
output units then give the actual prediction and are used by the cost function for training the
network.

Hidden and Output Unit Functions

Selection of the hidden and output unit functions for a prediction LSTM network model is sim-
pler than for a feedforward network due to some amount of standardization. A LSTM network
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does not have several hidden units, such as a feedforward network, but it has a similar hyper-
parameter which is the number of hidden states in a LSTM cell. The hidden states in LSTM
networks are often referred to as units in a lot of the literature and documentation, but there is
only one unit in each cell, i.e, the cell itself (Goodfellow et al., 2016)(Chollet, 2015). The number
of hidden states have a major influence on the performance and was therefore selected as an-
other hyperparameter.

The hidden unit functions were kept at the default setting with sigmoid function controlled
gates and t anh(z) as the output function of the cells. The final output units had linear out-
put unit functions, since it is preferred for real-valued outputs such as time series (Brownlee,
2017).

Cost Function and Optimization Algorithm

A good choice for cost function becomes the root mean square error (RMSE) when framed as
a supervised prediction problem. This is the most commonly used cost function for predic-
tion problems (Brownlee, 2017). Further, RMSE works well with linear output units (Goodfellow
et al., 2016)

Next, an optimization algorithm which works with the RMSE function and linear output units
must be chosen. Adam was chosen as it has been shown to be quite robust and effective with
its default settings. It was desirable to have an optimization algorithm which did not require the
learning rate to be a hyperparameter of the model. Further, Adam works well with RMSE cost
function and linear output units (Kingma and Ba, 2014).

The stochastic mini-batch method was used to find the expectation of the gradient and the
training and validation data were not shuffled during sampling to preserve the temporal de-
pendence. The batch size was set to 64 examples for each iteration. This value was found by
taking the minimum multiple of two, larger than 32, which led to a practical training time.

Regularization Methods

Three types of regularization methods were used to reduce the generalization error. Dropout
was applied with a dropout probability of 50 percent. L2 regularization is commonly used in
prediction models and the weight α was chosen as hyperparameter since the performance of
the model may be very sensitive to this weight. Finally, early stopping was implemented by
simply saving the parameters of the model each time the generalization error improved.

5.5.3 Grid Search for Optimal Hyperparameters

The LSTM model was now specified and parameterized by four hyperparameters. A grid search
was then performed to find good values for the chosen hyperparameters. Generally, a grid
search involves picking hyperparameter values approximately on a logarithmic scale or as mul-
tiples of two (Goodfellow et al., 2016). The grid search then consists of training a network for
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each combination in the hyperparameter sets and measuring some performance criteria (Good-
fellow et al., 2016). The RMSE validation loss was chosen as the performance criteria and the
best performing model was the model which achieved the lowest validation loss over the train-
ing epochs.

The sets of chosen hyperparameters for grid search can be seen Table 6.1.

Table 5.1: Hyperparameters for Grid Search

Hyperparameter Set
No. cells {1,2,3}
No. hidden states {32,64,128}
L2 weight α {0,10−2,10−3,10−4,10−5}
Look-back window length {8,16,32}

A grid search is often repeated at a higher fidelity, i.e., generating a new set of grid values closer
to the current best hyperparameter values (Goodfellow et al., 2016). Only a single grid search
was performed in this thesis due to time and resource constraints. The grid search was run for
60 epochs with resetting of the model states between each epoch. More epochs and larger sets
would have been desirable, but was not possible due to time and resource limitations.

5.5.4 Transforming a Prediction Model to a Simulation Model

After determining the best values for the hyperparameters, a new model with the same param-
eters was defined, and then trained for 500 epochs. This was to attempt to further decrease the
generalization error. The deterministic LSTM component of the model had then been deter-
mined and the random white noise component was introduced to form a simulation model.

The distribution of the transformed unscaled variables W were approximately Gaussian and
therefore a Gaussian distribution was fitted to the residuals of significant wave height W 1 and
peak period W 2. Let X1 ∼ N (0,σW 1 ) and X2 ∼ N (0,σW 2 ) denote the zero-mean white noise
Gaussian processes of Hs and Tp respectively, whereσW 1 andσW 2 are the variances of Gaussian
distributions estimated from the residuals. After the network made a prediction, the inverse
normalization scaling was applied to the predictions. Then, the zero-mean white noise

X =
[

X1

X2

]
(5.25)

was added to the predictions before applying the normalization scaler again. The predications
were then added to the look-back window as the observation (sample) at timestep t − 1. Fi-
nally, the predictions were transformed to the environmental space by the inverse transforma-
tion tr ans−1(W ) = Y as given in Section 5.2.1.

The complexity of LSTM networks makes it difficult to write a comprehensive algorithm for sim-
ulation. The pseudo-algorithm below is intended more as a summary of how the SAR-LSTM
network simulation was performed.
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Algorithm 6 SAR-LSTM Network Simulation Algorithm

Require: Time series Y , Number of replications N , burn-in length B
Require: Set of hyperparameters: H

Apply transformation: W = tr ans(Y )
Scale each feature in W to range [0,1]
Reshape W into supervised learning problem W super vi sed

Split W super vi sed into training set x tr ai n , y tr ai n and validation set x val , y val
Grid search for optimal hyperparameters H∗

Initialize time step: t = 1
Initialize look-back initial condition: L =W super vi sed ,1, . . . ,W super vi sed ,H∗

look−back
while t ≤ N +B do

Sample: Ŵ t = LST M(L)
Inverse scale Ŵ t

Add white noise: Ŵ t ← Ŵ t +X
Back-transform: Ŷ t = tr ans−1(Ŵ t )
Scale Ŵ t

Update lookback: Lτ+1 = Lτ for τ= 1, . . . , (H∗
look−back −1) and L1 = Ŵ t

t ← t +1
end while
Drop Ŷ1, . . . , ŶB from Ŷ

5.6 Validation

The models quality of results were validated based on their ability to match the following statis-
tical properties of the observed time series:

1. Overall and monthly mean, variance and covariance

2. Joint distribution and marginal distributions

3. Auto- and crosscorrelation

4. Persistence of Hs above or below thresholds (access and waiting windows)

These statistical properties were found to be of the highest importance for applications in simulation-
based design. More complex persistence properties such as the joint persistence was omitted
due to the persistence of Hs being sufficient for comparison of the models. Validation of the
persistence criterion was adapted from the approach presented by Walker et al. (2013). Monte
Carlo simulation was applied to approximate the statistical properties and each model type was
validated on both the North Sea and Mediterranean Sea series.
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Results

This chapter presents the validation results of the best performing stochastic generators for both
metocean time series under consideration. Additional results related to the transformations
used and the SAR-LSTM network performance are also presented.

The results of the Markov chain models were of much lower quality than the VAR and VARMA
models, and are therefore not presented in this chapter. Additionally, the Markov models with
full seasonal transform produced results of such low quality that they were omitted from this
thesis. Appendix B contains the results for every model implemented for both the North Sea
and Mediterranean Sea series. The scripts used for implementation, simulation and visualiza-
tion can be found in Appendix C.

The selection of the best performing models depends on the end-user’s ranking of the perfor-
mance criteria. No single VAR or VARMA model performed best in all of the criteria for each
series. Thus, the models chosen for comparison against the SAR-LSTM network models were
chosen as the models which performed best overall.

VARMA(2,3) f performed best or was equal to the other VAR and VARMA models in most criteria
for the North Sea series, except for autocorrelation of Tp and crosscorrelation, where it slightly
underperformed. VARMA(2,3) f was therefore chosen as the comparison model for the North
Sea series. The subscript f and m denotes the type of seasonal transformation to normality
used, where f is the full seasonal transform and m is the mean seasonal transform.

VAR(10) f performed best or was equal to the other VAR and VARMA models in all criteria for
the Mediterranean Sea series, except for persistence below threshold where it slightly underper-
formed. VAR(10) f was therefore chosen as the comparison model for the Mediterranean Sea
series.
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6.1 Grid Search Results

Table 6.1 shows the results of the hyperparameter grid search for both series. The LSTM net-
works component of the SAR-LSTM model thus have the hyperparameters detailed in Table 6.1,
in addition to the parameters and functions determined in Section 5.5.

Table 6.1: Hyperparameters for LSTM Networks

Hyperparameter North Sea Mediterranean Sea
No. cells 2 2
No. hidden states 128 128
L2 weight α 0 0
Look-back window length 32 16

6.2 Validation Results

6.2.1 Lower Order Statistical Moments

Overall Lower Order Statistical Moments

Table 6.2 and 6.3 depicts the overall lower order statistical moments of the models for the North
Sea series and Mediterranean Sea series, respectively. The overall lower order statistical mo-
ments were found as the value of the moments calculated over the entire series.

Table 6.2: Overall Lower Order Statistical Moments for North Sea Series

Series Mean Hs Variance Hs Mean Tp Variance Tp Covariance
Observed 2.081 1.688 7.786 4.864 1.494
LSTMm 2.050 7.723 7.984 13.321 5.724
VARMA(2,3) f 2.106 2.047 7.840 5.003 1.708

Table 6.3: Overall Lower Order Statistical Moments for Mediterranean Sea Series

Series Mean Hs Variance Hs Mean Tp Variance Tp Covariance
Observed 1.267 0.999 6.122 2.947 1.414
LSTMm 3.565 18.626 8.584 9.175 10.360
VAR(10) f 1.249 1.150 6.121 2.947 1.409
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Monthly Lower Order Statistical Moments

Figure 6.1 depicts a comparison plot of the monthly mean value of Hs and Tp for both series.
The monthly mean was found as the mean of all values within a given month.

(a) Mediterranean Sea Series (b) North Sea Series

Figure 6.1: Validation Plot of Monthly Mean of Hs and Tp

Figure 6.2 depicts a comparison plot of the monthly variances and covariance for both series.
It is important to note that the y-axis is logarithmic. This was necessary to fit and make both
series comparable in a single plot, due to the large differences in values. The y-axis label further
denotes the position of the property in the covariance matrix. The monthly variance and co-
variance were found as the mean of the variance or covariance for a given month for the entire
series.

(a) Mediterranean Sea Series (b) North Sea Series

Figure 6.2: Validation Plot of Monthly Variance and Covariance of Hs and Tp
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6.2.2 Joint and Marginal Distributions

Figure 6.3 depicts the scatter plots of the models superimposed on the observed values for the
Mediterranean Sea series. Superimposing both models on the observed values made it difficult
to simultaneously determine the goodness of the joint distribution and it was therefore split into
the two plots seen in Figure 6.3. The left figure depicts the SAR-LSTM network model, while the
right figure depicts VAR(10) f .

Figure 6.3: Validation Scatter Plot of Hs and Tp for Mediterranean Sea Series

Figure 6.4 depicts the scatter plots of the models superimposed on the observed values for the
North Sea series.

(a) Mediterranean Sea Series (b) North Sea Series

Figure 6.4: Validation Scatter Plot of Hs and Tp for North Sea Series
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6.2.3 Auto- and Crosscorrelation

Figure 6.5 depicts a comparison plot of the Hs and Tp autocorrelation function for both series.

(a) Mediterranean Sea Series (b) North Sea Series

Figure 6.5: Validation Plot of Hs and Tp Autocorrelation Function

Figure 6.6 depicts a comparison plot of the Hs and Tp crosscorrelation function for both series.

(a) Mediterranean Sea Series (b) North Sea Series

Figure 6.6: Validation Plot of Hs and Tp Crosscorrelation Function

63



CHAPTER 6. RESULTS

6.2.4 Persistence

The persistence of the time series was calculated as the number of occurrences of a specific
weather window length below or above a threshold defined by the significant wave height. The
persistence tables were normalized by calculating the cumulative duration in hours of each cell
and then dividing by the total duration of the series. This was done to make the persistence of
the models comparable to each other and the observed values.

Figure 6.7 depicts the normalized contours for persistence above significant wave height thresh-
olds for both series.
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Figure 6.7: Validation Plot of Normalized Persistence Contours Above Thresholds

Figure 6.8 depicts the normalized contours for persistence below significant wave height thresh-
olds for both series.
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Figure 6.8: Validation Plot of Normalized Persistence Contours Below Thresholds
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6.3 Prediction and Loss Performance of LSTM Network Models

Figure 6.9 depicts the prediction performance of the LSTM network component of the SAR-
LSTM model for the residuals W on a part of the North Sea test set, as described in Section 5.5.1.
The root mean square error for each of the residuals over the entire test set is given Table 6.4.

Table 6.4: Root Square Mean Error (RMSE) for North Sea Test Set Predictions

Prediction Output RMSE
W1 (Hs) 0.19
W2 (Tp ) 0.60

Figure 6.9: Plot of LSTM Predictions on North Sea Test Set

Figure 6.10 depicts the development of the training and validation loss (error) for each LSTM
network for the first 60 epochs.

(a) Mediterranean Sea (b) North Sea

Figure 6.10: Plot of Training and Validation Loss for LSTM Models
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6.4 Distributed Observed Scatter Plots

Figure 6.11 depicts the scatter plots of the observed series after applying the corresponding dis-
tribution method for Tp , as detailed in Section 5.1.

(a) Mediterranean Sea (b) North Sea

Figure 6.11: Scatter Plot of Distributed Tp and Hs for each Observed Series

6.5 Scatter Plots and Distributions of Residuals

Figure 6.12 depicts the scatter plots of the residuals of the lognormal Rosenblatt transformation,
u2 and u1, for the observed series.

(a) Mediterranean Sea (b) North Sea

Figure 6.12: Scatter Plot of u2 and u1 for each Observed Series
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Figure 6.13 and 6.14 depicts the histograms for the residuals u1 and u2 of the lognormal Rosen-
blatt transformation for the observed series.

(a) Mediterranean Sea (b) North Sea

Figure 6.13: Histogram of u1 for each Observed Series

(a) Mediterranean Sea (b) North Sea

Figure 6.14: Histogram of u2 for each Observed Series
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6.6 Curve Fit for Lognormal Conditional Parameters

Figure 6.15 and 6.16 depicts the fitted curves for determining the conditional mean and variance
parameters of the lognormal distribution for Tp conditioned on Hs .

(a) Mediterranean Sea (b) North Sea

Figure 6.15: Curve Fit for Conditional Mean of ln(Tp ) Given Hs

(a) Mediterranean Sea (b) North Sea

Figure 6.16: Curve Fit for Conditional Variance of ln(Tp ) Given Hs
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Discussion

7.1 Metocean Series

7.1.1 Hindcast Data: Building a Model on a Model

It is important to note that the hindcast data which was used for implementation and validation
of the models the result of a numerical model. The different hindcast archives used in this thesis
were provided from the WAM10 hindcast archive (Norwegian Meterological Institute, 2009) and
ERA5 hindcast archive (ECMWF, 2018).

The wave conditions in both models are found from the WAve Model (WAM) model. Komen
et al. (1996) provides an in-depth explanation of the WAM model, including scientific basis,
actual implementation and applications. Campos and Soares (2016) compared and evaluated
three wave hindcast models in the North Atlantic Ocean: ERA-Interim, NOAA/CFSR and HIPOCAS.
Both HIPOCAS and ERA-Interim are based on the WAM model. Campos and Soares (2016)
found that the three wave hindcast models in non-extreme conditions produced similar re-
sults with a low error against observed values. Campos and Soares (2016) concludes that the
results supports the use of ERA-Interim for non-extreme analyses, HIPOCAS for high sea states
in mid-high latitudes, close or within the storms, and NOAA/CFSR for surrounding areas and
lower latitudes. Janssen (2002) performed a validation study using satellite data and found that
present-day wave models, including WAM are reliable.

The actual observations at the locations would be preferable to hindcast data for fitting and
training the models, but due to the lack of past observations and the enormous size of the ocean
space, this is often not possible (Monbet et al., 2007). Observed data also has some uncertainties
related to the measurement (Campos and Soares, 2016).

Thus, the foundation for building the stochastic generators rests on the inherent uncertainties
and assumptions present in the hindcast models based on the WAM model. Assuming that
the hindcast data is a sufficient representation of the wave conditions, then the uncertainty
increases further when introducing models which provide additional abstraction of the wave
process. An interesting extension of this thesis would be to compare the results of stochastic
generators fitted or trained on hindcast data to actual observed data.
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The WAM model is a physical model as opposed to the statistical metocean generators. ECWMF
uses WAM in both deterministic and ensemble forecasting systems (Janssen, 2002). Vanem
(2011) argues that waves should be modeled as stochastic processes since even though dynam-
ics of waves follows the laws of physics and could in principle be described deterministically,
this is not possible due to the complexity of the system. Vanem (2011) explains that the sea is
a dynamic system which is influenced by an infinite number of interrelated parameters which
needs to be determined to provide an exact representation of the sea.

Regardless, a metocean generator can not be fully deterministic since then it would generate one
and only one synthetic time series and the evolution of the wave conditions would be similar
given the same previous conditions. There must be some stochastic terms or other method
which allows for the generation of several unique synthetic series.

7.1.2 Distribution of Observed Tp Values

North Sea Series Distribution

The observed North Sea Tp values were originally logarithmic spaced and then distributed within
its class by the uniform distribution given by Equation 5.1 and 5.2. The joint distribution of
the randomized observed data can be seen in Figure 6.11a. The classes can be recognized by
characteristic vertical lines where two classes with a substantial difference in the number of oc-
currences are adjacent. This implies that the assumption of uniform distribution was not fully
adequate.

The spreading can and should be improved such that the joint distribution no longer shows
clear vertical lines between the classes. A simple way of doing this would be to introduce weights
to a uniform distribution similar to the Mediterranean Sea distribution. The weight should be
increased towards the neighboring class with the highest density. Regardless, the distribution
method was found to be adequate for the models in this thesis.

Mediterranean Sea Series Distribution

The observed Mediterranean Sea Tp values were originally inconsistently logarithmic spaced
and then distributed by merging some classes before applying a weighted uniform distribution
function, as detailed in Section 5.1.2. Figure 6.11b shows the joint distribution, where vertical
class lines starts to become visible for values of Tp higher than 8 seconds. The density of the
markers before this point hides some of the vertical lines, but they are still present.

This could be improved by introducing a more comprehensive and robust method for both clus-
tering and weighing the distribution. The distribution was found to be adequate for use in this
thesis.

From the scatter plots in Figure 6.11, it can also be seen that the Mediterranean Sea series was
less effected by swell than the North Sea series. There were few instances of high Tp for low
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values of Hs for the Mediterranean Sea series compared to the North Sea series. This was rea-
sonable as the Mediterranean Sea is much more enclosed than the North Sea. This is further
corroborated by the discussion on curve fitting in Section 7.2.5.

7.2 Transformations and Residuals

The lognormal Rosenblatt transformation introduced in this thesis has so far not been applied in
a traditional autoregressive simulation method. The general approach in the literature consists
of using the Box-Cox transformation or the log transform (equivalent to the special case of Box-
Cox where λ = 0) to produce approximately Gaussian residuals (Athanassoulis and Stefanakos,
1995; Stefanakos and Belibassakis, 2005; Soares and Cunha, 2000). The following section dis-
cusses the assumptions made for the transformations and how these assumptions influenced
the models. The final subsection discusses the benefits and drawbacks of using the lognormal
Rosenblatt transformation over the Box-Cox transformation.

7.2.1 Lognormal Assumption

A primary assumption for the lognormal Rosenblatt transformation was that both Hs and Tp

follows a lognormal distribution. Det Norske Veritas (2010) states that Tp follows a lognormal
distribution, while Hs should be modeled by a 3-parameter Weibull distribution. Weibull distri-
bution was to be avoided since the resulting residuals follows the same distribution. The resid-
uals must be Gaussian due to the assumptions underlying the VARMA models (Wei, 1990). In
contrast to Det Norske Veritas (2010), Medina et al. (1991) states that both Hs and Tp can be
modeled by a lognormal distribution.

The latter was followed in this thesis and produced excellent results for the VAR and VARMA
models, with a significant improvement in the joint distribution, see Section 7.2.6 for further
discussion.

7.2.2 Stationarity of Residuals

The stationarity of the residuals W can be checked by assessing a myriad of different test statis-
tics. The stationarity of the residuals was assessed by the augmented Dickey–Fuller (ADF) (Fuller,
1976) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) (Kwiatkowski et al., 1992) test statistics.

ADF tests the null hypothesis that there is a unit root in the time series (Fuller, 1976). All trans-
formed series rejects the null hypothesis of a unit root at the 5 % significance level. KPSS tests
the null hypothesis that the time series is stationary around a deterministic trend (i.e. trend-
stationary) against the alternative of a unit root (Kwiatkowski et al., 1992). All transformed series
rejects the trend-stationary null hypothesis in favor of the unit root alternative at the 5 % signif-
icance level.

The two test statistics contradicts each other, but this is not uncommon for these two test statis-
tics. These results simply shows that there is not sufficient information for determining if the
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series are stationary (Bhargava, 1986). More complex test statistics could have been applied for
further investigation, but this is outside the scope of this thesis. The results of the best perform-
ing models showed that the series were indeed stationary enough for practical applications,
which is what truly matters.

7.2.3 Covariance of Residuals

An interesting result of the lognormal Rosenblatt transformation was that the monthly covari-
ance between u1 and u2 became small and in some cases negative. Negative covariance com-
plicates the seasonal transform due to the introduction of complex values from the inclusion of
the square root of the covariance matrix.

Several tests were performed to find a solution, such as setting the diagonal to zero or taking
the absolute value of the entries in the covariance matrix before applying the square root. It
was found that giving the covariances a value of zero produced the best results. More work is
needed to understand exactly why the covariance almost disappears after transformation. It is
likely that the conditioning of the parameters is the cause of the low covariance.

7.2.4 Distribution of Residuals

Figure 6.12a depicts a scatter plot of the U-space residuals for the Mediterranean Sea series. The
Mediterranean Sea scatter plot shows a cluster which has center close to the origin. There are
only a few values far from the cluster, primarily located at higher u2 values. Most of the values
for both u1 and u2 have an absolute value of less than 4, which is reasonable. A distance of 4.5
from the origin is equivalent to the probability of a 10,000-year Hs or Tp .

Figure 6.12b depicts a scatter plot of the U-space residuals for the North Sea. The North Sea
scatter plot shows clear horizontal lines of constant u1 values. This is a result of the low fidelity
of Hs values in the North Sea series. Further, it was seen that the change in Hs was small for
increasing values of u1 at low values, i.e., negative values. Much larger increases were seen in
Hs for increasing values of u1 at higher values. Additionally, the distribution of Tp does not in-
fluence the formation of the lines which corroborate that the low fidelity in Hs is the cause. The
values of Hs could have been distributed before transformation, similar to Tp , but was not nec-
essary for this thesis.

Most of the values of u1 and u2 have a distance of less than 4 from the origin, which again is
reasonable. There are on the other hand, some values which even surpass the 10,000-year prob-
ability for Tp .

Figure 6.13 depicts the residual u1 histogram for both observed series. The Mediterranean u1

histogram shows a decent Gaussian distribution with some skewness. The North Sea u1 resid-
uals are centered around zero, but shows some "spikes" and empty bins. This is again a result
of the low fidelity of Hs in the North Sea series. Distribution of Hs before transformation may
improve the results.
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Figure 6.14 depicts the residual u2 histogram for both observed series. The histogram of Mediter-
ranean u2 again shows a decent Gaussian distribution with some skewness. The North Sea his-
togram of u2 is skewed towards the right with a much fatter left than right tail.

The transformation produce the best results for the Mediterranean Sea series, where part of
the increase in quality is a result of the higher fidelity of Hs . The variance is also lower for the
Mediterranean Sea series which may also contribute to the results. The increase in quality of
transformation does not directly relate to a better quality of results as discussed in Section 7.3.

7.2.5 Curve Fit

Figure 6.15 and 6.16 shows the curve fitting used for determining the parameters of the con-
ditional mean and variance for the lognormal distribution of Tp . The curve fitting was found
to be appropriate for both series. The largest deviations appear at the highest values of Hs for
both series, but the generalization through these points appears appropriate. It should also be
noted that there are quite few extreme values of Hs in each series which means that an exact fit
through these points may not be the best generalization.

The figures further support the assumption that the North Sea series is more effected by swells.
Comparing Figure 6.16a and 6.16b it is clear that the variance in l n(Tp ) for low values of Hs is
much higher for the North Sea series than for the Mediterranean Sea series. The variance be-
come more similar with increasing Hs .

This will effect further assumptions related to short-term modeling of waves in the two areas,
especially for choice of wave spectra Hs and Tp can be used to describe. The swells significantly
influence the shape of the wave spectra, i.e., one-peaked or two-peaked. For more information
on the influence of swells on the choice of wave spectra see Haver and Moan (1983).

7.2.6 Rosenblatt Transformation Compared to Box-Cox Transformation

Appendix B.3 contains a comparison between two VARMA models with full seasonal transform
on the North Sea series, where the comparison models uses different transforms to normal-
ity. VARMA(2,3) f has the lognormal Rosenblatt transformation as detailed in this thesis, while
VARMA(3,1) f ,box has the multivariate Box-Cox transformation (Box and Cox, 1964). The number
of lags are different due to that the best candidate model changes with the transformation.

It can be seen that the Box-Cox model performs slightly better at replicating the overall lower
order statistical moments. Both models perform equally well in matching the monthly mean,
covariance and variance in Hs , but the Box-Cox model matches the monthly Tp variance much
better. The figures show that the Rosenblatt model matches the crosscorrelation function slightly
better, while the Box-Cox model more accurately matches the autocorrelation function of Tp .
Both models perform equally well on matching the persistence above thresholds and Hs auto-
correlation. The Box-Cox model perform slightly worse on matching the persistence below.
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A noticeable difference occurs with the joint distribution. The Box-Cox model does not match
the general shape of the observed distribution. The Box-Cox model generates values above the
wave breaking limit and further does not produce low enough values of Hs for high values of Tp .
The inward curve which appears for higher values of Tp is also not adequately matched by the
Box-Cox model. The Rosenblatt model performs much better in matching the shape of joint dis-
tribution. Further, the Rosenblatt model also matches the marginal distributions slightly better.

In summary, the Rosenblatt transformation significantly increases the performance in matching
the joint distribution, but performs slightly worse than Box-Cox on a few other criteria on the
North Sea series. The literature shows that the Box-Cox transformation is generally applied for
all applications (Monbet et al., 2007), but this thesis has shown that the lognormal Rosenblatt
transformation should rather be used for applications where matching the joint sea state of Hs

and Tp is of high importance. More work is needed to see if the transformation could be used
for other metocean parameters.

7.3 Quality of Results

7.3.1 Overall Lower Order Statistical Moments

The overall mean is the primary criterion for many simulation-based design applications. For
instance, when determining the operational life cycle cost of a deep-sea shipping vessel, the
mean sea state that the vessel experiences is the primary characteristic for determining the fuel
consumption.

Table B.1 and B.2 depicts the overall lower order statistical moments for the North Sea and
Mediterranean Sea series, respectively. It can be seen that the Markov models most accurately
matches the overall variances and covariance among all the models, but generates overall mean
values which are below the observed value for both series.

The VAR and VARMA models most accurately match the overall mean values for both series.
Note that VARMA(2,3) f generally performs best for the North Sea series, while VAR(30) f per-
forms best for the Mediterranean Sea series. This indicates that it is beneficial to include the
full seasonal transform when concerned with accurately replicating the overall lower statistical
moments. There are no clear indications that VARMA outperform VAR on this criterion.

The SAR-LSTM model quite accurately matches the overall mean values for the North Sea, where
the performance is comparable to that of the VAR and VARMA models. The SAR-LSTM model
produces a much higher than observed variance and covariance, far higher than any other
model. The SAR-LSTM network for the Mediterranean Sea series produce overall values signifi-
cantly higher than observed and any other model. The matching is much worse for the variance
and covariance compared to the mean for the SAR-LSTM networks. This is symptomatic of the
general problem with the SAR-LSTM models, primarily that the introduction of the white noise
to the LSTM network causes the variance to skyrocket. This will be further discussed in Section
7.6.2.
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7.3.2 Monthly Lower Order Statistical Moments

The monthly mean and variance are good indicators for the ability of the model to recreate the
seasonality in a times series. The winter season, compared to the summer season, normally
results in harsher sea states and shorter persistence. Seasonality is highly important in sev-
eral marine applications, especially for applications concerned with operability, such as marine
construction, salvage, aquaculture and offshore wind power.

Monthly Mean

Figure B.1 and B.8 depicts the monthly mean for the North Sea and Mediterranean Sea series,
respectively. The VAR and VARMA models accurately matches the monthly mean of Hs and Tp .
There is a minor deviation near month 8 in the Mediterranean Sea series which is not present
in the North Sea series. Further, the results are marginally better for the full transform models
compared to the mean transform.

The Markov models accurately matches the monthly mean of Hs , but there are more significant
deviations in the monthly values of Tp compared to VAR and VARMA.

The SAR-LSTM network for the North Sea series performs quite well in matching the monthly
mean of both Hs and Tp . The performance is better than the Markov models and comparable
to the VAR and VARMA models. This is not the case for the Mediterranean Sea, where the values
are much larger for each month. The inverse bell shape resulting from the calmer period during
summer is more pronounced for the Mediterranean Sea SAR-LSTM model.

Monthly Variance and Covariance

Figure B.2 and B.9 depicts the monthly variance and covariance for the North Sea and Mediter-
ranean Sea series, respectively. The monthly variance and covariance is best matched by the
VAR and VARMA models. For the North Sea series, it seems like the complex shape of the Tp

variance makes it more difficult to match this compared to the Mediterranean Sea. None of the
North Sea VAR and VARMA models quite manage to replicate this shape. The full seasonal trans-
form results in higher monthly Tp variance than the mean transform for the North Sea series.

For the Mediterranean Sea series, the VAR and VARMA models quite accurately match the vari-
ance and covariance, except for some deviations in Hs variance and covariance during months
10-12. The full transform produces better results during these months compared to the mean
transform. The full transform further only produce marginally better results than the mean
transform, which is highly interesting, as a larger deviation between the models using different
transforms was expected on this criterion.

The Markov models gave some interesting results on this criterion. The monthly Tp variance
acts opposite of the observed behavior for both series. This is a result of the coupling matrix not
having any tools for maintaining the seasonal variance in Tp and that only the mean transfor-
mation was used with the Markov models. The subpar performance on this criterion is therefore
reasonable, since there are no tools for maintaining the seasonal variance. Further, the variance
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in Hs and covariance are close to constant for both series. This was expected since the monthly
variance in Hs and covariance should be the same as the overall value.

The SAR-LSTM models performs much worse than the other models. The SAR-LSTM model for
the Mediterranean Sea produces monthly variances which are much higher than observed. The
shape is maintained, but it is much steeper than observed. The North Sea series are better and
maintains the shape, but the values are still far too high. This is particularly interesting since the
SAR-LSTM network models use the mean transform. This indicates that the networks were able
to learn the general shape of the monthly variance and covariance, but the values are excessive.

7.3.3 Joint and Marginal Distributions

Figure B.3 and B.10 depicts the joint and marginal distributions for the North Sea and Mediter-
ranean Sea series, respectively. The matching of the marginal distribution means that the model
is able to accurately recreate the number of times a significant wave height or peak period oc-
curs over the temporal horizon under consideration. This includes the number of occurrences
of extreme events which is of high importance for failure analysis or other extreme value ana-
lyzes.

Joint environmental models are required for a consistent treatment of the loading in for instance
a reliability or operability analysis (Det Norske Veritas, 2010). A vessel may be limited by restric-
tions by each of the wind and sea state parameters or a combined state. Another major use of
joint environmental models is in the assessment of the relative importance of various environ-
mental variables during extreme response conditions (Det Norske Veritas, 2010).

The matching of the joint and marginal distributions is poor for the SAR-LSTM network models
for both series. The matching is far below any of the other models. Higher values of Hs and Tp

are much more prevalent and the models produce far more extreme values. The extreme val-
ues appear as elongated "tails" of the joint distributions. This hold for both series, where the
North Sea series has two tails and the Mediterranean Sea series has only one. The extreme tails
are most likely due to that the lognormal Rosenblatt transformation maps extreme values from
simulation to the end of the tails, since the joint distribution shape is preserved for values close
to observed values. The number of extreme values resulting from the simulation is significant
such that the tails become very large.

The Markov models perform poorly in replicating the marginal distributions for both series.
Some of the marginal distributions are jagged which is a consequence of the limited number
of states. The joint distribution for both series are decent, but there are some distinct clusters
which does not appear in the observed values

The VAR and VARMA models best replicates the joint and marginal distributions. The models
with the mean seasonal transformation are slightly better at matching the marginal distribu-
tions, especially for Tp . The joint distribution is adequately matched by all the VAR and VARMA
models, but the North Sea models are lacking some values near the lower right tail. There are
further more extreme values in the joint distribution for both series. This is due to that the Gaus-
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sian distributions can produce large values which when added to an already large value for the
deterministic part of the model results in extreme values larger than observed.

7.3.4 Auto- and Crosscorrelation

Figure B.4 and B.11 shows the autocorrelation functions for the North Sea and Mediterranean
Sea series, respectively. The autocorrelation and crosscorrelation functions gives a good indica-
tion of the ability of the model to replicate the dependence within a sequences of waves.

The autocorrelation function is sufficiently matched by the VAR and VARMA models for both
series, and the deviations are smallest in the Mediterranean Sea series. There are no clear in-
dication that the type of seasonal transformation influences the autocorrelation. Note that the
autocorrelation function of the Mediterranean Sea drops off faster than the North Sea. This is
reasonable since the time steps in the Mediterranean Sea series is 6 hours, twice that of the
North Sea.

The autocorrelation function of the SAR-LSTM network models drops of much faster than the
observed series and remains lower. The SAR-LSTM network models does not manage to repli-
cate the temporal dependencies.

Both Tp autocorrelation functions for the Markov models have a sharp drop at the first lag. This
effect is most pronounced for the North Sea series and is most likely due to the coupling ma-
trix, since it samples based only on the current Hs . The autocorrelation functions for Hs have
a higher autocorrelation than the observed autocorrelation functions for lower lags. This may
be due to the limited number of possible states which can be entered, thus increasing the past
autocorrelation even when the process is Markovian.

Figure B.5 and B.12 shows the crosscorrelation functions for the North Sea and Mediterranean
Sea series, respectively. The crosscorrelation function in the Markov models is mirrored around
lag 0 and thereby shows an equal dependence on past and present lags. The crosscorrelation in
the LSTM networks is also centered at lag 0, but is not mirrored in the same way as the Markov
models. Both crosscorrelation function for the SAR-LSTM network models drops off much faster
than any other model and observed function.

The VAR and VARMA models perform much better in matching the crosscorrelation than the
Markov models and SAR-LSTM networks. The fit for the smallest lags, [-5,5], appears to improve
with the full seasonal transformation for the Mediterranean Sea series, while the fit worsens
for the North Sea series. The VAR models performs best which may indicate that the moving-
average (MA) component does not improve the crosscorrelation.

7.3.5 Persistence of Significant Wave Height

Persistence of sea states is an important aspect in the simulation of many types of marine oper-
ations. This is especially true for applications where some operation has to be performed within
a time window restricted by some environmental parameter(s). When concerned with this type
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of application it is common to use the terminology access window and waiting window for per-
sistence below threshold and persistence above threshold, respectively. This terminology will be
used for the remainder of the thesis to connect the persistence to one of its intended end-use.

Waiting Windows

Figure B.6 and B.13 depicts the normalized contours for persistence above threshold for the
North Sea and Mediterranean Sea series, respectively. The SAR-LSTM network models produce
too many waiting windows for all values of Hs for the Mediterranean Sea and far too few for the
North Sea series. The matching is best for the low contours of the Mediterranean Sea series. The
contours for the North Sea series are more horizontal than the observed, which shows that too
few long waiting windows are produced for low threshold values.

The Markov models acts opposite of the SAR-LSTM network models for the Mediterranean Sea
series and produces too many waiting windows for all values of Hs . For the North Sea series, the
Markov models also produce too many waiting windows for low threshold values. The contours
for both series are further much steeper, meaning that far too many long waiting windows are
produced for lower values of Hs . This was expected due to the lack of memory in the Markov
models.

The VAR and VARMA models accurately matches the waiting window contours, far superior to
the other models. The matching increases with increasing contour levels and the fit is excep-
tional for contour levels higher than 0.01. This is to be expected since there are few occurrences
of waiting windows at the lowest contours levels and matching these extreme values is much
more difficult. The North Sea models produce too many long waiting windows for the higher
threshold values, while the Mediterranean Sea models produce too many long waiting widows
for the highest thresholds and too few long waiting windows for threshold values between 2-3
meters.

Access Windows

Figure B.6 and B.13 shows the normalized contours for persistence below threshold for the North
Sea and Mediterranean Sea series, respectively. The SAR-LSTM network models performs even
worse on matching the access windows than waiting windows. This is most pronounced in the
Mediterranean series where the model produces far less access windows for all threshold values.
The North Sea model produce too many short access windows for thresholds less than 1.5-2 me-
ters and and far less long access windows for threshold larger than 2 meters.

The Markov models performed again better than the SAR-LSTM network models. The Markov
models for both series produces too many access windows for all threshold values. They were
also much steeper, meaning that they produce too many long access windows for higher values
of Hs .

The matching of the access windows is excellent for the North Sea models. The largest devi-
ation occurs at the lowest contour levels as expected. The performance of the Mediterranean
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Sea model is not as good as the North Sea series and worse than the performance seen for the
waiting windows. The models produces the same amount of access windows for lowest thresh-
olds, but produces more and longer access windows for thresholds larger than approximately
1.5 meters.

The VAR and VARMA models performed very well and quite equally on both waiting and ac-
cess windows, which indicates that the persistence performance is not effected by the type of
seasonal transform. The Mediterranean Sea series has lower maximum contours for waiting
windows compared to the North Sea, which is reasonable due to the calmer climate. Further,
this discussion shows that using this simple persistence criteria was adequate for evaluating the
persistence performance of the models.

The increased persistence performance on the North Sea series may be a consequence of the
shorter sampling frequency. The Mediterranean Sea series has a sampling frequency of 6 hours,
which is at the top of range for recommended sampling frequencies according to Det Norske
Veritas (2010). The sampling frequency for the North Sea series is 3 hours, which is the industry
standard sampling frequency (Det Norske Veritas, 2010).

7.4 Practicality

The Markov models are entirely described by only a relatively small transition matrix and some
method for maintaining the dependencies between variables. The time and resources required
for implementing a Markov model is negligible. This makes the Markov models practical for use
in a simulation-based design context, since it is generally necessary to generate several models
for a single simulation. It is further easy to find the optimal order of the model, since this is
generally the maximum number of states before absorbing states appear.

VARMA models requires more time for implementation than the Markov models. This is due to
that it is computationally expensive to estimate the model parameters by maximum likelihood
estimation. The computational cost increases with the length of the series used for fitting. The
computational cost sets a limit for the maximum number of p, q lags and the number of can-
didate models to evaluate. The number of parameters to be estimated increases rapidly with
increases in number of p or q lags. The literature shows that generally low order VARMA models
are evaluated due to the computational cost (Stefanakos and Belibassakis, 2005) (Monbet et al.,
2007).

VAR models does not exhibit the same rapid increase in computational cost for increases in
number of p lags, due to the lower number of total parameters. Thus, VAR models are much
more practical in this context than VARMA models. Further, the low cost of estimation for VAR
models makes it possible to estimate all candidate models and then use a selection method such
as AIC or BIC. These selection methods are generally considered to be better estimators of the
relative quality of the model compared to using the P-values of the extended crosscorrelation
matrix (Burnham and Anderson, 2002).
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The time required for VAR and VARMA estimation depends on the hardware and algorithm used.
For instance, it took the author 1-3 minutes to estimate the parameters of a VAR model com-
pared to 4-6 hours for a VARMA model. It should be noted that these computations were done
on a laptop with only 8 GB RAM and an i5-7200U processor. Increases in computational power
will bring the estimation time of VARMA down, but there is still a sizable difference in the com-
putational cost.

SAR-LSTM network models requires significant time and computational resources. The sheer
number of possible hyperparameters and settings for the hyperparameters of a deep neural net-
work model makes it a daunting task. In order to determine the values of the hyperparameters it
is necessary to carry out some sort of search procedure, normally random or grid based (Good-
fellow et al., 2016). This is highly computationally expensive and may require several iterations
to find a "good enough" solution. Performing several grid searches for all relevant spatial loca-
tions for a single simulation run may be too computationally expensive to be practical. This is
of course dependent on the availability of computational power. Further, the effects of different
metocean characteristics on the deep learning algorithms are not yet understood.

It is the author’s opinion that for deep neural networks to be practical in a simulation-based
design context there must be a joint effort to create a shared library containing the model spec-
ifications and parameters for time series at specific locations. A library of models would be re-
quired for performing high spatial fidelity simulation in a timely manner. This is a consequence
of the time required for training a single model and would further require a shared standard for
validation and algorithm design which may be troublesome.

Storing the parameters of any model family is not considered to be an issue. SAR-LSTM network
models have far more parameters than any of the other families, but it is still not a significant
number of values. This holds true even when it is required to store the parameters of several
models.

The difference in time and resources required for the simulation of a synthetic series is not sig-
nificantly different for the models. SAR-LSTM requires a bit more computation than VAR and
VARMA, which again is slightly more computationally demanding than Markov models. Regard-
less, the difference is negligible for use in simulation-based design.

7.5 Ranking of Models

The VAR and VARMA models were far superior to the other model families in the quality of re-
sults and the difference in the quality of results were minor for both model types. VAR models
performed better than VARMA models on some criteria, while VARMA models were better than
VAR models on others. The added complexity from including the MA component did not result
in a significant difference in the quality of results. A VARMA model did perform better overall on
the North Sea series, while a VAR model did best on the Mediterranean Sea series. This shows
that the choice between VARMA and VAR when concerned with the quality of results is depen-
dent on the observed series.
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The type of transformation applied also depends on which criteria is of the highest interest for
the end-user. The full seasonal transformation was shown to have the best overall results, but
the mean transform did perform marginally better on some criteria. This means that the choice
of model type and transformation is depended on the intended end-use of the synthetic series
and the observed time series in question. Further, VAR models are significantly more practical
to use than VARMA models due to the lower computational cost for parameter estimation. If
the end-user requires a significant amount of different stochastic generators then VAR may be a
better choice of model due to its higher practicality.

The Markov models produced results of a quality higher than the SAR-LSTM networks, but be-
low that of the VAR and VARMA models. Markov models requires the least amount of effort to
implement, but the trade-off in quality of results make them subpar to the VAR and VARMA
models. It should be noted that the Markov models introduced in the preceding project thesis
performed better than the Markov model presented here, but the results are still subpar to the
VAR and VARMA models.

The SAR-LSTM networks performed worst in both quality of results and practicality. The practi-
cality of the models is low due to the investment required for training a single stochastic gener-
ator. See Section 7.6 below for further discussion on deep learning in simulation-based design.

7.6 Deep Learning in Simulation-based Design

7.6.1 Training and Validation Error

The validation and training error of the deep learning models is depicted in Figure 6.10, and
followed the expected behavior as seen in Goodfellow et al. (2016). There were no indication of
overfitting or underfitting, which was corroborated by that the grid search showed that the best
models did not require any L2 norm penalty, see Table 6.1. Further, from Figure 6.10 it can be
seen that the validation error falls below that of the training error, which is due to the dropout
regularization being disabled during validation.

7.6.2 Stochastic Autoregressive LSTM Network Models

The stochastic autoregressive LSTM network model introduced in this thesis did not perform
satisfactory, but it is important to note that other deep neural networks may produce results
of the desired quality. Aminzadeh-Gohari et al. (2008) showed that it was indeed possible to
simulate the univariate series of Hs using neural networks. However, the practicality of such
a network in simulation-based design was not investigated in this thesis. The approach of
Aminzadeh-Gohari et al. (2008) differs significantly from the methods introduced in this the-
sis and it may be the case that the autoregressive white noise method is unfeasible for deep
learning. More work on this subject is needed to understand why the networks produce results
of such low quality.
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It is important to note that the LSTM network models performed excellent in prediction. Figure
6.9 shows the prediction results for a part of the unseen North Sea test set. The model predicted
Hs with a low error, but was a bit weaker in predicting Tp . Table 6.4 contains the RMSE of each
of the variables and shows that the RMSE was more than three times higher for Tp . This is most
likely a result of the higher variance in Tp compared Hs . The variance in Tp is almost three times
that of Hs . This can also be seen in Figure 6.9 where Tp has far more erratic behavior. The higher
variance makes it harder for the deep learning network to learn the representation.

The networks predict adequately, but their simulation performance is far below the required
quality. The main problem is that the variance of the outputs increases far beyond that of the
observed values, see Table B.1 and B.2. Directly adding Gaussian white noise to the outputs, and
then feeding back to the inputs, did not perform as expected. More work is needed to under-
stand exactly why the white noise leads to such subpar results.

The complexity of deep learning makes it difficult to even write a short list of the different op-
tions that could be further explored. Different model types, optimization algorithms, hyperpa-
rameters, transformations and so on could change the performance of the deep learning algo-
rithm.

The amount of possible options leads to a low practicality for simulation-based design, unless a
shared "standard" configuration is found, which produces satisfactory results for different spa-
tial and temporal scales. The amount of resources required for testing a single network config-
uration limits further sets limitations for the practicality in simulation-based design.
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Conclusion and Further Work

8.1 Conclusion

The objective of the master’s thesis was to validate the quality of deep learning models as stochas-
tic metocean generators and their practicality in a simulation-based design context. To answer
the research questions, a new type of deep learning model called stochastic autoregressive long
short-term memory (SAR-LSTM) network model was developed. The SAR-LSTM model was
validated in a case study against traditional stochastic metocean generators; Markov chain, VAR
and VARMA models. The case study consisted of simulating and matching selected statisti-
cal criteria of two bivariate series of Hs and Tp from different spatial locations and hindcast
archives.

Validation of the quality of results showed that the SAR-LSTM network models did not ade-
quately match the statistical criteria. The SAR-LSTM networks produced an excessive amount
of variance in the synthetic series which resulted in the subpar results. The VAR and VARMA
models performed adequately in matching the statistical criteria and were found to give a suffi-
cient description of Hs and Tp . The Markov chain models performed better than the SAR-LSTM
model, but were subpar to the VAR and VARMA models and found to not give a sufficient de-
scription of the wave conditions.

Thus, the conclusion to the first research question is that the stochastic autoregressive LSTM
network models are not adequate as stochastic metocean generators and produces results of a
much lower quality than simpler traditional stochastic metocean generators. Note that this only
applies the SAR-LSTM model not all deep learning stochastic metocean generators.

The practicality of the models in a simulation-based design context was then validated based
on the work done in the case study. The SAR-LSTM models were found to be unpractical due to
the significant time and computational cost for implementing a single stochastic generator. The
Markov models had the highest practicality due to only being described by an easy to compute
transition matrix and coupling matrix. The VAR and VARMA models had a high practicality, but
the practicality of the VAR models was more favorable than the VARMA models due to the lower
computational cost for estimating the model parameters. Storage of the model parameters was
found to be practical for all model types.
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CHAPTER 8. CONCLUSION AND FURTHER WORK

Thus, the conclusion to the second research question is that deep learning stochastic metocean
generators are not practical in simulation-based design, unless only a very limited set of unique
metocean generators are required.

The VAR and VARMA models were found to be the best performing models since they had the
best quality of results and were highly practical. The VARMA models showed some marginal
improvements over the VAR models on some criteria for both series and the extension can be
used if computation time is not constrained.

The type of seasonal transformation was found to be dependent on the intended application
of the synthetic series. Finally, it can be concluded that the lognormal transformation intro-
duced in this paper should be used over the Box-Cox transformation in metocean simulation if
matching the joint distribution of Hs and Tp is of importance in the application.

8.2 Further Work

The excellent prediction performance of the SAR-LSTM network showed that the deep learning
stochastic metocean generator was indeed able to learn the representation for predicting Hs and
Tp . The poor simulation results must then be the result of the Gaussian white noise approach.
Advice and assistance was solicited from PhD candidates and professors at the Department of
Computer Science (IDI) of NTNU, but they were unable to provide any answers to the variance
problem in the allotted time. Further work should be initiated into investigating why adding
Gaussian noise to the predictions results in such extreme variance.

It may also be that another type of deep learning model is better suited for use as the prediction
component in such an autoregressive simulation method. This should also be further investi-
gated.

The lack of computational power led to restrictions for the grid search. Different hyperparam-
eters, other optimization methods, larger network, training on noisy series, scaling and other
changes to the algorithm may lead to a deep network which performs adequately. There is a
tremendous amount of options that can be further investigated, but this is again a reflection of
the low practicality of deep learning in this context. Investigating all possible options is not fea-
sible. The grid search results showed that more hidden states and longer window length should
be investigated.

The lognormal Rosenblatt transformation introduced in this thesis showed great improvements
in describing the joint distribution. Further work should be initiated into validating this type of
transformation for other metocean conditions and in higher multivariate cases for the VAR and
VARMA models.
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Appendix A

List of Acronyms

ADF Augmented Dickey–Fuller

AIC Akaike Information Criterion

ANN Artificial Neural Network

AR Autoregressive

ARMA Autoregressive Moving-average

BIC Bayesian Information Criterion

FNN Feedforward Neural Network

GARCH Generalized Autoregressive Conditional Heteroskedasticity

HMM Hidden Markov-Switching Models

KPSS Kwiatkowski–Phillips–Schmidt–Shin

LSTM Long Short-term Memory

MA Moving-average

MLE Maximum Likelihood Estimation

MLP Multilayer Perceptron

MS-AR Markov-Switching Autoregressive

MS-VAR Markov-Switching Vector Autoregressive
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APPENDIX A. LIST OF ACRONYMS

SETAR Self-Exciting Threshold Autoregressive

SVM Support Vector Machine

TAR Time-Varying Autoregressive

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

VARMA Vector Autoregressive Moving-average
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Appendix B

Validation Results

B.1 North Sea Validation Results

Table B.1: Overall Lower Order Statistical Moments for North Sea Series

Series Mean Hs Variance Hs Mean Tp Variance Tp Covariance
Observed 2.081 1.688 7.786 4.864 1.494
Markovm 2.342 1.746 8.126 4.572 1.415
LSTM Networkm 2.050 7.723 7.984 13.321 5.724
VAR(7)m 2.116 2.103 7.796 4.472 1.820
VAR(7) f 2.134 2.233 7.857 5.292 1.912
VARMA(3,3)m 2.111 2.025 7.789 4.359 1.723
VARMA(2,3) f 2.106 2.047 7.840 5.003 1.708
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APPENDIX B. VALIDATION RESULTS

Figure B.1: Comparison Plot of Monthly Mean for North Sea Series
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Figure B.2: Comparison Plot of Monthly Variances and Covariance for North Sea Series
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Figure B.3: Comparison Plot of Joint and Marginal Distribution for North Sea Series
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Figure B.4: Comparison Plot of Autocorrelation Function for North Sea Series
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Figure B.5: Comparison Plot of Crosscorrelation Function for North Sea Series
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Figure B.7: Comparison Plot of Normalized Persistence Above Threshold Contours for North Sea
Series
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B.2 Mediterranean Sea Validation Results

Table B.2: Overall Lower Order Statistical Moments for Mediterranean Sea Series

Series Mean Hs Variance Hs Mean Tp Variance Tp Covariance
Observed 1.267 0.999 6.122 2.947 1.414
Markovm 1,403 0,990 6,424 2,924 1,391
LSTM Networkm 3.565 18.626 8.584 9.175 10.360
VAR(30)m 1.287 1.374 6.128 3.074 1.628
VAR(10) f 1.249 1.150 6.121 2.947 1.409
VARMA(3,3)m 1.294 1.410 6.129 3.126 1.668
VARMA(3,3) f 1.266 1.203 6.134 2.906 1.457
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Figure B.8: Comparison Plot of Monthly Mean for Mediterranean Sea Series
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Figure B.9: Comparison Plot of Monthly Variances and Covariance for Mediterranean Sea Series
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Figure B.10: Comparison Plot of Joint and Marginal Distribution for Mediterranean Sea Series
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Figure B.11: Comparison Plot of Autocorrelation Function for Mediterranean Sea Series
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Figure B.12: Comparison Plot of Crosscorrelation Function for Mediterranean Sea Series
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Figure B.13: Comparison Plot of Normalized Persistence Above Threshold Contours for Mediter-
ranean Sea Series
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Figure B.14: Comparison Plot of Normalized Persistence Below Threshold Contours for North
Sea Series
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B.3 Box-Cox Comparison Results for VARMA Model on North
Sea Series

Table B.3: Overall Lower Order Statistical Moments for Box-Cox and Rosenblatt Comparison

Model Mean Hs Variance Hs Mean Tp Variance Tp Covariance
Observed 2.081 1.688 7.786 4.864 1.494
VARMA(3,1) f ,box 2,110 1,949 7,758 4,694 1,673
VARMA(2,3) f 2.106 2.047 7.840 5.003 1.708

Figure B.15: Comparison Plots of VARMA models with Box-Cox and Lognormal Rosenblatt
Transform - Part I
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Figure B.16: Comparison Plots of VARMA models with Box-Cox and Lognormal Rosenblatt
Transform - Part II
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Appendix C

Code

C.1 Support Functions

LoadTimeSeries.m

% Function that returns Ts and Hs from time series from year X to year Y

function metoceanData = loadTimeSeries(startYear,endYear,filename)

fid = load(filename);

% Find start and end indexes
startIndex = find(fid(:,1) == startYear,1);
endIndex = find(fid(:,1) == endYear,1,'last');

% Return Hs and Tp with year and month indexes
metoceanData = [fid(startIndex:endIndex,1) fid(startIndex:endIndex,2) ...

fid(startIndex:endIndex,7) fid(startIndex:endIndex,8)];
end

spread_calm_peak_period.m

% Spread calm weather observations
function [Tp_spread] = spread_calm_peak_period(metocean)

% Distriubute large first
cut_off_large = 100;

% Count number of occurrences of each unique Tp
unique_Tp = unique(metocean(:,4));
count_bin = zeros(length(unique_Tp),1);
for ii = 1:length(unique_Tp)

count_bin(ii,1) = sum(metocean(:,4) == unique_Tp(ii));
end
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% value of the clusters
cluster_val = unique_Tp(count_bin > cut_off_large);

% Merge close clusters
delta = 0.065; % 0.065
merge_list = zeros(length(cluster_val)-1,1);

% Identify clusters to merge
for ii = 1:length(cluster_val)-1

if cluster_val(ii+1) - cluster_val(ii) < delta
merge_list(ii) = 1;
merge_list(ii+1) = 2;

end
end

% Add zero for last element
merge_list(end+1) = 0;

% Vector holding target value for old clusters
merge_target1 = cluster_val(merge_list==1);
merge_target2 = cluster_val(merge_list==2);

merge_target = zeros(1,length(merge_list));

for ii = 0:(length(merge_target1)-1)
merge_target(2*ii+1) = merge_target1(ii+1);
merge_target(2*(ii+1)) = merge_target2(ii+1);

end

merged_new_value = zeros(1,length(merge_target));

% New values for clusters
counter = 1;
for ii = 1:length(merge_list)-1

if merge_list(ii) == 1
merged_new_value(counter) = (cluster_val(ii)+cluster_val(ii+1))/2;
counter = counter + 1;

elseif merge_list(ii) == 2
merged_new_value(counter) = (cluster_val(ii)+cluster_val(ii-1))/2;
counter = counter + 1;

end

end

% Merge clusters
for ii = 1:length(metocean)

for kk = 1:length(merge_target)
if metocean(ii,4) == merge_target(kk)

metocean(ii,4) = merged_new_value(kk);
break

end
end

end
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% Count number of occurrences of each unique Tp
unique_clustered_metocean = unique(metocean(:,4));
count_bin_cluster = zeros(length(unique_clustered_metocean),1);
for ii = 1:length(unique_clustered_metocean)

count_bin_cluster(ii,1)=sum(metocean(:,4)==unique_clustered_metocean(ii));
end

cluster_val = unique_clustered_metocean(count_bin_cluster > cut_off_large);
cluster_size = count_bin_cluster(count_bin_cluster > cut_off_large);

% Unform distribution of the clusters using number of occurences as weights
for ii = 1:length(metocean(:,4))

for jj = 2:(length(cluster_val)-1)
if metocean(ii,4) == cluster_val(1)

dist = cluster_val(2) - cluster_val(1);
weight = cluster_val(2)/cluster_val(1);
if rand < weight

metocean(ii,4) = metocean(ii,4) + dist*rand;
else

metocean(ii,4) = metocean(ii,4) - dist*rand;
end
break

elseif metocean(ii,4) == cluster_val(jj)
dist_1 = cluster_val(jj)-cluster_val(jj-1);
dist_2 = cluster_val(jj+1)-cluster_val(jj);
weight = cluster_size(jj-1)/(cluster_size(jj-1)+cluster_size(jj+1));
if rand < weight

metocean(ii,4) = cluster_val(jj) - dist_1*rand;
else

metocean(ii,4) = cluster_val(jj) + dist_2*rand;
end
break

elseif metocean(ii,4) == cluster_val(end)
dist = 2*(cluster_val(end) - cluster_val(end-1));
metocean(ii,4) = cluster_val(end-1) + dist*rand;
break

end
end

end

% Distibute remaining small clusters
cluster_val = unique_clustered_metocean(count_bin_cluster < cut_off_large ...
& count_bin_cluster > 40);
cluster_size = count_bin_cluster(count_bin_cluster < cut_off_large ...
& count_bin_cluster > 40);

for ii = 1:length(metocean(:,4))
for jj = 2:(length(cluster_val)-1)

if metocean(ii,4) == cluster_val(1)
dist = cluster_val(2) - cluster_val(1);
weight = cluster_val(2)/cluster_val(1);
if rand < weight
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metocean(ii,4) = metocean(ii,4) + dist*rand;
else

metocean(ii,4) = metocean(ii,4) - dist*rand;
end
break

elseif metocean(ii,4) == cluster_val(jj)
dist_1 = cluster_val(jj)-cluster_val(jj-1);
dist_2 = cluster_val(jj+1)-cluster_val(jj);
weight = cluster_size(jj-1)/(cluster_size(jj-1)+cluster_size(jj+1));
if rand < weight

metocean(ii,4) = cluster_val(jj) - dist_1*rand;
else

metocean(ii,4) = cluster_val(jj) + dist_2*rand;
end
break

elseif metocean(ii,4) == cluster_val(end)
dist = 2*(cluster_val(end) - cluster_val(end-1));
metocean(ii,4) = cluster_val(end-1) + dist*rand;
break

end
end

end

Tp_spread = metocean(:,4);
end

seasonal_trans.m

function [yearMeanFit,yearCovFit,midMonthHours] = seasonal_trans(startYear,...
endYear,metoceanBox,year_length)
% Calculate the points necessary to fit Fourier approximations for
% covariance and mean

% Number of years
nYears = endYear-startYear+1;
% Number of months
nMonths = 12*nYears;

% Initilize
monthHsMean = zeros(1,nMonths); monthTpMean = zeros(1,nMonths);
monthCov = zeros(2,2,nMonths);
counter = 1; % Set start month to 1

%% Monthly mean and standard deviation
% Build matrix of mean and standard deviation for each month in the series
for ii = startYear:1:endYear

for jj = 1:12
monthHsMean(counter) = mean(metoceanBox(metoceanBox(:,1) == ii ...

& metoceanBox(:,2) == jj,3));
monthTpMean(counter) = mean(metoceanBox(metoceanBox(:,1) == ii ...

& metoceanBox(:,2) == jj,4));
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monthCov(:,:,counter) = cov(metoceanBox(metoceanBox(:,1) == ii ...
& metoceanBox(:,2) == jj,3), ...

metoceanBox(metoceanBox(:,1) == ii & metoceanBox(:,2) == jj,4));
counter = counter + 1;

end
end

%% Yearly Mean and Standard Deviation
% Build matrix of mean and standard deviation for the average of each month
% over all years in the series

% Initilize
yearHsMeanSum = zeros(1,12); yearTpMeanSum = zeros(1,12);
yearCovSum = zeros(2,2,12);

% Yearly mean
% Sum for each month over all years
for ii = 1:12

for jj = 1:nYears
yearHsMeanSum(ii) = yearHsMeanSum(ii) + monthHsMean(ii+12*(jj-1));
yearTpMeanSum(ii) = yearTpMeanSum(ii) + monthTpMean(ii+12*(jj-1));
yearCovSum(:,:,ii) = yearCovSum(:,:,ii) + monthCov(:,:,ii+12*(jj-1));

end
end

% Divide by number of years to find average
yearTpMean = yearTpMeanSum/nYears;
yearHsMean = yearHsMeanSum/nYears;
yearCov = yearCovSum/nYears;

% Combine mean values
yearMean = transpose([yearHsMean;yearTpMean]);

%% Seasonal Transformation
% Mean periodic function M

% Vector containing the middle day of each month in hours from year start
% Day 1 = 365, such that the period is equal to one year
midMonthHours = transpose([1 15.5 45 74.5 105 135.5 166 196.5 227.5 ...
258 288.5 319 349.5 365]*(year_length/365));

% Row containing the average mean value for the 1st and 365th day
% Found as the mean of month 1 and month 12
startEndDay(1,:) = (yearMean(1,:) + yearMean(end,:))/2;

% Add the average value row as the first and last row in month mean matrix
yearMeanFit = [startEndDay;yearMean;startEndDay];

% Covariance periodic function SIGMA

% Initialize
S11 = zeros(12,1);S12 = zeros(12,1);S22 = zeros(12,1);
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% Build vector for each covariance per month
for ii = 1:12

S11(ii,1) = yearCov(1,1,ii);
S12(ii,1) = yearCov(1,2,ii); % S12 = S21
S22(ii,1) = yearCov(2,2,ii);

end

% Combine monthly values of covariance into monthly covariance matrix
obsMonthCov = [S11 S12 S12 S22];

% Row containing the average mean value for the 1st and 365th day
% Found as the mean of month 1 and month 12
startEndDay2(1,:) = (obsMonthCov(1,:) + obsMonthCov(end,:))/2;

% Add the average value row as the first and last row in month mean matrix
yearCovFit = [startEndDay2;obsMonthCov;startEndDay2];

end

scatterDiagram.m

%------- creating scatter diagram using archived Hs and randomized Tp----------

% This function was used with permission from its author Endre Sandvik.

function scatterD = scatterDiagram(Hs, Tp)
%%
%Defining different variables used in the program
n = length(Hs);
a = 41;
b = 27;

%Creating scatter diagram matrix
scatterD = zeros(a,b);
scatterD(1:39,1) = 0:0.5:19;
scatterD(1,1:25) = 0:1:24;

%%
%For-loop for sorting data into classes
for i = 1:n

%Sorting Hs into classes of 0.5
diff = Hs(i) - floor(Hs(i));
if diff >= 0.75

Hs(i)=ceil(Hs(i));
elseif diff >= 0.25 && diff < 0.75

Hs(i) = floor(Hs(i)) + 0.5;
else

Hs(i) = max([floor(Hs(i)) 0.5]);
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end
%Sorting Tp into classes of 1
diffTp = Tp(i) - floor(Tp(i));
if diffTp >= 0.5

Tp(i)=ceil(Tp(i));
else

Tp(i) = max([floor(Tp(i)) 1]);
end

end
%%
for i = 1:n

if Hs(i) < 19 && Tp(i) < 24
%Assigning the sea state to the correct location in the scatter diagram
scatterD(1+2*Hs(i),1+Tp(i)) = scatterD(1+2*Hs(i),1+Tp(i)) + 1;

%Adding 1 to the count of Hs
scatterD(1+2*Hs(i),b-1) = scatterD(1+2*Hs(i),b-1) + 1;

%Adding 1 to the count of Tp
scatterD(a-1,1+Tp(i)) = scatterD(a-1,1+Tp(i)) + 1;
end

end
%%
%Counting cumulative i-values
for i = 2:a-1

scatterD(i,b) = scatterD(i-1,b) + scatterD(i,b-1);
end
for i = 2:b-1

scatterD(a,i) = scatterD(a,i-1) + scatterD(a-1,i);
end
%%
end

meanAndStdDev.m

% ------- fitting a curve to exspected value and variance -------

% Used with permission from its author Endre Sandvik
function [a, b] = meanAndStdDev(scatterD,plotOn)

%Function for establishing coefficients a1,a2,a3 in function for ln(expected
%value) and b1,b2,b3 in function for ln(variance).

%Length of Hs and Tp classes found from scatterdiagram
k = length(scatterD(1,:)); %Hs
d = length(scatterD(:,1)); %Tp

%Declearing vectors for expected value and variance
my = zeros(1,d-3);
variance = zeros(1,d-3);
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%%
%Estimating variance and expected value from scatterdiagram

data_vec = [];
h_var = [];
for i = 2:d-2%Hs

for j = 2:k-2%Tp

if scatterD(i,j) == 0

else
data_vec = [data_vec (j-1)*ones(1,scatterD(i,j))];

end

end

if length(data_vec) >= 1
param = lognfit(data_vec);
my(i-1) = param(1);
variance(i-1) = param(2)^2;
data_vec = [];
h_var = [h_var i-1];

end
end

%%
%Fitting curve to values of expected value and variance using least square
%curve fitting method

%f1 is the type of function to be fitted to the expected values
f1 = @(a,adata) a(1)+a(2)*adata.^a(3);
%Fitting the curve (f1) to the expected values
a = lsqcurvefit(f1,[0.001 0.001 0.001],scatterD(h_var+1,1)',my(h_var));

%f2 is the type of function to be fitted to the variances
f2 = @(b,bdata) b(1)+b(2)*exp(-bdata*b(3));
%Fitting the curve (f2) to the variances
b = lsqcurvefit(f2,[0.001 0.001 0.001],scatterD(h_var+1,1)',variance(h_var),...

[0 0 0],[3 3 3]);

%%

if plotOn == 1
red = [0.8500, 0.3250, 0.0980];

%Plot of empirical values from data for E[lnTp|Hs] and fitted curve for
set(figure,'name','Curve fitting expected value','numbertitle','off')
scatter(scatterD(h_var+1,1),my(h_var),'Marker','x','LineWidth',2);
hold on
plot(scatterD(h_var+1,1),f1(a,scatterD(h_var+1,1)),'LineStyle','--',...

'Color',red,'LineWidth',1.5)
xlabel('$H_{s}$','FontSize',18)
ylabel('$\mu_{ln T_p(H_s)}$','FontSize',18)
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legend('Calculated Values','Fitted curve','Location','northwest')
yticks(1.5:0.25:2.5)
grid on

%Plot of empirical ln(variance) vs fitted curve
set(figure,'name','Curve fitting variance','numbertitle','off')
scatter(scatterD(h_var+1,1),variance(h_var),'Marker','x','LineWidth',2);
hold on
plot(scatterD(h_var+1,1),f2(b,scatterD(h_var+1,1)),'LineStyle','--',...

'Color',red,'LineWidth',1.5)
xlabel('$H_{s}$','FontSize',18)
ylabel('$\sigma^2_{ln T_p(H_s)}$','FontSize',18)
legend('Calculated Values','Fitted Curve','Location','northeast')
grid on

end

end

boxcoxn.m

% Estimate parameters lamba for multivariate BoxCox transformation

% From: https://stackoverflow.com/questions/15501455/box-cox-transformation
%-for-multivariate-normality-in-matlab?rq=1 by user T.Lan

function lambda=boxcoxn(x)
[m,n]=size(x);
lambda_ini=zeros(n,1);
for ii=1:n

[temp,lambda_ini(ii,1)]=boxcox(x(:,ii));
end
fun=@(lambda)(log(det((cov(((x.^repmat(lambda',m,1)-1)./repmat(lambda',...

m,1))))))*m/2-(lambda-1)'*(sum(log(x)))');
lambda=fminsearch(fun,lambda_ini);
end

C.2 Residual Transformation Scripts

generate_residuals.m

% Generate Residuals
clear all
clc

% Parameters
start_year = 1988; % Start year of time series
end_year = 2015; % Final year of time series, including this year
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filename = 'WAM10.txt'; % WAM 10 Metocean file without headers.
harsh = 1; % Use any value for calm.
rosen = 1; %

% Load Hs, Tp, year indices and month indices from start year to and
% including end year
if harsh == 1

metocean = loadTimeSeries(start_year,end_year,filename);
year_length = 2920;

else
metocean = csvread(filename);
year_length = 1460;

end

% Length of time series
series_length = length(metocean(:,1));

%% Uniformly distribute Tp
if harsh == 1

% Spread Tp with uniform distribution
Tp_spread = zeros(length(metocean),1);
for ii = 1:length(metocean(:,4))

n = round(1+log(metocean(ii,4)/3.244)/0.09525);
metocean(ii,4) = 3.244*exp(0.09525*(n-0.5-rand));

end
else

metocean(:,4) = spread_calm_peak_period(metocean);
end

%% Transformation to normality
% Allocate year and month indices
metocean_norm(:,1) = metocean(:,1);
metocean_norm(:,2) = metocean(:,2);

if rosen == 1
% Rosenblatt transform
%Creating scatter diagram of
scatter_diagram = scatterDiagram(metocean(:,3),metocean(:,4));

% Determine regression coefficients for mu and sigma for lognormal
[a, b] = meanAndStdDev(scatter_diagram,0);

% Fit lognormal distribution to Hs and find parameters mu and sigma
logn_par = lognfit(metocean(:,3));

% Transform Hs to lognormal probability
F_Hs = logncdf(metocean(:,3),logn_par(1),logn_par(2));

% Transform Tp to lognormal probability conditioned on Hs
F_Tp = zeros(length(metocean(:,3)),1);
for ii = 1:length(metocean(:,3))

% Conditioned mu and sigma values
mu = a(1) + a(2)*(metocean(ii,3)^a(3));
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sigma = sqrt(b(1) + b(2)*exp(-b(3)*metocean(ii,3)));
F_Tp(ii) = logncdf(metocean(ii,4),mu,sigma);

end
% Inverse standard normal trasnform of Hs and Tp
[metocean_norm(:,3)] = norminv(F_Hs);
[metocean_norm(:,4)] = norminv(F_Tp);

else
% Multivariate BoxCox transform
lambda_cox = boxcoxn(metocean(:,3:4));
[metocean_norm(:,3)] = boxcox(lambda_cox(1),metocean(:,3));
[metocean_norm(:,4)]= boxcox(lambda_cox(2),metocean(:,4));

end

%% Seasonal Transformation
[yearMeanFit,yearCovFit,midMonthHours] = seasonal_trans(start_year,...
end_year,metocean_norm,year_length);

% Fit Fourier series to monthly mean and covariance
M_Hs = fit(midMonthHours,yearMeanFit(:,1),'fourier6'); % M Hs
M_Tp = fit(midMonthHours,yearMeanFit(:,2),'fourier6'); % M Tp
S_11 = fit(midMonthHours,yearCovFit(:,1),'fourier6');
S_12 = fit(midMonthHours,yearCovFit(:,2),'fourier6'); % S12=S21
S_22 = fit(midMonthHours,yearCovFit(:,4),'fourier6');

%% Generate Residuals
% Pre-allocate
W = zeros(series_length,2);

% Perform seasonal transformation W = (Y-M)/S
for ii = 1:series_length

Y = [metocean_norm(ii,3); metocean_norm(ii,4)];
M = [M_Hs(ii); M_Tp(ii)];
S = sqrt([S_11(ii) 0; 0 S_22(ii)]);
%W(ii,:)=(Y-M);
W(ii,:)=S\(Y-M); % x = A\b --- Ax = b

end

% Write residuals W to .csv file
out = [metocean(:,1:2) W];

%out = out(out(:,1) == 1989,:);
writeFileName = 'residuals_pred_test.csv';
csvwrite(writeFileName,out)

%% Validation Plots
% Plot of Fourier approximations for validation of fit
figure(1)
subplot(1,2,1)
plot(M_Hs,midMonthHours,yearMeanFit(:,1))
title('M Hs')
subplot(1,2,2)
plot(M_Tp,midMonthHours,yearMeanFit(:,2))
title('M Tp')
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figure(2)
plot(S_11,midMonthHours,yearCovFit(:,1))
hold on
plot(S_12,midMonthHours,yearCovFit(:,2))
hold on
plot(S_22,midMonthHours,yearCovFit(:,4))
hold off

if rosen == 1
figure(3)
subplot(1,2,1)
histogram(norminv(F_Hs))
subplot(1,2,2)
histogram(norminv(F_Tp))

figure(4)
scatter(norminv(F_Hs),norminv(F_Tp))
xlabel('u1')
ylabel('u2')
title('Residuals')

end

residuals_backtrans.m

% Back-transform residuals

clear all

% Parameters
start_year = 1990; % Start year of time series
end_year = 2015; % Final year of time series, including this year
observed_filename = 'WAM10.txt'; % WAM 10 Metocean file without headers.
residual_filename = 'Residuals_VARMA_31_BOXCOX_MS_H.csv';
num_rep = 10;
harsh = 1;
std_on = 1;
write = 0;
rosen = 0;

% Load Hs, Tp, year indices and month indices from start year to and
% including end year
if harsh == 1

metocean = loadTimeSeries(start_year,end_year,observed_filename);
year_length = 2920;

else
metocean = csvread(observed_filename);
year_length = 1460;

end

% Load residual series
W_sim_raw = load(residual_filename);
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% Length of time series
series_length = length(W_sim_raw);

% Allocate year and month indices
metocean_norm(:,1) = metocean(:,1);
metocean_norm(:,2) = metocean(:,2);

%% Uniformly distribute Tp
if harsh == 1

% Spread Tp with uniform distribution
Tp_spread = zeros(length(metocean),1);
for ii = 1:length(metocean(:,4))

n = round(1+log(metocean(ii,4)/3.244)/0.09525);
metocean(ii,4) = 3.244*exp(0.09525*(n-0.5-rand));

end
else

metocean(:,4) = spread_calm_peak_period(metocean);
end

%% Transformation to normality
% Allocate year and month indices
metocean_norm(:,1) = metocean(:,1);
metocean_norm(:,2) = metocean(:,2);

if rosen == 1
% Rosenblatt transform
%Creating scatter diagram of
scatter_diagram = scatterDiagram(metocean(:,3),metocean(:,4));

% Determine regression coefficients for mu and sigma for lognormal
[a, b] = meanAndStdDev(scatter_diagram,0);

% Fit lognormal distribution to Hs and find parameters mu and sigma
logn_par = lognfit(metocean(:,3));

% Transform Hs to lognormal probability
F_Hs = logncdf(metocean(:,3),logn_par(1),logn_par(2));

% Transform Tp to lognormal probability conditioned on Hs
F_Tp = zeros(length(metocean(:,3)),1);
for ii = 1:length(metocean(:,3))

% Conditioned mu and sigma values
mu = a(1) + a(2)*(metocean(ii,3)^a(3));
sigma = sqrt(b(1) + b(2)*exp(-b(3)*metocean(ii,3)));
F_Tp(ii) = logncdf(metocean(ii,4),mu,sigma);

end
% Inverse standard normal trasnform of Hs and Tp
[metocean_norm(:,3)] = norminv(F_Hs);
[metocean_norm(:,4)] = norminv(F_Tp);

else
% Multivariate BoxCox transform
lambda_cox = boxcoxn(metocean(:,3:4));
[metocean_norm(:,3)] = boxcox(lambda_cox(1),metocean(:,3));
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[metocean_norm(:,4)]= boxcox(lambda_cox(2),metocean(:,4));
end

%% Inverse Seasonal Transformation
[yearMeanFit,yearCovFit,midMonthHours] = seasonal_trans(start_year,...
end_year,metocean_norm,year_length);

% Fit Fourier series to monthly mean and covariance
M_Hs = fit(midMonthHours,yearMeanFit(:,1),'fourier6'); % M Hs
M_Tp = fit(midMonthHours,yearMeanFit(:,2),'fourier6'); % M Tp
S_11 = fit(midMonthHours,yearCovFit(:,1),'fourier6');
S_12 = fit(midMonthHours,yearCovFit(:,2),'fourier6'); % S12=S21
S_22 = fit(midMonthHours,yearCovFit(:,4),'fourier6');

% Reshape simulated values
W_sim = zeros(series_length,2,num_rep);

for ii = 1:num_rep
W_sim(:,1,ii) = W_sim_raw(:,2*(ii-1)+1);
W_sim(:,2,ii) = W_sim_raw(:,2*ii);

end

% Inverse seasonal transform
Y_sim_norm = zeros(series_length,2,num_rep);
if std_on == 1

for ii = 1:num_rep
for jj = 1:series_length

M = [M_Hs(jj); M_Tp(jj)];
S = sqrt([S_11(ii) 0; 0 S_22(ii)]);
W_inv = [W_sim(jj,1,ii); W_sim(jj,2,ii)];
Y_sim_norm(jj,:,ii) = M + S*W_inv;

end
end

else
for ii = 1:num_rep

for jj = 1:series_length
M = [M_Hs(jj); M_Tp(jj)];
W_inv = [W_sim(jj,1,ii); W_sim(jj,2,ii)];
Y_sim_norm(jj,:,ii) = W_inv + M;

end
end

end

%% Inverse Rosenblatt transform
Y_sim = zeros(series_length,2,num_rep);

% Standard normal transform
if rosen == 1

Y_sim_prob = zeros(series_length,2,num_rep);
% Standard Normal CDF
for ii = 1:num_rep

Y_sim_prob(:,1:2,ii) = normcdf(Y_sim_norm(:,1:2,ii));
end
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% Inverse lognormal CDF transform
for ii = 1:num_rep

Y_sim(:,1,ii) = logninv(Y_sim_prob(:,1,ii),logn_par(1),logn_par(2));
for jj = 1:series_length

% mu and sigma vectors for Tp Lognormal transform
mu = a(1) + a(2)*(Y_sim(jj,1,ii)^a(3));
sigma = sqrt(b(1) + b(2)*exp(-b(3)*Y_sim(jj,1,ii)));
Y_sim(jj,2,ii) = logninv(Y_sim_prob(jj,2,ii),mu,sigma);
if Y_sim(jj,2,ii) == inf

Y_sim(jj,2,ii) = Y_sim(jj,2,ii-1);
end

end
end

else
for ii = 1:num_rep

Y_sim(:,1,ii)=(lambda_cox(1).*Y_sim_norm(:,1,ii)+1).^(1/lambda_cox(1));
Y_sim(:,2,ii)=(lambda_cox(2).*Y_sim_norm(:,2,ii)+1).^(1/lambda_cox(2));

end
end

%% Write results to csv
if write == 1

Y_sim_out = zeros(length(Y_sim),2*num_rep);
for ii = 1:num_rep

Y_sim_out(:,2*(ii-1)+1) = Y_sim(:,1,ii);
Y_sim_out(:,2*ii) = Y_sim(:,2,ii);

end

Y_sim_out = [metocean(:,1:2),Y_sim_out];

csvwrite('VARMA_13_BOXCOX_MS_H.csv',Y_sim_out)
end

C.3 Markov Model Scripts

markov_model.m

% Markov model
clear all

startYear = 1990; % Start year of time series
endYear = 2015; % Final year of time series, including this year
filename = 'WAM10.txt'; % WAM 10 Metocean file without headers.
numStates = 24; % Set number of states for Hs
numRep = 10;
year_length = 2920;
harsh = 1;

% Load series
if harsh == 1
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metocean = loadTimeSeries(startYear,endYear,filename);
else

metocean = csvread(filename);
end

% Load Hs and Tp for the last 30 years from hindcast data
Hs = round(metocean(:,3),1);
Tp = metocean(:,4);

% Length of time series
seriesLength = length(metocean(:,1));

% Number of Replications
numReplications = seriesLength;

% Generate the coupling matrix
C = CouplingMatrix(Hs,Tp);

%% Seasonal Transformation

% Initilize
meanHsMonth = zeros(1,12); stdHsMonth = zeros(1,12);

% Create vector with monthly mean and variance from observed time series
for ii = 1:12
meanHsMonth(ii) = mean(Hs(metocean(:,2) == ii));
stdHsMonth(ii) = std(Hs(metocean(:,2) == ii));
end

% Vector containing the middle day of each month in hours from year start
% Day 1 = 365, such that the period is equal to one year
midMonthHours = transpose([1 15.5 45 74.5 105 135.5 166 196.5 ...

227.5 258 288.5 319 349.5 365]*(year_length/365));

% Row containing the average mean value for the 1st and 365th day
% Found as the mean of month 1 and month 12
startEndMean = (meanHsMonth(1) + meanHsMonth(end))/2;
startEndSTD = (stdHsMonth(1) + stdHsMonth(end))/2;

% Add the average value row as the first and last element
MeanFit = transpose([startEndMean meanHsMonth startEndMean]);
stdFit = transpose([startEndMean stdHsMonth startEndMean]);

% Fit Fourier series to monthly mean values i.e., find periodic M(t)
M = fit(midMonthHours,MeanFit,'fourier6'); % M Hs
S = fit(midMonthHours,stdFit,'fourier5'); % S Hs

% Plot of Fourier approximations for validation of fit
%{
figure(1)
subplot(1,2,1)
plot(M,midMonthHours,MeanFit)
title('M Hs')
subplot(1,2,2)
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plot(S,midMonthHours,stdFit)
title('S Hs')
%}
%% Seasonal transformation

% Initilize
Wobs = zeros(seriesLength,1);

% Perform seasonal transformation W = (Y-M)/S
for ii = 1:seriesLength

Wobs(ii) = (Hs(ii)-M(ii));%/S(ii);
end

%% ------------------- P Matrix ----------------------------------
% Find upper and lower limits for Hs values
ub = max(Wobs);
lb = min(Wobs);

% Find state ranges
stateRange = (ub-lb) / (numStates);
% State values
stateValues = lb+stateRange:stateRange:ub;
% Preallocation
State = zeros(seriesLength,1);

% Find each data points state
for i = 1:length(Wobs)

% For each data point
for j = 1:numStates

% For each state
if Wobs(i) <= stateValues(j)

% Data point is in state j
State(i) = j;
% This data point is categorized, so we break and move to the
% next data point
break;

end
end

end

% Find transitions
transitions = zeros(numStates);

for t = 1:seriesLength-1
% HsState(t) represents the state and HsState(t+1) represents the state
% it transitions to
transitions(State(t),State(t+1)) = transitions(State(t),State(t+1)) + 1;

end

P = transitions;
% Normalize each row in the transition matrix so each row sums to 1
for i = 1:numStates

P(i,:) = P(i,:) / sum( P(i,:) );
end
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% Check to see if there are any absorbing states
% i.e. P(i,j) == 1 where i=j
absorbstate = zeros(numStates);
for i = 1:numStates

for j = 1:numStates
if P(i,j) == 1

absorbstate(i,j) = absorbstate(i,j) + 1;
end

end
end
if sum(sum(absorbstate)) >= 1

error('Absorbing states');
end

%% Simulation
% Randomly sample start state
state = randi(numStates);

% Preallocation
states = zeros(seriesLength,1);

for kk = 1:numRep
for i = 1:seriesLength

% Sample a new random value in range [0,1]
r = rand();

for j = 1:numStates
prob = 0;
% Accumulate probabilities
for k = 1:j

prob = prob + P(state,k);
end

if r <= prob
% New state is found, j
state = j;

% Store the state we transition to
states(i,kk) = j;

% Break ends the current for loop, and returns to the outer
% loop, which will sample a new random value and start over
break;

end
end

end
end

% Transform states to normalized values
WSim = zeros(seriesLength,numRep);
for jj = 1:numRep

for ii = 1:seriesLength
WSim(ii,jj) = stateValues(states(ii,jj));
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end
end

%% -------------------------- Inverse Transform ---------------------------
% Preallocation
HsSim = zeros(seriesLength,numRep);

% Apply inverse
for jj = 1:numRep

for ii = 1:seriesLength
HsSim(ii,jj) = M(ii) + WSim(ii,jj);%*S(ii);
if HsSim(ii,jj) < min(Hs)

HsSim(ii,jj) = min(Hs);
end

end
end

%% -------------------------- Coupling ----------------------------------
Tp_unique = unique(Tp); Hs_unique = unique(Hs);
n_unique_Hs = length(Hs_unique); n_unique_Tp = length(Tp_unique);
simTpSpread = zeros(seriesLength,numRep);

for kk = 1:numRep
% Preallocation
Hs_state = zeros(seriesLength,1);

% Find closest unique Hs state
for ii = 1:seriesLength

for jj = 1: n_unique_Hs
if HsSim(ii,kk) <= Hs_unique(jj)

Hs_state(ii) = jj;
% Break inner loop when state is found
break;

end
end

end

% Can try to enter state max + 1
Hs_state(Hs_state == 0) = max(Hs_state);

% Preallocate Tp coupled vector
Tp_coupled = zeros(1,seriesLength);

for jj = 1:seriesLength

r = rand; % Draw random number between 0 and 1
prob = 0; % Reset probabilty for each replication

for ii = 1:n_unique_Tp
% Accumulate probabilities
prob = prob + C(Hs_state(jj),ii);

% Find Tp values
if r <= prob
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Tp_coupled(jj) = Tp_unique(ii);
% Break inner loop when state is found
break;

end
end

end

%% Spread T_p Values

if harsh == 1
% Simulated values
% Preallocation
Tp_coupled_spread = zeros(1,length(Tp_coupled));

% Apply spreading function to simulated Tp
for ii = 1:length(Tp_coupled)

n = round(1+log(Tp_coupled(ii)/3.244)/0.09525);
Tp_coupled_spread(ii) = 3.244*exp(0.09525*(n-0.5-rand));

end

simTpSpread(:,kk) = Tp_coupled_spread;

else
metocean(:,4) = Tp_coupled;
simTpSpread(:,kk) = spread_calm_peak_period(metocean);

end
end

if harsh == 1
% Observed values spread_calm_peak_period(metocean)
% Preallocation
Tp_spread = zeros(length(Tp),1);

% Apply spreading function to observed Tp
for ii = 1:length(Tp)

n = round(1+log(Tp(ii)/3.244)/0.09525);
Tp_spread(ii,1) = 3.244*exp(0.09525*(n-0.5-rand));

end
else

metocean(:,4) = Tp;
Tp_spread = spread_calm_peak_period(metocean);

end

%% Write Series Ysim to csv

Ysim = zeros(seriesLength,2,numRep);

for ii = 1:numRep
Ysim(:,1,ii) = HsSim(:,ii);
Ysim(:,2,ii) = simTpSpread(:,ii);
end

indices = [metocean(:,1) metocean(:,2)];
for ii = 1:numRep
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if ii == 1
sims = [Ysim(:,1,ii) Ysim(:,2,ii)];

else
sims = [sims Ysim(:,1,ii) Ysim(:,2,ii)];

end
end
out = [indices sims];
csvwrite('Markov_M_H.csv',out)

CouplingMatrix.m

function C_prob = CouplingMatrix(Hs,Tp)

% Create vector of unique observed values
Tp_unique = unique(Tp);
Hs_unique = unique(Hs);

% Lengths
n_unique_Hs = length(Hs_unique);
n_unique_Tp = length(Tp_unique);

% Preallocate
C_events = zeros(n_unique_Hs,n_unique_Tp);
C_prob = zeros(n_unique_Hs,n_unique_Tp);

% --------------------- Count Occurences ----------------------------------
for kk = 1:n_unique_Hs

% Find all indexes in metocean data for each unique Hs
index = find(Hs == Hs_unique(kk));

% Count number of occurences of each unique Tp for each unique Hs
for ii = 1:length(index)

for jj = 1:n_unique_Tp
if Tp(index(ii)) == Tp_unique(jj)

C_events(kk,jj) = C_events(kk,jj) + 1;
break;

end
end

end
end

%Normalize to probabilty matrix
for ii = 1:n_unique_Hs

C_prob(ii,:) = C_events(ii,:)/sum(C_events(ii,:));
end
end
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C.4 VAR Model Script

VAR_model.m

% VAR estimation and simulation of residuals. Includes back-transform of
% residuals

clear all

% General parameters
start_year = 1990; % Start year of time series
end_year = 2015; % Final year of time series, including this year
year_length = 2920; % 1460 Number of observations in a year
filename = 'WAM10.txt'; % WAM 10 Metocean file without headers.
harsh = 1; % 0 for calm, 1 for
num_rep = 10; % Number of replications
write_to_csv = 0; % write residuals
write_filename = 'VAR_XX_MS_C.csv';

% VAR paramaters
np = 10; % Number of p lags to be evaluated. Integer and larger than zero
burnIn = 400; % Number of time steps for burn-in. 200 is normal

% Load Hs, Tp, year indices and month indices from start year to and
% including end year
if harsh == 1

metocean = loadTimeSeries(start_year,end_year,filename);
else

metocean = csvread(filename);
end

% Length of time series
series_length = length(metocean(:,1));

%% Uniformly distribute Tp
if harsh == 1

% Spread Tp with uniform distribution
Tp_spread = zeros(length(metocean),1);
for ii = 1:length(metocean(:,4))

n = round(1+log(metocean(ii,4)/3.244)/0.09525);
metocean(ii,4) = 3.244*exp(0.09525*(n-0.5-rand));

end
else

metocean(:,4) = spread_calm_peak_period(metocean);
end

%% Transformation to normality
% Allocate year and month indices
metocean_norm(:,1) = metocean(:,1);
metocean_norm(:,2) = metocean(:,2);

% Rosenblatt transform
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%Creating scatter diagram of
scatter_diagram = scatterDiagram(metocean(:,3),metocean(:,4));

% Determine regression coefficients for mu and sigma for lognormal
[a, b] = meanAndStdDev(scatter_diagram,0);

% Fit lognormal distribution to Hs and find parameters mu and sigma
logn_par = lognfit(metocean(:,3));

% Transform Hs to lognormal probability
F_Hs = logncdf(metocean(:,3),logn_par(1),logn_par(2));

% Transform Tp to lognormal probability conditioned on Hs
F_Tp = zeros(length(metocean(:,3)),1);
for ii = 1:length(metocean(:,3))

% Conditioned mu and sigma values
mu = a(1) + a(2)*(metocean(ii,3)^a(3));
sigma = sqrt(b(1) + b(2)*exp(-b(3)*metocean(ii,3)));
F_Tp(ii) = logncdf(metocean(ii,4),mu,sigma);

end

% Inverse standard normal trasnform of Hs and Tp
[metocean_norm(:,3)] = norminv(F_Hs);
[metocean_norm(:,4)] = norminv(F_Tp);

%% Seasonal Transformation
[yearMeanFit,yearCovFit,midMonthHours] = seasonal_trans(start_year,...
end_year,metocean_norm,year_length);

% Fit Fourier series to monthly mean and covariance
M_Hs = fit(midMonthHours,yearMeanFit(:,1),'fourier6'); % M Hs
M_Tp = fit(midMonthHours,yearMeanFit(:,2),'fourier6'); % M Tp
S_11 = fit(midMonthHours,yearCovFit(:,1),'fourier6');
S_12 = fit(midMonthHours,yearCovFit(:,2),'fourier6'); % S12=S21
S_22 = fit(midMonthHours,yearCovFit(:,4),'fourier6');

%% Generate Residuals
% Pre-allocate
W = zeros(series_length,2);

% Perform seasonal transformation W = (Y-M)/S
for ii = 1:series_length

Y = [metocean_norm(ii,3); metocean_norm(ii,4)];
M = [M_Hs(ii); M_Tp(ii)];
S = sqrt([S_11(ii) 0; 0 S_22(ii)]);
W(ii,:)=(Y-M);
%W(ii,:)=S\(Y-M); % x = A\b --- Ax = b

end

%% Find optimal VAR model lags for residuals W with AIC
% Initilize
LOGL = zeros(np,1);

% Fit VAR(p) models
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for p = 1:np
mdl = varm(2,p);
[fit,~,logL] = estimate(mdl,[W(:,1) W(:,2)]);
% Store the loglikelihood objective function and number of
% coefficients for each fitted model
LOGL(p) = logL;

end

% Column vector with number of terms for each VAR(p)
P(:,1) = 2+4*[1:np];

% Calculate the AIC/BIC for each fitted VAR model
[AIC,BIC] = aicbic(LOGL,P,series_length);

% Optimal number of lags according to AIC.
[minNumAIC,pLagsAIC] = min(AIC);

%% Simulate Residuals W
% Re-fit optimal VAR model to W residuals
mdlW = varm(2,pLagsAIC);
estMdlW = estimate(mdlW,[W(:,1) W(:,2)]);

% Simulate series
WsimBurnIn = simulate(estMdlW,burnIn+series_length,'NumPaths',num_rep);
W_sim = WsimBurnIn(burnIn+1:end,:,:);

%% Inverse Seasonal Transform Y = M + S*W
Y_sim_norm = zeros(series_length,2,num_rep);
for ii = 1:num_rep

for jj = 1:series_length
M = [M_Hs(jj); M_Tp(jj)];
S = sqrt([S_11(ii) 0; 0 S_22(ii)]);
W_inv = [W_sim(jj,1,ii); W_sim(jj,2,ii)];
%Y_sim_norm(jj,:,ii) = W_inv + M;
Y_sim_norm(jj,:,ii) = M + S*W_inv;

end
end

%% Inverse Rosenblatt transform
% Standard normal transform
Y_sim_prob = zeros(series_length,2,num_rep);
for ii = 1:num_rep

Y_sim_prob(:,1:2,ii) = normcdf(Y_sim_norm(:,1:2,ii));
end

% Inverse lognormal CDF transform
Y_sim = zeros(series_length,2,num_rep);
for ii = 1:num_rep

Y_sim(:,1,ii) = logninv(Y_sim_prob(:,1,ii),logn_par(1),logn_par(2));
for jj = 1:series_length
% mu and sigma vectors for Tp Lognormal transform
mu = a(1) + a(2)*(Y_sim(jj,1,ii)^a(3));
sigma = sqrt(b(1) + b(2)*exp(-b(3)*Y_sim(jj,1,ii)));
Y_sim(jj,2,ii) = logninv(Y_sim_prob(jj,2,ii),mu,sigma);
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end
end

%% Write simulated series to .csv
if write_to_csv == 1

indices = [metocean(:,1) metocean(:,2)];
for ii = 1:num_rep

if ii == 1
y_sim_out = [Y_sim(:,1,ii) Y_sim(:,2,ii)];

else
y_sim_out = [y_sim_out Y_sim(:,1,ii) Y_sim(:,2,ii)];

end
end
out = [indices y_sim_out];
csvwrite(write_filename,out)

end

C.5 VARMA Model Script

Note that this script is written in R.

VARMA_model.r

# Simulate residuals using VARMA model

# Set directory
setwd("C:/Users/olejl/OneDrive/Dokumenter/MATLAB/MasterThesis")

# Open time series library
library(MTS)

# Load residuals from Matlab
mydata = read.table("C:/residuals_BOXCOX_MS_H.csv",header=FALSE,sep=",")

# Select Hs and Tp columns
mydata = mydata[,3:4]

# Calculate cross-corrolation P values
P=Eccm(mydata,maxp=4,maxq=4)

# P values matrix
pValues = P$pEccm

# Find the smallest P value larger than zero
pValueMin = which(pValues == min(pValues[pValues > 0.05]),arr.ind=T)

# Optimal lags by P value
pLags = pValueMin[1]-1
qLags = pValueMin[2]-1
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# Lag vectors
ARlags = c(1:pLags)
MAlags = c(1:qLags)

# Fit VARMA model to residuals W
mdl=VARMA(mydata,p=pLags,q=qLags,include.mean=FALSE)

# VARMA parameters
AIC = mdl$aic
phi = mdl$Phi
theta = mdl$Theta
sig = mdl$Sigma

series_length = length(mydata)

# Simulate VARMA
m=VARMAsim(series_length,arlags=ARlags,malags=MAlags,
phi=phi,theta=theta,sigma=sig)

# Simulated residual series
Wsim=m$series

# Write simulation results to .csv
write.table(Wsim,file="Residuals.csv",row.names=FALSE,na="",
col.names=FALSE,sep=",")

C.6 SAR-LSTM Network Model Scripts

Note that these scripts are written in Python.

grid_search_LSTM.py

import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout
from keras import regularizers

################# Functions ###################

# Scale features
def scale_features(metocean_data):

# Transform dataframe to floats
raw_values = metocean_data.values
#raw_values = raw_values[0:series_length,:]

# Scale features
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scaler = MinMaxScaler(feature_range=(0, 1))
scaled = scaler.fit_transform(raw_values)
return scaler,scaled

# convert series to supervised learning
def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):

n_vars = 1 if type(data) is list else data.shape[1]
df = pd.DataFrame(data)
cols, names = list(), list()
# input sequence (t-n, ... t-1)
for i in range(n_in, 0, -1):

cols.append(df.shift(i))
names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)]

# forecast sequence (t, t+1, ... t+n)
for i in range(0, n_out):

cols.append(df.shift(-i))
if i == 0:

names += [('var%d(t)' % (j+1)) for j in range(n_vars)]
else:

names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)]
# put it all together
agg = pd.concat(cols, axis=1)
agg.columns = names
# drop rows with NaN values
if dropnan:

agg.dropna(inplace=True)
return agg

# split supervised problem into train and test
def supervised_to_train_test(reframed,batch_size,window):

# Transform to float
values = reframed.values
# Split into training and test set
train_size = int(len(reframed) * 0.80)
train, test = values[0:train_size], values[train_size:len(reframed)]
# split into input and outputs
train_X, train_Y = train[:, :-num_features], train[:, -num_features:]
test_X, test_Y = test[:, :-num_features], test[:, -num_features:]
# reshape input to be 3D [samples, timesteps, features]
train_X = train_X.reshape((train_X.shape[0], window, num_features))
test_X = test_X.reshape((test_X.shape[0], window, num_features))
# adjust length of training and test sets to be a factor of the batch size
num_batches_train = int(len(train_X)/batch_size)
num_batches_test = int(len(test_X)/batch_size)
train_X = train_X[0:(num_batches_train*batch_size),:,:]
train_Y = train_Y[0:(num_batches_train*batch_size),:]
test_X = test_X[0:(num_batches_test*batch_size),:,:]
test_Y = test_Y[0:(num_batches_test*batch_size),:]
# Drop months as feature
train_Y = train_Y[:,1:]
test_Y = test_Y[:,1:]
return train_X, train_Y, test_X, test_Y

# Network Architecture
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def build_LSTM(neurons,stack_depth,batch_size):
model = Sequential()
if stack_depth > 1:

for i in range(stack_depth):
model.add(LSTM(neurons,batch_input_shape=(batch_size,

train_X.shape[1], train_X.shape[2]),
stateful=True,
return_sequences=True,
kernel_regularizer=regularizers.l2(lambda_reg)))

model.add(Dropout(0.50))
model.add(LSTM(neurons,batch_input_shape=(batch_size,

train_X.shape[1], train_X.shape[2]),
stateful=True,
kernel_regularizer=regularizers.l2(lambda_reg)))

else:
model.add(LSTM(neurons,batch_input_shape=(batch_size,

train_X.shape[1], train_X.shape[2]),
stateful=True,
kernel_regularizer=regularizers.l2(lambda_reg)))

model.add(Dropout(0.50))
model.add(Dense(2))
model.compile(loss='mean_squared_error', optimizer='adam')
return model

# Train model and return loss history
def train_LSTM(num_epochs,batch_size):

run_history = np.zeros((num_epochs,2))
for i in range(num_epochs):

History = model.fit(train_X, train_Y, epochs=1, batch_size=batch_size,
validation_data=(test_X,test_Y), verbose=2, shuffle=False)

model.reset_states()
print('True Epoch:', (i+1))
loss_dict = History.history
run_history[i,0] = np.array(loss_dict['loss'])
run_history[i,1] = np.array(loss_dict['val_loss'])
run_history = np.array(run_history)

return run_history

################## End Functions ##################

# Load the dataset
metocean_data = pd.read_csv('W:/Residuals/residuals_rosen_M_C.csv',

header=None,usecols=[1,2,3],
names=['month','Hs','Tp'], engine='python')

# Non-variable parameters
num_features = 3
num_epochs = 60
batch_size = 64

# Scale features
scaler,scaled = scale_features(metocean_data)

# Hyper-parameter values
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window = [8,16,32]
neurons = [32,64,128]
stack_depth = [1,2,3]
lambda_reg = 0.00001

# Counter for iteration number
counter = 1

for i in range(len(window)):
for j in range(len(neurons)):

for k in range(len(stack_depth)):
# Frame as supervised learning
reframed = series_to_supervised(scaled, window[i], 1)

# Split into train and test sets
# Adjust length to be a factor of batch size

train_X,train_Y,test_X,test_Y = supervised_to_train_test(reframed,
batch_size,window[i])

# Build Network Architecture
model = build_LSTM(neurons[j],stack_depth[k],batch_size)

# Train Network
run_history = train_LSTM(num_epochs,batch_size)

# Save loss history and model parameters
# Parameter column
run_parameters = np.array([[window[i],neurons[j],stack_depth[k],

lambda_reg]])
run_parameters = np.concatenate((run_parameters,run_parameters)).T

# Append loss history to parameters
run_history = np.append(run_parameters,run_history,axis=0)
#run_history = pd.DataFrame(run_history)
# Add loss and parameters to complete history
if counter == 1:

full_history = run_history

else:
full_history = np.column_stack((full_history,run_history))
# Write to csv after each iteration
history_df = pd.DataFrame(full_history)
history_df.to_csv('W:/output_pyy.csv',

header=False, index=False)
counter = counter + 1

train_single_LSTM.py

# Train single network model

import pandas as pd
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import numpy as np
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout
from keras import regularizers
################################# FUNCTIONS ##################################

# Scale features
def scale_features(metocean_data):

# Transform dataframe to floats
raw_values = metocean_data.values
#raw_values = raw_values[0:series_length,:]

# Scale features
scaler = MinMaxScaler(feature_range=(0, 1))
scaled = scaler.fit_transform(raw_values)
return scaler,scaled

# convert series to supervised learning
def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):

n_vars = 1 if type(data) is list else data.shape[1]
df = pd.DataFrame(data)
cols, names = list(), list()
# input sequence (t-n, ... t-1)
for i in range(n_in, 0, -1):

cols.append(df.shift(i))
names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)]

# forecast sequence (t, t+1, ... t+n)
for i in range(0, n_out):

cols.append(df.shift(-i))
if i == 0:

names += [('var%d(t)' % (j+1)) for j in range(n_vars)]
else:

names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)]
# put it all together
agg = pd.concat(cols, axis=1)
agg.columns = names
# drop rows with NaN values
if dropnan:

agg.dropna(inplace=True)
return agg

# split supervised problem into train and test
def supervised_to_train_test(reframed,batch_size,window):

# Transform to float
values = reframed.values
# Split into training and test set
train_size = int(len(reframed) * 0.80)
train, test = values[0:train_size], values[train_size:len(reframed)]
# split into input and outputs
train_X, train_Y = train[:, :-num_features], train[:, -num_features:]
test_X, test_Y = test[:, :-num_features], test[:, -num_features:]
# reshape input to be 3D [samples, timesteps, features]
train_X = train_X.reshape((train_X.shape[0], window, num_features))
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test_X = test_X.reshape((test_X.shape[0], window, num_features))
# adjust length of training and test sets to be a factor of the batch size
num_batches_train = int(len(train_X)/batch_size)
num_batches_test = int(len(test_X)/batch_size)
train_X = train_X[0:(num_batches_train*batch_size),:,:]
train_Y = train_Y[0:(num_batches_train*batch_size),:]
test_X = test_X[0:(num_batches_test*batch_size),:,:]
test_Y = test_Y[0:(num_batches_test*batch_size),:]
# Drop months as feature
train_Y = train_Y[:,1:]
test_Y = test_Y[:,1:]
return train_X, train_Y, test_X, test_Y

# Network Architecture
def build_LSTM(neurons,stack_depth,batch_size):

model = Sequential()
for i in range(stack_depth):

model.add(LSTM(neurons,batch_input_shape=(batch_size,
train_X.shape[1], train_X.shape[2]),
stateful=True,
return_sequences=True,
kernel_regularizer=regularizers.l2(lambda_reg)))

model.add(Dropout(0.50))
model.add(LSTM(neurons,batch_input_shape=(batch_size,

train_X.shape[1], train_X.shape[2]),
stateful=True,
kernel_regularizer=regularizers.l2(lambda_reg)))

model.add(Dropout(0.50))
model.add(Dense(2))
model.compile(loss='mean_squared_error', optimizer='adam')
return model

# Train model and return loss history
def train_LSTM(num_epochs,batch_size):

run_history = np.zeros((num_epochs,2))
best_val_loss = 10;
for i in range(num_epochs):

History = model.fit(train_X, train_Y, epochs=1, batch_size=batch_size,
validation_data=(test_X,test_Y), verbose=2, shuffle=False)

model.reset_states()
print('True Epoch:', (i+1))
loss_dict = History.history
run_history[i,0] = np.array(loss_dict['loss'])
run_history[i,1] = np.array(loss_dict['val_loss'])
run_history = np.array(run_history)
if run_history[i,1] < best_val_loss:

model_best = model
return run_history,model_best

#################################################################

# Load the dataset
metocean_data = pd.read_csv('W:/Residuals/residuals_rosen_M_C.csv',header=None,

usecols=[1,2,3],
names=['month','Hs','Tp'], engine='python')
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# Non-variable parameters
num_features = 3
num_epochs = 500
batch_size = 64

# Scale features
scaler,scaled = scale_features(metocean_data)

# Hyper-parameter values
window = 16
neurons = 128
stack_depth = 2
lambda_reg = 0

# Frame as supervised learning
reframed = series_to_supervised(scaled, window, 1)

# Split into train and test sets and adjust length to be a factor of batch size
train_X, train_Y, test_X, test_Y = supervised_to_train_test(reframed,

batch_size,window)

# Build Network Architectur
model = build_LSTM(neurons,stack_depth,batch_size)

# Train Network
run_history,model_best = train_LSTM(num_epochs,batch_size)

# Save loss history and model parameters
# Parameter column
run_parameters = np.array([[window,neurons,stack_depth,lambda_reg]])
run_parameters = np.concatenate((run_parameters,run_parameters)).T

# Append loss history to parameters
run_history = np.append(run_parameters,run_history,axis=0)

# Write loss to csv
history_df = pd.DataFrame(run_history)
history_df.to_csv('W:/Models/loss_LSTM_model_1_C.csv',

header=False, index=False)

# Change batch size of model
if batch_size != 1:

# re-define model with batch size of 1
new_model = build_LSTM(neurons,stack_depth,1)

# copy weights from old model and apply to new model
old_weights = model_best.get_weights()
new_model.set_weights(old_weights)

# Save new model to current directory
new_model.save('W:/Models/LSTM_model_1_C.h5')
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simulate_LSTM.py

import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from keras.models import load_model
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import norm
from sklearn.metrics import mean_squared_error
import math

################################# FUNCTIONS ##################################
# convert series to supervised learning
def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):

n_vars = 1 if type(data) is list else data.shape[1]
df = pd.DataFrame(data)
cols, names = list(), list()
# input sequence (t-n, ... t-1)
for i in range(n_in, 0, -1):

cols.append(df.shift(i))
names += [('var%d(t-%d)' % (j+1, i)) for j in range(n_vars)]

# forecast sequence (t, t+1, ... t+n)
for i in range(0, n_out):

cols.append(df.shift(-i))
if i == 0:

names += [('var%d(t)' % (j+1)) for j in range(n_vars)]
else:

names += [('var%d(t+%d)' % (j+1, i)) for j in range(n_vars)]
# put it all together
agg = pd.concat(cols, axis=1)
agg.columns = names
# drop rows with NaN values
if dropnan:

agg.dropna(inplace=True)
return agg

# split supervised problem into train and test
def supervised_to_train_test(reframed,batch_size,window):

# Transform to float
values = reframed.values
# Split into training and test set
train_size = int(len(reframed) * 0.80)
train, test = values[0:train_size], values[train_size:len(reframed)]
# split into input and outputs
train_X, train_Y = train[:, :-num_features], train[:, -num_features:]
test_X, test_Y = test[:, :-num_features], test[:, -num_features:]
# reshape input to be 3D [samples, timesteps, features]
train_X = train_X.reshape((train_X.shape[0], window, num_features))
test_X = test_X.reshape((test_X.shape[0], window, num_features))
# adjust length of training and test sets to be a factor of the batch size
num_batches_train = int(len(train_X)/batch_size)
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num_batches_test = int(len(test_X)/batch_size)
train_X = train_X[0:(num_batches_train*batch_size),:,:]
train_Y = train_Y[0:(num_batches_train*batch_size),:]
test_X = test_X[0:(num_batches_test*batch_size),:,:]
test_Y = test_Y[0:(num_batches_test*batch_size),:]
# Drop months as feature
train_Y = train_Y[:,1:]
test_Y = test_Y[:,1:]
return train_X, train_Y, test_X, test_Y

def simulate_LSTM(num_rep):
# Initilize starting window for simulation
trainPredict = [train_X[0,:,:]]
# Pre-allocate prediction output
predictions = np.zeros((num_rep,2))
# Simulate one new prediction for the length of the simulation
for i in range(num_rep):

prediction = model.predict(np.array([trainPredict[-1]]),batch_size=1)
# inverse transform to residual scale
prediction = scaler_pred.inverse_transform(prediction)
# Add white noise to inverse transformed predictions
prediction[0,0] = prediction[0,0] + np.random.normal(0,sigma_obs[0],1)
prediction[0,1] = prediction[0,1] + np.random.normal(0,sigma_obs[1],1)
# Transform back to prediction scale
prediction = scaler_pred.transform(prediction)
# Store all predictions
predictions[i] = prediction
# Append last value for month to shape for next prediction
prediction = np.insert(prediction,0,[trainPredict[-1][-1][0]])
prediction.flatten()
# Append predictions as the value of the previous time step
trainPredict.append(np.vstack([trainPredict[-1][1:],prediction]))

# Inverse transform all predictions to residual scale
predictions = scaler_pred.inverse_transform(predictions)
# transform to dataframe
df_predictions = pd.DataFrame(predictions,columns =['Hs','Tp'])
return df_predictions

################################### END OF FUNC ##############################

# Load stationary residuals, month and year
df_observed = pd.read_csv('residuals_rosen_M_C.csv',header=None,

usecols=[0,1,2,3],names=['year','month','Hs','Tp'], engine='python')

# PARAMETERS
num_features = 3
num_rep = 37960 # Number of replications

# HYPER-PARAMETERS
look_back = 16
neurons = 128
batch_size = 64
stack_depth = 2
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# Select years for training and testing
df_observed = df_observed[['month','Hs','Tp']]

# Mean and STD of observations
sigma_obs = [np.std(df_observed['Hs']), np.std(df_observed['Tp'])]
mu_obs = [np.mean(df_observed['Hs']), np.mean(df_observed['Tp'])]

# Scale all features
scaler_all = MinMaxScaler(feature_range=(0, 1))
scaled = scaler_all.fit_transform(df_observed.values)

# New scaler to only apply to Hs and Tp
scaler_pred = MinMaxScaler(feature_range=(0, 1))
scaler_pred.fit(df_observed[['Hs','Tp']].values)

# Frame as supervised learning
reframed = series_to_supervised(scaled, look_back, 1)

# Split into train and test sets and adjust length to be a factor of batch size
train_X, train_Y, test_X, test_Y = supervised_to_train_test(reframed,

64,look_back)

# Load deep learning model
model = load_model('LSTM_model_1_H.h5')

# Re-define batch size
batch_size = 1
# --------------------- Forecast ------------------------------------------

# make predictions
test_predict = model.predict(test_X, batch_size=batch_size)

# Inverse scale
test_predict = scaler_pred.inverse_transform(test_predict)
test_Y = scaler_pred.inverse_transform(test_Y)

# Prediction test score
RMSE_Hs = math.sqrt(mean_squared_error(test_Y[:,0], test_predict[:,0]))
print('Test Score: %.2f RMSE' % (RMSE_Hs))

# --------------------- Simulate ------------------------------------------

# Simulate
for i in range(10):

df_predictions = simulate_LSTM(num_rep,scale_val)
if i == 0:

synthetic_series = df_predictions
else:

synthetic_series = pd.concat([synthetic_series, df_predictions],axis=1)

synthetic_series.to_csv('C:/Users/olejl/LSTM/residuals_LSTM_M_C.csv',
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header=False, index=False)

C.7 Validation Scripts

validate_single.m

% Validate a single synthetic series against observed
clear all

% General parameters
harsh = 1; % 0 for calm, 1 for harsh
num_rep = 10;
lstm = 0;

% plot parameters
m_type = 'LSTM$_m$';
line_width = 1.5;
num_lags_auto = 100; % Number of lags in auto/crosscorrelation
plot_pers = 0;

% Files
observed_filename = 'WAM10.txt'; % WAM 10 Metocean file without headers.
synthetic_filename = 'VARMA_13_BOXCOX_MS_H.csv';

% LOAD PERSISTENCE TABLES
if plot_pers == 1

obs_persistence = xlsread('pers_table_harsh.xlsx');
obs_above = obs_persistence(2:61,1:21);
obs_below = obs_persistence(63:122,1:21);
syn_persistence = xlsread('pers_table_LSTM_M_H.xlsx');
syn_above = syn_persistence(2:61,1:21);
syn_below = syn_persistence(63:122,1:21);

end

% Read observed series
if harsh == 1

step_length = 3;
start_year = 1990; % Start year of time series
end_year = 2015; % Final year of time series, including this year
year_length = 2920; % 1460 Number of observations in a year
metocean = loadTimeSeries(start_year,end_year,observed_filename);
scatter_max_x = 22;
above_values = [.001 .01 .1 .2 .4 .6 .7]; % [.001 .01 .1 .2 .4 .6 .7];
below_values = [.01 .1 .2 .4 .6 .7 .8]; %[.01 .1 .2 .4 .6 .7 .8];

else
metocean = csvread(observed_filename);
step_length = 6;
year_length = 1460;
scatter_max_x = 16;
above_values = [.001 .01 .05 .1 .2 .6 .7];
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below_values = [.15 .3 .45 .65 .8 .9 .9];
end

%% Set Latex as interpreter and font size
set(0,'defaultTextInterpreter','latex')
set(0, 'defaultAxesTickLabelInterpreter','latex');
set(0, 'defaultLegendInterpreter','latex');

set(0,'DefaultAxesFontSize', 16) % 12 for 0.8, 16 for 0.65
set(0,'DefaultTextFontSize', 16)
set(0,'DefaultLegendFontSize', 16)

%% Read
% Read synthetic series
syn_series = csvread(synthetic_filename);

% Remove month and year columns
syn_series = syn_series(:,3:end);

% Reshape synthetic series
Y_sim = zeros(length(syn_series),2,num_rep);
for ii = 1:num_rep

Y_sim(:,1,ii) = syn_series(:,2*(ii-1)+1);
Y_sim(:,2,ii) = syn_series(:,2*ii);

end

%% Uniformly distribute Tp
if harsh == 1

% Spread Tp with uniform distribution
for ii = 1:length(metocean(:,4))

n = round(1+log(metocean(ii,4)/3.244)/0.09525);
metocean(ii,4) = 3.244*exp(0.09525*(n-0.5-rand));

end
else

metocean(:,4) = spread_calm_peak_period(metocean);
end

Hs_obs = metocean(:,3);
Tp_obs = metocean(:,4);

%% Overall and Monthly Mean and Covaraince
% Over-all mean and covariance
overall_mean_cov = over_all_mean_variance(metocean(:,3),...

metocean(:,4),Y_sim,num_rep);

% Monthly Mean and Covariance
[obs_cov,sim_cov,obs_month_mean,sim_month_mean]=monthly_mean_covariance(...

metocean,num_rep,Y_sim);

% Plot monthly mean and covariance
figure(1)
clf
plot(1:12,obs_month_mean(1,:),'LineWidth',line_width)
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hold on
plot(1:12,sim_month_mean(1,:),'LineWidth',line_width,'LineStyle','--')
plot(1:12,obs_month_mean(2,:),'LineWidth',line_width)
plot(1:12,sim_month_mean(2,:),'LineWidth',line_width,'LineStyle','--')
legend({'Observed $H_s$',[m_type ' $H_s$'],'Observed $T_p$',[m_type ' $T_p$']})
% title([m_type ' Comparison Plot of Monthly Mean for Series ' s_type])
xlabel('Month','Color','k')
ylabel('Mean','Color','k')
xticks([1 3 6 9 12])
xlim([1,12])
if harsh == 1

ylim([0,14])
else

ylim([0,14]) % 10.5 for NOT LSTM
end
grid on

figure(2)
clf
plot(1:12,obs_cov(1,:),'LineWidth',line_width)
hold on
plot(1:12,sim_cov(1,:),'LineWidth',line_width,'LineStyle','--')
plot(1:12,obs_cov(2,:),'LineWidth',line_width)
plot(1:12,sim_cov(2,:),'LineWidth',line_width,'LineStyle','--')
plot(1:12,obs_cov(3,:),'LineWidth',line_width)
plot(1:12,sim_cov(3,:),'LineWidth',line_width,'LineStyle','--')
legend('Observed $\Sigma_{11}$',[m_type ' $\Sigma_{11}$'],...

'Observed $\Sigma_{12}$',[m_type ' $\Sigma_{12}$'],...
'Observed $\Sigma_{22}$',[m_type ' $\Sigma_{22}$']);

%title('Comparison Plot of Monthly Covariance')
xlabel('Month','Color','k')
ylabel('Covariance','Color','k')
xticks([1 3 6 9 12])
xlim([1,12])
if harsh == 1

ylim([0,24]) % 8 NOT LSTM
else

ylim([0,30]) % 5.5 NOT LSTM
end
grid on

%% Autocorrelation and Crosscorrelation

% Hs Autocorrelation
[acf_Hs_sim,lags_auto] = autocorr(Y_sim(:,1,1),num_lags_auto);
acf_Hs_obs = autocorr(metocean(:,3),num_lags_auto);

% Tp Autocorrelation
acf_Tp_sim = autocorr(Y_sim(:,2,1),num_lags_auto);
acf_Tp_obs = autocorr(metocean(:,4),num_lags_auto);

figure(3)
clf
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subplot(2,1,1)
plot(lags_auto,acf_Hs_obs,'LineWidth',line_width)
hold on
plot(lags_auto,acf_Hs_sim,'LineWidth',line_width,'LineStyle','--')
%title('$H_s$ Autocorrelation')
xlabel('Lag','Color','k')
ylabel('ACF $H_s$','Color','k')
legend('Observed',m_type)
grid on
subplot(2,1,2)
plot(lags_auto,acf_Tp_obs,'LineWidth',line_width)
hold on
plot(lags_auto,acf_Tp_sim,'LineWidth',line_width,'LineStyle','--')
%title('$T_p$ Autocorrelation')
%legend('Observed',m_type)
xlabel('Lag','Color','k')
ylabel('ACF $T_p$','Color','k')
grid on

% Cross Correlation
[xcf_sim,lags_cross] = crosscorr(Y_sim(:,1,1),Y_sim(:,2,1));
xcf_obs = crosscorr(metocean(:,3),metocean(:,4));

figure(4)
clf
plot(lags_cross,xcf_obs,'LineWidth',line_width)
hold on
plot(lags_cross,xcf_sim,'LineWidth',line_width,'LineStyle','--')
xlabel('Lag','Color','k')
ylabel('Crosscorrelation Function','Color','k')
legend('Observed',m_type)
grid on
%title('Crosscorrelation')

%% Scatter plot
series_length = length(metocean);

% Preallocation
group1 = cell(series_length,1);
group2 = cell(series_length,1);

% Create one group for model and observed
for ii = 1:series_length

group1{ii} = 'Observed';
group2{ii} = m_type;

end

% Vectors for scatterhist
type = cat(1,group1,group2);
HsPlot = [metocean(:,3); Y_sim(:,1,1)];
TpPlot = [metocean(:,4); Y_sim(:,2,1)];

%[0 2 4 6 8 10 12 14 16 18 20 22]
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figure(5)
clf
scatterhist(TpPlot, HsPlot,'Group',type, 'MarkerSize', 2,'kernel','on',...

'Color','br','LineWidth',[line_width,line_width],'Location','SouthWest')
xlim([0 28]) % scatter_max_x
ylim([0 36])
xticks(0:4:28) % scatter_max_x
%xticklabels({'2','4','6','8','10','12','14','16','18','20','22',})
yticks(0:6:36)
ylabel('$H_s$','Color','k')
xlabel('$T_p$','Color','k')
%[lgd,b] = legend('Observed',m_type);
%lgd.Location = 'none';
%set(findobj(b,'-property','MarkerSize'),'MarkerSize',10)
grid on

%% Normalized Persistence Tables

if plot_pers == 1

% Total simulated time
total_time = series_length * step_length;

% Size of persistence tables
[nRow, nCol] = size(obs_above);

% Initilize
hindAboveTime = zeros(nRow,nCol); hindBelowTime = zeros(nRow,nCol);
simAboveTime = zeros(nRow,nCol); simBelowTime = zeros(nRow,nCol);

% Normalize and transform to real time
for ii = 1:nRow

hindAboveTime(ii,:) = 6*ii*obs_above(ii,:)/total_time;
hindBelowTime(ii,:) = 6*ii*obs_below(ii,:)/total_time;
simAboveTime(ii,:) = 6*ii*syn_above(ii,:)/total_time;
simBelowTime(ii,:) = 6*ii*syn_below(ii,:)/total_time;

end
% Low Values Normalized Persistence ABOVE
figure(6)
clf
v = [above_values(1),above_values(1)];
[C,h] = contour(flipud(hindAboveTime),v,'b','LineWidth',line_width);
clabel(C,h)
hold on
[C,h] = contour(flipud(simAboveTime),v,'--r','LineWidth',line_width);
clabel(C,h)

v = [above_values(2),above_values(2)];
[C,h] = contour(flipud(hindAboveTime),v,'b','LineWidth',line_width);
clabel(C,h)
hold on
[C,h] = contour(flipud(simAboveTime),v,'--r','LineWidth',line_width);
clabel(C,h)
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v = [above_values(3),above_values(3)];
[C,h] = contour(flipud(hindAboveTime),v,'b','LineWidth',line_width);
clabel(C,h)
[C,h] = contour(flipud(simAboveTime),v,'--r','LineWidth',line_width);
clabel(C,h)

v = [above_values(4),above_values(4)];
[C,h] = contour(flipud(hindAboveTime),v,'b','LineWidth',line_width);
clabel(C,h)
hold on
[C,h] = contour(flipud(simAboveTime),v,'--r','LineWidth',line_width);
clabel(C,h)

v = [above_values(5),above_values(5)];
[C,h] = contour(flipud(hindAboveTime),v,'b','LineWidth',line_width);
clabel(C,h)
hold on
[C,h] = contour(flipud(simAboveTime),v,'--r','LineWidth',line_width);
clabel(C,h)

v = [above_values(6),above_values(6)];
[C,h] = contour(flipud(hindAboveTime),v,'b','LineWidth',line_width);
clabel(C,h)
hold on
[C,h] = contour(flipud(simAboveTime),v,'--r','LineWidth',line_width);
clabel(C,h)

v = [above_values(7),above_values(7)];
[C,h] = contour(flipud(hindAboveTime),v,'b','LineWidth',line_width);
clabel(C,h)
[C,h] = contour(flipud(simAboveTime),v,'--r','LineWidth',line_width);
clabel(C,h)
yticks([1 10 20 30 40 50 60])
yticklabels({'360','300','240','180','120','60','6'})
xticks([1 5 9 13 17 21])
xticklabels({'1.0','1.5','2.0','2.5','3.0','3.5'})
xlabel('Significant Wave Height Threshold [m]','Color','k')
ylabel('Required Window Length [h]','Color','k')
lgd = legend({'Observed',m_type});
lgd.Location = 'southeast';
hold off
grid on

% Low Values Normalized Persistence Below
figure(7)
clf
v = [below_values(1),below_values(1)];
[C,h] = contour(flipud(hindBelowTime),v,'b','LineWidth',line_width);
clabel(C,h)
hold on
[C,h] = contour(flipud(simBelowTime),v,'--r','LineWidth',line_width);
clabel(C,h)

v = [below_values(2),below_values(2)];
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[C,h] = contour(flipud(hindBelowTime),v,'b','LineWidth',line_width);
clabel(C,h)
hold on
[C,h] = contour(flipud(simBelowTime),v,'--r','LineWidth',line_width);
clabel(C,h)

v = [below_values(3),below_values(3)];
[C,h] = contour(flipud(hindBelowTime),v,'b','LineWidth',line_width);
clabel(C,h)
hold on
[C,h] = contour(flipud(simBelowTime),v,'--r','LineWidth',line_width);
clabel(C,h)

v = [below_values(4),below_values(4)];
[C,h] = contour(flipud(hindBelowTime),v,'b','LineWidth',line_width);
clabel(C,h)
hold on
[C,h] = contour(flipud(simBelowTime),v,'--r','LineWidth',line_width);
clabel(C,h)

v = [below_values(5),below_values(5)];
[C,h] = contour(flipud(hindBelowTime),v,'b','LineWidth',line_width);
clabel(C,h)
hold on
[C,h] = contour(flipud(simBelowTime),v,'--r','LineWidth',line_width);
clabel(C,h)

v = [below_values(6),below_values(6)];
[C,h] = contour(flipud(hindBelowTime),v,'b','LineWidth',line_width);
clabel(C,h)
[C,h] = contour(flipud(simBelowTime),v,'--r','LineWidth',line_width);
clabel(C,h)

v = [below_values(7),below_values(7)];
[C,h] = contour(flipud(hindBelowTime),v,'b','LineWidth',line_width);
clabel(C,h)
[C,h] = contour(flipud(simBelowTime),v,'--r','LineWidth',line_width);
clabel(C,h)
yticks([1 10 20 30 40 50 60])
yticklabels({'360','300','240','180','120','60','6'})
xticks([1 5 9 13 17 21])
xticklabels({'1.0','1.5','2.0','2.5','3.0','3.5'})
xlabel('Significant Wave Height Threshold [m]','Color','k')
ylabel('Required Window Length [h]','Color','k')
lgd = legend({'Observed',m_type});
lgd.Location = 'southeast';
hold off
grid on

end

persistence.m
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% CAUTION: The function intersections.m behaves strange for some
% threshold values where it results in erroerous results.

function [aboveBin, belowBin] = persistence(series,step_length)
% Length of series
nSeries = length(series);

% Duration of smallest weather windows
binSize = 6;
% Number of weather windows
numBins = 60;
% Number of steps for Hs
%Hs_step = 20;

% Initialize vectors for intersection determination
x1 = 1:nSeries;
x2 = 1:nSeries;
y2(1,:) = series;

% Value vector
valVec = 1:0.25:4;

% Preallocation
belowBin = zeros(numBins,length(valVec));
aboveBin = zeros(numBins,length(valVec));

% Access and Waiting
for kk = 1:length(valVec)

% Treshold vector, 0.999 to avoid counting intersection points
y1 = ones(1,nSeries)*valVec(kk)*0.999;

% Find intersections
[x0,y0] = intersections(x1,y1,x2,y2);
%% ----------------------- Threshold Windows -----------------------------

% -------------------------- Below Treshold ------------------------------
if valVec(kk) <= series(1) % Window starts later in series

belowTresh = zeros(1,floor(length(x0)/2));
for ii = 1:1:floor(length(x0)/2)

belowTresh(ii) = x0(2*ii)-x0(2*ii-1); % Length of WWs
end
if valVec(kk) >= series(end)

belowTresh(end+1) = length(series)-x0(end);
end

else % Window starts at begining of series
belowTresh = zeros(1,ceil(length(x0)/2));
belowTresh(1) = x0(1);
for ii = 1:ceil(length(x0)/2)-1

belowTresh(ii+1) = x0(2*ii+1)-x0(2*ii); % Length of WWs
end
if valVec(kk) >= series(end)

belowTresh(end+1) = length(series)-x0(end);
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end
end

% ------------------------ Above Treshold ---------------------------------
if valVec(kk) <= series(1) % Window starts at begining of series

aboveTresh = zeros(1,ceil(length(x0)/2));
aboveTresh(1) = x0(1);
for ii = 1:ceil(length(x0)/2)-1

aboveTresh(ii+1) = x0(2*ii+1)-x0(2*ii); % Length of WWs
end
if valVec(kk) <= series(end)

aboveTresh(end+1) = length(series)-x0(end);
end

else % Window starts later in series
aboveTresh = zeros(1,floor(length(x0)/2));
for ii = 1:1:floor(length(x0)/2)

aboveTresh(ii) = x0(2*ii)-x0(2*ii-1); % Length of WWs
end
if valVec(kk) <= series(end)

aboveTresh(end+1) = length(series)-x0(end);
end

end

%% ----------------- Time Above and Below Threshold -----------------------
% Transform time steps to real time
belowTresh = belowTresh*step_length;
aboveTresh = aboveTresh*step_length;

% Time BELOW Threshold Matrice
for ii = 1:length(belowTresh)

for jj = 1:numBins
belowBin(jj,kk)=belowBin(jj,kk)+floor(belowTresh(ii)/(binSize*jj));

end
end

% Time ABOVE Threshold Matrice
for ii = 1:length(aboveTresh)

for jj = 1:numBins
aboveBin(jj,kk)=aboveBin(jj,kk)+floor(aboveTresh(ii)/(binSize*jj));

end
end
end
end

over_all_mean_variance.m

function overallResults = over_all_mean_variance(HsObs,TpObs,Ysim,num_rep)

% Over-all mean and variance of observed values
meanObsHs = mean(HsObs);
varObsHs = var(HsObs);
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meanObsTp = mean(TpObs);
varObsTp = var(TpObs);
cov_obs = cov(HsObs,TpObs);
covObs = cov_obs(1,2);

meanSimHs = mean(mean(Ysim(:,1,:)));
varSimHs = mean(var(Ysim(:,1,:)));
meanSimTp = mean(mean(Ysim(:,2,:)));
varSimTp = mean(var(Ysim(:,2,:)));

cov_sum = zeros(2,2);
for ii = 1:num_rep

cov_syn = cov(Ysim(:,1,ii),Ysim(:,2,ii));
cov_sum = cov_sum + cov_syn;

end

cov_sim = cov_sum/num_rep;
covSim = cov_sim(1,2);

% Store overall results
overallResults = [meanSimHs varSimHs meanSimTp varSimTp covSim; meanObsHs ...

varObsHs meanObsTp varObsTp covObs];
end

monthly_mean_covariance.m

function [obs_cov,sim_cov,obs_month_mean,sim_month_mean]=monthly_mean_covariance(...metocean,numRep,Ysim)

% Observed values
HsObs = metocean(:,3);
TpObs = metocean(:,4);
% Initilize
obsMonthMeanHs = zeros(1,12); obsMonthMeanTp = zeros(1,12);
obsCov11 = zeros(1,12);obsCov12 = zeros(1,12);obsCov22 = zeros(1,12);
obsMonthCov = zeros(2,2,12);

% Build matrix/vectors holding mean and cov for each month for observed
for ii = 1:12

obsMonthMeanHs(ii) = mean(HsObs(metocean(:,2) == ii));
obsMonthMeanTp(ii) = mean(TpObs(metocean(:,2) == ii));
obsMonthCov(:,:,ii) = cov(HsObs(metocean(:,2) == ii),...

TpObs(metocean(:,2) == ii));
end

% Transform cov matrix into vectors for each element
for ii = 1:12

obsCov11(ii) = obsMonthCov(1,1,ii);
obsCov12(ii) = obsMonthCov(1,2,ii);
obsCov22(ii) = obsMonthCov(2,2,ii);

end
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% Monthly mean and covariances
obs_month_mean = [obsMonthMeanHs;obsMonthMeanTp];
obs_cov = [obsCov11;obsCov12;obsCov22];

% Simulated values
% Initialize
simMonthMeanHsRep = zeros(numRep,12);simMonthMeanTpRep = zeros(numRep,12);
simMonthCovRep = zeros(2,2,12);
simCov11 = zeros(1,12);simCov12 = zeros(1,12);simCov22 = zeros(1,12);

% Build matrix/vectors holding mean and cov for each month for replications
for ii = 1:numRep

for jj = 1:12
simMonthMeanHsRep(ii,jj) = mean(Ysim(metocean(:,2) == jj,1,ii));
simMonthMeanTpRep(ii,jj) = mean(Ysim(metocean(:,2) == jj,2,ii));
% Adding cov matrices, then dividing due to matrix structure
simMonthCovRep(:,:,jj) = simMonthCovRep(:,:,jj)+...

cov(Ysim(metocean(:,2)==jj,1,ii),Ysim(metocean(:,2)==jj,2,ii));
end

end

% Monthly mean and cov over all replications
sim_month_mean = [mean(simMonthMeanHsRep);mean(simMonthMeanTpRep)];
simMonthCov = simMonthCovRep/numRep;

% Transform cov matrix into vectors for each element
for ii = 1:12

simCov11(ii) = simMonthCov(1,1,ii);
simCov12(ii) = simMonthCov(1,2,ii);
simCov22(ii) = simMonthCov(2,2,ii);

end

sim_cov = [simCov11;simCov12;simCov22];
end

intersections.m

function [x0,y0,iout,jout] = intersections(x1,y1,x2,y2,robust)
% By Douglas Schwarz, MATLAB File Exchange

%INTERSECTIONS Intersections of curves.
% Computes the (x,y) locations where two curves intersect. The curves
% can be broken with NaNs or have vertical segments.
%
% Example:
% [X0,Y0] = intersections(X1,Y1,X2,Y2,ROBUST);
%
% where X1 and Y1 are equal-length vectors of at least two points and
% represent curve 1. Similarly, X2 and Y2 represent curve 2.
% X0 and Y0 are column vectors containing the points at which the two
% curves intersect.
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%
% ROBUST (optional) set to 1 or true means to use a slight variation of the
% algorithm that might return duplicates of some intersection points, and
% then remove those duplicates. The default is true, but since the
% algorithm is slightly slower you can set it to false if you know that
% your curves don't intersect at any segment boundaries. Also, the robust
% version properly handles parallel and overlapping segments.
%
% The algorithm can return two additional vectors that indicate which
% segment pairs contain intersections and where they are:
%
% [X0,Y0,I,J] = intersections(X1,Y1,X2,Y2,ROBUST);
%
% For each element of the vector I, I(k) = (segment number of (X1,Y1)) +
% (how far along this segment the intersection is). For example, if I(k) =
% 45.25 then the intersection lies a quarter of the way between the line
% segment connecting (X1(45),Y1(45)) and (X1(46),Y1(46)). Similarly for
% the vector J and the segments in (X2,Y2).
%
% You can also get intersections of a curve with itself. Simply pass in
% only one curve, i.e.,
%
% [X0,Y0] = intersections(X1,Y1,ROBUST);
%
% where, as before, ROBUST is optional.

% Version: 2.0, 25 May 2017
% Author: Douglas M. Schwarz
% Email: dmschwarz=ieee*org, dmschwarz=urgrad*rochester*edu
% Real_email = regexprep(Email,{'=','*'},{'@','.'})

% Input checks.
if verLessThan('matlab','7.13')

error(nargchk(2,5,nargin)) %#ok<NCHKN>
else

narginchk(2,5)
end

% Adjustments based on number of arguments.
switch nargin

case 2
robust = true;
x2 = x1;
y2 = y1;
self_intersect = true;

case 3
robust = x2;
x2 = x1;
y2 = y1;
self_intersect = true;

case 4
robust = true;
self_intersect = false;

case 5
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self_intersect = false;
end

% x1 and y1 must be vectors with same number of points (at least 2).
if sum(size(x1) > 1) ~= 1 || sum(size(y1) > 1) ~= 1 || ...

length(x1) ~= length(y1)
error('X1 and Y1 must be equal-length vectors of at least 2 points.')

end
% x2 and y2 must be vectors with same number of points (at least 2).
if sum(size(x2) > 1) ~= 1 || sum(size(y2) > 1) ~= 1 || ...

length(x2) ~= length(y2)
error('X2 and Y2 must be equal-length vectors of at least 2 points.')

end

% Force all inputs to be column vectors.
x1 = x1(:);
y1 = y1(:);
x2 = x2(:);
y2 = y2(:);

% Compute number of line segments in each curve and some differences we'll
% need later.
n1 = length(x1) - 1;
n2 = length(x2) - 1;
xy1 = [x1 y1];
xy2 = [x2 y2];
dxy1 = diff(xy1);
dxy2 = diff(xy2);

% Select an algorithm based on MATLAB version and number of line
% segments in each curve.
if n1 > 1000 || n2 > 1000 || verLessThan('matlab','7.4')

% Determine which curve has the most line segments.
if n1 >= n2

% Curve 1 has more segments, loop over segments of curve 2.
ijc = cell(1,n2);
min_x1 = mvmin(x1);
max_x1 = mvmax(x1);
min_y1 = mvmin(y1);
max_y1 = mvmax(y1);
for k = 1:n2

k1 = k + 1;
ijc{k} = find( ...

min_x1 <= max(x2(k),x2(k1)) & max_x1 >= min(x2(k),x2(k1)) & ...
min_y1 <= max(y2(k),y2(k1)) & max_y1 >= min(y2(k),y2(k1)));

ijc{k}(:,2) = k;
end
ij = vertcat(ijc{:});
i = ij(:,1);
j = ij(:,2);

else
% Curve 2 has more segments, loop over segments of curve 1.
ijc = cell(1,n1);
min_x2 = mvmin(x2);
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max_x2 = mvmax(x2);
min_y2 = mvmin(y2);
max_y2 = mvmax(y2);
for k = 1:n1

k1 = k + 1;
ijc{k}(:,2) = find( ...

min_x2 <= max(x1(k),x1(k1)) & max_x2 >= min(x1(k),x1(k1)) & ...
min_y2 <= max(y1(k),y1(k1)) & max_y2 >= min(y1(k),y1(k1)));

ijc{k}(:,1) = k;
end
ij = vertcat(ijc{:});
i = ij(:,1);
j = ij(:,2);

end

elseif verLessThan('matlab','9.1')
% Use bsxfun.
[i,j] = find( ...

bsxfun(@le,mvmin(x1),mvmax(x2).') & ...
bsxfun(@ge,mvmax(x1),mvmin(x2).') & ...
bsxfun(@le,mvmin(y1),mvmax(y2).') & ...
bsxfun(@ge,mvmax(y1),mvmin(y2).'));

else
% Use implicit expansion.
[i,j] = find( ...

mvmin(x1) <= mvmax(x2).' & mvmax(x1) >= mvmin(x2).' & ...
mvmin(y1) <= mvmax(y2).' & mvmax(y1) >= mvmin(y2).');

end

% Find segments pairs which have at least one vertex = NaN and remove them.
if self_intersect

remove = isnan(sum(dxy1(i,:) + dxy2(j,:),2)) | j <= i + 1;
else

remove = isnan(sum(dxy1(i,:) + dxy2(j,:),2));
end
i(remove) = [];
j(remove) = [];

% Initialize matrices. We'll put the T's and B's in matrices and use them
% one column at a time. AA is a 3-D extension of A where we'll use one
% plane at a time.
n = length(i);
T = zeros(4,n);
AA = zeros(4,4,n);
AA([1 2],3,:) = -1;
AA([3 4],4,:) = -1;
AA([1 3],1,:) = dxy1(i,:).';
AA([2 4],2,:) = dxy2(j,:).';
B = -[x1(i) x2(j) y1(i) y2(j)].';

% Loop through possibilities. Trap singularity warning and then use
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% lastwarn to see if that plane of AA is near singular. Process any such
% segment pairs to determine if they are colinear (overlap) or merely
% parallel. That test consists of checking to see if one of the endpoints
% of the curve 2 segment lies on the curve 1 segment. This is done by
% checking the cross product
%
% (x1(2),y1(2)) - (x1(1),y1(1)) x (x2(2),y2(2)) - (x1(1),y1(1)).
%
% If this is close to zero then the segments overlap.

% If the robust option is false then we assume no two segment pairs are
% parallel and just go ahead and do the computation. If A is ever singular
% a warning will appear. This is faster and obviously you should use it
% only when you know you will never have overlapping or parallel segment
% pairs.

if robust
overlap = false(n,1);
warning_state = warning('off','MATLAB:singularMatrix');
% Use try-catch to guarantee original warning state is restored.
try

lastwarn('')
for k = 1:n

T(:,k) = AA(:,:,k)\B(:,k);
[unused,last_warn] = lastwarn; %#ok<ASGLU>
lastwarn('')
if strcmp(last_warn,'MATLAB:singularMatrix')

% Force in_range(k) to be false.
T(1,k) = NaN;
% Determine if these segments overlap or are just parallel.
overlap(k) = rcond([dxy1(i(k),:);xy2(j(k),:) - xy1(i(k),:)]) < eps;

end
end
warning(warning_state)

catch err
warning(warning_state)
rethrow(err)

end
% Find where t1 and t2 are between 0 and 1 and return the corresponding
% x0 and y0 values.
in_range = (T(1,:) >= 0 & T(2,:) >= 0 & T(1,:) <= 1 & T(2,:) <= 1).';
% For overlapping segment pairs the algorithm will return an
% intersection point that is at the center of the overlapping region.
if any(overlap)

ia = i(overlap);
ja = j(overlap);
% set x0 and y0 to middle of overlapping region.
T(3,overlap) = (max(min(x1(ia),x1(ia+1)),min(x2(ja),x2(ja+1))) + ...

min(max(x1(ia),x1(ia+1)),max(x2(ja),x2(ja+1)))).'/2;
T(4,overlap) = (max(min(y1(ia),y1(ia+1)),min(y2(ja),y2(ja+1))) + ...

min(max(y1(ia),y1(ia+1)),max(y2(ja),y2(ja+1)))).'/2;
selected = in_range | overlap;

else
selected = in_range;
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end
xy0 = T(3:4,selected).';

% Remove duplicate intersection points.
[xy0,index] = unique(xy0,'rows');
x0 = xy0(:,1);
y0 = xy0(:,2);

% Compute how far along each line segment the intersections are.
if nargout > 2

sel_index = find(selected);
sel = sel_index(index);
iout = i(sel) + T(1,sel).';
jout = j(sel) + T(2,sel).';

end
else % non-robust option

for k = 1:n
[L,U] = lu(AA(:,:,k));
T(:,k) = U\(L\B(:,k));

end

% Find where t1 and t2 are between 0 and 1 and return the corresponding
% x0 and y0 values.
in_range = (T(1,:) >= 0 & T(2,:) >= 0 & T(1,:) < 1 & T(2,:) < 1).';
x0 = T(3,in_range).';
y0 = T(4,in_range).';

% Compute how far along each line segment the intersections are.
if nargout > 2

iout = i(in_range) + T(1,in_range).';
jout = j(in_range) + T(2,in_range).';

end
end

% Plot the results (useful for debugging).
% plot(x1,y1,x2,y2,x0,y0,'ok');

function y = mvmin(x)
% Faster implementation of movmin(x,k) when k = 1.
y = min(x(1:end-1),x(2:end));

function y = mvmax(x)
% Faster implementation of movmax(x,k) when k = 1.
y = max(x(1:end-1),x(2:end));
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