
Investigation of Multivariate Freight Rate
Prediction Using Machine Learning and
AIS Data

Patrick Andre Næss

Marine Technology

Supervisor: Bjørn Egil Asbjørnslett, IMT
Co-supervisor: Carl Fredrik Rehn, IMT

Department of Marine Technology

Submission date: June 2018

Norwegian University of Science and Technology

 NTNU Trondheim
 Norwegian University of Science and Technology Norwegian University of Science and Technology

 Department of Marine Technology

MASTER THESIS IN MARINE TECHNOLOGY

SPRING 2018

For stud.techn. Patrick André Næss

Investigation of Multivariate Freight Rate Prediction
Using Machine Learning and AIS Data

Background
We live in an age of digitization with an increasing amount of data being generated daily. Some of the
largest corporations in the world base their income on exploiting vast amounts of data. In shipping, the
digitization age and its opportunities are relatively unexplored terrain. With more or less all existing
merchant vessels being online in real time through AIS, new possibilities are emerging. The motivation
for looking into AIS data is the opportunity to provide useful insight into the nature of maritime
transportation. In the context of maritime economics, this information may provide the ability to give
added predictive value in forecasting short-term fluctuations in shipping commodities. To anticipate such
fluctuations is a crucial element to long-term profitability for both operators and shipowners. Thus making
the purpose of this project an essential aspiration in maritime research.

The importance of gas as a cleaner energy source is growing. Liquid Petroleum Gas (LPG), a generic
name for commercial propane and butane, is derived from the extraction rate of crude oil refining and
natural gas. One of the main reasons for wanting to investigate the LPG market is that it has hardly been
subject to previous academic research, presumably because of the comparatively small size of the total
market. To the candidate’s knowledge, there has not been a study investigating freight rate prediction of
LPG with AIS data.

As the amount of available data in the shipping industry increases, methods to take advantage of these
emerge. Machine learning methods are not a new development. However, these sophisticated methods
have shown to outperform traditional methods when the amount of available data increases. From image
recognition in healthcare to driverless cars, these methods can model complex problems. In time series
forecasting, new developments within neural networks show promise in forecasting rates within crude oil
and dry bulk commodities. To the candidate’s knowledge, there has not been a study investigating spot
price prediction with machine learning and AIS data.

Objective
The overall objective is to investigate whether multivariate machine learning forecasting methods using
features extracted from AIS-data adds additional information in predicting short-term freight rates.

Tasks
The candidate shall/is recommended to cover the following tasks in the master thesis:
a. Extract and explore patterns for relevant market specific vessels from global AIS data.
b. Create and identify valuable features extracted from AIS data through features selection methods.
c. Develop machine learning prediction models to forecast short-term freight rates using multivariate

data.
d. Evaluate the prediction models with statistical metrics and traditional models used in ocean freight

markets.

 NTNU Trondheim
 Norwegian University of Science and Technology Norwegian University of Science and Technology

 Department of Marine Technology

General

In the thesis the candidate shall present his personal contribution to the resolution of a problem within the
scope of the thesis work.

Theories and conclusions should be based on a relevant methodological foundation that through
mathematical derivations and/or logical reasoning identify the various steps in the deduction.

The candidate should utilize the existing possibilities for obtaining relevant literature.

The thesis should be organized in a rational manner to give a clear statement of assumptions, data, results,
assessments, and conclusions. The text should be brief and to the point, with a clear language. Telegraphic
language should be avoided.

The thesis shall contain the following elements: A text defining the scope, preface, list of contents,
summary, main body of thesis, conclusions with recommendations for further work, list of symbols and
acronyms, reference and (optional) appendices. All figures, tables and equations shall be numerated.

The supervisor may require that the candidate, in an early stage of the work, present a written plan for the
completion of the work. The original contribution of the candidate and material taken from other sources
shall be clearly defined. Work from other sources shall be properly referenced using an acknowledged
referencing system.

The work shall follow the guidelines given by NTNU for the MSc Thesis work. The work load shall be in
accordance with 30 ECTS, corresponding to 100% of one semester.

The thesis shall be submitted electronically on DAIM:

- Signed by the candidate.
- The text defining the scope included.
- Computer code, input files, videos and other electronic appendages can be uploaded in a zip-

file in DAIM. Any electronic appendages shall be listed in the thesis.

Supervision:
Main supervisor: Prof. Bjørn Egil Asbjørnslett
Co-supervisor: Dr. Carl Fredrik Rehn

Deadline: 25.06.2018

Date: 22.06.18

Prof. Bjørn Egil Asbjørnslett

i

Preface

This thesis marks the final part of my Master of Science degree with specialization in Marine

Systems Design & Logistics at the Department of Marine Technology (IMT). The work has been

carried out during the spring semester of 2018 at the Norwegian University of Science and Tech-

nology (NTNU), and corresponds to 30 ECTs.

For those interested, I strongly recommend to read the thesis in its entirety. The thesis encom-

passes a wide range of disciplines. The target audience for this work includes both researchers

and practitioners with interest in one or more of the following topics: freight rate prediction,

machine learning, time series forecasting and the Liquid Petroleum Gas (LPG) shipping market.

Trondheim, June 25, 2018

Patrick André Næss

ii

Acknowledgment

I would like to thank the following persons for their great help during this project:

Prof. Bjørn Egil Asbjørnslett, my supervisor, for highly competent guidance throughout the

project.

Dr. Carl Fredrik Rehn, my co-supervisor, for supporting me and for valuable input and reward-

ing discussions.

Bjørnar Brende Smestad and Jon Hovem Leonhardsen for their previous work within AIS data

exploitation, simplifying the data handling part of the project.

Laurent Viguier at Equinor, for providing med with market-specific data and giving valuable in-

put on market dynamics.

PhD cand. Vit Prochazka at NHH, for valuable input in the feature construction process.

Jon Arve Røyset and the Norwegian Coastal Administration for providing me with AIS data.

P.A.N.

iii

Summary

This thesis investigates whether multivariate machine learning forecasting methods, using in-

formation extracted from Automatic Identification System (AIS) data, add additional informa-

tion in predicting short-term freight rates. The focus in this thesis is the Liquid Petroleum Gas

(LPG) shipping market, directed on the prediction of the Mont Belvieu propane spot price. Fore-

casting LPG spot prices is challenging due to a comparatively small fleet, niche trading patterns

and cargo bases, creating high volatility. Nonetheless, anticipating fluctuations in freight rates

is a crucial element to long-term profitability for both operators and shipowners.

A thorough literature review is presented to investigate the state-of-the-art within the topic. The

data used in this research is provided by the Norwegian Coastal Authorities and Equinor. Several

methods are proposed to extract and create predictive features. A significant amount of market

specific features are generated and tested with selection methods to identify the most powerful

predictors of the Mont Belvieu propane spot price.

Two machine learning models are employed; the Multilayer Perceptron (MLP) and Long Short-

Term Memory (LSTM) neural networks. To baseline the results, the no-change persistence model

and the Vector Autoregressive (VAR) model are utilized, where the latter is widely used for mul-

tivariate forecasting in maritime econometrics. By optimizing the neural network architectures

with a genetic algorithm, the LSTM-model is identified to perform better than the baseline

model and the traditional multivariate VAR-model. Moreover, the results indicate that both

the machine learning and traditional models with information extracted from AIS data are able

to predict short-term fluctuations in freight rates more accurately than without this informa-

tion.

In conclusion, there is evidence in favor of using information extracted from AIS data in short-

term freight rate prediction. Furthermore, the results also suggest favorability of using mul-

tivariate machine learning forecasting models over traditional models. This thesis suggests

that further work within the use of AIS data in the context of maritime econometrics is rec-

ommended. After surveying the performance in the case study, it is finally recommended to in-

vestigate whether the approach used in this study can be readily applied to other ocean freight

industries.

iv

Sammendrag

Denne oppgaven undersøker om multivariate maskinlæringsmodeller, ved hjelp av informasjon

hentet fra Automatisk identifikasjonssystem (AIS) data, gir tilleggsinformasjon for å predikere

kortsiktige fraktrater. Fokuset i denne oppgaven er fraktmarkedet for flytende petroleumsgass

(LPG), rettet mot prediksjonen av spotpris på propan ved Mont Belvieu. Det å predikere LPG-

spotpriser er utfordrende på grunn av en forholdsvis liten flåte og nisje-handelsmønstre, noe

som skaper høy uforutsigbarhet. Det å kunne forutsi svingninger i fraktrater er et avgjørende

element for langsiktig lønnsomhet for både operatører og redere.

En grundig litteraturgjennomgang presenteres for å undersøke state-of-the-art innen emnet.

Dataene som brukes i denne undersøkelsen er gitt av Kystverket og Equinor. Flere metoder

foreslås for å finne og lage gode prediktive variable. En betydelig mengde markedsspesifikke

variable har blitt generert og testet med utvalgsmetoder for å identifisere de beste variablene til

å predikere Mont Belvieu-propanprisen.

To maskinlæringsmodeller er utforsket; Multilayer Perceptron (MLP) og Long Short Term Mem-

ory (LSTM) nevrale nettverk. For å sammenligne resultatene, benyttes en vedvarende predik-

sjonsmodell og en Vector Autoregressive (VAR) modell, der sistnevnte er mye brukt for å gjen-

nomføre multivariate prediksjoner i maritim økonometri. Ved å optimalisere de nevrale nettverk-

sarkitekturene med en genetisk algoritme, er LSTM-modellen funnet å gi bedre resultat enn de

tradisjonelle modellene. Videre viser resultatene at både maskinlæring og tradisjonelle modeller

med informasjon hentet fra AIS-data er i stand til å forutsi kortvarige svingninger i fraktrater mer

nøyaktig enn uten denne informasjonen.

Det er konkludert med at resultatene indikerer for bruk av informasjon hentet fra AIS-data i kort-

siktig fraktprognoser. Videre tyder resultatene også på fordeler for bruk av multivariate maskin-

læringsmodeller over tradisjonelle modeller. Denne oppgaven antyder at videre arbeid innen

bruk av AIS data i sammenheng med maritim økonometri anbefales. Basert på de gode resul-

tatene fra denne metoden er det til slutt anbefalt å undersøke om tilnærmingen som brukes i

dette studiet kan benyttes i andre shippingsegmenter.

Contents
Preface . i

Acknowledgment . ii

Summary . iii

Sammendrag . iii

1 Introduction 1

1.1 Background . 1

1.2 Literature Review . 2

1.3 Objectives . 6

1.4 Scope and Limitations . 7

1.5 Structure of the Report . 7

2 General Methodology 9

2.1 Methodological Approach . 9

2.2 Forecasting Horizon . 12

2.3 Case Study Definition . 13

3 Data Foundation 15

3.1 AIS Data . 15

3.1.1 Introduction to AIS Data . 15

3.1.2 Message Types and Content . 16

3.1.3 AIS Data Quality . 18

3.1.4 Decoding Data . 20

3.2 Price Data . 20

3.3 Fleet Data . 21

3.3.1 Vessel Search . 21

3.3.2 LPG AIS Database . 23

4 Feature Engineering 25

4.1 Feature Engineering Methodology . 25

4.2 Exploratory Data Analysis . 26

4.3 Feature Construction and Extraction . 28

4.3.1 Vessel and Capacity Counting in Area or Port 29

v

CONTENTS vi

4.3.2 Sailing Distance From Current Position To Area or Port 34

4.3.3 Flux In and Out of an Area . 36

4.3.4 Fleet Sailing Speed and Variance . 36

4.3.5 Price and Market Features . 38

4.4 Data Preparation . 40

4.5 Feature Selection . 43

4.5.1 Filter Methods . 44

4.5.2 Wrapper Methods . 50

5 Machine Learning Methodology 52

5.1 Supervised Learning . 52

5.2 Sliding Window Forecasting Technique . 53

5.3 Artificial Neural Networks (ANN) . 53

5.3.1 Multilayer Perceptron (MLP) . 54

5.3.2 Recurrent Neural Networks (RNN) . 58

5.3.3 Long Short-Term Memory (LSTM) . 60

5.4 Genetic Algorithm for Hyperparameter Optimization 62

5.5 Model Evaluation Method . 64

5.5.1 Persistence Model . 65

5.5.2 Vector Autoregressive Model (VAR) . 65

5.5.3 Metrics Used In Statistical Modeling . 66

6 Case Study 68

6.1 Feature Selection . 68

6.1.1 Results of Filter Methods . 68

6.1.2 Wrapper Selection . 70

6.2 Genetic Algorithm Architecture . 71

6.2.1 MLP Architecture . 72

6.2.2 LSTM Architecture . 73

6.3 Forecasting Results . 74

6.3.1 Results of MLP . 75

6.3.2 Results of LSTM . 76

6.3.3 Results of VAR . 77

7 Discussion 79

7.1 Evaluation of Case Study . 79

7.1.1 Evaluation of Forecast Results . 79

CONTENTS vii

7.1.2 Evaluation of Features Selected . 82

7.2 Methodology . 84

7.2.1 Forecasting and Study Horizon . 84

7.2.2 Vessel Search . 85

7.2.3 Feature Engineering . 85

7.2.4 Machine Learning Process . 86

8 Conclusion 88

8.1 Concluding Remarks . 88

8.2 Recommendations for Further Work . 89

Bibliography 90

A AIS Data Contents I

B Density Line Plots IV

B.1 Density Line Plot of VLGC . IV

B.2 Density Line Plot of Smaller Vessels . IV

C Descriptive Statistics of Features V

C.1 Descriptive Statistics of Count and Capacity Features V

C.2 Descriptive Statistics of Sailing Feature . VI

C.3 Descriptive Statistics of Speed Features . VI

C.4 Descriptive Statistics of Price and Market Features VII

D Results of Augmented Dickey-Fuller Test VIII

E Code X

E.1 Master Script (MASTER.py) . X

E.2 Data Extraction and Exploration (AIS_Analysis.py) XIV

E.3 Vessel Search and Fleet Characteristics Extraction (Seaweb2AIS.py) XXVII

E.4 Daily Data Interpolation (Interpolate_data.py) . XXX

E.5 Price Data Importation (Ocean_mesh.py) . XXXI

E.6 Price Data Importation (Price_data.py) . XXXIII

E.7 Data Preparation (Data_preparation.py) . XXXIV

E.8 Feature Importance Scores (Feature_importance.py) XXXVII

E.9 Subset Selection (Subset_selection.py) . XXXIX

E.10 Multilayer Perceptron Model (MLP.py) . XLIII

E.11 Long Short-Term Memory Model (LSTM.py) . XLVIII

CONTENTS viii

E.12 Vector Autoregressive Model (VAR.py) . LIII

E.13 Model Evaluation (Model_evaluation.py) . LV

F Features Importance Scores of Filter Selection Methods LVII

List of Figures

1.1 Report structure . 8

2.1 Flowchart of project flow and methodology . 9

3.1 Sub-flowchart of project flow and methodology in Data Foundation 15

3.2 Vessels sailing with speeds above 5 knots and navigational status 1 or 5 19

3.3 Characteristics of LPG vessels from Seaweb . 22

3.4 Flowchart of vessel search methodology . 22

3.5 Number of unique MMSI numbers connected to an IMO number 23

3.6 AIS Message Type 1 signal plot, 2011-2017 . 24

4.1 Sub-flowchart of project flow and methodology in Feature Engineering 25

4.2 Density line plot of the LPG fleet, 2011-2017 . 27

4.3 Density line plot of VLGC (>60.000 cbm) vs. smaller vessels (<60.000 cbm), 2011-2017 27

4.4 Speed histogram . 28

4.5 Ray casting algorithm used for the Atlantic where black is outside, blue inside ex-

treme points but outside polygon and orange is inside the polygon 30

4.6 Orientation of world polygons . 30

4.7 Number of vessels observed in each polygon every week from 2011-2017 31

4.8 Summed up gas capacity for the vessels observed in each polygon every week from

2011-2017 . 31

4.9 Newbuilding in the LPG market, 1995-2017, with study horizon in orange 32

4.10 Percentage of LPG fleet observed in each polygon every week from 2011-2017 . . . 32

4.11 Percentage of summed up fleet gas capacity observed in each polygon every week

from 2011-2017 . 33

4.12 Number of vessels observed in the Gulf of Mexico polygon every week from 2011-

2017 . 33

4.13 Summed up gas capacity for the vessels observed in the Gulf of Mexico polygon

every week from 2011-2017 . 34

4.14 Mesh grid with an example shortest sailing distance, provided by Vit Prochazka . . 35

4.15 Weighted arithmetic mean sailing distance to Mont Belvieu for the LPG fleet, 2011-

2017 . 36

4.16 Weekly mean steed for the LPG fleet, 2011-2017 . 37

ix

LIST OF FIGURES x

4.17 Weekly standard deviation in steed for the LPG fleet, 2011-2017 38

4.18 Propane spot price . 39

4.19 Weekly West Texas Intermediate (WTI), from 2011-2017 39

4.20 Mont Belvieu spot price data transformation and normalization 42

4.21 Training, testing and validation sets . 42

5.1 Sub-flowchart of project flow and methodology in Machine Learning Methodology 52

5.2 Simplified and outstretched MLP with two hidden layers A1 and A2 54

5.3 Composition of a single neuron j in the `th layer in a MLP 55

5.4 Simplified representation of MLP with one hidden layer and weight vectors U and V 56

5.5 Example MLP model with two hidden layers, p features and window size m 58

5.6 General idea of a one layer RNN . 59

5.7 Computational flow in a RNN unit, inspired by Olah (2015) 60

5.8 Computational flow in a LSTM unit, inspired by Olah (2015) 61

5.9 Many-to-one LSTM model with one later and window size m 62

5.10 Structure and process of genetic algorithms . 63

6.1 Arbitrary row of normalized features importance scores, from Appendix F 69

6.2 Top features based on mean features importance score 69

6.3 Top features from linear subset selection based on model coefficient absolute value 70

6.4 One-step-ahead weekly MLP forecasts with non-AIS features 75

6.5 One-step-ahead weekly MLP forecasts with AIS features 75

6.6 One-step-ahead weekly LSTM forecasts with non-AIS features 76

6.7 One-step-ahead weekly LSTM forecasts with AIS features 76

6.8 One-step-ahead weekly VAR forecasts with non-AIS features 77

6.9 One-step-ahead weekly VAR forecasts with AIS features 78

7.1 Sorted relative RMSE against the persistence model 81

7.2 Sorted relative MAE against the persistence model 81

7.3 Sorted relative MAPE against the persistence model 81

7.4 Visualization of persistence model forecast . 87

B.1 Density line plot of VLGC, 2011-2017 . IV

B.2 Density line plot of smaller vessels, 2011-2017 . IV

List of Tables

2.1 List with description of Python scripts created in this study 12

3.1 Message types, AIS . 16

3.2 Key features in Message type 1 . 16

3.3 Message type 5 . 17

3.4 First digit representation of ship types . 17

3.5 Dynamic AIS data and their general reporting intervals 18

3.6 Structure of a raw AIS data message . 20

4.1 Univariate and multivariate filter methods . 44

5.1 Example of a configuration of an individual in a Genetic Algorithm 63

6.1 Best subset of AIS and non-AIS features from filter and wrapper selection 71

6.2 Genetic algorithm decision parameter structure and corresponding range for MLP 72

6.3 Main characteristics of the best MLP . 73

6.4 Genetic algorithm decision parameter structure and corresponding range for LSTM 74

6.5 Main characteristics of the best LSTM . 74

7.1 Performance metrics for the different models on the testing set 79

7.2 Relative performance of the different models to the persistence model 80

A.1 Information on static messages . I

A.2 Information on dynamic messages . II

A.3 Information on voyage related messages . III

C.1 Descriptive statistics of count and capacity features created in Section 4.3.1 V

C.2 Descriptive statistics of count and capacity percentage features created in Section

4.3.1 . VI

C.3 Descriptive statistics of sailing feature from Section 4.3.2 VI

C.4 Descriptive statistics of speed features from Section 4.3.4 VI

C.5 Descriptive statistics of price and market features from Section 4.3.5 VII

D.1 Results of ADF test with acceptance measure of H0 at 1, 5, or 10 % VIII

xi

Acronyms

AIC Akaike Information Criterion

AIS Automatic Identification System

ANN Artificial Neural Network

Atl Atlantic

ARIMA Autoregressive Integrated Moving Average

BDI Baltic Dry Index

BIC Bayesian Information Criterion

cbm Cubic Meters, m3

COG Course Over Ground

CP Arabian Gulf

DAR Directional Accuracy Ratio

DWT Deadweight Tonnage

EstP East Pacific

ETA Estimated Time of Arrival

FEI Far East Index

GA Genetic Algorithm

GARCH Autoregressive Conditional Heteroskedasticity

GB Gigabytes

GOM Gulf of Mexico

IMO International Maritime Organization

Ind Indian Ocean

LNG Liquefied Natural Gas

LPG Liquefied Petroleum Gas

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MB Mont Belvieu

Med Mediterranean

MI Mutual Information

MIC Maximal Information Coefficient

MLP Multilayer Perceptron

MMSI Maritime Mobile Service Identity

MSE Mean Square Error

mt Metric Tonne

NWE North West Europe

OLS Ordinary Least Squares

RF Random Forests

RMSE Root Mean Square Error

RNN Recurrent Neural Network

RSS Residual Sum of Squares

SGD Stochastic Gradient Decent

SOG Speed Over Ground

SOLAS Safety of Life At Sea

SQL Structured Query Language

STW Speed Through Water

SVM Support Vector Machine

S-AIS Satellite Automatic Identification System

TSS Total Sum of Squares

UTC Coordinated Universal Time

VAR Vector Autoregressive

VHS Very High Frequency System

VLCC Very Large Crude Carrier

VLGC Very Large Gas Carrier

WTI West Texas Intermediate

xii

1 | Introduction

1.1 Background

We live in an age of digitization with an increasing amount of data being generated daily. Some

of the largest corporations in the world base their income on exploiting vast amounts of data.

In shipping, the digitization age and its opportunities are relatively unexplored terrain. With

more or less all existing merchant vessels being online in real time through the Automatic Iden-

tification System (AIS), new possibilities are emerging. For the stakeholders within shipping,

including but not limited to shipowners, operators, and shipyards, the data appears to be a rela-

tively untapped resource and can provide valuable decision support regarding vessel operation,

trends and trade.

The motivation for looking into AIS data is the opportunity to provide useful insight into the

nature of maritime transportation. In the context of maritime economics, this information may

provide the ability to give added predictive value in forecasting short-term fluctuations in ship-

ping commodities. To anticipate such fluctuations is a crucial element to long-term profitability

for both operators and shipowners. Thus making the purpose of this project an essential aspi-

ration in maritime research.

The importance of gas as a cleaner energy source is growing. Liquid Petroleum Gas (LPG), a

generic name for commercial propane and butane, is not a raw material but extracted as a by-

product of gas processing and crude oil refining. LPG as a commodity has become an increas-

ingly important energy source for cooking and heating, as well as a vital petrochemical resource.

One of the main reasons for wanting to investigate the LPG market is that it has hardly been sub-

ject to previous academic research, presumably because of the comparatively small size of the

total market. To the candidate’s knowledge, there has not been a study investigating freight rate

prediction of LPG with AIS data.

As the amount of available data in the shipping industry increases, methods to take advantage

of these emerge. Machine learning methods are not a new development. However, these so-

phisticated methods have shown to outperform traditional methods when the amount of avail-

able data increases. From image recognition in healthcare to driverless cars, these methods can

model complex problems. In time series forecasting, new developments within neural networks

1

CHAPTER 1. INTRODUCTION 2

show promise in forecasting rates within crude oil and dry bulk commodities. To the candidate’s

knowledge, there has not been a study investigating freight rate prediction with machine learn-

ing and AIS data.

1.2 Literature Review

The papers reviewed represent the foundation for the work and give an understanding of the

currently existing methods and applications within AIS data exploitation. The use of satellites

to receive AIS data is still a relatively new concept, so there have been relatively few studies using

AIS data. A collection of AIS-related papers have been reviewed as a part of the work done in this

project. Multivariate forecasting of LPG shipping freight rates using machine learning includes

a wide range of disciplines. In addition to previous work regarding AIS data, both literature

concerning maritime economics, the LPG freight market, forecasting techniques and machine

learning methods are among other important disciplines. This section will summarize some

previous work within the respective fields to identify the state-of-the-art within the them.

A large part of AIS-related literature is related to traffic estimation and shipping networks and

patterns. Kaluza et al. (2010) present an interpretation of the global cargo ship movements as a

complex network. The overall purpose is to understand global trade patterns and the influence

it has on bioinvasion. Spiliopoulos et al. (2017) present a four-step approach on how to trans-

form AIS data to information for understanding global trade patterns. The results can be used

to see changes in shipping trade patterns, which again is connected to global trade patterns.

Haji et al. (2013) present the development of a model capable of representing container flows

at a global level. AIS data is utilized to detect the positions and sizes of container vessels, and

this is used to estimate container flow. In their work, Arguedas et al. (2014) develop an algo-

rithm to construct maritime shipping lanes from AIS data. The lanes are detected by behavioral

changes, such as the Course Over Ground (COG) and port calls. Wu et al. (2017) apply methods

for mapping the global vessel density and traffic density. Vector-based and grid-based methods

are utilized for traffic density, and the latter has some of the same characteristics as geo-fencing,

a method of extracting data based on geographical boundaries.

Another segment of previous AIS related literature concerns operational issues such as vessel

speeds, where Assmann et al. (2015) looks at the relationship between vessel speeds under con-

ditions of high freight rates and low bunker prices. They find some support for this theory and

that speed optimizing behavior is much more pronounced on backhaul trips than on laden trips.

Leonhardsen (2017) investigates through his master thesis the possible fuel savings from rapidly

CHAPTER 1. INTRODUCTION 3

re-configurable bulbous bows. A vast amount of historical speed records from AIS data is ana-

lyzed. The results are used to confirm significant variations in speed during transits, and from

transit to transit. A stochastic representation of the speed is proposed, and used in further work

to analyze the possible fuel savings. Jia et al. (2017) identify empirically how Very Large Crude

Carriers (VLCC) can save fuel and emissions by implementing Virtual Arrival, an operational

agreement that involves reducing speed when there is known delay at the discharge port.

In the context of AIS data quality, Smestad and Rødseth (2015) investigates the utility of AIS

data, and show how to use heuristics to establish specific ship type with sole use of AIS data.

The purpose of predicting ship type without additional data is to avoid the cost of acquiring

commercial ship data. Satellite AIS (S-AIS) data is used as a basis to create the heuristics, and

a data cleaning process is carried out to exclude vessels that have conflicting and inaccurate

data. To verify the accuracy of the heuristics, AIS data is matched with data from Clarkson’s

Ship Register for various ship types. The heuristics results to classify gas carriers (LPG and LNG)

shows that they can be established with a 99 % certainty.

Most of this previous literature is related to vessel operation, safety by anomaly detection, ship-

ping networks, traffic estimation and environmental issues. There have been relatively few stud-

ies that have used AIS data in the context of maritime economics. Previous work that utilizes AIS

data in maritime economic studies includes Adland et al. (2017) who investigates the reliability

of AIS-based trade volumes. They find that AIS-derived data for seaborne crude exports show

proper alignment with official export numbers in aggregate. To our knowledge, the only study

using features extracted from AIS data to analyze shipping rates is by Olsen and da Fonseca

(2017). This thesis investigates the predictive ability of AIS data in the case of prediction Ara-

bian Gulf oil tanker rates. They utilize the traditional Vector Autoregressive (VAR) model in their

multivariate forecast and compare it to the results of a univariate forecast. They combine both

data extracted from AIS and market-specific data related to Arabian Gulf oil tanker rates. They

find that multivariate models perform relatively better than univariate models in predict future

freight rates. Conclusive, they find weak evidence in favor of using information from AIS-derived

data for predictive purposes.

As all shipping commodities, the LPG freight rates are determined by the balance between sup-

ply and demand. In turn, each of these is driven by different factors. Therefore, to get a good

picture of this dynamic relationship, it is important to look into how these interact with each

other. Concerning academic work, the LPG market has hardly been subject to previous research

(Adland et al., 2008). LPG is a young market in shipping context. Engelen and Dullaert (2010)

shows that the LPG market is slowly transforming into a competitive setting with an increasing

number of private buyers and sellers, rendering the market more efficient. According to Bai and

CHAPTER 1. INTRODUCTION 4

Lam (2017), the main Very Large Gas Carrier (VLGC) trading routes, unlike other bulk shipping

markets with diversified trading patterns and cargo bases, are niche, thus creating more price

volatility. This is also acknowledged by Adland et al. (2008), who states that a low number of

main trading routes and the comparatively small fleet may increase price volatility compared to

other ocean freight markets.

LPG as a shipping commodity, have some distinct features. Unlike crude oil, coal or iron ore,

LPG is not a raw material but extracted as a by-product of gas processing and crude oil refining

(Engelen and Dullaert, 2010). The main forwarders of LPG are therefore dominated by the major

oil and gas companies. This aspect makes the LPG market to be driven by “supply push” rather

than “demand pull” in the sense that the volume of LPG shipments is derived from their prod-

ucts (LNG and crude oil) and is therefore not independently set (Adland et al., 2008). A large

part of the LPG market consists of shipments between the major exporters in the Arabian Gulf

area and import markets in the Far East. These shipments are often under long-term contracts,

creating highly volatile demand in the spot markets. Adland et al. (2008) states that changes in

the LPG spot market demand may be dictated by the presence of geographical price arbitrage,

supply disruptions or surplus gas production. Other markets are the exports from the oil and gas

companies in the north of Europe and the Gulf of Mexico, as the USA has gone from an importer

of LPG to a net-exporter. This mainly caused by the effect of the shale gas revolution Dooho

(2013). Engelen and Dullaert (2010) affirm that due to an inelastic demand function in the LPG

market, every small change in the market balance will, in turn, impel large adjustments in rates.

They also state that the market would observe nonlinearities or volatility clustering in the very

short run.

The research done by Kavussanos and Nomikos (2003) investigates the causal relationship be-

tween the freight futures markets and the spot market in dry bulk shipping. They find that fu-

tures prices tend to discover new information more rapidly than spot prices, thus utilizing fu-

tures data might provide valuable forecasting information in addition to features extracted from

AIS data. This study also employs multivariate forecasting methods as they find evidence in fa-

vor of using the co-integrated relationship between spot freight rates and forward contracts in

prediction spot prices. The study by Batchelor et al. (2007) states that even though shipping is

a non-storable service, meaning that the forward price is not tied to the spot by any arbitrage

relationship, they find forward rates to help in forecasting spot prices.

In shipping theory, when freight rates are low or the oil price high, the operators reduce sailing

speed to reduce operational expenses (Ronen, 1982). In the dry bulk shipping market, shipown-

ers tend to speed up when rates are high to get the most out of the favorable market conditions

(Tsioumas, 2016). Like dry bulk shipping, the LPG shipping market is also dominated by spot

CHAPTER 1. INTRODUCTION 5

cargoes, and one can assume that many of the same dynamics are observed likewise.

Concerning forecasting in maritime economics, adequate research has been done in trying to

forecast crude oil or dry bulk indices, prices and freight rates. Barely any of these studies use AIS

data. They mainly focus on customs data, shipping indices, and other data. Han et al. (2014)

presents an improved Support Vector Machine (SVM) model to forecast dry bulk freight index

(BDI). This work compares forecasting results of three other forecasting methods and concludes

that the proposed method has higher accuracy in forecasting the short-term trend of the BDI.

Yu et al. (2008) proposes an empirical mode decomposition (EMD) based neural network to

forecast world crude oil spot price. The results from the estimation of West Texas Intermediate

(WTI) crude oil spot price demonstrate the attractiveness of the proposed method. The study

done by Li and Parsons (1997) shows that neural networks significantly outperforms traditional

time series models, like the Autoregressive Integrated Moving Average (ARIMA) or Autoregres-

sive Conditional Heteroskedasticity (GARCH) models, in forecasting oil tanker freight rates. Xia

Zhang et al. (2015) forecast the price of chemical products with multivariate data. They use neu-

ral network algorithms in addition to a machine learning model using crawled web data related

to chemical products and expert experience data. Compared with traditional prediction mod-

els, the results using multivariate data has higher accuracy. In the work of Gao and Lei (2017),

neural networks are implemented to predict crude oil spot prices. In their work, they developed

a new stream learning algorithm and states that this is advantageous because it can handle a

continuous data stream for a non-stationary process. The model introduced is a basic univari-

ate neural network model that only considers previous price history. Kulkarni and Haidar (2009)

present a methodology for forecasting crude oil price using artificial neural networks and com-

modity futures prices. They test both the traditional feed-forward neural network, a multilayer

perceptron (MLP), and recurrent neural networks (RNN). Their findings were favorable towards

the traditional networks as recurrent networks took very long time to converge. The goal of their

work were risk management as they focus on the directional accuracy of the prediction.

What remains to be done?

From the literature review, it became clear that the use of information extracted from AIS data

to forecast in maritime economics is a relatively unexplored field. To our knowledge, only one

study utilizes this relationship. AIS data in the context of maritime economics is a relatively

recent development, and the literature review shows that even though several methods and ap-

plications already are explored, opportunities to expand the area are present.

The LPG ocean freight rate market as a topic has hardly been subject to academic research,

CHAPTER 1. INTRODUCTION 6

thus creating opportunities for the author. The market characteristics of the LPG, being supply-

driven and spot dictated by the presence of geographical price arbitrage, implies that looking

in to global ship positioning and vessel operation may provide valuable insight in forecasting.

The spot market is one of the most volatile markets, and there exists a considerable uncertainty

about the future development of these prices.

Furthermore, machine learning methods, especially neural networks, show promise in forecast-

ing short-term movements in shipping commodities. Notably, also in forecasting multivariate

data and nonlinear relationships, found in the ocean freight markets. Thus, the contribution

of this thesis is valuable as it may provide important decision support, potentially leading to

profitability for both shipowners and operators.

1.3 Objectives

The main research question of this thesis is to investigate whether multivariate machine learn-

ing forecasting methods using features extracted from AIS data adds additional information in

predicting short-term freight rates. This objective is two-faced, and incorporates the two follow-

ing questions:

1. Does AIS data add additional information in predicting short-term freight rates?

2. Can machine learning models achieve better forecasting prediction in predicting short-

term freight rates, than traditional models?

To address the goal and main research question, we identify five research objectives that are

addressed in this thesis. These objectives are characterized in the context of being applicable

for predicting freight rates:

1. Extract and filter relevant market specific vessels from global AIS data.

2. Explore vessel movements and patterns to get market insight.

3. Create and identify valuable features extracted from AIS data through feature selection

methods.

4. Develop machine learning prediction models to predict freight rates using multivariate

data.

5. Evaluate the prediction models with traditional models used in ocean freight markets.

CHAPTER 1. INTRODUCTION 7

1.4 Scope and Limitations

The forecasting scope of this study is week-to-week one-step-ahead forecasts. Meaning that for

every time step we know the current observation and try to predict the next step. The reason for

choosing a weekly forecast is thoroughly reviewed in Section 2.2.

The focus of this study is on the potential added information by including AIS in predicting

spot prices with machine learning methods, and not to make discoveries in the field of machine

learning. Therefore, analyses of the underlying mechanics of the algorithms are also considered

outside the scope of this thesis.

In their work Olsen and da Fonseca (2017) found that multivariate models perform relatively

better than univariate models in predict future freight rates. The only way to incorporate AIS in-

formation in forecasting is with multivariate methods since univariate only takes previous price

history into consideration. The scope is therefore delimited to encompass multivariate fore-

casting methods. Based on the findings of Li and Parsons (1997); Gao and Lei (2017); Kulkarni

and Haidar (2009) we utilize machine learning in forecasting and test against the Vector Autore-

gressive (VAR) model based on the findings of Olsen and da Fonseca (2017). The no-change

persistence model is used as a baseline as it is frequently used in forecasting oil prices (Alquist

et al., 2013). Despite the models simplicity, it appeared to be a good baseline and performed

better than other heuristic approaches. The scope is therefore limited to these methods, and

traditional univariate methods like the Autoregressive Integrated Moving Average (ARIMA) is

considered outside the scope of this thesis.

1.5 Structure of the Report

The remainder of this report is structured as follows:

Chapter 2 will give an introduction the general methodological approach used in this project

and explanation of the flow-chart in Figure 1.1. A case study is conducted to quantify freight rate

prediction using AIS data and machine learning. The study is introduced in this chapter.

Chapter 3 introduces the data foundation used to create predictors and conduct the case study.

Fundamentals of AIS data is addressed, before the methods for extracting and filtering relevant

market specific vessels is elaborated.

Chapter 4 concerns the creation and identification of valuable features extracted from AIS data.

CHAPTER 1. INTRODUCTION 8

The chapter include exploratory analysis of the LPG shipping market and how the features cre-

ated are pre processed and selected based on various feature selection methods. Results of the

features selection models are included in the case study.

Chapter 5 will go through the forecasting technique and machine learning methods considered.

Also, the traditional time series models are introduced, to be used as a baseline for the machine

learning methods. Finally the evaluation methods are presented.

Chapter 6 conducts the case study in order to quantify whether multivariate machine learn-

ing forecasting methods using features extracted from AIS data adds additional information in

predicting short-term freight rates.

Chapter 7 gives a discussion of the work done, results attained and choices made in this the-

sis.

Chapter 8 concludes the work done in this thesis in the light of the objectives, and recommen-

dations for further work is elaborated.

Figure 1.1: Report structure

2 | General Methodology

In the chapter, we present the general approach of the methodology in this study. Furthermore,

we introduce the Liquid Petroleum Gas (LPG) shipping market case study with the forecasting

horizon selected.

2.1 Methodological Approach

To go from raw AIS data to forecasting freight rates, involves many complex steps. This section

will introduce these steps. Figure 2.1 presents a flow chart of the key parts and project flow. Start-

ing from raw AIS data, the main flow follows the arrows, resulting in model evaluation.

Raw AIS Data

AIS Parser

Decoded AIS Data Seaweb LPG Search

AIS Vessel Search

Price and Market Data

Features Construction and

Extraction

Time Series Generation

Data Preparation

Feature Selection

Filter Selection

Methods

Neural Network

Training

Prediction Persistence Model

Model Evaluation

Exploratory Data

Analysis

[1,0,0,1,0,1,1,0,1]

[0,1,1,1,0,0,0,1,1]

[0,1,1,1,0,1,1,0,1]

+

Hyperparameter

optimization with

Genetic Algorithm

Wrapper

Selection

Methods

Figure 2.1: Flowchart of project flow and methodology

9

CHAPTER 2. GENERAL METHODOLOGY 10

We have acquired global raw AIS data from the Norwegian Coastal Authorities. To investigate the

objective of this study; whether multivariate machine learning forecasting methods using fea-

tures extracted from AIS data adds additional information in predicting short-term freight rates,

we propose the methodology overviewed in Figure 2.1. The first step is to decode the global data.

Using a external AIS parser provided by Lane (2006) and a proposed decoding method by Smes-

tad and Rødseth (2015) and Leonhardsen (2017), the AIS data can be decoded and transferred

to a database. To investigate the freight rates of a specific market, a vessel search methodology

needs to be developed to filter out market specific vessels. We have in this study utilized the

maritime IHS’ Seaweb database to identify all LPG vessel and their characteristics. Using the to

be introduced vessel search methodology, we identify vessels of interest and combine the two

to a reduced AIS database. This is done so that both computational time and opportunities for

error is reduced.

When the data is extracted, and the search narrowed down, we can explore the data, both vessel

characteristics, and movements, to get a general picture of the market and investigate patterns

and potential areas of exploitation. When this is established, we can create, prepare and se-

lected features to be used in freight rate prediction. These features are variables, also known as

predictors, that are used in the multivariate models on order to forecast the prediction variable,

the freight rate. Deciding which features to construct is a market specific question, underlying

the importance of exploratory data analysis. The approach taken in this study is to generate a

significant amount of features that are thought to be of interest based on previous literature and

exploratory analysis.

With a significant amount of AIS-features generated in addition to market specific publicly avail-

able data, we can test the importance of the features in predicting the freight rate based on sta-

tistical filter methods. These methods select features independently on the model that shall

subsequently use them but are good at pinpointing important features. The next step in the

approach is wrapper selection. Wrapper methods select the best subset of features, taking into

account the model that shall use them. Testing all subset combinations for all features in a neu-

ral network is very computationally expensive. Therefore, the proposed method is to test the

best subsets from the filter selection methods. Based on the features with high scores, different

combinations of these can be tested.

With the subsets generated, we can try different combinations in forecasting the freight rate.

We utilize the sliding window forecasting technique. This method is the basis for how any time

series dataset can be turned into a supervised machine learning problem. The methodology in-

troduced is a supervised learning approach since the inputs (features) and outputs (freight rate)

are known, and the objective is to discover a relationship between the two (Shapiro, 2003). To

CHAPTER 2. GENERAL METHODOLOGY 11

forecast the freight rate, we use artificial neural networks based on its ability to model complex

problems, being a mapping model viewed as non-parametric, non-linear and assumption-free,

meaning that it does not make a priori assumption about the problem (Kulkarni and Haidar,

2009). The models are mainly chosen based on their promise in forecasting shipping commodi-

ties (Li and Parsons, 1997; Gao and Lei, 2017; Kulkarni and Haidar, 2009). Precisely, we test the

basic Multilayer Perceptron (MLP) network and the Long Short-Term Memory (LSTM), a type of

Recurrent Neural Network (RNN). To create the best neural network model we utilize an exter-

nal optimization model. Namely, a genetic algorithm to optimize the network architecture and

how many lags of the features to include. Miikkulainen et al. (2017) states that this method may

be suitable for the suggested approach, and Shapiro (2003) describes that a genetic algorithm is

an intelligent approach to trial and error.

To potentially identify the added performance of including AIS features in forecasting the spot

price, the models developed will be executed for both a subset including AIS features and a sub-

set without any features extracted from AIS data, but only previous price and market history.

In this way, the value of the added information might be seen through the forecast error and

accuracy metrics. On the other note, to potentially identify the added performance of using

machine learning methods over traditional methods, we compare the results with a Vector Au-

toregressive (VAR) model to baseline the results. This model is used by Olsen and da Fonseca

(2017) to investigate the predictive ability of AIS data in the case of Arabian Gulf oil tanker rates.

In addition to the VAR-model, we baseline all the results of the models above to the no-change

persistence model. The persistence model is frequently used in forecasting of oil prices (Alquist

et al., 2013). Despite the model’s simplicity, it appeared to be a good baseline and performed

better than other heuristic approaches.

In order to quantify the performance of the proposed methodology, a case study is conducted

and defined in Section 2.3. To perform the analysis in this project, the Python programming

environment is utilized. Several scripts have been created to carry through the complex calcu-

lations. The contents of these scripts are overviewed in Table 2.1 and further described in the

following chapters and Appendix E.

CHAPTER 2. GENERAL METHODOLOGY 12

Table 2.1: List with description of Python scripts created in this study

Name Description

MASTER.py Serves as a dashboard for selecting analyses of interest. All files and func-

tions except the prediction models and model evaluation are ran from this

script.

AIS_Analysis.py Extraction of AIS data from the databases, feature construction and time

series generation is done in this script. Includes several plotting functions

in order to effectively preform exploratory data analysis.

Seaweb2AIS.py Vessels search for LPG vessels in global AIS data in addition to plotting of

fleet characteristics.

Interpolate_data.py Daily interpolation of AIS data for every vessel identity, if applicable.

Ocean_mesh.py Creation and plotting of an ocean mesh of nodes to calculate shortest sail-

ing distance between two arbitrary points using Dijkstra’s shortest path al-

gorithm.

Price_data.py Importing and cleaning of price and market data into a structured form.

Data_preparation.py Data preparation of generated time series so that it is applicable to super-

vised learning problems.

Feature_importance.py Incorporates the filter selection methods, where features are ranked based

on a statistical scores from various variable importance methods.

Subset_selection.py Contains linear subset selection methods where subset of features are tested

linearly to get the best subset combination.

MLP.py Training, prediction and construction of a Multilayer Perceptron (MLP)

model with hyperparameter optimization using a genetic algorithm.

LSTM.py Training, prediction and construction of a Long Short-Term Memory

(LSTM) model with hyperparameter optimization using a genetic algorithm.

VAR.py Training, prediction and construction of a Vector Autoregressive (VAR)

model to baseline neural network prediction.

Model_evaluation.py Evaluation of LSTM, MLP and VAR models with performance metrics, a per-

sistence model baseline and forecast visualization.

2.2 Forecasting Horizon

It is an essential issue to asses the right horizon for forecasting and horizon to extract obser-

vations. Previous studies forecasting ocean freight rates vary from daily to monthly forecasting

windows. To use AIS-features in predicting monthly freight rates, in a month a vessel may have

sailed a long distance. Accordingly, looking at average vessel positioning within a month might

CHAPTER 2. GENERAL METHODOLOGY 13

give misleading or averaged out effects. Besides, in the context of machine learning prediction,

the models predict better with more data (Sun et al., 2017). Therefore, by investigating monthly

or quarterly price fluctuations, the number of observations would become very low due to the

short time span of AIS data relative to the history of the ocean shipping industry.

To investigate daily fluctuations might also be insufficient as the AIS data quality used in this

study have some gaps and errors, thus looking at daily vessel positioning may exclude some

vessels for which AIS data was not recorded this specific day. This issue was investigated in the

initial stages of the study by interpolating the AIS data to daily observations. These types of

gaps are common in the early years of S-AIS data before 2013 as the number of satellites used

to collect data was low in addition to data interference (Eriksen et al., 2010). Hence, forecasting

daily fluctuations in price was not seemed fit for this study.

Freight rates and shipping commodity prices, in general, are very volatile in nature (Stopford,

2009). Especially LPG relative to other ocean freight markets, because of the low number of main

trading routes and the comparatively small fleet (Adland et al., 2008). This makes for large fluc-

tuations in price, hence a shorter forecasting window seems fit. Accordingly, one-step-ahead

weekly predictions are investigated in this study. The only other study utilizing AIS data for

freight rate prediction (Olsen and da Fonseca, 2017) also employ this forecasting horizon. From

this point, to maintain coherence all through the thesis, the time series data examined are stated

as weekly time steps.

2.3 Case Study Definition

To investigate multivariate freight rate prediction with machine learning and AIS data, a case

study has been carried through. The goal of the case study is in line with the objectives of the

work. Specifically, to investigate if including features extracted from AIS data adds additional

information in predicting short-term freight rates. Also, we will explore if machine learning

models can provide additional forecasting performance over traditional time series models. To

be able to forecast the short-term fluctuations in rates makes for better decision support on

contracts and vessel operation, which may provide higher profitability for both shipowners and

operators.

The commodity we will investigate is the Mont Belvieu propane spot price. In addition to the

propane spot prices in the Arabian Gulf, the North of Europe and the Far East, the Mont Belvieu

spot price is one of leading market indicators in the LPG shipping market. To forecast the Mont

Belvieu propane spot price, we will utilize both market and spot prices data in addition to ex-

CHAPTER 2. GENERAL METHODOLOGY 14

tracting new features from AIS data and test prediction model performance on datasets includ-

ing AIS data and sets without AIS data. From this point on, these are denoted as AIS features and

non-AIS features, respectively. We assess this problem by analyzing the spot price and AIS data

from May 2011 to December 2017. Both the machine learning and traditional models will be

fitted to 90 % of the dataset and tested on the last 10 %, called the in-sample and out-of-sample

dataset. In machine learning, it is common to refer to these as the training and testing sets,

where we identify and fit the best models based on the training set, and test the performance on

the testing set to represent the model’s performances on unseen data.

This thesis will have a general approach, with a separate focus on the case study. However,

deciding which features to construct is a market specific question. Thus, the case study will be

referred to throughout this report. We will introduce the data in Chapter 3, methods for creating

and extracting features in Chapter 4, forecasting models in Chapter 5 and finally use all this to

make predictions in Chapter 6.

3 | Data Foundation

Figure 3.1: Sub-flowchart of project flow and
methodology in Data Foundation

This chapter introduces how we can proceed

from having raw AIS data from the world fleet

to a filtered database including only vessels

of interest. The process of developing this

database includes decoding raw data, iden-

tifying vessels of interest and combine the

two to a reduced database. This is done so

that both computational time and opportuni-

ties for error is reduced. Besides, this chap-

ter also introduces the various market specific

data used to complete the LPG case study.

Mainly, this chapter will introduce the data,

and Chapter 4 will explain how this data is uti-

lized to extract relevant features.

3.1 AIS Data

3.1.1 Introduction to AIS Data

Automatic Identification System (AIS) is an automatic tracking system based on Very High Fre-

quency (VHS) system, installed on more or less all merchant vessels. AIS Data from vessels can

be exchanged with other vessels nearby, AIS base stations and satellites (S-AIS). The information

within AIS messages includes static data such as navigational data, dynamic data such as speed,

and voyage related data such as draught and estimated time of arrival.

AIS was developed with the purpose of enhancing safety, more specifically to avoid collisions.

It remains as a supplement to the marine radar, which is considered the primary instrument to

avoid collisions. The AIS technology itself was developed in the 1990s, and from the early 2000s,

it became mandatory to have AIS on board most vessels. The International Convention for the

Safety of Life at Sea, IMO (1974), requires AIS to be fitted aboard all ships of 300 gross tonnages

and upwards engaged on international voyages, cargo ships of 500 gross tonnages and upwards

15

CHAPTER 3. DATA FOUNDATION 16

not engaged on international voyages and all passenger ships regardless of size. Around 2008 S-

AIS was introduced, meaning that satellites can receive the messages in addition to base stations

and other vessels. AIS messages can only reach around 70 kilometers horizontal at sea level, but

up to 400 km in vertical direction (Skauen et al., 2013). This enabled the collection of the data

with low orbiting satellites and allowed a more coherent investigation of marine traffic.

3.1.2 Message Types and Content

The International Telecommunication (ITU) has defined 27 different AIS message types (Itu-

R, 2014), and the five most common ones can be found in Table 3.1. Some of the information

included in message type 1 is presented in Table 3.2. According to Smestad and Rødseth (2015),

message type 1 contributes to 72,5 % of all AIS messages. Message type 5, which include static

vessel and voyage information, is presented in Table 3.3.

Table 3.1: Message types, AIS

ID Name Description

1 Position report Scheduled position report

2 Position report Assigned scheduled position report

3 Position report Special position report

4 Base station report Position, UTC, date and current slot number of base station

5 Static and voyage report Scheduled static and voyage related vessel data report

Table 3.2: Key features in Message type 1

Information Description

Unixtime Number of seconds elapsed since 1 January 1970

Position Coordinates, longitude and latitude

Speed Speed over ground (SOG) in knots

Course Course over ground (COG)

MMSI Maritime Mobile Service Identity (Vessel ID)

Status Navigational status

CHAPTER 3. DATA FOUNDATION 17

Table 3.3: Message type 5

Information Description

Unixtime Number of seconds elapsed since 1 January 1970

Vessel specifications Length and breadth, in meters

Draught Current draught in meters

IMO Number International Maritime Organization number

Origin Origin of current voyage

Destination Destination of current voyage

ETA Estimated time of arrival, in Unixtime

MMSI Maritime Mobile Service Identity (Vessel ID)

Ship type Vessel type category

The way the system identifies unique vessels is through the Maritime Mobile Service Identity

(MMSI). The number is connected to the AIS-gear onboard the vessel, and only change if own-

ership changes. Another identification number is the IMO number which was made mandatory

by IMO (1974). All ships over 100 gross tonnage, with exception to vessels solely engaged in

fishing, ships without mechanical means of propulsion, pleasure yachts, ships engaged on spe-

cial service, hopper barges, hydrofoils and hovercrafts, floating docks, ships of war and wooden

ships, should be identified with an IMO number. The IMO number can be found in static AIS

messages while the MMSI is in all as it is the prime identification number in the system.

The AIS ship type described is reported as a double-digit number between 10 and 99. The first

digit represents the ship type, as seen in Table 3.4. The second digit represents whether a cargo

is dangerous, hazardous or a marine pollutant.

Table 3.4: First digit representation of ship types

First Digit Ship Type

1 Reserved for future use

2 WIG (Wing In Ground)

3 Other vessels

4 High-speed carrier, or vessels < 100 Gross Tonnes

5 Special craft

6 Passenger ships > 100 Gross Tonnes

7 Cargo ships

8 Tankers

9 Other types of ships

CHAPTER 3. DATA FOUNDATION 18

The frequency of the AIS messages varies with different intervals. Static and voyage data is sent

every 6 minutes or upon request, but dynamic data is sent according to speed and operational

status. The different intervals can be found in Table 3.5

Table 3.5: Dynamic AIS data and their general reporting intervals

Vessel Operational Status General reporting interval

Vessel at anchor 3 min

Vessel at 0-14 knots 12 sec

Vessel at 0-14 knots and changing course 4 sec

Vessel at 14-23 knots 6 sec

Vessel at 14-24 knots and changing course 2 sec

Vessel at > 23 knots 3 sec

Vessel at > 23 knots and changing course 2 sec

AIS data was traditionally collected using land-based receivers able to detect messages up to

40-50 nautical miles off-shore (Skauen et al., 2013). Messages outside this area would not be

detected. A solution to this is to utilize satellites to collect the messages. This poses some prob-

lems further described in Section 3.1.3. Messages collected with satellites, known as S-AIS data,

are collected on a worldwide scale. The Norwegian Coastal Authorities currently have 4 satel-

lites (Norwegian Space Centre), AISSat-1 (launched 2011), AISSat-2 (launched 2014), NorSat-1

(launched 2017) and NorSat-2 (launched 2017) collecting data. The combination of data from

these satellites is used in this project.

Detailed information on AIS messages is given in Table A.1, A.2 and A.3, in Appendix A, for static,

dynamic and voyage related messages respectively. The data content is given by ’Guidelines for

the onboard operational use of shipborne AIS’ by IMO (2016).

3.1.3 AIS Data Quality

There are several issues to discuss when it comes to the quality of the AIS data. Some of the

most important aspects of this will be discussed in this section. This is also covered extensively

by Næss et al. (2017), Smestad and Rødseth (2015) and Leonhardsen (2017). This section will

cover quality issues related to S-AIS data, general imperfection with AIS data and some human

errors.

Smestad and Rødseth (2015) points out that the variations in traffic from different time periods

can have increased coverage in an area and therefore the traffic density may look higher. Eriksen

CHAPTER 3. DATA FOUNDATION 19

et al. (2010) state that over a time span of 24 hours, the High North and South is covered up to

15 times, while the areas around the equator are covered around two to three times. With the

launch of AISSat-2, the coverage was extended. The newly launched NorSat-1 and NorSat-2

will able the Norwegian Coastal Authorities to detect 60 % more vessels and collect 2.5-3 times

more data than the previous use of only AISSat-1 and AISSat-2. The satellites can also have

interference problems. A satellite will have a much larger coverage area than the AIS system

of receivers were designed for, so high traffic areas would cause problems. Combined with low

orbiting rates over the area, there could be significant gaps in the data.

There are other possible sources of errors than the ones discussed regarding the satellites. These

errors can either be caused by a failure in the automatic reports or by human errors. Regarding

the former, Smestad and Rødseth (2015) discovered that there were several thousands of vessels

that had at least some erroneous data. This includes, for instance, wrong IMO numbers. How-

ever, this only affects the static messages, so the total number of distinct IMO numbers does not

reflect the total number of vessels present in the S-AIS data. Leonhardsen (2017) discovered that

the total number of unique MMSI numbers in the database exceeded the total number of vessels

in the world fleet at that time. This may be caused by vessels changing owners over the period

for the data set. Other errors may include wrongly reported ship dimensions and erroneous ship

positions.

There are several kinds of human errors with regards to the AIS data. This mainly includes man-

ually reported data. The manually reported data include for instance the draught, destination,

ETA, route plan and navigational status (see Appendix A for more static data feature). To illus-

trate these errors we look at the navigational status. The crew can set the status to 1 or 5 when

a vessel is not moving, meaning at anchor and moored, respectively. It happens that the crew

forgets to change the status while sailing. This can be seen in Figure 3.2, where the data plotted

is for speeds above 5 knots and navigational status 1 or 5, for an arbitrary set of ships.

Figure 3.2: Vessels sailing with speeds above 5 knots and navigational status 1 or 5

CHAPTER 3. DATA FOUNDATION 20

3.1.4 Decoding Data

The AIS data used in this study was granted by the Norwegian Coastal Authorities. The data was

provided in two stages. Firstly, raw S-AIS data form the period 2011-2015, also utilized by the two

graduated naval architects Smestad and Rødseth (2015) and Leonhardsen (2017), was acquired.

Secondly, S-AIS data in comma-separated files form the period 2016-2017 was attained, as the

data was already decoded by the Norwegian Coastal Authorities.

Smestad and Rødseth (2015) developed a Python script used to extract data to an SQLite database

by an external AIS parser provided by Lane (2006). The parser decodes raw AIS messages into

logic information based on specified patterns and notations. An arbitrary AIS message is visu-

alized in Table 3.6. To use the AIS parser and the python script by Smestad and Rødseth (2015),

an Ubuntu operating system was utilized, and decoded files were extracted to an external hard

drive. All the data handling, analysis, and visualization in this project are done using Python.

SQL is used to create and extract data from the database created.

Table 3.6: Structure of a raw AIS data message

Arbitrary message

/s:ASM//Port=669//MMSI=,c:1439078400*7D/!BSVDM,1,1„A,1:UF6@001OMO>0au3G5mbDT2081<,0*5E

3.2 Price Data

The price and market data utilized in this study was granted by Equinor. This data includes

spot prices of propane for the four major LPG markets, Mont Belvieu in the Gulf of Mexico

(Propane MB), North West Europe (Propane CIF NWE), the Arabian Gulf (Propane CP) and the

Asian market (Propane FEI). The data is in USD/mt and contains daily reported prices from

2011-2017.

In addition to propane spot prices, the price of crude oil is also used in this study. Based on

the fact that the LPG market is driven by “supply push” rather than “demand pull” in the sense

that LPG is derived as a by-product of natural gas processing and crude oil refining (Engelen

and Dullaert, 2010), it was deemed fit to include the price of crude oil in the prediction model.

Specifically, as the case study investigates Mont Belvieu propane prices, the West Texas Interme-

diate (WTI) Cushing, Oklahoma crude oil price is utilized. The data was acquired from the U.S.

Department of Energy (2018), with daily reported prices in USD/barrel from 2011-2017.

CHAPTER 3. DATA FOUNDATION 21

3.3 Fleet Data

Smestad and Rødseth (2015) show how to use heuristics to establish specific ship type, with sole

use of AIS data. The purpose of predicting ship type without additional data is to avoid the cost

of acquiring commercial ship data. In their work, S-AIS data was used as a basis to create the

heuristics, and a data cleaning process is carried out to exclude vessels that have conflicting and

inaccurate data. To verify the accuracy of the heuristics, AIS data was matched with data from

Clarkson’s Ship Register. In their study, large commercial gas carrier, both LPG and LNG, was

characterized as a single group with 99 % accuracy. First of all, the cargoes transported by LPG

and LNG carriers are two different commodities, and most of the fleet can not switch cargoes

based on the vessels technical design. Secondly, in our work, no significant characteristics were

found to separate LPG form LNG carriers. Thirdly, in the study of Smestad and Rødseth (2015),

the vessels investigated was in the size of 270-345 m in length. In fact, there are also a lot of

smaller LPG vessels trading on shorter routes. This is further reviewed below and in Section 4.2.

Therefore, to obtain information about the LPG fleet, external data is needed in addition to AIS

data. The maritime IHS’ Seaweb was used to collect this material, in addition to a new method

to identify the LPG fleet.

3.3.1 Vessel Search

Using maritime IHS’ Seaweb database, we can find all LPG vessels and their characteristics.

The database includes some no longer operating dead and demolished vessels. Extracting the

vessel information from Seaweb, disregarding vessels built in 2018 and future new-buildings,

the search results in 1469 unique vessels. From the plots in Figure 3.3, we can see that the LPG

fleet is dominated by smaller vessels with gas capacity in the range of 1.000-10.000 cbm. Thus,

the approach by Smestad and Rødseth (2015) is not applicable to this project. Another group

that stands out is the Very Large Gas Carriers (VLGC) with a gas capacity larger than 60.000 cbm.

Exploring the trade patterns of these vessels are further investigated in Section 4.2.

CHAPTER 3. DATA FOUNDATION 22

(a) Gas capacity distribution (b) Length distribution

Figure 3.3: Characteristics of LPG vessels from Seaweb

Concerning vessel identification, the database includes the IMO number for every vessel and

MMSI for almost every vessel. As stated above, the MMSI is the prime form of identification

in AIS signals, and the IMO number is only included in Message Type 5. For the analysis to be

correct and complete, we need to know all the current vessels in the fleet as well as all previous

vessels. To do the analysis, we need to know each vessels MMSI at each specific time point. If

a vessel change ownership, the MMSI might change. Therefore, only using the MMSI numbers

from Seaweb will give a faulty vessel set. The method introduced here is based on using the fact

that IMO numbers follow the hull of the vessel through its time span, to find old MMSI numbers.

The methodology is sketched in the flowchart in Figure 3.4.

Figure 3.4: Flowchart of vessel search methodology

Firstly, with a quick vessel search in the static Message Type 5 database table, we can see in

Figure 3.5 that a single IMO number might correspond to several MMSI during a time span of

several years. This is done with the Python script Seaweb2AIS.py in Appendix E.3, using the

following SQL query:

SELECT imo,userid,ship_type FROM MessageType5
WHERE imo IN {IMO_LIST} AND ship_type >= 80 AND ship_type < 90

Where IMO_LIST is the list of IMO numbers acquired from Seaweb. LPG vessels are charac-

terized as tankers with the first ship type digit being 8. This is used as a safety-net in case of

erroneous data and interference issues.

CHAPTER 3. DATA FOUNDATION 23

Figure 3.5: Number of unique MMSI numbers connected to an IMO number

The result of this vessel search is a set of 1714 MMSI numbers corresponding to 1469 IMO num-

bers. The list of these MMSI numbers, MMSI_LIST, are used to extract the Message Type 1 sig-

nals with corresponding MMSI. The resulting messages from this analysis are extracted to a

standalone database with only LPG data with the query below. This database is described below

in Section 3.3.2.

CREATE TABLE LPG1 AS
SELECT * FROM MessageType1

WHERE userid IN {MMSI_LIST}

3.3.2 LPG AIS Database

The method used above in addition to the comma separated file with newer AIS data results in

33.958.372 Messages Type 1 messages from 01/01/2011 to 31/12/2017. Due to some gaps in the

data, the horizon used in the case study is from May 2011 to December 2017. The S-AIS Message

Type 1 data are plotted in Figure 3.6.

CHAPTER 3. DATA FOUNDATION 24

Figure 3.6: AIS Message Type 1 signal plot, 2011-2017

When extracting data from the database it is essential only to gather what is needed in the anal-

ysis, or else it will have a significant influence on the running time. It is also important to point

out that sorting data with SQL is also significantly faster than sorting in Python. So when search-

ing for vessels in time and space, a continuous focus has been on sorting as much as possible

in SQL before the analysis is done in Python. The following SQL query setup is used throughout

this study for data extraction:

SELECT unixtime,sog,latitude,longitude,userid,nav_status FROM LPG1
WHERE longitude <= max_lon AND latitude <= max_lat

AND longitude >= min_lon AND latitude >= min_lat
AND sog >= min_speed AND sog <= max_speed
AND unixtime >= min_time AND unixtime <= max_time
ORDER BY userid,unixtime ASC

where max_lon, max_lat, min_lon and min_lat defines the area of interest based on maximum

and minimum latitude and longitude coordinates. min_speed, max_speed, min_time and max_time

defines the time and speed window of interest respectively.

4 | Feature Engineering

Figure 4.1: Sub-flowchart of project flow and
methodology in Feature Engineering

This chapter we will introduce how the pro-

cess of feature engineering have been carried

through in addition to construction features

relevant to the LPG case study. This chapter

goes through the methodology for creating,

preparing and selecting these features, while

the results of the feature selection methods

are presented in the case study in Chapter 6.

4.1 Feature Engineering Methodology

In machine learning and statistics, feature engineering is the process of developing features

from the AIS data to be used in machine learning algorithms. These features are attributes or

variables that may be important to the model and should help in understanding the context of

a problem. One way to generalize feature engineering is that based on a set of features X , we

want to predict Y . So the process of feature engineering is to create and select the best set X

so that the model function f̂ (X) gives the best possible prediction, f̂ (X) = Ŷ , of the actual Y .

Feature engineering is not a formal topic but is considered by many researchers as an important

and essential part of applied machine learning. Ng (2011) states that Coming up with features

is difficult, time-consuming, requires expert knowledge. "Applied machine learning" is basically

feature engineering. Domingos (2015) considers that the features used in a machine learning

problem are the most important factor to why some projects succeed and some fail.

In the context of AIS data, this chapter will introduce how transforming raw data into features

that better represent the underlying problem, will result in improved model accuracy on un-

seen data. In this thesis, long time has been spent on feature engineering as it usually offers

25

CHAPTER 4. FEATURE ENGINEERING 26

more impact on the project than the choice and tuning of models. The process of feature engi-

neering used in this study is listed below. It is important to keep in mind that this is an iterative

process. When new features are created and tested, we can extract new features from the once

created and so on as long the added complexity is seen valuable through increased model per-

formance.

1. Exploratory data analysis: Brainstorm features and use maritime domain knowledge to

narrow down the search.

2. Feature construction and extraction: Create and extract features from AIS and price data.

3. Data preparation: Transform, normalize and scale data, so that it applies to machine

learning problems. Split the data into training and testing set.

4. Feature selection: Selects a subset of the features created/extracted based on various sta-

tistical tests and methods.

4.2 Exploratory Data Analysis

The idea behind exploratory data analysis is to get a general picture of the data and investigate

patterns and potential areas of exploitation. One of the topics in this thesis is machine learning,

but the human mind is still better in understanding context. Thus, the exploratory analysis is

fundamental.

The AIS Message Type 1 signal plot in Figure 3.6 is chaotic, and it is hard to see a general trading

pattern in this form of visualization. Therefore, a density plot function line_map() in the code

AIS_Analysis.py in Appendix E.2, is made to better visualize the sailing patterns. This code is

basically a line plot between points for each vessel, where signals with large distance gaps have

been cleaned out. The lines are made transparent so that layered lines, meaning areas with

much traffic, stands out in on the map. A density plot with the same data as in Figure 3.6, is

shown in Figure 4.2.

CHAPTER 4. FEATURE ENGINEERING 27

Figure 4.2: Density line plot of the LPG fleet, 2011-2017

As it became clear in the vessel search in Section 3.3.1, the LPG fleet mainly consists of two

parts. The first, a large part of smaller vessels in the range of 1.000-10.000 cbm in gas capacity,

and the second, the Very Large Gas Carriers (VLGC) with a gas capacity larger than 60.000 cbm.

To get a better insight into the trade patterns in the LPG market, we can plot a density plot of

the two vessel groups in the same map (Figure 4.3). Separate plots of these vessels segments are

provided in Appendix B.1 and B.2.

We observe from Figure 4.3 that the VLGCs has fever but more concentrated longer routes than

the smaller vessels. This might indicate that the VLGCs sail on long-haul routes between larger

terminals, while the smaller vessels operate in the secondary markets around these hubs. A

Figure 4.3: Density line plot of VLGC (>60.000 cbm) vs. smaller vessels (<60.000 cbm), 2011-2017

CHAPTER 4. FEATURE ENGINEERING 28

good example of this is seen in the Mediterranean or South East Asia. Investigating the trade

patterns of VLGCs, we can observe that some areas are standing out, these are the export market

in the Gulf of Mexico and the Arabian Gulf, as well as the import market in the Far East, mainly

Japan. Other high activity areas include the Mediterranean, Australia, Northern Europe and

South America with Brazil. The observation of longer routes for VLGCs can also be seen through

plotting the vessels speed in Figure 4.4. We can observe that the VLGCs have more concentrated

speed with low variance, while the smaller vessels sail over a larger specter of speeds in addition

to spending more time still, not sailing. The first might be related to the larger VLGC sailing

long-haul voyages, where speed is optimized. The second might be related to the smaller vessels

sailing shorter routes close to shore and spending a larger fraction of time waiting for shipments.

It is also important to mention that the smaller vessels have a larger range of sizes, 1.000-60.000

cbm, thus having different design speeds. However, the plot still shows that the vessels spend

more time not sailing,

(a) Smaller vessels (<60.000 cbm) (b) VLGC (>60.000 cbm)

Figure 4.4: Speed histogram

4.3 Feature Construction and Extraction

Deciding which features to construct is a market specific question, underlying the importance of

exploratory data analysis. Thus creating standardized features for AIS that work for all shipping

segments is not a sufficient approach. Therefore the features considered in this study are chosen

explicitly concerning the LPG shipping market and the case study, but some are also applicable

to other shipping segments. The subsections will start by describing the method used and finish

with their application in the case study. Creating the features results in 346 weekly observations

from May 2011 to December 2017.

CHAPTER 4. FEATURE ENGINEERING 29

4.3.1 Vessel and Capacity Counting in Area or Port

Adland et al. (2008) state that changes in the LPG spot market demand may be dictated by the

presence of geographical price arbitrage, supply disruptions or surplus gas production. As the

price of a commodity is dictated by the supply-demand relationship, looking at geographical

ship positioning is of interest. This can be as easy as just counting vessels in an area or sum up

the maximum gas capacity for these vessels. Data on gas capacity is provided by the Seaweb

vessel database. Time series based on the number of vessels or summed up gas capacity in an

area per week can be generated by constructing geo-fences to extract this information from a

specific geographical restricted area. The simplest form of a geo-fence is a box where an area is

restricted based on maximum and minimum latitude and longitude values. If it is desirable to

geo-fence areas that do not fit for a box geo-fence, like for example the Atlantic ocean, a polygon

may be used.

The most common way to decide if a point is inside a polygon or not is the ray casting algorithm

(Sutherland et al., 1974). The principle is that a point is inside the polygon if it first and foremost

lies within the extreme values of the polygon xmi n ,xmax ,ymi n and ymax . This is done to increase

the computational speed of the analysis so that we do not need to check every global message

signal. In general, the following four procedures are carried out and evaluated:

1. Check that the point (x, y) lies within the larger rectangle [xmi n , xmax , ymi n , ymax], the ex-

treme polygon values.

2. Draw a horizontal line in one constant direction for each point

3. Count the number of times the line intersects with polygons edges.

4. A point is inside the polygon or in the edge if the number of times it crosses the edges is

odd. If the number of times it crosses is even, then the point is outside the polygon.

This is calculated by the point_inside_polygon(x,y,poly) function in the AIS_Analysis.py scriptin

in Appendix E.2. An example of the ray casting algorithm is showed in Figure 4.5, where the

algorithm have been carried forward for a Atlantic ocean polygon.

CHAPTER 4. FEATURE ENGINEERING 30

Figure 4.5: Ray casting algorithm used for the Atlantic where black is outside, blue inside ex-
treme points but outside polygon and orange is inside the polygon

Cast Study Application

Given that the LPG spot market demand may be dictated by the presence of geographical price

arbitrage (Adland et al., 2008), knowing where the ocean fleet is located might be interesting.

With the method described above, we can divide the world into polygons and count vessels

and capacity. The following notation is used for the oceans/areas: Atl (Atlantic), FE (Far East),

CP (Arabian Gulf), EstP (East Pacific), NWE (North West Europe), Ind (Indian Ocean) and Med

(Mediterranean). The polygons used are visualized in Figure 4.6. Furthermore, counting weekly

unique MMSI in each of these polygons yields the time series in Figure 4.7.

Figure 4.6: Orientation of world polygons

CHAPTER 4. FEATURE ENGINEERING 31

Figure 4.7: Number of vessels observed in each polygon every week from 2011-2017

We observe from Figure 4.7 that a large number of vessels is located in the Far East at all times.

As discovered in Section 3.3.1, the LPG fleet consists of many smaller vessels. In Section 4.2

we explored that these two vessels groups have different trading patterns. Therefore, summing

up the fleets total gas capacity in a polygon would maybe give a better picture of the supply

of vessels. More specifically, the supply of fleet gas capacity in this area. Figure 4.8 show the

summed up gas capacity for the vessels located in the respective polygons.

From the plot in Figure 4.8 we observe then the gap between the Far East and the rest of the

polygons is relatively smaller concerning the vessel count in Figure 4.7. This observation can

understate that there are many smaller markets in the Far East, thus a larger part of smaller

vessels sailing from the hubs to these smaller markets over longer distances. This can also be

Figure 4.8: Summed up gas capacity for the vessels observed in each polygon every week from
2011-2017

CHAPTER 4. FEATURE ENGINEERING 32

observed in the density plot of the smaller vessels in Figure 4.3.

The vessel capacity and count time series gives a dynamic picture of the vessel movements.

However, they do not account for the change in total fleet size. A plot of newbuilt LPG vessels

is found in Figure 4.9, with data from Seaweb. Based on the relative small total fleet, the series

in Figure 4.9 shows that a significant amount of vessels was built every year through the study

horizon (2011-2017). It may be interesting to look at the percentage of the world fleet, or world

fleet capacity, observed in the polygons each week. This is visualized in the plots in Figure 4.10

and 4.11.

Figure 4.9: Newbuilding in the LPG market, 1995-2017, with study horizon in orange

Figure 4.10: Percentage of LPG fleet observed in each polygon every week from 2011-2017

CHAPTER 4. FEATURE ENGINEERING 33

Figure 4.11: Percentage of summed up fleet gas capacity observed in each polygon every week
from 2011-2017

We observe from Figure 4.8 that the overall activity, given by capacity, has increased for both the

Far East and the Atlantic. This can show that the overall fleet size has increased. However, for

the Far East relative to the Atlantic, the capacity has shifted in favor of the latter and other areas,

which can be seen in Figure 4.11.

In addition to the polygon presented above, a last polygon is also added to the study. This poly-

gon is the Gulf of Mexico, given by the notation GOM. Since the case study investigates the spot

price in Mont Belvieu, looking at a separate polygon for this area was done. As the Atlantic is

relatively large, it was deemed fit to investigate this smaller portion of the polygon. The same

features as for the other polygons have therefore been created for the Gulf of Mexico as well.

These are plotted in Figure 4.12 and 4.13.

Figure 4.12: Number of vessels observed in the Gulf of Mexico polygon every week from 2011-
2017

CHAPTER 4. FEATURE ENGINEERING 34

Figure 4.13: Summed up gas capacity for the vessels observed in the Gulf of Mexico polygon
every week from 2011-2017

A list with descriptive statistics of all the features created in this section, can be found in Ap-

pendix C.1.

4.3.2 Sailing Distance From Current Position To Area or Port

Another feature that may add information about global vessel positioning and effect geograph-

ical price arbitrage (Adland et al., 2008), is the vessels sailing distance to a specific port or area.

Even more interesting is the total fleets sailing distance to this area. Therefore, the approach

introduced in this study, is to add up the mean sailing distances to the specific area and take

vessel size into consideration. The mean is of interest because if some vessel is not observed

this week, the distance to loading area will drop significantly. This pop-in pop-out effect might

fool the prediction model. Since LPG vessels are in the range of 1,000-80,000 cbm, weighting the

mean distance based on vessel gas capacity might be of interest because a larger vessel will have

a larger impact on the market than a smaller one. The weighted arithmetic mean distance d̄as to

area a in time interval s (week) is considered in Equation 4.1. By weighting the sailing distance,

we do not need to separately calculate the sailing distance for the two vessel groups.

d̄as =
PNs

i Ci ·Di as
PNs

i Ci
(4.1)

where Ci is the capacity of vessel i and Di as is the sailing distance from the average position of

vessel i in week s to loading port/area a. Here, i 2 Ns , where Ns is the set of all vessels observed

in time s. To find the sailing distance, an ocean mesh grid was provided by Vit Prochazka. The

mesh is created as a network of nodes and edges. The distance, or the edge weight, between two

CHAPTER 4. FEATURE ENGINEERING 35

Figure 4.14: Mesh grid with an example shortest sailing distance, provided by Vit Prochazka

neighbouring nodes is calculated based on their coordinates. The mesh is visualized in Figure

4.14.

To find the shortest distance between two arbitrary coordinates, the following procedure is

used:

1. Calculate the closest node for both the source and target coordinate.

2. Find the shortest distance between these nodes based on Dijkstra’s shortest path algo-

rithm (Dijkstra, 1959). This algorithm finds the shortest path between two nodes in a net-

work based on the weights (distances) of the network edges.

It may be advantageous to know the loading status of the vessel, if it is laden or in ballast. This

information can be extracted from the Message Type 5 AIS data since the draught of the vessel

is included. First of all, the data from Message Type 1 needs to be connected to Message Type 5

because positioning data is not included in Message Type 5. However, the draught is manually

set by the crew of the vessel and is prone to human error. This was investigated, but the quality

of Message Type 5 date used in this study was too low, so it did not add additional information.

Hence, to include laden/ballast information in the approach was neglected in this study.

Case Study Application

With the method introduced above, we can subsequently calculate the weighted arithmetic

mean sailing distance in nautical miles from weekly vessel positions to Mont Belvieu in Texas,

US. The feature constructed is plotted in Figure 4.15, and the descriptive statistics can be found

in Appendix C.2..

CHAPTER 4. FEATURE ENGINEERING 36

Figure 4.15: Weighted arithmetic mean sailing distance to Mont Belvieu for the LPG fleet, 2011-
2017

4.3.3 Flux In and Out of an Area

As well as counting capacity and vessels in an area, knowing the flow in and out of the area

might also provide useful market insight. The flow, or the flux, may be calculated by identifying

when a vessel is inside and outside a geo-fence. An approach to calculate the flux is proposed

as follows:

1. Analyze all messages to identify if they are inside or outside the geo-fence.

2. For each vessel, record when the change from outside to inside, and inside to outside,

happens to get the point in time when the crossing happens.

3. Sum up for the whole fleet to get each directional flow or the net-flow, the flux, of the area.

Another approach is to difference the data so that we can investigate the relative change in the

area from week to week. This is also a measure of flux.

4.3.4 Fleet Sailing Speed and Variance

Tsioumas (2016) and Ronen (1982) states that shipowners tend to speed up when rates are high

to get the most out of the favorable market conditions. The argument favor that freight rates

lead changes in speed. On the other hand, because of a small fleet (Adland et al., 2008), the

high rates may result in all vessels being used to the max, and thereby the short-term supply

can only be altered by higher speed again. Hence, one would expect an increase in average

sailing speed for the overall LPG fleet to give rise to more supply, leading to higher competition

CHAPTER 4. FEATURE ENGINEERING 37

among LPG vessels and lower freight rates. Therefore, it might provide additional information

to include the overall vessel speed and speed variation in the prediction model. The former may

be found by extracting the average of the whole fleets vessel speed and variance for every time

interval. By doing this, we assume that the speed reporting is consciously distributed over the

operational time of the vessels. AIS is sent by signals, and the signals we have in our database are

not continuously distributed over time with equal time steps. Especially in the early signals due

to interference issues and low satellite coverage (Eriksen et al., 2010). However, if this is the case

for the whole study horizon, 2011-2017, we would assume that the difference between speeds

at different time points reflect the real speed difference. Thus knowing that the speed average

we obtain is not the real average, we can still get some valuable results since we look at changes

over time and not the specific magnitude.

Case Study Application

Features for weekly speed average and standard deviation have been created for the whole LPG

fleet. The features are plotted in Figure 4.16 and 4.17.

Figure 4.16: Weekly mean steed for the LPG fleet, 2011-2017

CHAPTER 4. FEATURE ENGINEERING 38

Figure 4.17: Weekly standard deviation in steed for the LPG fleet, 2011-2017

A list with descriptive statistics of all the features created in this section, can be found in Ap-

pendix C.3.

4.3.5 Price and Market Features

LPG Spot Price

The feature mostly used in price forecasting is the historical price of the prediction itself. Yu

et al. (2008) and Kulkarni and Haidar (2009) only utilizes the historical price with neural network

models to forecast future prices. In addition to historical prices of the Mont Belvieu propane

spot price, the spot prices in the other major markets are also included in this study. This is done

to investigate if some of these rates discover market information before others. Alternatively, the

neural network model might be better at predicting the Mont Belvieu spot price by capturing the

dynamic relationships between these series. The prices are acquired from Equinor, with daily

price reports. As we in this study are looking at weekly observations, we have calculated the

weekly averages based on the daily data, from 2011 to 2017. The features are plotted in Figure

4.18, and we observe that the spot prices follow each other evenly with small independent fluc-

tuations. Hence the inclusion of these as separate features might add useful information to the

prediction model. The features considered, with their respective notation, are the propane spot

prices in Mont Belvieu (spot_MB), North West Europe (spot_NWE), the Arabian Gulf (spot_CP)

and the Asian market (spot_FEI).

CHAPTER 4. FEATURE ENGINEERING 39

Figure 4.18: Propane spot price

Oil Price

LPG as a shipping commodity, have some distinct features. Unlike crude oil, coal or iron ore,

LPG is not a raw material but derived from the extraction rate of LNG and crude oil (Engelen

and Dullaert, 2010). The main forwarders of LPG are therefore dominated by the major oil and

gas companies. This aspect makes the LPG market to be driven by “supply push” rather than

“demand pull” in the sense that the volume of LPG shipments is derived from their products

(LNG and crude oil) and is therefore not independently set (Adland et al., 2008). We therefore

see it fit to include the crude oil price in our analysis, to see if some of the variations in the

propane spot price might be explained by the oil price. Because we look at the Mont Belvieu

spot price in Texas, US, we utilize the West Texas Intermediate (WTI) Cushing, Oklahoma, crude

oil price acquired from the U.S. Department of Energy (2018).

Figure 4.19: Weekly West Texas Intermediate (WTI), from 2011-2017

CHAPTER 4. FEATURE ENGINEERING 40

Comparing the plots in Figure 4.18 and 4.19, we observe that the general characteristics of the

graph between movements in oil and propane prices are similar. Hence, the inclusion of the

crude oil price might be an interesting feature to include.

A list of descriptive statistics of all the features from this section can be found in Appendix

C.4.

4.4 Data Preparation

The data preparation procedure, or pre-processing, in this study mainly consists of three parts.

The first part is to make the time series stationary. The second step is to normalize and scale the

features. The third is to split the data into a training set and a test set, which is also called the

in-sample and out-of-sample data as the first set are used to train the model and the second is to

test its performance on unseen data. This is very important not to get an overfitted model that

only performs well on seen observations. The data preparation script, Data_preparation.py, can

be found in Appendix E.7. The following data preparation process is used in this study:

1. Data transformation: Analyze the time series and transform the data to stationary form.

2. Normalize data: Scale the data so that it is applicable to machine learning problems.

3. Split the data into training and testing sets: So that it is applicable to supervised learning

problems.

In traditional time series analysis, working with stationary data is crucial. The methods require

the data to be stationary to be effective. Stationarity means that the data is independent of

time, without trends and seasonal effects. More precisely the traditional models require that for

a weakly stationary process, the mean, variance, and autocovariance should be constant in its

first and second momentum. Here, constant autocovariance means that the covariance of any

sequential values is the same for stationary series (Kulkarni and Haidar, 2009). Working with

non-stationary data may lead to a phenomenon called spurious regression which states that the

variables are wrongly causally related (Brooks, 2002). According to Brooks (2002), stationary is

important, for example in case of a shock, where for a stationary series it will have less influ-

ence over time. In non-stationary series, the influence of a shock remains for longer time steps

and might lead to misleading result. Stationarity is not a requirement for many machine learn-

ing methods, but is preferred as it is a much stronger indication of the predictive power of the

model. In this way, the model may be able to identify the underlying mechanics rather than just

identifying a seasonal trend or dynamic.

CHAPTER 4. FEATURE ENGINEERING 41

The method used to transform the time series to stationary form is by differencing the data.

This is done by subtracting the previous observation from the current observation. Now the

series tells how much the change is from one time point to another. To test for stationarity, we

visualize the time series and their autocorrelation and partial autocorrelation, in addition to

performing an Augmented Dickey-Fuller test (Fuller, 1996). This is a unit root test1 with a null

hypothesis (H0) that the time series can be represented by a unit root, meaning that it has no

time dependency. If the null hypothesis is accepted, it suggests the series has a unit root and is

non-stationary. The alternate hypothesis (H1) is that the time series does not have a unit root.

The result of the test is interpreted by the p-value that states the level of significance. We also

get a test statistic that can be compared to a threshold of 10%, 5% and 1%. The null hypothesis

is accepted at each of these levels of significance if the test statistic is higher than the thresholds.

The results of the tests are shown in Appendix D. Other stationarity methods like the logarithmic

difference and other transformation methods were also considered, but the series are shown to

be stationary with the first differencing of the data, both from the Augmented Dickey-Fuller test

and visualization of the series.

When the features are stationary, the next step is normalization. This is done because of the

activation function of the neural network and the variability in range for the different variables.

The activation function or transfer function has a given limit for the input. Therefore the data

is scaled to fit the function. The values are scaled to the domain [0,1] because of the activation

functions of the neural network. Also, with different scales for the features, normalization is

important in order to get a statistically sound model that can generalize the underlying problem.

There are different kinds of scaling methods, but the most used, and the one used here, is the

Min-Max scaling method, also known as normalization. The normalization of feature the p-th

feature Xp is done in the following way:

zp,t =
xp,t °min(Xp)

max(Xp)°min(Xp)
(4.2)

where xp,t 2 Xp so that the normalization of Xp is X norm
p = (zp,t , ..., zp,n) in the scale of [0,1].

From here on the normalized time series X norm
p is denoted as just Xp . This transformation does

not change the shape of the variable distribution, so the mechanics of the time series are pre-

served. A visualization of the pre-processing of the time series is shown in Figure 4.20, where

the Mont Belvieu spot price is the example used.

1A test that determines how strongly a time series is defined by a trend.

CHAPTER 4. FEATURE ENGINEERING 42

(a) Original (b) Differenced (c) Normalized differenced

Figure 4.20: Mont Belvieu spot price data transformation and normalization

The last step in the data preparation process is to split the data into training and testing sets.

The training set is used by the algorithm to fit the parameters of the function f̂ (X) (see Chapter

5). The training set is again split into a sub training set and a validation set. This because the

validation set is used to optimize the hyperparameters of the model with the genetic algorithm

described in Section 5.4. The validation set is not included in the testing set because the error

rate estimate of the final model on validation data will be biased since the validation set is used

to select the final model (optimize hyperparameters). The test set is only used to assess the

performance of a fully-trained model. This will show how the algorithm performs on unseen

observations. After assessing the final model on the test set, no further tuning is done in order

to resemble reality. The size of the training, validation and testing sets are chosen to 80 %, 10

% and 10 % respectively. Features selection will only be based on the training set, because if

features selection is performed on a set including testing data, the model will be biased. Using a

larger set to select features from reduces the variance of the performance estimate, but not the

bias. To get an unbiased performance estimate, the test data is not used to make choices about

the model, including feature selection. A visualization of the training, testing and validation set

split is shown in Figure 4.21.

Figure 4.21: Training, testing and validation sets

CHAPTER 4. FEATURE ENGINEERING 43

4.5 Feature Selection

Feature selection is the process of selecting a subset of features to be used in the predictive algo-

rithm. The reason for decreasing the set of created features, is that the set may contain many fea-

tures that are either redundant or irrelevant, and can thus be removed without suffering much

loss of information. James et al. (2013) and Bermingham et al. (2015) states that effective use of

feature selection will enhance generalization by reducing overfitting, reducing training time and

simplify the model, which makes it more understandable for other researchers. Less mislead-

ing data will also mean that the modeling accuracy improves. Also, feature selection avoids the

curse of dimensionality, an expression by Bellman (1972), which involves various problems that

arise when the model dimension becomes very high. The idea of the curse of dimensionality is

that when the amount of features increases, the volume of the dimensional space increases so

fast that the available data becomes sparse. This is problematic because, for the model to have

statistical significance, the data needed to support this result often grows exponentially with the

dimensionality.

The prediction of a variable y , is given by the estimated function f̂ , so that the prediction of y is

ŷ = f̂ (X). We can take the expected mean square error (MSE) of the prediction error (y ° f̂ (X)),

and carry out the calculation (James et al., 2013):

E(y ° f̂ (X))2 = Var(f̂ (X))+ [Bias(f̂ (X))]2 +Var(≤) (4.3)

Here E(y ° f̂ (X))2 denotes the expected MSE, Var(f̂ (X)) the variance of the learning model se-

lected, [Bias(f̂ (X))]2 the bias squared of the learning method caused by simplifying assumptions

and Var(≤) the irreducible error which is the lower bound of the expected error on unseen sam-

ples (James et al., 2013). This states that to minimize the expected test error, we need to select a

subset X and a statistical learning method f̂ (X) that simultaneously achieves low variance and

low bias. In the context of features, a set with too few might result in high bias with a model

that has a low performance on the training set. A selection of too many features might indicate

high variance, an overfitted model, where the model will have lower performance on the test set

than training set. This is known as the bias-variance trade-off. The relationship also shows that

feature selection is a crucial part of the model selection process.

As stated above, we want to select features that improve the model and give relevant information

to better make a prediction. A feature that has no impact on the problem, should not be a part

of the problem. The added model complexity by including a feature must be justified by an

increased model skill or capability. We can objectively estimate the importance of a feature with

CHAPTER 4. FEATURE ENGINEERING 44

various statistical test and methods. Firstly, one can divide between univariate and multivariate

feature selection methods. The univariate methods consider the variables one by one, while

multivariate methods consider the whole groups of variables together as one feature by itself

may be useless, but may provide useful information in combination with other. Secondly, we

can classify the different feature selection algorithms into two parts (Kojadinovic and Wottka,

2000), namely filter methods and wrapper methods. Filter methods select a subset of features

independent of the model that shall use them. Wrapper methods select a subset of variables

taking into account the model that shall use them.

Researchers are also considering a third feature selection method, the embedded method (Pošík,

2015), where the feature selection is built into the machine learning algorithm. An example is

Random Forests. We can take advantage of these models and use their structure to generate a

separate ranking. In this study, Random Forests is used for this purpose.

4.5.1 Filter Methods

As stated in Section 4.5, filter methods selects features independently on the model that will

subsequently use them. In this section, both multivariate and univariate selection methods will

be introduced. The reason for including univariate selection methods in a multivariate fore-

casting problem, is that they are good at pinpointing important variables. If some features seem

important, they may be further extracted into new features. Filter methods are not only used

for subset selection, but also to see interesting statistical relationships between a feature and

the predictor. The filter feature selection methods considered in this study are shown in Table

4.1.

Table 4.1: Univariate and multivariate filter methods

Univariate Multivariate

Linear Correlation Linear Regression

Maximal Information Coefficient Lasso Regression

Ridge Regression

Random Forests

Linear Subset Selection

These methods are used to generate ratings for each feature based on their relative importance

in predicting the predictor. They are used on the features constructed in Section 4.3. The rat-

ings are scaled to ranks in the domain of [0,1], where 1 implies that the feature is statistically

CHAPTER 4. FEATURE ENGINEERING 45

important in predicting the prediction variable, and 0 useless. A total overview of the scores are

shown in Appendix F, and discussed in Chapter 7. The analysis is done with the Python script

Feature_importance.py located in Appendix E.8. Most of the calculations are done using the

Scikit-learn machine learning package in python, Pedregosa et al. (2011). The following meth-

ods are considered:

Linear Correlation

Just by looking at the linear correlation between a feature and the prediction variable is a uni-

variate feature selection method. More specifically, the Pearson correlation coefficient (PCC) is

used:

ΩXp ,Y =
cov(Xp ,Y)

æXpæY
(4.4)

Here, cov(Xp ,Y) and æXp ,æY is the covariance and the standard deviation of the variables Xp

and Y respectively. Xp denotes the p-th feature in the set of features X . The expression returns a

value in the domain of [°1,1] where the boundaries are the perfect positive and perfect negative

linear correlation. To rank a feature on this statistical measure, the absolute value | ΩXp ,Y |, have

been carried out so that it is a rank in the domain of [0,1] where a higher rank implies that the

feature is more important since the variables are more linearly correlated. The main drawback

of using linear correlation as a measure is that it is only sensitive to a linear relationship. If the

relationship is non-linear, the linear correlation can be close to zero even if there is a non-linear

relationship between the two variables. However, the method gives valuable insight.

Maximal Information Coefficient (MIC)

In statistical theory, mutual information (MI), is the mutual dependence between two variables.

For two random variables, MI is defined as (Cover and Thomas (2006)):

I (Xp ;Y) =
X

y≤Y

X

xp≤Xp

p(xp , y) log
µ

p(xp , y)

p(xp)p(y)

∂
(4.5)

where p(xp , y) is the joint probability function of the p-th feature Xp and the predictor Y . p(xp)

and p(y) are the marginal probability distribution functions of Xp and Y respectively. Here bin-

ning2 is used to discretize the continuous random variables. The selection of the number of bins

and the fact that MI is not normalized makes the process sensitive. The maximal information

2Sorting continuous data into class intervals.

CHAPTER 4. FEATURE ENGINEERING 46

coefficient (MIC) was introduced to address these shortcomings by searching for optimal bin-

ning and turn MI scores into a metric that lies in the range of [0,1]. The advantage of MIC is

that it is able to find non-linear relationships between variables (Reshef et al., 2011). Therefore,

the MIC is used as a univariate filter method in the feature selection process, and function like

a non-linear correlation coefficient.

Linear Regression

Fitting the model to a linear function is also a way of doing an univariate ranking. By simply

looking at the coefficients of the linear model, the most important features should have the

highest coefficients values given that the features are normalized. The multiple linear model,

where the fitted relationship between Y and the subset of features X , is given by (James et al.,

2013)

yt =Ø0 +Ø1x1,t +Ø2x2,t + ...+Øp xp,t +≤t (4.6)

where x1,t , x2,t , ..., xpt , is the feature values at time t for features X1, X2, ..., Xp . Lagged features are

also included in the analysis, but is then incorporated as its own feature added to the p features

presented here. Ø1,Ø2, ...,Øp are the coefficients which is the association between the features

in X and the response Y , and Ø0 is the linear intercept constant. ≤ is the noise of the model. The

regression coefficients Ø are found by minimizing the Residual Sum of Squares (RSS), and the

value of Ø which minimizes this sum is called the Ordinary Least Squares (OLS) estimator for

Ø:

RSS =
nX

t=1
≤2

t =
nX

t=1
(yt ° ŷt)2 (4.7)

where the estimated model is

ŷt =Ø0 +Ø1x1,t +Ø2x2,t + ...+Øp xp,t (4.8)

This is a form of multivariate method since the model considers all features and selects the coef-

ficientsØ so that Equation 4.7 is minimized. This optimization procedure will lead to overfitting,

but may be solved by introducing regularization, described later in this section. Scaling the co-

efficients to the domain [0,1] makes it easier to compare with other filter methods. Again, this

method is only applicable to linear relationships and does not capture the non-linearities in

predicting shipping features. The model is good for datasets with few features, but will be un-

stable if a large number of features are introduced. This because small changes in the data can

cause substantial changes in the model, making model interpretation very difficult. This prob-

lem is called multicollinearity. However, as stated before, this simple method gives a pinpoint

CHAPTER 4. FEATURE ENGINEERING 47

to important features and shows interesting statistical properties of the features.

Lasso Regression (L1 Regularization)

Regularization is a very important technique in machine learning. These methods add a con-

straint to the linear regression model to prevent the coefficients to overfit. The regularization

technique biases the estimated regression coefficients, but reduces the level of multicollinearity

(O’brien, 2007). Since the method is based on regression, this is a multivariate filter method.

There are two main forms of regularization, mainly L1 and L2, known as Lasso and Rigid regres-

sion. Regularization takes linear regression one step further by applying a regularization term

to the minimization of the RSS in Equation 4.7. With L1 Regularization, the following function

is minimized to obtain the regression coefficients Ø in Equation 4.6 (James et al., 2013):

RSS +∏
pX

j=1
|Ø j | (4.9)

where ∏ ∏ 0 is a tuning parameter that controls the relative impact of the regularization. ∏ = 0

would give an unregularized model, the same as multiple linear regression. To find the tun-

ing parameter, cross-validation is used (Canu, 2014). The regularization term is also called the

shrinkage penalty as when Ø is close to zero; it has the effect of shrinking the estimates of Ø j

towards zero. Writing out the optimization problem, the following is calculated (James et al.,

2013):

minimize
Ø

(
nX

t=1

√

yt °Ø0 °
pX

j=1
Ø j x j ,t

!2)

subject to
pX

j=1
|Ø j |∑ s (4.10)

where for every value of∏ there is a corresponding s such that Equation 4.9 and 4.10 will give the

same lasso regression coefficient estimates. As for linear regression, lagged features is included

but incorporated as its own variable. The Ø’s can be scaled to [0,1] and compared with other

filter methods. This method is also linear, but prevents overfitting and might give some useful

ranking output.

Ridge Regression (L2 Regularization)

As stated above, the second regularization method considered is the L2 Regularization, also

known as Ridge Regression where the following function is minimized to obtain the regression

coefficients Ø:

RSS +∏
pX

j=1
Ø2

j (4.11)

CHAPTER 4. FEATURE ENGINEERING 48

Writing out the optimization problem, the following is calculated (James et al., 2013):

minimize
Ø

(
nX

t=1

√

yt °Ø0 °
pX

j=1
Ø j x j ,t

!2)

subject to
pX

j=1
Ø2

j ∑ s (4.12)

where for every value of ∏ there is a corresponding s such that Equation 4.11 and 4.12 will give

the same lasso regression coefficient estimates. As for linear regression, lagged features is in-

cluded but incorporated as its own variable. Like lasso regression, the Ø’s can be scaled to [0,1]

and compared with other filter methods. This method is also linear, but prevents overfitting

and might give some useful ranking output. The key difference between L1 and L2 regulariza-

tion, is that L1 minimizes the less important feature’s coefficients Ø to zero, thus removing some

features altogether. This because Ridge regression will always generate a model involving all

features since the regularization term will shrink all of the coefficients towards zero, but it will

not set any of them exactly to zero, in contrast to Lasso regression.

Random Forests

Random forests is a statistical learning method that constructs a set of decision trees. Every

node in the decision trees is a condition on a single feature. It is designed in a way so that the

dataset is split into two parts where similar response values end up in the same set. Breiman

(2001) introduced a technique for using random forests for classifying feature importance. For

regression problems like this project, the variance is the measure based on which the optimal

condition is chosen. This measure is called impurity, and when training a tree, it computes how

much each feature decreases the impurity in a tree. How much this impurity decreases for each

feature can be averaged and used as a measure of feature importance. Random Forest can be

referred to as a model based ranking method, since we take advantage of the model structure

to generate a separate ranking using the built-in feature selection process. Since the model

considers all the features together, this is a multivariate method.

The advantage with Random Forests is that it can model non-linear relationships well in addi-

tion to being a multivariate method. The MIC discussed above is also non-linear, but can only

rank the features univariately. A problem with using Random Forests is that when some features

are correlated with each other, then the model thinks that any of these can be used with no pref-

erence to exactly which. This causes a problem, because when the model selects a feature, the

importance of other correlated features is significantly reduced as effectively the impurity they

can remove, is already removed by the first feature.

CHAPTER 4. FEATURE ENGINEERING 49

Linear Subset Selection

This is not a variable importance method, but a method for finding the best subset. Instead

of comparing all variables or single variables with the response, this method generates subsets

with some of the features and compare them with different statistical measures. This method

fits a linear regression model from Section 4.5.1 and estimates the parameters with OLS for each

possible combination of p features. The model introduced here selects the best subset in the

context of linear regression.

The best subset selection algorithm, or leaps and bounds procedure by Furnival and Wilson

(1974), starts with fitting all subsets that contain exactly one feature to a linear regression model,

then all possible models that contain two features, and so forth. So if we have p features, the pos-

sible combinations of models to consider is 2p . For each model that contains k features, there

are an amount of
°p

k

¢
model combinations to consider. From these models, the best model is

selected based on a selection criterion. As for the linear regression described in Section 4.5.1,

RSS in Equation 4.7 is selected. Based on this selection criteria, the best model with regards to

linear regression of k features is Mk . Other selection criteria are considered for choosing the

best model from M0, M1, ..., Mp , since choosing based on RSS may lead to overfitting as stated

in Section 4.5.1. In the context of training and testing sets, RSS will fit the model as good as pos-

sible based on the training set. The training error will decrease as more variables are included

in the model, but the test error may not. Therefore these criterion is of interest. The selection

criterion considered is the Akaike information criterion (AIC), Bayesian information criterion

(BIC) and adjusted R2. The adjusted R2 is the feature modified R2 given in Equation 4.13, so that

the R2 score is reduced when the number of features included k < p are increased.

R2 = 1° RSS
TSS

= 1°
Pn

t=1(yt ° ŷt)2

Pn
t=1(yt ° ȳ)2 (4.13)

This is the coefficient of determination of the linear correlation between the forecasted value ŷ

and the actual observation y , where TSS denotes the total sum of squares and RSS the residual

sum of squares. ȳ is the mean of the observed data. The reason for using AIC, BIC and adjusted

R2 is that they adjust the training error for the models. Given by James et al. (2013):

AIC = 1
næ̂2 (RSS +2kæ̂2) (4.14)

B IC = 1
næ̂2 (RSS + log(n)kæ̂2) (4.15)

CHAPTER 4. FEATURE ENGINEERING 50

Adjusted R2 = 1° (1°R2)
(n °1)

(n °k °1)
(4.16)

where æ̂2 is the estimate of the variance of the error ≤ in Equation 4.6, n the number of obser-

vations and k the number of features in the model. The optimal subset would have the highest

adjusted R2 and the lowest AIC and BIC.

The original model by Furnival and Wilson (1974) makes this computationally feasible to com-

pare all subsets of up to 30-40 features. A model with 30 features will result in more than one

billion possible models to be considered. Since we want to look at many features with many

lagged variables, this method is computationally too expensive. Therefore, two greedy3 algo-

rithm variants of the best subset selection technique are used. The first is forward stepwise regres-

sion that starts with the intercept Ø0, and then sequentially adds the feature that most improves

the model. The second is backward stepwise regression that starts with a model containing all

features, and then sequentially drops the feature that has the least impact on the model based

on the selection criteria.

Implementing this analysis is done in Python as in James et al. (2013) with the code Subset_ se-

lection.py in Appendix E.9. Since using the best subset selection algorithm is too computationally

expensive, the forward and backward stepwise selection algorithms are used and compared. The

results of the features selection methods are overviewed in the case study in Chapter 6.

It might also be interesting to see the relationship between a subset containing all the features

not extracted from AIS (non-AIS features) data and a subset that includes them. This was done

in the work of Olsen and da Fonseca (2017). However, they only considered these two combi-

nations. In this study, it was found of importance to look at all features as the non-AIS features

also may be redundant for the model. Based on the subset chosen in the forward and backward

selection process described above, the optimal subset includes AIS features, which pinpoint to

the choice of including them in the prediction model.

4.5.2 Wrapper Methods

Wrapper methods select the best subset of features, taking into account the model that shall

use them. Testing all subset combinations for all features in a neural network is very compu-

tationally expensive. Therefore, the proposed method is to test the best subsets from the filter

selection methods. Based on the features with high scores, different combination of these can

be tested. This because the mostly linear filter selection methods might not be able to cap-

3Algorithm that selects the locally optimal choice at each stage with the hope of finding a global optimum.

CHAPTER 4. FEATURE ENGINEERING 51

ture some dual dynamics that the complex neural network is able to. Also, testing subsets with

non-AIS features against subset including AIS features would give a pinpoint to the added infor-

mation based on model performance, and thereby the possible advantage of including features

extracted from AIS in a prediction model. This method is iterative in a way that different subset

configurations will be tested in the case study in chapter 6.

5 | Machine Learning Methodology

Figure 5.1: Sub-flowchart of project flow and
methodology in Machine Learning Methodol-
ogy

This chapter will go through the forecast-

ing technique and machine learning meth-

ods considered. Subsequently, the traditional

time series models and evaluation metrics are

introduced, to be used as means of evaluation

for the machine learning methods.

The machine learning models to be evalu-

ated in this project is artificial neural net-

works, given their promise in time series fore-

casting in complex problems (Li and Parsons,

1997; Gao and Lei, 2017; Kulkarni and Haidar,

2009). The focus of this study is on the po-

tential added information by including AIS in

predicting spot prices with machine learning

methods, and not to make discoveries in the

field of machine learning. Therefore, only a brief introduction to the elements of neural net-

works is given.

The coding of the machine learning models used in this study is done in the python environ-

ment with Keras (Chollet, 2015) using a Tensorflow backend, a deep learning library to model

machine learning methods (Abadi et al., 2016).

5.1 Supervised Learning

The goal of the machine learning prediction models is to map a function f̂ to an input X so that

the result ŷ = f̂ (X) is the best estimation of the real value y . The way to find this function, is

by training the model, or learning the model what the output should be given a specific input.

In this way, during training, when the model returns a prediction, its told what the prediction

should have been, and from there the network makes adjustments to alter this error. This is

called supervised learning since the inputs and outputs are known, and the objective is to dis-

52

CHAPTER 5. MACHINE LEARNING METHODOLOGY 53

cover a relationship between the two (Shapiro, 2003). On the other hand, unsupervised learning

is when only the input is known, and then the goal is to discover previously unknown patterns

in the data. Since we in this study try to estimate the best mapping function between input and

output, this is a supervised learning study.

5.2 Sliding Window Forecasting Technique

In order to make predictions with artificial neural networks (ANN), the time series dataset must

be turned into a supervised learning problem. To achieve this, a sliding window technique is

used. This technique is widely used in time series forecasting with ANN (Vafaeipour et al., 2014).

The sliding window is a set of a fixed amount of lagged features. These lagged features are feeded

into the model in order to make predictions. This method is the basis for how any time series

dataset can be turned into a supervised learning problem.

The window slides one time step at a time, and for a window size of m, the input of a model with

p features is xp,t°m , ..., xp,t in order to predict yt+1. More precisely, we want to fit a function to

some historical data from time window [t °m, t] so that f̂ (xp,t°m , ..., xp,t) = ŷt+1. The optimal

window size is basically evaluated in the feature selection process in Section 4.5 based on the

feature importance of lagged variables. The optimal window size can be found by using external

optimization algorithms. These can be implemented to optimize the size of the window based

on the performance of a model with this window size. In this way, we can get a better solution

when features selection methods are used to include the variable itself in the subset of features,

while the optimization algorithm is utilized to get the optimal window size based on this com-

bination of variables. This approach is used in this study, with the help of a genetic algorithm

described in Section 5.4 and implemented in Section 6.2.

5.3 Artificial Neural Networks (ANN)

Before we introduce how the neural networks in this study are structured for multivariate fore-

casting, each of the following sections will briefly start by describing the underlying mechanics

of neural networks, and how they are able to learn complex problems. Subsequently, we will

present how the networks are structured based on the sliding window approach to make multi-

variate forecasts.

CHAPTER 5. MACHINE LEARNING METHODOLOGY 54

5.3.1 Multilayer Perceptron (MLP)

The artificial neural network can be described as a mapping model, viewed as non-parametric,

non-linear and assumption-free, meaning that it does not make a priori assumption about the

problem (Kulkarni and Haidar, 2009). This makes it good for fitting complex problems. The net-

work consists of layers with nodes, where the computations happens. An example of the basic

form of a neural network, called a Multilayer Perceptron (MLP), is shown in Figure 5.2.

Figure 5.2: Simplified and outstretched MLP with two hidden layers A1 and A2

The inputs of the example network in Figure 5.2 is the arbitrary features x1,t , x2,t and x3,t at a

given time t , with a single output ŷt+1. The output of each layer is simultaneously the input of

the subsequent layer, starting from an initial input layer receiving the data. The general archi-

tecture of the network is given by the number of inputs, number of hidden layers, number of

neurons in the hidden layers and number of outputs. As stated above, based on the input Xt ,

the network is trained to respond with a desired output yt+1. The neuron in the MLP is also

called a perceptron. Figure 5.3 shows the components of a basic perceptron.

CHAPTER 5. MACHINE LEARNING METHODOLOGY 55

Figure 5.3: Composition of a single neuron j in the `th layer in a MLP

Here, the neuron combines input a`°1
1 , ..., a`°1

k from k neurons from the `°1th layer with a set

of weights w`
1 , .., w`

n , that either amplify or dampen that input. Thereby a significance b`j , called

the bias in the j th neuron, is added to the summation of the input-weight products and all is

feeded into an activation function (see Equation 5.1). The input, called the activation, can be

from a subsequent layer or the input layer `= 0, where x1,t , ..., xk,t is the activations. The activa-

tion function determines whether and to what extent that signal progresses further through the

network to affect the ultimate outcome. The choice of function varies from problem to prob-

lem, and layer to layer. In a basic MLP, all the neurons in the same layer have the same activa-

tion function. The most used activation function in machine learning is the Sigmoid function1.

Other, functions like the Rectified Linear Unit (ReLU) and tanh are also widely used. For re-

gression problems, the linear activation function also known as the identity function, meaning

signal in equals signal out, is preferred in the output layer (da S. Gomes et al., 2011).

a`j = g`

√
kX

j=1
w`

j a`°1
j +b`j

!

(5.1)

Here, g` is the activation function in layer `, a`°1
j the activations from the `°1th layer and a`j

the resulting activation from the j th neuron in the `th layer. From this point, this activation is

multiplied with w`+1
j to be put into neurons in the next layer and so on. A simplified represen-

tation of this is given in Figure 5.4. Here U and V denotes the weight vectors of w in front of

and after the hidden layer A respectively. This figure is a neural network with one layer A and a

vector input Xt with a single output ŷt+1.

1WHAT?

CHAPTER 5. MACHINE LEARNING METHODOLOGY 56

Figure 5.4: Simplified representation of MLP with one hidden layer and weight vectors U and V

Based on Figure 5.4, Equation 5.1 can be simplified to:

a` = ht = g (U Xt) (5.2)

where ht is the activations for the hidden layer A and further the output becomes:

ŷt+1 = g (V ht) (5.3)

The bias term is not included in these equations. However, it is accounted for as a part of the

activation. The goal is to learn the b’s and w ’s, the weights in U and V , so that the error of the

mapping model is minimized. This error for a single training example is given by the loss func-

tion L (ŷt , yt). The loss summed up for all training examples is called the cost function J (w,b).

For regression problems, the loss is usually the mean squared error (MSE) or mean absolute er-

ror (MAE) (see Section 5.5.3). The cost function measures how well the parameters w and b does

on the training set. The next step is training the network. Backpropagation is a method to calcu-

late the gradient of the cost function, basically saying how much the weights should be altered

based on the desired output. This technique is also sometimes called backward propagation of

errors, because the error is calculated at the output and distributed back through the network

layers. To optimize this process, an optimization algorithm is used. The optimization algorithm

repeats a two-phase cycle, propagation and weight update. Any gradient-based optimization al-

gorithm can be used. To optimize the computation time, the choice of optimization algorithm is

important. Historically the Stochastic gradient descent (SGD) were mostly used, but in later years

the Adam optimization algorithm, an extension to SGD, have been receiving more popularity as

it updates network weights iterative based in training data (Kingma and Ba, 2014).

According to Refenes (1995), there are three primary requirements for any successful neural

network model. These are convergence, generalization and stability. Convergence refers to the

convergence of the accuracy on a training data set. Generalization is the ability of the model

to perform with new data, and is monitored by the models’ performance on a testing data set.

Stability refers to the consistency of the network output. These training and testing sets are split

from the original data in order to resemble reality. Here the training set is used by the algorithm

to fit the parameters of the model and the testing set gives an indication of how the algorithm

CHAPTER 5. MACHINE LEARNING METHODOLOGY 57

performs on unseen observations. Overfitting occurs when a forecasting model has too few

degrees of freedom. In the case of a neural network model, it means that the model has relatively

few observations in relation to its parameters and therefore it is able to memorize individual

points rather than learn the general patterns. The likelihood of overfitting is determined by the

number of weights, known from the number of hidden layers and neurons. By including many

features, thereby many input variables, this will result in more weights from the input layer to

the first hidden layer. The likelihood of overfitting is also determined by the size of the training

set. This is further described in the data preparation process of the features in Section 4.4.

The choice of hyperparameters in an ANN model is also very important. These are parame-

ters that control the model parameters w and b, thereby the name hyper. Some of the most

important hyperparameters includes the training rate Æ, number of iterations, number of hid-

den layers, number of hidden units and choice of activation functions. Kaastra and Boyd (1996)

thoroughly review past literature on best hyperparameters, and studies vary from stating that

the number of hidden neurons should be 75 % of the number of input neurons, to indications

that an optimal number of hidden neurons will generally be found between one-half to three

times the number of input neurons. The learning rate determines how fast or how much the

model coefficients change. The number of iterations is the number of passes through the net-

work, where each pass contains a number of examples called the batch size. Batch size defines

the number of samples that are going to be propagated through the network. The smaller the

batch the less accurate estimate of the gradient in the backpropagation. However, the higher the

batch size, the more memory space is needed. In context to this, the number of epochs is also

important, where one epoch is one forward pass and one backward pass with all the training

examples. For example, for 200 training examples with a batch size of 100, it takes two iterations

to complete one epoch. The hyperparameters are often chosen based on intuition and domain

knowledge, but they can be optimized using external optimization methods. These methods

take a combination of hyperparameters and return the associated loss. Methods like Grid search

and Random search are widely used. In later years, evolutionary optimization methods like the

Genetic Algorithm have been considered for hyperparameter optimization (Miikkulainen et al.,

2017). This approach is taken in this study and is further described in Section 5.4, and the case

study in Section 6.2.

With respect to multivariate time series forecasting, and the sliding window approach intro-

duced in Section 5.2, the input neurons is the observations of p features in the time window

[t °m, t], with window size m. This will result in (m +1) ·p input neurons. For example, if we

have 8 feature time series with a sliding window size of 10, meaning that we are interested in

the lagged features in the time interval of [t °10, t] in order to predict yt+1, this will result in an

CHAPTER 5. MACHINE LEARNING METHODOLOGY 58

input of 88 neurons in the input layer of a MLP. An example model with the following notation

and two hidden layers are shown in Figure 5.5.

Figure 5.5: Example MLP model with two hidden layers, p features and window size m

5.3.2 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN) also know as Elman networks, was introduced by Elman

(1990). These networks were extensions of the original ANN with the idea of including a tempo-

ral behavior in the network. This temporal behavior is modeled as an internal state, or memory,

at each time step to process sequences of inputs like time series. The general idea of a RNN is

shown in Figure 5.6. The memory in the network is a loop, allowing information to persist, and

be passed from one time-step to the next. Here, the prediction of yt , or more specifically the

activations from the hidden layer ht°1, is again used to predict yt+1. The hidden layer A is called

a cell in the context of RNN. The input xt can be passed in as a single observation or a one-

dimensional vector of several features. In this multivariate study a vector Xt = (x1,t , x2,t , ..., xp,t)

is passed in for each time step t and p features.

CHAPTER 5. MACHINE LEARNING METHODOLOGY 59

Figure 5.6: General idea of a one layer RNN

In the context of time series forecasting the output index of ŷ in Figure 5.6 is shifted one timestep

backwards in contrast to traditional literature notation where Xt is used to predict yt . However,

this is only a notational problem and is done so that we use memory from previous history

combined with data from time t to predict at time t+1. In classical neural network like described

in Section 5.3.1, the output ŷt+1 are calculated from only the input Xt , by running computations

through the weights U and V (vectors of all the weights w) and the hidden part A. In RNN, the

activations ht°1 from the hidden layer A from the previous time step t ° 1 are again used in

computing ŷt+1. The activations ht is calculated as in Equation 5.2, but the new output given by

Equation 5.4, where a term taking account for the previous time step, is added:

ht = g (U Xt +W ht°1) (5.4)

This is visualized in Figure 5.7 where the box with the activation function g is where the hidden

neurons are located and the computation of ht happens. The new component in this network

is the recurrent weights W . So when training RNN, the new component to fit is these recur-

rent weights. Therefore, the backpropagation of errors in the case of RNN also calculates how

much the weights in W should be altered in addition to V and U , based on the desired output

yt+1.

CHAPTER 5. MACHINE LEARNING METHODOLOGY 60

Figure 5.7: Computational flow in a RNN unit, inspired by Olah (2015)

The joining of the arrows in Figure 5.7 is concatenation while splitting is just a copy. Like tradi-

tional ANN, it is also possible to stack several RNN layers on top of each other so that the output

from the RNN unit, ht , is passed into a new RNN unit in the same timestep instead of being used

to calculate ŷt+1.

A problem with training a neural network with gradient-based methods in back-propagation is

the vanishing gradient problem (Hochreiter et al., 2001). Under back-propagation, described in

Section 5.3.1, when calculating gradients of loss with respect to weights, the gradients tends to

get smaller and smaller as the process moves backward in the network. Thus, the neurons in the

first hidden layers learn very slowly as compared to the neurons in the later layers. The vanishing

gradient problem affects traditional ANN with many hidden layers as well as RNN, since the

recurrent action adds more weights. A type of RNN called the Long short-term memory (LSTM)

avoids the vanishing gradient problem by introducing gates.

5.3.3 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks were introduced by Hochreiter and Schmidhuber

(1997) to overcome the shortcomings of RNN with respect to the vanishing gradient problem

and long-term dependencies. In theory, RNNs are capable of handling long-term dependencies

by adjusting the network weights correctly. However, in practice, these models have problems in

learning long-term dependencies where information needs to span over longer time steps. This

problem was solved by Hochreiter and Schmidhuber (1997), with the introduction of LSTM with

a cell state Ct that runs straight down the entire chain with only some minor linear interactions.

The cell state represents the memory of the network. This internal state is a key feature that can

CHAPTER 5. MACHINE LEARNING METHODOLOGY 61

aid in forecasting problems. To handle a new model parameter, instead of having a single neural

network layer with one activation function (Figure 5.7), LSTMs have four (Figure 5.8) in addition

to some pointwise operations. These have different roles. There exist many different LSTM con-

figurations, but according to Greff et al. (2017) the resulting output is not very different.

Figure 5.8: Computational flow in a LSTM unit, inspired by Olah (2015)

In Figure 5.8, æ denotes a layer with a Sigmoid activation function and tanh denotes a layer with

a tanh activation function. The circles with "x" denotes a pointwise multiplication operation

and circles with "+" denotes a pointwise addition operation. This combination of layers and

a pointwise operation is called a cell gate. The roles of these gates in the LSTM unit is left to

right: The forget gate with a Sigmoid layer and a pointwise multiplication. The update gate with

a sigmoid and tanh layer, where the outputs of these are multiplied and added to the cell state

from the first gate, so the state of the cell is updated. The last gate is the output gate where the

cell state passes through a tanh activation function and is multiplied with an output of a sigmoid

layer. This output is again passed on to the next LSTM unit along with the cell state.

To get the best neural network model, the hyperparameters need to be chosen wisely. They can

be selected with external optimization methods for RNN as for ANN. When it comes to compu-

tational time, LSTMs, as RNNs in general, are time-consuming to train because of more weights

in the model. Therefore dimensionality reduction through feature selection is important. This

is described in Section 4.5.

With respect to multivariate time series forecasting, we are not interested in the output of the

intermediate LSTM units, but only outputting the prediction yt+1 based on the input from the

time window [t °m, t]. This is classified as a many-to-one RNN where a sequential input is used

to predict a fixed output, in contrast to a many-to-many visualization in Figure 5.6. The amount

of LSTM units will be the window size m+1 as m lagged variables are included in addition to the

CHAPTER 5. MACHINE LEARNING METHODOLOGY 62

current observation at time t . In contrast to the resulting MLP in Figure 5.5, this representation

does not take all the time steps in [t °m, t] for all features p into one network, but takes all

features at a given time to then loop the prediction over the window. So the input of the LSTM

is a vector Xt = (x1,t , x2,t , ..., xp,t) for m timesteps, resulting in a number of (m +1) LSTM units.

For example, if we have 8 feature time series with a sliding window size of 10, meaning that we

are interested in the lagged features in the time interval of [t ° 10, t] in order to predict yt+1,

this will result in an input 11 LSTM units in the LSTM-model, in contrast to 88 in the MLP-

model. Altering the model visualization in Figure 5.6, the context of many-to-one and the sliding

window is visualized in Figure 5.9, where a time window of size m with p features are used to

predict yt+1.

Figure 5.9: Many-to-one LSTM model with one later and window size m

5.4 Genetic Algorithm for Hyperparameter Optimization

As stated in Section 5.3.1, external optimization methods can be used to optimize the hyperpa-

rameters of a neural network model. This section will introduce how a genetic algorithm (GA)

can be used for this purpose. A genetic algorithm is a metaheuristic2 inspired by the concepts

from evolutionary theory and natural selection3. The driving force in GA is the combination and

exchange of chromosome material during breeding of individuals. The main parts of the opti-

mization process in a GA is reproduction, crossover and mutation (Bodenhofer, 2003). Firstly,

an initial population is created, and each individuals fitness calculated. Regarding optimiza-

tion, this fitness is the value of the objective function. Reproduction is the creation of a mating

pool for randomly selected individuals. The selection is random, but with a bias towards those

best fitted. Individuals are mated randomly in the crossover part, where the mating process

2Higher-level heuristic designed to generate and find a good feasible solutions that are not (necessarily) optimal.
3Term popularized by Charles Darwin describing the survival and reproduction of individuals based on his four

postulates (1859, On the Origin of Species)

CHAPTER 5. MACHINE LEARNING METHODOLOGY 63

produces individuals with new characteristics by copying parts of the fit individuals to the next

generation (Shapiro, 2003). The last part is the mutation of some individuals. This only plays

a secondary role in GA, but is useful to produce valuable building blocks which did not exist in

the population from the start. Miikkulainen et al. (2017) states that this method may be good for

hyperparameter optimization, and Shapiro (2003) describes that a GA is an intelligent approach

to trial and error. The procedure of a GA is shown in Figure 5.10.

Figure 5.10: Structure and process of genetic algorithms

In the context of hyperparameter optimization, the initial population is created by randomly

generating binary tuples of hyperparameters based on some parameter limits. For example like

the one in Table 5.1, where each position is assigned to a specific hyperparameter. Thus, the

created structure needs the upper limit of the hyperparameter to be defined in advance. Based

on hyperparameter ranges, these limits are chosen based on previous work and industry prac-

tice. The table is only an example, and the configuration used in this study are overviewed in

the case study in Section 6.2.

Table 5.1: Example of a configuration of an individual in a Genetic Algorithm

Individual structure [w s, w s, w s,hn,hn,hn,hn]

Random binary tuple configuration [1 , 0 , 1 , 1 , 0 , 0 , 1]

Corresponding window size (w s) Integer([1 , 0 , 1]) = 5

Corresponding hidden neurons (hn) Integer([1 , 0 , 0 , 1]) = 9

After the initial configuration of individuals, the fitness of each individual is calculated based on

cross-validation accuracy of the machine learning algorithm with these specific hyperparame-

ters. These tuples are bit strings where a part of the tuple is connected to, i.e., the number of

hidden layers, and another part to the learning rate etc. The fitness is calculated based on the

validation set. So the model is trained on a part of the training set, and validated on the vali-

dation set (see Section 4.4). After fitness calculation, the individuals are ranked based on their

CHAPTER 5. MACHINE LEARNING METHODOLOGY 64

relative fitness, the network performance on the validation set. Then the worst-performing hy-

perparameter tuples are replaced with new hyperparameter tuples generated through crossover

and mutation. This process is repeated until satisfactory algorithm performance is reached or

algorithm performance is no longer improving. The termination criterion used in this study is

the number of generations. One generation is one cycle through the algorithm. The best indi-

vidual after all the generations is the optimal result.

Another important notion to mention is the effect of randomness in the neural network. The

network will produce different results for separate training sessions with the same hyperpa-

rameters. This is a result of randomness when initializing the network. More specifically, the

different initial configuration of weights in the network which are randomly set at training start.

This will cause two identical networks to produce slightly different results for separate training

runs. A solution to this is to train and test the same network multiple times and then average the

results. However, to do this for every individual in the genetic algorithm is very computationally

expensive. A solution to this is to run the genetic algorithm as usual, and then subsequently test

the 5-10 best performing individuals multiple times and the average. The total process can be

overviewed as follows:

1. Create a binary tuple structure based on hyperparameter ranges and generate an initial

population of solutions.

2. Run the genetic algorithm for all the generations, with fitness calculation, selection, crossover

and mutation.

3. Test the best performing individuals multiple times and average out the results to get the

overall best individual.

The advantage of using a genetic algorithm is that it is easy to adapt and it is not required to

model the function, and the mutation prevents the function to get trapped in local optima. On

the other note, it is computationally intensive for complex fitness evaluation. The implementa-

tion and the algorithm architecture used in this project is found in the case study in Section 6.2

and as a part of the scripts MLP.py and LSTM.py in Appendix E.10 and E.11.

5.5 Model Evaluation Method

To evaluate the performance of the machine learning models, various metrics and baseline

models are used to quantify the relative error and accuracy of the models. The choice of per-

formance metric should be connected to the ultimate goal of the study. If the goal is to provide

CHAPTER 5. MACHINE LEARNING METHODOLOGY 65

a risk management tool, the direction of the price may be more interesting than the magnitude

of the prediction. If the aim is profitability, the magnitude would be more interesting to inves-

tigate. It is also challenging, if not impossible, to successfully predict the magnitude (Kulkarni

and Haidar, 2009). However, the scope of this study is general, so both the magnitude and di-

rection of the prediction is of interest. In addition to statistical error and accuracy metrics, the

persistence and Vector Autoregressive (VAR) model is used to baseline the results of the predic-

tion model. These models are widely used in multivariate forecasting (Olsen and da Fonseca,

2017) and to baseline shipping commodities (Alquist et al., 2013), respectively.

5.5.1 Persistence Model

To get a relative view of the models’ performance, we can develop a model to baseline and com-

pare the results to. A model that can be used as a baseline, is the persistence model, also called

the no-change model. This is a heuristic that uses the previous time step to predict the expected

outcome at the next time step. It can be represented in the following way:

ŷt = yt°1 (5.5)

Here ŷt is the prediction of yt at time t , and yt°1 is the observation at the previous time step

t °1. This model is good for baseline forecast because it is simple and fast to implement, in that

the method requires no training. The persistence model is frequently used in forecasting of oil

prices (Alquist et al., 2013). Despite the models’ simplicity, it appeared to be a good baseline and

performed better than other heuristic approaches. Therefore, the persistence model is used for

its simplicity and fast implementation.

5.5.2 Vector Autoregressive Model (VAR)

Traditional time series models such as the univariate autoregressive integrated moving average

(ARIMA) can also be used for baseline forecast and are often used in economic studies. In mul-

tivariate forecasting, the vector autoregressive (VAR) model is a common option, as it often pro-

vides superior forecasting performance to those from univariate models (Olsen and da Fonseca,

2017). As a traditional time series model, VAR requires the data to be stationary. Stationarity

was found by visualization and the Augmented Dickey-Fuller test (Fuller, 1996) from Section

4.4, with results presented in Appendix D. The VAR model can be defined as follows:

Yt = A1Yt°1 + A2Yt°2 + ...+ AmYt°m +ut (5.6)

CHAPTER 5. MACHINE LEARNING METHODOLOGY 66

Here, a vector of all the p features and the prediction is predicted based on the previous m

observations, which is the window size. This vector Yt , is the vector of all features at time t ,

which includes both the features and the prediction. Hence, Yt = [x1,t , x2,t , ..., xp,t , yt]. For p

features, Ai is the ((p+1)§(p+1)) coefficient matrix, since we have p features and one variable to

predict, the price. ut is the Gaussian zero mean white noise, also known as the error term.

Using the same features and sliding window technique as for the machine learning models, the

optimal window size can be found by using AIC and BIC described in the features selection

process in Section 4.5. Thus, finding the optimal window size with AIC using the same features

as for the other models, multivariate forecasts can be carried through, and we can baseline our

neural network performance against these.

5.5.3 Metrics Used In Statistical Modeling

Various error metrics for measuring the accuracy of the model on the testing set is used. Three

different metrics are used to evaluate the magnitude accuracy of the prediction model, and one

metric is used to evaluate the directional accuracy. Firstly, the Root Mean Square Error (RMSE)

is considered for magnitude accuracy evaluation. This is the most used measure of accuracy for

artificial neural networks. RMSE is given by the following equation:

RMSE =
s

1
n

nX

t=1
(yt ° ŷt)2 (5.7)

where ŷt is the prediction of the real value yt at time t on a set of n testing examples. Secondly,

the Mean Absolute Error (MAE) are also considered as a performance metric. The MAE of the

prediction model is given by:

MAE = 1
n

nX

t=1
| yt ° ŷt | (5.8)

The MAE is better in describing average error while the RMSE has the benefit of penalizing larger

errors. Therefore both are considered in the evaluation. Further another metric, the Mean Ab-

solute Percentage Error (MAPE) can be calculated from MAE, by calculating the relative MAE in

relation to the true observation:

MAPE =
µ

1
n

nX

t=1

| yt ° ŷt |
| yt |

∂
·100% (5.9)

Lastly, to measure the directional accuracy of the prediction, the Directional Accuracy Ratio

(DAR) is used. The metric is used by both Gao and Lei (2017) and Kulkarni and Haidar (2009) to

CHAPTER 5. MACHINE LEARNING METHODOLOGY 67

evaluate oil price movements. DAR, also known as the success ratio of direction prediction, can

be calculated the following way:

DAR = 1
n

nX

t=1
dt (5.10)

where dt = 1 if (ŷt ° yt°1)(yt ° yt°1) > 0 and dt = 0 otherwise. The data is pre-processed with

differencing and normalization described in Section 4.4. This means that the results only needs

to be inverse-normalized and then the direction is seen from the sign of the differenced data. To

compare DAR to the persistence model in Section 5.5.1 is not possible since the direction of the

price for one step to another is nothing with the persistence model. Therefore, this metric will

be compared to a random guess known as a coin flip, meaning that there is a 50 % chance of the

price going up or down, resulting in a DAR = 0.5.

6 | Case Study

This chapter will present the details and procedure for the case study, which investigates whether

multivariate machine learning forecasting methods using features extracted from AIS data adds

additional information in predicting short-term fluctuations in the Mont Belvieu propane spot

price. To potentially identify the added performance of including AIS features in forecasting the

spot price, the models developed will be executed for both a subset including AIS features and a

subset without any features extracted from AIS data, but only previous price and market history.

These sets are denoted as AIS and non-AIS features, respectively. In this way, the value of the

added information might be seen through the performance metrics.

6.1 Feature Selection

This section presents the results of the feature selection methods, with the features created in

Chapter 4. Keep in mind that all the scores are based on the stationary transformed data. In this

way, we try to capture the underlying mechanics of the time series.

6.1.1 Results of Filter Methods

Calculating the feature importance scores from the filter methods; lasso regression, linear cor-

relation, linear regression, Maximal Information Coefficient (MIC), random forests and ridge

regression, introduced in Section 4.5, yields the feature importance scores in Appendix F. Here

each feature has been tested for lags down to 20. This means that to predict price(t+1), the Mont

Belvieu spot price, all features in the range of [t , t °20] are tested. As stated in Section 4.5, the

scores are ranked and normalized in the scale of [0,1], where higher rank equals higher score

based on a specific method. In addition to the methods, another column has been added to the

results in Appendix F, the mean scores of the features. This mean score is the average perfor-

mance of the feature over all the filter methods. The mean score is again normalized in the scale

of [0,1] where the higher score refers to higher importance in predicting price(t+1). For example,

from Figure 6.1, the feature on capacity percentage in the East Pacific, capacity_EstP_percent at

time (t-9), scores 0 with respect to lasso regression, 0.09 with linear correlation, 0.16 with linear

68

CHAPTER 6. CASE STUDY 69

Figure 6.1: Arbitrary row of normalized features importance scores, from Appendix F

regression, 0.48 with MIC, 0 with random forests and 0.16 with ridge regression. This results in

a mean score of 0.15.

Based on the mean scores for all the features, the best features using the proposed filter methods

are overviewed in Figure 6.2. We observe that in the context of these specific filter methods, the

best predictor of the Mont Belvieu price at time t +1, is the price at time t in addition to some

other spot prices, the crude oil price and some capacity counting features. Namely the capacity

in the Atlantic, and the percentage capacity in the East Pacific.

Figure 6.2: Top features based on mean features importance score

The last filter method introduced in Chapter 4, is the linear subset selection. Here, subsets with

features are generated and compared with respect to different statistical measures. This method

fits a linear regression model from Section 4.5.1 and estimates the parameters with Ordinary

Least Squares (OLS) for each possible combination of features. The model introduced here se-

lects the best subset in the context of linear regression. As we did with the linear regression

filter method, we can investigate the magnitude of the coefficients of the linear model, so that

the most important features should have the highest coefficients values given that the features

are normalized. The number of features to include in the optimal subset was chosen based on

Akaike Information Criterion (AIC), and the absolute value of the coefficients of these features

are plotted in Figure 6.3, where only the best features are visualized. Again, we observe that the

previous price is a good predictor in addition to spot prices and some capacity measures. This

is further discussed in Chapter 7.

CHAPTER 6. CASE STUDY 70

Figure 6.3: Top features from linear subset selection based on model coefficient absolute value

The main takeaway from the results of the filter methods, is that the historical price in addition

to other spot prices and the crude oil price, receive high scores all through the selection. With

respect to features extracted from AIS data, features that involve the counting of capacity scores

high, likewise. These results are further discussed in Chapter 7.

6.1.2 Wrapper Selection

Based on the features with high scores from the filter selection methods, different combinations

of these are tested with regard to the model that shall subsequently use them. First of all, the

features with high scores are tested, but also tested in combination with other lower ranking

features, as the mostly linear filter selection methods might not be able to capture some dual

dynamics between features that the complex neural network is able to. The resulting best subset

concerning model performance is overviewed in Table 6.1, and further discussed in Chapter

7.

CHAPTER 6. CASE STUDY 71

Table 6.1: Best subset of AIS and non-AIS features from filter and wrapper selection

non-AIS subset AIS subset

price (spot_MB) price (spot_MB)

spot_NWE spot_NWE

spot_FEI spot_FEI

spot_CP spot_CP

oil_WTI oil_WTI

capacity_NWE_percent

capacity_Atl_percent

capacity_EstP_percent

6.2 Genetic Algorithm Architecture

As described in Section 5.4, a genetic algorithm (GA) is used to optimize the hyperparameters of

the model. Kaastra and Boyd (1996) thoroughly reviewed past literature on best hyperparame-

ters in applications of neural networks in finance. The studies vary from stating that the number

of hidden neurons should be 75 % of the number of input neurons, to indications that an op-

timal number of hidden neurons will generally be found between one-half to three times the

number of input neurons. These findings set the boundaries for the search space of the GA. A

common practice in time series forecasting using neural networks is also not to have the num-

ber of layer exceeding three layers. Kaastra and Boyd (1996) states that networks with one layer

and a large number of hidden units are capable of approximating any continuous function, and

that in practice, neural networks with one and occasionally two hidden layers are widely used

and have performed very well. Further increasing the number of layers might lead to overfit-

ting.

The window size can be estimated through the importance of lagged variables, but can also be

a part of the GA as a decision parameter. To get a better solution, features selection methods

are used to include the variable itself in the subset of features, while the GA is utilized to get the

optimal window size based on this combination of variables. This because the complex neural

network may be able to capture the non-linear dynamics between the features.

As described in Section 5.4, an individual in the GA is represented by a binary tuple. Assigning

different positions of this tuple to different hyperparameters within their ranges, makes it possi-

ble to use GA for hyperparameter optimization. To get the hyperparameter value, the part of the

individual’s binary tuple representing this hyperparameter, is converted to an integer. There-

CHAPTER 6. CASE STUDY 72

after, for some of the parameters, a simple calculation is done to avoid pitfalls like the tuple

becoming a binary string equal to zero. These calculations also makes the binary tuple shorter

in length, thus providing a more efficient computational process. If the tuple becomes a binary

string equal to zero, for those who have not an additional calculation of plus one, the fitness is

set to an inferior value so that this individual has a low chance of reproduction.

When calculating the fitness, the binary tuple is converted to its respective hyperparameters,

and a neural network with these parameters are trained on a part of the training set, and evalu-

ated on the validation set. This performance on the validation set, measured by taking the MAE

of the predictions, is the fitness of the individual. Thus lower fitness is better, so to make this a

maximization problem to maximize fitness, the fitness is multiplied by negative one.

6.2.1 MLP Architecture

Table 6.2 overviews the hyperparameters and their respective binary tuple structure in the ge-

netic algorithm for our Multilayer Perceptron (MLP) model. Also, the calculation of the con-

verted integer and the resulting set and range of the hyperparameters are showed. The ranges

are based on industry practice and previous literature. For example, if the sliding window binary

tuple is [1,0,0,1,0], the corresponding window size is 19.

Table 6.2: Genetic algorithm decision parameter structure and corresponding range for MLP

Hyperparameter/component Binary tuple structure To integer Calculation Range/set

Sliding window size [w s, w s, w s, w s, w s] ws ws + 1 [1, 2, ... , 32]

Number of hidden layers [l y, l y] ly ly [1, 2, 3]

Neurons in hidden layer 1 [h1,h1,h1,h1,h1,h1] h1 (h1 + 1) · 4 [4, 8, ... , 256]

Neurons in hidden layer 2 [h2,h2,h2,h2,h2,h2] h2 (h2 + 1) · 4 [4, 8, ... , 256]

Neurons in hidden layer 3 [h3,h3,h3,h3,h3,h3] h3 (h3 + 1) · 4 [4, 8, ... , 256]

Learning rate [l r] lr 10°(lr+1) [0.01, 0.1]

If the optimal number of hidden layers is lower than two or three, the algorithm is designed to

neglect the number of hidden neurons in the second and third layer, respectively. Combining

all these binary tuple structures into single tuple results in a total tuple length of 25, also known

as the generation length. Running the algorithm for 100 individuals, 20 generations and the

tuple structure described above, the best performing individual is presented in Table 6.3. As

stated in Section 5.4, the 5-10 best individuals for the GA are again tested and reviewed, so Table

6.3 presents the best of these individuals, the individual with best Mean Absolute Error (MAE)

CHAPTER 6. CASE STUDY 73

on the validation set. Different combinations of activation functions in the layers were also

tested.

Table 6.3: Main characteristics of the best MLP

Hyperparameter/component Values/types

Sliding window size 5

Number of hidden layers 3

Number of hidden neurons in layer 1 30

Number of hidden neurons in layer 2 6

Number of hidden neurons in layer 3 2

Activation function in hidden layers Sigmoid

Learning rate 0.1

The genetic algorithm along with the MLP model can be found in the script MLP.py in Appendix

E.10.

6.2.2 LSTM Architecture

Table 6.2 overviews the hyperparameters and their respective binary tuple structure in the ge-

netic algorithm for the Long Short-Term Memory (LSTM) model. Also, the calculation of the

converted integer and the resulting set and range of the hyperparameters are showed. The

ranges are based on industry practice and previous literature. Because of the recurrent nature

of LSTM in addition to model tests, no well-preforming architecture had more than two hidden

layers. Therefore, the number of hidden layers range was reduced by one. The ranges of the

number of neurons are also decreased because of the input difference between LSTM and MLP.

In a MLP, the whole window for all features is feeded into the network, giving a number of input

neurons equal to (m +1) ·p for p features and a window size of m. In a LSTM each time step is

subsequently feeded into the network resulting in the number of input neurons being equal to

the number of features p.

CHAPTER 6. CASE STUDY 74

Table 6.4: Genetic algorithm decision parameter structure and corresponding range for LSTM

Hyperparameter/component Binary tuple structure To integer Calculation Range/set

Sliding window size [w s, w s, w s, w s, w s] ws ws + 1 [1, 2, ... , 32]

Number of hidden layers [l y] ly ly + 1 [1, 2]

Neurons in hidden layer 1 [h1,h1,h1,h1,h1] h1 (h1 + 1) · 2 [2, 4, ... , 64]

Neurons in hidden layer 2 [h2,h2,h2,h2,h2] h2 (h2 + 1) · 2 [2, 4, ... , 64]

Learning rate [l r] lr 10°(lr+1) [0.01, 0.1]

As for the MLP, combining all these binary tuple structures into single tuple results in a total

generation length of 17. Running the algorithm for 100 individuals, 20 generations and the tuple

structure described above, the best performing individual is presented in Table 6.5.

Table 6.5: Main characteristics of the best LSTM

Hyperparameter/component Values/types

Sliding window size 27

Number of hidden layers 1

Number of hidden neurons in layer 1 40

Learning rate 0.1

The genetic algorithm along with the LSTM model can be found in the script LSTM.py in Ap-

pendix E.11.

6.3 Forecasting Results

As we forecast with the sliding window technique, when sliding the window one timestep at

a time, we predict the next step based on the past features in the window. The plots in the

following subsections are the realized inverse transformed series, as we forecast the difference

normalized series in this study.

The neural network models will produce different results for separate training sessions with the

same hyperparameters. This is a result of randomness when initializing the network. More

specifically, the different initial configuration of weights in the network. Therefore the same

models has been trained and tested 10 times with the same hyperparameters, to then take an

average of the results.

CHAPTER 6. CASE STUDY 75

6.3.1 Results of MLP

Training the MLP on the training set with the optimal hyperparameters found in Table 6.3 results

in the one-step-ahead forecasts with non-AIS features in Figure 6.4, and AIS features in Figure

6.5. The code for the neural network model, MLP.py, can be found in Appendix E.10.

Figure 6.4: One-step-ahead weekly MLP forecasts with non-AIS features

Figure 6.5: One-step-ahead weekly MLP forecasts with AIS features

CHAPTER 6. CASE STUDY 76

6.3.2 Results of LSTM

Training the LSTM on the training set with the optimal hyperparameters found in Table 6.5 re-

sults in the one-step-ahead forecasts with non-AIS features in Figure 6.6, and AIS features in Fig-

ure 6.7. The code for the neural network model, LSTM.py, can be found in Appendix E.11.

Figure 6.6: One-step-ahead weekly LSTM forecasts with non-AIS features

Figure 6.7: One-step-ahead weekly LSTM forecasts with AIS features

CHAPTER 6. CASE STUDY 77

6.3.3 Results of VAR

The traditional multivariate Vector Autoregressive (VAR) model is widely used in multivariate

forecasting in the maritime industry. It is used as a baseline for the forecasts in this study, in

addition to the no-change model, to evaluate the performance of the machine learning models.

As for the neural network models, the VAR-model is fitted on the training set and tested on the

testing set. Using AIC as a selection criterion for the number of lags, we find that the optimal

lag is of order 2. Predicting one-step-ahead with the sliding window method, yield the non-

AIS features forecast in Figure 6.8, and AIS features in Figure 6.9. The code for the VAR-model,

VAR.py, can be found in Appendix E.12.

Figure 6.8: One-step-ahead weekly VAR forecasts with non-AIS features

CHAPTER 6. CASE STUDY 78

Figure 6.9: One-step-ahead weekly VAR forecasts with AIS features

7 | Discussion

This chapter starts by evaluating the results form the case study. In this way, we can adequately

revise the methodology used in this study. Further, a general review of the methodology is pre-

sented and the underlying assumptions that have been made discussed.

7.1 Evaluation of Case Study

7.1.1 Evaluation of Forecast Results

Table 7.1 summarizes the results for predictions of the weekly average Mont Belvieu propane

spot price. The summary includes all the prediction and baseline models with and without

features extracted from AIS data. The values in the table measure the magnitude of the forecast

error with Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute

Percentage Error (MAPE), and the directional accuracy measured by the Directional Accuracy

Ratio (DAR). By comparing these metrics, we can provide evidence for the predictive ability of

each approach. The evaluation of the forecasts is done by the Python script Model_evaluation.py

in Appendix E.13.

Table 7.1: Performance metrics for the different models on the testing set

Model RMSE [USD/mt] MAE [USD/mt] MAPE [%] DAR [-]

Persistence 14.15 12.15 2.49 0.5

MLP with non-AIS 13.08 11.63 2.37 0.57

MLP with AIS 13.48 11.19 2.28 0.65

LSTM with non-AIS 13.03 10.83 2.23 0.63

LSTM with AIS 12.46 10.41 2.14 0.60

VAR with non-AIS 13.17 11.05 2.25 0.54

VAR with AIS 12.83 10.64 2.15 0.57

Note: Boldface indicates the best performance score

Comparing the performance metrics for all the models, we find them to outperform the no-

change persistence model along all metrics considered significantly. This indicates that the

79

CHAPTER 7. DISCUSSION 80

Mont Belvieu propane spot price is to some extent predictable in weekly forecasting horizons,

utilizing predictors including market features with or without features extracted from AIS data.

The above results are indicative of the superiority of the Long Short-Term Memory (LSTM)

model with AIS data on all the magnitude error metrics. While in the case of DAR, the direc-

tional accuracy, the Multilayer Perceptron (MLP) has the best performance. However, the per-

formance of the MLP is slightly worse than that of Vector Autoregressive (VAR) and LSTM on

the other metrics. The good performance of DAR can be due to randomness, as the testing set

is relatively small and has a distinctly upwards trend. To get a higher quality result, a more ex-

tended dataset will yield more accurate evaluation. However, as quality AIS data is a relatively

new development, this was not possible to achieve in this study.

To compare how the performance of the models are against the persistence model, we can in-

vestigate the relative metrics for the magnitude errors. This is viewed in Table C.5. In this way,

we observe that for example by looking at MAE, the LSTM model performs 14.3 % better than

the persistence model, with AIS data, and 10.8 % better than the persistence model, without AIS

data.

Table 7.2: Relative performance of the different models to the persistence model

Model Rel. RMSE Rel. MAE Rel. MAPE

Persistence 1 1 1

MLP with non-AIS 0.924 0.957 0.953

MLP with AIS 0.952 0.921 0.914

LSTM with non-AIS 0.921 0.892 0.893

LSTM with AIS 0.881 0.857 0.859

VAR with non-AIS 0.907 0.909 0.862

VAR with AIS 0.930 0.876 0.902

Note: Boldface indicates the best performance score

Furthermore, to better visualize the performance of the different models, we have sorted and

plotted the relative metrics in Figures 7.1-7.3.

CHAPTER 7. DISCUSSION 81

Figure 7.1: Sorted relative RMSE against the persistence model

Figure 7.2: Sorted relative MAE against the persistence model

Figure 7.3: Sorted relative MAPE against the persistence model

The first objective of this study was to investigate if AIS data adds additional information in

predicting short-term freight rates. From the tables and figures above, we see that both the

LSTM and traditional VAR-model perform better with the subset including AIS data. However,

further model tuning and higher quality of AIS data may return different feature qualities which

again may change the results.

The secondary objective of the study was to investigate if machine learning models achieve

higher performance than traditional models in predicting short-term freight rates. From the

analysis above, we identify the superior performance of the LSTM model with AIS data. More-

over, concerning MAE and MAPE, the LSTM model outperforms the VAR-model on both sub-

sets of features. With respect to RMSE, the VAR without AIS data performs better than the LSTM

CHAPTER 7. DISCUSSION 82

without AIS. This performance may be due to the neural network models being trained with

MAE as a loss function. Thus, the optimal model selected by the genetic algorithm is the model

with the lowest MAE on the validation set. The MAE is better in describing average error while

the RMSE has the benefit of penalizing more substantial errors because it is more sensitive to

outliers. From a regression standpoint, MAE is considered a better metric as RMSE does not

describe average error alone. However, with the testing set only including 34 observations, we

can not state for that the results will be identical, or significantly in favor of LSTM, on a different

training set or longer time history.

Another important remark is that the MLP-model is not able to generalize as good as the LSTM-

model, and the model performs worse than the VAR-model in most of the metrics considered.

Further model tuning could produce better results. Still, we observe that the MLP with AIS data

performs better than the non-AIS considering MAE and MAPE. On the other note, in the case of

RMSE, the performance is worse. This again understates the model training with MAE and the

difference in error interpretation between MAE and RMSE.

7.1.2 Evaluation of Features Selected

Evaluating the results of the filter methods in Appendix F, the scores vary not only between the

linear and non-linear methods but also between the univariate and multivariate methods. Lin-

ear and Ridge regression, both being linear multivariate methods, have similar trends in the re-

sulting scores. While, linear correlation, also being linear, have some different results from these

two as this method is univariate. The Lasso regression (L1 regularization) have many features

receiving the score of zero, something that is the result of the Lasso minimizing the less impor-

tant feature’s coefficients Ø to zero, thus removing some features altogether. On the contrary,

Ridge regression (L2 regularization) does not have this element. Maximal Information Coeffi-

cient (MIC) and Random Forests are the only methods considered that can capture non-linear

relationships. Of these, the MIC is univariate while Random Forests are multivariate. We observe

in the results of the MIC that many counting and capacity features receive high scores, identify-

ing a possible non-linear relationship between vessel positioning and the Mont Belvieu propane

spot price. The resulting best AIS-subset also incorporated these types of features.

Concerning the features used in forecasting, not all features created were found to be good pre-

dictors of the spot price, even though some of the literature states otherwise. For example the

theory about the causal relationship between speed and freight rates. The LPG marked being

dictated by geographical price arbitrage and a small fleet (Adland et al., 2008), the speed might

not be a substantial market driver. Tsioumas (2016) and Ronen (1982) states that shipowners

CHAPTER 7. DISCUSSION 83

tend to speed up when rates are high to get the most out of the favorable market conditions.

This argument favor that freight rates lead to changes in speed. However, concerning the AIS

data used, some of the data have poor quality with gaps, especially in the early stages before

2013. In addition to the speed being acquired from single AIS signals, we do not have an overall

correct speed profile of the fleet. The speed acquired from AIS data is the Speed Over Ground

(SOG), and not speed through water, something that also influences this feature.

Counting vessels in large areas have little room for errors and is a straightforward feature extrac-

tion task. This might be why the features based on the percentage of fleet capacity in polygons

are good predictors, in the context of AIS data quality. Furthermore, these features take the

change in fleet size into account, which again gives a better picture of the supply of vessels. The

specific features that gave the best result were the percentage capacity counting in the North

West Europe, Atlantic, and East Pacific. All of these areas are close to Mont Belvieu in Texas.

Thereby, knowing the percentage of ships in the surrounding areas close to the port, was useful

information. However, the capacity features created for the Gulf of Mexico did not show this

promise. This might be due to a smaller polygon relative to the other polygons. Mont Belvieu

is located in this small area, so knowing the weekly fleet density so close to the loading port

may be too late in a contract horizon. Also, as the Gulf of Mexico is a high traffic area of vessels,

inference errors may have occurred.

Another feature that did not result in more prediction power is the weighted arithmetic mean

sailing distance from the whole fleet to Mont Belvieu. Smaller vessels that are continuously sail-

ing in smaller markets on the other side of the globe may be the reason for the poor predictor,

damaging some of these results. Another important mention is data quality, as this feature is

very sensitive to gaps. Also, as proposed by Vit Prochazka, knowing the vessel position at the

point of contract fixation may provide useful input. This could have been done by merging ex-

ternal contract fixtures data with AIS data to find the geographical position of a vessel at the

moment it is fixed. Knowing these positions gives an idea about the supply side of the market,

how it is changing with different market conditions and where to count the number of vessels.

One could then calculate the distance from the position to the loading port and further inves-

tigate high-density areas of contract fixation positions. However, we were unable to acquire

such contract fixture data. In the context of sailing distances, one could measure weekly sailing

distance for the uncontracted vessels, or vessels close to the end of a contract.

Concerning the non-AIS features, we observe from the filter methods and the optimal subset

that the other propane spot prices provided valuable information in predicting the Mont Belvieu

spot price. This may indicate that some rates discover market information before others, and

as it is the price of the same commodity, the relationship between the features is coherent. The

CHAPTER 7. DISCUSSION 84

West Texas Intermediate (WTI) Cushing, Oklahoma, crude oil price also scores well in the fea-

tures selection process. This may be due to the distinctive feature of the LPG shipping market,

being driven by “supply push” rather than “demand pull”. The main forwarders of LPG are dom-

inated by the major oil and gas companies, and as LPG is not a raw material but extracted as a

by-product of gas processing and crude oil refining, the crude oil price also seems like a good

predictor.

7.2 Methodology

7.2.1 Forecasting and Study Horizon

A distinctive characteristic of the maritime shipping industry is the shipping cycles. These cycles

arise as a result of times with low freight rates, resulting in less construction in the maritime

sector and increasing the number of scrapped vessels. As demand increases and more transport

services are needed, the supply cannot be adjusted rapidly, freight rates rise, and construction of

new vessels starts again, which subsequently produces excess supply and a lowering of freight

rates. The duration of the cycles is highly unpredictable, but studies show that a typical cycle

lasts about seven years on average (Stopford, 2009). As the use of S-AIS data to provide useful

insight is a relatively new concept in contrast to the old nature of the shipping industry, in the

worst case the data collected can be within one of these cycles. Ideally, the data collected should

reflect a whole shipping cycle to capture the entire market dynamics. However, for all practical

considerations, this is impossible with the data at hand. Thus, as more AIS data is acquired and

the collection reflects longer history, the potential advantage of using AIS data to predict freight

rates increases.

The forecasting horizon chosen in this study is week-to-week one step ahead forecasts. Also, we

forecast the average weekly prices. We reviewed the problem of investigating daily fluctuations

in Section 2.2 as we obtain daily price reports. We found that looking at daily vessel positioning

may exclude some vessels for which AIS data was not recorded this specific day. Furthermore,

interpolating the AIS data to daily observations was also deemed unfit as this might include

vessels being laid up over a substantial period or, for large gaps, for example causing the inter-

polation to give vessel signals over land areas. Another option was to look at monthly averages.

However, concerning using AIS-features in predicting freight rates, in a month, a vessel may

have sailed a long distance. Accordingly, looking at average vessel positioning within a month

may give misleading or averaged out effects. Hence the shorter weekly forecasting window used

CHAPTER 7. DISCUSSION 85

in this study is evaluated to be sufficient, and the best alternative with the data at hand.

7.2.2 Vessel Search

Reviewed in Section 3.3.1, the heuristic vessel classification method proposed by Smestad and

Rødseth (2015) only captures larger vessels. Because we in this study want to capture the whole

LPG fleet, we developed a new vessel search method. However, this method requires additional

data, in contrast to the approach by Smestad and Rødseth (2015). We utilize data from Seaweb,

and find 1469 unique vessels, based on IMO numbers. The database also includes MMSI num-

bers for these vessels, but only using these will give a faulty vessel set. The method introduced

is based on using the fact that IMO numbers follow the hull of the vessel through its time span.

We find 1714 unique MMSI numbers from the respective IMO numbers. The main disadvantage

of this method is that we do not know if some interference error or erroneous signal reported a

wrong MMSI. Thereby identifying a non-LPG vessel and including it in the set. However, based

on the overall small fleet size, we assume this error to be relatively low and would not have

a large impact on the features created. In general, we find the vessel search method to be of

added value in the methodology.

7.2.3 Feature Engineering

As stated by Ng (2011), features selection is an essential part of machine learning. However, if

the data used to create these features is bad, we can not expect the features selection methods

to perform well. One good example of this is the speed features created in the case study. In Sec-

tion 4.3.4, we assumed that the speed reporting is consciously distributed over the operational

time of the vessels to best reflect the real speed of the fleet. However, because AIS is sent by sig-

nals, and the signal obtained in this study are not continuously distributed, the speed collecting

may have changed over time. This for example coming from a change in satellite coverage, less

interference over time or more signals in high activity areas like ports or close to shore. Based

on the training and testing sets, this element may have a faulty effect on the machine learning

models. Training and validating the results on two types of data series will cause the model to

wrongly set the weights and biases, giving a poor performance on the validation set. This may

be the reason for the bad performance of the sailing speed and deviation features. Showing

that, since the underlying data collection that the features are based on changes, the consis-

tency of the feature are not kept, making the assumption that the difference between speeds at

different time points reflect the real speed difference, nonsufficient. Leonhardsen (2017) found

CHAPTER 7. DISCUSSION 86

that the speed through water (STW) showed less volatility than the speed over ground (SOG).

Ronen (1982) states that the alternative cost of time exceeds the gains from fuel optimization

when rates are high. This theory promotes a higher sailing speed. As the best measure for the

resistance of the vessel, and subsequently the fuel consumption, is given by STW, this is again

affecting the reliability of the speed features extracted from AIS data.

In the context of the Mont Belvieu spot price, and the LPG market, AIS data seem to add ad-

ditional information in prediction the spot price. However, this might not be the case in other

industries, as creating features is a market specific question. The LPG market has some distinc-

tive features, one being driven by supply push rather than demand pull. Another distinctive

characteristic is that the changes in the LPG spot market demand may be dictated by the pres-

ence of geographical price arbitrage (Adland et al., 2008). The latter may be an important pin-

point to why information about global vessel positioning gave better results for the prediction

models.

The features selected in the case study are thoroughly discussed in Section 7.1.2. The features

selection methods utilized in this study incorporates a wide range of methods, being both lin-

ear and non-linear, but also univariate and multivariate. With the diverse results from the filter

methods, we see it advantageous to combine these methods to get a better overview of the po-

tential underlying predictive ability. By utilizing different methods, we can evaluate the results

of each one, increasing the decision support for which features to subsequently select. Using

the wrapper method by evaluating different subset combinations based on the best filter fea-

tures, we achieve forecasts that are better than the persistence model. With this combination of

methods in an iterative process, we find it favorable to utilize this approach.

7.2.4 Machine Learning Process

It is essential to keep in mind that we forecast the transformed series, differenced and normal-

ized, from Section 4.4. We therefore try to learn the models to generalize the weekly difference,

and subsequently inverse transform the series to its original form after the predictions to eval-

uate the results. To just do this, in this way, might give misleading performance results. By

looking at the forecast plot in Figures 6.4-6.9 we see that the fit between the forecasts and real

values looks good. However, this might not be the case, because visualizing the inverse trans-

formation can give an optimistic picture of the performance. To picture this, we have plotted

the no-change persistence prediction in Figure 7.4, which visually also seems to fit. Actually,

the persistence model is in theory not able to generalize the problem, as the previous observa-

tion is just carried one step forward as a forecast. However, in this study, we use the persistence

CHAPTER 7. DISCUSSION 87

model as a baseline for the model performances. Thus, by comparing the model results to the

persistence model, we explicitly evaluate if our model performance is better than a coin toss.

Therefore, we deem it fit to use this forecasting and evaluation approach.

Figure 7.4: Visualization of persistence model forecast

Using a genetic algorithm to decide the optimal network architectures, proved to be of added

value in forecasting freight rates. Other research utilizes grid search methods, architectures pre-

viously used by other papers or simple rules of thumb. We have no knowledge of other studies

utilizing genetic algorithms in the context of forecasting shipping commodities with machine

learning. The algorithm starts by randomly creating individuals. The advantage of using a ge-

netic algorithm is that it is easy to adapt and it is not required to model the function behavior,

and the mutation prevents the function to get trapped in local optima. However, we found the

method to be computationally intensive for complex fitness evaluation as neural network train-

ing. We were therefor only able to generate 100 individual initial solutions over 20 generations.

However, given the promising results discussed in Section 7.1.1, we find this to be sufficient for

this scope of the study.

As discussed in Section 7.1.1, we achieved bad performance with the MLP-model. Bad rela-

tive to the traditional VAR-model and the LSTM-model, but better than the baseline persistence

model. Further model tuning may increase the predictive ability of this model, which in general

also relates to the LSTM-model. We were not able to fully optimize the model tuning in this

study. This because the scope of study is rather large and investigative, including data clean-

ing and vessel search, exploratory analysis, feature engineering and several machine learning

methods.

8 | Conclusion

8.1 Concluding Remarks

The objective of this thesis has been to investigate whether multivariate machine learning fore-

casting methods using features extracted from Automatic Identification System (AIS) data adds

additional information in predicting short-term freight rates. Specifically, we have assessed this

with a case study on the Liquid Petroleum Gas (LPG) shipping market directed on the weekly

prediction of the Mont Belvieu propane spot price. Forecasting LPG spot prices is a very chal-

lenging problem due to the high volatility of spot prices. Nonetheless, anticipating such fluctu-

ations is a crucial element to long-term profitability for both operators and shipowners.

Overall, the results from our final analysis establish evidence in favor of using features extracted

from AIS data in freight rate prediction. Furthermore, the Long Short-Term Memory (LSTM)

neural network model performs better than the baseline no-change persistence model and the

traditional multivariate Vector Autoregressive (VAR) model. This result suggests favourability of

using multivariate machine learning forecasting methods in short-term freight rate prediction.

Even though the project results show promise, we acknowledge that there are several limitations

to our research, especially concerning the quality of the AIS data. The quality of the data at hand

varies, mostly due to interference errors and gaps in the early stages as a result of satellite cov-

erage. This should be put into consideration before any studies using AIS data are conducted.

Accordingly, as more AIS data is acquired and the collection reflects longer history, the potential

advantage of using AIS data to predict freight rates increases.

There are some important takeaways from the methodology. First of all, we find the vessel search

methodology introduced to be of added value. We found 1714 unique Maritime Mobile Service

Identity (MMSI) numbers from 1469 International Maritime Organization (IMO) numbers ob-

tained form Seaweb. With this, we capture most of the market through the horizon of the study.

Secondly, the combinational feature selection approach, utilizing different filter methods with

the iterative element of the wrapper method, is found to be favorable as it increases the deci-

sion support for which features to subsequently select. Thirdly, using a genetic algorithm to

decide the optimal network architectures proved to be sufficient, as the mutation prevents the

function to get trapped in local optima, resulting in an LSTM architecture with superior perfor-

mance.

88

CHAPTER 8. CONCLUSION 89

8.2 Recommendations for Further Work

Further research within the use of AIS data in the context of maritime economics is recom-

mended. Based on the finding in this study, and the relatively unexplored field of combin-

ing AIS data with freight rates, there is potential in exploiting the information incorporated

in AIS-messages. With the numerous material in both static and dynamic messages, more so-

phisticated features can be created. As more AIS data is acquired and the collection reflects

longer history with higher quality data, elements like draught and course information can be

exploited.

We also acknowledge that with the scope of this study being wide, further development of each

step in the methodology can improve model performance. It is finally recommended that, after

surveying the performance of the methodology in the case study, to investigate whether the

approach used in this study applies to other ocean freight industries. Deciding which features

to construct is a market specific question, and understanding the market dynamics is equally as

important as constructing complex features.

Bibliography

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,

M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan,

V., Warden, P., Wicke, M., Yu, Y., and Zheng, X. (2016). TensorFlow: A System for Large-Scale Machine

Learning. Brain, Google.

Adland, R., Jia, H., and Lu, J. (2008). Price dynamics in the market for Liquid Petroleum Gas transport.

Energy Economics, 30(3):818–828.

Adland, R., Jia, H., and Strandenes, S. P. (2017). Are AIS-based trade volume estimates reliable? The case

of crude oil exports. Maritime Policy and Management.

Alquist, R., Kilian, L., and Vigfusson, R. J. (2013). Forecasting the Price of Oil. Handbook of Economic

Forecasting, 2:427–507.

Arguedas, V. F., Pallotta, G., and Vespe, M. (2014). Automatic generation of geographical networks for

maritime traffic surveillance - Semantic Scholar. 17th International Conference on Information Fusion

(FUSION), pages 1–8.

Assmann, L., Andersson, J., and Eskeland, G. S. (2015). Missing in Action? Speed optimization and slow

steaming in maritime shipping.

Bai, X. and Lam, J. S. L. (2017). An integrated analysis of interrelationships within the very large gas carrier

(VLGC) shipping market. Maritime Economics & Logistics, pages 1–18.

Batchelor, R., Alizadeh, A., and Visvikis, I. (2007). Forecasting spot and forward prices in the international

freight market. International Journal of Forecasting.

Bellman, R. (1972). Dynamic programming. Princeton University Press.

Bermingham, M. L., Pong-Wong, R., Spiliopoulou, A., Hayward, C., Rudan, I., Campbell, H., Wright, A. F.,

Wilson, J. F., Agakov, F., Navarro, P., and Haley, C. S. (2015). Application of high-dimensional feature

selection: evaluation for genomic prediction in man. Scientific Reports, 5(1):10312.

Bodenhofer, U. (2003). Genetic Algorithms: Theory and Applications. (Third Edition—Winter

2003/2004).

Breiman, L. (2001). Random Forests. Machine Learning, 45(1):5–32.

90

BIBLIOGRAPHY 91

Brooks, C. (2002). Introductory econometrics for finance. Cambridge University press, Cambridge, second

edition edition.

Canu, S. (2014). Tuning hyperparameters using cross validation.

Chollet, F. (2015). Keras.

Cover, T. M. and Thomas, J. A. (2006). Elements of Information Theory. John Wiley & Sons, Inc., Hoboken,

New Jersey, second edition edition.

da S. Gomes, G. S., Ludermir, T. B., and Lima, L. M. M. R. (2011). Comparison of new activation functions

in neural network for forecasting financial time series. Neural Computing and Applications, 20(3):417–

439.

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik,

1(1):269–271.

Domingos, P. (2015). A Few Useful Things to Know about Machine Learning.

Dooho, C. (2013). The effect of shale gas revolution on oil industry. IEEJ.

Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14(2):179–211.

Engelen, S. and Dullaert, W. (2010). Transformations in gas shipping: Market structure and efficiency.

Maritime Economics & Logistics, 12(3):295–325.

Eriksen, T., Skauen, A. N., Narheim, B., Helleren, O., Olsen, O., and Olsen, R. B. (2010). Tracking ship

traffic with Space-Based AIS: Experience gained in first months of operations. In 2010 International

WaterSide Security Conference, pages 1–8. IEEE.

Fuller, W. A. (1996). Introduction to statistical time series. Wiley, 2nd edition edition.

Furnival, G. M. and Wilson, R. W. (1974). Regressions by Leaps and Bounds. Technometrics, 16(4):499–511.

Gao, S. and Lei, Y. (2017). A new approach for crude oil price prediction based on stream learning. Geo-

science Frontiers, 8(1):183–187.

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., and Schmidhuber, J. (2017). LSTM: A Search

Space Odyssey. 2.

Haji, S., O’Keeffe, E., and Smith, T. (2013). Estimating the global container shipping network using data

and models. Low Carbon Shipping 2013.

Han, Q., Yan, B., Ning, G., and Yu, B. (2014). Forecasting Dry Bulk Freight Index with Improved SVM.

Mathematical Problems in Engineering, 2014:1–12.

BIBLIOGRAPHY 92

Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber, J. (2001). Gradient Flow in Recurrent Nets: the

Difficulty of Learning Long-Term Dependencies.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8):1735–

1780.

IMO (1974). International Convention For The Safety of Life At Sea.

IMO (2016). Revised guidelines for the onboard operational use of shipborne Automatic Identification

Systems (AIS). Technical report.

Itu-R (2014). Technical characteristics for an automatic identification system using time division multiple

access in the VHF maritime mobile frequency band M Series Mobile, radiodetermination, amateur and

related satellite services. pages 1371–5.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An Introduction to Statistical Learning, volume

103 of Springer Texts in Statistics. Springer New York, New York, NY.

Jia, H., Adland, R., Prakash, V., and Smith, T. (2017). Energy efficiency with the application of Virtual

Arrival policy. Transportation Research Part D: Transport and Environment, 54:50–60.

Kaastra, I. and Boyd, M. (1996). Designing a neural network for forecasting financial and economic time

series. Neurocomputing, 10(3):215–236.

Kaluza, P., Kölzsch, A., Gastner, M. T., and Blasius, B. (2010). The complex network of global cargo ship

movements. Journal of the Royal Society, Interface, 7(48):1093–103.

Kavussanos, M. G. and Nomikos, N. K. (2003). Price Discovery, Causality and Forecasting in the Freight

Futures Market. Review of Derivatives Research, 6:203–230.

Kingma, D. P. and Ba, J. (2014). Adam: A Method for Stochastic Optimization.

Kojadinovic, I. and Wottka, T. (2000). Comparison between a filter and a wrapper approach to variable

subset selection in regression problems.

Kulkarni, S. and Haidar, I. (2009). Forecasting Model for Crude Oil Price Using Artificial Neural Networks

and Commodity Futures Prices. International Journal of Computer Science and Information Security

(IJCSIS), 2(1).

Lane, B. C. (2006). AIS Parser SDK - Accessed 2018-02-03.

Leonhardsen, J. H. (2017). Estimation of Fuel Savings from Rapidly Reconfigurable Bulbous Bows Exem-

plifying the Value of Agility in Marine Systems Design.

BIBLIOGRAPHY 93

Li, J. and Parsons, M. G. (1997). Forecasting tanker freight rate using neural networks. Maritime Policy &

Management, 24(1):9–30.

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju, B., Shahrzad, H.,

Navruzyan, A., Duffy, N., and Hodjat, B. (2017). Evolving Deep Neural Networks.

Næss, P. A., Grundt, E. H., and Axelsen, J. J. (2017). Exploration of Methods for Analysing AIS Data. (De-

cember).

Ng, A. (2011). Machine Learning and AI via Brain simulations.

Norwegian Space Centre. New Norwegian satellite to detect radar signals - https://www.romsenter.no/

eng/News/News/New-Norwegian-satellite-to-detect-radar-signals - Accessed 2018-02-12.

Olah, C. (2015). Understanding LSTM Networks.

Olsen, M. and da Fonseca, T. R. K. (2017). Investigating the Predictive Ability of AIS-data: The case of

Arabian Gulf tanker rates.

O’brien, R. M. (2007). A Caution Regarding Rules of Thumb for Variance Inflation Factors. Quality &

Quantity, 41(5):673–690.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,

P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and

Duchesnay, (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research,

12(Oct):2825–2830.

Pošík, P. (2015). Feature selection and extraction.

Refenes, P. (1995). Neural networks in the capital markets. John Wiley & Sons.

Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J., Lander, E. S.,

Mitzenmacher, M., and Sabeti, P. C. (2011). Detecting novel associations in large data sets. Science

(New York, N.Y.), 334(6062):1518–24.

Ronen, D. (1982). The Effect of Oil Price on the Optimal Speed of Ships. Journal of the Operational

Research Society, 33(11):1035–1040.

Seaweb. IHS Maritime and Trade - Accessed 2018-03-01.

Shapiro, A. F. (2003). Capital Market Applications of Neural Networks, Fuzzy Logic and Genetic Algo-

rithms.

Skauen, A. N., Helleren, , Olsen, , and Olsen, R. (2013). Operator and User Perspective of Fractionated AIS

Satellite Systems. PhD thesis.

BIBLIOGRAPHY 94

Smestad, B. B. and Rødseth, J. (2015). A Study of Satellite AIS Data and the Global Ship Traffic Through

the Singapore Strait.

Spiliopoulos, G., Zissis, D., and Chatzikokolakis, K. (2017). A Big Data Driven Approach to Extracting

Global Trade Patterns. pages 109–121. Springer, Cham.

Stopford, M. (2009). Maritime economics. Routledge Taylor Francis Group, 3rd edition.

Sun, C., Shrivastava, A., Singh, S., and Gupta, A. (2017). Revisiting Unreasonable Effectiveness of Data in

Deep Learning Era.

Sutherland, E. E., Sproull, R. F., and Schumacker, R. A. (1974). A Characterization of Ten Hidden-Surface

Algorithms. ACM Computing Surveys, 6(1):1–55.

Tsioumas, V. (2016). Quantitative analysis of the dry bulk freight market, including forecasting and deci-

sion making. PhD thesis, Department of Maritime Studies University of Piraeus.

U.S. Department of Energy (2018). Energy Information Administration, Independent Statistics and Anal-

ysis.

Vafaeipour, M., Rahbari, O., Rosen, M. A., Fazelpour, F., and Ansarirad, P. (2014). Application of sliding

window technique for prediction of wind velocity time series.

Wu, L., Xu, Y., Wang, Q., Wang, F., and Xu, Z. (2017). Mapping Global Shipping Density from AIS Data.

Journal of Navigation, 70(01):67–81.

Xia Zhang, Hong Yin, Changbo Wang, Jin Wang, and Yanping Zhang (2015). Forecast the price of chemical

products with multivariate data. In 2015 International Conference on Behavioral, Economic and Socio-

cultural Computing (BESC), pages 76–82. IEEE.

Yu, L., Wang, S., and Lai, K. K. (2008). Forecasting crude oil price with an EMD-based neural network

ensemble learning paradigm. Energy Economics, 30(5):2623–2635.

Appendix A

AIS Data Contents

Detailed information of the AIS information transmitted by a ship, as issued by IMO (2016).

Table A.1: Information on static messages

Information item Information generation, type and quality of information

MMSI Set on installation

Call sign and name Set on installation

IMO Number Set on installation

Length and beam Set on installation

Type of ship Select from pre-installed list

Location of position-fixing antenna Set on installation

I

APPENDIX A. AIS DATA CONTENTS II

Table A.2: Information on dynamic messages

Information item Information generation, type and quality of information

Ship’s position with accuracy indica-

tion and integrity status

Automatically updated from the position sensor connected to

AIS. The accuracy indication is for better or worse than 10 m

Position Time stamp in UTC Automatically updated from ship’s main position sensor con-

nected to AIS.

Course over ground (COG) Automatically updated from ship’s main position sensor con-

nected to AIS, if that sensor calculates COG. This information

might not be available.

Speed over ground (SOG) Automatically updated from the position sensor connected to

AIS.

Heading Automatically updated from the ship’s heading sensor con-

nected to AIS.

Navigational status

Navigational status information has to be manually entered by

the OOW and changed, as necessary, for example:

- underway by engines

- at anchor

- not under command (NUC)

- restricted in ability to manoeuvre (RIATM)

- moored

- constrained by draught

- aground

- engaged in fishing

- underway by sail

In practice, since all these relate to the COLREGS, any change

that is needed could be undertaken at the same time that the

lights or shapes were changed. 1

Rate of turn (ROT) Automatically updated from the ship’s ROT sensor or derived

from the gyro. This information might not be available

APPENDIX A. AIS DATA CONTENTS III

Table A.3: Information on voyage related messages

Information item Information generation, type and quality of information

Ship’s draught To be manually entered at the start of the voyage using the max-

imum draught for the voyage and amended as required. (e.g. –

result of de-ballasting prior to port entry.)

Hazardous cargo (type)

To be manually entered at the start of the voyage confirming

whether or not hazardous cargo is being carried, namely:

- DG (Dangerous goods)

- HS (Harmful substances)

- MP (Marine pollutants)

Indications of quantities are not required.

Destination and ETA To be manually entered at the start of the voyage and kept up to

date as necessary.

Route plan (waypoints) To be manually entered at the start of the voyage, at the discre-

tion of the master and updated when required.

Appendix B

Density Line Plots

B.1 Density Line Plot of VLGC

Figure B.1: Density line plot of VLGC, 2011-2017

B.2 Density Line Plot of Smaller Vessels

Figure B.2: Density line plot of smaller vessels, 2011-2017

IV

Appendix C

Descriptive Statistics of Features

C.1 Descriptive Statistics of Count and Capacity Features

Table C.1: Descriptive statistics of count and capacity features created in Section 4.3.1

Feature name Unit Mean Std. Min Max

count_Atl # vessels 235.18 27.22 188 292

count_FE # vessels 559.53 46.72 405 626

count_CP # vessels 132.40 12.21 102 177

count_EstP # vessels 38.18 13.62 19 89

count_NWE # vessels 93.84 29.03 53 163

count_Ind # vessels 76.99 13.89 47 114

count_Med # vessels 123.39 17.35 74 158

count_GOM # vessels 46.14 14.53 20 81

capacity_Atl cbm 6,514,093 1,681,181 4,024,201 10,910,420

capacity_FE cbm 10,807,360 1,124,184 8,484,979 13,375,450

capacity_CP cbm 5,503,227 633,368 4,162,451 7,766,029

capacity_EstP cbm 1,563,341 1,140,090 469,080 5,707,081

capacity_NWE cbm 1,051,836 383,346 401,663 2,294,160

capacity_Ind cbm 3,882,010 916,236 2,068,188 6,701,294

capacity_Med cbm 2,340,653 405,816 1,450,451 3,674,603

capacity_GOM cbm 1,780,195 870,157 514,107 4,039,428

V

APPENDIX C. DESCRIPTIVE STATISTICS OF FEATURES VI

Table C.2: Descriptive statistics of count and capacity percentage features created in Section
4.3.1

Feature name Unit Mean Std. Min Max

count_Atl_percent % 0.187 0.010 0.163 0.214

count_FE_percent % 0.446 0.028 0.352 0.485

count_CP_percent % 0.106 0.008 0.090 0.124

count_EstP_percent % 0.030 0.008 0.018 0.064

count_NWE_percent % 0.073 0.016 0.049 0.118

count_Ind_percent % 0.061 0.008 0.040 0.082

count_Med_percent % 0.098 0.007 0.076 0.117

count_GOM_percent % 0.036 0.008 0.017 0.058

capacity_Atl_percent % 0.203 0.021 0.157 0.276

capacity_FE_percent % 0.346 0.031 0.256 0.404

capacity_CP_percent % 0.176 0.019 0.133 0.230

capacity_EstP_percent % 0.046 0.025 0.018 0.146

capacity_NWE_percent % 0.032 0.007 0.014 0.056

capacity_Ind_percent % 0.122 0.016 0.077 0.180

capacity_Med_percent % 0.075 0.010 0.050 0.107

capacity_GOM_percent % 0.054 0.019 0.019 0.099

C.2 Descriptive Statistics of Sailing Feature

Table C.3: Descriptive statistics of sailing feature from Section 4.3.2

Feature name Unit Mean Std. Min Max

sailing_GOM nm 8,176.43 350.15 7,206.97 8,713.28

C.3 Descriptive Statistics of Speed Features

Table C.4: Descriptive statistics of speed features from Section 4.3.4

Feature name Unit Mean Std. Min Max

mean_global knots 13.04 0.66 11.32 14.73

std_global knots 4.17 0.36 3.37 5.24

APPENDIX C. DESCRIPTIVE STATISTICS OF FEATURES VII

C.4 Descriptive Statistics of Price and Market Features

Table C.5: Descriptive statistics of price and market features from Section 4.3.5

Feature name Unit Mean Std. Min Max

spot_MB* USD/mt 727.93 247.22 263.40 1,061.25

spot_NWE USD/mt 694.21 243.79 278.75 1,076.40

spot_CP USD/mt 616.07 250.67 223.33 1,162.00

spot_FEI USD/mt 708.46 240.04 294.33 1,077.35

oil_WTI USD/barrel 73.65 24.96 28.14 108.77

* Denoted as price in the text and code

Appendix D

Results of Augmented Dickey-Fuller Test

Table D.1: Results of ADF test with acceptance measure of H0 at 1, 5, or 10 %

Feature ADF Statistic p-value 1 % 5 % 10 % Accept H0

count_GOM -10.8849 1.2671e-19 -3.4497 -2.8701 -2.5713 False

mean_global -7.1024 4.1354e-10 -3.4500 -2.8702 -2.5714 False

std_global -8.4971 1.2666e-13 -3.4501 -2.8702 -2.5714 False

sailing_GOM -9.9795 2.1324e-17 -3.4496 -2.8700 -2.5713 False

capacity_GOM -9.1707 2.3920e-15 -3.4499 -2.8701 -2.5713 False

count_Atl -10.7656 2.4567e-19 -3.4497 -2.8700 -2.5713 False

count_FE -15.6903 1.4366e-28 -3.4495 -2.8700 -2.5712 False

count_CP -11.7404 1.2777e-21 -3.4497 -2.8701 -2.5713 False

count_EstP -9.5933 2.0083e-16 -3.4497 -2.8700 -2.5713 False

count_NWE -13.3768 5.0685e-25 -3.4496 -2.8700 -2.5712 False

count_Ind -12.6484 1.3857e-23 -3.4498 -2.8701 -2.5713 False

count_Med -12.8395 5.6469e-24 -3.4496 -2.8700 -2.5713 False

capacity_Atl -9.2690 1.3426e-15 -3.4499 -2.8701 -2.5713 False

capacity_FE -8.1053 1.2674e-12 -3.4502 -2.8702 -2.5714 False

capacity_CP -6.5264 1.0120e-08 -3.4500 -2.8702 -2.5714 False

capacity_EstP -3.9528 1.6783e-03 -3.4503 -2.8703 -2.5714 False

capacity_NWE -11.7037 1.5472e-21 -3.4497 -2.8701 -2.5713 False

capacity_Ind -11.3528 9.9014e-21 -3.4499 -2.8701 -2.5713 False

capacity_Med -12.8635 5.0509e-24 -3.4496 -2.8700 -2.5713 False

count_Atl_percent -11.6334 2.2339e-21 -3.4496 -2.8700 -2.5713 False

count_FE_percent -12.3253 6.6085e-23 -3.4497 -2.8700 -2.5713 False

count_CP_percent -11.6896 1.6652e-21 -3.4497 -2.8701 -2.5713 False

count_EstP_percent -12.8422 5.5765e-24 -3.4496 -2.8700 -2.5713 False

count_NWE_percent -13.1708 1.2517e-24 -3.4496 -2.8700 -2.5712 False

count_Ind_percent -12.5881 1.8467e-23 -3.4498 -2.8701 -2.5713 False

count_Med_percent -13.0233 2.4286e-24 -3.4496 -2.8700 -2.5713 False

capacity_Atl_percent -7.3560 9.7730e-11 -3.4503 -2.8703 -2.5714 False

capacity_FE_percent -13.0317 2.3379e-24 -3.4497 -2.8700 -2.5713 False

capacity_CP_percent -13.3169 6.5751e-25 -3.4497 -2.8700 -2.5713 False

capacity_EstP_percent -8.7425 2.9816e-14 -3.4497 -2.8700 -2.5713 False

capacity_NWE_percent -5.5536 1.5991e-06 -3.4505 -2.87042 -2.5715 False

VIII

APPENDIX D. RESULTS OF AUGMENTED DICKEY-FULLER TEST IX

Feature ADF Statistic p-value 1 % 5 % 10 % Accept H0

capacity_Ind_percent -11.2370 1.8464e-20 -3.4499 -2.8701 -2.5713 False

capacity_Med_percent -12.9628 3.1986e-24 -3.4496 -2.8700 -2.5713 False

oil_WTI -13.8890 6.0158e-26 -3.4495 -2.8699 -2.5712 False

spot_FEI -6.1330 8.3130e-08 -3.4500 -2.8702 -2.5714 False

spot_CP -5.8708 3.2434e-07 -3.4501 -2.8702 -2.5714 False

spot_NWE -6.2918 3.5838e-08 -3.4500 -2.8702 -2.5714 False

count_GOM_percent -10.8969 1.1858e-19 -3.4497 -2.8701 -2.5713 False

capacity_GOM_percent -9.1849 2.2002e-15 -3.4499 -2.8701 -2.5713 False

spot_MB* -13.3259 6.3237e-25 -3.4495 -2.8699 -2.5712 False

* Denoted as price in the text and code

Appendix E

Code

E.1 Master Script (MASTER.py)

This script runs the whole study and serves as a dashboard by selection of inputs and analysis-

methods of interest. All files and functions except the prediction models and model evaluation

are ran from this script.
1 # ! / usr /bin/env python3

2 # °*° coding : utf°8 °*°
3 """

4 Created on Wed Nov 1 13:41:00 2017

5

6 @author : PatrickAndreNaess

7 """

8 import AIS_Analysis as AIS

9 import datetime

10 import pandas as pd

11 import Seaweb2AIS as SW

12 import Price_data as PD

13 import Ocean_mesh as OM

14 import Feature_importance as FI

15 import Subset_selection as SS

16 import Interpolate_data as ID

17

18 # AIS data :

19 Database = ’ /Users/ PatrickAndreNaess /Desktop/LPG. db ’

20 Database_Total = ’ /Volumes/LaCie/NTNUfilesMac/ SAISGlobalFinal . db ’

21 new_data = ’ merged_cleaned . csv ’

22

23 # LPG vessel data from Seaweb :

24 vessel_path = ’ /Users/ PatrickAndreNaess /Documents/PYTHON/mmsi_capacity . x l s x ’

25 vessel_data = pd . read_excel (vessel_path)

26

27 # A l l methods are run from t h i s scr ipt , 1 = run

28

29 MessageType1 = 0 #1 = e x t r a c t Message Type 1 s i g n a l s from database 2011°2016

30 MessageType5 = 0 #1 = e x t r a c t Message Type 5 s i g n a l s from database 2011°2016

31 NewData = 0 # Extract external 2016°2018 AIS data from csv

32

33 # Table names :

34 n1 = ’LPG1 ’ # Message Type 1

35 n5 = ’ ’ # Message Type 5

36

37 # Locate positions and assign draught°f a c t o r for MessageType5 :

38 DraughtPositionFraction = 0

39

40 # S p l i t on VLGC vs . Smaller ves sel s :

41 DataSplitOnVesselSize = 0

42

43 # Vessel search :

44 VesselSearch = 0

45

46 # Inpterpolate s i g n a l s :

47 Interpolate = 0

48

49 # Mark each signal with a s p e c i f i c zone (polygon) :

50 SelectZones = 0

51

52 # Map pl o tt i ng :

X

APPENDIX E. CODE XI

53 LocalMap = 0 # Regular plot

54 HeatMap = 0 # Heat plot based on ship density

55 SpeedHeatMap = 0 # Heat plot based on ship speed

56 LineMap = 0 # Line plot

57 SplitLineMap = 0 # Line plot on vessel s i z e (requiers DataSplitOnVesselSize)

58 DraughtMap = 0 # Heat plot based on draught°f a c t o r

59 PlotOceanMesh = 0 # Plot the ocean mesh

60

61 # Fleet analysis :

62 DraughtHistogram = 0 # Draught histogram

63 SpeedHistogram = 0 # Speed histogram

64

65 # Extract features and generated time s e r i e s :

66 ImportPriceData = 0 # Price data

67 GenerateGlobalSpeed = 0 # Global speeds

68 GenerateGOMTimeSeries = 0 # Gulf of Mexico count , capacity + s a i l i n g

69 GeneratePolygonSeries = 0 # Polygon count , capacity and percentage

70

71 # Combine a l l the generated variables :

72 ConsolidateVariables = 0

73 # Features importance and subset select ion ranking :

74 FeaturesSelection = 0

75 # Select the f i n a l features :

76 FinalSelection = 0

77

78 # Area of i n t e r e s t : [lonmax , latmax , lonmin , latmin]

79 Global = [180 ,90 ,°180 ,°90] # 1

80 A t l a n t i c = [0 ,53 ,°80 ,33] # 2

81 GulfOfM = [°80 ,32 ,°99 ,17] # 3

82

83 # Choose location of i n t r e s t :

84 Loc = 1

85

86 i f Loc == 1 :

87 Pos = Global

88 e l i f Loc == 2 :

89 Pos = A t l a n t i c

90 e l i f Loc == 3 :

91 Pos = GulfOfM

92

93 # Time window of i n t r e s t :

94 lowtime = ’ 01/01/2011 ’

95 hightime = ’ 01/01/2018 ’

96

97 # Speed of i n t e r s t :

98 maxspeed = 30

99 minspeed = 0

100

101 # Convert from date to unixtime :

102 unixlow = datetime . datetime . strptime (lowtime , "%d/%m/%Y") . timestamp ()

103 unixhigh = datetime . datetime . strptime (hightime , "%d/%m/%Y") . timestamp ()

104

105 # The analysis s c r i p t i s cal led to do a l l the analysis and pl o tt i ng

106 # The following returns dataframes df1 and df5 with message type 1 and 5 data :

107 i f MessageType1 == 1 or MessageType5 == 1 :

108 df1 , df5 = AIS . ExtractData (Database , Pos [0] , Pos [1] , Pos [2] , Pos [3] ,

109 unixlow , unixhigh , maxspeed , minspeed ,

110 MessageType1 , MessageType5 , n1 , n5)

111 i f NewData == 1 :

112 df1 = AIS . AdditionalCSVData (new_data , df1 , Pos [0] , Pos [1] , Pos [2] , Pos [3] ,

113 unixlow , unixhigh , maxspeed , minspeed)

114

115 i f DataSplitOnVesselSize == 1 :

116 df1_VLGC , df1_rest = AIS . DataSplitOnVesselSize (df1 , vessel_data ,50000)

117

118 i f DraughtPositionFraction == 1 :

119 df5 = AIS . DraughtPositionFraction (df1 , df5 , vessel_data)

120

121 i f VesselSearch == 1 :

122 SW. main(Database_Total)

123

124 i f DraughtHistogram == 1 :

125 AIS . DraughtHistogram (df5)

126

APPENDIX E. CODE XII

127 i f SpeedHistogram == 1 :

128 AIS . SpeedHistogram (df1)

129

130 i f LocalMap == 1 :

131 AIS . LocalMap (df1)

132

133 i f HeatMap == 1 :

134 AIS . HeatMap(df1)

135

136 i f SpeedHeatMap == 1 :

137 AIS . SpeedHeatMap(df1)

138

139 i f LineMap == 1 :

140 AIS . LineMap(df1)

141

142 i f SplitLineMap == 1 :

143 AIS . DoubleLineMap (df1_rest , df1_VLGC , df1)

144

145 i f DraughtMap == 1 :

146 AIS . DraughtMap(df5 [df5 [’ Timediff ’] <86400].dropna ()) # exclude i f d i f f l a r g e r than 24 hours

147

148 i f PlotOceanMesh == 1 :

149 OM. PlotOceanMesh(1000 ,5000)

150

151 i f Interpolate == 1 :

152 NEW = ID . main(df1)

153

154 i f SelectZones == 1 :

155 df1_zones = AIS . zones (df1)

156

157 # Time s e r i e s generation :

158

159 i f ImportPriceData == 1 :

160 # Import price data

161 spot_MB , spot_FEI , spot_NWE , spot_CP , o i l = PD. main ()

162 w_oil= AIS . WeeklyPriceAverage (df1 , o i l , ’ oil_WTI ’)

163 w_spot_MB = AIS . WeeklyPriceAverage (df1 , spot_MB , ’ price ’)

164 w_spot_FEI = AIS . WeeklyPriceAverage (df1 , spot_FEI , ’ spot_FEI ’)

165 w_spot_NWE = AIS . WeeklyPriceAverage (df1 , spot_NWE , ’spot_NWE ’)

166 w_spot_CP = AIS . WeeklyPriceAverage (df1 , spot_CP , ’ spot_CP ’)

167

168 i f GenerateGlobalSpeed == 1 :

169 # Global speed :

170 w_speed_global = AIS . WeekSpeedInArea (df1 , Global , ’ global ’)

171 w_speed_mean_global = w_speed_global [’ mean_global ’]

172 w_speed_std_global = w_speed_global [’ std_global ’]

173

174 i f GenerateGOMTimeSeries == 1 :

175 # S a i l i n g in nm to MB

176 w_sailing = AIS . WeekDistance2area (NEW,(°95 ,30) , vessel_data , ’GOM’)

177 # GOM count :

178 w_count_GOM = AIS . WeekCountInArea (NEW, GulfOfM , ’GOM’)

179 # GOM capacity :

180 w_capacity_GOM = AIS . WeekCapacityInArea (NEW, GulfOfM , vessel_data , ’GOM’)

181

182 i f GeneratePolygonSeries == 1 :

183 zones = [’ A t l ’ , ’FE ’ , ’CP ’ , ’ EstP ’ , ’NWE’ , ’ Ind ’ , ’Med ’]

184

185 # Capacity and counting :

186 counts = pd . DataFrame (index = AIS . GenerateWeeklyTimeWindow (df1) [’ timestamp ’])

187 capacit ies = pd . DataFrame (index = AIS . GenerateWeeklyTimeWindow (df1) [’ timestamp ’])

188

189 for zone in zones :

190 counts = counts . join (AIS . WeekCountInArea (df1_zones [df1_zones [’Zone ’] == zone] ,

191 Global , zone))

192 capacit ies = capacit ies . join (AIS . WeekCapacityInArea (df1_zones [df1_zones [’Zone ’] == zone] ,

193 Global , vessel_data , zone))

194 # Capacity and counting percentage :

195 percent_counts = counts . div (counts .sum(axis =1) , axi s =0)

196 percent_capacities = capacit ies . div (capacit ies .sum(axis =1) , axi s =0)

197 percent_counts . columns = [s t r (col) + ’ _percent ’ for col in percent_counts . columns]

198 percent_capacities . columns = [s t r (col) + ’ _percent ’ for col in percent_capacities . columns]

199

200 i f ConsolidateVariables == 1 :

APPENDIX E. CODE XIII

201 # Join a l l features :

202 data = w_count_GOM. join ([w_speed_mean_global , w_speed_std_global , w_sailing ,

203 w_capacity_GOM , counts , capacit ies , percent_counts ,

204 percent_capacities])

205 price_data = w_oil . join ([w_spot_FEI , w_spot_CP , w_spot_NWE, w_spot_MB])

206 # Important that price i s l a s t (r ight°most)

207

208 data = data . join (price_data)

209

210 data [18: °2] . to_csv (’ timeseries_data . csv ’) # F i r s t and l a s t

211 price_data [18: °2] . to_csv (’ nonAIS_features . csv ’) #[18:°2]

212

213 # Feature Selection :

214

215 i f FeaturesSelection == 1 :

216 t s = pd . read_csv (’ timeseries_data . csv ’) . set_index (’ timestamp ’)

217 # Max lag of i n t e r e s t

218 lag = 20

219 # Features importance ranking

220 rat ings = FI . main(lag , t s)

221 # Linear subset select ion :

222 # Select method : ’ best ’ , ’ forward ’ , ’ backward ’

223 method = ’ forward ’

224 models_best = SS . main(lag , method , t s)

225 # Review k best features

226 k = 50

227 features = models_best . loc [k , "model"] . params

228 # Top features included

229 print (pd . Series (features . index) . apply (lambda x : x . s p l i t (’ (’) [0]) . value_counts ())

230

231 i f FinalSelection == 1 :

232 selected = t s [[’ capacity_NWE_percent ’ , ’ capacity_Atl_percent ’ , ’ capacity_EstP_percent ’ ,

233 ’ oil_WTI ’ , ’spot_NWE ’ , ’ spot_FEI ’ , ’ spot_CP ’ , ’ price ’]]

234 selected . to_csv (’ selected_AISfeatures . csv ’)

235

236 price_selected = t s [[’ oil_WTI ’ , ’spot_NWE ’ , ’ spot_FEI ’ , ’ spot_CP ’ , ’ price ’]]

237 price_selected . to_csv (’ selected_nonAISfeatures . csv ’)

APPENDIX E. CODE XIV

E.2 Data Extraction and Exploration (AIS_Analysis.py)

Extraction of AIS data from the databases, feature construction and time series generation is

done in this script. In addition, several plotting and visualization functions are created in order

to effectively preform exploratory data analysis.
1 # ! / usr /bin/env python3

2 # °*° coding : utf°8 °*°
3 """

4 Created on Wed Nov 1 13:45:53 2017

5

6 @author : PatrickAndreNaess

7 """

8 import s q l i t e 3

9 import matplotlib . pyplot as p l t

10 from matplotlib . l i n e s import Line2D

11 import time

12 import datetime as dt

13 from mpl_toolkits . basemap import Basemap

14 import numpy as np

15 import pandas as pd

16 import seaborn as sns

17 import Ocean_mesh as OM

18

19 # THE FOLLOWING PART EXTRACT DATA FROM THE DATABASE:

20

21 def ExtractData (f i l e , a , b , c , d , lowtime , hightime , maxspeed , minspeed , t1 , t5 , n1 , n5) :

22 ’ ’ ’

23 Extracts data from the an AIS database :

24 f i l e : Filepath to AIS data database

25 a , b , c , d : Corners of the area of i n t e r e s t

26 lowtime , hightime : Time window of i n t e r e s t

27 maxspeed , minspeed : Vessel speed range of i n t e r e s t

28 t1 : 1 i f MessageType1 w i l l be extracted , 0 otherwise

29 t5 : 1 i f MessageType5 w i l l be extracted , 0 otherwise

30 n1 : Name of table with MessageType1 data in " f i l e "

31 n5 : Name of table with MessageType5 data in " f i l e "

32 returns : DataFrames with Message Type 1 and 5 data

33 ’ ’ ’

34 speeds = l i s t ()

35 p l o t l a t = l i s t ()

36 plotlon = l i s t ()

37 timestep = l i s t ()

38 mmsi = l i s t ()

39 navstat = l i s t ()

40 draughttime = l i s t ()

41 draught = l i s t ()

42 useridDraught = l i s t ()

43 destination = l i s t ()

44 name = l i s t ()

45

46 # MessageType1 :

47 i f t1 == 1 :

48 conn = s q l i t e 3 . connect (f i l e)

49

50 # For navigational status , i n s e r t portstatus into ’ ’ :

51 # portstatus = ’and (nav_status==1 or nav_status ==5) ’

52

53 SQLstring1 = "SELECT unixtime , sog , lat i tude , longitude , userid , \

54 nav_status FROM %s WHERE longitude <= %s and l a t i t u d e <= %s \

55 and longitude >= %s and l a t i t u d e >= %s and sog >= %s and \

56 sog <= %s and unixtime >= %s and unixtime <= %s %s ORDER BY userid , \

57 unixtime ASC" % (n1 , s t r (a) , s t r (b) , s t r (c) , s t r (d) ,

58 s t r (minspeed) , s t r (maxspeed) , s t r (lowtime) , s t r (hightime) , ’ ’)

59

60 # Extract data from database :

61 A = time . time ()

62 with conn :

63 cur = conn . cursor ()

APPENDIX E. CODE XV

64

65 cur . execute (SQLstring1)

66 VesselData = cur . f e t c h a l l ()

67

68 for i in range (0 , len (VesselData)) :

69 Datastrip = VesselData [i]

70 timestep . append(Datastrip [0])

71 speeds . append(Datastrip [1])

72 p l o t l a t . append(Datastrip [2])

73 plotlon . append(Datastrip [3])

74 mmsi. append(Datastrip [4])

75 navstat . append(Datastrip [5])

76

77 cur . close ()

78 print (’ MessageType1 database extraction time : %f s ’ % (time . time ()°A))

79

80 df = pd . DataFrame ({ ’ Speed ’ : speeds , ’MMSI’ : mmsi, ’ Unixtime ’ : timestep ,

81 ’ Lat ’ : p l o t l a t , ’Lon ’ : plotlon })

82 else :

83 df = False

84

85 # MessageType5 :

86 i f t5 == 1 :

87 conn = s q l i t e 3 . connect (f i l e)

88 cur = conn . cursor ()

89

90 SQLstring5 = "SELECT unixtime , draught , userid , dest ,name from %s where \

91 unixtime >= %s and unixtime <= %s ORDER BY unixtime \

92 ASC" % (n5 , s t r (lowtime) , s t r (hightime))

93

94 # Extract draught data from database :

95 A = time . time ()

96 with conn :

97 cur = conn . cursor ()

98

99 cur . execute (SQLstring5)

100 draughtdata = cur . f e t c h a l l ()

101

102 for i in range (0 , len (draughtdata)) :

103 draughtstrip = draughtdata [i]

104 i f draughtstrip [1]/10 > 5 :

105 draughttime . append(draughtstrip [0])

106 draught . append(draughtstrip [1] / 1 0)

107 useridDraught . append(draughtstrip [2])

108 destination . append(draughtstrip [3])

109 name. append(draughtstrip [4])

110

111 cur . close ()

112 print (’ MessageType5 database extraction time : %f s ’ % (time . time ()°A))

113

114 dfD = pd . DataFrame ({ ’MMSI’ : useridDraught , ’ Unixtime ’ : draughttime ,

115 ’ Draught ’ : draught , ’ Destination ’ : destination ,

116 ’Name’ : name})

117

118 # Some messages have error in destination (integer , not s t r i n g)

119 for i in range (0 , len (dfD [’ Destination ’])) :

120 i f type (dfD . at [i , ’ Destination ’]) == s t r :

121 dfD . at [i , ’ Destination ’] = dfD . at [i , ’ Destination ’] . s t r i p ()

122

123 dfD [’Name’] = dfD [’Name’] . apply (lambda x : x . s t r i p ())

124

125 else :

126 dfD = False

127

128 return df , dfD

129

130 ###

131

132 def AdditionalCSVData (f i l e , df_1 , a , b , c , d , lowtime , hightime , maxspeed , minspeed) :

133 ’ ’ ’

134 Extracts additional AIS°data from csv :

135 f i l e : Filepath to AIS data database

136 df_1 : Excist ing DataFrame with MessageType1 data

137 a , b , c , d : Corners of the area of i n t e r e s t

APPENDIX E. CODE XVI

138 lowtime , hightime : Time window of i n t e r e s t

139 maxspeed , minspeed : Vessel speed range of i n t e r e s t

140 returns : Resulting DataFrame with Message Type 1 data

141 ’ ’ ’

142 A = time . time ()

143 # Import

144 new = pd . read_csv (f i l e) . drop (’Unnamed: 0 ’ , ax is =1)

145 # Time°constraints

146 new = new[(new[’ Unixtime ’] <= hightime) & (new[’ Unixtime ’] >= lowtime)]

147 # Speed°constraints

148 new = new[(new[’ Speed ’] <= maxspeed) & (new[’ Speed ’] >= minspeed)]

149 # Geo°contraints

150 new = new[(new[’Lon ’] <= a) & (new[’Lon ’] >= c) &

151 (new[’ Lat ’] <= b) & (new[’ Lat ’] >= d)]

152

153 print (’ Additional database extraction time : %f s ’ % (time . time ()°A))

154 return df_1 . append(new, ignore_index=True)

155

156 ###

157

158 def DraughtPositionFraction (df_1 , df_5 , v_data) :

159 ’ ’ ’

160 Connects the load f a c t o r and positions to draught data :

161 df_1 : DataFrame with MessageType1 data

162 df_5 : DataFrame with MessageType5 data

163 v_data : DataFrame with vessel dimensions and c h a r a c t e r i s t i c s

164 returns : Resulting DataFrame with Message Type 5 data

165 ’ ’ ’

166 positions = df_1 . drop (’ Speed ’ , axis =1) . set_index (’MMSI’)

167 design_draught = v_data . set_index (’MMSI’) [’ Draught ’]

168

169 for index , vessel_df5 in df_5 . iterrows () :

170 MMSI = vessel_df5 [’MMSI’]

171 i f MMSI in positions . index :

172 # Vessel positions

173 vp = positions . xs (MMSI)

174 vp [’ d i f ’] = abs (vp [’ Unixtime ’]°vessel_df5 [’ Unixtime ’])

175 l i n e = vp [vp [’ d i f ’]==vp [’ d i f ’] . min ()] . i a t [0]

176

177 df_5 . at [index , ’ Timediff ’] = l i n e [’ d i f ’]

178

179 df_5 . at [index , ’ Lat ’] = l i n e [’ Lat ’]

180 df_5 . at [index , ’Lon ’] = l i n e [’Lon ’]

181

182 load = vessel_df5 [’ Draught ’] / design_draught . at [MMSI]

183

184 i f load > 1 :

185 df_5 . at [index , ’D/Dmax ’] = 1

186 else :

187 df_5 . at [index , ’D/Dmax ’] = load

188 return df_5

189

190 ###

191

192 def DataSplitOnVesselSize (df_1 , vessels , s i z e) :

193 ’ ’ ’

194 S p l i t s the data on vessel s i z e :

195 df_1 : DataFrame with MessageType1 data

196 ve ssel s : DataFrame with vessel c h a r a c t e r i s t i c s

197 s i z e : Capacity s i z e on where to s p l i t the dataset

198 returns : 2 DataFrames l a r g e r and smaller vessels , r e s p e c t i v e l y

199 ’ ’ ’

200 capacity = v esse ls . set_index (’MMSI’) [’ Gas_Capacity ’]

201 df = df_1 . set_index (’MMSI’)

202 df = df . join (capacity) . reset_index ()

203

204 df_VLGC = df [df [’ Gas_Capacity ’] > s i z e] . drop (’ Gas_Capacity ’ , axi s =1)

205 d f _ r e s t = df [df [’ Gas_Capacity ’] <= s i z e] . drop (’ Gas_Capacity ’ , ax i s =1)

206

207 return df_VLGC , d f _ r e s t

208

209 ###

210

211 def DraughtHistogram (df_5) :

APPENDIX E. CODE XVII

212 ’ ’ ’

213 Plots a histogram of the draught d i s t r i b u t i o n :

214 df_5 : DataFrame with MessageType5 data

215 ’ ’ ’

216 p l t . f i g u r e ()

217 sns . d i s t p l o t (df_5 [’ Draught ’] , kde=False , norm_hist=True , color= ’ r ’)

218 p l t . x label (’ Draught [meters] ’)

219 p l t . y label (’ Fraction of time ’)

220 p l t . show ()

221

222 ###

223

224 def SpeedHistogram (df_1) :

225 ’ ’ ’

226 Plots a histogram of the speed d i s t r i b u t i o n :

227 df_1 : DataFrame with MessageType1 data

228 ’ ’ ’

229 p l t . f i g u r e ()

230 sns . d i s t p l o t (df_1 [’ Speed ’] , kde=False , norm_hist=True , color= ’b ’ , hist_kws= d i c t (alpha =0.9))

231 p l t . x label (’ Speed [knots] ’)

232 p l t . y label (’ Fraction of time ’)

233 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots / Speed_Hist_Current . pdf ’ ,

234 bbox_inches= ’ t i g h t ’)

235 p l t . show ()

236

237 ###

238

239 def LocalMap (df_1) :

240 ’ ’ ’

241 Plots s c a t t e r positions on a map:

242 df_1 : DataFrame with MessageType1 data

243 ’ ’ ’

244 minlon = max(°180 ,min(df_1 [’Lon ’]) °5) #°5

245 minlat = max(°90 ,min(df_1 [’ Lat ’]) °5) #°5

246 maxlon = min(180 ,max(df_1 [’Lon ’]) +5) #+5

247 maxlat = min(90 ,max(df_1 [’ Lat ’]) +5) #+5

248 l a t 0 = (maxlat+minlat) /2

249 lon0 = (maxlon+minlon) /2

250 l a t 1 = (maxlat+minlat) /2°20

251

252 f i g , ax= p l t . subplots (f i g s i z e =(25 ,25))

253 # f i g . add_axes ([0 . 1 , 0 . 1 , 0 . 8 , 0 . 8])

254 m = Basemap(l l c r n r l o n =minlon , l l c r n r l a t =minlat , urcrnrlon=maxlon ,

255 u r c r n r l a t =maxlat , rsphere =(6378137.00 ,6356752.3142) ,

256 resolution= ’ l ’ , projection= ’ cyl ’ , l a t _ 0 =lat0 , lon_0=lon0 ,

257 l a t _ t s = l a t 1)

258

259 #Black n White

260 #m. drawmapboundary(f i l l _ c o l o r = ’w ’)

261 #m. f i l l c o n t i n e n t s (color = ’ l i g h t g r e y ’ , lake_color = ’w ’) # , zorder=0

262 #c = ’k ’

263

264 #White n Blue

265 #m. drawmapboundary(f i l l _ c o l o r = ’#003253 ’)

266 #m. f i l l c o n t i n e n t s (color = ’k ’ , lake_color = ’#003253 ’)

267 #c = ’w’

268

269 #Master

270 m. drawmapboundary(f i l l _ c o l o r = ’w’)

271 m. f i l l c o n t i n e n t s (color= ’ l i g h t g r e y ’ , lake_color= ’w’)

272 #c = ’b ’

273

274 x , y = m(df_1 [’Lon ’] , df_1 [’ Lat ’])

275 #Ships :

276 m. s c a t t e r (x , y , 0 . 0 1 , marker= ’ . ’ , c= ’b ’) #

277

278 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots /Local_Map_Current . png ’ ,

279 bbox_inches= ’ t i g h t ’ , dpi = 100)

280

281 ###

282

283 def HeatMap(df_1) :

284 ’ ’ ’

285 Plots a hexbin heatmap of vessel posit ions :

APPENDIX E. CODE XVIII

286 df_1 : DataFrame with MessageType1 data

287 ’ ’ ’

288 minlon = max(°180 ,min(df_1 [’Lon ’]) °5) #°5

289 minlat = max(°90 ,min(df_1 [’ Lat ’]) °5) #°5

290 maxlon = min(180 ,max(df_1 [’Lon ’]) +5) #+5

291 maxlat = min(90 ,max(df_1 [’ Lat ’]) +5) #+5

292 l a t 0 = (maxlat+minlat) /2

293 lon0 = (maxlon+minlon) /2

294 l a t 1 = (maxlat+minlat) /2°20

295

296 f i g , ax= p l t . subplots (f i g s i z e =(25 ,25))

297

298 m = Basemap(l l c r n r l o n =minlon , l l c r n r l a t =minlat , urcrnrlon=maxlon ,

299 u r c r n r l a t =maxlat , rsphere =(6378137.00 ,6356752.3142) ,

300 resolution= ’ l ’ , projection= ’ cyl ’ , l a t _ 0 =lat0 , lon_0=lon0 ,

301 l a t _ t s = l a t 1)

302

303 m. drawmapboundary(f i l l _ c o l o r = ’ black ’)

304 m. f i l l c o n t i n e n t s (color= ’ darkgrey ’ , lake_color= ’ black ’ , zorder =0) # , zorder=0

305

306 x , y = m(df_1 [’Lon ’] , df_1 [’ Lat ’])

307

308 m. hexbin (np . array (x) ,np . array (y) , g r i d s i z e =500 ,mincnt=1 ,cmap= ’ inferno ’ ,

309 bins= ’ log ’ , zorder =0)

310 m. colorbar (location= ’bottom ’ , format= ’ %.1 f ’ , l ab e l = ’ log (# messages) ’)

311 # in hexbin : ,C=np . array (speeds)

312 #mincnt = 2 : c e l l s with one signal gest neglected

313 #magma or inferno with balck background

314

315 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots / Heat_Plot_Current . png ’ ,

316 bbox_inches= ’ t i g h t ’ , dpi = 100)

317

318 ###

319

320 def SpeedHeatMap(df_1) :

321 ’ ’ ’

322 Plots a hexbin heatmap of the vessel speeds :

323 df_1 : Dataframe with MessageType1 data

324 ’ ’ ’

325 minlon = max(°180 ,min(df_1 [’Lon ’]) °5) #°5

326 minlat = max(°90 ,min(df_1 [’ Lat ’]) °5) #°5

327 maxlon = min(180 ,max(df_1 [’Lon ’]) +5) #+5

328 maxlat = min(90 ,max(df_1 [’ Lat ’]) +5) #+5

329 l a t 0 = (maxlat+minlat) /2

330 lon0 = (maxlon+minlon) /2

331 l a t 1 = (maxlat+minlat) /2°20

332

333 f i g , ax= p l t . subplots (f i g s i z e =(25 ,25))

334

335 m = Basemap(l l c r n r l o n =minlon , l l c r n r l a t =minlat , urcrnrlon=maxlon ,

336 u r c r n r l a t =maxlat , rsphere =(6378137.00 ,6356752.3142) ,

337 resolution= ’ l ’ , projection= ’ cyl ’ , l a t _ 0 =lat0 , lon_0=lon0 ,

338 l a t _ t s = l a t 1)

339

340 m. drawmapboundary(f i l l _ c o l o r = ’w’)

341 m. f i l l c o n t i n e n t s (color= ’ darkgrey ’ , lake_color= ’w’) # , zorder=0

342

343 x , y = m(df_1 [’Lon ’] , df_1 [’ Lat ’])

344

345 m. hexbin (np . array (x) ,np . array (y) ,C=np . array (df_1 [’ Speed ’]) , g r i d s i z e =75 ,

346 mincnt=250 ,cmap= ’coolwarm ’ , zorder =0)

347 m. colorbar (location= ’bottom ’ , format= ’ %.1 f ’ , l ab e l = ’ Speed [knots] ’)

348 #mincnt = 2 : c e l l s with one signal gest neglected

349 #magma or inferno with balck background

350

351 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots /Speed_Heat_Current . png ’ ,

352 bbox_inches= ’ t i g h t ’ , dpi = 100)

353

354 ###

355

356 def LineMap(df_1) :

357 ’ ’ ’

358 Density l i n e plot , connecting the vessel positions , excluding large gaps :

359 df_1 : DataFrame with MessageType1 data

APPENDIX E. CODE XIX

360 ’ ’ ’

361 minlon = max(°180 ,min(df_1 [’Lon ’]) °5) #°5

362 minlat = max(°90 ,min(df_1 [’ Lat ’]) °5) #°5

363 maxlon = min(180 ,max(df_1 [’Lon ’]) +5) #+5

364 maxlat = min(90 ,max(df_1 [’ Lat ’]) +5) #+5

365 l a t 0 = (maxlat+minlat) /2

366 lon0 = (maxlon+minlon) /2

367 l a t 1 = (maxlat+minlat) /2°20

368

369 dfLine = df_1 . set_index ([’MMSI’ , ’ Unixtime ’])

370

371 f i g , ax= p l t . subplots (f i g s i z e =(25 ,25))

372

373 m = Basemap(l l c r n r l o n =minlon , l l c r n r l a t =minlat , urcrnrlon=maxlon ,

374 u r c r n r l a t =maxlat , rsphere =(6378137.00 ,6356752.3142) ,

375 resolution= ’ l ’ , projection= ’ cyl ’ , l a t _ 0 =lat0 , lon_0=lon0 ,

376 l a t _ t s = l a t 1)

377 #Linkedin

378 #m. drawmapboundary(f i l l _ c o l o r = ’#F3F3F3 ’)

379 #m. f i l l c o n t i n e n t s (color = ’#243642 ’ , lake_color = ’#F3F3F3 ’) # , zorder =0 ,

380 #c= ’#0068A7 ’

381

382 #Blue°white

383 m. drawmapboundary(f i l l _ c o l o r = ’w’)

384 m. f i l l c o n t i n e n t s (color= ’ l i g h t g r e y ’ , lake_color= ’w’) # , zorder =0 ,

385 #c = ’b ’

386

387 #Western Bulk

388 #m. drawmapboundary(f i l l _ c o l o r = ’#003253 ’)

389 #m. f i l l c o n t i n e n t s (color = ’k ’ , lake_color = ’#003253 ’)

390 #c = ’w’

391

392 #Neon :

393 #m. drawmapboundary(f i l l _ c o l o r = ’#323232 ’)

394 #m. f i l l c o n t i n e n t s (color = ’# black ’ , lake_color = ’# black ’) # , zorder =0 ,

395 #c = ’ palegreen ’

396

397 # Plot for each vessel :

398 for MMSI, new_df in dfLine . groupby (l e v e l =0) :

399 new_df = new_df . xs (MMSI) [[’ Lat ’ , ’Lon ’]]

400 d i f f _ d f = new_df [[’ Lat ’ , ’Lon ’]] . d i f f () . abs ()

401 # Exclude l i n e where dif ference in l a t / lon > 30

402 new_df [(d i f f _ d f [’ Lat ’] >10) | (d i f f _ d f [’Lon ’] >10)] = np . nan

403

404 x , y = m(new_df [’Lon ’] , new_df [’ Lat ’])

405 m. plot (x , y , linewidth =0.05 , c= ’b ’ , alpha = 0 . 2 , zorder =0)

406

407 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots / Line_Plot_Current . png ’ ,

408 bbox_inches= ’ t i g h t ’ , dpi = 100)

409

410 ###

411

412 def DoubleLineMap (df_1_small , df_1_large , df_1) :

413 ’ ’ ’

414 Density l i n e plot for several v ess el s DataFrames , excluding large gaps :

415 df_1_small : DataFrame for smaller ve ssel s with MessageType1 data

416 df_1_large : DataFrame for VLGC with MessageType1 data

417 df_1 : DataFrame with MessageType1 data

418 ’ ’ ’

419 minlon = max(°180 ,min(df_1 [’Lon ’]) °5) #°5

420 minlat = max(°90 ,min(df_1 [’ Lat ’]) °5) #°5

421 maxlon = min(180 ,max(df_1 [’Lon ’]) +5) #+5

422 maxlat = min(90 ,max(df_1 [’ Lat ’]) +5) #+5

423 l a t 0 = (maxlat+minlat) /2

424 lon0 = (maxlon+minlon) /2

425 l a t 1 = (maxlat+minlat) /2°20

426

427 dfLineSmall = df_1_small . set_index ([’MMSI’ , ’ Unixtime ’])

428 dfLineLarge = df_1_large . set_index ([’MMSI’ , ’ Unixtime ’])

429

430 f i g , ax= p l t . subplots (f i g s i z e =(25 ,25))

431

432 m = Basemap(l l c r n r l o n =minlon , l l c r n r l a t =minlat , urcrnrlon=maxlon ,

433 u r c r n r l a t =maxlat , rsphere =(6378137.00 ,6356752.3142) ,

APPENDIX E. CODE XX

434 resolution= ’ l ’ , projection= ’ cyl ’ , l a t _ 0 =lat0 , lon_0=lon0 ,

435 l a t _ t s = l a t 1)

436

437 m. drawmapboundary(f i l l _ c o l o r = ’w’)

438 m. f i l l c o n t i n e n t s (color= ’ l i g h t g r e y ’ , lake_color= ’w’) # , zorder =0 ,

439

440 # Plot for each vessel :

441 for MMSI, new_df in dfLineSmall . groupby (l e v e l =0) :

442 new_df = new_df . xs (MMSI) [[’ Lat ’ , ’Lon ’]]

443 d i f f _ d f = new_df [[’ Lat ’ , ’Lon ’]] . d i f f () . abs ()

444 # Exclude l i n e where dif ference in l a t / lon > 30

445 new_df [(d i f f _ d f [’ Lat ’] >10) | (d i f f _ d f [’Lon ’] >10)] = np . nan

446

447 x , y = m(new_df [’Lon ’] , new_df [’ Lat ’])

448 m. plot (x , y , linewidth =0.05 , c= ’ r ’ , alpha = 0 . 2 , zorder =0)

449

450 for MMSI, new_df in dfLineLarge . groupby (l e v e l =0) :

451 new_df = new_df . xs (MMSI) [[’ Lat ’ , ’Lon ’]]

452 d i f f _ d f = new_df [[’ Lat ’ , ’Lon ’]] . d i f f () . abs ()

453 # Exclude l i n e where dif ference in l a t / lon > 30

454 new_df [(d i f f _ d f [’ Lat ’] >10) | (d i f f _ d f [’Lon ’] >10)] = np . nan

455

456 x , y = m(new_df [’Lon ’] , new_df [’ Lat ’])

457 m. plot (x , y , linewidth =0.05 , c= ’b ’ , alpha = 0 . 2 , zorder =0)

458

459 legend_elements = [Line2D ([0] , [0] , color= ’ r ’ , lw=3 , l a be l = ’ Smaller Vessels ’) ,

460 Line2D ([0] , [0] , color= ’b ’ , lw=3 , l a be l = ’VLGC ’)]

461 p l t . legend (handles=legend_elements , loc =3 , fonts i z e = ’ x°large ’)

462 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots / Line_Vessel_spl i t . png ’ ,

463 bbox_inches= ’ t i g h t ’ , dpi = 100)

464

465 ###

466

467 def DraughtMap(df_5) :

468 ’ ’ ’

469 Plots a hexbin heatmap of the vessel draught rate :

470 df_5 : DataFrame with MesaageType5 data

471 ’ ’ ’

472 minlon = max(°180 ,min(df_5 [’Lon ’]) °5) #°5

473 minlat = max(°90 ,min(df_5 [’ Lat ’]) °5) #°5

474 maxlon = min(180 ,max(df_5 [’Lon ’]) +5) #+5

475 maxlat = min(90 ,max(df_5 [’ Lat ’]) +5) #+5

476 l a t 0 = (maxlat+minlat) /2

477 lon0 = (maxlon+minlon) /2

478 l a t 1 = (maxlat+minlat) /2°20

479

480 f i g , ax= p l t . subplots (f i g s i z e =(25 ,25))

481

482 m = Basemap(l l c r n r l o n =minlon , l l c r n r l a t =minlat , urcrnrlon=maxlon ,

483 u r c r n r l a t =maxlat , rsphere =(6378137.00 ,6356752.3142) ,

484 resolution= ’ l ’ , projection= ’ cyl ’ , l a t _ 0 =lat0 , lon_0=lon0 ,

485 l a t _ t s = l a t 1)

486

487 m. drawmapboundary(f i l l _ c o l o r = ’w’)

488 m. f i l l c o n t i n e n t s (color= ’ darkgrey ’ , lake_color= ’w’) # , zorder=0

489

490 x , y = m(df_5 [’Lon ’] , df_5 [’ Lat ’])

491

492 m. hexbin (np . array (x) ,np . array (y) ,C=np . array (df_5 [’D/Dmax ’]) , g r i d s i z e =75 ,

493 mincnt=1 ,cmap= ’coolwarm ’ , zorder =0)

494 m. colorbar (location= ’bottom ’ , format= ’ %.1 f ’ , l ab e l = ’ Draught/Max Draught from Seaweb [°] ’)

495 #mincnt = 2 : c e l l s with one signal gest neglected

496 #magma or inferno with balck background

497

498 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots /Draught_Map_Current . png ’ ,

499 bbox_inches= ’ t i g h t ’ , dpi = 100)

500

501 ###

502

503 def GenerateWeeklyTimeWindow (df) :

504 ’ ’ ’

505 Generates weekly time windows based on f i r s t and l a s t message in df :

506 df : DataFrame with MessageType1 data

507 returns : DataFrame with weekly time i n t e r v a l s

APPENDIX E. CODE XXI

508 ’ ’ ’

509 mintime = df [’ Unixtime ’] . min ()

510 maxtime = df [’ Unixtime ’] . max()

511

512 min_week = dt . datetime . fromtimestamp (mintime) . isocalendar () [1]

513 min_year = dt . datetime . fromtimestamp (mintime) . isocalendar () [0]

514 s t a r t = dt . datetime . strptime (s t r (min_year) + ’°W’+ s t r (min_week) + ’°1 ’ , "%Y°W%W°%w")

515

516 max_week = dt . datetime . fromtimestamp (maxtime) . isocalendar () [1]

517 max_year = dt . datetime . fromtimestamp (maxtime) . isocalendar () [0]

518 end = dt . datetime . strptime (s t r (max_year) + ’°W’+ s t r (max_week) + ’°0 ’ , "%Y°W%W°%w")

519

520 window = pd . DataFrame (columns=[’ timestamp ’])

521 delta = dt . timedelta (days =7)

522

523 t i d = s t a r t

524

525 while (t i d <= end) :

526 window = window . append ({ ’ timestamp ’ : t i d } , ignore_index=True)

527 t i d = t i d + delta

528

529 return window

530

531 ###

532

533 def WeeklyPriceAverage (df , daily ,name) :

534 ’ ’ ’

535 Calculate weekly price average from dai ly price data :

536 df : DataFrame with MessageType1 data

537 dai ly : Daily price DataFrame

538 name: Wanted feature name (Ex : oil_WTI , spot_MB)

539 returns : Weekly price averages based on time i n t e r v a l s

540 ’ ’ ’

541 price = GenerateWeeklyTimeWindow (df)

542

543 for i in range (0 , len (price)°1) :

544 start_stamp = price . at [i , ’ timestamp ’]

545 end_stamp = price . at [i +1 , ’ timestamp ’]

546

547 weekly = dai l y [(dai ly . index>=start_stamp) & (dai l y . index<end_stamp)] [’ price ’]

548 average = weekly .mean()

549

550 price . at [i ,name] = average

551

552 return price . set_index (’ timestamp ’)

553

554 ###

555

556 def WeekCountInArea (df , area ,name) :

557 ’ ’ ’

558 The function counts unique ve ssel s present in an area each week :

559 df : DataFrame with MesaageType1 data

560 area : L i s t with corners (global = [180 ,90 ,°180 ,°90]) on where to count

561 name: Wanted feature name (Ex : Atl , GOM)

562 returns : Weekly count in area

563 ’ ’ ’

564 count = GenerateWeeklyTimeWindow (df)

565

566 df = df [(df [’ Lat ’] < area [1]) & (df [’ Lat ’] > area [3])]

567 df = df [(df [’Lon ’] > area [2]) & (df [’Lon ’] < area [0])]

568

569 for i in range (0 , len (count)°1) :

570 start_stamp = count . at [i , ’ timestamp ’]

571 end_stamp = count . at [i +1 , ’ timestamp ’]

572

573 start_u = time . mktime(start_stamp . timetuple ())

574 end_u = time . mktime(end_stamp . timetuple ())

575

576 N_unique = df [(df [’ Unixtime ’]>= start_u) & (df [’ Unixtime ’] <end_u)] [’MMSI’] . nunique ()

577

578 count . at [i , ’ count_ ’+name] = N_unique

579

580 return count . set_index (’ timestamp ’)

581

APPENDIX E. CODE XXII

582 ###

583

584 def WeekCapacityInArea (df , area , vessels ,name) :

585 ’ ’ ’

586 The function sums the capacity of v esse ls present in an area each week :

587 df : DataFrame with MesaageType1 data

588 area : L i s t with corners (global = [180 ,90 ,°180 ,°90]) on where to count

589 ve ssel s : DataFrame with vessel c h a r a c t e r i s t i c s

590 name: Wanted feature name (Ex : Atl , GOM)

591 returns : Weekly summed capacity in area

592 ’ ’ ’

593 cap = GenerateWeeklyTimeWindow (df)

594

595 capacity = v esse ls . set_index (’MMSI’) [’ Gas_Capacity ’]

596

597 df = df [(df [’ Lat ’] < area [1]) & (df [’ Lat ’] > area [3])]

598 df = df [(df [’Lon ’] > area [2]) & (df [’Lon ’] < area [0])]

599

600 for i in range (0 , len (cap)°1) :

601 start_stamp = cap . at [i , ’ timestamp ’]

602 end_stamp = cap . at [i +1 , ’ timestamp ’]

603

604 start_u = time . mktime(start_stamp . timetuple ())

605 end_u = time . mktime(end_stamp . timetuple ())

606

607 N_unique = df [(df [’ Unixtime ’]>= start_u) & (df [’ Unixtime ’] <end_u)] [’MMSI’] . nunique ()

608 unique = df [(df [’ Unixtime ’]>= start_u) & (df [’ Unixtime ’] <end_u)] [’MMSI’] . unique ()

609

610 weekly_cap = 0

611

612 i f N_unique > 0 :

613 for vessel in unique :

614 weekly_cap += capacity . at [vessel]

615

616 cap . at [i , ’ capacity_ ’+name] = weekly_cap

617

618 return cap . set_index (’ timestamp ’)

619

620 ###

621

622 def WeekSpeedInArea (df , area ,name) :

623 ’ ’ ’

624 The function ca l cu l a t e s mean and std of the f l e t speed in an area each week :

625 df : DataFrame with MesaageType1 data

626 area : L i s t with corners (global = [180 ,90 ,°180 ,°90]) on where to count

627 name: Wanted feature name (Ex : Atl , GOM)

628 returns : Weekly mean speed and std of speed in area

629 ’ ’ ’

630 speed = GenerateWeeklyTimeWindow (df)

631

632 df = df [(df [’ Lat ’] < area [1]) & (df [’ Lat ’] > area [3])]

633 df = df [(df [’Lon ’] > area [2]) & (df [’Lon ’] < area [0])]

634

635 for i in range (0 , len (speed)°1) :

636 start_stamp = speed . at [i , ’ timestamp ’]

637 end_stamp = speed . at [i +1 , ’ timestamp ’]

638

639 start_u = time . mktime(start_stamp . timetuple ())

640 end_u = time . mktime(end_stamp . timetuple ())

641

642 w_speed = df [(df [’ Unixtime ’]>= start_u) & (df [’ Unixtime ’] <end_u)] [’ Speed ’]

643

644 speed . at [i , ’mean_ ’+name] = w_speed .mean()

645 speed . at [i , ’ std_ ’+name] = w_speed . std ()

646

647 return speed . set_index (’ timestamp ’)

648

649 ###

650

651 def generate_polygons () :

652 ’ ’ ’

653 Generate the ocean plygons :

654 returns : L i s t with polygons

655 ’ ’ ’

APPENDIX E. CODE XXIII

656 polygons = l i s t ()

657 polygon_atlantic = [[25 , °90] , [25 ,0] , [°5.5 ,36] , [°10 ,90] , [°100 ,90] ,

658 [°103 ,22] ,[°76 ,7] ,[°61 ,°19] ,[°80 ,°90] ,[25 ,°90]]

659 polygon_FE = [[1 8 0 , 9 0] , [8 0 , 9 0] , [5 0 , 5 0] , [8 0 , 4 0] , [7 7 , 1 1] , [1 8 0 , °9 0] , [1 8 0 , 9 0]]

660 polygon_CP = [[3 3 , 2 9] , [5 0 , 5 0] , [8 0 , 4 0] , [7 7 , 1 1] , [2 5 , 0] , [3 3 , 2 9]]

661 polygon_EstP = [[°180 ,90] ,[°100 ,90] ,[°103 ,22] ,[°76 ,7] ,[°61 ,°19] ,[°80 ,°90] ,

662 [°180 ,°90]]

663 polygon_NWE = [[°5 . 5 , 3 6] , [°1 0 , 9 0] , [8 0 , 9 0] , [5 0 , 5 0] , [4 , 4 8] , [°5 . 5 , 3 6]]

664

665 polygon_indi = [[25 , °90] , [25 ,0] , [77 ,11] , [180 , °90] , [25 , °90]]

666

667 polygon_Med = [[2 5 , 0] , [°5 . 5 , 3 6] , [4 , 4 8] , [5 0 , 5 0] , [3 3 , 2 9] , [2 5 , 0]]

668

669 polygons . append(polygon_atlantic)

670 polygons . append(polygon_FE)

671 polygons . append(polygon_CP)

672 polygons . append(polygon_EstP)

673 polygons . append(polygon_NWE)

674 polygons . append(polygon_indi)

675 polygons . append(polygon_Med)

676

677 return polygons

678

679 ###

680

681 def ocean_polygons (polygons = generate_polygons ()) :

682 ’ ’ ’

683 Plots the ocean polygons :

684 polygons : L i s t with polygons

685 ’ ’ ’

686 f i g , ax = p l t . subplots (f i g s i z e =(10 ,10))

687 m = Basemap(projection= ’ cyl ’ , lon_0 =0 , resolution= ’ l ’)

688 m. drawmapboundary(f i l l _ c o l o r = ’ white ’)

689 m. f i l l c o n t i n e n t s (color= ’ l i g h t g r e y ’ , lake_color= ’ white ’)

690

691 for polygon in polygons :

692 x , y = zip (* polygon)

693 m. plot (x , y , markersize =0)

694 ax . f i l l (x , y , alpha =0.2)

695 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots /ocean_polygons . png ’ ,

696 bbox_inches= ’ t i g h t ’ , dpi = 100)

697

698 ###

699

700 def point_inside_polygon (x , y , poly) :

701 ’ ’ ’

702 Ray casting algorithm to check i f a point i s inside a polygon :

703 x : Longitude

704 y : Latitude

705 poly : Polygon to check for

706 returns : True/ False i f inside /not inside the polygon

707 ’ ’ ’

708 n = len (poly)

709 inside =False

710

711 p1x , p1y = poly [0]

712 for i in range (n+1) :

713 p2x , p2y = poly [i % n]

714 i f y > min(p1y , p2y) :

715 i f y <= max(p1y , p2y) :

716 i f x <= max(p1x , p2x) :

717 i f p1y != p2y :

718 x i n t e r s = (y°p1y) * (p2x°p1x) /(p2y°p1y) +p1x

719 i f p1x == p2x or x <= x i n t e r s :

720 inside = not inside

721 p1x , p1y = p2x , p2y

722

723 return inside

724

725 ###

726

727 def zones (df_1) :

728 ’ ’ ’

729 States in which polygon the signal i s sent from :

APPENDIX E. CODE XXIV

730 df_1 : DataFrame with MessageType1 data

731 returns : DataFrame with MessageType1 data , with additional column s t a t i n g Zone

732 ’ ’ ’

733 df = df_1 . copy ()

734 polygons = generate_polygons ()

735

736 #Creating empty column in the dataframe

737 df [’Zone ’] = ’ Outside ’

738

739 plotlon = l i s t (df [’Lon ’])

740 p l o t l a t = l i s t (df [’ Lat ’])

741

742 #Taking time :

743 for i in range (0 , len (p l o t l a t)) :

744 i f point_inside_polygon (plotlon [i] , p l o t l a t [i] , polygons [0]) :

745 df . at [i , ’Zone ’] = ’ A t l ’

746 e l i f point_inside_polygon (plotlon [i] , p l o t l a t [i] , polygons [1]) :

747 df . at [i , ’Zone ’] = ’FE ’

748 e l i f point_inside_polygon (plotlon [i] , p l o t l a t [i] , polygons [2]) :

749 df . at [i , ’Zone ’] = ’CP ’

750 e l i f point_inside_polygon (plotlon [i] , p l o t l a t [i] , polygons [3]) :

751 df . at [i , ’Zone ’] = ’ EstP ’

752 e l i f point_inside_polygon (plotlon [i] , p l o t l a t [i] , polygons [4]) :

753 df . at [i , ’Zone ’] = ’NWE’

754 e l i f point_inside_polygon (plotlon [i] , p l o t l a t [i] , polygons [5]) :

755 df . at [i , ’Zone ’] = ’ Ind ’

756 e l i f point_inside_polygon (plotlon [i] , p l o t l a t [i] , polygons [6]) :

757 df . at [i , ’Zone ’] = ’Med ’

758 return df

759

760 ###

761

762 def inside_polygon (df_1 , polygon) :

763 ’ ’ ’

764 Another function to check i f a s ignal i s inside a polygon :

765 df_1 : DataFrame with MessageType1 data

766 polygon : Polygon

767 returns : DataFrame with MessageType1 data , with additional column s t a t i n g 1/0

768 ’ ’ ’

769 df = df_1 . copy ()

770

771 # Narrow down the search to make f a s t e r i t e r a t i o n s :

772 x , y = zip (* polygon)

773 max_lon , max_lat , min_lon , min_lat = max(x) ,max(y) ,min(x) ,min(y)

774

775 df_search = df [(df [’Lon ’] < max_lon) & (df [’Lon ’] > min_lon) &

776 (df [’ Lat ’] < max_lat) & (df [’ Lat ’] > min_lat)]

777

778 lon = l i s t (df_search [’Lon ’])

779 l a t = l i s t (df_search [’ Lat ’])

780 index = l i s t (df_search . index)

781

782 df [’ in_area ’] = 0

783 j = 100

784 for i in range (0 , len (lon)) :

785 i f point_inside_polygon (lon [i] , l a t [i] , polygon) :

786 df . at [index [i] , ’ in_area ’] = 1

787 i f i > j :

788 print (i)

789 j = j *2

790 return df

791

792 ###

793

794 def WeekCountFlux (df_1 ,name) :

795 ’ ’ ’

796 Using inside_polygon to find the vessel f l u x over a polygon boundary :

797 df_1 : DataFrame with MessageType1 data

798 name: Name of polygon

799 returns : The weekly capacity f l u x represented by inflow and outfolw from the polygon

800 ’ ’ ’

801 df_poly = df_1 . copy ()

802 f l u x = GenerateWeeklyTimeWindow (df_poly)

803

APPENDIX E. CODE XXV

804 df_poly [’ d i f f ’] = df_poly . groupby (’MMSI’) [’ in_area ’] . transform (pd . Series . d i f f)

805

806 for i in range (0 , len (f l u x)°1) :

807 start_stamp = f l u x . at [i , ’ timestamp ’]

808 end_stamp = f l u x . at [i +1 , ’ timestamp ’]

809

810 start_u = time . mktime(start_stamp . timetuple ())

811 end_u = time . mktime(end_stamp . timetuple ())

812

813 weekly = df_poly [(df_poly [’ Unixtime ’]>= start_u) & (df_poly [’ Unixtime ’] <end_u)]

814

815 f l u x . at [i , ’ in_count_ ’+name] = len (weekly [weekly [’ d i f f ’]==1])

816 f l u x . at [i , ’ out_count_ ’+name] = len (weekly [weekly [’ d i f f ’]==°1])

817

818 return f l u x . set_index (’ timestamp ’)

819

820 ###

821

822 def WeekCapacityFlux (df_1 , vessels ,name) :

823 ’ ’ ’

824 Using inside_polygon to find the vessel capacity f l u x over a polygon boundary :

825 df_1 : DataFrame with MessageType1 data

826 name: Name of polygon

827 ve ssel s : DataFrame with vessel c h a r a c t e r i s t i c s

828 returns : The weekly count f l u x represented by inflow and outfolw from the polygon

829 ’ ’ ’

830 df_poly = df_1 . copy ()

831 f l u x = GenerateWeeklyTimeWindow (df_poly)

832

833 capacity = v esse ls . set_index (’MMSI’) [’ Gas_Capacity ’]

834

835 df_poly [’ d i f f ’] = df_poly . groupby (’MMSI’) [’ in_area ’] . transform (pd . Series . d i f f)

836

837 for i in range (0 , len (f l u x)°1) :

838 start_stamp = f l u x . at [i , ’ timestamp ’]

839 end_stamp = f l u x . at [i +1 , ’ timestamp ’]

840

841 start_u = time . mktime(start_stamp . timetuple ())

842 end_u = time . mktime(end_stamp . timetuple ())

843

844 weekly = df_poly [(df_poly [’ Unixtime ’]>= start_u) & (df_poly [’ Unixtime ’] <end_u)]

845

846 weekly_in = weekly [weekly [’ d i f f ’]==1]

847 weekly_out = weekly [weekly [’ d i f f ’]==°1]

848

849 N_unique_in = weekly_in [’MMSI’] . nunique ()

850 N_unique_out = weekly_out [’MMSI’] . nunique ()

851 unique_in = weekly_in [’MMSI’] . unique ()

852 unique_out = weekly_out [’MMSI’] . unique ()

853

854 weekly_cap_in = 0

855

856 i f N_unique_in > 0 :

857 for vessel in unique_in :

858 weekly_cap_in += capacity . at [vessel]

859

860 weekly_cap_out = 0

861

862 i f N_unique_out > 0 :

863 for vessel in unique_out :

864 weekly_cap_out += capacity . at [vessel]

865

866 f l u x . at [i , ’ in_capacity_ ’+name] = weekly_cap_in

867 f l u x . at [i , ’ out_capacity_ ’+name] = weekly_cap_out

868

869 return f l u x . set_index (’ timestamp ’)

870

871 ###

872

873 def WeekDistance2area (df_1 , coordinate , vessels ,name) :

874 ’ ’ ’

875 Calculating weekly weighted arithmetic mean s a i l i n g distance :

876 df_1 : Dataframe with MesaageType1 data

877 coordiante : The point (lon0 , l a t 0) to calculate distanse to

APPENDIX E. CODE XXVI

878 ve ssel s : Dataframe with vessel c h a r a c t e r i s t i c s

879 name: Name t a r g e t area

880 returns : Weekly weighted arithmetic mean s a i l i n g distance

881 ’ ’ ’

882 distance = GenerateWeeklyTimeWindow (df_1)

883

884 capacity = v esse ls . set_index (’MMSI’) [’ Gas_Capacity ’]

885

886 df = df_1 . drop (’ Speed ’ , axi s =1)

887

888 # Generate the ocean mesh and get the mesh node positions :

889 G, points = OM. GenerateOceanMesh ()

890 nodes = l i s t (zip (points [’ lon ’] , points [’ l a t ’]))

891

892 for i in range (0 , len (distance)°1) :

893 start_stamp = distance . at [i , ’ timestamp ’]

894 end_stamp = distance . at [i +1 , ’ timestamp ’]

895

896 start_u = time . mktime(start_stamp . timetuple ())

897 end_u = time . mktime(end_stamp . timetuple ())

898

899 df_week = df [(df [’ Unixtime ’]>= start_u) & (df [’ Unixtime ’] <end_u)] . set_index (’MMSI’)

900

901 # Sum(C_i * D_i)

902 dist_cap = 0

903 # Sum(C_i)

904 cap_week = 0

905 for vessel in df_week . index . unique () :

906 # Add vessel capacity to monthly world capacity

907 cap_week += capacity . at [vessel]

908

909 df_vessel = df_week . xs (vessel)

910

911 # Select l a s t recorded position t h i s month :

912 # I f only one signal :

913 i f ’ Lat ’ in df_vessel . index :

914 # I f only one record

915 l a t = df_vessel [’ Lat ’]

916 lon = df_vessel [’Lon ’]

917 else :

918 # I f several signals , s e l e c t the l a s t

919 l a t = df_vessel [’ Lat ’] . i a t [°1]

920 lon = df_vessel [’Lon ’] . i a t [°1]

921

922 # S a i l i n g distance in nm from vessel position to area

923 v e s s e l _ d i s t = OM. ShortestSeaDistance ((lon , l a t) , coordinate , nodes ,G)

924 # C_i * D_i

925 dist_cap += v e s s e l _ d i s t * capacity . at [vessel]

926

927 # Sum(C_i * D_i) /Sum(C_i)

928 arithm = dist_cap /cap_week

929 distance . at [i , ’ s a i l i n g _ ’+name] = arithm

930

931 return distance . set_index (’ timestamp ’)

APPENDIX E. CODE XXVII

E.3 Vessel Search and Fleet Characteristics Extraction (Seaweb2AIS.py)

The following code runs the vessels search for LPG vessels in global AIS data. In addition, plot-

ting of fleet characteristics is included.
1 # ! / usr /bin/env python3

2 # °*° coding : utf°8 °*°
3 """

4 Created on Wed Feb 28 15:28:34 2018

5

6 @author : PatrickAndreNaess

7 """

8 import s q l i t e 3

9 import pandas as pd

10 import seaborn as sns

11 import matplotlib . pyplot as p l t

12

13 def plotSeaweb (df) :

14 ’ ’ ’

15 Plots s t a t i s t i c s :

16 df : DataFrame with vessel data

17 ’ ’ ’

18 # Pairplot of the dataset :

19 sns . pairplot (df . drop ([’MMSI’ , ’IMO/LR/IHS_No . ’] , ax is =1) . dropna () ,

20 s i z e =2.5 , plot_kws ={ " s " : 10})

21

22 # Plot of gas capacity vs . DWT by type

23 sns . lmplot (x= ’ Gas_Capacity ’ , y= ’ Deadweight ’ , data = df , hue= ’ Ship_Type ’ ,

24 f i t _ r e g =False , scatter_kws ={ " s " : 20} , legend_out=False , s i z e =7)

25

26 #Density l o t of gas capacity vs . DWT

27 sns . j o i n t p l o t (x= ’ Gas_Capacity ’ , y= ’ Deadweight ’ , data=df , kind= ’ kde ’ , s i z e =7)

28

29 # Newwuildings

30 p l t . f i g u r e (f i g s i z e =(13 ,3))

31 df [’ B u i l t ’] . value_counts () . sort_index () [3 5 : 5 2] . plot ()

32 df [’ B u i l t ’] . value_counts () . sort_index () [5 1 :] . plot ()

33 p l t . x label (’ Year ’)

34 p l t . y label (’ Newbuildings ’)

35 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots /Newbuilding . pdf ’ ,

36 bbox_inches= ’ t i g h t ’)

37

38 # Vessels with missing MMSI number

39 nan_mmsi = df [df [’MMSI’] . i s n u l l ()]

40 num_nan_mmsi = len (nan_mmsi)

41

42 # Size plot of capacity

43 f i g , ax= p l t . subplots (f i g s i z e =(5 ,3))

44 sns . d i s t p l o t (df [’ Gas_Capacity ’] , kde=False , color= ’ r ’)

45 p l t . y label (’ # v esse ls ’)

46 p l t . x label (’Gas capacity [cbm] ’)

47 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots /Gas_Capacity . png ’ ,

48 bbox_inches= ’ t i g h t ’ , dpi = 200)

49

50 # Size plot of length

51 f i g , ax= p l t . subplots (f i g s i z e =(5 ,3))

52 sns . d i s t p l o t (df [’ Length ’] , kde=False , color= ’ r ’)

53 p l t . y label (’ # v esse ls ’)

54 p l t . x label (’ Length [m] ’)

55 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots /LPG_Length . png ’ ,

56 bbox_inches= ’ t i g h t ’ , dpi = 200)

57

58 #Flag plot :

59 df [’ Flag ’] . value_counts () . plot (kind= ’ pie ’)

60

61 print (’ \ nFive l a r g e s t opeartors : ’)

62 print (df [’ Operator ’] . value_counts () . head (5))

63 print (’ \ nFive most registered f l a g s : ’)

64 print (df [’ Flag ’] . value_counts () . head (5))

65 print (’ \ nVessels without MMSI: %i ’ % num_nan_mmsi)

APPENDIX E. CODE XXVIII

66 print (’ Vessels without l i s t e t DWT: %i ’ % len (df [df [’ Deadweight ’] == 0]))

67 print (’ Vessels without l i s t e t Gas_Capacity : %i ’ % len (df [df [’ Gas_Capacity ’] == 0]))

68 print (’ \nThese are : \ n ’)

69 print (df [df [’ Gas_Capacity ’] == 0])

70

71 def imo2mmsi(databasepath , imo_numbers) :

72 ’ ’ ’

73 Vessel search in database :

74 databasepath : Path to database

75 imo_numbers : L i s t with imo numbers from SeaWeb

76 returns : DataFrame with MMSIs numbers found for each IMO number

77 ’ ’ ’

78 con = s q l i t e 3 . connect (databasepath)

79 imo = l i s t ()

80 mmsi = l i s t ()

81

82 imo_string = s t r (imo_numbers [0])

83 imo_numbers . remove (imo_numbers [0])

84

85 for number in imo_numbers :

86 imo_string = imo_string + ’ ,%s ’ % s t r (number)

87

88 #In case erroneous , s e l e c t tanker also

89 SQL = "SELECT imo , userid , ship_type FROM MessageType5 where imo in (%s) \

90 and ship_type >= 80 and ship_type < 90" % imo_string

91

92 with con :

93 cur = con . execute (SQL)

94 VesselData = cur . f e t c h a l l ()

95

96 for i in range (0 , len (VesselData)) :

97 Datastrip = VesselData [i]

98 imo . append(Datastrip [0])

99 mmsi. append(Datastrip [1])

100

101 con . close ()

102

103 x = pd . DataFrame ({ ’MMSI’ : mmsi, ’imo ’ : imo })

104 x . set_index (’imo ’ , inplace = True)

105

106 # Same ship might not be dropped as duplicate since the ship_type might be changed

107 return x . drop_duplicates (’MMSI’)

108

109 # Div s t a t i s t i c s :

110 def imo2mmsiStatistics (lpg , imoTommsi) :

111 ’ ’ ’

112 Plots vessel search s t a t i s t i c s :

113 lpg : Vessel data from SeaWeb

114 imoTommsi : A l l MMSIs found per IMO number

115 ’ ’ ’

116 no_found = len (lpg [lpg [’Num MMSI’] . i s n u l l ()])

117 found = len (lpg)

118 print (’ \nDid not find MMSI r e l a t i n g to IMO in MessageType5 : %i in %i v esse ls ’

119 % (no_found , found))

120 print (’Found : %.4 f ’ % (1°no_found/found))

121 print (’Unique MMSI: %i \n ’ % len (imoTommsi))

122

123 p l t . f i g u r e (f i g s i z e =(6 ,3))

124 ax = sns . countplot (imoTommsi . index . value_counts ()) # AIS + Not found (Only SW)

125 p l t . x label (’Unique MMSI’)

126 p l t . y label (’ # IMO Numbers ’)

127 p l t . ylim ([0 , 1 2 0 0])

128 for p in ax . patches :

129 ax . annotate (p . get_height () , (p . get_x () , p . get_height () +15))

130

131 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots /imoMMSIhist . png ’ ,

132 bbox_inches= ’ t i g h t ’ , dpi = 200)

133

134 def main(DB) :

135 # Read CSV f i l e from Seaweb

136 f i l e = ’ /Users/ PatrickAndreNaess /Documents/PYTHON/SeawebLPG . csv ’

137 df = pd . DataFrame (pd . read_csv (f i l e))

138 df . drop (’OPERATOR_URL ’ , axi s =1 , inplace=True)

139 # Drop month in year b u i l t i f wanted :

APPENDIX E. CODE XXIX

140 df [’ B u i l t ’] = df [’ B u i l t ’] . apply (lambda x : i n t (x . s p l i t (’° ’) [0]))

141 # Plot s t a t i s t i c s :

142 plotSeaweb (df)

143 # Whole f l e e t

144 LPG = df [df [’ B u i l t ’] <2018]

145 # L i s t of IMO numbers

146 IMO_LIST = l i s t (LPG[’IMO/LR/IHS_No . ’])

147 # A l l MMSIs found per IMO number

148 imoMMSI = imo2mmsi(DB, IMO_LIST)

149 # Order LPG set by IMO number and match with imoTommsi to get capacity per MMSI

150 LPG. set_index (’IMO/LR/IHS_No . ’ , inplace=True)

151 # A l l MMSIs from Seaweb

152 seaMMSI = pd . DataFrame (LPG[’MMSI’] . dropna () . apply (lambda x : i n t (x)))

153 # Add MMSIs from SW not found in imoMMSI, to imoMMSI. Might be in MessageType1

154 imoTommsi = imoMMSI. append(seaMMSI) . drop_duplicates ()

155 # Number of MMSIs found per IMO

156 LPG = LPG. join (pd . DataFrame (imoMMSI. index . value_counts () , columns=[’Num MMSI’]))

157 #Add those not found to imoMMSI, might be in MessageType1

158

159 # New LPG df indexed by a l l MMSI found and not found in Mt5

160 mmsi_capacity = imoTommsi . join (LPG. drop ([’MMSI’] , ax is =1))

161 mmsi_capacity [’IMO ’] = mmsi_capacity . index

162 mmsi_capacity . set_index (’MMSI’ , inplace=True)

163

164 # Save mmsi_capacity to excel

165 output = ’ /Users/ PatrickAndreNaess /Documents/PYTHON/mmsi_capacity . x l s x ’

166 writer = pd . ExcelWriter (output)

167 mmsi_capacity . to_excel (writer , ’ Sheet1 ’)

168 writer . save ()

169

170 # MMSIs used to create database :

171 MMSI_LIST = s t r ()

172 for i , mi in imoTommsi[’MMSI’] . i ter i tems () :

173 MMSI_LIST += ’ , ’+ s t r (mi)

174

175 return MMSI_LIST

APPENDIX E. CODE XXX

E.4 Daily Data Interpolation (Interpolate_data.py)

Daily interpolation of AIS data for every vessel identity. If applicable.
1 # ! / usr /bin/env python3

2 # °*° coding : utf°8 °*°
3 """

4 Created on Wed Jun 6 18:52:43 2018

5

6 @author : PatrickAndreNaess

7 """

8 import pandas as pd

9

10 def main(df_1) :

11 ’ ’ ’

12 Interpolates Message Type 1 data :

13 df_1 : DataFrame with Message Type 1 data

14 returns : DataFrame with dai ly interpolated data

15 ’ ’ ’

16 df = df_1 . copy () . sort_values (by=[’ Unixtime ’])

17

18 df . index = pd . to_datetime (df [’ Unixtime ’] , unit= ’ s ’)

19

20 df . index = df . index . normalize ()

21

22 NEW = pd . DataFrame ()

23

24 for MMSI, new_df in df . groupby (’MMSI’) :

25

26 new_df = new_df[~new_df . index . duplicated (keep= ’ l a s t ’)]

27

28 new_df = new_df . resample (’D’) . asfreq () . interpolate (axi s =0 ,method= ’ l i n e a r ’)

29

30 NEW = NEW. append(new_df)

31

32 NEW[’MMSI’] = NEW[’MMSI’] . astype (i n t)

33 NEW[’ Unixtime ’] = NEW[’ Unixtime ’] . astype (i n t)

34 return NEW

APPENDIX E. CODE XXXI

E.5 Price Data Importation (Ocean_mesh.py)

Creation and plotting of an ocean mesh of nodes to calculate shortest sailing distance between

two arbitrary points using Dijkstra’s shortest path algorithm.
1 # ! / usr /bin/env python3

2 # °*° coding : utf°8 °*°
3 """

4 Created on F r i Apr 6 16:59:10 2018

5

6 @author : PatrickAndreNaess

7 """

8 import pandas as pd

9 import numpy as np

10 import networkx as nx

11 import matplotlib . pyplot as p l t

12 from mpl_toolkits . basemap import Basemap

13

14 def GenerateOceanMesh () :

15 ’ ’ ’

16 Generate the ocean mesh based on imported csv

17 returns : NetworkX Graph and the node coordinates

18 ’ ’ ’

19 # Import CSV with points and distances

20 f i l e _ p = ’ /Users/ PatrickAndreNaess /Documents/PYTHON/mesh_points . csv ’

21 f i l e _ d = ’ /Users/ PatrickAndreNaess /Documents/PYTHON/mesh_hrany . csv ’

22

23 points = pd . DataFrame (pd . read_csv (f i l e _ p , sep= ’ ; ’))

24 d i s t = pd . DataFrame (pd . read_csv (f i l e _ d , sep= ’ ; ’))

25

26 # Make a network graph :

27 G=nx . Graph ()

28

29 # Make nodes :

30 for index , row in points . iterrows () :

31 G. add_node (index , pos=(row [’ lon ’] , row [’ l a t ’]))

32

33 # Add edges with weights :

34 for index , row in d i s t . i terrows () :

35 G. add_edge (i n t (row [’ i ’]) , i n t (row [’ j ’]) , weight=row [’ d i s t ’])

36

37 return G, points

38

39 def PlotOceanMesh (i , j) :

40 ’ ’ ’

41 Plots the mesh/ grid with / without shortest path between two points :

42 i , j : Node number (set (None, None) i f only mesh i s wanted)

43 ’ ’ ’

44 # Import CSV with points and distances

45 f i l e _ p = ’ /Users/ PatrickAndreNaess /Documents/PYTHON/mesh_points . csv ’

46 f i l e _ d = ’ /Users/ PatrickAndreNaess /Documents/PYTHON/mesh_hrany . csv ’

47

48 points = pd . DataFrame (pd . read_csv (f i l e _ p , sep= ’ ; ’))

49 d i s t = pd . DataFrame (pd . read_csv (f i l e _ d , sep= ’ ; ’))

50

51 # Make a network graph :

52 G=nx . Graph ()

53

54 # Make nodes :

55 for index , row in points . iterrows () :

56 G. add_node (index , pos=(row [’ lon ’] , row [’ l a t ’]))

57

58 # Add edges with weights :

59 for index , row in d i s t . i terrows () :

60 G. add_edge (i n t (row [’ i ’]) , i n t (row [’ j ’]) , weight=row [’ d i s t ’])

61

62 # Remove edges that cross the lon 180/°180 l i n e (only for pl ott ing) :

63 lon_i = points . i a t [i n t (row [’ i ’])] [’ lon ’]

64 lon_j = points . i a t [i n t (row [’ j ’])] [’ lon ’]

65 x = max(lon_i , lon_j) # f a r r i g h t on map

APPENDIX E. CODE XXXII

66 y = min(lon_i , lon_j) # f a r l e f t on map

67 i f x > 160 and y < °160:

68 G. remove_edge (i n t (row [’ i ’]) , i n t (row [’ j ’]))

69

70 # Visu al iz ing the network :

71 f i g , ax = p l t . subplots (f i g s i z e =(18 ,18))

72

73 minlon = °180

74 minlat = °80

75 maxlon = 180

76 maxlat = 83

77 l a t 0 = (maxlat+minlat) /2

78 lon0 = (maxlon+minlon) /2

79 l a t 1 = (maxlat+minlat) /2°20

80

81 m = Basemap(l l c r n r l o n =minlon , l l c r n r l a t =minlat , urcrnrlon=maxlon , u r c r n r l a t =maxlat , \

82 rsphere =(6378137.00 ,6356752.3142) ,\

83 resolution= ’ l ’ , projection= ’ cyl ’ ,\

84 l a t _ 0 =lat0 , lon_0=lon0 , l a t _ t s = l a t 1)

85 m. drawmapboundary(f i l l _ c o l o r = ’ white ’)

86 m. f i l l c o n t i n e n t s (color= ’ l i g h t g r a y ’ , lake_color= ’ white ’)

87

88 pos=nx . get_node_attributes (G, ’ pos ’)

89 nx . draw_networkx_nodes (G, pos , node_size =0)

90 nx . draw_networkx_edges (G, pos , alpha =0.2 , edge_color= ’b ’ , width =0.5)

91

92 i f i or j :

93 path = nx . di jkstra_path (G, source=i , t a r g e t = j)

94 path_edges = l i s t (zip (path , path [1 :]))

95 nx . draw_networkx_nodes (G, pos , nodelist=path , node_size =0)

96 nx . draw_networkx_edges (G, pos , e d g e l i s t =path_edges , edge_color= ’b ’ , width=2)

97

98 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots /OceanMesh . png ’ ,

99 bbox_inches= ’ t i g h t ’ , dpi = 100)

100

101 def ShortestSeaDistance (source , target , nodes , Graph) :

102 ’ ’ ’

103 Calculate the shortest sea distance between two a r b r i t a r y coordinates :

104 source : (lon , l a t) coordinate of source position

105 t a r g e t : (lon , l a t) coordinate of t a r g e t position

106 nodes : DataFrame with node positions generated by GenerateOceanMesh ()

107 Graph : NetworkX graph generated by GenerateOceanMesh ()

108 returns : Shortest path between the source and t a r g e t based on D i j k s t r a ’ s

109 algorithm

110 ’ ’ ’

111 nodes = np . asarray (nodes)

112

113 deltas_s = nodes ° source

114 dist_2_s = np . einsum (’ i j , i j °>i ’ , deltas_s , deltas_s)

115 i = np . argmin (dist_2_s)

116

117 d e l t a s _ t = nodes ° t a r g e t

118 d i s t _ 2 _ t = np . einsum (’ i j , i j °>i ’ , deltas_t , d e l t a s _ t)

119 j = np . argmin (d i s t _ 2 _ t)

120

121 length = nx . dijkstra_path_length (Graph , source=i , t a r g e t = j)

122

123 return length

APPENDIX E. CODE XXXIII

E.6 Price Data Importation (Price_data.py)

Importing and cleaning of price and market data into a structured form.
1 # ! / usr /bin/env python3

2 # °*° coding : utf°8 °*°
3 """

4 Created on Mon Jun 11 09:31:25 2018

5

6 @author : PatrickAndreNaess

7 """

8 import pandas as pd

9

10 def main () :

11 ’ ’ ’

12 Imports price data from f i l e :

13 returns : Separate spot and crude o i l prices

14 ’ ’ ’

15 # Soot prices

16 spot = pd . read_excel (’2018°06°11 Spot & Forward prices Propane . x l s x ’ ,

17 sheet_name= ’ Spot Prices MB°ARA°FEI°CP ’) . set_index (’ Date ’)

18

19 o i l = pd . read_csv (’ crude_oil_WTI . csv ’) . set_index (’DATE ’) . dropna ()

20 o i l . index = pd . to_datetime (o i l . index)

21 o i l . columns = [’ price ’]

22

23 spot [’ Prices ’] = spot [’ Prices ’] . astype (’ f l o a t 3 2 ’)

24 spot_ = pd . DataFrame ()

25

26 for name in spot [’Quote ’] . unique () :

27 spot_ [name] = spot [spot [’Quote ’]==name] [’ Prices ’]

28

29 spot_MB = pd . DataFrame ()

30 spot_MB [’ price ’] = spot_ [’ Propane MB’]

31 spot_FEI = pd . DataFrame ()

32 spot_FEI [’ price ’] = spot_ [’ Propane FEI ’]

33 spot_NWE = pd . DataFrame ()

34 spot_NWE[’ price ’] = spot_ [’ Propane CIF NWE’]

35 spot_CP = pd . DataFrame ()

36 spot_CP [’ price ’] = spot_ [’ Propane CP M01 ’]

37

38 return spot_MB , spot_FEI , spot_NWE , spot_CP , o i l

APPENDIX E. CODE XXXIV

E.7 Data Preparation (Data_preparation.py)

Data preparation of generated time series so that it is applicable to supervised learning prob-

lems.
1 # ! / usr /bin/env python3

2 # °*° coding : utf°8 °*°
3 """

4 Created on Thu May 10 19:40:52 2018

5

6 @author : PatrickAndreNaess

7 """

8 import pandas as pd

9 import numpy as np

10 from sklearn . preprocessing import MinMaxScaler

11 import matplotlib . pyplot as p l t

12 from statsmodels . tsa . s t a t t o o l s import a d f u l l e r

13

14 def plot_time_series (data) :

15 ’ ’ ’

16 P l o t t i n g a l l the times s e r i e s :

17 data : DataFrame with time s e r i e s data

18 ’ ’ ’

19 values = data . values

20

21 t r a i n _ s i z e = round (len (values) * 0 . 9)

22 v a l i d a t i o n _ s i z e = round (t r a i n _ s i z e * 0 . 9)

23

24 train_data = values [0 : v a l i d a t i o n _ s i z e +1]

25 validation_data = values [v a l i d a t i o n _ s i z e : t r a i n _ s i z e +1]

26 test_data = values [t r a i n _ s i z e :]

27

28 groups = l i s t (range (0 , len (data . columns)))

29 i = 1

30 # plot each column

31 p l t . f i g u r e (f i g s i z e =(20 ,20))

32 for group in groups :

33 p l t . subplot (len (groups) , 1 , i)

34 p l t . plot (train_data [: , group] , l a be l = ’ t r a i n i n g _ s e t ’)

35 p l t . plot (range (val idat ion_size , t r a i n _ s i z e +1) , validation_data [: , group] , l ab e l = ’ v a l i d a t i o n _s e t ’)

36 p l t . plot (range (t ra i n_ si z e , len (values)) , test_data [: , group] , l ab e l = ’ t e s t i n g _ s e t ’)

37 p l t . t i t l e (data . columns [group] , y =0.85 , loc= ’ r i g h t ’)

38 i f i == 1 :

39 p l t . legend ()

40 p l t . xlim ([°1 , len (data) +1])

41 i += 1

42 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots / plot_time_series . pdf ’ ,

43 bbox_inches= ’ t i g h t ’)

44

45 def normalize (data) :

46 ’ ’ ’

47 Normalizing the time s e r i e s data :

48 data : DataFrame with time s e r i e s data

49 returns : DataFrame with normalized data and the s c a l e r

50 ’ ’ ’

51 # Normalize data

52 for i , col in data . i te r i tems () :

53 s c a l e r = MinMaxScaler (feature_range =(0 ,1))

54 data [i] = s c a l e r . f i t_transform (data [i] . values . reshape (°1 , 1))

55 data = data [data . columns] . astype (’ f l o a t 3 2 ’)

56

57 return data , s c a l e r

58

59 def difference_normalize (data) :

60 ’ ’ ’

61 Normalizing and f i r s t dif ference of the time s e r i e s data :

62 data : DataFrame with time s e r i e s data

63 returns : DataFrame with differenced normalized data and the s c a l e r

64 ’ ’ ’

65 # Difference the data

66 data = data . d i f f () . dropna ()

APPENDIX E. CODE XXXV

67

68 # Normalize data

69 for i , col in data . i te r i tems () :

70 s c a l e r = MinMaxScaler (feature_range =(0 ,1))

71 data [i] = s c a l e r . f i t_transform (data [i] . values . reshape (°1 , 1))

72 data = data [data . columns] . astype (’ f l o a t 3 2 ’)

73

74 return data , s c a l e r

75

76 def log_difference_normalize (data) :

77 ’ ’ ’

78 Normalizing and logarithmic dif ferencing the time s e r i e s data :

79 data : DataFrame with time s e r i e s data

80 returns : DataFrame with log differenced normalized data and the s c a l e r

81 ’ ’ ’

82 # Difference the data

83 data = data . apply (np . log)

84 #data = data . replace ([np . inf , °np . i n f] , np . nan)

85 data = data . dropna () . d i f f () . dropna () . reset_index (drop=True)

86

87 # Normalize data

88 for i , col in data . i te r i tems () :

89 s c a l e r = MinMaxScaler (feature_range =(0 ,1))

90 data [i] = s c a l e r . f i t_transform (data [i] . values . reshape (°1 , 1))

91 data = data [data . columns] . astype (’ f l o a t 3 2 ’)

92

93 return data , s c a l e r

94

95 def stat ionarity_check (data) :

96 ’ ’ ’

97 S t a t i o n a r i t y check with the Augmented Dickey°F u l l e r t e s t :

98 data : DataFrame with time s e r i e s data

99 returns : DataFrame with t e s t s t a t i s t i c s

100 ’ ’ ’

101 AF = pd . DataFrame ()

102

103 for name, s e r i e s in data . i ter i tems () :

104 r e s u l t = a d f u l l e r (s e r i e s)

105 AF . at [’ADF S t a t i s t i c ’ ,name] = r e s u l t [0]

106 AF . at [’p°value ’ ,name] = r e s u l t [1]

107 for key , value in r e s u l t [4] . items () :

108 AF . loc [key ,name] = value

109 for key , value in r e s u l t [4] . items () :

110 AF . loc [’ Accept H0 at ’+key ,name] = (r e s u l t [0] > value)

111

112 return AF

113

114 def supervised_learning (lag , df) :

115 ’ ’ ’

116 Creates a DataFrame with features and lags :

117 lag : Max lag to output

118 df : DataFrame with time s e r i e s data

119 returns : DataFrame with the s e r i e s and lags

120 ’ ’ ’

121 df_data , s c a l e r = difference_normalize (df)

122

123 dataframe = pd . DataFrame ()

124 for name, d in df_data . i ter i te ms () :

125 s e r i e s = df_data [name]

126 for i in range (lag ,0 ,°1) :

127 dataframe [name+ ’ (t° ’+ s t r (i) + ’) ’] = s e r i e s . s h i f t (i)

128 dataframe [name+ ’ (t) ’] = s e r i e s

129 dataframe = dataframe [lag :]

130

131 dataframe [’ price (t +1) ’]= dataframe [’ price (t) ’] . s h i f t (°1)

132

133 # Only perform features select ion on in°sample data (training data)

134 t r a i n _ s i z e = round (len (df) * 0 . 9)

135 train_data = dataframe [0 : t r a i n _ s i z e]

136

137 return train_data . dropna ()

138

139 def inverse (pred , test , last_obs , s c l) :

140 ’ ’ ’

APPENDIX E. CODE XXXVI

141 Inverese scal ing the predicted dataset :

142 pred : Predictions

143 t e s t : Real values

144 last_obs : Last observed value in the training set

145 s c l : The s c a l e r for which to inverse transform

146 returns : DataFrame with inverse transformed date

147 ’ ’ ’

148 inverted = s c l . inverse_transform (pred)

149 return inverted

150

151 def inverse_transfrom (pred , test , last_obs , s c l) :

152 ’ ’ ’

153 Inverese scal ing and dif ferencing the predicted dataset :

154 pred : Predictions

155 t e s t : Real values

156 last_obs : Last observed value in the training set

157 s c l : The s c a l e r for which to inverse transform

158 returns : DataFrame with inverse transformed date

159 ’ ’ ’

160 pred = s c l . inverse_transform (pred)

161 inverted = l i s t ()

162 inverted . append(pred [0] + last_obs)

163

164 for i in range (1 , len (pred)) :

165 inverted . append(pred [i] + t e s t [i °1])

166 return inverted

167

168 def inverse_log_transfrom (pred , test , last_obs , s c l) :

169 ’ ’ ’

170 Inverese scal ing and log dif ferencing the predicted dataset :

171 pred : Predictions

172 t e s t : Real values

173 last_obs : Last observed value in the training set

174 s c l : The s c a l e r for which to inverse transform

175 returns : DataFrame with inverse transformed date

176 ’ ’ ’

177 last_ln_obs = np . log (last_obs)

178 pred = s c l . inverse_transform (pred)

179 inverted = l i s t ()

180 inverted . append(pred [0] + last_ln_obs)

181

182 for i in range (1 , len (pred)) :

183 inverted . append(pred [i] + np . log (t e s t [i °1]))

184 return np . exp (inverted)

185

186 i f __name__ == ’ __main__ ’ :

187 data = pd . read_csv (’ timeseries_data . csv ’) . set_index (’ timestamp ’)

188 data_processed , s c a l e r = difference_normalize (data)

189

190 plot_time_series (data)

191 plot_time_series (data_processed)

192 adf = stat ionarity_check (data_processed)

APPENDIX E. CODE XXXVII

E.8 Feature Importance Scores (Feature_importance.py)

Incorporates the filter selection methods, where features are ranked based on a statistical scores

from various variable importance methods.
1 # ! / usr /bin/env python3

2 # °*° coding : utf°8 °*°
3 """

4 Created on Wed Apr 18 16:33:32 2018

5

6 @author : PatrickAndreNaess

7 """

8 import pandas as pd

9 import numpy as np

10 import Data_preparation as DP

11 from sklearn . ensemble import RandomForestRegressor

12 from sklearn . feature_select ion import f_regression

13 from sklearn . preprocessing import MinMaxScaler

14 from sklearn . linear_model import RidgeCV , LassoCV , LinearRegression

15 import matplotlib . pyplot as p l t

16 from minepy import MINE

17 import seaborn as sns

18

19 def scale_rank (rank ,name, order =1) :

20 ’ ’ ’

21 Scale the feature importance score in range [0 , 1] :

22 rank : L i s t with scores

23 name: Name of method

24 returns : Dictionary with scores for the s p e c i f i c method

25 ’ ’ ’

26 scale = MinMaxScaler ()

27 rank = scale . f i t_transform (order *np . array ([rank]) . T) . T[0]

28 rank = map(lambda x : round (x , 2) , rank)

29 return d i c t (zip (name, rank))

30

31 def main(lag , data) :

32 ’ ’ ’

33 Calculate and plot f i l t e r features select ion scores :

34 lag : Max lag of i n t e r e s t

35 data : DataFrame with transformed time s e r i e s data

36 returns : DataFrame with normalized f i l t e r feature importance r at ings

37 ’ ’ ’

38 df = DP. supervised_learning (lag , data)

39

40 array = df . dropna () . values . astype (’ f l o a t 3 2 ’)

41

42 # S p l i t into input and output (r i g h t most i s price (t +1))

43 X = array [: , 0 : °1]

44 Y = array [: , °1]

45

46 names = df . columns . values [0: °1]

47 ranks = { }

48

49 # Linear Regression

50 l r = LinearRegression ()

51 l r . f i t (X , Y)

52 ranks [’ Linear Reg . ’] = scale_rank (np . abs (l r . coef_) , names)

53

54 # Ridge Regression with cross val idat ion to find the tuning parameter

55 ridge = RidgeCV ()

56 ridge . f i t (X , Y)

57 ranks [’ Ridge Reg . ’] = scale_rank (np . abs (ridge . coef_) , names)

58

59 # Lasso Regression with cross val idat ion to find the tuning parameter

60 lasso = LassoCV ()

61 lasso . f i t (X , Y)

62 ranks [’ Lasso ’] = scale_rank (np . abs (lasso . coef_) , names)

63

64 # Random Forests

65 r f = RandomForestRegressor ()

66 r f . f i t (X , Y)

APPENDIX E. CODE XXXVIII

67 ranks [’RF ’] = scale_rank (r f . feature_importances_ , names)

68

69 # Linear Correlation

70 f , pval = f_regression (X , Y , center=True)

71 ranks [’ Linear Corr . ’] = scale_rank (f , names)

72

73 # MIC

74 mine = MINE()

75 mic_scores = []

76 for i in range (X . shape [1]) :

77 mine . compute_score (X [: , i] , Y)

78 m = mine . mic ()

79 mic_scores . append(m)

80 ranks [’MIC ’] = scale_rank (mic_scores , names)

81

82 # Mean score

83 r = { }

84 for name in names :

85 r [name] = round (np .mean([ranks [method] [name] for method in ranks . keys ()]) , 2)

86 ranks [’Mean Score ’] = r

87

88 r at ings = pd . DataFrame (ranks)

89

90 # Plot top features based on mean score

91 r at ings [’Mean Score ’] . sort_values () [°2 0 :] . plot (kind= ’ bar ’ , f i g s i z e = (10 ,2) , color= ’b ’)

92 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots /mean_score . pdf ’ ,

93 bbox_inches= ’ t i g h t ’)

94 j = 0

95 for i in range (0 , len (rat i ngs) ,63) :

96 j += 1

97 p l t . subplots (f i g s i z e =(12 ,0.3* len (r at ings [i : i +63])))

98 sns . heatmap(rat ings [i : i +63] ,cmap= ’coolwarm ’ , annot=True , cbar=False ,

99 linewidths =.1 , vmin=0 , vmax=1)

100 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots / FI / FI_ ’+ s t r (j) + ’ . pdf ’ ,

101 bbox_inches= ’ t i g h t ’)

102 return rat ings

APPENDIX E. CODE XXXIX

E.9 Subset Selection (Subset_selection.py)

Contains linear subset selection methods where subset of features are tested linearly to get the

best linear subset combination.
1 # ! / usr /bin/env python3

2 # °*° coding : utf°8 °*°
3 """

4 Created on F r i May 4 19:21:45 2018

5

6 @author : PatrickAndreNaess

7 """

8 import pandas as pd

9 import Data_preparation as DP

10 import i t e r t o o l s

11 import time

12 import statsmodels . api as sm

13 import matplotlib . pyplot as p l t

14

15 def processSubset (feature_set , y , X) :

16 ’ ’ ’

17 F i t s the subset to a l i n e a r model based on OLS :

18 feature_set : Subset of features

19 y : Price to predict

20 X : Features data

21 returns : Fi t ted model with respective RSS

22 ’ ’ ’

23 # F i t model on feature_set and calculate RSS

24 model = sm. OLS(y , X[l i s t (feature_set)])

25 reg = model . f i t ()

26 r s s = ((reg . predict (X[l i s t (feature_set)]) ° y) ** 2) .sum()

27 return { ’model ’ : reg , ’RSS ’ : r s s }

28

29 def calculateCombinations (k , y , X) :

30 ’ ’ ’

31 Calculate a l l feature combinations to find the best subset :

32 k : Number of features to include

33 y : Price to predict

34 X : Features data

35 returns : A l l f i t t e d models , the best model and processing time

36 ’ ’ ’

37 t i c = time . time ()

38 r e s u l t s = []

39

40 for combo in i t e r t o o l s . combinations (X . columns , k) :

41 r e s u l t s . append(processSubset (combo, y , X))

42

43 # Wrap everything up in a nice dataframe

44 models = pd . DataFrame (r e s u l t s)

45 models [’ k ’] = k

46 # Calculate adjusted R^2 s t a t i s t i c

47 models [’ rsquared_adj ’] = models . apply (lambda row : row [1] . rsquared_adj , axis =1)

48 # Calculate adjusted AIC

49 models [’ aic ’] = models . apply (lambda row : row [1] . aic , axi s =1)

50 # Calculate adjusted BIC

51 models [’ bic ’] = models . apply (lambda row : row [1] . bic , axi s =1)

52

53 best_model = models . loc [models [’RSS ’] . idxmin ()]

54

55 toc = time . time ()

56 t = (toc°t i c)

57 print (’ Processed ’ , models . shape [0] , ’ models on ’ , k , ’ features in ’ , t , ’ seconds . ’)

58

59 return models . drop (’model ’ , ax is =1) , best_model , t

60

61 def forward (features , y , X) :

62 ’ ’ ’

63 Finds the best model based on forward select ion :

64 features : Subset of features

65 y : Price to predict

66 X : Features data

APPENDIX E. CODE XL

67 returns : Best forward select ion model

68 ’ ’ ’

69 # Pull out predictors we s t i l l need to process

70 remaining_predictors = [p for p in X . columns i f p not in features]

71

72 t i c = time . time ()

73

74 r e s u l t s = []

75

76 for p in remaining_predictors :

77 r e s u l t s . append(processSubset (features +[p] , y , X))

78

79 # Wrap everything up in a nice dataframe

80 models = pd . DataFrame (r e s u l t s)

81 # Calculate adjusted R^2 s t a t i s t i c

82 models [’ rsquared_adj ’] = models . apply (lambda row : row [1] . rsquared_adj , axis =1)

83 # Calculate adjusted AIC

84 models [’ aic ’] = models . apply (lambda row : row [1] . aic , axi s =1)

85 # Calculate adjusted BIC

86 models [’ bic ’] = models . apply (lambda row : row [1] . bic , axi s =1)

87 # Choose the model with the highest RSS

88 best_model = models . loc [models [’RSS ’] . idxmin ()]

89

90 toc = time . time ()

91 t = (toc°t i c)

92 print (" Processed " , models . shape [0] , ’ models on ’ , len (features) +1 , ’ features in ’ , t , ’ seconds . ’)

93

94 # Return the best model , along with some other useful information about the model

95 return best_model , t

96

97 def backward (features , y , X) :

98 ’ ’ ’

99 Finds the best model based on backward select ion :

100 features : Subset of features

101 y : Price to predict

102 X : Features data

103 returns : Best backward select ion model

104 ’ ’ ’

105 t i c = time . time ()

106

107 r e s u l t s = []

108

109 for combo in i t e r t o o l s . combinations (features , len (features)°1) :

110 r e s u l t s . append(processSubset (combo, y , X))

111

112 # Wrap everything up in a nice dataframe

113 models = pd . DataFrame (r e s u l t s)

114 # Calculate adjusted R^2 s t a t i s t i c

115 models [’ rsquared_adj ’] = models . apply (lambda row : row [1] . rsquared_adj , axi s =1)

116 # Calculate adjusted AIC

117 models [’ aic ’] = models . apply (lambda row : row [1] . aic , axis =1)

118 # Calculate adjusted BIC

119 models [’ bic ’] = models . apply (lambda row : row [1] . bic , axis =1)

120 # Choose the model with the highest RSS

121 best_model = models . loc [models [’RSS ’] . idxmin ()]

122

123 toc = time . time ()

124 t = (toc°t i c)

125 print (’ Processed ’ , models . shape [0] , ’ models on ’ , len (features)°1, ’ features in ’ , t , ’ seconds . ’)

126

127 # Return the best model , along with some other useful information about the model

128 return best_model , t

129

130 ################################ CALCULATIONS #################################

131

132 def main(lag , method , data) :

133 ’ ’ ’

134 Preforms the l i n e a r subset select ion analysis :

135 lag : Max lag of i n t e r e s t

136 method : ’ best ’ or ’ forward ’ , ’ backward ’

137 data : DataFrame with transformed time s e r i e s data

138 returns : Best models

139 ’ ’ ’

140 # Import data

APPENDIX E. CODE XLI

141 dataframe = DP. supervised_learning (lag , data)

142

143 # Separate the features and predicted variable

144 y = dataframe [’ price (t +1) ’]

145 X = dataframe . drop (’ price (t +1) ’ , ax is =1)

146

147 # Select method : ’ best ’ , ’ forward ’ , ’ backward ’

148 #method = ’ backward ’

149

150 ################################# BEST SUBSET #############################

151 i f method == ’ best ’ :

152 models = pd . DataFrame (columns=[’RSS ’ , ’ rsquared_adj ’ , ’ k ’ , ’ aic ’ , ’ bic ’])

153 models_best = pd . DataFrame (columns=[’RSS ’ , ’model ’ , ’ rsquared_adj ’ , ’ aic ’ , ’ bic ’])

154 t i d = pd . DataFrame (columns=[’ time ’])

155

156 max_subset_size = 4

157

158 t i c = time . time ()

159 for k in range (1 , max_subset_size +1) :

160 mod, models_best . loc [k] , t i d . loc [k] = calculateCombinations (k , y , X)

161 models = models . append(pd . DataFrame (mod) , ignore_index=True)

162

163 toc = time . time ()

164 print (’ Total elapsed time : ’ , (toc°t i c) , ’ seconds . ’)

165

166

167 ################################### FORWARD ###############################

168 e l i f method == ’ forward ’ :

169 models_best = pd . DataFrame (columns=[’RSS ’ , ’model ’ , ’ rsquared_adj ’ , ’ aic ’ , ’ bic ’])

170 t i d = pd . DataFrame (columns=[’ time ’])

171

172 t i c = time . time ()

173 features = []

174

175 for i in range (1 , len (X . columns) +1) :

176 models_best . loc [i] , t i d . loc [i] = forward (features , y , X)

177 features = models_best . loc [i] [’model ’] . model . exog_names

178

179 toc = time . time ()

180 print (’ Total elapsed time : ’ , (toc°t i c) , ’ seconds . ’)

181

182 ################################## BACKWARD ###############################

183 e l i f method == ’ backward ’ :

184 models_best = pd . DataFrame (columns=[’RSS ’ , ’model ’ , ’ rsquared_adj ’ , ’ aic ’ , ’ bic ’])

185 t i d = pd . DataFrame (columns=[’ time ’])

186

187 t i c = time . time ()

188 features = X . columns

189

190 while (len (features) > 1) :

191 models_best . loc [len (features) °1] , t i d . loc [len (features)°1] = backward (features , y , X)

192 features = models_best . loc [len (features) °1][’model ’] . model . exog_names

193

194 toc = time . time ()

195 print (’ Total elapsed time : ’ , (toc°t i c) , ’ seconds . ’)

196

197 models_best [[’RSS ’ , ’ rsquared_adj ’ , ’ aic ’ , ’ bic ’]] = models_best [[’RSS ’ ,

198 ’ rsquared_adj ’ , ’ aic ’ , ’ bic ’]] . astype (’ f l o a t 6 4 ’)

199

200 ################################ PLOT FIGURE ##############################

201

202 p l t . f i g u r e (f i g s i z e =(20 ,10))

203 p l t . subplot (2 , 2 , 1)

204

205 # Plot RSS

206 # p l t . s c a t t e r (models [’ k ’] , models [’ RSS ’] , s =5 ,marker = ’ . ’ , c = ’ grey ’)

207 p l t . plot (models_best [’RSS ’])

208 p l t . plot (models_best [’RSS ’] . idxmin () , models_best [’RSS ’] . min () , ’ or ’)

209 p l t . x label (’ # Predictors ’)

210 p l t . y label (’RSS ’)

211

212 # Plot adjusted R^2 s t a t i s t i c

213 p l t . subplot (2 , 2 , 2)

214 # p l t . s c a t t e r (models [’ k ’] , models [’ rsquared_adj ’] , s =5 ,marker = ’ . ’ , c = ’ grey ’)

APPENDIX E. CODE XLII

215 p l t . plot (models_best [’ rsquared_adj ’])

216 p l t . plot (models_best [’ rsquared_adj ’] . idxmax () , models_best [’ rsquared_adj ’] . max() , ’ or ’)

217 p l t . x label (’ # Predictors ’)

218 p l t . y label (’ adjusted R^2 ’)

219

220 # Plot adjusted AIC

221 p l t . subplot (2 , 2 , 3)

222 # p l t . s c a t t e r (models [’ k ’] , models [’ aic ’] , s =5 ,marker = ’ . ’ , c = ’ grey ’)

223 p l t . plot (models_best [’ aic ’])

224 p l t . plot (models_best [’ aic ’] . idxmin () , models_best [’ aic ’] . min () , ’ or ’)

225 p l t . x label (’ # Predictors ’)

226 p l t . y label (’AIC ’)

227

228 # Plot adjusted BIC

229 p l t . subplot (2 , 2 , 4)

230 # p l t . s c a t t e r (models [’ k ’] , models [’ bic ’] , s =5 ,marker = ’ . ’ , c = ’ grey ’)

231 p l t . plot (models_best [’ bic ’])

232 p l t . plot (models_best [’ bic ’] . idxmin () , models_best [’ bic ’] . min () , ’ or ’)

233 p l t . x label (’ # Predictors ’)

234 p l t . y label (’BIC ’)

235

236 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots / subset_selection . pdf ’ ,

237 bbox_inches= ’ t i g h t ’)

238

239 p l t . f i g u r e (f i g s i z e =(10 ,5))

240 p l t . plot (t i d)

241 p l t . x label (’ # Predictors ’)

242 p l t . y label (’ Processing time [seconds] ’)

243 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots / subset_selection_time . pdf ’ ,

244 bbox_inches= ’ t i g h t ’)

245

246 return models_best

APPENDIX E. CODE XLIII

E.10 Multilayer Perceptron Model (MLP.py)

Training, prediction and construction of a Multilayer Perceptron (MLP) model with hyperpa-

rameter optimization using a genetic algorithm.
1 # ! / usr /bin/env python3

2 # °*° coding : utf°8 °*°
3 """

4 Created on Wed May 16 18:38:49 2018

5

6 @author : PatrickAndreNaess

7 """

8 import numpy as np

9 import pandas as pd

10 import matplotlib . pyplot as p l t

11 import Data_preparation as DP

12 from sklearn . metrics import mean_squared_error , mean_absolute_error

13 from Model_evaluation import DAR

14

15 from keras . l a y e r s import Dense

16 from keras . models import Sequential

17 from keras . optimizers import Adam

18 from keras import backend as K

19

20 from deap import base , creator , tools , algorithms

21 from scipy . s t a t s import bernoull i

22 from b i t s t r i n g import BitArray

23

24 def prepare_dataset_MLP (data , window_size) :

25 ’ ’ ’

26 Prepare dataset for MLP based on window method :

27 data : DataFrame with time s e r i e s data

28 window_size : Sl iding window s i z e

29 returns : Right shape numpy array with predictors X and prediction Y

30 ’ ’ ’

31 n_features = len (data [0])

32

33 # MAKE SURE RIGHT MOST COLUMN IS PREDICTED VARIABLE

34 x , y = data [: , : n_features] , data [: , °1] . reshape (°1 ,1)

35

36 X , Y = np . empty ((0 , window_size * n_features)) , np . empty ((0))

37

38 for i in range (len (x)°window_size) :

39 X = np . vstack ((X , [item for s u b l i s t in x [i : (i + window_size) , :] for item in s u b l i s t]))

40 Y = np . append(Y , y [i + window_size])

41 Y = np . reshape (Y , (len (Y) , 1))

42

43 return X , Y

44

45 def train_evaluate_MLP (ga_individual_solution) :

46 ’ ’ ’

47 Test an individual from the genetic algorithm :

48 ga_individual_solution : INdividual represented by binary tuple

49 returns : MAE performance of MLP (f i t n e s s of the individual)

50 ’ ’ ’

51 K . clear_session ()

52

53 # Decode GA solution to integer for window_size and num_units

54 window_size = 1+BitArray (ga_individual_solution [0 : 5]) . uint

55 neurons_hidden_1 = (BitArray (ga_individual_solution [5 : 1 1]) . uint +1) *4

56 neurons_hidden_2 = (BitArray (ga_individual_solution [1 1 : 1 7]) . uint +1) *4

57 neurons_hidden_3 = (BitArray (ga_individual_solution [1 7 : 2 3]) . uint +1) *4

58 learning_rate_power = 1+BitArray (ga_individual_solution [2 3 : 2 4]) . uint

59 learning_rate = 10**(° learning_rate_power)

60 number_of_layers = BitArray (ga_individual_solution [2 4 :]) . uint

61

62 i f number_of_layers == 0 :

63 return 100 ,

64

65 # Print solution :

APPENDIX E. CODE XLIV

66 print (’ \nWindow Size : ’ , window_size)

67 print (’Num of l a y e r s : ’ , number_of_layers)

68 print (’Num of neurons in layer 1 : ’ , neurons_hidden_1)

69 i f number_of_layers == 2 :

70 print (’Num of neurons in layer 2 : ’ , neurons_hidden_2)

71 e l i f number_of_layers == 3 :

72 print (’Num of neurons in layer 2 : ’ , neurons_hidden_2)

73 print (’Num of neurons in layer 3 : ’ , neurons_hidden_3)

74 print (’ Learning rate : ’ , learning_rate)

75

76 # Prepare data based on window s i z e

77 X , Y = prepare_dataset_MLP (train_data , window_size)

78

79 # S p l i t into traingin and val idat ion set

80 t r a i n _ s i z e = round (len (Y) * (8 / 9))

81 X_train , X_val = X [: t r a i n _ s i z e] , X[t r a i n _ s i z e :]

82 y_train , y_val = Y [: t r a i n _ s i z e] , Y [t r a i n _ s i z e :]

83

84 model = Sequential ()

85 # Hidden layer 1

86 model . add (Dense (neurons_hidden_1 , act ivat ion = ’ sigmoid ’ , input_dim = X_train . shape [1]))

87

88 i f number_of_layers == 2 :

89 # Hidden layer 2

90 model . add(Dense (neurons_hidden_2 , act ivat ion = ’ sigmoid ’))

91

92 e l i f number_of_layers == 3 :

93 # Hidden layer 2

94 model . add(Dense (neurons_hidden_2 , act ivat ion = ’ sigmoid ’))

95 # Hidden layer 3

96 model . add(Dense (neurons_hidden_3 , act ivat ion = ’ sigmoid ’))

97

98 # Output layer

99 model . add (Dense (1 , act ivat ion = ’ l i n e a r ’))

100

101 optimizer = Adam(l r = learning_rate)

102 model . compile (l o s s = ’mae ’ , optimizer = optimizer)

103

104 # F i t data to model

105 model . f i t (X_train , y_train ,

106 epochs=400 , batch_size =128 ,

107 verbose = 0 ,

108 s h u f f l e =True)

109

110 # Make prediction

111 y_pred = model . predict (X_val)

112

113 # Calculate the MAE score as f i t n e s s for GA

114 mae = mean_absolute_error (y_val , y_pred)

115 print (’ \ nValidation MAE: ’ , mae, ’ \n ’)

116 return mae,

117

118 def geneticAlgorithm () :

119 ’ ’ ’

120 Run the genetic algorithm :

121 returns : Resulting population , log of algorithm and Hall of Fame individual

122 ’ ’ ’

123 # Select the parameters of the Genetic Algorithm

124 population_size = 100 # Number of individuals

125 num_generations = 20 # Times the individuals should evolve

126 gene_length = 26 # Binary tuple length individuals

127

128 # Structured in the following way :

129 # [ws*5 ,h1*6 ,h2*6 ,h3*6 , l r , l y *2] = length 26

130

131 # Defining the GA from the Deap l i b r a r y

132 # Minimize the RMSE score , using °1.0. In case , maximize accuracy , use 1.0

133

134 creator . create (’ FitnessMax ’ , base . Fitness , weights = (°1.0 ,))

135 creator . create (’ Individual ’ , l i s t , f i t n e s s = creator . FitnessMax)

136

137 toolbox = base . Toolbox ()

138 toolbox . r e g i s t e r (’ binary ’ , bernoull i . rvs , 0 . 5)

139 toolbox . r e g i s t e r (’ individual ’ , tools . initRepeat , creator . Individual ,

APPENDIX E. CODE XLV

140 toolbox . binary , n = gene_length)

141 toolbox . r e g i s t e r (’ population ’ , tools . initRepeat , l i s t , toolbox . individual)

142 toolbox . r e g i s t e r (’mate ’ , tools . cxOrdered)

143 toolbox . r e g i s t e r (’ mutate ’ , tools . mutShuffleIndexes , indpb = 0 . 6)

144 toolbox . r e g i s t e r (’ s e l e c t ’ , tools . selBest) # selRoulette , selBest

145 toolbox . r e g i s t e r (’ evaluate ’ , train_evaluate_MLP)

146

147 pop = toolbox . population (n = population_size)

148 hof = tools . HallOfFame (1)

149

150 s t a t s = tools . S t a t i s t i c s (lambda ind : ind . f i t n e s s . values)

151 s t a t s . r e g i s t e r ("avg" , np .mean)

152 s t a t s . r e g i s t e r ("min" , np . min)

153

154 pop , log = algorithms . eaSimple (pop , toolbox , cxpb = 0 . 4 , mutpb = 0 . 1 ,

155 ngen = num_generations , halloffame=hof ,

156 verbose = False)

157 return pop , log , hof

158

159 ######################### SELECT FEATURES OF INTEREST #########################

160

161 # Select features of i n t e r e s t :

162 # AIS

163 # nonAIS

164 dataset = ’ AIS ’

165

166 ########################### IMPORT AND PROCESS DATA ###########################

167

168 i f dataset == ’ AIS ’ :

169 unprocessed_data = pd . read_csv (’ selected_AISfeatures . csv ’) . set_index (’ timestamp ’)

170 e l i f dataset == ’ AIS ’ :

171 unprocessed_data = pd . read_csv (’ selected_nonAISfeatures . csv ’) . set_index (’ timestamp ’)

172 else :

173 print (’No datasets selected ! ’)

174

175 df_data , s c a l e r = DP. difference_normalize (unprocessed_data)

176 data = df_data . values . astype (’ f l o a t 3 2 ’)

177

178 # 90°10 training and t e s t i n g s p l i t

179 t r a i n _ s i z e = round (len (data) * 0 . 9)

180

181 train_data = data [0 : t r a i n _ s i z e]

182

183 ############################ GENETIC ALGORITHM ############################

184

185 # I f custom solution : (Only s e l e c t Train_model = True

186 best_window_size = ’ ’

187 best_neurons_hidden_1 = ’ ’

188 best_neurons_hidden_2 = ’ ’

189 best_neurons_hidden_3 = ’ ’

190 best_learning_rate = ’ ’

191 best_number_of_layers = ’ ’

192

193 # Select :

194 Run_GA = True

195 Train_model = True # Set True and r e s t False i f custom solution above

196 Test_individual = True # Train on solution from GA

197 Individual_to_test = 1 # 1 i s best , 2 i s second best , . . .

198

199 i f Run_GA :

200 # Run Genetic Algorithm to get best individuals

201 population , logbook , hof = geneticAlgorithm ()

202

203 # Get Algorithm s t a t i s t i c s

204 f i t n e s s = pd . DataFrame ()

205 for l in logbook :

206 f i t n e s s . loc [l . get (’ gen ’) , ’ average ’] = l . get (’ avg ’)

207 f i t n e s s . loc [l . get (’ gen ’) , ’ best ’] = l . get (’min ’)

208

209 i f Test_individual :

210 best_individuals = tools . selBest (population , k = Individual_to_test)

211 print (’ \ nTraining model with , ’ + dataset)

212 print (’Nr . %i best individual : ’ % Individual_to_test)

213 for bi in best_individuals :

APPENDIX E. CODE XLVI

214

215 best_window_size = 1+BitArray (bi [0 : 5]) . uint

216 best_neurons_hidden_1 = (BitArray (bi [5 : 1 1]) . uint +1) *4

217 best_neurons_hidden_2 = (BitArray (bi [1 1 : 1 7]) . uint +1) *4

218 best_neurons_hidden_3 = (BitArray (bi [1 7 : 2 3]) . uint +1) *4

219 learning_rate_power = 1+BitArray (bi [2 3 : 2 4]) . uint

220 best_learning_rate = 10**(° learning_rate_power)

221 best_number_of_layers = BitArray (bi [2 4 :]) . uint

222

223 e l i f Train_model :

224 print (’ \ nTraining model with , ’ + dataset)

225 print (’Costum solution : ’)

226

227 i f Train_model :

228 # Print solution :

229 print (’ \nWindow Size : ’ , best_window_size)

230 print (’Num of l a y e r s : ’ , best_number_of_layers)

231 print (’Num of neurons in layer 1 : ’ , best_neurons_hidden_1)

232 i f best_number_of_layers == 2 :

233 print (’Num of neurons in layer 2 : ’ , best_neurons_hidden_2)

234 i f best_number_of_layers == 3 :

235 print (’Num of neurons in layer 2 : ’ , best_neurons_hidden_2)

236 print (’Num of neurons in layer 3 : ’ , best_neurons_hidden_3)

237 print (’ Learning rate : ’ , best_learning_rate , ’ \n ’)

238

239 ############################ CREATE BEST MODEL ############################

240

241 # Define datasets based on window s i z e

242 X_train , y_train = prepare_dataset_MLP (train_data , best_window_size)

243

244 test_data = data [tr a i n _s i z e°best_window_size :]

245 X_test , y _ t e s t = prepare_dataset_MLP (test_data , best_window_size)

246

247 # Make dataframes to take averages of in the end :

248 d f _ hi s t o r y _ l o s s = pd . DataFrame ()

249 d f _ h i s t o r y _ v a l _ l o s s = pd . DataFrame ()

250 df_y_pred = pd . DataFrame ()

251

252 for run in range (2) :

253 print (’Runn nr . %i ’ % (run+1))

254

255 K. clear_session ()

256

257 model = Sequential ()

258 # Hidden layer 1

259 model . add (Dense (best_neurons_hidden_1 , act ivat ion = ’ sigmoid ’ ,

260 input_dim = X_train . shape [1]))

261

262 i f best_number_of_layers == 2 :

263 # Hidden layer 2

264 model . add(Dense (best_neurons_hidden_2 , act ivat ion = ’ sigmoid ’))

265

266 e l i f best_number_of_layers == 3 :

267 # Hidden layer 2

268 model . add(Dense (best_neurons_hidden_2 , act ivat ion = ’ sigmoid ’))

269 # Hidden layer 3

270 model . add(Dense (best_neurons_hidden_3 , act ivat ion = ’ sigmoid ’))

271

272 # Output layer

273 model . add (Dense (1 , act ivat ion = ’ l i n e a r ’))

274

275 optimizer = Adam(l r = best_learning_rate)

276 model . compile (l o s s = ’mae ’ , optimizer = optimizer)

277 # F i t data to model

278 history = model . f i t (X_train , y_train ,

279 epochs=200 , batch_size =128 ,

280 validation_data =(X_test , y _ t e s t) ,

281 verbose =0 ,

282 s h u f f l e =True)

283

284 ########################### MAKE PREDICTION ###########################

285

286 y_pred = model . predict (X_test)

287

APPENDIX E. CODE XLVII

288 ############################## SAVE RUN ###############################

289

290 d f _ h i s t o r y _ l o s s [s t r (run)] = pd . Series (history . history [’ l o s s ’])

291 d f _ h i s t o r y _ v a l _ l o s s [s t r (run)] = pd . Series (history . history [’ v a l _ l o s s ’])

292 df_y_pred [s t r (run)] = pd . Series (y_pred [: , 0])

293

294 ########################### AVERAGE THE RESULTS ###########################

295

296 y_pred = df_y_pred .mean(axi s =1) . values . reshape (°1 ,1)

297 h i s t o r y _ l o s s = d f _ h i s t o r y _ l o s s .mean(axi s =1) . values

298 h i s t o r y _ v a l _ l o s s = d f _ h i s t o r y _ v a l _ l o s s .mean(axis =1) . values

299

300 def plot_mlp_training () :

301 # Summarize history for l o s s

302 p l t . plot (h i s t o r y _ l o s s)

303 p l t . plot (h i s t o r y _ v a l _ l o s s)

304 p l t . t i t l e (’model l o s s ’)

305 p l t . y label (’ l o s s ’)

306 p l t . x label (’epoch ’)

307 p l t . ylim (ymax=0.25)

308 p l t . legend ([’ t r a i n ’ , ’ t e s t ’] , loc= ’ upper l e f t ’)

309 p l t . show ()

310

311 plot_mlp_training ()

312

313 ######################### INVERSE TRANSFORM DATA ##########################

314

315 y_real = unprocessed_data [’ price ’] . i l o c [° len (y _ t e s t) :] . values . reshape (°1 ,1)

316

317 last_obs = unprocessed_data [’ price ’] . i l o c [° len (y _ t e s t)°1]

318

319 y_forecast = DP. inverse_transfrom (y_pred , y_real , last_obs , s c a l e r)

320

321 ############################ EVALUATE RESULTS #############################

322

323 def evaluate_results (real , pred) :

324

325 rmse = np . sqrt (mean_squared_error (real , pred))

326 print (’ \ nTest RMSE: ’ , rmse)

327 mae = mean_absolute_error (real , pred)

328 print (’ Test MAE: ’ , mae)

329 mape = np .mean(np . abs ((real°pred) / r e a l)) *100

330 print (’ Test MAPE: ’ ,mape, ’%’)

331 dar = DAR(real , pred , last_obs)

332 print (’ Test DAR: ’ , dar)

333

334 forecast = pd . DataFrame (data = pred , columns=[’ pred ’])

335 forecast [’ r e a l ’] = pd . DataFrame (r e a l)

336 forecast . index = pd . to_datetime (unprocessed_data[° len (y _ t e s t) :] . index)

337 forecast . to_csv (’ MLP_forecast_ ’+dataset+ ’ . csv ’)

338

339 # Plot forecast

340 forecast . plot (f i g s i z e =(8 ,4))

341 p l t . s c a t t e r (forecast . index , forecast [’ pred ’] , marker= ’ . ’)

342 p l t . s c a t t e r (forecast . index , forecast [’ r e a l ’] , marker= ’ . ’)

343 p l t . show ()

344

345 # evaluate_results (y_test , y_pred)

346 evaluate_results (y_real , y_forecast)

APPENDIX E. CODE XLVIII

E.11 Long Short-Term Memory Model (LSTM.py)

Training, prediction and construction of a Long Short-Term Memory (LSTM) model with hyper-

parameter optimization using a genetic algorithm.
1 # ! / usr /bin/env python3

2 # °*° coding : utf°8 °*°
3 """

4 Created on Mon May 7 21:07:36 2018

5

6 @author : PatrickAndreNaess

7 """

8 import numpy as np

9 import pandas as pd

10 import matplotlib . pyplot as p l t

11 import Data_preparation as DP

12 from sklearn . metrics import mean_squared_error , mean_absolute_error

13 from Model_evaluation import DAR

14

15 from keras . l a y e r s import LSTM, Dense , Dropout

16 from keras . models import Sequential

17 from keras . optimizers import Adam

18 from keras import backend as K

19

20 from deap import base , creator , tools , algorithms

21 from scipy . s t a t s import bernoull i

22 from b i t s t r i n g import BitArray

23

24 def prepare_dataset_LSTM (data , window_size) :

25 ’ ’ ’

26 Prepare dataset for LSTM based on window method :

27 data : DataFrame with time s e r i e s data

28 window_size : Sl iding window s i z e

29 returns : Right shape numpy array with predictors X and prediction Y

30 ’ ’ ’

31 n_features = len (data [0])

32

33 # MAKE SURE RIGHT MOST COLUMN IS PREDICTED VARIABLE

34 x , y = data [: , : n_features] , data [: , °1] . reshape (°1 ,1)

35

36 X , Y = np . empty ((0 , window_size , n_features)) , np . empty ((0))

37

38 for i in range (len (x)°window_size) :

39 X = np . vstack ((X , [x [i : (i + window_size) , :]]))

40 Y = np . append(Y , y [i + window_size])

41 Y = np . reshape (Y , (len (Y) , 1))

42

43 return X , Y

44

45 def train_evaluate_LSTM (ga_individual_solution) :

46 ’ ’ ’

47 Test an individual from the genetic algorithm :

48 ga_individual_solution : INdividual represented by binary tuple

49 returns : MAE performance of LSTM (f i t n e s s of the individual)

50 ’ ’ ’

51 K . clear_session ()

52

53 # Decode GA solution :

54 window_size = 1+BitArray (ga_individual_solution [0 : 5]) . uint

55 num_units_1 = (1+ BitArray (ga_individual_solution [5 : 1 0]) . uint) *2

56 num_units_2 = (1+ BitArray (ga_individual_solution [1 0 : 1 5]) . uint) *2

57 learning_rate_power = 1+BitArray (ga_individual_solution [1 5 : 1 6]) . uint

58 learning_rate = 10**(°(learning_rate_power))

59 number_of_layers = 1+BitArray (ga_individual_solution [1 6 :]) . uint

60

61 # Print solution :

62 print (’ \nWindow Size : ’ , window_size)

63 print (’Num of l a y e r s : ’ , number_of_layers)

64 print (’Num of neurons in layer 1 : ’ , num_units_1)

65 i f number_of_layers == 2 :

APPENDIX E. CODE XLIX

66 print (’Num of neurons in layer 2 : ’ , num_units_2)

67 print (’ Learning rate : ’ , learning_rate)

68

69 # Prepare data based on window s i z e

70 X , Y = prepare_dataset_LSTM (train_data , window_size)

71

72 # S p l i t into traingin and val idat ion set

73 t r a i n _ s i z e = round (len (Y) * (8 / 9))

74 X_train , X_val = X [: t r a i n _ s i z e] , X[t r a i n _ s i z e :]

75 y_train , y_val = Y [: t r a i n _ s i z e] , Y [t r a i n _ s i z e :]

76

77 model = Sequential ()

78

79 i f number_of_layers == 1 :

80 # Hidden layer 1

81 model . add(LSTM(num_units_1 , input_shape =(X_train . shape [1] , X_train . shape [2])))

82 model . add(Dropout (0 . 3))

83 # Output 1 neuron

84 model . add(Dense (1 , act ivat ion = ’ l i n e a r ’))

85 else :

86 # Hidden layer 1

87 model . add(LSTM(num_units_1 , input_shape =(X_train . shape [1] , X_train . shape [2]) ,

88 return_sequences=True))

89 model . add(Dropout (0 . 3))

90 # Hidden layer 2

91 model . add(LSTM(num_units_2))

92 model . add(Dropout (0 . 3))

93 # Output 1 neuron

94 model . add(Dense (1 , act ivat ion = ’ l i n e a r ’))

95

96 optimizer = Adam(l r = learning_rate)

97 model . compile (l o s s = ’mae ’ , optimizer = optimizer)

98

99 # F i t data to model

100 for i in range (200) :

101 model . f i t (X_train , y_train ,

102 epochs=1 , batch_size =128 ,

103 verbose =0 ,

104 s h u f f l e =False) #very important s h u f f l e = False for LSTM

105 model . r e s e t _ s t a t e s ()

106

107 y_pred = model . predict (X_val)

108

109 # Calculate the MAE score as f i t n e s s for GA

110 mae = mean_absolute_error (y_val , y_pred)

111 print (’ \ nValidation MAE: ’ , mae, ’ \n ’)

112 return mae,

113

114 def geneticAlgorithm () :

115 ’ ’ ’

116 Run the genetic algorithm :

117 returns : Resulting population , log of algorithm and Hall of Fame individual

118 ’ ’ ’

119 # Select the parameters of the Genetic Algorithm

120 population_size = 100 # Number of individuals

121 num_generations = 20 # Times the individuals should evolve

122 gene_length = 17 # Binary tuple length individuals

123

124 # Structured in the following way :

125 # [wi *5 ,h1*5 ,h2*5 , l r , l y] = length 17

126

127 # Defining the GA from the Deap l i b r a r y

128 # Minimize the RMSE score , using °1.0. In case , maximize accuracy , use 1.0

129

130 creator . create (’ FitnessMax ’ , base . Fitness , weights = (°1.0 ,))

131 creator . create (’ Individual ’ , l i s t , f i t n e s s = creator . FitnessMax)

132

133 toolbox = base . Toolbox ()

134 toolbox . r e g i s t e r (’ binary ’ , bernoull i . rvs , 0 . 5)

135 toolbox . r e g i s t e r (’ individual ’ , tools . initRepeat , creator . Individual ,

136 toolbox . binary , n = gene_length)

137 toolbox . r e g i s t e r (’ population ’ , tools . initRepeat , l i s t , toolbox . individual)

138 toolbox . r e g i s t e r (’mate ’ , tools . cxOrdered)

139 toolbox . r e g i s t e r (’ mutate ’ , tools . mutShuffleIndexes , indpb = 0 . 6)

APPENDIX E. CODE L

140 toolbox . r e g i s t e r (’ s e l e c t ’ , tools . selBest) # selRoulette

141 toolbox . r e g i s t e r (’ evaluate ’ , train_evaluate_LSTM)

142

143 pop = toolbox . population (n = population_size)

144 hof = tools . HallOfFame (1)

145

146 s t a t s = tools . S t a t i s t i c s (lambda ind : ind . f i t n e s s . values)

147 s t a t s . r e g i s t e r ("avg" , np .mean)

148 s t a t s . r e g i s t e r ("min" , np . min)

149

150 pop , log = algorithms . eaSimple (pop , toolbox , cxpb = 0 . 4 , mutpb = 0 . 1 ,

151 ngen = num_generations , s t a t s = s tats ,

152 halloffame=hof , verbose = False)

153 return pop , log , hof

154

155 ######################### SELECT FEATURES OF INTEREST #########################

156

157 # Select features of i n t e r e s t :

158 # AIS

159 # nonAIS

160 dataset = ’ nonAIS ’

161

162 ########################### IMPORT AND PROCESS DATA ###########################

163

164 i f dataset == ’ AIS ’ :

165 unprocessed_data = pd . read_csv (’ selected_AISfeatures . csv ’) . set_index (’ timestamp ’)

166 e l i f dataset == ’ nonAIS ’ :

167 unprocessed_data = pd . read_csv (’ selected_nonAISfeatures . csv ’) . set_index (’ timestamp ’)

168 else :

169 print (’No datasets selected ! ’)

170

171 df_data , s c a l e r = DP. difference_normalize (unprocessed_data)

172 data = df_data . values . astype (’ f l o a t 3 2 ’)

173

174 # 90°10 training and t e s t i n g s p l i t

175 t r a i n _ s i z e = round (len (data) * 0 . 9)

176

177 train_data = data [0 : t r a i n _ s i z e]

178

179 ############################## GENETIC ALGORITHM ##############################

180

181 # I f custom solution : (Only s e l e c t Train_model = True

182 best_window_size = ’ ’

183 best_num_units_1 = ’ ’

184 best_num_units_2 = ’ ’

185 best_learning_rate = ’ ’

186 best_number_of_layers = ’ ’

187

188 # Select :

189 Run_GA = True

190 Train_model = True

191 Test_individual = True # Set True and r e s t False i f custom solution above

192 Individual_to_test = 1 # 1 i s best , 2 i s second best , . . .

193

194 i f Run_GA :

195 # Run Genetic Algorithm to get best individuals

196 population , logbook , hof = geneticAlgorithm ()

197

198 # Get Algorithm s t a t i s t i c s

199 f i t n e s s = pd . DataFrame ()

200 for l in logbook :

201 f i t n e s s . loc [l . get (’ gen ’) , ’ average ’] = l . get (’ avg ’)

202 f i t n e s s . loc [l . get (’ gen ’) , ’ best ’] = l . get (’min ’)

203

204 i f Test_individual :

205 best_individuals = tools . selBest (population , k = Individual_to_test)

206 print (’ \ nTraining model with , ’ + dataset)

207 print (’Nr . %i best individual : ’ % Individual_to_test)

208 for bi in best_individuals :

209

210 best_window_size = 1+BitArray (bi [0 : 5]) . uint

211 best_num_units_1 = (1+ BitArray (bi [5 : 1 0]) . uint) *2

212 best_num_units_2 = (1+ BitArray (bi [1 0 : 1 5]) . uint) *2

213 learning_rate_power = 1+BitArray (bi [1 5 : 1 6]) . uint

APPENDIX E. CODE LI

214 best_learning_rate = 10**(°(learning_rate_power))

215 best_number_of_layers = 1+BitArray (bi [1 6 :]) . uint

216

217 e l i f Train_model :

218 print (’ \ nTraining model with , ’ + dataset)

219 print (’Costum solution : ’)

220

221 i f Train_model :

222 # Print solution :

223 print (’ \nWindow Size : ’ , best_window_size)

224 print (’Num of l a y e r s : ’ , best_number_of_layers)

225 print (’Num of neurons in layer 1 : ’ , best_num_units_1)

226 i f best_number_of_layers == 2 :

227 print (’Num of neurons in layer 2 : ’ , best_num_units_2)

228 print (’ Learning rate : ’ , best_learning_rate , ’ \n ’)

229

230 ############################ CREATE BEST MODEL ############################

231

232 # Define datasets based on window s i z e :

233 X_train , y_train = prepare_dataset_LSTM (train_data , best_window_size)

234

235 test_data = data [tr a i n _s i z e°best_window_size :]

236 X_test , y _ t e s t = prepare_dataset_LSTM (test_data , best_window_size)

237

238 # Make dataframes to take averages of in the end :

239 d f _ hi s t o r y _ l o s s = pd . DataFrame ()

240 d f _ h i s t o r y _ v a l _ l o s s = pd . DataFrame ()

241 df_y_pred = pd . DataFrame ()

242

243 for run in range (10) :

244 print (’Run nr . %i ’ % (run+1))

245

246 K. clear_session ()

247

248 model = Sequential ()

249

250 i f best_number_of_layers == 1 :

251 # Hidden layer 1

252 model . add(LSTM(best_num_units_1 , input_shape =(X_train . shape [1] ,

253 X_train . shape [2])))

254 model . add(Dropout (0 . 3))

255 # Output 1 neuron

256 model . add(Dense (1 , act ivat ion = ’ l i n e a r ’))

257 else :

258 # Hidden layer 1

259 model . add(LSTM(best_num_units_1 ,

260 input_shape =(X_train . shape [1] , X_train . shape [2]) ,

261 return_sequences=True))

262 model . add(Dropout (0 . 3))

263 # Hidden layer 2

264 model . add(LSTM(best_num_units_2))

265 model . add(Dropout (0 . 3))

266 # Output 1 neuron

267 model . add(Dense (1 , act ivat ion = ’ l i n e a r ’))

268

269 optimizer = Adam(l r = best_learning_rate)

270 model . compile (l o s s = ’mae ’ , optimizer = optimizer)

271

272 ############################# TRAIN MODEL #############################

273

274 history_acc = l i s t ()

275 history_val_acc = l i s t ()

276 h i s t o r y _ l o s s = l i s t ()

277 h i s t o r y _ v a l _ l o s s = l i s t ()

278

279 # Train model on number of epochs : range (epochs)

280 for i in range (200) :

281 history = model . f i t (X_train , y_train ,

282 epochs=1 , batch_size =128 ,

283 validation_data =(X_test , y _ t e s t) ,

284 verbose = 0 ,

285 s h u f f l e =False) #important s h u f f l e =False for LSTM

286 model . r e s e t _ s t a t e s ()

287

APPENDIX E. CODE LII

288 h i s t o r y _ l o s s . append(history . history [’ l o s s ’])

289 h i s t o r y _ v a l _ l o s s . append(history . history [’ v a l _ l o s s ’])

290

291 ########################### MAKE PREDICTION ###########################

292

293 y_pred = model . predict (X_test)

294

295 ############################## SAVE RUN ###############################

296

297 d f _ h i s t o r y _ l o s s [s t r (run)] = pd . Series (np . array (h i s t o r y _ l o s s) [: , 0])

298 d f _ h i s t o r y _ v a l _ l o s s [s t r (run)] = pd . Series (np . array (h i s t o r y _ v a l _ l o s s) [: , 0])

299 df_y_pred [s t r (run)] = pd . Series (y_pred [: , 0])

300

301 ########################### AVERAGE THE RESULTS ###########################

302

303 y_pred = df_y_pred .mean(axi s =1) . values . reshape (°1 ,1)

304 h i s t o r y _ l o s s = d f _ h i s t o r y _ l o s s .mean(axi s =1) . values

305 h i s t o r y _ v a l _ l o s s = d f _ h i s t o r y _ v a l _ l o s s .mean(axis =1) . values

306

307 def plot_lstm_training () :

308 ’ ’ ’

309 Plot training r e s u l t s

310 ’ ’ ’

311 # Summarize history for l o s s

312 p l t . plot (h i s t o r y _ l o s s)

313 p l t . plot (h i s t o r y _ v a l _ l o s s)

314 p l t . t i t l e (’model l o s s ’)

315 p l t . y label (’ l o s s ’)

316 p l t . x label (’epoch ’)

317 p l t . legend ([’ t r a i n ’ , ’ t e s t ’] , loc= ’ upper l e f t ’)

318 p l t . ylim (ymax=0.2)

319 p l t . show ()

320

321 plot_lstm_training ()

322

323 ######################### INVERSE TRANSFORM DATA ##########################

324

325 y_real = unprocessed_data [’ price ’] . i l o c [° len (y _ t e s t) :] . values . reshape (°1 ,1)

326

327 last_obs = unprocessed_data [’ price ’] . i l o c [° len (y _ t e s t)°1]

328

329 y_forecast = DP. inverse_transfrom (y_pred , y_real , last_obs , s c a l e r)

330

331 ############################ EVALUATE RESULTS #############################

332

333 def evaluate_results (real , pred) :

334 ’ ’ ’

335 Evaluate forecast ing r e s u l t s and save to csv :

336 r e a l : Real price

337 pred : Prediction of price

338 ’ ’ ’

339 rmse = np . sqrt (mean_squared_error (real , pred))

340 print (’ \ nTest RMSE: ’ , rmse)

341 mae = mean_absolute_error (real , pred)

342 print (’ Test MAE: ’ , mae)

343 mape = np .mean(np . abs ((real°pred) / r e a l)) *100

344 print (’ Test MAPE: ’ ,mape, ’%’)

345 dar = DAR(real , pred , last_obs)

346 print (’ Test DAR: ’ , dar)

347

348 forecast = pd . DataFrame (data = pred , columns=[’ pred ’])

349 forecast [’ r e a l ’] = pd . DataFrame (r e a l)

350 forecast . index = pd . to_datetime (unprocessed_data[° len (y _ t e s t) :] . index)

351 forecast . to_csv (’ LSTM_forecast_ ’+dataset+ ’ . csv ’)

352

353 # Plot forecast

354 forecast . plot (f i g s i z e =(8 ,4))

355 p l t . s c a t t e r (forecast . index , forecast [’ pred ’] , marker= ’ . ’)

356 p l t . s c a t t e r (forecast . index , forecast [’ r e a l ’] , marker= ’ . ’)

357 p l t . show ()

358

359 # evaluate_results (y_test , y_pred)

360 evaluate_results (y_real , y_forecast)

APPENDIX E. CODE LIII

E.12 Vector Autoregressive Model (VAR.py)

Construction and prediction with a Vector Autoregressive (VAR) model to baseline neural net-

work predictions.
1 # ! / usr /bin/env python3

2 # °*° coding : utf°8 °*°
3 """

4 Created on Wed May 6 11:01:53 2018

5

6 @author : PatrickAndreNaess

7 """

8 import pandas as pd

9 import numpy as np

10 import matplotlib . pyplot as p l t

11 import Data_preparation as DP

12 from sklearn . metrics import mean_squared_error , mean_absolute_error

13 from statsmodels . tsa . api import VAR

14 from Model_evaluation import DAR

15

16 ######################### SELECT FEATURES OF INTEREST #########################

17

18 # Select features of i n t e r e s t :

19 # AIS

20 # nonAIS

21 dataset = ’ nonAIS ’

22

23 ########################### IMPORT AND PROCESS DATA ###########################

24

25 i f dataset == ’ AIS ’ :

26 unprocessed_data = pd . read_csv (’ selected_AISfeatures . csv ’) . set_index (’ timestamp ’)

27 e l i f dataset == ’ nonAIS ’ :

28 unprocessed_data = pd . read_csv (’ selected_nonAISfeatures . csv ’) . set_index (’ timestamp ’)

29 else :

30 print (’No datasets selected ! ’)

31

32 print (’ \ nFit t ing model with , ’ + dataset)

33

34 data , s c a l e r = DP. difference_normalize (unprocessed_data)

35 data . index = unprocessed_data [1 :] . index

36

37 # 90°10 training and t e s t i n g s p l i t

38 t r a i n _ s i z e = round (len (data) * 0 . 9 0)

39 train_data = data [0 : t r a i n _ s i z e]

40

41 # Create model :

42 model = VAR(train_data)

43

44 # F i t model based on AIC with maxumum number of lags = 20

45 r e s u l t s = model . f i t (maxlags=20 , i c = ’ aic ’)

46

47 # Window s i z e

48 window_size = r e s u l t s . k_ar

49

50 # Testing data

51 history = data . values [t ra i n_ si z e°window_size :]

52

53 y_pred = l i s t ()

54 y _ t e s t = data [’ price ’] . values [t r a i n _ s i z e :]

55

56 for t in range (0 , len (y _ t e s t)) :

57 h = history [t : (t +window_size)]

58 pred = r e s u l t s . forecast (h , 1)

59 y_pred . append(pred[°1 ,°1])

60

61 y_pred = np . array (y_pred) . reshape (°1 ,1)

62

63 y_real = unprocessed_data [’ price ’] . i l o c [° len (y _ t e s t) :] . values . reshape (°1 ,1)

64 last_obs = unprocessed_data [’ price ’] . i l o c [° len (y _ t e s t)°1]

65 y_forecast = DP. inverse_transfrom (y_pred , y_real , last_obs , s c a l e r)

66

APPENDIX E. CODE LIV

67

68 def evaluate_results (real , pred) :

69 ’ ’ ’

70 Evaluate forecast ing r e s u l t s and save to csv :

71 r e a l : Real price

72 pred : Prediction of price

73 ’ ’ ’

74 rmse = np . sqrt (mean_squared_error (real , pred))

75 print (’ \ nTest RMSE: ’ , rmse)

76 mae = mean_absolute_error (real , pred)

77 print (’ Test MAE: ’ , mae)

78 mape = np .mean(np . abs ((real°pred) / r e a l)) *100

79 print (’ Test MAPE: ’ ,mape, ’%’)

80 dar = DAR(real , pred , last_obs)

81 print (’ Test DAR: ’ , dar)

82

83 forecast = pd . DataFrame (data = pred , columns=[’ pred ’])

84 forecast [’ r e a l ’] = pd . DataFrame (r e a l)

85 forecast . index = pd . to_datetime (unprocessed_data[° len (y _ t e s t) :] . index)

86 forecast . to_csv (’ VAR_forecast_ ’+dataset+ ’ . csv ’)

87

88 # Plot forecast

89 forecast . plot (f i g s i z e =(8 ,4))

90 p l t . s c a t t e r (forecast . index , forecast [’ pred ’] , marker= ’ . ’)

91 p l t . s c a t t e r (forecast . index , forecast [’ r e a l ’] , marker= ’ . ’)

92 p l t . show ()

93

94 evaluate_results (y_real , y_forecast)

APPENDIX E. CODE LV

E.13 Model Evaluation (Model_evaluation.py)

Evaluation of LSTM, MLP and VAR models with performance metrics, a persistence model base-

line and forecast visualization.
1 # ! / usr /bin/env python3

2 # °*° coding : utf°8 °*°
3 """

4 Created on Tue Jun 5 13:24:13 2018

5

6 @author : PatrickAndreNaess

7 """

8 import pandas as pd

9 import numpy as np

10 import matplotlib . pyplot as p l t

11 import seaborn as sns

12 from sklearn . metrics import mean_squared_error , mean_absolute_error

13

14 ######################### DIRECTIONAL ACCURACY RATIO ##########################

15

16 def DAR(real , pred , last_obs) :

17 ’ ’ ’

18 Calculates the Directional Accuracy Ratio (DAR) of predictions :

19 r e a l : Real price

20 pred : Prediction of price

21 last_obs : Last observed value in the training set

22 returns : DAR

23 ’ ’ ’

24 d = l i s t ()

25

26 i f (pred[0]° last_obs) * (r e a l [0]° last_obs) > 0 :

27 d . append (1)

28 else :

29 d . append (0)

30

31 for i in range (1 , len (pred)) :

32 i f (pred [i]° r e a l [i °1]) * (r e a l [i]° r e a l [i °1]) > 0 :

33 d . append (1)

34 else :

35 d . append (0)

36

37 return sum(d) / len (d)

38

39 i f __name__ == ’ __main__ ’ :

40 ############################ IMPORT FORECAST ##############################

41

42 MLP_AIS = pd . read_csv (’ MLP_forecast_AIS . csv ’) . set_index (’ timestamp ’)

43 LSTM_AIS = pd . read_csv (’ LSTM_forecast_AIS . csv ’) . set_index (’ timestamp ’)

44 VAR_AIS = pd . read_csv (’ VAR_forecast_AIS . csv ’) . set_index (’ timestamp ’)

45 MLP_nonAIS = pd . read_csv (’ MLP_forecast_nonAIS . csv ’) . set_index (’ timestamp ’)

46 LSTM_nonAIS = pd . read_csv (’ LSTM_forecast_nonAIS . csv ’) . set_index (’ timestamp ’)

47 VAR_nonAIS = pd . read_csv (’ VAR_forecast_nonAIS . csv ’) . set_index (’ timestamp ’)

48

49 price = pd . read_csv (’ timeseries_data . csv ’) . set_index (’ timestamp ’) [’ price ’]

50

51 MLP_AIS . index = pd . to_datetime (MLP_AIS . index)

52 LSTM_AIS . index = pd . to_datetime (LSTM_AIS . index)

53 VAR_AIS . index = pd . to_datetime (VAR_AIS . index)

54 MLP_nonAIS . index = pd . to_datetime (MLP_nonAIS . index)

55 LSTM_nonAIS . index = pd . to_datetime (LSTM_nonAIS . index)

56 VAR_nonAIS . index = pd . to_datetime (VAR_nonAIS . index)

57

58 price . index = pd . to_datetime (price . index)

59

60 last_obs = price . i l o c [° len (MLP_AIS)°1]

61

62 forecast = pd . DataFrame ()

63 forecast [’ r e a l ’] = MLP_AIS[’ r e a l ’]

64 forecast [’MLP with non°AIS ’] = MLP_nonAIS[’ pred ’]

65 forecast [’MLP with AIS ’] = MLP_AIS[’ pred ’]

66 forecast [’LSTM with non°AIS ’] = LSTM_nonAIS[’ pred ’]

APPENDIX E. CODE LVI

67 forecast [’LSTM with AIS ’] = LSTM_AIS[’ pred ’]

68 forecast [’VAR with AIS ’] = VAR_AIS [’ pred ’]

69 forecast [’VAR with non°AIS ’] = VAR_nonAIS [’ pred ’]

70 forecast [’ Persistence ’] = price . s h i f t (1) . loc [LSTM_AIS . index]

71

72 ################# CALCULATE AND PLOT METRICS AND FORECAST #################

73

74 metrics = pd . DataFrame ()

75

76 sns . set_context ("paper" , font_scale =1.5)

77

78 for name, col in forecast . drop (’ r e a l ’ , ax is =1) . i ter i tems () :

79 r e a l = forecast [’ r e a l ’]

80 pred = forecast [name]

81

82 pred . plot (f i g s i z e = (10 ,5) , l a be l = name, s t y l e = ’°° ’ , marker= ’o ’ , markersize =4)

83 r e a l . plot (l ab e l = ’ Real ’ , marker= ’o ’ , markersize =4)

84 p l t . legend ()

85 p l t . x label (’Time ’)

86 p l t . y label (’ Price [USD/mt] ’)

87 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots / Forecast_ ’+name+ ’ . pdf ’ ,

88 bbox_inches= ’ t i g h t ’)

89 p l t . show ()

90

91 metrics . loc [’RMSE’ ,name] = np . sqrt (mean_squared_error (real , pred))

92 metrics . loc [’MAE’ ,name] = mean_absolute_error (real , pred)

93 metrics . loc [’MAPE’ ,name] = np .mean(np . abs ((real°pred) / r e a l)) *100

94

95 i f name == ’ Persistence ’ :

96 dar = 0.5

97 else :

98 dar = DAR(real , pred , last_obs)

99 metrics . loc [’DAR ’ ,name] = dar

100

101 error_metrics = pd . DataFrame ()

102

103 for metr , row in metrics [: 3] . i terrows () :

104 error_metrics [metr] = row/row [’ Persistence ’]

105

106 sns . set_context ("paper" , font_scale =1.9)

107

108 for metr , col in error_metrics . i ter i tems () :

109 sort = col . sort_values (ascending=True)

110 p l t . subplots (f i g s i z e = (6 , 2 . 5))

111 p l t . barh (range (len (sort . index)) , sort)

112 p l t . y t i c k s (range (len (sort . index)) , sort . index)

113 p l t . x label (’ Relat ive ’+metr)

114 p l t . axvline (x =1 , color= ’ k ’ , l i n e s t y l e = ’°° ’ , l inewidth =1.5)

115 p l t . s a v e f i g (’ /Users/ PatrickAndreNaess /Desktop/ PyPlots / Metirc_ ’+metr+ ’ . pdf ’ ,

116 bbox_inches= ’ t i g h t ’)

117 p l t . show ()

118

119 sns . set_context ("paper" , font_scale =1.4)

120

121 print (’ \ nMetrics : \ n ’)

122 print (metrics , ’ \n ’)

123 print (error_metrics)

Appendix F

Features Importance Scores of Filter Selection Methods

LVII

APPENDIX F. FEATURES IMPORTANCE SCORES OF FILTER SELECTION METHODS LVIII

APPENDIX F. FEATURES IMPORTANCE SCORES OF FILTER SELECTION METHODS LIX

APPENDIX F. FEATURES IMPORTANCE SCORES OF FILTER SELECTION METHODS LX

APPENDIX F. FEATURES IMPORTANCE SCORES OF FILTER SELECTION METHODS LXI

APPENDIX F. FEATURES IMPORTANCE SCORES OF FILTER SELECTION METHODS LXII

APPENDIX F. FEATURES IMPORTANCE SCORES OF FILTER SELECTION METHODS LXIII

APPENDIX F. FEATURES IMPORTANCE SCORES OF FILTER SELECTION METHODS LXIV

APPENDIX F. FEATURES IMPORTANCE SCORES OF FILTER SELECTION METHODS LXV

APPENDIX F. FEATURES IMPORTANCE SCORES OF FILTER SELECTION METHODS LXVI

APPENDIX F. FEATURES IMPORTANCE SCORES OF FILTER SELECTION METHODS LXVII

APPENDIX F. FEATURES IMPORTANCE SCORES OF FILTER SELECTION METHODS LXVIII

APPENDIX F. FEATURES IMPORTANCE SCORES OF FILTER SELECTION METHODS LXIX

APPENDIX F. FEATURES IMPORTANCE SCORES OF FILTER SELECTION METHODS LXX

