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Abstract

The standard approach for detecting mooring line failures for position moored
vessels is by measuring the tension in the mooring lines, either directly or indi-
rectly. The sensors measuring the line tensions are often hard to maintain due to
being mounted under water, and determining if a loss of tension is a line failure
or a sensor failure can be difficult. This thesis investigates a different approach,
using statistical analysis of only the position of the vessel to detect mooring line
failures.

This is achieved by creating a mathematical model of the vessel motion for each
of the possible failure scenarios, in addition to the no failure scenario. For each
scenario a passive observer is implemented based on the appropriate mathemat-
ical model. The observers estimate the states of the vessel. The quality of the
estimated states will depend on how the actual behaviour of the vessel compares
to what is predicted by the model assuming a certain failure scenario.

Two different methods are used to analyse these estimates to determine which
scenario is believed to be correct: dynamic hypothesis testing (DHT) and max-
imum likelihood estimation (MLE). In short, DHT calculates the probability of
each scenario being true, and MLE calculates the likelihood of each scenario. In
simulations both methods show promising results in their ability to detect moor-
ing line failures. Failures are detected within a couple of minutes, when subjected
to both wave and current disturbances. However, an implementation error in the
simulator used causes the results to not be directly transferable to a real world
scenario.
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Sammendrag

Den vanligste metoden for å detektere ankerlinebrudd på forankrede fartøy er å
måle strekket i selve ankerlinene, enten direkte eller indirekte. Noen av utfordrin-
gene med dette er at måleinstrumentene som måler strekk ofte er vanskelige å
vedlikeholde fordi de er montert under vann. I tillegg kan det ofte være vanskelig
å være sikker på om en måling som viser at det ikke er noe strekk i ankerlinen er
forårsaket av et brudd eller bare sensorsvikt. Denne oppgaven ser på en annen
metodikk for å detektere ankerlinebrudd, ved å bruke statistisk analyse av kun
posisjonen til fartøyet.

Dette oppnås ved å lage en matematisk modell av fartøyet for hver av de mulige
sviktscenarioene, i tillegg til scenarioet hvor alle linene er intakte. For hvert
scenario implementeres en passiv observator basert på den aktuelle matematiske
modellen. Observatorene estimerer tilstanden til fartøyet, basert på antagelsen
om at det gitte scenarioet er riktig. Kvaliteten på dette estimatet vil avhenge av
hvordan den reelle bevegelsen til fartøyet er sammenlignet med hva modellen for
det aktuelle sviktscenariet forutser.

To forskjellige metoder ble anvendt for å analysere disse estimatene for å avgjøre
hvilket scenario som var korrekt: dynamisk hypotesetesting og maksimal sannsyns-
lighetsestimering. Kort fortalt vil begge metodene, for hvert scenario, beregne
sannsynligheten for at det gitte scenariet er riktig. Dette kan brukes til å finne
det mest sannsynlige scenarioet. I simuleringer virker begge metodene lovende.
De klarer å detekere ankerlinebrudd i løpet av få minutter når fartøyet er utsatt
for både bølge- og strømningslaster. Dessverre gjør en feil i implementeringen
av simulatoren at disse resultatene ikke er direkte overførbare til den virkelige
verden.
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Chapter 1

Introduction

Many marine operations that are carried out by floating installations or vessels,
like floating production vessels for oil and gas extraction or ROV vessels, require
that the vessel keeps its position fixed. For shorter duration operations the use
of dynamic positioning (DP) systems is commonplace. Vessels fitted with such
systems are able to keep their position by using only the thrusters on the vessel.
However some operations, especially within oil and gas, require the vessel to stay
stationary for several years. In these cases a mooring system is often used, as
it is a passive system as opposed to the active DP system. Some vessels will
combine the best of both worlds, using a position mooring system to keep a fixed
position, and a DP system with thrusters to give more damping or more fine
tuned position control to the system. These types of systems are referred to as
thruster assisted position mooring systems (TAPM).

Any TAPM or position mooring system will obviously be affected by a failure of
any of the mooring lines. Such a failure causes a loss of tension on the vessel,
which could lead to a loss of position. For an oil and gas vessel with risers or
a drill string that could break, a position loss could cause a huge environmental
disaster. In severe weather conditions a break in one line could lead to a cascading
failure in the other lines, potentially causing the vessel to drift and put the crew
at risk. This makes it critical to be able to detect mooring line failures. Since a
TAPM vessel has thrusters available it is possible to use them to counteract the
loss of a mooring line. If the failure is discovered quickly the DP system can be
used to avoid serious consequences.

Most of the current systems available for mooring line monitoring are based on
measuring the tension in the mooring lines. This can be done directly be fitting
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2 CHAPTER 1. INTRODUCTION

a tension sensor to the line, or indirectly for example by measuring the angle of
the line and calculating the tension. Other types of systems use sonar to detect
the position and/or angle of the lines. In common for almost all these existing
systems is that they rely on sensors mounted under water. This means that
both installation and maintenance requires expensive and complicated operations
involving divers or ROVs, and makes it difficult to determine if an alarm signal is
caused by a sensor failure or a line failure. In addition, according to a survey of
floating production systems (FPS) in the north sea, there are many vessels that
don’t have any monitoring of their mooring lines.

Because existing mooring line solutions are expensive and many vessels don’t
have any, there is potential for alternative solutions. This thesis investigates the
possibility of detecting mooring line failures using statistical analysis. The goal
is to be able to detect whether or not any mooring lines have failed by analysing
only the position of the vessel. This removes the need for underwater sensors, and
the associated installation and maintenance costs. By analysing the behaviour of
the vessel compared to what behaviour is expected for different failure scenarios,
the statistical analysis methods will produce the probabilities for whether or not
the failure scenarios are true. If this approach is shown to work, it will eliminate
the need for underwater sensors, greatly simplifying maintenance. Because it is a
software solution rather than a hardware solution installation costs are also kept
low, and it should be possible to retrofit the system to vessels that currently have
no form of mooring line monitoring.

This thesis will implement two different statistical methods: dynamic hypothesis
testing and maximum likelihood estimation. They will be used to try to detect
single line failures for a TAPM vessel.



Chapter 2

Existing and considered
solutions

2.1 Existing Fault Detection Systems for Posi-
tion Mooring

There are a variety of systems available for monitoring the status of mooring
lines. Most of these are based on measuring, or estimating, the tension in each
line. Some systems are only able to detect whether the mooring lines are present
or not, whilst more sophisticated systems are able to estimate the condition of
the mooring lines by analysing the time history of the line measurements. Almost
all of the sensor systems currently in use include sensors installed under water,
requiring diving or ROV operations to install and maintain. It also means the
sensors are exposed to sea loads, and they must therefore be built to withstand
tough conditions.

One survey showed that only 50% of floating production systems (FPSs) in the
North Sea could monitor line tensions in real time. While 67% of FPSs were able
to measure offsets from the no-load equilibrium position, only 22% of FPSs had
line failure alarms. This indicates that the level of instrumentation is not as high
as might be expected for such a heavily regulated sector. (Noble Denton Europe
Limited, 2006)

3



4 CHAPTER 2. EXISTING AND CONSIDERED SOLUTIONS

2.1.1 Direct Tension Measurement

Perhaps the simplest and most obvious way to detect if a mooring line has failed
is to directly measure the tension in the mooring line itself. This can be done
with several different methods. For example a load measuring shackle can be
attached to the mooring line, which measures the tension and transmits it to the
vessel. Another method utilizes the fact that when tension is placed on a chain
link, the link will deform. This causes the two parallel sides to pull towards each
other. By measuring the distance between them it is possible to estimate the
tension. The accuracy will be affected by the wear and tear on the chain, as the
stress pattern of the links will change. However, unlike the inline shackle, it is
suited for retrofit instalment. (GL Noble Denton, 2017)

A problem with direct tension measurement is how to interpret a loss of tension,
as this could just as easily be a sensor failure as a line breakage. To avoid false
alarms, it is possible to look at the signals from all the mooring lines. In an actual
failure scenario, one would expect to see changes in the signals from the other
lines as well, as they would be loaded differently. This could be used to determine
if there was an actual breakage or just a sensor failure (GL Noble Denton, 2017).
However this is not necessary an easy task. In one real world scenario it took the
two weeks of processing the data from the other lines to determine if the failure
was genuine (Noble Denton Europe Limited, 2006).

Another problem with tension measurement, that is also a concern for many
other methods, is that some line breakages are harder to detect. Obviously if the
line fails close to the vessel the tension goes to near zero. But if it fails along
the part of the line that lies on the seabed, or in the touchdown zone, it is not
always so clear. There is a lot of friction from the chain itself dragging through
the mud on the seabed, even if it is not attached to the anchor. This means that
there will still be a significant amount of tension measured at the vessel, making
detection more difficult. This is especially the case when the weather is pushing
the vessel towards the failed line, as one would expect a lower tension on the line
in that scenario. Such failures might not have large consequences at the outset,
but it leaves the vessel vulnerable without the knowledge of the crew. (GL Noble
Denton, 2017)

2.1.2 Indirect Tension Measurement

A different approach to monitoring the state of the mooring lines is measuring
the angle of the line as it leaves the vessel. Because of the relationship between
the tension on the line and the shape of its catenary, it is possible to calculate
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the tension from the measured angle by use of catenary equations. The angle
of the cable is usually measured using an electronic inclinometer attached to the
mooring line near the vessel. (GL Noble Denton, 2017)

It is also possible to estimate the tension in a chain by using the fact that as
carbon steel is tensioned, its electromagnetic properties change. By placing a
sensor on a chain link this property can be measured and sent back to the vessel.
Obviously the sensor needs to be calibrated for the particular metallurgic com-
position of the chain link it is attached to. However the properties of the link
might change over time with wear and tear. (GL Noble Denton, 2017)

Both of these methods are suited for retrofit instalment, as neither requires chang-
ing the existing mooring lines. However they also share many of the weaknesses
of direct tension measurement.

2.1.3 Sonar

Using sonar imagery can be an effective way to get the status of the mooring
lines, without installing sensors on every line separately. By deploying a 360
degree sonar beneath the vessel the positions of all mooring lines (and any risers)
can be logged over time. This makes it possible to develop a model of where the
lines are expected to be during normal conditions. This model can be used to
create alarm conditions for both missing (i.e. broken) lines, as well as lines that
are not in the correct position due to loss of tension caused by a breakage further
down the line. (GL Noble Denton, 2017)

Some vessels have a deployable sonar probe on board, that can be used in fair
weather conditions to check the status of the lines. Unlike the permanent instal-
lation this system will not be able to develop an expected position for the lines,
and will therefore depend more on the skill of the operator for good interpretation
of the data. It will also leave the crew without certain knowledge about the state
of the lines between inspections. However, it is cheap to install and deploy this
technology. (Noble Denton Europe Limited, 2006)

As with the direct tension measurement, this methodology will not be able to
detect breakages in the mud, as in that case the line will still be present and
under tension at the inspected location near the vessel. (Noble Denton Europe
Limited, 2006)
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2.1.4 Visual Inspection

For vessels where the connection points of the mooring lines are above the water-
line, a simple visual inspection is possible. If there are any missing or untensioned
lines, this will be immediately apparent. Visual inspection is also possible for lines
attached underwater, by use of a mini ROV deployed from the vessel. This is
however limited to fair weather. The accuracy of visual inspections highly de-
pends on the skills of the inspector, as there are some failure scenarios that will
only lead to very subtle changes at the vessel connection point. (Noble Denton
Europe Limited, 2006) (GL Noble Denton, 2017)

2.1.5 Offset Monitoring

If a vessel is equipped with a positioning system, for example a GNSS system like
GPS, it is possible to look at the vessels offset from its equilibrium position to
determine if a line might be broken. However, unless the vessel is moored in very
deep water, it is difficult to distinguish the offset caused by a broken line from the
normal influence from environmental disturbances. The wind, wave, and current
disturbances can also mask a line breakage, by providing a load that can make
up for some of the missing force from the mooring line, thus reducing the offset.
The largest value of this kind of system is perhaps giving the crew of the vessel
an indication of the state of the system, so that if any suspicious behaviour is
observed further action can be taken to determine if there is a failure. (Noble
Denton Europe Limited, 2006)

2.2 Systems Under Consideration

2.2.1 Hull Mounted Sonar

An alternative to having a sonar probe or 360 degree sonar beneath the vessel is
having a hull mounted sonar. In this system one or more sonar heads are angled
down towards the mooring lines a short distance out from the connection point.
This gives the sonar a strong echo, as the distance to the line is short, and the
angle of incidence is close to perpendicular. Knowing the position of the sonar
head it is possible to calculate the position and angle of the mooring line. As
with the inclinometer, it is then possible to estimate the tension in the line. (GL
Noble Denton, 2017)
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One of the main advantages of this system is that it has lower maintenance costs.
There is no need for a battery pack, as the system receives power from the vessel.
The measurement signal can also be sent over fixed wires, which will not be as
exposed to the elements as in other systems. This should reduce the need for
diving or ROV operations to only the installation of the system. (GL Noble
Denton, 2017)

2.2.2 Seabed Sonar

A sonar system deployed to the seabed is able to cover all mooring lines simulta-
neously. Unlike most other systems, it is able to provide a catenary shape for the
mooring line, due to its distance from the line. This can be used to calculate the
tension, and can also be used to detect a change in catenary profile associated
with a failure in the mud (Noble Denton Europe Limited, 2006). Being placed
at the seabed means the array will not be subjected to any environmental loads
caused by winds or waves. It can also have a larger battery life than other sensors,
as there are few practical restrictions on size. (GL Noble Denton, 2017)

2.2.3 Depth Sensor

A passive method for detecting line breakages is using a depth activated sensor
attached to the mooring line. The sensor unit is fitted with a seawater battery,
which is activated when a rupture disk fails because of the external pressure. The
pressure the rupture disk fails at determines the activation depth. If the line fails
above the sensor, it will fall to the seabed along with the remaining line. If the
line fails below it will lose its catenary shape, causing the sensor to swing down to
a lower depth and being activated. This is shown in figure 2.1. This technology is
unable to give information on the state of the mooring lines. However, its passive
nature makes it very low maintenance. (GL Noble Denton, 2017)

2.2.4 Response Learning System

An automatic line failure detection system proposed by Noble Denton Europe
Limited (2006) is the response learning system (RLS). Figure 2.2 shows an
overview of the system methodology. This system uses a mathematical model
of the vessel and mooring lines to predict the expected response of the vessel due
to the measured applied environment, like environmental disturbances. By mea-
suring the error between expected and actual behaviour, it is possible to revise
the mathematical model coefficients to better represent the real behaviour. This
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(a) Initial arrangement

(b) Failure below unit

(c) Failure above unit

Figure 2.1: Depth sensor arrangement, demonstrating ability to detect failures
above and below sensor unit. (GL Noble Denton, 2017)
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is the learning part of the method. An alarm is sounded when the motion of
the vessel does not match the predicted behaviour. The major advantage of this
approach is that there is no need for underwater sensors, and therefore no need
for expensive maintenance using ROVs or divers. If there is a systems failure it
can be easily diagnosed and repaired by the crew. It is also a relatively simple
retrofit to existing vessels, not requiring expensive intervention work like with
the inline sensors. (Noble Denton Europe Limited, 2006)

Figure 2.2: Flow chart showing the methodology of a response learning system.
(Noble Denton Europe Limited, 2006)

2.3 Dynamic hypothesis testing

Hassani et al. (2018) proposes a statistical analysis method for detecting mooring
line failures for thruster assisted position mooring vessels, when no line tension
measurements are available. The method uses the dynamic hypothesis testing
(DHT) approach, which involves creating a series of hypotheses of what the true
state of the position mooring system is. An example hypothesis could be that
mooring line 3 has failed, or that all mooring lines are intact. One hypothesis is
created for each failure scenario that is evaluated. Using DHT it is possible to
calculate the probability of each hypothesis being true by creating a mathematical
model for each hypothesis, where the model assumes the given hypothesis is true.
The actual behaviour of the vessel is then compared to the models expected
behaviour. This is done by calculating the probability of getting the last position
measurement, given the known previous measurements and control inputs, and
assuming the given hypothesis to be true. By doing this calculation for all the
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hypotheses it can be calculated which hypothesis has the highest probability of
being correct, given the observed behaviour of the vessel.

In many ways this approach is similar to the response learning system. How-
ever the DHT approach does not revise the mathematical model itself, instead
analysing the output from multiple predetermined models.

As this approach is also used in this thesis, the details of the DHT method can
be seen in section 3.5. The main differences are that Hassani et al. (2018) uses
a simpler system with only 4 mooring lines, whilst the system in this thesis uses
8 mooring lines. In addition this thesis uses a passive observer, whilst Hassani
et al. (2018) uses a Kalman filter.



Chapter 3

Theory

3.1 Probability

Probability of an intersection of two variables:

P (A ∩B) = P (A | B) · P (B) (3.1)

Bayes rule:

P (A | B) = P (B | A)P (A)
P (B) (3.2)

The Conditional Probability Theorem can be found using equation (3.1):

P (A ∩B | C) = P (A ∩B ∩ C)
P (C)

= P (A | B ∩ C) · P (B ∩ C)
P (C)

= P (A | B ∩ C) · P (B | C) · P (C)
P (C)

= P (A | B ∩ C) · P (B | C) (3.3)

Total Probability Theorem:

11
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P (A) =
∫
B

P (A | B) · P (B) dB (3.4a)

P (A | B) =
∫
C

P (A | B ∩ C) · P (C | B) dC (3.4b)

This section is taken from Walpole et al. (2014).

3.2 Gaussian Probability Density Function

The probability density function for a Gaussian vector x is given by (Ash, 1996)

exp
(
− 1

2 (x− µ)TΣ−1(x− µ)
)√

(2π)k
∣∣Σ∣∣ (3.5)

Where µ = E[x] is the expected value of x, Σ = E[(x − µ)(x − µ)T ] is the
covariance matrix of x, and k is the length of x.

3.3 System Model

Fossen (2011) proposes a simplified 3 degree of freedom (DOF) model for dynamic
positioning (DP). The three degrees used are surge, sway, and yaw, as the other
three DOFs can be neglected for this case. The model is given as

ξ̇ = Awξ +Eww1 (3.6a)
η̇ = R(ψ)ν (3.6b)
ḃ = −T−1b+w2 (3.6c)

Mν̇ = −Dν +R>(ψ)b+ τ + τwind +w3 (3.6d)
y = η +Cwξ + v (3.6e)

Where η = [N,E,ψ]> is the position of the vessel in a 3 DOF North-East-Down
(NED) frame, and ν = [u, v, r]> is the velocity. The state vector ξ ∈ R6 and the
matrices Aw ∈ R6×6, Cw ∈ R3×6, and Ew ∈ R3×6 describe the wave model, such
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that ηω = Cwξ is the wave response model of the vessel in surge, sway, and yaw.
M is the mass matrix, D is the damping matrix, R(ψ) is the rotation matrix
in yaw, and τ and τwind are the loads applied to the vessel due to the thrusters
and wind, respectively. The bias term b contains the effect of ocean currents,
as well as any unmodeled nonlinear dynamics, and T is a diagonal matrix of
positive time biases. The vector y are the measured states, while wi(i = 1, 2, 3)
ans v are zero-mean Gaussian noise vectors representing model uncertainty and
measurement noise respectively.

The wave model parameters Aw, Cw, and Ew are given by Fossen and Strand
(1999) as

Aw =
[

0 I
Ω21 Ω22

]
(3.7)

Cw =
[
0 I

]
(3.8)

Ew =
[

0
Σ2

]
(3.9)

Where Ω21, Ω22, and Σ2 are given by

Ω21 = diag
(
ω2

01, ω
2
02, ω

2
03
)

(3.10)
Ω22 = diag (2ζ1ω01, 2ζ2ω02, 2ζ3ω03) (3.11)
Σ2 = diag (σ1, σ2, σ3) (3.12)

Where ω0i is the dominating wave frequency, ζi is the relative damping ratio, and
σi is a parameter related to the wave intensity, all defined for i = (1, 2, 3).

As this model is applied to a TAPM problem and not a DP problem, it needs
to be modified slightly. As the wind force is not a measurable parameter in
the simulation software used, τwind disappears. The effect of wind forces will
instead be lumped into the bias term, along with the other unmodeled dynamics.
In place of the wind forces, the load from the mooring lines τm is added. So
equation (3.6d) now becomes

Mν̇ = −Dν +R>(ψ)b+ τ + τm +w3 (3.13)
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3.3.1 Estimating Mooring Forces

A horizontal-plane spread mooring model can be formulated as (Ren et al., 2015)

τm = −R>(ψ)gmo(η)− dmo(ν) (3.14)

Where dmo(ν) ∈ R3 is the damping effect of the mooring lines, and gmo(η) ∈
R3 is the restoring force component. Assuming fixed mooring line length, the
damping effects can be linearised as Dmoν (Ren et al., 2015). The linearised
mooring damping matrix Dmo is estimated to be in the order of magnitude of
10-20% of critical damping of the system (DNV, 2010).

The restoring force component is given by Ren et al. (2015)

gmo(η) = T (β)LpτH (3.15)

Where τH ∈ RM is a vector of the horizontal of component of the tension for
each mooring line, and Lp ∈ RM×M is the line breakage matrix. Here M is the
number of mooring lines. When all lines are intact this becomes Lp = I. For a
failure scenario where line number p is broken, the pth element of the diagonal of
Lp is zero. T (β) ∈ R3×M is the mooring line configuration matrix, which maps
the forces from each line to the body-fixed frame. It is given by

T (β) =

 cos(β1) . . . cos(βM )
sin(β1) . . . sin(βM )

x̄1 sin(β1)− ȳ1 cos(β1) . . . x̄M sin(βM )− ȳM cos(βM )

 (3.16)

Where β ∈ RM are the angles between the x-axis (see figure 3.1) and mooring
line number i, and x̄i and ȳi are the distances from the turret connection point
to the anchors of each line, in x and y direction respectively.

The horizontal tension τH is calculated by using a lookup table, based on the
distance from the connection point to the anchor. This lookup table was created
as a part of the TAPM simulator used for testing. See Ren (2015).

The final expression for the mooring line forces then becomes

τm = −R(ψ)>T (β)LpτH −Dmoν (3.17)
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Figure 3.1: Reference frames

3.4 Passive Observer

The system model for the nonlinear passive observer is found by applying two
assumptions to the DP model in equation (3.6):

• w = 0 and v = 0. That is, the Gaussian white noise terms for the distur-
bances and measurement noise are omitted from the observer model.

• R(y3) = R(ψ). This implies that the yaw angle disturbance caused by
waves is small, giving y3 = ψ + ψw ≈ ψ. This is a good assumption, as
this angle will normally be less than 5 degrees even in extreme weather
conditions (Fossen, 2011).

Thus the nonlinear passive observer model is given by Fossen (2011) as
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ξ̇ = Awξ (3.18a)
η̇ = R(ψ)ν (3.18b)
ḃ = −T−1b (3.18c)

Mν̇ = −Dν +R>(ψ)b+ τ (3.18d)
y = η +Cwξ (3.18e)

On the basis of this model, the passive observer is described by Fossen (2011) as

˙̂
ξ = Awξ̂ +K1(ω0)ỹ (3.19a)
˙̂η = R(ψ)ν̂ +K2ỹ (3.19b)
˙̂
b = −T−1b̂+K3ỹ (3.19c)

M ˙̂ν = −Dν̂ +R>(ψ)b̂+ τ +R>(ψ)K4ỹ (3.19d)
ŷ = η̂ +Cwξ̂ (3.19e)

Where K1(ω0) ∈ R6×3 and K2,3,4 ∈ R3×3 are gain matrices. Here ω0 =
[ω01, ω02, ω03]> is the vector of the wave spectra peak frequencies, with ω0i being
the frequency for surge, sway, and yaw for i = (1, 2, 3) respectively.

The passive observer used is implemented in the Marine Systems Simulator
(MSS), see Fossen and Perez (2004).

3.5 Dynamic Hypothesis Testing

Dynamic hypothesis testing calculates the probability that a given hypothesis
H = Hi is true, given the measurements up to and including that point in time
Y (t+ 1). This can be expressed as

Pr{H = Hi | Y (t+ 1)} (3.20)

Using equation (3.1) and (3.2), and writing Y (t + 1) = Y (t) + y(t + 1) where
y(t+ 1) is the most recent measurement, this can be rewritten as:

Pr{H = Hi | Y (t+ 1)} = Pr{H = Hi ∩ y(t+ 1) ∩ Y (t)}
Pr{y(t+ 1) ∩ Y (t)} (3.21)
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Using equation (3.1) again now gives

Pr{H = Hi | Y (t+ 1)} = Pr{H = Hi ∩ y(t+ 1) | Y (t)} · Pr{Y (t)}
Pr{y(t+ 1) | Y (t)} · Pr{Y (t)} (3.22)

= Pr{H = Hi ∩ y(t+ 1) | Y (t)}
Pr{y(t+ 1) | Y (t)} (3.23)

Using equation (3.3) to rewrite the numerator, and equation (3.4b) to rewrite the
denominator gives

Pr{H = Hi | Y (t+ 1)} =
Pr{y(t+ 1) | H = Hi ∩ Y (t)} · Pr{H = Hi | Y (t)}∫

H
Pr{y(t+ 1) | Y (t) ∩H} · Pr{H | Y (t)} dt

(3.24)

Because there is a finite number N of discrete hypotheses, the denominator can
be simplified to

Pr{H = Hi | Y (t+ 1)} =
Pr{y(t+ 1) | H = Hi ∩ Y (t)} · Pr{H = Hi | Y (t)}∑N
k=1 Pr{y(t+ 1) | Y (t) ∩H = Hk} · Pr{H = Hk | Y (t)}

(3.25)

Z(t) = {Y (t), U(t)} is introduced as the time history of both the measurements
Y (t) and the input signal U(t). Using the complete history Z(t) instead of just
the measurement Y (t) now gives

Pr{H = Hi | Z(t+ 1)} =
Pr{z(t+ 1) | H = Hi ∩ Z(t)} · Pr{H = Hi | Z(t)}∑N
k=1 Pr{z(t+ 1) | Z(t) ∩H = Hk} · Pr{H = Hk | Z(t)}

(3.26)

This can be further simplified by using the fact that the control signal u(t) is
deterministic, giving

Pr{H = Hi | Z(t+ 1)} =
Pr{y(t+ 1) | H = Hi ∩ Z(t)} · Pr{H = Hi | Z(t)}∑N
k=1 Pr{y(t+ 1) | Z(t) ∩H = Hk} · Pr{H = Hk | Z(t)}

(3.27)
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Looking at this expression, notice that the numerator and denominator are es-
sentially the same, the only difference being that the numerator is for only the
current hypotheses, while the denominator sums the expressions over all hypothe-
ses. Also note that the expression Pr{H = Hi | Z(t)} is known, as that is the
probability calculated in the previous time step. This means that for each hy-
pothesis only Pr{y(t+ 1) | H = Hi ∩ Z(t)} has to be calculated to calculate the
next probability.

The dependence terms H and Z are deterministic, because they consist of a
specific known hypothesis, the measurements (which are known), and the inputs
(which are controlled and therefore also known). Because of the linearity of the
model, and the Gaussian nature of the disturbance and noise, y is Gaussian as
well. This means that Pr{y(t+ 1) | H = Hi ∩ Z(t)} can be calculated using the
Gaussian probability density function (see equation (3.5)).

For the measurement vector, the expected value is the same as the estimated
value. That is µ = E[y] = ŷHi , where ŷHi = Cx̂Hi can be found from the
estimated states of the system. The notation ỹHi

= y − ŷHi
is introduced in

order to simplify equation (3.5). This gives

Pr{y(t+ 1) | H = Hi ∩ Z(t)} =
exp

(
− 1

2 ỹ
T
Hi

Σ−1
Hi
ỹHi

)√
(2π)k

∣∣ΣHi

∣∣ (3.28)

Where ΣHi
is the error covariance matrix, given hypothesis Hi. Inserting this

equation into equation (3.27) makes it possible to calculate the probabilities for
each hypothesis.

This section is taken from Hassani et al. (2018).

3.6 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a method for estimating the value of
certain parameters in a model, given a series of observations. Such a parametric
model can be described on state-space form as (Hassani et al., 2013)

x(t+ 1) = A(θ)x(t) +Bu(t) +G(θ)w(t) (3.29a)
y(t) = C(θ)x(t) + v(t) (3.29b)
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Where θ is the parameter (or parameters) that is to be estimated. The like-
lihood of θ having a certain value is denoted as L(θ|Y (t)), where Y (t) ≡
{y(0),y(1), . . . ,y(t)} is the time history of the measured output of the system.

The likelihood of the parameter given the observations is equal to the probability
of getting those observations, given the parameter. This can be expressed as

L(θ|Y (t)) = p(Y (t)|θ) (3.30)

This means that for a given set of measurements Y (t), the maximum likelihood
estimate for the parameter θ is the value that maximizes the likelihood function
L(θ|Y (t)). As per equation (3.30), this is the same as finding the estimated
parameter θ̂ that gives the highest probability of getting the known measurements
Y (t). The probability p(Y (t)|θ) can be calculated as (Hassani et al., 2013)

p(Y (t)|θ) =
τ=t∏
τ=1

p(y(τ)|Y (τ − 1),θ) (3.31)

If the process is Gaussian, such that Y (t) is a Gaussian sequence, the probability
of each measurement can be described using the Gaussian pdf (see equation (3.5)),
giving

p(y(τ)|Y (τ − 1),θ) =
exp

(
− 1

2 ỹ
>
θ (τ)Σ>θ (τ)ỹθ(τ)

)
(2π) k

2

√∣∣Σθ(τ)
∣∣ (3.32)

Where Σθ is the error covariance matrix given parameter θ, and ỹθ = y − ŷθ is
the estimation error. Combining this with equation (3.30) and (3.31) gives

L(θ|Y (t)) =
τ=t∏
τ=1

exp
(
− 1

2 ỹ
>
θ (τ)Σ>θ (τ)ỹθ(τ)

)
(2π) k

2

√∣∣Σθ(τ)
∣∣ (3.33)

This equation can be used to calculate the likelihood for each value of θ that is
being evaluated, and whichever parameter gets the highest likelihood will be the
best estimate. In practice it is easier to work with the log-likelihood function
instead. Because the logarithm is a strictly increasing function, this does not
change the maximum likelihood estimation. The log-likelihood function is given
as
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ln (L(θ|Y (t))) =
τ=t∑
τ=1
−k2 ln (2π)− 1

2 ln
(∣∣Σθ(τ)

∣∣)− 1
2 ỹ
>
θ (τ)Σ>θ (τ)ỹθ(τ) (3.34)

The first part of this expression is constant, and as such can be neglected when
maximizing the function as it will have no differentiating effect. As suggested
by Hassani et al. (2013), it is now possible to simplify the expression by instead
minimizing the negative log-likelihood function, denoted by K(θ|Y (t)). This
gives the final equation to be minimized as

K(θ|Y (t)) =
τ=t∑
τ=1

1
2
(
ln
(∣∣Σθ(τ)

∣∣)+ ỹ>θ (τ)Σ>θ (τ)ỹθ(τ)
)

(3.35)



Chapter 4

Methods

In order to test the methods presented a TAPM vessel simulator implemented in
Simulink was used. A simple PI controller was added to the simulator in order to
keep the vessel roughly in position, and make it able to recover from disturbances.
The position measurements from the simulator, along with the known thruster
input given by the controller, were sent to a series of passive observers, one for
each failure scenario being examined. These estimated the states, which were
passed to the statistical methods DHT and MLE along with an estimated error
covariance. The DHT and MLE blocks would then analyse this data to determine
which of the failure scenarios were correct. Figure 4.1 shows a flowchart of the
process.

There were 9 scenarios used in all the simulations. Scenario 1 through 8 were the
failure of mooring line 1 through 8 respectively. Scenario 9 was the no breakage
situation, where all mooring lines were still intact. This means that only single
line failures were looked at.

21
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Figure 4.1: Flowchart MATLAB/Simulink implementation
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4.1 System configuration

The simulated vessel is an FPSO with a length of 200 meters. The principle
dimensions of the vessel are given in table 4.1.

Table 4.1: Principle dimensions of simulated FPSO

Parameter Value
Length between perpendiculars 200 [m]
Breadth 44 [m]
Draught 12 [m]
Mass 1.004 · 108 [kg]

The vessel is fitted with 8 mooring lines, evenly distributed around the mooring
line turret of the vessel. Each line is a 2250 meter cable with a diameter of 0.08
meters. The position of the mooring line anchors are given in table 4.2.

Table 4.2: Position of mooring line anchors

Line x y z
1 1950 0 -1000
2 0 1950 -1000
3 -1950 0 -1000
4 0 -1950 -1000
5 1378.9 1378.9 -1000
6 -1378.9 1378.9 -1000
7 -1378.9 -1378.9 -1000
8 1378.9 -1378.9 -1000

The vessel is fitted with three thrusters in a normal configuration: two thrusters
at the aft of the vessel and a bow thruster. All three thrusters are fixed. The
thrust force is controlled by the PI controller that was implemented in the simu-
lation.

Figure 4.2 shows the position of the anchors, the direction of the waves and
current, as well as the orientation of the vessel.
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Figure 4.2: Overview of the system configuration, showing mooring lines and
anchors. The direction of the wave and current disturbances are shown by the

blue arrows. Vessel not to scale
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4.2 Simulator

The TAPM vessel simulator used was provided by Zhengru Ren, and was devel-
oped for his master thesis (see Ren (2015)). The inner workings of the simulator
are beyond the scope of this thesis. The simulator takes the desired thruster
forces for each thruster as input, and outputs the position of the vessel and the
mooring line tensions.

A number of parameters can be adjusted for each simulation. The initial position
and velocity of the vessel can be set, and measurement noise for the output
variables can be turned on or off. The position of the anchor lines can be set,
as well as how many of them are intact at the start of the simulation. It is also
possible to set which line or lines will break, and at what time. The breakage is
treated as if the tension in the broken mooring line completely disappears, i.e. a
failure at the connection to the vessel. This is the same way as it is being modelled
in the observers, i.e. a diagonal element of Lp is set to zero in equation (3.15).

The simulator implements two different environmental disturbances: waves and
current. The wave forces are both first and second order forces, where each one
can be switched on or off independently. In addition the mean wave direction
and significant wave height can be controlled. Similarly, the current force can be
switched on or off, and the direction and current velocity can be controlled. The
values of the disturbances can be seen in table 4.3.

Table 4.3: Disturbance parameters

Parameter Symbol Value
Significant wave height Hs 2.5 [m]

Dominant wave frequency ω0
2π
7 [rad/s]

Current velocity νc 0.1 [m/s]

In addition, the directions of both disturbances can be seen in figure 4.2. All the
disturbance parameters were kept constant for all simulations.

4.3 PI controller

A simple PI controller was implemented using the PID controller block provided
by the MSS software package (see Fossen and Perez (2004)). This was done in
order to ensure the vessel stayed near the equilibrium point of the system, even
in the case of large disturbances like current or line failures. It was also to test
that the observers and statistical analyses were able to handle an input of the
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thruster forces τ . This controller is in no way optimal, and uses a simple thrust
configuration matrix for thrust allocation.

The tuning parameters for the controller were manually tuned to the following
values:

Kp = diag (100000, 1000000, 1000) (4.1)
Ki = diag (1000, 1000, 100) (4.2)

(4.3)

Figure 5.2 shows the response of the system given an initial offset of 2 meters from
the equilibrium in both x and y direction. It shows that the vessel quickly moves
to the equilibrium position, and while there is a slight overshoot the vessel quickly
reaches a stable condition at the equilibrium. This performance is satisfactory
for for the given purpose of the controller.

4.4 Estimation of error covariance

The statistical methods need the error covariance matrices for the estimated
states in order to work. However, this is not calculated online by the passive
observer, unlike for example a Kalman filter. In order fix this, an estimate of
the covariances is needed. This essentially meant setting Σθ(τ) ≈ Σθ in equa-
tion (3.35).

The estimation of Σθ was achieved by running a 10000 second simulation for
each failure scenario, with the controller activated. The resulting estimation
errors were recorded, and the built in MATLAB function cov() was used to
calculate the covariance matrix for each signal. These matrices were then stored,
and fetched by Simulink to be passed to the statistical analysis block.

The code generating the error covariances can be seen in appendix A.5.

4.5 Tuning the passive observer

The observer gain matrices for the passive observer given by equation (3.19) are
given by Fossen (2011) to be on the following diagonal form:
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K1(ω0) =
[
diag (K11(ω01),K12(ω02),K13(ω03))
diag (K14(ω01),K15(ω02),K16(ω03))

]
(4.4a)

K2 = diag (K21,K22,K23) (4.4b)
K3 = diag (K31,K32,K33) (4.4c)
K4 = diag (K41,K42,K43) (4.4d)

This shows that K1 is a function of the wave spectrum peak frequency ω0. In
fact, each K1i can be calculated from the wave parameters. The constants are
chosen in order for the passive observer to achieve the desired filtering effect,
with a notch effect to filter out the wave disturbances. This gives the following
expressions (Fossen, 2011)

K1i(ω0i) = −2(ζni − λi)
ωci
ω0i

(4.5a)

K1(i+3)(ω0i) = 2ω0i(ζni − λi) (4.5b)

Where ζni determines the notch effect, ωci is the filter cutoff frequency, and λi
is the relative damping ratio of the wave spectrum. Typical values are ζni = 1.0
and λi = 0.1 (Fossen, 2011), and these are the values that were used in the
simulations. For the filter cutoff frequency a value of ωci = 1.2255ω0i was chosen,
as per examples in both Fossen (2011) and Fossen and Perez (2004).

In addition, K2 is given simply by the cutoff frequency (Fossen, 2011):

K2i = ωci (4.6)

The values for K3 and K4 were taken from example 11.6 in Fossen (2011). They
were given as

K3 = 0.1 ·K4 (4.7)
K4 = diag (0.1, 0.1, 0.01) (4.8)

Because the values suggested by Fossen (2011) worked well from the start, they
were not tuned further.
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4.6 Implementation in MATLAB

4.6.1 S-functions

It is possible to program custom Simulink blocks through a standard interface
known as S-functions. Using S-functions has several advantages compared to
using MATLAB code blocks or other solutions. The main reason is the possibility
for the block to have internal states that are remembered between each simulation
time step. It is also possible to easily control the dimensions of the input and
output ports of the block. This makes it much easier to detect any mistakes,
especially in combination with the fact that S-functions allow setting breakpoints
in the code. This is not possible in MATLAB code blocks in Simulink, and having
this possibility greatly simplifies debugging. In this project, level 2 S-functions
have been used.

Each S-function consists of several functions, that are called by Simulink at dif-
ferent points in the simulation. Some of these callback functions are listed below:

• setup: Specifies the number of inputs, outputs, states, parameters, and
other characteristics of the S-function. First function to be run.

• PostPropagationSetup: Specify the number and sizes of the internal state
vectors, and create run-time parameters. Called only once, before simula-
tion starts.

• Start: Initialize the internal state vectors. Run once before simulation
start.

• CheckParameters: Checks the validity of the dialog box parameters given
to the block. Run once before simulation start.

• Update: Update the internal state vectors. Is run each time step to calculate
the new state.

• Outputs: Computes the signals that the block emits. Is run each time step.

• Terminate: Perform any actions required at termination of the simulation.
Is only called at the end of the simulation.

There are many more callback functions that could be used for different types of
blocks, but these are the main ones needed for this task. (Mathworks, 2017)
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4.6.2 Dynamic hypothesis testing

The dynamic hypothesis testing block is implemented using a level 2 S-function.
The block takes three inputs, the measurements y, the estimated states x̂ from
the observer, and the error covariance matrix Σθ. In addition it has dialogue box
parameter, where a struct that describes the model used is provided. It has only
one output and one internal state, both being a vector of the probabilities for
each hypothesis being tested. An overview of the statistical analysis blocks can
be seen in figure 4.3.

Figure 4.3: MLE and DHT blocks in Simulink

The probabilities are not known at the start of the simulation, so the internal
state is initialized with an equal probability for each of the hypotheses. This is
done in the Start function of the S-function.

To calculate the probabilities, equations (3.27) and (3.28) are used. From equa-
tion (3.27) it can be seen that the denominator is just the sum of all the numer-
ators that need to be calculated. Therefore only the numerators are computed,
and then summed at the end to get the denominator. Simple element-wise di-
vision then gives the probability vector for the hypotheses. This calculation is
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done in the Update function, and the result is stored in the internal state. It is
then provided to Simulink upon request using the Outputs function.

When the same hypothesis is true for a long duration of time, the probability
of the other hypotheses will go to zero as the probability of the true hypothe-
sis goes to one. Equation (3.27) shows that, for each time step, the probability
for the newest measurement is multiplied with the existing probability from the
previous timestep. This means that even if the newest measurement gives a high
probability of a given hypothesis being true, if the previously known probability
was infinitesimally small the new probability will be close to zero as well. This
means that after a long time it will be almost impossible for the most probable
hypothesis to change, because all other hypotheses are infinitesimally small. To
counter this, a lower limit of 10−9 was implemented for the probabilities to stop
them from becoming too small. This value was found to be a good compromise
between switching hypothesis too quickly, causing oscillations between scenar-
ios, and too slowly. The probabilities were then re-normalised so that the total
probability remained 1.

The block is designed to be modular, and will calculate many of its parameters
from the models that are provided to it. Unfortunately, this leads to some redun-
dancy, as some parameters that are the same for all the models (like ŷHi

= Cx̂Hi
,

since C is the same for all hypotheses) are calculated multiple times. However,
this trade off is worth it, as it makes the block completely independent of the use
case.

The code implementing DHT can be seen in appendix A.1.

4.6.3 Maximum likelihood estimation

The maximum likelihood estimation algorithm is implemented in a level 2 S-
function, in a very similar way to the DHT algorithm. The block takes the same
three inputs (y, x̂, and Σθ), and has one internal state and one output, both
being the negative log-likelihood for each of the different failure scenarios.

The likelihoods are initialised to zero at the start of the simulation. They are
then calculated using equation (3.35) for each timestep. By using the negative
log-likelihood stored from the previous timestep, the equation only needs to be
calculated for τ = t. This represents the only new information, and can then be
added to the stored value to get the updated K(θ|Y (t)). This essentially means
modifying equation (3.35) to be as follows:
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K(θ|Y (t)) =

stored value︷ ︸︸ ︷
τ=t−1∑
τ=1

(
1
2
(
ln
(∣∣Σθ(τ)

∣∣)+ ỹ>θ (τ)Σ>θ (τ)ỹθ(τ)
))

+ 1
2
(
ln
(∣∣Σθ(t)∣∣)+ ỹ>θ (t)Σ>θ (t)ỹθ(t)

) (4.9)

As with the DHT algorithm, the estimate of most likely failure scenario will
become harder to change if one scenario stays true for a long period of time.
This is because the likelihood for each scenario can grow unbounded, meaning
likely scenarios will grow in a negative direction and unlikely scenarios will grow
in a positive direction. This can be seen in figure 4.4. In order to limit this
unbounded growth a forgetting factor Cforget was introduced:

K(θ|Y (t)) =
τ=t−1∑
τ=1

(
1
2
(
ln
(∣∣Σθ(τ)

∣∣)+ ỹ>θ (τ)Σ>θ (τ)ỹθ(τ)
))
· Cforget

+ 1
2
(
ln
(∣∣Σθ(t)∣∣)+ ỹ>θ (t)Σ>θ (t)ỹθ(t)

) (4.10)

The forgetting factor was set as Cforget = 0.999, meaning the stored value would
be weighted slightly less. However, because this forgetting factor is applied at
every time step, the contribution from time step n will be weighted (Cforget)t−n at
time step t. Because 0 < Cforget < 1, the contributions from older time steps will
obviously have close to no effect on the total likelihood, and only the more recent
contributions will be relevant. This effectively negates the unbounded growth,
as older contributions are forgotten as new ones are added. As with the DHT
minimum probability, the value of the forgetting factor was chosen to balance the
time it took to switch estimated scenario upon a change, and oscillations between
scenarios when there was no change.

The likelihoods for the same scenario with and without forgetting factor can
be seen in figure 5.6 and 4.4 respectively. Comparing the two shows that the
likelihoods grow linearly when there is no forgetting factor. When it is applied
however the growth flattens out, and the likelihoods reach reasonably steady
values.

The code implementing MLE can be seen in appendix A.2.
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Figure 4.4: Unbounded negative log-likelihoods when there are no line breakages

4.6.4 Passive Observer

The passive observer is implemented in the Marine Systems Simulator (Fossen
and Perez, 2004), and a block from that library is used. In addition, equa-
tion (3.17) describing the mooring line forces is implemented using a block di-
agram approach in Simulink (see figure 4.5). The mooring forces are added to
the thruster forces before being passed to the passive observer block. The exact
methodology is described in section 3.3.1.

4.6.5 Initialisation

The MATLAB function initSim initialises all the variables needed by the Simulink
simulation. This includes loading the vessel and mooring line parameters, as well
as initial conditions and anchor positions. In order to interface with the Simulink
model the variables are moved to the base workspace using the function putvar
(D’Errico, 2012). There they can be accessed by Simulink. Doing it this way en-
sures only the necessary parameters exist in the workspace, reducing the clutter.

A helper function initPassiveObserver is used to initialise the passive observer
models. It outputs a cell array of nine structs, where each struct contains all the
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Figure 4.5: Implementation of passive observer in Simulink

model parameters needed for both the passive observer and statistical methods.

The code for initSim can be seen in appendix A.3, and initPassiveObserver
can be seen in appendix A.4.
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Chapter 5

Results

Simulations were run for four different failure scenarios:

• No line breakages

• Failure of line 6

• Failure of line 7

• Failure of line 8

All of these scenarios were simulated both with and without the current distur-
bance, while all were done with wave disturbance and measurement noise. Note
that of the failures, line 6 and 8 are in line with the current disturbance. The
current pushes the vessel towards line 8 and away from line 6. Line 7 is or-
thogonal to the direction of the current. This can be seen in figure 4.2. These
particular failure scenarios were chosen to see how the system handles the effect
of the current.

For all the simulations the initial conditions of the vessel are an initial position
of [N,E,ψ] = [2, 2,−2.36] and an initial velocity of [u, v, r] = [0, 0, 0].

5.1 No breakage

Figure 5.1 shows the measured and estimated position of the vessel in a North-
East coordinate system. The vessel can be seen to move from its starting position
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Figure 5.1: Position of the vessel when there are no line breakages

and almost straight towards the equilibrium point, with a little overshoot. Notice
that the estimated position follows the measured position closely.

Figure 5.2 shows a time plot of each of the position coordinates. From this plot
format it becomes evident that the vessel uses about 150 seconds so settle at the
equilibrium coordinates. It is also noteworthy that the yaw angle hardly changes
at all.

Figure 5.3 shows the residuals of the position estimate. That is, the difference
between the measured position signal and the estimated position. It can be seen
to be close to zero for all three degrees of freedom, with some noise in the order
of magnitude of 0.1 meters and 0.01 radians.

Figure 5.4 shows which failure scenario the DHT and MLE methods estimate
to be the most correct. It shows that both algorithms quickly converge to the
correct scenario, and stay there for the duration of the simulation.

Figure 5.5 shows the probabilities of each of the nine hypotheses. It can be seen
that for the first few seconds more than one of the hypotheses have spike, notably
hypothesis 7. However after a few seconds the probability of hypothesis 9 goes
to 1, and all others go to 0.
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Figure 5.2: Time plot of the vessel position when there are no line breakages
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Figure 5.3: Position residuals when there are no line breakages



38 CHAPTER 5. RESULTS

0 100 200 300 400 500 600 700 800 900 1000

Time [s]

0

1

2

3

4

5

6

7

8

9

10

S
c
e

n
a

ri
o

 n
u

m
b

e
r

Most likely

Most probable

Figure 5.4: DHT and MLE estimates of correct scenario with no line breakages

Figure 5.6 shows the negative log-likelihoods for each failure scenario, and how
they develop over time. It can be seen how the correct scenario, number 9, quickly
grows to be the lowest among them. Note how the growth of all the likelihoods
flatten out over time. This behaviour is caused by the forgetting factor (see
section 4.6.3).
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Figure 5.5: The probability for each of the different hypotheses when there are
no line breakages
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Figure 5.6: Negative log-likelihoods with no line breakages

5.2 No breakage with current

Figure 5.7 shows the position of the vessel in a North-East coordinate system
with current load applied. Comparing to figure 5.1 we see that that the vessel
no longer travels in a straight line towards the equilibrium point, as it is affected
by the current pushing it to the north-west. Figure 5.7 also shows more clearly
that the observer is in fact reducing the amount of noise in the position signal.

Figure 5.8 shows the DHT and MLE estimates of correct scenario, when there
are no breakages and the current load is applied. Comparing to figure 5.4 where
there is no current, we immediately see that the performance is not as good in
this case. Both algorithms take longer to find the correct scenario, taking almost
100 seconds to stabilize. The MLE algorithm then gives a stable estimate for
most of the simulation, while the DHT algorithm intermittently switches to the
wrong hypothesis.

Figure 5.9 shows the probabilities for each of the hypotheses. It shows the same as
figure 5.8, that most of the time hypothesis 9 is considered as the most probable,
but intermittently it switches to hypothesis 6. This is especially apparent during
the last section of the simulation.
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Figure 5.7: Position of the vessel position when there are no line breakages,
with current load applied
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Figure 5.8: DHT and MLE estimates of correct scenario with no line breakages
and current load applied
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Figure 5.9: The probability for each of the different hypotheses when there are
no line breakages and the current load is applied
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5.3 Line 6 breaking
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Figure 5.10: Position of vessel when line 6 breaks at t = 400 seconds

Figure 5.10 shows the position of the vessel when mooring line 6 breaks at t = 400
seconds. It can be clearly seen that up until that point the motion is very similar
to figure 5.1. After the break the vessel moves in the opposite direction of mooring
line 6. Note that the estimated position in this figure is from the observer that
assumes scenario 9 to be correct. This can be seen at the upper left of the figure,
where the estimate no longer aligns with the measured position because of this
wrong assumption.

Figure 5.11 shows the difference in observer performance due to the assumed
failure scenario. Figure 5.11a assumes that line 6 is broken, while figure 5.11b
assumes all lines are intact. It can be seen in both plots that the residuals are
close to zero when the observer is based on the correct scenario, and has a slight
offset when it is wrong. At time t = 400 seconds both plots see a shift, as the
correct scenario changes when line 6 breaks.

Figure 5.12 shows the DHT and MLE estimates of correct scenario when line 6
breaks at t = 400 seconds. It shows that the DHT estimate very quickly switches
to the correct hypothesis, whilst the MLE algorithm takes a bit longer at around
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(a) Observer assuming line 6 breaking
being correct
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(b) Observer assuming no breakages
being correct

Figure 5.11: Residuals when line 6 breaks at t = 400 seconds
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Figure 5.12: DHT and MLE estimates of correct scenario when line 6 breaks at
t = 400 seconds
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40-50 seconds.
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5.4 Line 6 breaking with current
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Figure 5.13: Position of vessel when line 6 breaks at t = 400 seconds, with
current load applied

Figure 5.13 shows the position of the vessel when line 6 breaks at t = 400 seconds,
and it is affected by current. Comparing with figure 5.10 it clearly shows the vessel
being pushed further to the north-west by the current. Note that the estimated
position is by an observer assuming no breakages.

Figure 5.14 shows the estimates for correct scenario using the DHT and MLE
algorithms. It shows that with the current applied, it takes some time for the
algorithms to determine the correct scenario. Both algorithms use almost 100
seconds. After that the estimate is stable, with the exception of a few spikes for
the DHT estimate. When the line breaks a t = 400 seconds both methods almost
immediately switch to the correct scenario and stay there.

Figure 5.15 shows the negative log-likelihoods of the different scenarios when line
6 breaks at t = 400 seconds, and the current load is applied. Note that the
likelihoods of scenario 6 and 9 are almost intertwined until the break occurs,
after which scenario 6 becomes the likeliest.
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Figure 5.14: DHT and MLE estimates of correct scenario when line 6 breaks at
t = 400 seconds, with current load applied



5.5. LINE 7 BREAKING 49

Figure 5.15: Negative log-likelihoods of all scenarios when line 6 breaks at
t = 400 seconds, and current load is applied

5.5 Line 7 breaking

Figure 5.16 shows the position of the vessel when line 7 breaks at t = 300 seconds.
The vessel can clearly be seen to move in the exact opposite direction of the
failed line. Because the starting position and equilibrium are in line with the
failing line’s anchor the movement of the vessel is a straight line in this plot. See
figure 5.17 for a time plot of the positions, where the motion becomes more clear.
It shows that after the failure the vessel quickly drifts up to 35 meters away from
the equilibrium, before the controller has time to react and move it back into
position.

Figure 5.18 shows the DHT and MLE estimates of correct scenario. It shows that
after line 7 breaks at t = 300 seconds, the DHT algorithm quickly determines that
something has changed. It oscillates between the hypotheses for failure of line 3
and 4, the lines adjacent to line 7. After approximately 40 seconds it stabilizes
on the correct hypothesis. The MLE method is slower to react, taking around
40 seconds to detect failure. It initially estimates scenario 3 to be correct, and
then shortly changing to scenario 4 before settling on the correct scenario after
approximately 80 seconds. This is slower than for DHT, but with less oscillations
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Figure 5.16: Position of the vessel when line 7 breaks at t = 300 seconds. Uses
observer assuming no breakages.
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Figure 5.17: Time plot of vessel position when line 7 breaks at t = 400 seconds

between scenarios.

Figure 5.19 shows the negative log-likelihoods for all the failure scenarios. It
shows that after the line break the correct scenario has a steeper descent than
the other descending line (which is scenario 3 and 4, closely intertwined), but
because it starts at a higher negative likelihood it takes time to overtake the
other scenarios.

Figure 5.20 shows the probabilities for all the hypotheses when line 7 breaks at
t = 300 seconds. It clearly shows the oscillation between hypothesis 3 and 4 right
after the break occurs.
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Figure 5.18: DHT and MLE estimates of correct scenario when line 7 breaks at
t = 300 seconds
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Figure 5.19: The negative log-likelihoods for all scenarios, when line 7 breaks at
t = 300 seconds

Figure 5.20: Probabilities of all hypotheses when line 7 breaks at t = 300
seconds
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5.6 Line 7 breaking with current
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Figure 5.21: Position of the vessel when line 7 breaks at t = 300 seconds, and
current is applied. Observer estimates assumes no breakages.

Figure 5.21 shows the position of the vessel when line 7 breaks at t = 300 seconds,
with current load applied. Comparing with figure 5.16 it clearly shows the vessel
being pushed to the north-west by the current. This movement also makes the
moment when line 7 fails more apparent, as the vessel moves to the north-east.

Figure 5.22 shows the DHT and MLE estimates of correct scenario when line 7
fails at t = 300 seconds, with current load applied. As in figure 5.8 and 5.14 it
shows that both algorithms estimate scenario 6 to be correct in the beginning,
followed by oscillating between 6 and 9, before finally stabilizing on scenario 9.
When the break occurs the behaviour is very similar to figure 5.18. The DHT
algorithm changes very quickly, but to hypothesis 3, which is wrong. It changes
to the correct hypothesis in the same time frame as in figure 5.18, but without
oscillating between hypothesis 3 and 4. The MLE algorithm is again a bit slower,
and also jumps to scenario 3 after the break. At around 100 seconds after the
break it goes to the correct scenario. It is worth noting that the MLE estimate
doesn’t oscillate at all after the break, whilst the DHT estimate has occasional
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Figure 5.22: DHT and MLE estimates of correct scenario when line 7 breaks at
t = 300 seconds, with current applied
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spikes.

Figure 5.23: The negative log-likelihoods of all scenarios when line 7 breaks at
t = 300 seconds, with current load applied

Figure 5.23 shows the negative log-likelihoods of all scenarios when line 7 breaks
at t = 300 seconds, and current load is applied. It is very similar to figure 5.19.
The most notable difference is that the likelihoods of scenario 3 and 4 are no
longer intertwined.

5.7 Line 8 breaking

Figure 5.24 shows the position of the vessel when line 8 breaks at t = 400 seconds.
It clearly shows the vessel moving in the opposite direction of the broken mooring
line.

Figure 5.25 shows that both the DHT and MLE algorithms quickly determine
the correct starting scenario, and are both able to detect the correct line failure.
The MLE estimate is a bit slower to respond to the failure, taking almost 50
seconds. However, neither algorithm produce any oscillations between different
scenarios, giving a very clear estimate.
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Figure 5.24: Position of the vessel when line 8 breaks at t = 400 seconds.
Observer assumes no breakages.
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Figure 5.25: DHT and MLE estimates of correct scenario when line 8 breaks at
t = 400 seconds
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5.8 Line 8 breaking with current
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Figure 5.26: Position of the vessel when line 8 fails at t = 400 seconds, and
current load is applied. Observer assumes no breakages.

Figure 5.26 shows the position of the vessel when line 8 breaks at t = 400 seconds,
and the current load is applied. Note that the estimated position is from an
observer assuming no line breakages. The motion of the vessel is clearly very
similar to figure 5.24 where there was no current. The main difference is that the
vessel is pushed further to the north-west before the failure. Also note that the
offset from the equilibrium point never grows as large, as the current is pushing
the vessel back towards the equilibrium point.

Figure 5.27 shows the DHT and MLE estimates of correct scenario, when current
load is applied. It shows a similar picture to the other simulations with current,
in that it takes a while for the algorithms to determine the correct scenario in
the start. Even after the estimates settle there is a little bit of oscillation for the
DHT method. After line 8 fails at t = 400 seconds, the DHT algorithm is able
to quickly determine the correct scenario, much like in the no current simulation
in figure 5.25. However, the MLE algorithm struggles a lot more than in the
no current simulation, taking over 150 seconds to determine the correct failure
scenario.
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Figure 5.27: DHT and MLE estimates of correct scenario when line 8 breaks at
t = 400 seconds, with current load applied
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Figure 5.28: Negative log-likelihoods for all scenarios when line 8 fails at
t = 400 seconds, and current load is applied

Figure 5.28 shows the negative log-likelihoods for all the scenarios, when line 8
fails at t = 400 seconds and the current load is applied. It shows that until the
failure, there are two scenarios that have the lowest likelihoods, scenario 6 and
9, with scenario 9 being slightly more likely to be true. After line 8 breaks we
see the negative log-likelihood of the now correct scenario 8 drop to become the
smallest. However, while scenario 6 quickly rises to a higher steady level, scenario
9 sees almost no change in its likelihood after the failure. This prolongs the time
it takes for the correct scenario to dip beneath its negative log-likelihood value.
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Chapter 6

Discussion

6.1 Performance

6.1.1 General performance

In general the performance of the statistical methods is quite good. Both the
DHT and MLE methods are able to detect line failures in a relatively short
amount of time, with MLE usually being a bit slower than DHT. When there is
a current load applied the performance deteriorates, introducing oscillations be-
tween multiple scenarios and longer reaction times. But even in these conditions
both algorithms are able to detect the correct scenario.

The tunable parameters of the statistical methods, forgetting factor for MLE and
minimum likelihood for DHT, greatly impact performance. These parameters are
the main reason that MLE is a bit slower than DHT. If the forgetting factor is
reduced to Cforget = 0.99 from Cforget = 0.999 the reaction time is on par with
DHT. However, this causes larger oscillations in estimated scenario than DHT
when current is applied. It is also possible to reduce oscillations for DHT by
reducing the minimum probability, but again this comes at the cost of a longer
reaction time to detect failures. The values that were used is viewed as a decent
compromise between these two behaviours.

The good results were achieved despite the fact that the error covariance matrices
used in the statistical methods were estimated offline. This was necessary since
the passive observer does not calculate the error covariances. This shows that a
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more complex observer utilising a Kalman filter is not necessary for this approach
to work, although it is still quite possible it might provide better performance.

6.1.2 Performance with current

When the current load is applied the performance of the statistical methods
suffer. Both the MLE and DHT estimates take a lot longer to settle on the no
breakage scenario in the start of the simulations, often settling on scenario 6 first.
This is probably because the current comes from the same direction as mooring
line 6 is positioned in. The force from the current can therefore be interpreted
as a loss of horizontal tension from mooring line 6, which makes a failure of that
line appear to be likely. Even after both analysis methods settle on the correct
scenario, they will sometimes briefly change to scenario 6. This is especially
apparent for DHT, although this behaviour could probably be reduced by tuning
the minimum probability to be smaller.

The current’s effect on performance is also visible when a mooring line breaks,
but here the effect is not always the same. Figure 5.14 shows that when line 6
breaks when there is current the estimates actually change faster compared to
there being no current, as in figure 5.12. This is because the current makes a
line 6 failure appear more likely in the MLE algorithm, and therefore the amount
it needs to change to become the likeliest scenario is much smaller than if there
was no current. This is very clear in figure 5.15. For the DHT algorithm the
difference is not so pronounced, because the total probability must be 1, and all
other scenarios than the most probable will therefore have quite small values.

When mooring line 8 breaks this effect is reversed: the MLE estimate is slower
to change, which can be seen by comparing figure 5.25 with figure 5.27. This
is caused by the current force compensating for the loss of mooring line tension,
causing the loss of the mooring line to become less obvious. This is made apparent
in figure 5.28, where the likelihood of scenario 9 can be seen to have almost no
change after the break of line 8.

Both of these examples are caused by the fact that the MLE algorithm treats
the likelihood of each scenario separately. Essentially this means that it is able
to see multiple scenarios as likely at the same time. However, it is important to
point out that in all the simulations with current the MLE algorithm always finds
the correct scenario in the end. The direction of the current affects the response
time, but doesn’t make the algorithm fail.
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6.2 Limitations

The model used does not take into account all of the loads on the vessel. In
particular, it does not model the wind and current loads. These loads are gathered
under the bias term, but there is no way of knowing if this term is correct as there
is no way to measure the bias. In fact there are no measurements of any of the
environmental loads in the observer model. Adding these measurements, either
as an applied load or as states in the model with corresponding measurements in
the y vector, would be an advantage.

The simulation software and observer model used only models simplistic failure
scenarios, where the mooring lines are either fully functional or completely re-
moved. This means that the DHT and MLE methods are not able to detect more
complex failure scenarios, such as failures in the cable touchdown zone or on the
seabed. These are the failures that are hardest to detect with existing technology,
and if they are accounted for in the model it might be possible to detect them.

The simulations that were tested cover an extremely short time frame compared
to the years a vessel can be moored at sea. This means that even though the
simulations show that the DHT and MLE algorithms work, it has not been verified
that they will continue to work for long durations. The tuning factor applied to
the algorithms provide some assurance that they will remain unaffected by the
amount of time passed, but it cannot be definitely demonstrated that they will
not drift over time with these short simulations. Longer simulations, and ideally
real world testing, will need to be performed to verify the performance.

Only one set of weather disturbance parameters were used in these simulations,
in order for the results to be easily comparable. While these parameters represent
a typical scenario, further testing is needed to ascertain the performance of the
methods in all weather conditions.

The tuning of the forgetting factor for MLE and minimum probability for DHT
greatly impact the performance of the two algorithms. It is hard to get this
tuning right, as quick performance comes at the cost of less stable estimates. It
might be necessary to retune these parameters for systems that are placed in
different conditions. Not only might the different depths, mooring line configu-
rations, weather conditions, etc. affect the performance, but different operators
might have different requirements for the response time, and different levels of
acceptability of false positives.

The DP controller used in the simulations is greatly simplified compared to com-
mercial systems. In fact the controller is implemented and tuned only to be
passable, and is not optimized in any way. While the model takes the thruster
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forces into account in a very general way, it can not be guaranteed that the
behaviour will stay the same when the controller changes.

The error covariance matrices used are calculated offline, using data from long
simulations. While the performance using these estimated covariance matrices is
good, it is quite possible that there are cases where the estimates do not reflect
the real covariances. This could lead to erroneous estimates. Using an observer
that is able to calculate the covariances online, like a nonlinear Kalman filter,
might give a more robust performance.

6.3 Simulator implementation error

Towards the end of the work on this thesis an implementation error was discovered
in the simulator software that was provided for simulating a TAPM vessel. The
Simulink model that simulated the vessel adds measurement noise to the position.
This was done by adding Gaussian white noise to each of the DOFs separately.
The white noise generators used take a seed as an input. As random number
generators are in reality pseudo random, this seed is what controls the output of
the noise generator. If two generators are given the same seed they will produce
the same pseudo random output. In the simulator provided, the seed for the
different DOFs were set to the same value. This caused the noise in x and y
direction to be identical, effectively reducing the possible noise values from a
circle around the origin to a diagonal line. This is not realistic, and not the
behaviour that was expected from using the simulator.

Fixing this error is very simple, just changing the seed for all the noise generators
so they are different. However this obviously affected the performance of the
observer and statistical analyses, as they were not tuned for this scenario. This
caused the performance do decrease drastically. Unfortunately the error was
discovered very close to the deadline, and there was simply no time to retune
everything, redo the simulations, and rewrite the results and discussion of the
thesis itself. The results seen in this thesis are therefore with this error still
applied. The consequence of this is that even though the performance that was
observed is good, it can not be interpreted as more than promising.
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Conclusion

The results presented are promising, showing that it is possible to detect simple
mooring line failures using dynamic hypothesis testing and maximum likelihood
estimation. In the simulations that were tested line failure detection would usu-
ally occur within a minute, while even in the worst scenario the failure was
detected in less than three minutes. In general the performance is worse when
the system is exposed to a current disturbance, compared to only a wave dis-
turbance. However, due to an implementation error in the simulator, the results
presented are not representative of a real world scenario.

Because the methodology used only requires the position measurement, which is
usually already available on vessels with thruster assisted position mooring, it
is well suited for a low-cost retrofit. Because of the simplistic failure modelling
used this method will probably not be suitable to completely replace existing
sensors. If it can be shown to work in a proper simulator it can however be a
good supplement to existing technology, and especially well suited for vessels that
currently have no mooring line monitoring.

Comparing MLE and DHT, the main difference is that DHT can only view one
scenario as probable at the time, as the probabilities for all scenarios must sum
to 1. MLE on the other hand treats all scenarios separately, and can therefore
view multiple scenarios as likely. This can cause slower detection of failure for
MLE, as the previous scenario is still viewed as likely after the failure in certain
conditions. However the tuning of the statistical methods is the largest factor
affecting the performance. The quicker response time of DHT can also be a
downside, as it tends to temporarily change hypothesis away from the correct
hypothesis in challenging conditions. This makes it difficult to determine which
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of the methods are better.

7.1 Further work

Because of the error in implementing measurement noise in the simulator the
results presented are not representative of a real world scenario. Correcting
the mistake is luckily quite simple, so the time consuming work is retuning the
observers and statistical methods. This will need to be done to validate the
promising results.

The statistical methods need the error covariance matrix to estimate the correct
scenario, because they depend on the Gaussian probability density function. This
matrix is estimated offline because the passive observer cannot calculate it online.
While the results are still good, using an observer that calculates the covariances
online would be more correct, and might give better performance. A nonlinear
variant of the Kalman filter is an obvious candidate.

The modelling of line failures is quite simplistic, assuming that the line is either
fully connected or completely gone. This ignores more complex failure scenarios
like failure on the seabed. These are the failures that are the most difficult to
detect with current methods. Improving the model to include less obvious failure
scenarios such as this would make it possible to test if these failures can also be
detected using statistical methods.

The model could also be improved be incorporating more of the sensor measure-
ments that might be available on a vessel. This is especially true for weather
measurements like wind force and direction, or wave measurements if available.
It could also be of interest to incorporate existing mooring line sensors, like ten-
sion measurement or sonar. Obviously this must be done in a robust fashion, so
that problems with these sensors has a minimal effect on the performance of the
statistical analysis.

The property of MLE that multiple scenarios can be viewed as likely is not very
well utilized. The estimation simply looks at whichever scenario has the greatest
likelihood, not taking into account if there are other scenarios that are just slightly
less likely. Since this information is available, possible utilizations should be
investigated. This could be a more intelligent selection of most likely scenario,
or just presenting all scenarios considered likely in the operators interface.

Obviously testing in a simulation and in the real world are not the same thing.
To validate this approach real world testing should be carried out. Because the
system could be relatively simply installed as a retrofit the is not necessarily
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prohibitive. The long term performance should also be investigated, as vessels
are often moored for years at the time.
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Appendix A

MATLAB code

A.1 Dynamic Hypothesis Testing

Listing A.1: DHT.m
1 f u n c t i o n DHT( block )
2
3 %
4 % The setup method i s used to s e t up the b a s i c a t t r i b u t e s o f the
5 % S−f u n c t i o n such as ports , parameters , e t c . Do not add any other
6 % c a l l s to the main body o f the f u n c t i o n .
7 %
8 setup ( block ) ;
9

10 end
11
12
13 f u n c t i o n setup ( block )
14
15 data = block . DialogPrm (1) . Data ;
16 num_states = data {1} . num_states ;
17 num_measured_states = data {1} . num_measured_states ;
18 num_hyp = length ( data ) ;
19
20 % R e g i s t e r number o f por t s
21 block . NumInputPorts = 3 ;
22 block . NumOutputPorts = 1 ;
23
24 % Setup port p r o p e r t i e s to be i n h e r i t e d or dynamic
25 block . SetPreCompInpPortInfoToDynamic ;
26 block . SetPreCompOutPortInfoToDynamic ;
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27
28 % Overr ide input port p r o p e r t i e s
29 % y measurement
30 block . InputPort (1 ) . Dimensions = [ num_measured_states , 1 ] ;
31 block . InputPort (1 ) . DatatypeID = 0 ; % double
32 block . InputPort (1 ) . Complexity = ’ Real ’ ;
33 block . InputPort (1 ) . SamplingMode = ’ Sample ’ ;
34
35 % x_hat es t imate
36 block . InputPort (2 ) . Dimensions = [ num_states ∗ num_hyp , 1 ] ;
37 block . InputPort (2 ) . DatatypeID = 0 ; % double
38 block . InputPort (2 ) . Complexity = ’ Real ’ ;
39 block . InputPort (2 ) . SamplingMode = ’ Sample ’ ;
40
41 % P_prior i
42 block . InputPort (3 ) . Dimensions = [ num_states ∗ num_hyp , num_states

] ;
43 block . InputPort (3 ) . DatatypeID = 0 ; % double
44 block . InputPort (3 ) . Complexity = ’ Real ’ ;
45 block . InputPort (3 ) . SamplingMode = ’ Sample ’ ;
46
47 % Overr ide output port p r o p e r t i e s
48 % P r o b a b i l i t i e s
49 block . OutputPort (1 ) . Dimensions = [ num_hyp , 1 ] ;
50 block . OutputPort (1 ) . DatatypeID = 0 ; % double
51 block . OutputPort (1 ) . Complexity = ’ Real ’ ;
52 block . OutputPort (1 ) . SamplingMode = ’ Sample ’ ;
53
54 % R e g i s t e r parameters
55 block . NumDialogPrms = 1 ;
56
57 % R e g i s t e r sample t imes
58 block . SampleTimes = [−1 0 ] ;
59
60 % S p e c i f y the block simStateCompliance .
61 block . SimStateCompliance = ’ DefaultS imState ’ ;
62
63 % S p e c i f i y which f u n c t i o n s are used
64 block . RegBlockMethod ( ’ CheckParameters ’ , @CheckParameters ) ;
65 block . RegBlockMethod ( ’ PostPropagationSetup ’ , @DoPostPropSetup ) ;
66 block . RegBlockMethod ( ’ S ta r t ’ , @Start ) ;
67 block . RegBlockMethod ( ’ Outputs ’ , @Outputs ) ; % Required
68 block . RegBlockMethod ( ’ Update ’ , @Update ) ;
69 block . RegBlockMethod ( ’ Terminate ’ , @Terminate ) ; % Required
70
71 end
72
73 % Check the v a l i d i t y o f a MATLAB S−Function ’ s parameters
74 f u n c t i o n CheckParameters ( b lock )
75
76 data = block . DialogPrm (1) . Data ;
77
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78 i f ~ i s c e l l ( data )
79 e r r o r ( ’ Parameter i s not a s t r u c t ’ )
80 e l s e i f l ength ( data ) < 1
81 e r r o r ( ’ Parameter i s not long enough ’ )
82 e l s e i f ~ i s f i e l d ( data {1} , ’C ’ )
83 e r r o r ( ’The f i e l d C i s miss ing from the parameter data ’ )
84 e l s e i f ~ i s f i e l d ( data {1} , ’R ’ )
85 e r r o r ( ’The f i e l d R i s miss ing from the parameter data ’ )
86 e l s e i f ~ i s f i e l d ( data {1} , ’ num_states ’ )
87 e r r o r ( ’The f i e l d num_states i s miss ing from the parameter data ’ )
88 e l s e i f ~ i s f i e l d ( data {1} , ’ num_measured_states ’ )
89 e r r o r ( ’The f i e l d num_measured_states i s miss ing from the

parameter data ’ )
90 end
91
92 end
93
94
95 % Setup work areas and s t a t e v a r i a b l e s
96 f u n c t i o n DoPostPropSetup ( block )
97 block . NumDworks = 1 ;
98
99 data = block . DialogPrm (1) . Data ;

100 num_hyp = length ( data ) ;
101
102 block . Dwork (1 ) . Name = ’ probs ’ ;
103 block . Dwork (1 ) . Dimensions = num_hyp ;
104 block . Dwork (1 ) . DatatypeID = 0 ; % double
105 block . Dwork (1 ) . Complexity = ’ Real ’ ; % r e a l
106 block . Dwork (1 ) . UsedAsDiscState = true ;
107
108 end
109
110 % Cal led once at s t a r t o f model execut ion . I f you have s t a t e s that

should
111 % be i n i t i a l i z e d once , t h i s i s the p lace to do i t .
112 f u n c t i o n Star t ( b lock )
113
114 data = block . DialogPrm (1) . Data ;
115 num_hyp = length ( data ) ;
116
117 % Assume equal p r o b a b i l i t y f o r each hypothes i s
118 block . Dwork (1 ) . Data = 1/num_hyp ∗ ones (num_hyp , 1) ;
119 end
120
121
122 % Cal led to generate block outputs in s imu la t i on step
123 f u n c t i o n Outputs ( b lock )
124
125 % Output the p r o b a b i l i t i e s
126 block . OutputPort (1 ) . Data = block . Dwork (1 ) . Data ;
127 end
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128
129
130 % Cal led to update d i s c r e t e s t a t e s during s imu la t i on step
131 f u n c t i o n Update ( b lock )
132
133 % Find number o f s t a t e s
134 data = block . DialogPrm (1) . Data ;
135 num_hyp = length ( data ) ;
136 num_states = data {1} . num_states ;
137 num_ms = data {1} . num_measured_states ;
138 probs_old = block . Dwork (1 ) . Data ;
139 lower_l imit = 10^ −12;
140
141 y = block . InputPort (1 ) . Data ;
142
143 % Calcu la te the numerator f o r each hypotheses , and sum to get

denominator
144 prob_top = z e r o s (num_hyp , 1) ;
145 prob_bot = 0 ;
146 f o r i = 1 :num_hyp
147 C = data { i } .C;
148 R = data { i } .R;
149 P = block . InputPort (3 ) . Data (1 + ( i −1)∗num_states : i ∗num_states ,

: ) ;
150 x_hat = block . InputPort (2 ) . Data (1 + ( i −1)∗num_states : i ∗

num_states , : ) ;
151
152 y_hat = C ∗ x_hat ;
153 y_t i lde = y − y_hat ;
154 S = C ∗ P ∗ C’ + R;
155
156 prob_top ( i ) = probs_old ( i ) ∗ exp ( −0.5 ∗ y_ti lde ’ ∗ inv (S) ∗

y_t i lde ) / . . .
157 s q r t ( (2∗ pi ) ^num_ms ∗ det (S) ) ;
158 prob_bot = prob_bot + prob_top ( i ) ;
159
160 end
161
162 % Enforce a lower l i m i t on the p r o b a b i l i t i e s
163 prob = prob_top . / prob_bot ;
164 prob_adj = max( prob , lower_l imit ) ;
165 prob_norm = prob_adj / sum( prob_adj ) ;
166
167 % Store the f i n a l p r o b a b i l i t y vec to r in the i n t e r n a l s t a t e
168 block . Dwork (1 ) . Data = prob_norm ;
169
170 end
171
172 % Cal led at the end o f s imu la t i on f o r c leanup
173 f u n c t i o n Terminate ( b lock )
174
175 end
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A.2 Maximum Likelihood Estimation

Listing A.2: MLE.m
1 f u n c t i o n MLE( block )
2
3 %
4 % The setup method i s used to s e t up the b a s i c a t t r i b u t e s o f the
5 % S−f u n c t i o n such as ports , parameters , e t c . Do not add any other
6 % c a l l s to the main body o f the f u n c t i o n .
7 %
8 setup ( block ) ;
9

10 end
11
12
13 f u n c t i o n setup ( block )
14
15 data = block . DialogPrm (1) . Data ;
16 num_states = data {1} . num_states ;
17 num_measured_states = data {1} . num_measured_states ;
18 num_hyp = length ( data ) ;
19
20 % R e g i s t e r number o f por t s
21 block . NumInputPorts = 3 ;
22 block . NumOutputPorts = 1 ;
23
24 % Setup port p r o p e r t i e s to be i n h e r i t e d or dynamic
25 block . SetPreCompInpPortInfoToDynamic ;
26 block . SetPreCompOutPortInfoToDynamic ;
27
28 % Overr ide input port p r o p e r t i e s
29 % y measurement
30 block . InputPort (1 ) . Dimensions = [ num_measured_states , 1 ] ;
31 block . InputPort (1 ) . DatatypeID = 0 ; % double
32 block . InputPort (1 ) . Complexity = ’ Real ’ ;
33 block . InputPort (1 ) . SamplingMode = ’ Sample ’ ;
34
35 % x_hat es t imate
36 block . InputPort (2 ) . Dimensions = [ num_states ∗ num_hyp , 1 ] ;
37 block . InputPort (2 ) . DatatypeID = 0 ; % double
38 block . InputPort (2 ) . Complexity = ’ Real ’ ;
39 block . InputPort (2 ) . SamplingMode = ’ Sample ’ ;
40
41 % P_prior i
42 block . InputPort (3 ) . Dimensions = [ num_states ∗ num_hyp , num_states

] ;
43 block . InputPort (3 ) . DatatypeID = 0 ; % double
44 block . InputPort (3 ) . Complexity = ’ Real ’ ;
45 block . InputPort (3 ) . SamplingMode = ’ Sample ’ ;
46
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47 % Overr ide output port p r o p e r t i e s
48 % Negative Log−L i k e l i h o o d s
49 block . OutputPort (1 ) . Dimensions = [ num_hyp , 1 ] ;
50 block . OutputPort (1 ) . DatatypeID = 0 ; % double
51 block . OutputPort (1 ) . Complexity = ’ Real ’ ;
52 block . OutputPort (1 ) . SamplingMode = ’ Sample ’ ;
53
54 % R e g i s t e r parameters
55 block . NumDialogPrms = 1 ;
56
57 % R e g i s t e r sample t imes
58 block . SampleTimes = [−1 0 ] ;
59
60 % S p e c i f y the block simStateCompliance .
61 block . SimStateCompliance = ’ DefaultS imState ’ ;
62
63 % S p e c i f i y which f u n c t i o n s are used
64 block . RegBlockMethod ( ’ CheckParameters ’ , @CheckParameters ) ;
65 block . RegBlockMethod ( ’ PostPropagationSetup ’ , @DoPostPropSetup ) ;
66 block . RegBlockMethod ( ’ S ta r t ’ , @Start ) ;
67 block . RegBlockMethod ( ’ Outputs ’ , @Outputs ) ; % Required
68 block . RegBlockMethod ( ’ Update ’ , @Update ) ;
69 block . RegBlockMethod ( ’ Terminate ’ , @Terminate ) ; % Required
70
71 end
72
73 % Check the v a l i d i t y o f a MATLAB S−Function ’ s parameters
74 f u n c t i o n CheckParameters ( b lock )
75
76 data = block . DialogPrm (1) . Data ;
77
78 i f ~ i s c e l l ( data )
79 e r r o r ( ’ Parameter i s not a c e l l array ’ )
80 e l s e i f l ength ( data ) < 1
81 e r r o r ( ’ Parameter i s not long enough ’ )
82 e l s e i f ~ i s f i e l d ( data {1} , ’C ’ )
83 e r r o r ( ’The f i e l d C i s miss ing from the parameter data ’ )
84 e l s e i f ~ i s f i e l d ( data {1} , ’R ’ )
85 e r r o r ( ’The f i e l d R i s miss ing from the parameter data ’ )
86 e l s e i f ~ i s f i e l d ( data {1} , ’ num_states ’ )
87 e r r o r ( ’The f i e l d num_states i s miss ing from the parameter data ’ )
88 e l s e i f ~ i s f i e l d ( data {1} , ’ num_measured_states ’ )
89 e r r o r ( ’The f i e l d num_measured_states i s miss ing from the

parameter data ’ )
90 e l s e i f ~ i s f i e l d ( data {1} , ’ f o r g e t t i n g _ f a c t o r ’ )
91 e r r o r ( ’The f i e l d f o r g e t t i n g _ f a c t o r i s miss ing from the parameter

data ’ )
92 end
93
94 end
95
96
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97 % Setup work areas and s t a t e v a r i a b l e s
98 f u n c t i o n DoPostPropSetup ( block )
99 block . NumDworks = 1 ;

100
101 data = block . DialogPrm (1) . Data ;
102 num_hyp = length ( data ) ;
103
104 block . Dwork (1 ) . Name = ’ L i k e l i h o o d s ’ ;
105 block . Dwork (1 ) . Dimensions = num_hyp ;
106 block . Dwork (1 ) . DatatypeID = 0 ; % double
107 block . Dwork (1 ) . Complexity = ’ Real ’ ; % r e a l
108 block . Dwork (1 ) . UsedAsDiscState = true ;
109
110 end
111
112 % Cal led once at s t a r t o f model execut ion . I f you have s t a t e s that

should
113 % be i n i t i a l i z e d once , t h i s i s the p lace to do i t .
114 f u n c t i o n Star t ( b lock )
115
116 data = block . DialogPrm (1) . Data ;
117 num_hyp = length ( data ) ;
118
119 % Accumulated l i k e l i h o o d s t a r t s at 0
120 block . Dwork (1 ) . Data = z e r o s (num_hyp , 1) ;
121 end
122
123
124 % Cal led to generate block outputs in s imu la t i on step
125 f u n c t i o n Outputs ( b lock )
126
127 % Output the l i k e l i h o o d s
128 block . OutputPort (1 ) . Data = block . Dwork (1 ) . Data ;
129
130 end
131
132
133 % Cal led to update d i s c r e t e s t a t e s during s imu la t i on step
134 f u n c t i o n Update ( b lock )
135
136 % Find number o f s t a t e s
137 data = block . DialogPrm (1) . Data ;
138 num_hyp = length ( data ) ;
139 num_states = data {1} . num_states ;
140
141 l i k e l i h o o d s = block . Dwork (1 ) . Data ;
142
143 y = block . InputPort (1 ) . Data ;
144
145 f o r i = 1 :num_hyp
146 C = data { i } .C;
147 R = data { i } .R;
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148 P = block . InputPort (3 ) . Data (1 + ( i −1)∗num_states : i ∗num_states ,
: ) ;

149 x_hat = block . InputPort (2 ) . Data (1 + ( i −1)∗num_states : i ∗
num_states , : ) ;

150 f o r g e t = data { i } . f o r g e t t i n g _ f a c t o r ;
151
152 y_hat = C ∗ x_hat ;
153 y_t i lde = y − y_hat ;
154 S = C ∗ P ∗ C’ + R;
155
156 l i k e l i h o o d s ( i ) = l i k e l i h o o d s ( i ) ∗ f o r g e t + 0 .5 ∗ ( l og ( det (S) ) +

y_ti lde ’ ∗ inv (S) ∗ y_t i lde ) ;
157 end
158
159 block . Dwork (1 ) . Data = l i k e l i h o o d s ;
160
161 end
162
163 % Cal led at the end o f s imu la t i on f o r c leanup
164 f u n c t i o n Terminate ( b lock )
165
166 end
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A.3 Initialisation

Listing A.3: initSim.m
1 f u n c t i o n in i tS im ( )
2 %i n i t i a l i s e a l l parameters needed f o r s imu la t i on
3
4 load ( ’MLP. mat ’ )
5 load ( ’ T_H_table . mat ’ )
6 load ( ’ v e s s e l . mat ’ )
7 load ( ’ vesselABC . mat ’ )
8
9 i n i t i a l _ e t a = [ 2 , 2 , 0 , 0 , 0 , −135/180∗ pi ] ;

10 i n i t i a l _ v e l o c i t y = z e r o s (1 , 6) ;
11 i n i t i a l _ b i a s = z e r o s (1 , 6) ;
12
13 epsilon_0_PassObs = [ 0 ; 0 ; 0 ; 0 ; 0 ; 0 ] ;
14 eta_w_0_PassObs = epsilon_0_PassObs ( 1 : 3 ) ;
15 xi_w_0_PassObs = epsilon_0_PassObs ( 4 : 6 ) ;
16
17 anchor_pos = MLP. r_0 ;
18
19 putvar (MLP, T_H_table , v e s s e l , vesselABC , i n i t i a l _ e t a ,

i n i t i a l _ v e l o c i t y , . . .
20 i n i t i a l _ b i a s , epsilon_0_PassObs , eta_w_0_PassObs , xi_w_0_PassObs

, anchor_pos )
21
22
23 %% Pass ive obse rve r
24 pass iveData = in i tPas s iveObs ( v e s s e l , vesselABC , i n i t i a l _ e t a ,

i n i t i a l _ v e l o c i t y , i n i t i a l _ b i a s ) ;
25 putvar ( pass iveData )
26
27
28 %% C o n t r o l l e r
29 Kp = diag ( [ 1 00 00 0 , 1000000 , 1 0 0 0 ] ) ;
30 Ki = diag ( [ 1 0 0 0 , 1000 , 1 0 0 ] ) ;
31 Kd = 0 ;
32 putvar (Kp, Ki , Kd)
33
34
35 end
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A.4 Observer initialization

Listing A.4: initPassiveObs.m
1 f u n c t i o n data = in i tPas s iveObs ( v e s s e l , vesselABC , i n i t i a l _ e t a ,

i n i t i a l _ v e l o c i t y , i n i t i a l _ b i a s )
2
3 num_moor = 8 ;
4
5 %% Wave parameters
6
7 omega_0 = 2 ∗ pi / 7 ∗ ones (1 , 3) ;
8 omega_c = 1 .1 ∗ ones (1 , 3) ;
9

10 zeta_n = 1 ∗ ones (1 , 3) ; % Fossen (2011) p . 317
11 lambda = 0 .1 ∗ ones (1 , 3) ; % Fossen (2011) p . 317
12
13 OMEGA = diag (omega_0 . ^ 2) ;
14 LAMBDA = diag (2 ∗ zeta_n . ∗ omega_0) ;
15
16 Aw = [ z e r o s (3 ) , eye (3 ) ;
17 −OMEGA, −LAMBDA] ;
18 Cw = [ z e r o s (3 ) , eye (3 ) ] ;
19
20
21 %% Observer Gains
22
23 K1_temp = z e r o s (1 , 6) ;
24 f o r i = 1 :3
25 K1_temp( i ) = −2 ∗ ( zeta_n ( i ) − lambda ( i ) ) ∗ ( omega_c ( i ) /

omega_0( i ) ) ;
26 K1_temp( i + 3) = 2 ∗ omega_0( i ) ∗ ( zeta_n ( i ) − lambda ( i ) ) ;
27 end
28
29 K1 = [ diag (K1_temp ( 1 : 3 ) ) ;
30 diag (K1_temp ( 4 : 6 ) ) ] ;
31 K2 = omega_c ;
32 K4 = diag ( [ 0 . 3 , 0 . 3 , 0 . 0 1 ] ) ; % Zhengru : d iag ( [ 0 . 3 , 0 . 3 , 0 . 0 1 ] )
33 K3 = 0 .1 ∗ K4 ;
34
35
36 %% Vesse l damping
37
38 f r eq Index = 34 ;
39 DOF = [ 1 , 2 , 6 ] ;
40 D = v e s s e l .B(DOF, DOF, f r eq Index ) ;
41 Dmo = 0.1 ∗ D;
42 D = D + Dmo;
43
44
45 %% Bias time cons tant s
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46
47 Tb = diag (1000 ∗ ones (1 , 3) ) ;
48 invTb = inv (Tb) ;
49
50
51 %% Vesse l mass
52
53 M_rigidBody = v e s s e l .MRB(DOF, DOF) ;
54 M_addedMass = vesselABC .MA(DOF, DOF) ;
55 M = M_rigidBody + M_addedMass ;
56 invM = inv (M) ;
57
58
59 %% Noises
60 measurement_var = 0 . 0 0 5 ;
61
62
63 %% Observer data f o r d i f f e r e n t hypotheses
64
65 x_hat_0 = transpose ( [ i n i t i a l _ e t a (DOF) , i n i t i a l _ v e l o c i t y (DOF) ,

i n i t i a l _ b i a s (DOF) ] ) ;
66 load ( ’ custom\ er ro r_covar i ance s . mat ’ ) ;
67
68 num_states = 3 ;
69 num_measured_states = 3 ;
70 num_hyp = num_moor + 1 ;
71 data = c e l l (1 , num_hyp) ;
72 f o r i = 1 :num_hyp
73 data { i } .Aw = Aw;
74 data { i } .Cw = Cw;
75 data { i } .C = eye ( num_states ) ;
76 data { i } .D = D;
77 data { i } . lambda = LAMBDA;
78 data { i } . omega_0 = omega_0 ;
79 data { i } . omega_c = omega_c ;
80
81 Lp = diag ( ones (1 , num_moor) ) ;
82 i f i <= num_moor % Line i i s broken
83 Lp( i , i ) = 0 ;
84 end
85 data { i } . Lp = Lp ;
86
87 data { i } .K1 = K1 ;
88 data { i } .K2 = K2 ;
89 data { i } .K3 = K3 ;
90 data { i } .K4 = K4 ;
91
92 data { i } .M = M;
93 data { i } . invM = invM ;
94 data { i } .Tb = Tb ;
95 data { i } . invTb = invTb ;
96



86 APPENDIX A. MATLAB CODE

97 data { i } .H_num = i ;
98 data { i } . x_hat_0 = x_hat_0 ;
99 data { i } .P = er ro r_covar i ance s { i } ;

100 data { i } .R = diag ( measurement_var . ∗ ones (1 , num_measured_states )
) ;

101 data { i } . f o r g e t t i n g _ f a c t o r = 0 . 9 9 ;
102
103 data { i } . num_states = num_states ;
104 data { i } . num_measured_states = num_measured_states ;
105 end
106 end
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A.5 Generating error covariances

Listing A.5: generate_error_covariances.m
1 f u n c t i o n generate_error_covar iances ( runtime , generate_new )
2
3 e r ro r_covar i ance s = c e l l (1 , 9) ;
4
5 f o r hyp = 1 :9
6 f i l ename = s p r i n t f ( ’ custom/P_gen/ y_error%d . mat ’ , hyp ) ;
7 i f generate_new
8 f p r i n t f ( ’%s − Running s imu la t i on f o r hypothes i s %d . \ n ’ ,

d a t e s t r ( datet ime ( ’now ’ ) ) , hyp )
9 c o n t r o l l e r = 1 ;

10 breaktime = 0 ;
11 [ ~ , ~ , ~ , ~ , y_error , ~ , ~ , ~ , ~ ] = runSim ( runtime ,

c o n t r o l l e r , hyp , breaktime , 1 , 0) ;
12 save ( f i l ename , ’ y_error ’ )
13 e l s e
14 load ( f i l ename )
15 end
16 %c a l c u l a t e
17 s t a r t = ( hyp − 1) ∗ 3 + 1 ;
18 e r r o r = y_error ( : , s t a r t : s t a r t +2) ;
19
20 e r ro r_covar i ance s {hyp} = cov ( e r r o r ) ;
21
22 end
23
24 save ( ’ custom/P_gen/ e r ro r_covar i ance s . mat ’ , ’ e r ro r_covar i ance s ’ )
25 f p r i n t f ( ’Remember to copy the new c o v a r i a n c e s from the P_gen f o l d e r

to the custom f o l d e r \n ’ )
26
27 end


