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Abstract

Floating structures are influenced by the ocean environment which cause responses

from the structures known as surge, sway, heave, roll, pitch and yaw. These re-

sponses are commonly approximated using linear potential theory, which neglects

the viscous effects created by interaction between the body and fluid. For conven-

tional ship hulls, Ikeda developed an empirical method to estimate the roll damping

[Ikeda, 1978] which is successful for traditional vessel geometries. However, the de-

velopment of unconventional ship hulls has resulted in the need of better ways to

predict the response and viscous effects.

This thesis investigated if Neural Networks could be utilised to predict the response

of a floating structure, using experimental results. A two-dimensional model of a

mid-ship section with large bilge boxes has been tested in Ladertanken, an experi-

mental wave flume operated by SINTEF Ocean. Due to the large bilge boxes, the

model represents an unconventional ship hull shape where the bilge boxes induce

viscous effects. The model was freely-floating, although restrained to an area in the

model using springs. A wave maker installed in the wave flume created waves with

different wave period and wave steepness, which induced motions in sway, heave and

roll. The comparison of the created waves versus the theoretical wave showed an av-

erage difference between 6.9 % and 7.9 % for both wave steepness and wave period.

A bug in the processing software which transforms the analogue signal to a digital

signal was found after the experiments were conducted, and there are indications

that the results are affected. The results from the experiments could therefore not

be used to analyse the development of hydrodynamic effects, however, the results

were utilised as data to the response predictions.

Firstly, a Linear Regression model using Stochastic Gradient Descent was created

to predict sway, heave and roll motion as well as their response amplitude operat-

ors. The Linear Regression models obtained a Coefficient of Determination ranging

between 30.0 % and 42.0 %, which is unsatisfactory. The linear regression models
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were included to compare to the Neural Network performance and thereby show the

potential of Neural Network within non-linear problems.

One Neural Network model was built and trained for each of the measured responses,

where the responses were used as targets and the wave period and wave steepness

were given as features. The input data is scaled using standardisation, as well as

shuffled and split into training, testing and validation data sets. The Neural Net-

work consisted of an input layer, two hidden layers and an output layer, where

the first hidden layer utilised the Rectified Linear Unit activation function and the

second hidden layer utilised tangent hyperbolic. By the use of Mean Squared Error

as the loss function and the Root Mean Square Propagation algorithm as optimisa-

tion method, the model trained the weights and bias to predict the targets. Using

the Coefficient of Determination as the accuracy metric, both motion and response

amplitude operator in sway, heave and roll resulted in an accuracy above 98.0 %,

where 100.0 % is perfect prediction. From the Mean Absolute Percentage Error the

motions resulted in an accuracy of 5.7 % in sway, 8.5 % in heave and 6.2 % in roll,

where 0.0 % is perfect prediction. The response amplitude operator resulted in a

Mean Absolute Percentage Error of 2.4 % in sway, 2.7 % in heave and 2.8 % in roll.

It was suspected that the use of the wave height in the calculation of the response

amplitude operator influences the prediction results, because the wave height was a

feature to the Neural Network.

The prediction results showed that it was possible to utilise Neural Network to pre-

dict the response of a floating structure. Different indications of prediction error

of the two accuracy metrics showed the importance of using more than one error

estimate. The predictions were also plotted to visualise the difference between the

prediction values and true values, which was important in the evaluation of pre-

diction results. From the prediction plots it was concluded that the Coefficient of

Determination was misleading and should not be utilised to assess the Neural Net-

work predictions.
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From the knowledge of Neural Networks and Hydrodynamics, a method has been

suggested to investigate the development of the viscous terms of the model response

using experiments and predictions. With the combination of freely-floating model

experiments, forced oscillation model experiments and Neural Networks, a model is

trained to predict the viscous terms and thereby contribute with information about

the development in various sea states.
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Sammendrag

Flytende konstruksjoner p̊avirkes av havmiljøet som for̊arsaker bevegelser av kon-

struksjonen kjent som jag, svai, hiv, rull, stamp og gir. Disse bevegelsene er vanligvis

tilnærmet ved hjelp av lineær potensialteori, som neglisjerer de viskøse effektene som

oppst̊ar ved samspillet mellom skroget og fluidet. En empirisk metode utviklet av

Ikeda [Ikeda, 1978] er tradisjonelt brukt til å estimere rulledempingen for konvens-

jonelle skipsskrog. Utviklingen av ukonvensjonelle skipsskrog resulterer imidlertid i

et behov for bedre måter å estimere bevegelsene og de viskøse effektene.

Denne oppgaven har undersøkt om Nevrale Nettverk kan benyttes til å predikere

bevegelsene av en flytende konstruksjon ved hjelp av eksperimentelle resultater. En

to-dimensjonell modell av midt-seksjonen av et skip med store slingrekjøler ble testet

i Ladertanken, en eksperimentelt bølgetank eid av SINTEF Ocean. P̊a grunn av de

store slingrekjølene representerer modellen en ukonvensjonell skipsform hvor slin-

grekjølene bidrar til å fremkalle viskøse effekter. Modellen var fritt flytende, men

begrenset til et omr̊adet av bølgetanken ved hjelp av fjærer festet p̊a modellen.

Bølgemaskinen ble satt til å lage bølger av forskjellig bølgeperiode og bratthet, som

resulterte i bevegelser i svai, hiv og rull. Sammenligningen av de teoretiske og ek-

sperimentelle bølgeperiodene og bratthetene viste en forskjell mellom 6.9 % og 7.9

%. En feil i prosesseringsprogramvaren som konverterer analoge instrumentsignaler

til digitale verdier ble oppdaget etter forsøkene var gjennomført, og det ble funnet

indikasjoner p̊a at de eksperimentelle målingene var rammet av denne feilen. Grun-

net dette kan resultatene ikke brukes til en hydrodynamisk analyse, men de kan

likevel brukes som data i predikeringen av bevegelsene.

En lineær regresjonsmodell ble utviklet ved hjelp av stochastic gradient descent som

optimaliseringsalgoritme, som predikerte b̊ade bevegelse og respons amplitude oper-

atorene i svai, hiv og rull. De lineære regresjonsmodellene oppn̊adde en nøyaktighet

mellom 30.0 % og 42.0 % ved hjelp av determinasjonskoeffisienten, som ikke er

tilfredstillende. De lineære regresjonsmodellene er inkludert i studiet for å vise
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hvordan Nevrale Nettverk yter i forhold til lineære prediksjoner.

Ett Nevralt Nettverk ble programmert og trent for svai, hiv og rull og deres respekt-

ive respons amplitude operatorer. Bølgeperiode og bølgebratthet ble brukt som

input til det Nevrale Nettverket, hvor en av bevegelsene er prediksjons-objektet.

Inputen ble skalert ved hjelp av standardisering, i tillegg til å bli blandet og delt

i læringsdata, treningsdata og valideringsdata. Det Nevrale Nettverket besto av

ett input-lag, to skjulte lag og et output-lag, hvor de to skjulte lagene benyttet

seg av forskjellige aktiveringsfunksjoner. Minste kvadraters metode ble brukt som

tapsfunksjon, og root mean squared propagation ble benyttet som optimaliseringsal-

goritme. De Nevrale Nettverkene ble trent til å predikere svai, hiv og rulle bevegelse

samt respons amplitude operatoren til de tre bevegelsene i individuelle modeller. Ved

å bruke determinasjonskoeffisienten resulterer b̊ade bevegelses og respons amplitude

operatorene i en nøyaktighet p̊a over 98.0 %, hvor 100.0 % er perfekt prediksjon.

Fra det gjennomsnittlige absolutt-prosentavviket ble det funnet et avvik p̊a 5.7 % i

svai, 8.5 % i hiv og 6.2 % i rull, hvor 0.0 % avvik er perfekt prediksjon. For respons

amplitude operatorene ble avvikene som følger; 2.4 % i svai, 2.7 % i hiv og 2.8 %

i rull. Forskjellen mellom resultatene i bevegelse og respons amplitude operatorene

ble antatt å være p̊a grunn av bruken av bølgeamplitude i beregningen av respons

amplitude operatoren, som gjør at bølgehøyden er b̊ade en egenskap i nettverket og

indirekte i predikeringen.

Prediksjonsresultatene viser at det er mulig å bruke Nevrale Nettverk til å pre-

dikere bevegelsen til en flytende konstruksjon. Imidlertid viste indikasjonene av de

to nøyaktighetsmålene at det er viktig å benytte seg av mer enn en avviksmåling.

Prediksjonene ble ogs̊a visualisert ved hjelp av grafer hvor prediksjonsverdiene ble

plottet mot de sanne verdiene, som viste seg å være verdifult i evalueringen av pre-

diksjonsresultatene. Fra disse grafene ble det funnet at determinasjonskoeffisienten

var misvisende og ikke burde benyttes i evalueringen av disse Nevrale Nettverkene.

Fra kunnskapen om Nevrale Nettverk og Hydrodynamikk foresl̊as en metode for å
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analysere de viskøse leddene av bevegelsene. Ved bruk av fritt flytende modellforsøk,

tvungen oscillering modellforsøk og Nevrale Nettverk kan en modell trenes til å

predikere de viskøse leddene og dermed bidra til mer kunnskap om oppførselen til

de viskøse leddene.
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Nomenclature

Abbreviations

CFD Computational Fluid Dynamics

FPSO Floating Production, Storage and Offloading

MAPE Mean Absolute Percentage Error

MSE Mean Squared Error

MSE Mean Squared Error

PSO Particle Swarm Optimisation

RAO Response Amplitude Operator

RAO 2 Response Amplitude Operator: Sway

RAO 3 Response Amplitude Operator: Heave

RAO 4 Response Amplitude Operator: Roll

ReLU Rectified Linear Unit

RMSprop Root Mean Square Propagation

SSE Sum of Least Squares

SVM Support Vector Machine

Tanh Tangent Hyperbolic

TLP Tension Leg Platform
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WP1 Wave Probe 1

WP2 Wave Probe 2

Greek Letters

η1 Surge Motion

η2 Sway Motion

η3 Heave Motion

η4 Roll Motion

η5 Pitch Motion

η6 Yaw Motion

λ Wave Length

ω Circular Frequency

φ Velocity Potential

ξ Non-Linearities

ζ Free Surface Elevation

Roman Letters

ȳi Mean Value

ȳ Mean Position in y-direction

ŷi Predicted Value

Ajk Added Mass coefficient

b Neural Network Bias

Bjk Damping coefficient

Cjk Restoring coefficient
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f Frequency

Fexc Excitation Force

Frad Radiation Force

g Gravity

H Wave Height

H/λ Wave Steepness

Ijk Moment of Inertia in j-direction due to motion in k-direction

J(θ) Neural Network Loss Function

k Wave Number

Mjk Mass coefficient

R2 Coefficient of Determination

T Wave Period

Tn Natural Period

w Neural Network Weights

yi True Value

B Model Width

BB Bilge Box Width

H Model Height

HB Bilge Box Height

k Spring Stiffness

L Model Length

LB Bilge Box Length

T Model Draft
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Chapter 1

Introduction

1.1 Background

Vessels and floating structures face harsh sea environments with waves, winds and

currents which induce responses from the vessels and floating structures. These re-

sponses are important to approximate when the structures are designed for specific

operational environments. It is of interest to reduce the vessel response to increase

the operational range, and the roll motion is the response which is easiest to de-

crease. To enable the floating structure to be operational in a larger range of sea

states, it is commonly equipped with roll damping devices. Among the common

roll damping devices are bilge keels, or bilge boxes as seen in Figure 1.1, which

reduce the roll motion by creating a roll damping moment. However, the presence

of bilge keels and bilge boxes induce flow separation and vortex shedding due to the

geometrical singularities. Flow separation and vortex shedding are viscous effects

which are non-linear effects.

The vessel response is commonly approximated using linear potential theory in

steady-state conditions. A consequence of assuming linearity is that only linear

effects are taken into account, which means the non-linear effects are neglected.

Hence the vortex shedding and flow separation are neglected, which is a good es-

timate in small sea states. However, in larger sea states these viscous effects are

of importance and can no longer be neglected, especially in roll. For conventional
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CHAPTER 1. INTRODUCTION

ship hulls Ikeda [Ikeda, 1978] developed an empirical method to estimate the viscous

roll damping, which gives a good estimate for the traditional hull shapes. However,

unconventional ship hulls can not rely on the empirical method and it is therefore

of interest to obtain more knowledge of the development of the viscous effects on

unconventional ship hulls. The increase of unconventional ship hulls such as FPSOs

and floating wind turbines increases the need of knowledge of the viscous effects at

larger sea states.

Figure 1.1: An illustration of an unconventional ship hull, namely Goliat designed
by Sevan Marine [Eni, 2018]. The structure is equipped with bilge boxes which are
visible at the bottom of the structure.

In the design process of unconventional ship hulls, experiments are commonly con-

ducted which gives access to a lot of data. This opens up the possibility of using

Machine Learning to investigate the response during model tests and obtain more

knowledge of the viscous effects. Machine Learning is a statistical tool which is cap-

able of finding patterns in large data sets. It is of interest to investigate if Machine

Learning can be utilised to predict the response of a floating structure and thereby

be helpful to analyse the viscous effects.
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1.2. LITERATURE REVIEW

1.2 Literature Review

The literature review is further work of the feasibility study conducted Autumn 2017

[Bremer, 2017].

Support Vector Machine has been utilised to predict the ship manoeuvring motion

together with Particle Swarm Optimisation [Luo et al., 2016]. The combined SVM

and PSO was successful in predicting the ship manoeuvrability by identifying the

parameters in an Abkowitz model, which is a mathematical model for ship man-

oeuvring. However, the paper has simplified the Abkowitz model due to the high

number of parameters. This reduces the number of derivatives from sixty to thirty-

six. SVM and PSO are used to approximate these parameters using 400 training

sets. The results from the prediction agree well with the experimental results.

In Modelling Ship Equations of Roll Motion using Neural Networks

[Xing and McCue, 2010] a Neural Network method to predict the ship rolling motion

was tested against experimental data. By inputting the time history of roll angle

and velocity in to the Neural Network model, the model was trained by minimising

the difference prediction and true value of roll motion. The paper successfully es-

timates parameters such as damping, restoring and exciting moment.

A paper from RMIT University in Australia [Khan et al., 2005] investigates the

application of Artificial Neural Network using two different training techniques to

predict the ship motion. The paper utilised nine separate data sets where the last

third of the data sets were used as validation of the machine learning model. The

results using singular value decomposition as training technique had an accuracy

of 99% for prediction of ship motion ten seconds in advance. The paper concludes

that the singular value decomposition outperforms the generic algorithm as training

technique and that the Artificial Neural Network model is sufficiently capable of

representing the motion of a ship in open sea.
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CHAPTER 1. INTRODUCTION

Neural Network Prediction of the Roll Motion of a Ship for Intelligent Course Con-

trol [Nicolau et al., 2007] demonstrated the capabilities Machine Learning in pre-

diction of roll motion. The study was motivated by the influence of roll on the

performance of the autopilot and the goal of developing an intelligent autopilot.

An intelligent autopilot should predict the roll motion and give rudder commands

which will have decreasing effects on the roll movements of the vessel. The study

successfully predicts the roll motion of a ship using a Feed-Forward Neural Network

Model.

Using past time series to predict the ship motion is an extremely powerful tool to

further develop autonomous vessels. Most modern vessels have sensors collecting

data for future purpose, such as diagnosis of components and further developing

ship motion prediction tools. [Li et al., 2017] attempted to develop a more general

prediction model and three learning strategies are tested - offline, online and hybrid

learning. It is found that the Neural Networks perform better when constructed

to target a single motion. This is due to each of the motions having an individual

dependence on the features given and therefore train an exclusive Neural Network

to predict each motion. The study concludes that the hybrid learning strategy was

superior and can be helpful in the modelling of ship motion prediction.

Using Artificial Neural Networks to more accurately predict the heave motion is use-

ful to support marine operations. The study conducted by Saipem Energy Services

[Masi et al., 2011] introduces a Radial Based Neural Network to predict the heave

motion of a vessel 15 s, 30 s and 50 s ahead. The goal of the study is to investigate

if Neural Networks can be used to predict the vessel motion ahead of time, which

could be used to improve dynamic positioning systems. The constructed Neural

Network consists of input layer, a hidden layer and the output layer. The results

were acceptable for predictions up to 40 s ahead, but any longer the results are

progressively worse.
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1.3 Present Study

The aim for the present study is to conduct experiments and predict the motion of a

model using a Neural Network. Experiments will be conducted on a two-dimensional

model with bilge boxes to induce viscous effects. The model will be freely-floating

in waves with a spring system to restrain the model in the wave tank. A Neural

Network will be programmed using Python, and considerable work has to be done to

learn both Python and Machine Learning. The motivation of the present study is to

investigate if Machine Learning is a way to predict the response of a floating structure

and if it is possible to obtain more knowledge of the viscous effects. Because the

model experiments will include the viscous effects, it is of interest to find a way to

predict the added mass and damping coefficients which can give valuable information

about the viscous effects of unconventional ship hulls.

1.3.1 Objectives

The following objectives are drawn up:

– Present hydrodynamic theory such as ship motions, hydrodynamic loads and

motion calculations and explain viscous effects and drift loads.

– Show the analytic derivation of natural periods - coupled and uncoupled.

– A thorough introduction to basic Machine Learning with emphasis on the

usage of Neural Networks

– Plan, conduct, process and present two-dimensional experiment of freely-

floating model in waves

– Build and train a Neural Network do predict the response of the model using

the experimental results

1.3.2 Limitations

Due to the configuration of the wave tank and model, the model is similar to a two-

dimensional model and the three-dimensional effects are therefore neglected. The
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model testing is time consuming and therefore limited to one bilge box size and

one draft condition, and the tested wave periods and wave steepness will be limited

to the test setup and wave maker. The largest possible wave periods are therefore

prioritised to induce the most viscous effects.

The Neural Network prediction models are only programmed in Python using the

Machine Learning Library known as Keras. There exist many other Machine Learn-

ing libraries and toolboxes, but this study is limited to utilising one programming

method. Each of the models are trained on experimental data and are therefore

only able to predict the motion of this specific model.

1.4 Structure of the Thesis

Chapter 2 presents the basic theory in both hydrodynamics and machine learning.

In hydrodynamics the ship motions are presented together with an explanation of

how to calculate the hydrodynamic loads and motions. An explanation of viscous

effects and drift forces follows together with a small section about irregular waves.

The equation of motion is derived to show the complexity of the problem, and the

natural periods are derived using simplifications. In Machine Learning a few basic

concepts such as supervised learning, linear regression and artificial neural networks

are presented and the machine learning terms are presented with the use of an ex-

ample.

Chapter 3 presents the experimental method which covers basics about the pre-

paration of the experiments, instrumentation and wave generation, how the meas-

urements are analysed and processed and an uncertainty analysis of the conducted

experiment.

Chapter 4 explains how a linear regression and neural network model is build to

predict the motion of the model using the experimental results. Preparation of the

data points obtained from the experiments is explained as well as choice of features,
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targets and parameters in the neural network.

Chapter 5 presents the results from the experiments, including wave generation and

the obtained RAOs. The results from the linear regression motion predictions and

the neural networks results are presented and discussed.

Chapter 6 explains how the method developed in the present study can be applied

to learn more about the viscous terms in added mass and damping. Further applic-

ation of Neural Networks within the hydrodynamics of floating structures are also

discussed.

Chapter 7 concludes the results and the work in the present study. Several sugges-

tions for further work are also found in this chapter.
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Chapter 2

Theory

This section will introduce the reader to the theoretical basis of vessel motion and

hydrodynamics as well as an introduction to Machine Learning.

2.1 Introduction to Vessel Motion

This section covers the theoretical and mathematical definitions and assumptions to

give the reader a basic knowledge of vessel motion. The theory is further work from

the theoretical section in the feasibility study conducted Autumn 2017 [Bremer, 2017].

The reader will be presented to the derivation of natural period and shown the com-

plex equations of motions to understand why Machine Learning could be a helpful

tool to predict ship response.

2.1.1 Motion Definitions

The definition of the coordinate system of a ship or an offshore structure is illus-

trated in Figure 2.1. The three translation motions are surge, sway and heave while

the rotational motions are roll, pitch and yaw and together these motions form the

response of a vessel. The six degrees of freedom are coupled motions which are com-

plex to calculate. However, by assuming linear potential theory an approximation

of the vessel response can be calculated.
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CHAPTER 2. THEORY

Figure 2.1: Definition of coordinate system to describe the motion of a ship or
offshore structure [Benedict et al., 2003].

The motion of an arbitrary point of the vessel when the motions are small can be

found from the following relation [Pettersen, 2014].

s = η1i + η2j + η3k + ω × r (2.1)

Where ω and r are defined as follows:

ω = η4i + η5j + η6k

r = xi + yj + zk
(2.2)

Hence, one needs to find the six motions to know the motion of a vessel.

2.1.2 Frequency Domain Analysis

The solution to a hydrodynamic problem is found by describing the fluid velocity

and pressure fields at the area of interest. The velocity potential is a mathematical

expression which is capable of describing the velocity components and thereby also

provides information about the pressure field in the fluid [Çengel, 2014]. The velocity

potential for general marine problems is found by solving the Laplace Equation and

assuming potential flow conditions; irrotational, inviscid and incompressible. The
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boundary conditions for marine applications is illustrated in Figure 2.2.

Figure 2.2: Boundary conditions for the Laplace Equation which are utilised to
derive the velocity potential and free surface elevation [Greco, 2012].

Where Ω is the fluid domain, ζ is the free surface elevation, n is the normal and

SFS, SSB and SB are the surfaces of the free surface, sea bed and body respectively.

The full derivation of the problem is found in TMR4215: Sea Loads - Lecture Notes

[Greco, 2012], and the velocity potential and free surface elevation can be expressed

as follows:

φ = φ1ξ + φ2ξ
2 + φ3ξ

3 + ...

ζ = ζ1ξ + ζ2ξ
2 + ζ3 + ξ3 + ...

(2.3)

Where φ is the velocity potential, ζ is the free surface elevation and ξ are the non-

linearities in the problem.

The linear theory assumes small non-linearities which leads to neglecting the higher

order terms, O(ξn), where n < 1 [Greco, 2012]. With the assumption of only using

the first order terms, the space and time dependence can be split. This leads to the

problem only being dependent on the frequency, hence a frequency domain analysis.

2.1.3 Hydrodynamic Loads

Assuming linearity, steady state and linear potential theory, the hydrodynamic loads

can be found by decomposing the velocity potential, and use the superposition
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principle [Greco, 2012]. The wave-body interaction problem is decomposed into two

sub-problems, the excitation forces and the radiation forces as illustrated in Figure

2.3.

Figure 2.3: Vessel response in regular waves with the two sub-problems - restrained
from oscillation and forced oscillations [Journée and Pinkster, 2002].

Excitation forces are when the body is restrained from oscillating, but there are

incoming waves which lead to an excitation force. The radiation problem is when

the body is oscillating with the wave excitation frequency without incident waves.

This means that the problem is split into either the body is moving or the water

is moving, and the two sub-problems are added together to obtain the full body

response due to the assumption of linearity [Faltinsen, 2006].

The excitation force is divided into two effects, Froude-Kriloff force and diffraction

force [Journée and Pinkster, 2002]. Both force contributions are pressure contribu-

tions, but the Froude-Kriloff is the undisturbed wave while the diffraction force is

due to the presence of the body in the wave. Froude-Kriloff is hence the undisturbed

pressure field on the body which is calculated from the dynamic pressure in linear

wave theory [Faltinsen, 1990]. The undisturbed pressure field in the Froude-Kriloff

force needs to be corrected to include the presence of the body. This is the diffrac-

tion force, which is the pressure field set up by the structure such that the total

velocity normal to the body is zero. The Froude-Kriloff and diffraction force are

calculated using the velocity potentials as follows [Greco, 2012].
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Fexc,k(t) = −
∫
S0B

ρ
∂φ0

∂t
nkdS −

∫
S0B

ρ
∂φD
∂t

nkdS (2.4)

The radiation problem involves added mass, damping and restoring forces and mo-

ments. These come from the radiating waves created by the body oscillation which

causes oscillating fluid pressures on the body surface [Faltinsen, 1990]. The added

mass is in counter phase with the ship motion acceleration and the damping is in

counter phase with the ship motion velocity. The restoring forces and moments on

the body are due to variations of the hydrodynamic pressure, p = −ρgz. The added

mass and damping terms are found from the dynamic pressure due to the body

motions as follows:

Frad,k(t) = −
∫
S0B

ρ
∂φR
∂t

nkdS (2.5)

It can be shown that Equation 2.5 can be expressed using the added mass and

damping terms and by adding the restoring term, the radiation forces can be found

from the following relation:

Frad,k(t) =
6∑
j=1

(
− Akj η̈j −Bkj η̇j − Ckjηj

)
(2.6)

Using the hydrodynamic loads and Newtons Second Law, the Equation of Motion

is found as follows [Faltinsen, 1990]:

6∑
j=1

[ (
Mkj + Akj

)
η̈j +Bkj η̇j + Ckjηj

]
= Fke

−iωet (2.7)

Where Mkj is the generalised mass, Akj is the added mass, Bkj is the damping

component and Ckj is the restoring component.
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2.1.4 Viscous Effects

The hydrodynamic loads and motions are calculated based on the assumption of

potential theory. However, potential theory is not capable of describing the flow

field inside the boundary layer. When fluid is moving past a body, the no-slip con-

dition leads to the fluid particles closest to the body having the same velocity as the

body. This results in a thin layer where the velocity of the fluid particles increases,

or decreases, from the body’s velocity to the velocity of the outer fluid flow. This

thin layer is known as the boundary layer, and is the phenomenon which potential

theory is incapable of describing. The adverse pressure gradient due to the skin

friction leads to flow separation, which in turn causes vortex shedding. Geometrical

singularities, such as sharp edges, also cause flow separation and vortex shedding.

The viscous effects are mainly divided into five contributions - the skin friction,

eddy making, free surface waves, the lift effect damping and the bilge keel damping.

[Chakrabarti, 2001].

The skin friction is due to the no-slip condition along the ship hull, while the eddy

making is both flow separation and the vortex shedding due to sharp edges. The

free surface wave damping is due to the radiated waves created by the body motions,

and the lift damping is due to the lifting moment created by the ship hull. Bilge

keels contribute to roll damping due to the normal force on the keel as well as the

pressure variations due to the presence of the bilge keels.

Viscous effects are significant in regards to the roll motion if the body sections are

nearly circular, and in heave motion for a body with a large draft compared to

the diameter [Newman, 1977]. These two cases are both examples of bodies shaped

such that the inertial forces are small and the frictional forces therefore become im-

portant. The viscous effects are more important for rectangular ship cross-sections

compared to conventional ship sections [Himeno, 1981] and the bilge keel damping

can account for as much as 50 % of the total damping. If a body is long and slender

with a length such that the motion of the body does not coincide with the local

wave velocity, the cross-flow drag will be of significance [Newman, 1977]. In other
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words, the body is large and therefore moves relative to the waves, unlike a small

body which will move with the wave amplitude and frequency. This is the case for

bodies with large draft compared to diameter where the horizontal cross-flow will be

of significance, or on semi-submersible offshore platforms which will be influenced

by a vertical force. In the case of moored structures, the mooring lines are usually

long which means there can be viscous effects present on the mooring lines. The

mooring lines also restrain the body, which can cause the body to move relative to

the waves leading to viscous effects being of significance.

For conventional ship hulls the damping coefficient is approximated using an em-

pirical method mainly developed by Ikeda [Ikeda, 1978]. For unconventional hull

shapes these approximations are not sufficiently accurate, and therefore rely on

model testing or numerical modelling to estimate the viscous damping. The geo-

metrical singularities around the bilge boxes on the cylindrical FPSO designed by

Sevan, illustrated in Figure 1.1, cause the viscous effects to affect the damping, es-

pecially in roll and heave. This is also observed in similar structures such as floating

wind turbines which also have large geometrical singularities causing vortex shedding

and flow separation. This is commonly approximated as a series expansion:

Bη̇ = B1η̇ +B2|η̇|η̇ (2.8)

Equation 2.8 above includes the non-linear damping term, B2 which can be found

from decay tests.

The added mass can be expressed similarly as the damping and as shown by Muhammad

Muklash in Roll Damping Investigation of Two-Dimensional Ship Section with Bilge-

Boxes [Mukhlas, 2017], the added mass can be extracted from forced oscillation

model tests.
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Computational Fluid Dynamics is another method of estimating the viscous effects.

From the CFD solution, one can extract the added mass and damping terms. How-

ever, CFD has trouble approximating the viscous effects of blunt bodies. This will be

further discussed in Section 6 where the application of Neural Networks is discussed.

2.1.5 Second-Order Drift Forces

Second-Order wave drift forces are due to the body capability in generating waves.

A body generates waves with the same frequency as the incident waves, which can

be calculated using the linear theory solution. In the derivations of the linear hydro-

dynamic loads the higher order terms are neglected. The linear solution has a zero

mean and the loads and motions oscillate with the frequency of the incident wave.

However, for a moored vessel, the second-order drift forces cannot be neglected. The

second-order effects are due to the hydrodynamic pressure of the first-order wave,

and can be divided into mean drift forces, difference-wave frequency forces and sum-

wave frequency forces.

Drift forces are important in the design of moored structures, such as an FPSO

or a floating wind turbine. In Section 2.1.2 it was assumed that the higher order

non-linear terms could be neglected. However, as the waves grow steeper the second

order terms can no longer be neglected due to the second-order drift forces. When

the second-order effects are included, O(ξ2), the error in the approximation is of

order O(ξ3) [Greco, 2012].

The solution of the second-order effects are mean forces, forces oscillating with the

sum-frequency and forces oscillating with the difference-frequency [Faltinsen, 1990].

The sum-frequency is the behaviour which is due to ωi + ωj while the difference-

frequency effects are due to ωi−ωj. The difference-frequency is commonly around the

resonance period of moored structures, while the sum-frequency can excite resonance

oscillations in heave, pitch and roll for a TLP.
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There are viscous effects on the mean wave forces which are proportional to the cube

of the wave amplitude, which means these drift forces are of third order. These effects

are of significance for semi-submersibles where the incident wave amplitude is large

relative to the cross-sectional dimensions [Faltinsen, 1990].

2.1.6 Irregular Waves

The hydrodynamic loads and motions discussed above are all assumed for regular

waves which are waves describes with a sine, or cosine, function. The waves in

the ocean are not regular and several regular wave combinations are used to de-

scribe the irregular waves. By adding together regular waves with different wave

amplitude, wave length and direction of propagation, the real sea state is described

[Faltinsen, 1990]. Due to the assumption of linearity, the superposition principle is

valid and the regular waves can be summarised to describe the irregular waves.

The principal assumption that linear superposition applies lead to the following

[Newman, 1977]: ”The body response in irregular waves can be found by superposi-

tion of the response in regular waves”. In other words, by summing the contributions

of regular waves with different wave amplitude, wave length and propagation direc-

tion, the body response in irregular wave can be found.

2.1.7 Derivation of the Equations of Motion

In the following section the derivation of coupled motion in sway, heave and roll

will be shown. Calculation of the natural periods in both coupled and uncoupled

motions will also be presented. The section is included to show the complexity of

the problem, how it is commonly approximated and why the present study is of

interest.

Non-Linear Coupled Motion: Sway, Heave and Roll

The motions defined in Section 2.1.1 are coupled motions, meaning they depend on

each other. In the following section the non-linear coupled motions will be shown,
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which is already known in literature. When the motions are non-linear, meaning

linear potential theory is not assumed, heave is also coupled with sway and roll.

Due to symmetry, surge, pitch and yaw can be uncoupled from the system.

The components of the inertial force which are associated with the body mass are

written in the mass matrix [Newman, 1977]. Only the sway, heave and roll terms

are considered.

Mjk =



M 0 −MzG

0 M 0

−MzG 0 I44


(2.9)

Similarly the added mass and damping coefficient matrices are simplified to the fol-

lowing:

Ajk =



A22 A23 A24

A32 A33 A34

A42 A43 A44


(2.10) Bjk =



B22 B23 B24

B32 B33 B34

B42 B43 B44


(2.11)

Each of the coefficients in the matrices involve non-linear terms which can be written

as seen in Equation 2.8. The restoring coefficient matrix includes the restoring force

from the springs in the system, C22. These springs are either restoring forces in form
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of anchor lines or springs in an experimental setup.

Cjk =



C22 0 C24

0 C33 0

C42 0 C44


(2.12)

The time derivatives of sway, heave and roll are defined as follows:

ηj =



η2

η3

η4


(2.13) η̇j =



η̇2

η̇3

η̇4


(2.14) η̈j =



η̈2

η̈3

η̈4


(2.15)

The equations of the coupled motions then become:

(


M 0 −MzG

0 M 0

−MzG 0 I44


+



A22 A23 A24

A32 A33 A34

A42 A43 A44



)


η̈2

η̈3

η̈4


+



B22 B23 B24

B32 B33 B34

B42 B43 B44





η̇2

η̇3

η̇4


+



C22 0 0

0 C33 0

0 0 C44





η2

η3

η4


=



F2(t)

F3(t)

F4(t)


(2.16)

Equation 2.16 above is written with simple terms for added mass, damping and

restoring coefficient. However, due to the non-linearity, these will in fact involve

higher order terms from the higher order solution of the velocity potential. For the

damping terms this is equivalent to Bjkη̇j = Bjk,1η̇j+Bjk,2|η̇j|η̇j and similar relations

can be developed for the other terms. This leads to a very complex mathematical

expression which is hard to solve and simplifications are made to solve the problem.
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Linear Coupled Motion: Sway and Roll

Equation 2.16 is simplified by assuming linear, coupled motion. Due to the linear

potential theory, heave motion is no longer coupled with sway and roll. Linearity

also neglects the higher order terms, hence, the coefficients now only involve the

single terms Ajk, Bjk and Cjk and no non-linear contributions. This derivation was

conducted in the feasibility study [Bremer, 2017].

The mass coefficient matrix simplifies to only including the roll and sway values.

Mjk =


M −MzG

−MzG I44

 (2.17)

The same way as the mass coefficient matrix was simplified, the added mass, damp-

ing and restoring coefficient matrices can be simplified.

Ajk =


A22 A24

A42 A44

 (2.18) Bjk =


B22 B24

B42 B44

 (2.19) Cjk =


C22 0

0 C44

 (2.20)

Sway and roll are defined with their time derivatives:

ηj =


η2

η4

 (2.21) η̇j =


η̇2

η̇4

 (2.22) η̈j =


η̈2

η̈4

 (2.23)

And the equation of motion as mentioned in Section 2.1.3.

(
Mjk + Ajk

)
η̈j +Bjkη̇j + Cjkηj = Fj(t) (2.24)

Which can be written in matrix form with the mass matrix, added mass, damping
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and restoring matrices.

(


M −MzG

−MzG I44

+


A22 A24

A42 A44


)

η̈2

η̈4

+


B22 B24

B42 B44




η̇2

η̇4

+


C22 0

0 C44




η2

η4

 =


F2(t)

F4(t)

 (2.25)

In order to find the sway and roll motion of a structure Equation 2.25 is solved with

respect to sway, η2, and roll, η4.

Coupled Natural Period

The coupled natural period can be found from Equation 2.25 by assuming undamped

and no excitation force. The expression then simplifies to:

(


M −MzG

−MzG I44

+


A22 A24

A42 A44


)

η̈2

η̈4

+


C22 0

0 C44




η2

η4

 =


0

0

 (2.26)

The solution of roll and sway is assumed to be of the form ηj = ηjae
iwt, which has

the following derivative

η̈j = −ω2ηjae
iwt (2.27)

Because Equation 2.26 only consists of ηj and η̈j the term eiwt can be divided out

of the equation.

(


M −MzG

−MzG I44

+


A22 A24

A42 A44


)


(−ω2) η2a

(−ω2) η4a

+


C22 0

0 C44




η2a

η4a

 =


0

0

 (2.28)

Gathering the expressions:
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(−ω2) (M + A22) (−ω2) (A24 −MzG)

(−ω2) (A42 −MzG) (−ω2) (I44 + A44)




η2a

η4a

+


C22 0

0 C44




η2a

η4a

 =


0

0

 (2.29)

Further gathering:
(−ω2) (M + A22) + C22 (−ω2) (A24 −MzG)

(−ω2) (A42 −MzG) (−ω2) (I44 + A44) + C44




η2a

η4a

 =


0

0

 (2.30)

The natural frequency can then be found by solving for the determinant of the left

matrix which shall be zero.

[((
− ω2) (M + A22

)
+ C22

)
×
(
(−ω2) (I44 + A44) + C44

)]
−
[
(−ω2)(A24 −MzG)× (−ω2)(A42 −MzG)

]
= 0 (2.31)

Multiplying out of the parentheses:

[
ω4MI44 + ω4MA44 − ω2MC44 + ω4A22I44 + ω4A22A44

−ω2A22C44 − ω2C22I44 − ω2A44C22 + C22C44

]
−[

ω4A24A42 − ω4A24MzG − ω4MzGA42 + ω4M2z2
G

]
= 0

(2.32)

Remove parenthesis:

ω4MI44 + ω4MA44 − ω2MC44 + ω4A22I44 + ω4A22A44 − ω2A22C44 − ω2C22I44

−ω2A44C22 + C22C44 − ω4A24A42 + ω4A24MzG + ω4MzGA42 − ω4M2z2
G = 0

(2.33)

The expressions with ω4 and ω2 are gathered:

ω4
(
MI44 +MA44 + A22I44 + A22A44 + A24A42 + A24MzG +MzGA42 −M2z2

G

)
+

ω2
(
−MC44 − A22C44 − C22I44 − A44C22

)
+ C22C44 = 0

(2.34)
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Equation 2.34 can be written as the following expression

λ2A+ λB + C = 0 (2.35)

Where the constants A, B and C are defined as

A = MI44 +MA44 + A22I44 + A22A44 + A24A42 + A24MzG +MzGA42 −M2z2
G

B = −MC44 − A22C44 − C22I44 − A44C22

C = C22C44

λ = ω2

(2.36)

The solution of Equation 2.34 is of the form

λ =
−B ±

√
B2 − 4AC

2A
(2.37)

The natural frequency of interest are only positive, thus the natural frequencies of

the coupled, undamped system are:

ω1 =

√
−B +

√
B2 − 4AC

2A

ω2 =

√
−B −

√
B2 − 4AC

2A

(2.38)

The natural periods can then be found from the two following expressions with the

defined A, B and C values as in Equation 2.36.

T1 = 2π

√
2A

−B +
√
B2 − 4AC

T2 = 2π

√
2A

−B −
√
B2 − 4AC

(2.39)
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For the above derivation damping is assumed zero and the two coupled natural

periods are found. The natural periods for the damped and coupled motion can be

found by starting with Equation 2.24 with the damping terms. The solution for the

motions are then of the form ηj = ηjae
st where s = αt+iβt. The undamped solution

is only the term eiβt which are the oscillations. The term eαt, which is included in

the damped solution, is the function which reduces the amplitude of the oscillations.

Uncoupled Natural Period

Assuming the motions are uncoupled and undamped the natural periods can be

found the same way as the coupled natural periods were found. The uncoupled

natural periods have the form of Equation 2.40.

Tni = 2π

√
Mii + Aii

Cii
(2.40)

For an unmoored structure there are no natural periods in surge, sway and yaw

[Faltinsen, 1990] because there are no restoring forces. However, in the experiments

the model will be freely floating with springs attached. The springs will act the

same way as moorings and will contribute with restoring forces to the structure.

T2 = 2π

√
M + A22

C22

, T3 = 2π

√
M + A33

C33

, T4 = 2π

√
I44 + A44

C44

(2.41)

The difference between the coupled and uncoupled natural periods are the coupled

terms such as A24, A42 and MzG.

From the derivations in Section 2.1.7 it is seen that the calculation of a vessel re-

sponse is both complex and challenging. Several assumptions are utilised to estimate

the response which leads to neglecting effects which can be of importance.
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2.2 An Introduction to Machine Learning

Learning is the art of getting better at a task over a period of time. Machine learn-

ing, a subcategory of Artificial Intelligence, is when computers learn in a similar way

as humans. These learning algorithms are divided into three categories - supervised

learning, unsupervised learning and reinforcement learning. Supervised learning is

where a machine is trained on known input and output data, in order to predict

the output of new and unseen input data. In unsupervised learning, the computer

analyses input data and has to find a pattern in the data without external supervi-

sion in order to sort the output in classes or categories. Reinforcement learning are

techniques where the model is trained to take actions by giving the model rewards

or punishment. Some of the most common applications of the algorithms today

are image and speech recognition, medical diagnosis, statistical arbitrage, weather

prediction and spam e-mail classification.

As a small example - look at the numbers listed below

2, 4, 6, 8, ? (2.42)

The human brain knows from experience that the next number in the sequence is

ten. This kind of behaviour, learning from experience, is the goal of Machine Learn-

ing. Teaching the computer to learn from experience and being able to predict the

next number in the sequence.

As the problem at hand is a supervised learning problem, only supervised learning

algorithms will be explained in further detail.

2.2.1 Supervised Learning

A supervised learning algorithm is given known input and output data and trained to

predict the output. This is similar to finding the function which maps the input x to

the output y, known as F (x). Supervised learning algorithms are either used to solve
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classification or regression problems. Classification problems are discrete problems

where the input has to be labelled into the right category [Pedregosa et al., 2011].

Examples of classification problems is sorting e-mails as spam or recognising hand

written digits. A regression problem in supervised learning is when the output is

continuous, such as predicting house prices.

Predicting the motion of a vessel requires predicting a continuous output, which is

why a regression method is necessary. In the following sections Neural Networks will

be presented, however, to ensure proper background knowledge, the classical linear

regression method is briefly presented.

2.2.2 Linear Regression

Linear regression models assume there exists a linear relationship between the in-

put x and the output y. The model either assumes that the regression function

E(Y |X) is linear or that assuming a linear model is a reasonable approximation

[Hastie, 2009].This linear approximated relationship can be written as seen in Equa-

tion 2.43 below.

y = b0 + b1x (2.43)

Where:

– y is the output

– x is the input

– b0 is the interception point

In Equation 2.43 above the relationship between the input data and the output data

is deterministic, meaning it is exact. This is generally not the case in engineering or

scientific problems, which is why there is a need of more input variables to further

explain the output prediction. Multiple linear regression explains the relationship

between one output variable and two or more input variables. The multiple regres-

sion is known as seen in Equation 2.44 [Ziegel et al., 1999] and is used to calculate
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the best fit line with more information and thereby more accurately predict the

outcome.

y = b0 + b1x1 + b2x2 + ...+ bnxn (2.44)

Where:

– y is the output

– x are the input variables

– b0 is the interception point

– bn is the coefficient of input variable n

The coefficients b are estimated from the known data set (x1, y1)...(xn, yn) using

a cost function, also known as loss function. A cost function is a function which

measures the inaccuracy of the prediction. There exist different cost functions which

can be implemented in the linear regression model and one of the most popular

methods is the least squares method [Hastie, 2009]. The least squares method utilises

the residuals, which is the error in a fitted model, to calculate the sum of the square

of the residuals as seen in Equation 2.45. The least squares calculation is minimised

to optimise the linear regression model.

SSE =
n∑
i=1

e2
i =

n∑
i=1

(
yi − ŷi

)2
(2.45)
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Figure 2.4: The best fit plane for the given data points where the sum of least
squares is optimised. The distance between the data points to the best fit plane is
the loss of each data point. [Hastie, 2009]

The cost function calculates the loss in the model prediction, and the model is

therefore optimised by finding the line, plane or hyperplane which gives the smallest

loss. In the case where the least squares method is used to calculate the loss, the

optimal plane would be where the sum of least squares is the smallest. In Figure

2.4 above, the best fit plane is shown together with the data points and their losses.

2.2.3 Artificial Neural Networks

Artificial Neural Networks are machine learning algorithms which are inspired by the

human brain. A neural network consists of nodes, or neurons, which are connected

and sorted in layers. There are different ways of connecting the nodes between

layers, which create different kinds of neural networks. How the weights and biases

are optimised is another difference and this leads to a huge amount of algorithms

which all are neural networks. The general approach of a feed forward neural network

is presented in this section.
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Figure 2.5: Illustration of a Neural Network with two hidden layers, input layer and
output layer. The fully-connected Neural Network shows how all neurons in each
layer are connected to both the neurons in the previous layer and the next layer
[Nielsen, 2015].

In Figure 2.5 a neuron is illustrated as a circle and the input layer is illustrated by the

inputs x. The two hidden layers are the columns with neurons in the middle and the

output layer is the final neuron at the right. The Neural Network in the illustration

is a three layer Neural Network, meaning the input layer does not count as a layer

because it can only receive input. The neurons in the hidden layer calculate values

which will never be seen by the programmer, which is why these layers are called

hidden. If a Neural Network has more than one hidden layer it is known under the

category Deep Learning.

Neuron

The Neurons in the Artificial Neural Networks are inspired by the human brain.

In the human brain there are neurons which either send a signal or not, given the

processed input. This is the behaviour an artificial neuron is trying to mimic. An

artificial neuron, from now on referred to as a neuron, passes a value further in to the

Neural Network using two calculation steps - summation and activation function.
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Figure 2.6: Illustration of a single neuron which receives inputs with weights and
bias, sums all inputs and utilises an activation function to calculate a scalar value
which is sent as output from the neuron.

Figure 2.6 illustrates a single neuron with inputs, connections, bias and output. Each

neuron receives inputs which are weighted, illustrated by the arrow connections. The

input is written as x, weight as w, bias as b. Each neuron calculates the sum of the

weighted inputs and ads the bias of the neuron. The bias is set for the individual

neuron. Every neuron then uses the weighted sum and bias to calculate a scalar

value, which is used as input for an activation function in the second step in the

neuron. The scalar value after the activation function is the output of the neuron.

The sum is calculated as shown in Equation 2.46.

z = w1x1 + w2x2 + ...+ wnxn + b1 (2.46)

A complete Neural Network will have many neurons and layers, and the above

notation is therefore simplified to indicate both layer and neuron in the specific

layer. A simple fully connected Neural Network is illustrated in Figure 2.7.
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Figure 2.7: An illustration of a one-layer Neural Network where the subscript in-
dicates which neuron it is in the layer. The superscript indicates which layer in the
Neural Network.

In Figure 2.7 the input is written as a
[0]
n , where the square brackets indicate the layer

and the subscript indicates the neuron in the layer. The input layer is commonly

named layer 0, because there are no calculations done in the input layer. The

weighted sum calculated in the first node in the hidden layer, layer 1, is calculated

as in Equation 2.47.

z
[1]
1 = w

[1]
1,1a

[0]
1 + w

[1]
1,2a

[0]
2 + w

[1]
1,3a

[0]
3 + b

[1]
1 (2.47)

With a growing number of neurons and layers this calculation becomes large, but the

system of equations can be nicely written in vector form. For the hidden layer, layer

1, the following matrix describes the summation step of the neuron calculations.



z
[1]
1

z
[1]
2

z
[1]
3

z
[1]
4



=



w
[1]1
1,1 w

[1]
1,2 w

[1]
1,3 w

[1]
1,4

w
[1]1
2,1 w

[1]
2,2 w

[1]
2,3 w

[1]
2,4

w
[1]1
3,1 w

[1]
3,2 w

[1]
3,3 w

[1]
3,4

w
[1]1
4,1 w

[1]
4,2 w

[1]
4,3 w

[1]
4,4





a
[0]
1

a
[0]
2

a
[0]
3


+



b
[1]
1

b
[1]
2

b
[1]
3


(2.48)
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By writing the weights as a matrix and the input and bias as vectors and generalised

for the number of layer, Equation 2.48 can be simplified to the following:

z[n] = W [n]a[n−1] + b[n] (2.49)

Activation Function

After the neuron has calculated the weighted sum, z, an activation function is used

to decide if the neuron is activated or not. If the neuron is activated, the neuron fires

and the output is sent to the next neuron. If the neuron is not activated, the neuron

does not fire. Without the activation function in the neurons, this would simply

be a linear regression model as presented in Section 2.2.2. There are many options

when choosing an activation function, but it is important to choose a non-linear

activation function [Ketkar, 2017]. If it is a linear function, the hidden layers of the

Neural Network lose their advantage and the network will perform the same way as

a single-layer network. With a non-linear activation function, the neural network

is theoretically proven to approximate any function. Three activation functions are

plotted in Figure 2.8.

Other characteristics of the activation function are listed in the 2.2.3 [Ketkar, 2017]:

– In order to use gradient-methods to optimise the model, the activation function

has to be continuous

– Activation functions with a finite range have a more stable performance

– Activation functions are typically symmetric around the origin

Two of the most common activation functions for regression Neural Networks are

the Sigmoid Function and Tangent Hyperbolic. Both functions are continuous, have

a finite range and are symmetric around the origin. The Sigmoid Function is defined

as shown in Equation 2.50, including the derivative of the function.
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f(z) =
1

1 + e−z
, f ′(z) =

1

1 + e−z
·
(
1− 1

1 + e−z
)

(2.50)

The Tangent Hyperbolic derivative is shown in Equation 2.51 as well as the deriv-

ative.

f(z) = tanh(z) , f ′(z) = 1− tanh(z)2 (2.51)

The main difference between the two functions is the range, where Sigmoid has a

range between [0, 1] while Tangent Hyperbolic is in range [−1, 1]. Both Sigmoid and

Tanh will cause the neurons to almost always be activated to process the output.

The two functions have gradual changes and the output are float numbers between

the ranges. This is the same as the neuron answering maybe to the input given

[Gulli and Pal, 2017]. In a large neural network with many layers and neurons, this

would lead to a time consuming and costly computation. To avoid all neurons being

activated, a Rectified Linear Unit activation function can be utilised.

f(z) =

0 if z < 0

z if z ≥ 0

, f ′(z) =

0 if z < 0

1 if z ≥ 0

(2.52)

The ReLU function equals z for values larger than zero and is zero otherwise as seen

in Equation 2.52 above. This function is also non-linear, but the range of ReLU

is [0, inf]. ReLU is limited because gradients tend towards zero, which means that

the neurons will stop responding to new input because of the gradient being zero,

meaning there are no changes.

Due to the different characteristics of the activation functions it is common to com-

bine and use different activation functions in different layers. There is no specific

answer to why, and which, function works best in a given problem and this is part

of the further development of using Neural Networks. Figure 2.8 shows the three

activation functions.
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Figure 2.8: Activation Functions: Sigmoid, ReLU and Tangent Hyperbolic. The
three activation functions are commonly utilised in Neural Networks and have dif-
ferent characteristics.

2.2.4 Loss Function and Optimisation

Loss functions are used to calculate the disagreement between the predicted value

and the actual value [Ketkar, 2017]. The loss function is used to optimise the weights

and the process of optimisation is often known as loss minimisation. There are sev-

eral common loss functions and one of the most used loss functions for regression

models is the Mean Squared Error which is seen in Equation 2.53 and is recommen-

ded for use in regression problems [Ketkar, 2017].

MSE =

∑(
yi − ŷi

)2

N
(2.53)

Where yi is the true value, ŷi is the predicted value and N is the number of data

points.

The optimisation algorithms use the loss function to optimise the weights in the

Neural Network. This is done by minimising the loss calculated with the loss

function, thus minimising the error. Two common optimisation algorithms are the

Stochastic Gradient Descent and Root Mean Square Propagation.
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Stochastic Gradient Descent finds the minimum of the loss function to optimise the

weights in the Neural Network by utilising the gradient. The derivative of the loss

function is calculated in order to find the direction of decrease and thereby update

the weights so the loss is lower in the next iteration. Figure 2.9 illustrates the

iteration to find the minimum loss function.

Figure 2.9: Illustration of the optimisation of a loss function. The optimisation
algorithm finds the global minimum of the loss function, also known as cost function.
[Gulli and Pal, 2017]

The weights are updated with a learning rate, which if set too low could lead to the

optimisation missing the lowest point of the loss function. If the learning rate is

set too high, the learning algorithm will be slow and the model will need a higher

number of iterations to reach the minimum point. The mathematical expression for

the stochastic gradient descent is presented in Equation 2.54.

θk+1 = θk − η ∂

∂θk
J
(
θ
)

(2.54)

Where θ are the weights, η is the learning rate and J(θ) is the loss function.

The stochastic gradient descent optimisation is used once for each iteration, contrary

to optimising each data point. It chooses a random data point in each iteration and

optimises the weights with that single data point, which is why it is called stochastic

gradient descent [Google Developers, 2018].
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Root Mean Square Propagation is a further development of stochastic gradient des-

cent which falls under the category of adaptive gradient descent algorithms. Root

Mean Square Propagation utilises the gradient as well as dividing by the size of the

gradient [Hinton, 2014]. The method is unpublished, but widely used in the field of

Machine Learning and was developed by Professor G. Hinton and Professor T. Tiele-

man at the University of Toronto where it was presented in a Lecture [Hinton, 2014].

Several studies have been successful at using the Root Mean Square Propagation as

optimisation algorithm, such as Training of Deep Neural Networks based on Distance

Measures using RMSProp [Kurbiel, Thomas and Khaleghian, Shahrzad, 2017]. The

mathematical expression for the Root Mean Square Propagation is presented below

in Equation 2.55.

θt+1,i = θt,i −
η√

RMS[g2
t,i]
gt,i (2.55)

where gt,i and RMS[g2
t,i] are defined as follows

gt,i =
∂J(θt,i)

∂θ

RMS[g2
t,i] = 0.9RMS[g2

t−1,i] + 0.1 g2
t,i

(2.56)

The Root Mean Square Propagation method is thus similar to using the Stochastic

Gradient Descent, but dividing by a moving squared gradient for each weight [Hinton, 2014].

2.2.5 Neural Network Model

As a short summary, the Neural Network models consists of layers with neurons

which are connected. These neurons receive input with weights which is summed

and an activation function is used to calculate a scalar value which is sent as the

neurons output. As a whole, loss functions are utilised to calculate the error of the

output, using the training data where the outputs are known. The Neural Network

is optimised by minimising the error of the loss function, thus minimising the error
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between the prediction and the known output.

The Neural Network is build using the methods described above. However, it is

important to understand that the training of the model is part of the creation of the

model and that the final product is a complete, trained model. Hence, if a model has

good results on the testing data it can be finalised and saved as a product. Using

new test data the saved model can be utilised to predict an output of new data or

further trained using more data.

2.2.6 Machine Learning in Practice

The above sections have explained the theoretical background of Linear Regression

and Neural Networks. This section will explain the application of these algorithms

with an example to introduce machine learning terminology.

Predicting Housing Prices

Prediction of housing prices is a good example where Machine Learning algorithms

can be utilised. There are many factors which play a role in the pricing of a house

and there is a lot of data available.

Target and Features

The target of the housing price prediction are house prices and is the output of

the model. The inputs to a Neural Network are called features. If a person was to

approximate a house price he or she would find a similar sized house in the same

area and compare. Each house would be an observation and by comparing number

of bedrooms, square meters, number of bathrooms and other features, the person

would be able to make a suggestion. A feature is thus a factor which affects the

house price and is also the input to the Neural Network. The model, just like the

human brain, needs information to make a qualified guess. The higher amount of

features, the more patterns the algorithm can find and the better approximation.

The Neural Network therefore needs to be given features such as number of bed-
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rooms, number of bathrooms, location and postal code, number of floors and the

year the house was build.

It is important that the features given to the model are independent of each other

because every feature needs to give new information to the model. If the model is

given too many features the algorithm can fit the data too well, which means it is

not generalised and will perform badly on unseen data. An over fitted model has

learned the noise and random fluctuations in the seen data, which is why it is said

to not be generalised. In Figure 2.10 the right hand side plot illustrates an over

fitted algorithm.

Figure 2.10: Illustration of under and over Fitting. Under fitting is when the model
is not capable of predicting the target values, while over fitting is when the model
has learned the noise in the input data and is predicting the given data too well.
An over fitted model is not predicting unseen data points well, due to learning the
noise and is therefore not general enough to predict the target value of unseen data.
[Amazon, 2018]

The left hand plot in Figure 2.10 illustrates an under fitted model. If a Neural

Network is under fitted, the model is not capable of predicting the seen or unseen

data. When a model is under fit, it is not capable of mapping the relation between

the features and the target. This commonly happens when there are not enough

features to describe the data [Ketkar, 2017].

A model with fifty features and fifty data points would be a perfect fit model, hence,

no learning necessary. The model would simply memorise the relations between

input and output, but given new, unseen data it would not have learned any patterns

and would therefore not be able to predict the output.
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Data Set

The training process of a Neural Network is an iteration process where an epoch is an

iteration of the whole training data set. The input data to the Neural Network is split

into training, testing and validation data sets. The training data is the data which

is read by the model and used to change the weight of the neurons and consequently

train the model. In each epoch iteration of the training, a small data set called

test data is used to test the accuracy of the weights in the epoch. This is done to

track the development of the model accuracy during the learning process. When the

model is fully trained on the training data, the model is validated against the third

data set split which is the validation data set. It is important for the validation

of the Neural Network that it is validated against data the model has never seen

before. This is why the original data set is split into three, training, testing and

validation. This final validation shows the accuracy of the Neural Network and its

ability to predict or classify correctly.

Feature Scaling

The features in a data set can have a very different scale, for example one feature

can range between 0.1− 1.0 while another feature can range between 1000− 10000.

The features in the case of house price prediction will also have different scaling,

such as the number of bathrooms and the square meters of a house.

Different scaling of the features slows down the optimisation of the prediction

[Ng, 2012]. If the features have a different magnitude, some weights in the neural

network can update quicker than others which leads to the model prioritising these

weights and they will dominate the prediction. Other machine learning algorithms

calculate the distance between points and if a feature has a large distance this fea-

ture can dominate the learning process. It is found that scaled features contribute

to a faster learning algorithm due to faster optimisation convergence [Ng, 2012].

The features can be normalised, meaning it is scaled between 0 and 1. If the feature

contains negative values, the normalisation will lead to a range between −1 and 1.
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A common way of normalising the features is using Equation 2.57 below.

x′ =
xi −min(x)

max(x)−min(x)
(2.57)

Standardisation is another common way of scaling the features where the feature

distribution is centred around 0 and the standard deviation is 1. The standardisation

of a feature is done using the following equation.

x′ =
xi − µ
σ

(2.58)

Where x′ is the standardised value, µ is the mean value of xi and σ is the standard

deviation of xi.

The choice of normalising and standardisation depends on the features and the

choice of machine learning algorithm. There is no certain way of knowing which

will work best for a given cause and both should be tested to know which suits the

problem at hand [Ng, 2012].

Loss Function and Optimisation

The loss function calculates the loss of the prediction compared to the true value.

In order to optimise the loss function, meaning finding the all-time low value of the

loss function, the gradient is calculated. This can be compared with the way a river

always looks for the easiest way down. The optimisation algorithm is used to find

where the loss functions decreases the most and change the weights or coefficients

to move in that direction.

Model Fitting and Evaluation

The model is fitted by training the model on the given data to predict the target

value. The performance is evaluated to find the accuracy of the prediction and com-

pare model configurations. In the house pricing predictions, several configurations

of the neural network are possible. In order to find the best configuration of number
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of layers and nodes, activation function, loss function and optimisation algorithm

the different configurations need to be compared.

For regression there are three common metrics to evaluate the predictions listed

below.

– Mean Absolute Percentage Error, MAPE

– Mean Squared Error, MSE

– Coefficient of Determination, R2

MAPE = 100%
N

∑ ∣∣yi−ŷi∣∣
yi

, MSE = 1
N

∑(
yi − ŷi

)2
, R2 = 1−

∑(
yi−ŷi

)2
∑(

yi−ȳi
)2 (2.59)

Where yi is the true value, ŷi is the predicted value and ȳi is the mean value of the

true values.

When a model with an acceptable performance is built, it can be used to predict

the house prices of future houses. The model does not need to be trained for each

time it is used, the trained model is the final product which is the tool that can be

utilised for future predictions.
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Chapter 3

Experimental Method

This section aims to give an understanding of the testing procedures, facilities and

test data analysis.

3.1 Preparation Procedures

3.1.1 The Model

The model is a two-dimensional mid-section of a ship with bilge boxes. The main

dimensions of the model is seen in Figure 3.1. Its length is almost the same as the

width of the tank, and each side of the model has a 0.003− 0.005 m gap. The size

of the gap depends on the position along the tank, because the tank walls are not

perfectly straight. This gap between the model and tank acted as a lubrication layer

where the water helped preventing the model from hitting the tank wall. However,

due to initial problems with the bilge boxes hitting the tank wall in steep waves,

the bilge boxes length was cut to 0.586 m, meaning 2 mm was cut of each end.
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Figure 3.1: Illustration of the side of the model with dimensions and coordinate
system. The wave tank extends in y-direction and the waves are propagating in the
same direction.

The coordinate system of the model was defined such that the bilge keels follow the

length of the full scale ship. The beam of the model is the width, which is in the

length direction of the wave tank. Figure 3.1 shows the side of the model, which is

the equivalent to the beam of a full scale vessel. The main dimensions of the model

are presented in Table 3.1.

Table 3.1: Main dimensions of the Experimental Model with bilge boxes.

Dimension Abbreviation Size

Length L 0.500 m

Width B 0.590 m

Height H 0.300 m

Draft T 0.148 m

Bilge Length LB 0.586 m

Bilge Width BB 0.075 m

Bilge Height HB 0.025 m
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The model was ballasted with 30 kg which were symmetrically distributed on each

side of the model as seen in Figure 3.2. The ballast weight was optimised to obtain

a suited natural period of the system. A ballast of 30 kg corresponds to a draft of

0.148 m.

Figure 3.2: Weight distribution of the ballast weights in the model. The weights are
placed symmetrically around both the x-axis and the y-axis.

3.1.2 Model Setup

In order for the model to be freely-floating in waves it has to be attached to springs

on both ends to restrain it in the middle of the wave tank. The setup used in

these experiments was developed during the pre-project in October 2017, where the

frames and spring attachments were designed and optimised [Bremer, 2017]. There

are two springs on each end of the model which were attached to frames suspended

over the wave tank. Figure 3.3 below shows the model and frames as well as two

detailed pictures of spring attachments on a frame and the model.
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(a) An overview of the model with the
frames where the springs are attached. The
spring attachments on the frame and model
are circled in red.

(b) Upper Picture: Detailed picture of
the spring attachment on one of the two
frames. Lower Picture: Detailed picture of
the spring attachment on the model

Figure 3.3: Figure 3.3a shows the model setup with the frames and spring attach-
ments. Figure 3.3b is a close-up of the spring attachments on the frame and the
model.

Figure 3.3a shows the model setup with the springs mounted to the model and

frames. The red circles show where the springs are attached to the frames and

model, and Figure 3.3b shows a more detailed picture of these attachments. During

the setup testing in October 2017 it was found that the springs with a spring stiffness

of 23 N/m gave the system the most suitable natural frequency.

3.1.3 Test Facilities

The experiments were conducted in Ladertanken at the Norwegian University of

Science and Technology, a wave tank operated by SINTEF Ocean. Ladertanken is

a wave flume which has a length of 13.0 m and a width of 0.60 m. The wave maker

is a flap type wave maker installed at the one end of the tank, while the other end

has a beach to reduce wave reflection, illustrated in Figure 3.4.
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Figure 3.4: Side view of Ladertanken with the dimension, wave maker and beach.

3.1.4 Instrumentation

Wave Probes

Six wave probes were mounted in the wave flume in order to measure the wave

elevation. Two probes were placed just after the wave maker, two in front of the

model and two behind the model. The position of the wave probes is illustrated in

Figure 3.5.

Figure 3.5: Illustration of the wave tank with the model and wave probes. The
distance from the wave maker to the wave probe pairs is indicated on the figure.

Accelerometers

The model had six accelerometers mounted to measure the acceleration. Three

accelerometers measured the motion in z-direction, two in y-direction and one in

x-direction. The accelerometer measuring accelerations in x-direction was used to

know if the model hit the tank wall. The accelerometer arrangement is illustrated

in Figure 3.6.
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Figure 3.6: Accelerometers mounted on the model. The picture was taken from the
opposite side of the tank, due to a better angle. The waves are coming from the
right in the picture, propagating towards the left.

The accelerometers measuring the motion in z-direction were placed as far out from

the model centre line as possible, to increase the measurement accuracy of the roll

motion. The third z-direction accelerometer was used as a redundancy to ensure

accuracy of the heave acceleration.

Force Gauges

There were four force gauges in the system, one on each spring. These measured

the restoring forces in the springs and can be seen in Figure 3.7.

Figure 3.7: Close-up of the force gauges utilised to measure the force in the springs.
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Sampling Frequency

The sampling frequency of the instrumentation determines how often the measure-

ments are made. If the sampling frequency is too low, the measurements will not

capture enough of the model motion. This will give a wrong impression of the model

motion, as illustrated in Figure 3.8. However, having a too high sampling frequency

will lead to unnecessary large data files. The sampling frequency was set to 200 Hz

to ensure the vessel motion was accurately captured.

Figure 3.8: The consequence of too low sampling frequency [Steen, 2014]. As seen
in the figure, a low sampling frequency is not capable of capturing the full shape of
the signal.

Calibration

Calibration of measurement instruments means finding the right factor between the

output signal and the physical property. The instruments give a change in voltage,

which needs to be connected to the change of physical value. Thus, for an accelero-

meter the change of measured voltage will be converted to a change of acceleration

and how much it changes needs to be checked by calibration.

Calibration utilises the relation in Equation 3.1 to find the ratio between voltage

and physical property. By making three or four measurement with a known change

in x, the results are plotted. The factor a is found as the computed calibration

factor.

y = ax+ b (3.1)
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Changing the physical value x on a wave probe means changing the submergence in

the water. The accelerometers were rotated 90°and the force gauges were applied a

known force. Before every experimental run, a zero measurement of all instrument-

ation equipment is made. This means finding the b value of Equation 3.1, making

sure the measurement are made relating to the changed zero value.

3.1.5 Instrumentation Acceleration to Motion Acceleration

The acceleration in roll is an angular acceleration and is found using the measure-

ments in z-direction made by two of the accelerometers. Accelerometer Z1 and Z2

were placed with a maximal distance between them, as illustrated in Figure 3.9. The

acceleration in roll is the difference between the acceleration measured in z-direction,

divided by the distance between them. Because the two accelerometers were placed

on the opposite side of the centre of the model, one was measuring downwards as

the other measures upwards.

Figure 3.9: The distance lz is defined as the distance between the two accelerometers,
az1 and az2. The acceleration in roll was found by calculating the difference between
the two accelerometers and dividing by the distance lz.

The equation for the roll acceleration then becomes

η̈4 =
aZ1 − aZ2

lZ
(3.2)
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In y-direction the accelerometers are already measuring pure sway motion, although

a contribution from the roll angle was not included. The accelerometers were cal-

ibrated when the model is still, meaning there is no roll angle. However, when the

model has a roll angle, there is a contribution from the z-accelerometers which shall

be included in the sway motion. Figure 3.10 shows the contribution in the sway

acceleration from a roll angle, the component gy. Due to the two accelerometers in

y-direction both measuring pure sway motion, the mean of the two values was used

to reduce the error.

Figure 3.10: The figure illustrates the gravity component when the model has no
rolling angle versus a rolling angle. With a rolling angle the gravity has a component
in y-direction as well as the z-direction. This component has to be corrected for in
the calculation of the motion in y-direction, the sway motion.

By assuming a small roll angle the expression for the sway acceleration was found

from the mean of the y-direction measurements and the roll acceleration correction

as follows:

η̈2 =
aY 2 + aY 1

2
− η4g (3.3)

The acceleration in heave was found from the z-direction accelerations, however,

to extract pure heave motion the mean of the z-acceleration is calculated from the

following expression:

η̈3 =
aZ1 + aZ2

2
(3.4)
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3.1.6 Wave Generation

The wave maker in Ladertanken is automated and can run from an input file with

sine wave oscillations. Because of this, it is possible to create a series of waves with

a pre-set waiting time between each wave created by the wave maker. This means

the wave maker can run for hours, and the limiting factor is the memory storage of

the measurement data.

The waves were generated using the Matlab scripts testinfoRegular.m and gen-

erateRegular.m both developed by Prof. Trygve Kristiansen and manipulated to

suit this particular experimental setup. The test matrix was given to the wave

generation program in testinfoRegular.m while generateRegular.m creates the sine

wave flap oscillations. The script creates sine wave oscillations according to the

wave flap theory derived in [Hughes, 1993]. A summary of the wave period, wave

steepness and flap amplitude of each wave created in a time series was written into

a file which is utilised in the data processing. This was found necessary because the

waves tested in the experiments require large flap amplitudes and some waves are

not created because the flap amplitude exceeds the limitation of the wave maker. In

order to keep track of which waves were created, it is therefore important to write

the created wave to a file which can be utilised in the data analysis process.

A mechanical transfer function was developed from the ratio between the measured

wave flap amplitude and the desired flap amplitude. By running waves in the wave

tank without the model, the flap amplitude was measured and the ratio between

the measured flap amplitude and theoretical flap amplitude can be found. Using

this ratio, a transfer function was created which is capable of interpolating between

the tested wave periods and wave steepnesses. This was necessary to ensure the

measured wave flap amplitude is similar to the theoretical flap amplitude given to

the wave generator. Due to large differences between the measured and theoretical

flap amplitude, this process was found time consuming and left no time to create

transfer functions for the wave amplitude and wave steepness.
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3.1.7 Decay Test

To find the natural period in sway, heave and roll the model was excited and the

motion of the model was measured. The natural period in sway and roll is found by

pushing the model in the given direction. It was found hard to only excite the model

in heave, thus the roll decay measurements were used and the heave accelerations

were extracted using Equation 3.5.

η̈3 =
aZ1 + aZ2

2
(3.5)

The decay tests were conducted on the full experimental setup, which means that

the natural periods found from the decay tests are coupled natural periods.

3.1.8 Test Matrix

In order to have enough data to train a Machine Learning Model it is important

to test as many different waves as possible. The two main parameters which were

manipulated are the wave period and wave steepness. The larger model motion the

greater non-linear effects around the bilge keels, thus the focus was on creating the

largest wave combinations possible. Due to the restriction on the wave maker flap

amplitude, the largest wave period was found to be 1.78 s and 1
20

steepness. In order

to run as many different waves as possible the following ranges were set for wave

period and wave steepness.

Table 3.2: Experimental range of wave period and wave steepness

Minimum Maximum Step Size

Period 0.88 s 1.78 s 0.02 s

Steepness 1/60 1/20 1/2.5

The test matrix which was given to the wave maker in testinfoRegular.m contains

information about the waves to be created. Main parameters such as minimum,

maximum and step size of wave period and wave steepness need to be decided.
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Other parameters such as wave ramp up-and down, pause between each wave and

how many wave oscillations in each wave also need to be declared in the test matrix.

The main test matrix is seen in Table 3.3 below where these ranges are implemented

to five main runs. Because of limitations in the flap amplitude of the wave maker,

not all these waves were produced. If a given wave steepness and wave period

combination leads to a flap amplitude larger than 0.20 m the wave is not created.

Hence, the produced wave file was created to know the parameters of the created

waves.

Table 3.3: Experimental Test Matrix

Test Tmin Tmax ∆T H
λ
min H

λ
max ∆H

λ
nT Pause

1001 0.88 s 1.00 s 0.02 s 1/60 1/20 2.5 20 240 s

1002 1.00 s 1.12 s 0.02 s 1/60 1/20 2.5 20 240 s

1003 1.12 s 1.22 s 0.02 s 1/60 1/20 2.5 20 240 s

1004 1.22 s 1.34 s 0.02 s 1/60 1/20 2.5 20 240 s

1005 1.34 s 1.44 s 0.02 s 1/60 1/20 2.5 20 240 s

1006 1.44 s 1.56 s 0.02 s 1/60 1/20 2.5 20 240 s

1007 1.56 s 1.66 s 0.02 s 1/60 1/20 2.5 20 240 s

1008 1.66 s 1.78 s 0.02 s 1/60 1/20 2.5 20 240 s

3.1.9 Time Series

As seen in the Test Matrix in Table 3.3 the wave testing range has been split into

eight series to limit the length of each run. It was found with the amount of instru-

mentation and the sampling frequency used in the experiments, the memory storage

could handle series up to thirteen hours. Therefore, the series were split into runs

of around eight hours to ensure enough memory.
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The number of different waves and the duration of each series is summarised in Table

3.4. It is seen that the amount of waves decreases as the wave period increases. This

is due to the wave flap amplitude restriction, when the wave period is longer and

the waves are steep the required flap amplitude is larger than the limit. Therefore,

not all waves in the test matrix were created.

Table 3.4: Number of waves and duration of run for each wave series

Time Series Number of Waves Duration

1 102 7.5 hours

2 102 7.6 hours

3 102 7.7 hours

4 102 7.8 hours

5 97 7.4 hours

6 84 6.5 hours

7 68 5.3 hours

8 49 3.8 hours

Total 706 53.6 hours

In Figure 3.11a a full test series of an example run is shown. In Figure 3.11b one wave

is illustrated which is the wave oscillations marked in red in Figure 3.11a. Identifying

these individual waves is part of the analysis procedure which is explained in the

next section.
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(a) A full time series of a wave set created
by the wave maker. The red oscillations is
one single wave.

(b) The wave maker oscillations which cre-
ates waves with a given wave steepness and
wave period.

Figure 3.11: Figure 3.11a shows the full time series of a set of waves. One wave in
the set is marked as red and a close-up of the oscillations in the specific wave are
seen in Figure 3.11b.

3.2 Analysis Procedure

3.2.1 Time Series

The time series were saved in .bin files containing all instrumentation measurements

and the time series time step. These files were opened in Matlab where the indi-

vidual waves were identified and the instrumentation variables were sorted. Because

the measurement system is measuring continuously during the whole time series, the

time window where each wave is located has to be identified.

Time Window

In order to select the correct time window for each instrument the distance between

the wave maker and the specific instrument needs to be known, to know the time it

takes the wave to travel from the wave maker to the instrument.

During the process of post-processing the results, it was found that the wave maker

has a small delay each time it applied a new wave steepness. This had to be accoun-

ted for when locating the time window of each wave and the exact formula for this

was found by trial and error. It was found that the time delay had the following
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relation

delay = 0.1 f × (0.45NS) (3.6)

Where f is the frequency of measurement and NS counts the changes of the steepness

and thereby increases the factor when the steepness is changed.

3.2.2 Filtering

The raw data was filtered using a band-pass filter in Matlab. A band-pass filter al-

lows the frequencies within a range to pass and takes out the frequencies outside of

the range. This is done in Matlab with the script bpass2.m developed by Prof. Try-

gve Kristiansen, where the signal is transformed using Fast-Fourier Transformation.

The high and low pass frequencies are set to 1
T
±0.2 Hz. Because the band-pass filter

is applied using Fast Fourier Transformation the oscillations need to be complete,

which is why it is given the full wave oscillation signal with ramp up, ramp down

and the pause.

Figure 3.12: The band-pass filtering plots the frequency domain of the signal and
shows the filtering range in green. The red signal is the filtered signal, while the
blue signal is the unfiltered signal.

In Figure 3.12 above the red section of the signal was kept while the higher harmon-

ics in red were set to zero. Thus, the frequency range within the green frequency

range is the band-pass filter where the signal passes and is kept.

The filtered and unfiltered data of accelerometer Z1 is plotted in Figure 3.13.
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(a) The filtered signal from accelerometer Z1 is plotted in blue, while the unfiltered
signal is plotted in red.

(b) A close up of the red circle in Figure 3.13a above. The blue, filtered signal has
less noise compared to the red, unfiltered signal.

Figure 3.13: Figure 3.13a shows the filtered signal in blue and the unfiltered signal
in red. Figure 3.13b is a close-up of the circled area in Figure 3.13a.

All instrumentation measurements are filtered using the method described above.

The filtered data is saved in a binary file and loaded in to Python where the data is

analysed and processed.

Decay Tests

The measured accelerations in the decay tests were used to calculate the measured

motions using the relations presented in Section 3.1.5. From the acceleration in the

three motions, the position in each of them is found using the integration script

written by Prof. Trygve Kristiansen, acc2pos.m. The integration is performed by

transforming the signal using Fast-Fourier Transformation and integrating in the

frequency domain before the signal is transformed back to the time domain. In the
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sway direction the measurements of the force gauges were also used to calculate the

position of the model in sway.

The force measurements and the spring stiffness of each spring are used to calculate

the mean model position during the decay test using Equation 3.7 below.

ȳ =
F1 + F2 + F3 + F4

4k
(3.7)

The position measurements were used as input to the frequency domain calculation

in bpass2.m, where the peak frequency is the natural period in the given direction.

The results from the decay tests are presented in Section 5.1.2.

3.2.3 Wave Reflection

The wave tank has a length restriction and wave reflection is therefore a significant

problem in the wave tank for certain wave periods. It is important to only use data

measurements of the wave probes where wave reflection does not occur, because

wave reflection adds or subtract to the original wave and thereby change the wave

amplitude in the wave tank.

It was assumed that the beach in the end of the wave tank dissipates the waves

adequately, which was based on visual observations during the experiments and in-

spection of the measurements. The wave reflection of significance is therefore the

reflected wave by the model.

In order to cut the time window before the reflected waves disturb the wave oscil-

lations, it is important to know the time it takes for the reflected waves to reflect

back to the wave probes. This was calculated using the travelled distance and the

group velocity.
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During inspection of the wave elevation it was found that the ramp up waves reflec-

ted and significantly disturbed the wave oscillation for wave periods shorter than

10.0 s. For the longer wave periods the ramp up waves did not cause significant wave

reflection, but for longer wave periods the main wave oscillations cause reflections

which also occur earlier in the wave run. This was due to the group velocity increas-

ing with increasing wave period. For the intermediate wave periods it was therefore

found that there were very few steady-state wave oscillations to measure before wave

reflection disturbed the wave oscillations. In Figure 3.14 the short period wave amp-

litude is plotted in Figure 3.14a and an intermediate wave amplitude is plotted in

Figure 3.14b. The plots clearly show the difference in steady-state duration and the

time when wave reflection starts is marked with a red line.
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(a) Period: 0.88 s, Steepness: 1/60

(b) Period: 1.44 s, Steepness: 1/57.5

Figure 3.14: Figure 3.14a shows a short wave period where the return waves arrive
after around eight complete wave oscillations. Figure 3.14b shows a medium wave
period where the return waves arrive after around four wave oscillations and the
wave measurements show a more unstable wave elevation compared to the shorter
wave period. The red line is the point where the return wave has reached the wave
probes.

For the purpose of the experiments in this investigation it is assumed that the results

with a few stable oscillations are acceptable. Because the objective is to investigate

the possibility to use Machine Learning the importance of having enough data out-

weighs the desire to use highly accurate data. Using data with less stable oscillations

will lead to a lower accuracy of the results, because the hydrodynamic effects may

not be fully developed.
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For the longest wave periods tested during the experiments, there is very little wave

reflection and more of the measured data can be used. This was discovered during

the experiments and visual inspection of the data confirms this. Figure 3.15 contains

the obtained data in yellow and the time of wave reflection as the red line.

Figure 3.15: Wave Period 1.68 s - Wave Steepness 1/52.5. The red line is the point
where the return wave has reached the wave probes. As seen in the plots, the wave
elevation is stable also after the return wave has reached back to the wave probes.

3.2.4 Data Analysis

The wave amplitude was found using the two wave probes placed closest to the wave

maker in Figure 3.5, hence WP1 and WP2. The mean value of the average of the

wave height, measured by the two wave probes, was used as the experimental wave

height. In Figure 3.16 below the calculation of the wave height is illustrated.
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Figure 3.16: The wave height is calculated as the mean of the average wave height
and marked in red in the figure. The two wave probe measurements are plotted in
blue and orange.

A very small difference between the measured wave height is observed between two

wave probes, which could be due to small errors during calibration. The difference

is consistent and very small, so it is assumed that it is not due to transverse waves

in the wave tank.

The initial wave probes, WP1 and WP2, were also used to find the experimental

wave period. Using the time window measurement of the wave probes, the mean

distance between the zero upwards and downwards crossings is the average wave

period of the wave in the time window. This experimental wave period was further

used to find the experimental wave length, wave number and wave steepness.

The instrumental accelerations were used to calculate the acceleration in sway, heave

and roll by using the acceleration equations in Section 3.1.5. The accelerations

in sway, heave and roll were further used to calculate the Response Amplitude

Operator, RAO, in each of the three directions. The RAOs are defined as follows in

Equation 3.8 below.

RAO2 =
η2a

ζa
, RAO3 =

η3a

ζa
, RAO4 =

η4a

kζa
(3.8)
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Where ηa is the motion amplitude, ζa is the wave amplitude and k is the wave

number. The characteristic length used for the calculations is the width of the

model.

3.3 Uncertainty Analysis

There are two main types of errors in experiments, bias errors and precision errors

[Steen, 2014]. The bias errors are systematic errors which will not be revealed in

the repetition of experimental cases. Due to the nature of this investigation where

the results are used in Machine Learning, the bias errors will not affect the accuracy

of the Machine Learning prediction. Since bias errors are systematic, they will be

systematically in the data given to the machine learning model, which means that

the learning algorithm will include the bias errors in the learning process. The bias

errors will therefore not be attempted to quantify, but a short description of possible

bias errors follows in Section 3.3.1.

3.3.1 Bias Errors

Friction between the glass wall and the model was closely monitored and it was

made sure that the model never actually hit the wall. However, the thin layer of

water between the model and glass wall could cause friction if the boundary layer

developed to a turbulent layer.

Deflection of the frames which hold the springs could cause an error in the model

motion. The springs are attached symmetrically on the model to minimise the error

of deflection, but there is still a possibility that this will affect the motion of the

model.

Spring Stiffness is assumed constant during the whole experimental process which

lasted for around three weeks. However, the spring stiffness can decrease during the

experiments due to being under tension which can cause fatigue.
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Gaps between the bilge keel and model in the bilge keel attachment could cause

disturbances in the fluid flow around the bilge keel.

Temperature fluctuations in the laboratory was measured to ±1.5°which could

lead to inaccurate instrumental measurements.

Water level in the wave tank was measured before each experimental run to ensure

a constant water level. During the preliminary testing it was found that the water

level decreased if the water pump system was open. The valve for the water filling

system was therefore completely shut to maintain a constant water level during each

of the time series.

The wave maker was not completely calibrated for the wave amplitude, which

can lead to the waves created not being exactly as the theoretical wave. This was

corrected for as the experimental wave data are used in the calculations of the ex-

perimental results. The wave maker width is a little less than the wave tank width,

which leads to some back flow at the edge of the wave maker. The created wave is

therefore not the full width of the wave tank. The tank walls are not fully straight,

which can disturb the fluid flow and create non-linear effects. Friction between the

fluid and the tank wall can lead to deflection of the moving waves, which can be

measured by comparing the wave elevation at each pair of wave probes. If one of

the wave probes in a pair measures differently, the wave is deflected or there are

transverse waves in the tank. Neither the deflection of waves or vortex shedding

was observed under visual inspection of the created waves, but these are still effects

that cannot be neglected.

The beach at the end of the wave tank was placed so it would dissipate the waves

created by the wave maker. However, due to the constant position of the beach, the

wave dissipation was not always optimal for the given wave oscillation. Some wave

radiation can therefore be expected, which can influence the motion of the model.
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3.3.2 Precision Error

Precision errors are calculated by repeating the experiments and ideally all cases of

the experiments should be repeated. This is seldom done due to time constraints

and it is therefore common to run repetition tests on one or a couple of cases, de-

pending on the experiment, and assume this is valid for all cases. The method of

calculation is presented in Appendix A and is based on [Steen, 2014].

The precision limit and uncertainty of a single test is the error of interest, but in

order to calculate this for a single test a number of repeated tests are necessary.

For these experiments the time series number eight in Table 3.4 was repeated four

times, corresponding to test number 1008 in Table 3.3. The precision limit and un-

certainty for both the mean of the repeated tests and a single test are calculated for

all three directions and response amplitude operators using the Matlab and Python

scripts. The results are presented in Table 3.5 for period 15.0 s and two steepnesses,

1/60 and 1/50.

Table 3.5: Precision limit and uncertainty of the experiments

Steepness: 1/60 Steepness: 1/60 Steepness: 1/50 Steepness: 1/50

Mean
Uncertainty

Single Test
Uncertainty

Mean
Uncertainty

Single Test
Uncertainty

Sway 1.3 % 2.6 % 1.1 % 2.1 %

Heave 0.2 % 0.5 % 0.5 % 0.9 %

Roll 0.7 % 1.3 % 0.9 % 1.8 %

RAO 2 1.5 % 3.0 % 0.9 % 1.8 %

RAO 3 0.6 % 1.2 % 0.5 % 1.1 %

RAO 4 0.6 % 1.2 % 0.5 % 1.1 %

In Table 3.5 above it is seen that the uncertainty for a single test is 3.0 % at the
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highest and it is therefore assumed that the experimental results are all within the

acceptable uncertainty of 5.0 %.
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Chapter 4

Machine Learning Method

In the following chapter the methods of linear regression and neural networks will

be presented. Linear regression is done to show the difference between a linear

prediction and a neural network non-linear prediction. It is expected that the reader

is familiar with Python and only key concepts will be explained.

4.1 Linear Regression: Response Prediction

The linear regression model is developed to predict the motion and response amp-

litude operators of the model. The Python library Scikit-Learn is used to develop

the regression model. Scikit-Learn is an open-source Machine Learning library in

Python with emphasis on being user friendly, having high performance and proper

documentation [Pedregosa et al., 2011].

The linear regression model is able to predict a target using features, similarly to

a Neural Network. The features in the linear model are the wave period and the

wave height, while the target is sway, heave and roll and the corresponding RAOs

in individual linear regression models.

The data is split into a training data set and a testing data set, where 20 % of the

data is used for testing. The linear regression is done on the training data set and

the testing data is used to find the accuracy of the model prediction.
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The data is split using the built in function in scikit-learn,

sklearn.model_selection.train_test_split(X, y, test_split=0.2). The fea-

tures, target and the chosen value to split the data has to be given to the function

and the function also shuffles the data points.

After the data is split into test and training data sets, the model is created and

fitted using the two following functions.

model = SGDRegressor(loss='squared_loss')

model.fit(X_train, y_train)

The model utilises the mean squared error as the loss function and stochastic gradi-

ent descent as the optimisation algorithm. With the created model the predictions

are made with the following function, model.prediction(X_test). The perform-

ance of the linear regression prediction is calculated using the coefficient of determ-

ination, R2, as seen in Section 2.2.6. The coefficient of determination is used as

evaluation metric due to the range from 0 to 1. Scikit-Learn has a built in function

which calculates the R2-value of the prediction, model.score(X_test, y_test).

The goal of creating these six small linear regressions is to show the difference

between linear curve fitting and the non-linear curve fitting which Neural Networks

is capable of doing.

4.2 Neural Network: Response Prediction

The Neural Network is developed in Keras, which is an open-source Neural Network

library for Python developed by Google Engineer Francois Chollet [Gulli and Pal, 2017].

The library runs on top of TensorFlow which is a Google Developed Machine Learn-

ing Library. TensorFlow is a mathematical library which is used for Machine Learn-

ing, however due to the complexity of TensorFlow, Keras was developed by the

Google engineer to create a user-friendly tool enabling fast experimentation with
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Neural Networks. Keras is now supported by both Google and Microsoft and is a

rapidly growing library for Machine Learning.

Several Python libraries are utilised to build the Neural Network, such as Keras,

Scikit-Learn, Numpy and Pandas. In the following sections the key concepts and

code implementations will be explained.

4.2.1 Targets and Features

There are six targets of interest in total; the motion and response amplitude operator

in sway, heave and roll. A model can only predict one target at a time, so six different

models were trained, one for each of the targets. Two features were used in the

neural network, wave period and wave height. These are the two inputs which each

give new information about the conditions. Parameters like wave length and wave

steepness are calculated from using either period or height, thus they are dependent

on the two features. Hence, only wave period and wave height can be given to the

model as features in order to avoid redundant features which reduce the accuracy

of the prediction.

Feature Scaling

As mentioned in Section 2.2.6, feature scaling is different for each problem. In this

investigation both standardisation and normalisation was attempted in order to find

which was best suited for the problem at hand. Scikit-Learn was used to pre-process

the data for Machine Learning.

Standardisation was conducted using the StandardScaler() which scales each fea-

ture independently. This means the features can be implemented at the same time

to the function and it will transform the feature to have a mean value of 0 and a

standard deviation of 1. The code is implemented as follows:
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scaler = preprocessing.StandardScaler().fit(feature)

X = scaler.transform(feature)

The normalisation was performed using the same pre-processing library in Scikit-

Learn. The function MinMax() scales the features individually to have a range

between 0 and 1. Neither the wave period or the wave heights are negative, thus

the range for these two features will be between 0− 1. The normalisation code lines

are as follows:

scaler = preprocessing.MinMax().fit(feature)

X = scaler.transform(feature)

After trial and error using standardisation and normalisation it was found that the

two methods performed with a similar accuracy. Standardisation is used in the final

Neural Networks.

4.2.2 Split Data

The data was split into testing and training data using a function in the Scikit-Learn

Machine Learning library. The function train_test_split() splits the data into a

training set and a testing set. The user sets the proportion of the data to be included

in the test split [Pedregosa et al., 2011]. The function shuffles the data before the

splitting, due to the experimental data being arranged with increasing wave period.

The application of the function looks like this:

model_selection.train_test_split(X, y, test_size=0.2

The validation data was set to 20 % of the total data points, leaving 80 % of the

data for training and testing. As seen in the command above, the splitting of the

validation data is called test_size which can be confusing as it is actually splitting
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out the validation data set. The explanation of the roles of the training, testing and

validation data sets is found in Section 2.2.6.

4.2.3 Building the Model

The simplest model in Keras is the Sequential() model, which is a linear stack

of layers [Gulli and Pal, 2017]. A Neural Network model was built by adding layers

with their assigned activation function and number of neurons. The model consists

of three layers, as well as the input layer, where all layers are fully connected. The

first layer has 32 neurons, the second has 24 neurons and the output layer has 1

neuron. The first hidden layer utilises the ReLU activation function, while the

second hidden layer has the tanh activation function.

model = Sequential()

model.add(Dense(32, input_dim=2, activation='relu'))

model.add(Dense(24, activation='tanh'))

model.add(Dense(1))

After the layers and nodes were created, the model had to be given a loss function,

optimisation method and a choice of metric to evaluate the models predictions. This

is done in the following line of code:

model.compile(loss='mse', optimizer='rmsprop', metrics=['mape', coeff_determination])

The loss function was chosen as Mean Squared Error, the optimisation was done

using the RMSprop and the evaluation metric was the Mean Absolute Percentage

Error and Coefficient of Determination. Due to the Mean Squared Error being used

as the loss function, the two other measures of accuracy mentioned in Section 2.2.6

are used in order to have more than one measure of accuracy.
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The model was trained on the training data set using the line of code below:

model.fit(X_train, y_train, epochs=1200, batch_size=10, validation_split=0.2, verbose=1)

The epochs is the number of times the model goes through the whole data set and

updates the weights. Because one epoch is large, the data set is split in to batches

and the batch size is chosen as 10. During training the third split of the data set

happens, where 20 % of the training data is set aside to validate the predictions

of the model during the training, as explained in Section 2.2.6. The last input is

the verbose=1 which means that the calculated loss and accuracy of each epoch is

written to the terminal in order to observe the development of the training. This was

useful to ensure the model is learning during the training process. The development

of the coefficient of determination was also plotted after the training to monitor the

learning process.

Figure 4.1: The plot shows the development of the Coefficient of Determination
during a prediction of the RAO in roll. The plot shows the development of R2 of
both validation and training data. The training error is converging towards a stable
value.
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Figure 4.1 shows the development of the coefficient of determination for each epoch

in the prediction of the RAO in roll. The number of epochs has to be large enough so

the coefficient converges, which Figure 4.1 shows. The blue line labelled Validation

is the value of the validation during training, which is done using the testing data

set, as explained in Section 2.2.6. The orange line is the R2 value of the training

data. Figure 4.1 is also used to observe if the model is overfitted, which is when

the training data maintains a high R2 at the same time as the validation data has

a decreasing R2. The high values of R2 are discussed in Section 5.3.2.

The final testing of the model is when the model predicts an output given only input

data. Two functions were used, one function to evaluate the predictions to obtain

the accuracy metrics and another to obtain the predicted values.

model.evaluate(X_test, y_test, batch_size=10)

y_pred = model.predict(X_test)

model.evaluate() is the function which gives the metrics of the model, mean-

ing the Coefficient of Determination and the Mean Absolute Percentage Error.

model.predict() uses the trained model to predict the target value given only

features. These features given to the prediction are unseen data points, thus the

validation data set.

As mentioned before, the notation in theory and practice of the three data sets can

be confusing and the notations in Keras is defined different to the definitions in

Section 2.2.6. The important note is that there are three data sets, one for training,

one to validate during training and one to validate the final model.

4.2.4 Finding the Best Neural Network Configuration

The main challenge with building a Neural Network is finding the combination of

parameters which gives the best prediction for the problem at hand. With the
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number of layers, number of nodes in each layer, activation function in each layers,

scaling method of input data, choice of loss function and optimisation, number of

epochs and batch size, there are a large number of parameters which all can be com-

bined to a large amount of Neural Network configurations. In order to find the best

fit model trial and error with different configurations were tested and the Coefficient

of Determination and Mean Absolute Percentage Error compared.

The challenge with Machine Learning and Neural Networks is that there are no

clear guidelines to when a certain parameter choice works best. This is a part of the

unknown characteristics of Neural Networks, it is not always known why something

works well. A recurring issue is therefore that trial and error of different meth-

ods has to be used to find the best model for the given problem. During the trial

and error process, the settings of the model were changed so it always chooses the

same data sets for training and testing. This is done to eliminate the uncertainty of

new data sets, and to ensure the change of accuracy is due to the parameter changes.

The process of building the Neural Network started by creating a small Neural Net-

work with only two nodes in the first layer and four nodes in the second layer, using

ReLU for both layers, with the Mean Squared Error as loss function and RMSprop

for optimisation. The number of epochs was set to 1000 for an initial estimate, each

batch was a size of 10 and the target was the sway motion of the model. Inspecting

the results showed that the number of epochs could be too low, and the number

of epochs was increased to 5000. From this the model size was increased, different

activation functions, loss functions and optimisation functions were tested which are

summarised in Appendix D.1. The final result may not be the optimal configuration

for this problem, but due to trial and error being a time consuming process and the

goal of this study being to show if the method works, it was not prioritised to further

optimise the model.

For the final test of convergence of the prediction results, the data sets were ran-

domly chosen in order to include the statistical variation in prediction results due to
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picking different test data each time. Because Neural Networks is a statistical tool,

there are variations in the accuracy of the prediction due to the different testing

data each training session. The average accuracy of ten tests is used as the final

accuracy of the trained model which are summarised in Table D.2 in Appendix D.

The trial and error of the model configurations was conducted on the sway motion

model, and it is assumed that the same parameters can be used on the five other

models. The features given to the models are identical and it is therefore assumed

that the model configuration found from the sway motion will be of high perform-

ance also for the five remaining targets. The ten repeated tests for all six targets

are found in Table D.2 in Appendix D.
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Chapter 5

Results and Discussion

This section presents and discusses the experimental results including wave genera-

tion, decay tests and the measured response of the model. Results from the Linear

Regression and Neural Network predictions will also be presented and discussed.

5.1 Experimental Results

A bug was discovered in the computer software which transforms the measurement

signals from analogue to digital values in May. The experimental results are therefore

inspected to see if these experiments are affected by the bug in the system.

5.1.1 Wave Generation

The wave generation is described in Section 3.1.6 and the performance of the wave

maker is investigated by comparing the experimental wave height and wave steepness

with the theoretical wave height and wave steepness. The percentage error of the

generated wave height of waves with theoretical steepness of 1/60, 1/45 and 1/30

are presented in Table 5.1.
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Table 5.1: Experimental wave generation results. A comparison between theoretical
and experimental wave height and steepness.

Theoretical
Steepness

Average
Experimental Steepness

Percentage Error:
Wave Height

Percentage Error:
Wave Steepness

1/60 1/55.7 7.9 7.2

1/45 1/41.4 7.8 7.9

1/30 1/27.9 6.9 6.9

The generated waves are around seven percent different from the theoretical value for

both wave height and wave steepness. The comparison plot below, Figure 5.1, shows

the experimental wave amplitude together with the theoretical wave amplitude for

three wave steepnesses.

Figure 5.1: Comparison plot of theoretical and experimental wave amplitude. Wave
steepness 1/60, 1/45 and 1/30 are plotted and show that the experimental waves
are generally higher than the theoretical waves. The least steepest wave, plotted in
blue, has inconsistent wave amplitude which varies more than the two other plotted
wave steepnesses, however it is generally closer to the theoretical wave amplitude.

The experimental wave amplitude follows the same trend as the theoretical wave

amplitude, although the experimental waves are generally higher. Interestingly, the

82



5.1. EXPERIMENTAL RESULTS

wave amplitude for the three highest frequencies of all three steepnesses plotted, are

lower or equal to the theoretical value. At frequencies lower than approximately

6.6 rad/s the measured wave amplitude stabilises a little higher than the theoretical

value. The least steepest wave with steepness 1/60, is seen to be less consistent than

the two other steepnesses. In spite of the higher variation, the wave steepness 1/60

seems to lie generally closer to the theoretical wave amplitude.

The wave steepness comparison is plotted in Figure 5.2. The measured wave steep-

ness tends to be steeper than the theoretical wave steepness.

Figure 5.2: Comparison plot of the theoretical and experimental wave steepness.
Theoretical wave steepness 1/60, 1/45 and 1/30 are plotted against the experimental
result. All three wave steepnesses have a steeper wave than the intended theoretical
wave steepness, but they are all fairly accurate at the highest wave frequencies. The
two steepest waves, 1/30 and 1/45, are consistently steeper for all other frequencies.
The least steepest wave is close to the theoretical steepness at both the highest and
lowest tested frequencies, but shows a steeper wave at frequencies between 5.0− 6.0
rad/s and a higher variation of wave steepness in general.

Figure 5.2 above shows the comparison between the theoretical and experimental

wave steepness for three waves. The three waves coincide well with the theoretical

value at the highest tested wave frequencies which are around 7.0 rad/s. The two
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steepest waves, 1/30 and 1/45, stabilise to a steeper wave compared to theoretical

steepness at wave frequencies lower than around 6.8 rad/s. The least steepest wave,

1/60 is close to the theoretical steepness in the frequency range 6.0 − 7.0 rad/s.

At the mid-range wave frequencies all three waves are steeper than the theoretical

waves, but the least steepest wave moves closer to the theoretical steepness at the

lowest tested frequencies around 3.5− 4.5 rad/s. The two steepest waves, 1/60 and

1/45, are more consistent while the least steepest wave 1/30 shows more variation

in the wave steepness. The experimental results are after this presented with the

average measured wave steepness instead of the theoretical wave steepness.

In both wave amplitude and wave steepness the wave maker produces different val-

ues than the theoretical values. The percentage error is summarised in Table 5.1.

The differences are due to imperfections in regards to both wave maker and wave

tank, as discussed in Section 3.3.1. These differences could have been minimised by

creating two transfer functions, one with respect to the wave amplitude and one for

the wave steepness. A transfer function for the theoretical and experimental flap

amplitude was developed and implemented in the wave generation, but as seen in

the comparisons it is not enough to remove all differences between theoretical and

experimental waves. The two additional transfer functions were not created due to

time constraints, but would involve comparing the theoretical and measured wave

amplitude and wave steepness and create a transfer functions which would be in-

cluded in the wave generation script. Hence, the difference between the theoretical

and experimental wave amplitude and wave steepness would be utilised to tune the

wave maker. These transfer functions reduce the errors due to the imperfections of

the wave maker and wave tank discussed in Section 3.3.1 and consequently lead to

a more accurate experimental wave.

In Section 3.3.1 where the errors in the experiments are presented, it is mentioned

that one can investigate wave deflection and transverse waves by comparing the

measurements of the wave probe pairs. However, the experimental waves were

measured during the experiment with the model in the water, thus the waves are
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disturbed and can not be compared. Only the wave probes closest to the wave

maker are not affected by the model, although as soon as the radiated waves from

the model return to these wave probes, these are also disturbed by the model. It

was therefore not possible to investigate the development of the wave along the wave

tank with regards to wave deflection and transverse waves. Due to the nature of the

experiment where the measurements are used for Machine Learning, it was decided

that the priority was to obtain enough results to utilise in Machine Learning instead

of increasing the extent of the hydrodynamic investigation in the wave tank.

5.1.2 Decay Tests

The decay tests are described throughout Section 3 in the Experimental Method,

and mainly consists of filtering the signal and plotting the frequency domain of the

model position during decay tests. From the decay tests the natural frequencies and

periods for the model in sway, heave and roll can be quantified. The natural periods

found from the decay tests are summarised in Table 5.2 below.

Table 5.2: The natural period and frequency of sway, heave and roll found from
decay tests

Motion Direction Natural Period [s] Natural Frequency [rad/s]

Sway 6.77 0.93

Heave 1.43 4.40

Roll 1.33 4.71

Table 5.2 shows that the measured heave and roll natural periods are very similar.

These are hard to observe by the naked eye during the decay test, but the similarity

indicates that one of the can be affected by the bug in the computer software for

signal processing.

The decay test in sway excites the model in sway direction and the motion can

be found from both the accelerometer measurements and the force gauges. Figure
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5.3 shows the filtering and the frequency domain of the sway motion using the

accelerometer measurements.

(a) Decay Sway - Accelerometers: The filtered and unfiltered position signal of the model
obtained from the accelerometers.

(b) Decay Sway - Accelerometers: The frequency domain of the position signal measured
by the accelerometer.

Figure 5.3: Decay Sway - Accelerometers: Figure 5.3a shows the filtered and un-
filtered position signal during sway decay, where the signal is found from the accel-
erometers. Figure 5.3b is the corresponding frequency domain for the sway decay
test using the accelerometer measurements. The peak in the frequency domain is
the natural frequency of sway which equals a natural period of 6.77 s.

Figure 5.3 shows the filtering and frequency domain obtained by using the accelero-

meters in sway direction on the model. The frequency domain in Figure 5.3b shows

one peak which results in a natural period of 6.77 s. A low-pass frequency of 0.12

Hz is utilised in the frequency domain to filter out the noise in the signal. However,
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there are uncertainties in regards to the frequency range of the noise and to ensure

the correct low-pass frequency is utilised, the decay test in sway is also investigated

using the measurements of the force gauges. The method is described in Section

3.2.2 and Figure 5.4 shows the filtering and frequency domain of the force gauge

measurement during a sway decay test.

(a) Decay Sway - Force Gauges: The filtered and unfiltered position signal of the model
obtained from the force gauges.

(b) Decay Sway - Force Gauges: The frequency domain of the position signal measured
by the force gauges.

Figure 5.4: Decay Sway - Force Gauges: Figure 5.4a shows the filtered and unfiltered
position signal during sway decay, where the signal is found from the force gauges.
Figure 5.4b is the corresponding frequency domain for the sway decay test using
the force gauge measurements. The peak in the frequency domain is the natural
frequency of sway which equals a natural period of 6.77 s, similar to the natural
period found from the accelerometers.
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The decay signal from the force gauges is identical to the signal from the accelero-

meters. The peak of the frequency domain in Figure 5.4b is as evident, and at the

same frequency, as the accelerometer results. From experience force gauges have less

noise at low frequencies, hence the similar results indicate that the chosen low-pass

frequency is filtering out the noise in the signal.

The decay test in roll involved exciting the model in roll, which was done by pushing

the model on one end while the other end was freely-floating. The filtered measure-

ment and the frequency domain are plotted in Figure 5.5.
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(a) Decay Roll: The filtered and unfiltered position signal obtained from the accelerometer
measurements.

(b) Decay Roll: The frequency domain of the signal is plotted and from the frequency
domain the natural period is found. The natural period corresponds to the highest peak
in the frequency domain.

Figure 5.5: Decay Roll: 5.5a shows the filtered and unfiltered position of the model
while Figure 5.5b plots the frequency domain of the position. From the peak in the
frequency domain the natural period in roll is found to be 1.33 s.

The frequency domain of the roll motion shows a main peak at 0.75 Hz, which results

in a natural period of 1.33 s. A low-pass frequency of 0.4 Hz is utilised to filter out

the noise in the signal and it is observed that a lower low-pass frequency results in a

peak around 0.1 Hz, which is noise in the accelerometer measurements. As seen in

Figure 5.5a, the roll decay test is cut eight seconds after the model is excited, due

to return waves which disturb the decay test.
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(a) Decay Heave: The filtered and unfiltered position of the model during decay test in
heave.

(b) Decay Heave: The frequency domain of the position signal is plotted and the peak of
the plot corresponds to the natural frequency.

Figure 5.6: Decay Heave: Figure 5.6a shows the filtered and unfiltered signal for
the position of the model found from the accelerometer measurements. Figure 5.6b
plots the frequency domain of the position signal and the peak of the frequency
domain corresponds to the natural frequency in heave. The natural period found
from this peak equals 1.43 s.

The heave decay signal is extracted mathematically from the roll decay measure-

ments using Equation 3.5, because it was found difficult to excite the model in heave.

Due to the width of the model it easily crashed in the tank walls and it was found

too challenging to excite the model evenly on both sides. The results from the heave

decay are plotted in the Figure 5.6.
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The peak of the frequency domain in Figure 5.6b is found at 0.70 Hz which equals

a natural period of 1.43 s. Because the heave decay is found from the roll motion

decay, the signal is again cut after around eight seconds to avoid the return waves.

The heave signal has a lot of noise and the low-pass frequency is set to 0.4 Hz, which

results in the filtering and frequency domain observed in Figure 5.6. With a lower

low-pass frequency, the frequency domain is full of peaks and no conclusion can be

made about the natural period. Due to the high low-pass frequency, another method

of calculation was utilised to estimate the natural period in heave to confirm the

choice of low-pass frequency.

The natural period in heave can be calculated from Equation 2.41 in Section 2.1.7,

with the equation seen below.

T3 = 2π

√
M + A33

C33

(5.1)

The mass of the model is known and the restoring term can be calculated using the

following relation

C33 = ρgAw (5.2)

Where Aw is the water plane area of the model, which in this case equals Aw = 0.59

m×0.50 m= 0.195 m2.

The two-dimensional added mass is estimated from numerical results in The Added

Mass of Two-Dimensional Cylinders Heaving in Water of Finite Depth [Bai, 1977].

The paper involves circular and square cylinders without bilge boxes. The model

is therefore approximated as a square cylinder with a beam the size of the model,

including the bilge boxes. This is illustrated in Figure 5.7, where the blue box are

the dimensions utilised in the calculations while the shaded model is seen in the

background.
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Figure 5.7: The blue box with dimensions is utilised in the calculation of the added
mass coefficient, while the actual shape of the model is seen in a shade behind the
box.

The estimation results in a natural period in heave which equals 1.22 s and a fre-

quency of 0.82 Hz. Another calculation which includes the bilge boxes by using flat

plate approximation to estimate a value of the two-dimensional added mass of the

bilge boxes results in a heave natural period of 1.28 s and a natural frequency of 0.78

Hz. The estimates show that the natural frequency has a value above the chosen

low-pass frequency and thereby confirms the choice of filtering. The two calculations

of the natural period utilise the uncoupled natural period described in Section 2.1.7.

These natural periods are uncoupled and undamped and the difference between the

calculated and measured natural periods are the coupled terms and the damping in

the system.

5.1.3 Response Amplitude Operator

The amplitude of the motions are used to plot the RAO for each direction, namely

sway, heave and roll. Section 3.2.4 describes the calculation of the RAOs from the

accelerometer measurements. The motions of the model are plotted in Appendix B

and only the response amplitude operator results will be discussed.

In the Figure 5.8 the response amplitude operator in sway is plotted for the tested

wave frequencies and three of the wave steepnesses.
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Figure 5.8: Experimental Results - Sway RAO: The Response Amplitude Operator
in Sway is plotted for three wave steepnesses. The natural period in sway is indicated
with the blue line.

The sway motion has a natural frequency lower than the tested frequency range.

This means that the RAO peak is not reached in the measured motion. For the low-

est tested frequencies the sway RAO jumps from around 1.0 to 2.0, which is most

likely due to the inconsistency of the wave steepness of the experimental waves and

because the model is moving in transient-state instead of steady-state motion. The

three plotted wave steepnesses show a similar trend in sway RAO, but as the wave

frequency decreases the steepest wave has a distinct lower sway RAO compared to

the two other wave steepnesses.

The RAO development seen in Figure 5.8 does not show any sign of being affected

by the bug in the signal processing system. Around 4.7 rad/s the sway is reduced,

which is due to the coupled sway-roll-motion since the roll motion has a natural

frequency at 4.71 rad/s. Due to the discovery of the bug in the signal processing

system in Ladertanken, the accelerometer measurements were inspected. In Figure

5.9 below the accelerometer measurements are plotted for one wave run.
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Figure 5.9: Comparison of the accelerometers measuring the motion of the model in
y-direction. The two accelerometers show an identical amplitude and are therefore
not affected by the bug in the signal processing software.

The above representation is only valid for one of the tested waves, but around

hundred random waves were investigated and showed the same result. Both accel-

erometers show the same amplitude and it is assumed that this is valid for all tested

wave conditions. Since the two accelerometers measure a close to identical value,

the accelerometers are not affected by the bug in the software.

The RAO in heave is plotted in Figure 5.10 for the tested wave frequencies and three

chosen wave steepnesses.
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Figure 5.10: Experimental Results - Heave RAO: The Response Amplitude Operator
in Heave is plotted for three wave steepnesses. The natural frequency is indicated
as the blue line which corresponds well with the peak in the heave motion.

The natural frequency in heave is around the peak of the heave RAO, as seen in

Figure 5.10. A higher peak is observed at lower frequencies for two of the wave

steepnesses, however the low frequencies correspond to long wave periods which is

when the model has a longer transient-state. The peak at the lower frequencies

is therefore suspected to be due to the model not reaching steady-state motion at

the lower wave frequencies. The peak of the heave RAO is expected around the

natural frequency of heave, which is the case in the Figure 5.10, if the low wave

frequency results are disregarded. This leads to assuming that the measurements

are not affected by the bug discovered in the signal processing system.
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The roll response amplitude operator plot is seen in Figure 5.11 below.

Figure 5.11: Experimental Results - Roll RAO: The Response Amplitude Operator
in Roll is plotted for three wave steepnesses together with the natural period in roll.
The roll motion is very similar to the heave motion and the peak is found closer
to the heave natural frequency than the roll natural frequency. This could be an
indication that the measurements are affected by the bug in the software.

The roll RAO plot in Figure 5.11 is very similar to the heave RAO in Figure 5.10.

The peak of the roll RAO is closer to the natural frequency in heave, 4.40 Hz,

than the natural frequency in roll, 4.71 Hz. This could be an indication that the

accelerometers are affected by the bug in the signal processing systems, hence the

measurements of the accelerometers in z-direction are analysed.

In order to investigate if the z-accelerometers are affected by the bug in the signal

processing system, the z-accelerometers are compared in comparison plots. However,

the z-accelerometers will capture both the heave and roll motion of the model.

Thus, the accelerometers do not show the exact same values, which is seen in the

comparison plots in Figure 5.12.
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(a) T = 0.88 s - Steep = 1/55.7 (b) T = 0.96 s - Steep = 1/55.7

(c) T = 0.98 s - Steep = 1/55.7 (d) T = 1.00 s - Steep = 1/55.7

Figure 5.12: Comparison of the accelerometers measuring in z-direction. The com-
parison shows that the accelerometers measure a different amplitude in z-direction,
which can be explained by the physical motion of the model. The model will move
both in heave and in roll, hence the two accelerometers will measure different amp-
litudes in z-direction. It is therefore hard to draw a conclusion about the bug in the
signal processing software.

The accelerometers in z-direction measure different amplitudes and there is no con-

sistency in which accelerometers measures the highest value, as seen in Figure 5.12.

However, the difference can be explained by the physical motion of the model which

will include both heave and roll motion. Hence, the model can move upwards in

heave as well as rotating in roll which leads to different amplitude of the measure-

ments in z-accelerometers. This physical motion is drawn in Figure 5.13, where the

model is moved upwards and rotated, thus moved in both heave and roll motion.
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Figure 5.13: An illustration of a snap shot while the model is moving in waves with
both heave and roll motion. The heave leads to the model lifting upwards and the
roll motion rotates the model.

Figure 5.13 explains the physical motion of the model and the reason for the dif-

ference in the accelerometer measurements. Due to uncertainty of the expected

difference between the accelerometer measurements on the two opposite sides of the

model, one can not rule out that the accelerometers in z-direction are affected by the

bug in the signal processing system. The similarity between the heave and roll RAO

plots indicate that there is an error and the roll RAO is expected to have a peak

around the natural frequency of roll. Both heave and roll utilise the z-accelerometers

in the calculation of motions, as seen in Equation 3.2 and Equation 3.4 in Section

3.1.5. Due to the roll motion using the difference between the accelerometer meas-

urements, it is expected that the error is more evident in the roll results compared

to the heave results. The heave motion is calculated using the average of the two

accelerometers, hence a factor of two between the accelerometers will be less prom-

inent.

The similarity of the RAO in roll and heave can also be due to wave reflections and

the model not achieving steady-state motion. The measurements are obtained from

a small time window to avoid wave reflection, as explained in Section 3.2.3. By using

the group velocity of the waves, the time window is cut before the wave return to

the wave probes. However, the front of the wave will move faster and the results

can therefore include some wave reflections. This leads to uncertainty if the model

motion has reached steady-state, and most likely the model is still in transient state.
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The results of the RAO in roll can indicate that the motion has not reached steady-

state motion and the RAO and motion results are not from steady-state conditions.

The focus of this thesis is investigating if Neural Networks can be used to predict

the motion of a floating structure. The uncertainties and possible errors in the

experimental data are therefore not important, because these will be included by the

Neural Network predictions. However, the results can not be utilised to investigate

hydrodynamic effects because of the errors in the experiment.

5.2 Linear Regression

The linear regression models which utilises the Mean Squared Error as loss function

and Stochastic Gradient Descent to optimise the prediction are presented in this

section. The wave period and wave heights are the features, while the model motion

and RAOs are the targets. In the plots below, Figure 5.14, the predictions are plotted

versus the known value for wave steepness 1/55.7. Results for wave steepness 1/41.4

and 1/27.9 are plotted in Appendix C.
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(a) Sway Motion (b) Sway RAO

(c) Heave Motion (d) Heave RAO

(e) Roll Motion (f) Roll RAO

Figure 5.14: Linear Regression Results: Prediction for wave steepness 1/55.7 for
motion and response amplitude operator in sway, heave and roll. The plots show
that Linear Regression is not a suitable tool to predict the motion of the model.

In Figure 5.14, the scatter plots are the predicted values while the blue line is the

line of perfect prediction. If the prediction is the exact same value as the true value

from the experiments, it lies on the blue line which equals x = y and is known as the

line of perfect prediction. It is clear from the prediction results that a simple linear

regression model is not capable of predicting either the motion or the RAO of the

model. This shows that the problem at hand consists of non-linear relations which

needs a Neural Network in order to make more accurate predictions. The Coefficient
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of Determination for the six vessel responses are given in Table 5.3 below.

Table 5.3: Linear regression response prediction results using the Coefficient of
Determination

Response R2

Sway 37.0 %

Heave 42.0 %

Roll 39.0 %

RAO 2 34.0 %

RAO 3 30.0 %

RAO 4 37.0 %

None of the linear regression models are capable of predicting anything above 41 %

of the values. The linear regression model is included to show how much better a

neural network can predict values when the features and targets can not be described

by a linear relationship.

5.3 Neural Network

The following section presents the results of the response prediction using Neural

Network and discusses the aspects of Neural Networks. The prediction results for

sway, heave, roll as well as the corresponding RAOs are found as larger plots in

Appendix D.

5.3.1 Response Predictions

The predictions of the response of the model are plotted against the true value in

Figure 5.15.
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(a) Sway Motion Prediction (b) RAO Sway Prediction

(c) Heave Motion Prediction (d) RAO Heave Prediction

(e) Roll Motion Prediction (f) RAO Roll Prediction

Figure 5.15: Neural Network - Response Predictions: The above plots show the
predicted value versus the true value of the model response. The line of perfect pre-
diction is plotted in blue and the orange scatter plots are the predicted values. The
Neural Network is capable of predicting the target with a high accuracy, however,
one can observe that the sway motion and sway RAO has a larger deviation from
the line of perfect prediction.

Figure 5.15 generally indicates very good results for the Neural Network predictions.

The prediction results plotted as scatter plots are very close to the perfect prediction

line which is plotted in blue. Heave motion and heave RAO looks especially good

with the scatter plot following the perfect prediction line closely. The sway motion

and RAO are the two plots which have the largest deviation from the line of perfect
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prediction, which will be discussed in Section 5.3.2.

The model accuracy oscillates around a value due to the random data set split and

due to the model training slightly different each time. The model has been optimised

to a certain extent, but the variation of model accuracy indicates that the model

can still be further optimised with regards to the number of layers, number of nodes

in each layer and other configurations, as mentioned in Section 4.2.4. Each model

is trained ten times in order to evaluate the variation in the model accuracy and

calculate the standard deviation of the accuracy metrics. Table D.2 in Appendix

D summarises the prediction accuracy for all ten runs in all motions and RAOs,

and the calculated average which is used as the final prediction accuracy. Table 5.4

summarises the average Coefficient of Determination, the average Mean Absolute

Percentage Error for the motions and RAOs and the standard deviation of both

metrics.

Table 5.4: Neural Network prediction results using Coefficient of Determination and
Mean Absolute Percentage Error, as well as their standard deviations

Response R2 MAPE σ(R2) σ(MAPE)

Sway 98.0 % 5.7 % 1.0 % 1.9 %

Heave 99.6 % 8.5 % 0.3 % 3.2 %

Roll 99.5 % 6.2 % 0.5 % 3.5 %

RAO Sway 99.0 % 2.4 % 0.6 % 0.4 %

RAO Heave 99.9 % 2.7 % 0.0 % 1.0 %

RAO Roll 99.9 % 2.8 % 0.0 % 0.7 %

All six models have an R2 accuracy above 98 % and the MAPE values are all

below 10 %. However, one can observe from Table 5.4 that there is an inconsistency

between the two accuracy metrics. The standard deviation of the two metrics show

that the R2 has stabilised, while there is still some deviation in the MAPE metric

for the three motions, sway, heave and roll. Due to a time consuming optimisation
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process of the Neural Network, the obtained standard deviations were deemed small

enough to show the use of Neural Networks to predict model motion. The values

do however show that there is room for optimisation for the three motion models,

although the RAO models indicate being close to optimal.

5.3.2 Accuracy Metrics

From the R2 metric the accuracy is very high for all six models, while the Mean

Absolute Percentage Error paints a different picture. All six targets have a Coeffi-

cient of Determination equal to 98.0 % or higher, all very close to perfect prediction

which is R2 = 100%. As observed on the prediction plots in Figure 5.15, the predic-

tions are not flawless and do have a difference from the perfection prediction line.

Using the Mean Absolute Percentage Error the accuracy of the six targets ranges

from 8.5 % down to a value of 2.4 %, where 0.0% is perfect. The difference between

the two measures of error are due to the mathematical definition of the metrics, R2

utilises the mean value of the target which MAPE does not. All six targets have a

non-linear development of the target values and using the mean value of the target

therefore does not describe the problem sufficiently.

Looking closely at the prediction plots in Figure 5.15, the predictions in sway motion

and RAO seem to deviate the most from the perfect prediction line. The sway and

heave motion plots are plotted in larger format in Figure 5.16.
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(a) A larger plot of the Neural Network sway prediction.

(b) A larger plot of the Neural Network heave prediction.

Figure 5.16: Larger plots of the Neural Network predictions in sway and heave. The
heave predictions are closer to the perfect prediction line, while the sway predictions
have a larger error. From the two plots it is seen that the predictions in sway have
a higher error at larger motions, which is not as evident in heave.

Comparing the prediction plots between sway and heave motion, which both have

the same x- and y-scale, the sway motion clearly deviates more from perfect predic-
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tion. However, Table 5.4 shows that the MAPE value for heave is larger than for

sway motion, meaning sway is more accurate according to MAPE. The numerical

error estimate is an average value of ten trained models, while the plot is a single

trained model plot. Thus, the average MAPE value might not correspond to the

plotted prediction plot.

Another important aspect of the misleading value of R2 is the convergence plotted

in Figure 4.1. The Coefficient of Determination is utilised to monitor the learning

process and ensure that the amount of epochs is high enough. However, as seen

in Figure 4.1, the value of R2 is higher than 99.0 % already at around 10 epochs.

This would indicate that the Coefficient of Determination has converged, but during

optimisation it is observed that the Mean Absolute Percentage Error converges later

than R2. Hence, the number of epochs necessary is found higher than the indication

of the convergence plot of R2 in Figure 4.1 and MAPE should have been utilised

in the convergence plots.

5.3.3 Aspects of Neural Network

The Neural Network models created to predict the motion and RAO are successful

and all hold a MAPE value below 10%, corresponding to an accuracy of above 90

% for all six targets. Compared with the results from the Linear Regression predic-

tions in Figure 5.14 the Neural Network is clearly superior. Linear Regressions are

not commonly utilised to predict the motion of floating structure, hence it does not

prove the performance of the Neural Networks. Empirical methods and numerical

calculations are common methods to calculate the response of a model as mentioned

in Section 2.1.4, and it is of interest to compare the performance of the Neural Net-

work against the empirical and numerical results. This is out of the scope of this

thesis, one can therefore not conclude if the Neural Network is outperforming the

common methods.

The general indication of the R2, MAPE and prediction plots is that the Neural

Network can successfully predict the motion and RAO of the experimental model.
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The Neural Network has the highest accuracy on the three RAOs, where the motions

are made dimensionless using the wave amplitude and wave number. It is unclear

exactly why the Neural Network works better with the RAOs compared to motions,

but it is most likely due to the use of wave amplitude in the RAOs. The Response

Amplitude Operators are calculated by dividing the motion amplitude by the wave

amplitude, as seen in Equation 3.8 in Section 3.2.4. Hence, the wave amplitude

is indirectly in the target as well as being one of the features. This could be why

the RAO predictions have a higher accuracy than the motions, because the RAO

includes one of the features. Situations like these, where it is not known why the

Neural Network performs better for some features and targets compared to others

is part of the challenge with Machine Learning. Mathematically, the process of cal-

culations for Neural Networks is known. However, the randomly initialised weights

and biases are unknown and this contributes to the uncertainty of the behaviour of

Neural Networks. It is possible to train two separate models with different weights,

but with the same results. Additionally, one can not trace back using the weights

and obtain the function F (x) which maps the input to the output. This leads to

Neural Networks and Machine Learning in general having a reputation of being a

black box tool. This is also why it is hard to understand why the Neural Network

reacts the way it does to changes in the configuration or features.

As mentioned in the theory section, Section 2.2.5, the final product is a complete,

trained Neural Network. This investigation has compared the average of ten trained

models and utilised this as the accuracy of the model. However, if the models are

to be used one can pick the model with the highest accuracy out of the ten. The

analysis of the performance of the models is done to show that the models are not

fully optimised and can be tuned to obtain a higher accuracy. This was found to be

very time consuming and due to time constraints this was not prioritised.

Another important note is the use of Neural Network to predict outside the range

of the input data. Neural Networks, and Machine Learning in general, are simply

an advanced methods of curve-fitting. Extrapolation is therefore advised against,
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because one does not know the behaviour of the Neural Network outside of the in-

put data range. The performance of the Neural Network if used for extrapolation is

unknown, random and highly discouraged.

108



Chapter 6

Discussion of Application

The following section will elaborate the way Neural Network predictions can be used

to learn more about viscous residuals as well as in full scale floating structures and

in the design process.

6.1 Viscous Residuals from Model Experiments

As seen in the derivation of non-linear coupled motions in Section 2.1.7, the full

equation of motion with non-linear terms is both complex and difficult to solve.

Several methods of simplification is presented in Section 2.1.7, with both linear,

coupled natural periods and uncoupled natural periods. The present study suggests

to investigate the possibility of using Neural Networks to investigate the viscous

terms.

Using the measured motion and the force in the springs in the experiment, the

unknowns in the Equation of Motion are reduced to the Added Mass, Damping and

Excitation Forces. Equation 6.1 below shows the equation of the uncoupled roll

motion. (
I44 + A44

)
η̈4 +B44η̇4 + C44η4 = Fexc,4 (6.1)

However, the added mass, damping and excitation terms can be written as a poten-
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tial term and a viscous term as follows.

(
I44 + Apot44 + Avisc44

)
η̈4 +

(
Bpot

44 +Bvisc
44

)
η̇4 + C44η4 = F pot

exc,4 + F visc
exc,4 (6.2)

The potential terms can be found numerically by using a potential flow solver, which

leaves only the viscous terms. These can be collected to a viscous residual, F residual.

(
I44 + Apot44

)
η̈4 +

(
Bpot

44

)
η̇4 + C44η4 − F pot

exc,4 = F residual(
Avisc44 +Bvisc

44 + F visc
exc,4

)
= F residual

(6.3)

The viscous damping term, Bvisc
44 can be found from forced oscillation experiments

as the non-linear term in Equation 2.8, narrowing down the unknowns to only

Avisc44 + F visc
exc,4. Using Muhammad Mukhlas method to extract the added mass from

forced oscillation experiments [Mukhlas, 2017], the residual is left to only F visc
exc,4.

The above separation of the viscous terms can be utilised to implement the vis-

cous damping, added mass and excitation force to create Neural Networks which

are trained to predict added mass, damping and excitation forces more accurately.

The above derivations are necessary to split the problem from one force residual to

the individual viscous coefficient terms. This method can be utilised if both freely

floating experiments and forced oscillation experiments are conducted for the model,

and the features are the wave height and wave steepness.

Using forced oscillations to find viscous damping and added mass, a Neural Network

can be trained to predict the viscous excitation force. However, one can also include

the viscous excitation force and focus on the added mass or the damping term, and

investigate their development for different sea states. The Neural Network can find

patterns in the viscous terms which enhances the understanding of the phenomenon.

Section 2.1.4 mentioned CFD as a method to approximate the added mass and

damping terms. In Muhammad Muklash’s investigation of roll damping of a two-

dimensional ship section with bilge boxes [Mukhlas, 2017], CFD was utilised to
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approximate the added mass and damping terms. The numerical method is capable

of predicting the added mass and damping terms up until a certain roll amplitude,

where it is suspected that the motion of the model affects the free surface. Due to

the linear modelling of the free surface, these effects are not captured by the CFD

approximation. This shows the limitation of CFD and this is where the Neural Net-

work predictions of added mass and damping can be of interest. Using the above

method utilising Neural Networks, one can further investigate the development of

added mass and damping by conducting experiments and training a Neural Network

to predict the values. One can from the predictions plot the development of the ad-

ded mass and damping and learn more about the effects of the bilge boxes and flow

separation on the specific model.

It is important to mention that the Neural Network method to investigate the vis-

cous effects utilises assumptions which can affect the results. It is assumed that

the viscous added mass and damping terms can be approximated from the forced

oscillations. This is equivalent to solving the radiation problem and assume this is

valid for the freely-floating solution, as presented in Section 2.1.3. Hence, the effect

of the excitation force on the viscous terms is neglected.

6.2 Moored Structures

Modern vessels are full of sensors measuring the motion, forces in anchors and moor-

ing lines and the condition of equipment on board. This gives access to large data

sets with huge potential for Machine Learning. Similarly to the model developed

in this thesis, a model can be trained to predict the motion of a full scale moored

structure.

The Neural Network motion prediction utilised the wave period, wave steepness and

the measured motion in the direction of interest. Modern floating structures have

sensors which monitor their position, meaning the motion of the structure is known.

There are wave probes available which can give information about the wave period
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and wave steepness at a given time, thus all the information needed to train a Neural

Network is available. The model can be trained and used to predict the position of

the structure in the present sea state. If there is a large deviation from predicted

and actual motion, it can be an indication of defect in the mooring lines.

6.3 Design Process

As mentioned in the introduction in Section 1, the development of unconventional

ship hulls increases the need of better ways to estimate the viscous effects. Un-

conventional ship hulls commonly have geometrical singularities which increase the

viscous effects, such as flow separation and vortex shedding. This leads to the need

of tools to estimate the added mass and damping coefficients where viscous effects

are of importance. However, the Neural Network predictions are dependent on data

from model experiments or full scale structures. It is therefore not a tool which

can be utilised in the design process. The method developed to obtain the viscous

residual as described in Section 6.1 can be used to learn about the development of

viscous residuals and viscous terms in different sea states. This new knowledge can

possibly be utilised to develop better numerical or empirical methods to estimate

the response of unconventional ship hulls, but is on its own not capable of doing so.
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Conclusion and Further Work

7.1 Conclusion

This Master’s Thesis has investigated the possibility of training a Neural Network

to predict the motion of a floating structure. A model shaped like the mid-section

of a ship with large bilge boxes is utilised in the experiments conducted in Lader-

tanken. The experiment simulates a freely-floating structure, however the model is

restrained using two springs on each side to restrict it to an area of the wave tank.

Decay tests are conducted to identify the natural periods of the model in sway, heave

and roll. The natural periods are found to be 6.77 s in sway, 1.43 s in heave and 1.33

s in roll. The wave periods tested range from 0.88 s to 1.78 s in model scale and the

wave steepness ranges from 1/60 to 1/20. There are some uncertainties about the

experimental results due to a bug in the software which converts the instrumental

measurements from analogue to digital values. However, because the results are

only used as data for the Neural Network, they are accepted. The Neural Networks

will include the errors and the results can therefore still be used to judge if Neural

Networks can be used for motion predictions

A Linear Regression Model is created to predict the motion of the model, which is

shown to perform poorly. The Linear Regression Model is not capable of predicting

the response of a model because the responses are non-linear. This is used to show

the power of Neural Networks as a prediction tool of non-linear targets.
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A total of six Neural Networks are trained to predict the response of the model,

namely the motion in sway, heave and roll as well as the Response Amplitude Oper-

ator in sway, heave and roll. Experimental wave height and wave period are utilised

as the inputs to the Neural Network while the model response are set as targets

in their respective models. All six Neural Network Models are developed in Keras,

which is a Machine Learning library in Python. The inputs are standardised and

shuffled, as well as split into training, testing and validation data sets. The Coeffi-

cient of Determination and Mean Absolute Percentage Error are used as accuracy

metrics, as well as plotting the predictions against the true value. From the ac-

curacy metrics an accuracy of 98.0 % or higher is obtained using the Coefficient of

Determination. Utilising the Mean Absolute Percentage Error, all six Neural Net-

works are below 10 % and the Response Amplitude Operator predictions in sway,

heave and roll result in 2.4 %, 2.7 % and 2.8 % respectively. The difference between

the Coefficient of Determination and Mean Absolute Percentage Error is due to the

mathematical definition of the accuracy metrics, and it is found that the Coefficient

of Determination is misleading. Using the prediction plots where the prediction

values are plotted against the true value of the target, it is observed that the Mean

Absolute Percentage Error coincides better with the indication of the plots. This

shows the importance of using more than one accuracy metric and analysing the

results carefully.

The overall conclusion is that the Neural Networks are capable of predicting the

response of the freely-floating structure with an error below 10 % in general. The

Response Amplitude Operators in sway, heave and roll all obtain an error below 3.0

%, using the Mean Absolute Percentage Error. The present study presents a method

to utilise the results to investigate the viscous terms of added mass and damping,

which can give valuable information about the development of the viscous effects in

larger sea states.
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7.2 Further Work

A couple of comments about further work with respect to the topic investigated in

the present study.

The damping for the model investigated in this thesis is expected to be mainly

due to viscous effects and it would be of interest to investigate this. The damping

coefficient can be extracted from the RAO in Roll and by comparing with the empir-

ical damping value from Figure 3.17 in Sea Loads on Ships and Offshore Structures

[Faltinsen, 1990], one can prove that the damping coefficient is mainly due to viscous

effects.

As mentioned in Section 6.1, a potential flow solver can be utilised to estimate the

linear added mass and damping. These linear coefficients can be used to further

investigate the viscous part of the added mass and damping terms. Another inter-

esting aspect is comparing the results of the Neural Network predictions of added

mass and damping to the results of numerical calculations using Computational

Fluid Dynamics.

Sevan Marine has expressed interest in the topic and they have conducted experi-

ments with a model in the Ocean Basin at SINTEF Ocean. It would be interesting

to train a Neural Network using their model data, which has a lot more data points

and larger ranges of wave period and wave steepness. Using more data points will

increase the data available for training and thereby also increase the accuracy.

The Neural Network developed in this thesis is only able to predict the response of

the specific model from the experiments and is not generalised. One can not predict

the motion of a model with a different bilge keel and expect it to be able to predict

the response of the new model. For further work it would be interesting to do more

experiments with other main dimensions, such as draft, length and bilge keel size.

This would train a more generalised Neural Network which can be used to compare
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different load conditions or model dimensions.

Only one programming method is utilised to create and build the Neural Networks,

and it could be interesting to compare the performance to other Machine Learning

libraries and toolboxes. Tensorflow is a popular Machine Learning library in Python

and it would be interesting to compare the performance of the Keras models versus

a Tensorflow model. The Machine Learning toolbox implemented in Matlab is also

of interest and can be compared to the other methods.
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Appendix A

Precision Error

It is assumed that the measurements will follow a Gaussian distribution around a

mean value if the measurements are repeated infinitely many times. The Gaussian

distribution is known as

f(X) =
1

σ
√

2π
e−

(X−µ)2

2σ2 (A.1)

where X is the stochastic variable, µ is the mean value and σ is the standard

deviation. The mean value of the stochastic variable X from N repeated tests is

given as

X̄ =
1

N

N∑
j=1

Xj (A.2)

and the standard deviation as

SX =

√
1

N − 1

N∑
j=1

(
Xj − X̄j

)2
(A.3)

The mean of the stochastic variable, X̄, is itself normally distributed with a mean

of µ. The standard deviation of the means depends on the number of repetitions as

follows

SX̄ =
SX√
N

(A.4)

The Student’s t-cumulative distribution with N-1 degree of freedom and a confidence

interval of 95 % is used and gives the following relation for precision error of the
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APPENDIX A. PRECISION ERROR

mean sample

PX̄ = tSX̄ (A.5)

and the uncertainty of the mean sample is found to be

PX̄
µ

(A.6)

However, it is also of interest to find the precision limit and uncertainty of a single

test. These are calculated from the two following relations.

PX = tSX ,
PX
µ

(A.7)
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Appendix B

Experimental Results

The measured motions are plotted against wave frequency for three wave steepnesses.

B.1 Sway Motion
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APPENDIX B. EXPERIMENTAL RESULTS

B.2 Heave Motion

B.3 Roll Motion
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Appendix C

Linear Regression Results

In Section C.1 the results from the linear regression model for wave steepness 1/41.4

are plotted for all motions and RAOs.

In Section C.2 the results from the linear regression model for wave steepness 1/27.9

are plotted for all motions and RAOs.
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APPENDIX C. LINEAR REGRESSION RESULTS

C.1 Linear Regression: Wave Steepness 1/41.4

(a) Sway Motion (b) Sway RAO

(c) Heave Motion (d) Heave RAO

(e) Roll Motion (f) Roll RAO

Figure C.1: Linear Regression Results for Steepness 1/41.4
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C.2. LINEAR REGRESSION: WAVE STEEPNESS 1/27.9

C.2 Linear Regression: Wave Steepness 1/27.9

(a) Sway Motion (b) Sway RAO

(c) Heave Motion (d) Heave RAO

(e) Roll Motion (f) Roll RAO

Figure C.2: Linear Regression Results for Steepness 1/27.9
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X



Appendix D

Neural Network

Section D.1 plots the Neural Network prediction in Sway Motion and RAO.

Section D.2 plots the Neural Network prediction in Heave Motion and RAO.

Section D.3 plots the Neural Network prediction in Roll Motion and RAO.

Figure D.1 plots the results for wave steepness 1/55.7.

Figure D.2 plots the results for wave steepness 1/41.4.

Figure D.3 plots the results for wave steepness 1/27.9.

Table D.1 shows the combinations of configurations tested for the Neural Network

optimisation. The two columns to the right show the Coefficient of Determination

and the Mean Absolute Percentage Error of the predictions made by the tested con-

figuration.

In Table D.2 the results for ten runs for each of the motions and RAO models are

presented and the average value of the errors, R2 and MAPE.

XI



APPENDIX D. NEURAL NETWORK

D.1 Neural Network: Sway Prediction
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D.2. NEURAL NETWORK: HEAVE PREDICTION

D.2 Neural Network: Heave Prediction
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APPENDIX D. NEURAL NETWORK

D.3 Neural Network: Roll Prediction
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D.4. NEURAL NETWORK: WAVE STEEPNESS 1/55.7

D.4 Neural Network: Wave Steepness 1/55.7

(a) Sway Motion Prediction (b) RAO Sway Prediction

(c) Heave Motion Prediction (d) RAO Heave Prediction

(e) Roll Motion Prediction (f) RAO Roll Prediction

Figure D.1: Neural Network: Response Predictions for Wave Steepness 1/55.7
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APPENDIX D. NEURAL NETWORK

D.5 Neural Network: Wave Steepness 1/41.4

(a) Sway Motion Prediction (b) RAO Sway Prediction

(c) Heave Motion Prediction (d) RAO Heave Prediction

(e) Roll Motion Prediction (f) RAO Roll Prediction

Figure D.2: Neural Network: Response Predictions for Wave Steepness 1/41.4
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D.6. NEURAL NETWORK: WAVE STEEPNESS 1/27.9

D.6 Neural Network: Wave Steepness 1/27.9

(a) Sway Motion Prediction (b) RAO Sway Prediction

(c) Heave Motion Prediction (d) RAO Heave Prediction

(e) Roll Motion Prediction (f) RAO Roll Prediction

Figure D.3: Neural Network: Response Predictions for Wave Steepness 1/27.9
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D.6. NEURAL NETWORK: WAVE STEEPNESS 1/27.9
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