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Abstract

Local slamming on an aquaculture barge will occur on a deck that is located lower than
the main deck. The problem is dependent on the global motions of the structure. If
the structure has decks that are located at the port- and starboard side, then the global
roll motions will be essential for the problem. By obtaining correct global motions, the
relative velocities of the structure and the waves can be calculated, which is further used
in the slamming analysis. This consists of estimating correct global motions of a floating
barge structure, conducting laboratory work, and making a similar numerical model in
the potential solver, WADAM.

An estimation of roll damping ratio to a barge with sharp edges is conducted. The
results are compared with experiments where linear waves with different wave periods
and wave steepness are tested. The experiments are conducted in a small towing tank,
”Lilletanken”, at the Center of Marine Technology at NTNU. A rectangular shaped model
with a scale of 1:25 is built, and a plate made by aluminum is used to act as the small
platform. Between the attachment point of the platform, a force sensor is used to measure
the slamming force from the global motions and from the waves. A decay test is performed
in all six global motions, and the natural period in heave and roll are approximately 7.6s
and 12.05s respectively in full scale. This corresponds well with the results from the
potential solver.

Two laboratory experiments are conducted. One in January and one in April. The tests
from January consist of different regular waves with many various steepness, but few
wave periods. It is observed that the global motions are largest at the steepest waves,
and the slamming forces at the platform are largest when the structure is moving in heave.
Furthermore, from the analysis of the results, it is decided to run more tests with more
wave periods. Therefore, another experiment in April is conducted. The results from
April show that the model is exposed to parametric instability when an incoming regular
wave with full scale wave periods 6.0s up to 6.4s are tested. This instability is observed
to be greater for large wave steepness.

Comparison of the results from the experiments and the numerical simulations show
that the method for estimating the damping ratio is conservative. The results from
the experiments are more damped at the resonance region than the simulated results.
With an exception at the resonance region, the global roll motions obtained from the
experiments correspond well with the numerical results. The wall effects are simulated
by using mirroring techniques, and show consistent results with the experimental results.

Time series of the slamming forces are demonstrated. It is observed that the time duration
of the high impact force is short, while there exist forces with negative values that have
longer time duration after the impact. A sensitivity test of the frequency range for the
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filtering process of the measured slamming forces is conducted. The results show that the
filter type should be a low-pass filter with a cut-off frequency at 200Hz. The measured
slamming forces are compared with the analytic results calculated from Wagner model.
Due to large uncertainties of the deadrise angle, the analytic results did not correspond
well to the experimental results. However, the estimated slamming forces show an upper
and lower limit of the measured time series.

From the results of slamming force obtained from the experiments, it is shown that the
slamming forces are dependent on various parameters. The main parameters that change
the slamming forces are wave steepness, relative velocity, water density, added mass and
global motions.

A perforated plate with same dimensions as the solid plate is tested. The results of the
slamming forces are compared to each other, and they show that the peaks of the impact
force are much lower for the perforated plate.



Sammendrag

Lokal slamming p̊a en havbruksfôrfl̊ate vil inntreffe p̊a et sidedekk som er plassert la-
vere enn hoveddekket p̊a fôrfl̊aten. Dette problemet er avhengig av globale bevegelser
av strukturen. Hvis strukturen har dekk som er plassert p̊a styrbord og babord side,
vil rullebevegelser være essensielle i analysen. Ved å f̊a estimert korrekte globale beveg-
elser kan den relative hastigheten mellom strukturen og bølgen bli beregnet, og brukes
videre i slammingkraftanalyse. Dette innebærer å estimere korrekte globale bevegelser
p̊a fôrfl̊aten, gjennomføre laboratorieforsøk og lage en numerisk modell i programmet,
WADAM.

Dempingsforhold til rullbevegelse av en lekter med skarpe hjørner er estimert. Re-
sultatene er sammenlignet med forsøksresultatene hvor lineære bølger med forskjellige
bølgeperioder og bølgesteilheter er testet. Forsøkene er gjennomført i den lille slepetanken,
”Lilletanken”, hos Marinteknisk Senter p̊a NTNU. En rektangulær modell med skala 1:25
er brukt, og en plate laget av aluminium er brukt som platformen p̊a lekteret under
forsøkene. Mellom festepunktet p̊a platformen finnes det en kraftsensor som måler slam-
mingkreftene. Dempingstester er gjennomført for alle seks frihetsgrader, og den naturlige
perioden i hiv og rull er henholdsvis tilnærmelsesvis 7.6s og 12.05s i fullskala. Dette
stemmer godt med resultatene beregnet fra WADAM.

To forsøksrunder har blitt gjennomført, en i januar og en i april. Testene fra januar best̊ar
av forskjellige regulære bølger med mange bølgesteilheter, men med f̊a bølgeperioder.
Det er observert at globale bevegelser er størst i bølgene med størst steilhet, og slam-
mingkreftene p̊a plattformen er størst n̊ar lekteren beveger seg i hiv. Fra analysene av
resultatene er det bestemt å kjøre flere tester i april. Resultatene i april viser at modellen
er utsatt for parametrisk ustabilitet n̊ar en bølge med fullskala perioder fra 6.0s til 6.4s
er testet. Denne ustabiliteten er større for store bølgesteilheter.

Sammenligningen av resultatene fra forsøkene og de numeriske simuleringene viser at
metoden for rulldemping er konservativ. Resultatene fra forsøkene er mer dempet i reso-
nansomr̊adet. Globale rullebevegelser målt i forsøkene stemmer godt med de numeriske
resultatene, men med unntak i resonansperiodene. Veggeffekter er simulert ved bruk av
speilingsteknikk, og simuleringsresultatene er konsistente med de målte dataene.

Tidsserier av slammingkreftene er presentert. Det er observert at tidsvarigheten for
slagkraften er svært kort, og det er krefter med negative verdier som har en lenger
tidsvarighet etter slaget. En sensitivitetstest av filtreringsprosessen av slammingkreftene
er gjennomført. Resultatene viser at for en lavpassfiltrering, bør verdien for den øver-
ste grensefrekvensen være 200Hz. De målte slammingkrefene er sammenlignet med de
analytiske resultatene som er beregnet ved å bruke Wagner modell. P̊a grunn av en
stor usikkerhet p̊a innfallsvinkelen, samsvarer ikke de analytiske resultatene godt med
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forsøksresultatene, men de viser en øvre og nedre grense p̊a slammingkreftene. Slam-
mingkreftene fra forsøkene viser at slammingkrefter er avhengig av ulike parameter som
bølgesteilhet, relativ hastighet, tettheten p̊a fluidet, tilleggsmasse, og globale bevegelser.

En perforert plate med like dimensjoner som den massive platen er testet med samme
bølgeserier. Resultatene er sammenlignet, og viser at kraftamplituden p̊a den perforerte
platen er lavere enn den massive platen.
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1 Background

1.1 Introduction

The salmon industry has been growing in the recent years, and Norway has become one
of the leading countries in aquaculture of Atlantic salmon according to [Lekang, 2017].
The increase of the world population has caused the need of larger, and more efficient
fish farms in order to meet the global demand. Today many suitable sites for fish farming
are in use, and it has been difficult to find more approved sites. Therefore, it has been
suggested to move aquaculture into exposed locations. One of the advantages is that
the fish will gain an optimal growth. If aquaculture takes place at a sheltered area, the
bottom area will have accumulation of decomposition from the fish, which will result an
anaerobic environment in the water. This effect will harm fish growth.

In exposed water, the weather and environment are expected to be harsher. Therefore,
higher standards and stricter rules for the equipment are required. Feed barge is one of
the main important tools used in fish farming, and it is considered as the brain of the
cage farming system. A vulnerable area of an aquaculture feed barge can be the side deck
that is mounted on the main hull. On this deck, pumps that transport the fish food into
the fishing nets can be installed. These decks lie lower than main deck, and hence the
chance for local slamming damage is large. Damages on the decks will cause the pumps
to slide off, or the pumps may even break off from the feed barge. This will give severe
consequences.

A feed barge’s main task is to store fish food and to provide the crew a place to stay when
they are working at the farm. Therefore, safety and comfort are two important design
requirements. The barges that are constructed today are said to be able to store 750
tons of fish food in addition to providing a control room and living quarter for the crew.
According to [Steinsvik, 2017], feed barges are classified into classic and modern barges.
Typical geometry of the feed barge is a rectangular shaped floating structure which is
moored on the sea bed. A few design concepts are shown in figure 1.1 and 1.2.
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2 CHAPTER 1. BACKGROUND

Figure 1.1: Classic feed barge designed by [Steinsvik, 2017]

In recent years, more modern design of the feed barge has been made. The shape is still
rectangular, but the compartments on the main deck are improved due to the need for
more efficient operations. This can be seen from the concept design of [Steinsvik, 2017]
in figure 1.2. As the figure shows, the design concept contains side decks that will be
vulnerable to slamming loads.

Figure 1.2: Modern concept design for a feed barge

Since early 2018, it is reported that side decks of active feed barges have been knocked off
in harsh weather conditions. However, no serious consequences occured with only small
local damages.
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1.2 Previous related studies

Various practical slamming problems for ships and ocean structures are summarized in
[Faltinsen et al., 2003]. The paper first discusses water entry problems on an initially
calm water free surface, followed by other topics such as wet-deck slamming, green water
slamming and sloshing. Challenges and current research status of the related topic are
discussed in detail. In the conclusion, it is stated clearly that the general slamming
phenomenon is a major concern for marine operations and applications. Furthermore, the
slamming may be caused by breaking waves, which can cause impact loads on ship hulls
and offshore platforms. The run-up of the waves can cause local damage on the platform
deck, and this can in addition cause free surface effect due to increased fluid. The latter
case is referred as green-water slamming. The slamming phenomenon can furthermore be
caused by unexpected large waves, which leads to the importance of stochastic analysis
of a sea state.

Slamming can often be connected to a sloshing problem, which is a non-linear behaviour
of the fluid. If violent fluid motion occurs, there is chance that large slamming load may
take place. A sloshing problem is usually related to a partially filled tank. However, it
can be related to ship motions when surge, sway, roll, pitch and yaw motions are within
the frequency range of the lowest natural frequency of the fluid motions. Therefore,
it is important to estimate the global motions. However, the main interest related to
sloshing is the highest natural period of the fluid motions. The tools for the analysis
of the problem are mainly based on the Computational Fluid Dynamics (CFD). The
solution will be in the time domain due to the non-linearities that are associated with
the free surface conditions. There are varieties of numerical methods to provide the
solutions. The common used CFD method is based on the so-called Reynolds-Averaged
Navier-Stokes Equations (RANSE). However, the drawback is that it is costly and time
consuming. Other methods, such as the Finite Volum Methods (FVM), Finite Difference
Methods (FDM) and Finite Element Methods (FEM) are also common to use, and they
are used to solve field equations. There are methods that are based on field discretization
to handle a nonlinear free-surface motion. Boundary Element Methods (BEM) are also
used for such problems, and they are based on a velocity potential that satisfies the
Laplace equation. In recent years, Smoothed Particle Hydrodynamics (SPH) has been
used for solving sloshing problems, and results presented in [Faltinsen et al., 2003] show
good greement with the solution obtained from BEM. The SPH is proved to be more
robust than BEM when the simulation involves wave breaking phenomenon after long
time simulations.

1.2.1 Water entry on an initially calm free surface

The first contribution to analytic slamming analysis and impact problems was done by
von Kármán (1929). His work is about stress analysis on seaplane floats. The objective
in his work [Karman, 1929], was to determine the maximum pressure that acted on the
floats during a plane’s landing process. A theoretical formula for the maximum pressure
during the landing was developed and checked with experimental results. The conclusion
states that the results coincide with the experimental results except for the flat bottom
impact. The theory can be applied to different bodies with different velocities.
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The formula of impact pressure is established in detail in [Karman, 1929] where the model
is considered as a horizontal cylindrical body in wedge shape with a deadrise angle. A
deadrise angle is the angle of the inclination of the wedge shown in figure 1.3, and denoted
as β. The established mathematical formulas give an analytic expression for the impact
force acting on the body. The basis of the derivation is the momentum theory with some
approximations. It is assumed that the momentum theory for a long plate with a specific
width is used. This leads to that the mass of the plate is equal to the fluid mass that is
contained in the cylinder with a diameter that is equal to the width of the plate. This
cylinder will be composed with half water and half of air, which leads to an effect of the
seaplane float to accelerate the water particles before it, and suck in the air behind it.
However, the effect of the air can be neglected as its density is small compared to water
density. Therefore, it is assumed that only half of the apparent mass is increased. This is
why the added mass is only half of the apparent mass. It is important to note that the
effect of buoyancy decreases the momentum, but it is neglected in this case. With this,
the force of the impact can be expressed as in [Karman, 1929] along with the formula of
the average pressure. It is noted that the formula can only be applied in two dimensional
cases.

Figure 1.3: Parameters used in the Wagner model for an edge impact problem

The effect of the hydroelasticity due to compressible fluid has been studied in water entry
problems. In [Faltinsen et al., 2003], it is stated that an important parameter that governs
the hydroelasticity is the ratio between the loading time and the highest natural period for
the local structural vibration in the impact area. By considering the wedge shaped cross
section as shown in figure 1.3, it is stated that the hydroelasticity should be considered
if the deadrise angle is less than 5 degrees. However, this effect is not important in the
analysis of the maximum structural stress in general. On the other hand, there has been
research about the air cushion effect that may be important if there are several dominant
natural periods of the structural vibrations. All the findings are related to analysis in two
dimensional flow. In reality three dimensional effects may reduce or increase the effects
estimated in the 2D flow.

The edge impact problem shown in figure 1.3 is described by the Wagner model (1932).
The theory assumes that no hydro-elastic effects are present during the impact, and the
potential theory is applied where no air influence is considered. Wagner considered the
effect of the spray roots during the impact, which was different from the work done by von
Kármán (1929) who assumed no water rise after the impact. Wedge theory by Wagner
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(1932) may be considered as an extension of the von Kármán theory by taking the local
jet analysis into consideration.

1.2.2 Plate impact

Further investigation of the water entry problem is followed by the plate impact problem.
This problem is similar to the case of the edge impact, and the study of a bottomed float
from [Karman, 1929]. It is shown that a plate impact will give an infinite impact pressure
due to the assumption of incompressible fluid. In [Karman, 1929], it has been suggested
that the compressibility must be taken into consideration for this case. A possible formula
of an approximated maximum pressure from the impact can be derived as a function of
the velocity at the moment of the first contact of the body and the water, and the sound
in the fluid.

Research of an early stage for floating plate impact was done by [Korobkin and Iafrati, 2017],
where the initial flow close to the plate edges is approximately self-similar. The research
was first used to investigate the rough landing of airplanes, but the theory can be applied
to impact problems in liquids. The study is closely followed by the edge impact problem.
The main differences are the free surface elevation areas. From the edge impact problem,
the free surface elevations will not detach abruptly from the body surface. Whereas in
the plate impact, the plate edges act as the separation point. This may cause the flow to
be unsteady. The solution of the problem is to solve a boundary value problem. However,
this solution cannot satisfy the conditions at the plate edges.

1.2.3 Violent sloshing problem

The current impact problem on the side deck of the feed barge is similar to a tank sloshing
problem as illustrated in figure 1.4. The current local slamming problem is considered as
a rigidly fixed deck to the barge with analogy to a sloshing problem where the water is
violently moving near the corner of the tank roof. The flow caused by the roof impact due
to sloshing can be modelled by a Wagner approach as proposed in [Faltinsen et al., 2003].
During the impact, the free surface is assumed to be in a parabolic shape that has an
impact velocity which varies with time. The energy of the jet flow consists of kinetic and
potential energy with the assumption that the energy are dissipated during the impact
moment. Other important assumptions are standing waves of the resonant fluid motion
and a rigid tank.

Figure 1.4: Three cases for tank roof slamming related to a tank sloshing problem pre-
sented in [Faltinsen and Timokha, 2009]
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In [Faltinsen and Timokha, 2009], the problems listed in figure 1.4 are related to cases
of flat impact with oscillating air cavity that is associated with a finite depth of tank
filling. This problem can be related to a deck slamming with finite water depth. It
is suggested that the high slamming pressure might be the cause of small distance of
the impact free surface and the tank surface. Furthermore, the slamming pressure is
sensitive to the details of the impact free surface. The experimental results presented in
[Faltinsen and Timokha, 2009] show a stochastic manner of the slamming pressure, even
if the excited waves are harmonic. From the structure point of view, the stresses may not
have a similar behaviour as the pressure during the impact. Therefore, it is concluded
that the slamming pressure is not a good measurement parameter for the analysis of the
slamming phenomenon. This is because the measurement of the slamming pressure is
usually high, and it is normally limited in space and time. The slamming force is a more
reliable parameter from the experiments, even though the accuracy is not very high.

Model tests are usually performed for assessment of slamming loads. Based on the sim-
ilarity requirement of the model and the full scale, many of the flow parameters should
ideally be the same. The sloshing is also associated with gravity waves, which requires
Froude scaling. However, Reynolds scaling should be considered if there are dominating
viscous effects.

Computational methods such as CFD, that has been mentioned earlier, is a common tool
to assess the slamming loads and sloshing problems. However, experiences from
[Faltinsen and Timokha, 2009] show some difficulties to use this method in the initial
impact stage if the angle between the impact surface and the tank surface is small, because
the CFD is usually based on the Wagner model (1932). This will give the program a crash
when the deadrise angle is small, because the solution gives an infinite rate of change of
the wetted surface. However in 2007, a stretched coordinate system was introduced and
it may be used to solve this problem.

The slamming problem cannot be solved by theoretical study alone. In
[Faltinsen and Timokha, 2009], it is stated that the state of art of the methods do not
permit a purely theoretical analysis. It is recommended that model tests should be a basis
of the structural design and analysis.

1.3 Present study

In this thesis, the global motions and the local slamming forces of a feed barge are inves-
tigated. This is done by conducting both experiments and numerical calculations with
a free floating barge structure. Scale effects of the experiments are considered to be a
minor concern, as the main focus is the global motions and the local slamming forces.
The numerical simulations are carried out based on the experiments. This means that
mooring line pretensions, mass properties and loading conditions are modelled as the set
up in the laboratory.



1.3. Present study 7

1.3.1 Motivation

Slamming can be considered as an initial phase of a water entry problem. By water
entry, it means that the moment when a body enters the water and the wetted surface
area of the body increases with time. Slamming is characterized by a very small time
scales and initial impact loads, and the slamming load is a concern to structure integrity.
If slamming occurs when a ship has forward speed, the vessel may experience a speed
loss. Slamming can in addition excite a whipping phenomenon, which is a global elastic
transient resonance oscillations. Furthermore, fatigue is also a problem if the impact
forces are periodic. This is a consequence of impacts that will not lead to serious damage
after one impact, but result to a fatigue failure and cause small local damages. For ships,
periodic slamming might in addition give concern for carrying out operations and on-
board comfort. If hydroelasticity occurs during an impact, this will result in cavitation
and ventilation. To summarize, the slamming phenomena is a concern and it is undesired.
It is important to have a proper method to predict slamming and learn the characteristics
related to the problem.

1.3.2 Objectives

The purpose of this thesis is to estimate the global motions of a feed barge with a loading
condition, and establish the characteristics for the local slamming analysis on the deck.
Experiments are carried out relating to the topic and for the validation of the numerical
simulations. The main objective of this project is described in the following steps:

1. Use the potential solver, WADAM, to obtain the global motions numerically

2. Investigate roll damping of the barge, and obtain correct roll motion characteristics

3. Carry out laboratory experiment, and post-process measured data

4. Compare the measured experimental results with the simulation results

5. Study the impact problem of a wedge-shaped structure, and use the analogy for the
current problem

6. Establish simple characteristics for the slamming force of the side deck, and find
out parameters that are essential for the slamming force

Simple experiments will be carried out in the small towing tank, Lilletanken, at the Centre
of Marine Technology. The experiment will be based on a box shaped model with 1:25
scale. Responses of the model in regular waves with different steepness and periods will
be tested. The measured global motions will be compared with the responses calculated
from WADAM, where estimated roll damping is applied.

Time series of slamming forces on the side deck will be studied. The analytic method for
slamming analysis will be compared with the results obtained from the experiments. The
aim is to understand the basic characteristic of the slamming force and find a method to
estimate it.
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1.3.3 Assumptions

Based on a report written by [Moran, 1965], in order to simplify the mathematical problem
of the flow around the body, assumptions are used in this thesis. In this report, the
problems for water-exit and -entry are discussed. As slamming can be considered as an
initial phase of a water entry problem, it is reasonable to utilize the assumptions related
to these topics.

The main assumptions are the requirements to make the potential theory valid. This
means that the flow has to be irrotational, incompressible and inviscid. The assumption
of an irrotational flow is justified in [Moran, 1965] as the viscous effect on the pressure
during the impact is generally small. The incompressible flow is based on the speed of
the body when it enters the water, which is generally well below the speed of the sound
in water. This leads to a negligible effect of compressibility of the water. By applying
these assumptions to the mass continuity equation, the well-known Laplace equation
is defined. However, the assumption of the incompressible fluid should be used with
caution. It is stated in [Faltinsen et al., 2003] that it cannot be used in all cases that
are related to slamming problems, as the fact that the water is a compressible fluid that
can cause hydroelasticity, air bubbles and air cushions, which will affect the results. It
should be noted that in cases with small effect of these elements, it is valid to neglect the
interaction effect between water and air. However, there are some specific cases listed in
[Faltinsen et al., 2003] where air cushion is formed, and compressibility should be taken
into consideration in the analysis.

The air density and the surface tension are neglected. This is due to that the factors are
generally unimportant during the slamming analysis. However, according to the report
by [Moran, 1965], they have a small significance, but not an essential role in an analytic
solution.

It is assumed that the gravity can be neglected. This means that the Froude number is
infinite. This is justified as the gravitation will not be essential during very short impact
time frame. Furthermore, it is assumed that no cavitation takes place during the impact.
However, this might be questionable during the initial impact phase of a water entry
problems as there is clear chance that the cavitation might occur. [Moran, 1965] has
stated that neglecting cavitation is one of the major defects of the theory about water
exit- and -entry. This is due to that there will be two free surfaces and the flow will be
unsteady. Unfortunately, there are currently no techniques that are capable to cope with
these two effects.

1.3.4 Approach

The problem of the side deck impact is caused by the global motions of the barge. The
motion of the barge can be solved by the potential solver program in frequency domain,
WADAM. This program is based on potential theory applied to a panel model. The
interactions of the waves and the rigid body are calculated as body motion response
amplitude operators and panel pressure responses.

Because the location of the side deck is usually on the starboard and portside of the
structure, one of the most important motions out of the six global motions is the roll.
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It is therefore essential to have a good estimate of the roll damping. According to
[Dhavalikar and Negi, 2009], additional damping is needed in the numerical simulations.
A method for estimating the nonlinear roll damping has been suggested, and experiments
have been carried out in order to validate of this method. The exact roll damping can
be obtained form the experiments by comparing the roll response with the numerical
simulations.

The slamming is caused by the rate of change of the added mass. Hence, it is important
to obtain the added mass during the slamming events. However, this is not possible with
the test set up and equipment of the experiments conducted related to this thesis. From
the time series of slamming forces in the experiments, it is shown that the slamming
forces are largest when the body experiences a blunt impact. This means that the heave
response will be more crucial than roll.

There are some waves that cannot be made during the experiments. This is due to the
limitations of the wave maker. It is known that too large accelerations will cause errors
which instantly stop the wave maker from working. This is usually related to long and
high waves with large periods and large steepness. Due to this limitation of the wave
maker, the maximum flap motion is limited to 0.3m from its zero position, and it has
later been taken to be 0.2m.

1.3.5 Structure of the thesis

This thesis focuses on the linear responses of a floating barge and the slamming responses
on the deck. In Chapter 2, the basic theory is outlined. The procedure of the numerical
simulations in WADAM is explained in detail in Chapter 3, and the input parameters
and mass properties of the numerical panel model used in the simulations are presented.

The experimental results and the data processing of the measured quantities are pre-
sented in Chapter 4. The comparisons and discussions of the results obtained from the
simulations and experiments, and the list of further work are presented in the last two
chapters.
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2 Theory

2.1 Scaling

Scaling is important when a physical model is to be used in experiments. This means
that the physics on the model size should be similar as in full scale. According to
[J.Kirkegaard et al., 2011], many considerations should be taken into account in the scal-
ing process. The process shall be based on past experiments, and the dominant forces
must be well represented.

From the past experiences, Froude scaling is used, because the main concern is the wave
induced motions. [Faltinsen and Michelsen, 1974] carried out an experiment of a box
shaped model with 1:100 scale. The objective was to find the wave excitation force and
moment, and the motions in the six degrees of freedom. The results were stated to
correspond well with the theoretical predictions. As the waves are gravity driven forces,
Froude scaling is a suitable scaling parameter. This is given by the Froude number, which
is the relationship between the inertia and gravity forces as given in equation 2.1.

Fn =
U√
gL

(2.1)

By using Froude scaling, it is required to have same Froude number for both model and
full scale. By using this procedure, the relationship of the different parameters and the
scaling factor can be obtained as shown in table 2.1.

Table 2.1: Scaling factors relationship

Parameter Scaling factor Parameter Scaling factor
Length λs Mass λ3s
Surface λ2s Force λ3s
Volume λ3s Density 1

Time
√
λs Kinematic viscosity λ

3/2
s

Velocity
√
λs Dynamic viscosity λ

3/2
s

Acceleration 1

11
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2.2 Motion response

The motion response of a floating body is based on the linear theory. The incoming waves
are assumed to be regular waves with different frequencies that can be superimposed to
give an irregular sea state. The transient effect is neglected, therefore the response of
the body will consist the same oscillation frequency as the incoming waves. According
to [Faltinsen, 1993], the hydrodynamic problem of a body with incoming waves can be
separated into two sub-problems. The two different force components can be found inde-
pendently. Due to the linearity, superposition can be used to obtain the total force. The
two force components are the excitation forces and the hydrodynamic forces.

The excitation forces are the forces and moments on the body from the incident waves
when it is restrained from moving. In other words, it is a sum of Froude-Kriloff and
diffraction forces. The hydrodynamic forces are forces from added mass, damping and
restoring when the body is free to oscillate in all rigid body modes in the incident wave
frequency. This is illustrated in figure 2.1.

Figure 2.1: Superposition of the excitation forces and hydrodynamic forces from
[Faltinsen, 1993]

By superimposing the two forces, the equation of motion in all rigid body modes can be
obtained as in equation 2.2.

6∑
j=1

[(Mij + Aij)η̈j +Bij η̇j + Cijηj] = Fie
−iωet (i = 1, ..., 6) (2.2)

ωe denotes the encounter frequency, and it is the same as the frequency of the incident
waves if the forward speed of the body is zero. The indices i and j refer to the motion
modes of the rigid body motions, which are translations and rotations about different
axis. An overview of the motions are shown in table 2.2.

Table 2.2: Overview of the 6 rigid body motions

Axis Translation Rotation
x η1 Surge η4 Roll
y η2 Sway η5 Pitch
z η3 Heave η6 Yaw
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Solution of equation 2.2 gives the motion at any point of the body as expressed in formula
2.3.

s = η1i + η2j + η3k + ω × r (2.3)

In the equation, ω × r indicates the contribution from the rotations by cross multiplying
the rotations with the position vector. The values of the vector ω and r are described as
following:

ω = η4i + η5j + η6k r = xi + yj + zk (2.4)

Thus, the motion at any point on the body can be written as equation 2.5.

s = (η1 + zη5 − yη6)i + (η2 − zη4 + xη5)j + (η3 + yη4 − xη5)k (2.5)

If the incident waves are assumed to be sinusoidal, the response will be in the form as
expressed in equation 2.6.

ηj = ηaj sin(ωt+ εj) (2.6)

Where ηaj is the amplitude of the response in motion j, and εj is the corresponding phase
between the wave and the response.

2.3 Mass-spring-damper relation

The ordinary differential equation (ODE) described in equation 2.2 in Chapter 2.2 is a
mass-spring-damper system. The origin of the equation is based on from Newton’s second
law. If the initial conditions are assumed to be zero, by the Laplace transform, the ODE
can be transformed into a polynomial equation as shown in equation 2.7.

[Mij + Aij)s
2Y (s) +BijsY (s) + CijY (s) = U(s) (2.7)

Here, Y (s) is the Laplace transform of the output signal and in this case it is the body
motion, ηij. Similarly, U(s) is the Laplace transform of the input signal. The transfer
function, often taken as the response amplitude operator (RAO), is the ratio of the output
signal and the input signal. For a mass-spring-damper system, the transfer function is
expressed as in equation 2.8.

Y (s)

U(s)
=

Fj
[Mij + Aij]s2 +Bijs+ Cij

(2.8)
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2.4 Ordinary differential equation

The motions of a floating body are obtained by solving the boundary value problem
described in Appendix A.2, which is a second order differential equation (ODE). Many
numerical solver are designed to solve a first order ODE. Conversion of the higher order
ODE into a set of first order ODE is therefore necessary. The response in one motion will
be in a form as expressed in formula 2.2 in Chapter 2.2. This can be converted into two
first order ODE by introducing two state variables, ηjk1 and ηjk2 . Following derivations
and replacement of the two states must be carried out:

ηjk1 = ηjk → ˙ηjk1 = ˙ηjk

ηjk2 = ˙ηjk → ˙ηjk2 = η̈jk
(2.9)

This gives a set of first order ordinary differential equation expressed as in formula 2.10.

˙ηjk1 = ηjk2

˙ηjk2 = − Bjk

(Mjk + Ajk)
˙ηjk −

Cjk
(Mjk + Ajk)

ηjk +
Fj

(Mjk + Ajk)
e−iωet

(2.10)

2.5 Roll motion

Motions in all 6 degrees of freedom will naturally be coupled to each other. However, due
to the structure symmetry the motions can be decoupled if the reference point is taken
at the center of the symmetry plane. If the roll motion is decoupled with sway and yaw,
the equation is reduced to formula 2.11.

(I4 + A44)η̈4 +B44η̇4 + C44η4 = F4 (2.11)

As mentioned, the damping can be non-linear. Consider a non-linear roll damping, the
equation for roll motion can be written as following according to [Zhao et al., 2016]:

(I4 + A44)η̈4 +BLη̇4 +BN η̇4|η̇4|+ C44η4 = F4 (2.12)

Where BN and BL denote non-linear and linear damping coefficients respectively. The
non-linear term of damping can be important in some cases. From the experiments per-
formed by [Vugts, 1968], it is observed that the linear damping differs from the calculations
of the experimental results for models with a certain beam and draught ratio. The results
of the two dimensional roll wave damping are plotted against the beam-draught ratio for
a rectangular cross section. This is shown in figure 2.2.
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Figure 2.2: Results obtained from experiments in [Vugts, 1968] where two dimensional

wave damping B
(2D)
44 is plotted against a rectangular cross section with different beam-

draught ratio in infinite water depth. The roll axis is taken at the mean free surface

The non-linear damping coefficient can be estimated with a method which replaces it
with an equivalent linearized damping coefficient. This method assumes that the energy
dissipated during a half cycle of roll motion is equal to the damping. From the lecture
notes in Marine Operations [Nielsen and Berg, 2007], the equivalent linearized damping
coefficient is expressed as following:

Be = B1 +
16xn
3Tn

B2 = B1 +
8

2π
ωnxnB2 (2.13)

Where Tn is the time between two roll peak motions, and xn is the roll motion amplitude
of interest. The linear and non-linear damping coefficients can be found by plotting Be

against the average roll amplitude by linear regression.

Roll natural frequency is dependent on the metacentric height which is expressed in equa-
tion 2.14. The value is the distance from the center of gravity to the metacenter.

GM = KB +BM −KG (2.14)

In formula 2.14, KB denotes the distance from keel to buoyancy center of the structure,
and KG the center of gravity measured from the keel. BM is the distance from buoyancy
center to metacenter, which is the ratio of the second moment area, I, and the displaced
volume, ∇. The natural period in roll is a function dependent on GMT in transverse
direction. From [Faltinsen, 1993], the natural period in roll is expressed as in 2.15.

Tn4 = 2π

√
Mr244 + A44

ρg∇GMT

(2.15)

Where r44 is the roll radius of gyration with respect to x-axis through the center of gravity.
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2.6 Damping

The barge is modelled as a rectangular box with sharp edges. This will create nonlinear
viscous damping and must be treated as an additional external damping in the potential
solver, WADAM. The external damping is usually taken as a certain percentage of the
critical damping in the respective rigid body motion. This is the damping ratio, and the
method presented in this chapter is used to estimate the quantity of this ratio.

2.6.1 Estimation from the decay test

The damping can be estimated from a decay test as stated in [Steen, 2014]. The solution
for a dynamic system which takes form as Mẍ+ bẋ+ kx = F is expressed as in equation
2.16.

x = e−
b

2M
t±iωt (2.16)

By writing only the real part of equation 2.16, the solution will be as following:

x = e−
b

2M
t cosωt (2.17)

Equation 2.17 illustrates that the motion amplitudes follows an exponential function, and
hence the damping coefficient can be estimated as expressed in formula 2.18.

β =
b

bcrit
=

1

2πn
ln
x1
x2

(2.18)

Where n is the number of oscillations for average value of the damping. x1 and x2 are
two peaks from the amplitudes of the oscillations from the decay test. The first peak with
the largest value is x1, and x2 is the value of the last peak in n periods. The damping
estimated from this method is the linear damping.

For a non-linear damping model as mentioned in equation 2.12 in Chapter 2.5, the
quadratic damping can be estimated by assuming that the decay oscillation is reason-
ably harmonic over each half cycle according to [Zhao et al., 2016]. The non-linear term
can be linearized by a Fourier series expansion, and the results can be formulated as in
equation 2.19.

ẋ|ẋ| = 8

3π
ωnxiẋ (2.19)

With this relation, the dynamic system will have different equation which gives the rela-
tionship for the two peaks from the decay test as following:

1

π

lnxi−1 − lnxi+1

2
= B1 +

4

3π
xiB2 (2.20)
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Equation 2.20 is a linear function with the coefficients B1 and B2 representing the linear
and non-linear damping coefficients respectively. The values of the left hand side and xi
are plotted and fitted with linear regression.

With the damping ratio known, the natural frequency of the damped, freely oscillating
system will have a natural frequency ωd as expressed in equation 2.21.

ωd = ωn
√

1− β2 (2.21)

2.6.2 Estimation of roll damping

This chapter is based on the paper written by [Dhavalikar and Negi, 2009], which de-
scribes the empirical method used for roll damping. A MATLAB script has been made.
The method is empirical and is accurate if the resonance frequency is close to unity. The
method can be used to estimate the damping ratio. The critical damping for a system is
expressed as in equation 2.22.

Bcrit = 2
√
Cjk(M + Ajk) (2.22)

The method for estimating of roll damping is a sum of skin friction damping, eddy making
damping, free surface wave damping, lift force damping and bilge keel damping. It is
stated in the paper, that the main contributions of the roll damping are hull skin friction
damping and the hull eddy shedding damping for a barge with sharp corners.

Friction damping

The formula of the friction damping is given as an empirical formula expressed in equation
2.23.

Bf0 =
4

3π
ρSr3eR0ωCf (2.23)

Here, Cf is the friction coefficient and is given by formula 2.24.

Cf = 1.328
[ 2πν

3.22r2eR
2
0ω

]0.5
(2.24)

In formula 2.23, re denotes bilge keel radius. Since the barge does not have bilge keel
installed, the value is set equal to 1. R0 is the value of the response amplitude operator
(RAO) calculated without external damping, and is given in radians for rotation motions.
S is the wetted surface area and is given by the following formula:

S = L(1.7D + CBB) (2.25)

CB in formula 2.25 denotes the block coefficient of the structure. The barge is perfectly
rectangular, which gives the block coefficient equal to 1.
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Eddy making damping

Due to sharp edges of the barge, the suggested empirical formula for eddy making damping
is expressed as in formula 2.26.

Be0 =
2

π
ρLD4(H2

0 + 1− OG

D
)
[
H2

0 + (1− OG

D
)2
]
R0ω (2.26)

Where H0 and OG are given as in equation 2.27.

H0 =
B

2D
OG = D −KG (2.27)

Methodology

The sections above give two equations of the estimation for the two different roll damping
components. The total non-dimensional damping ratio is given in expression 2.28, with
B∗44 as the sum of frictional damping and eddy making damping.

βη4 =
B∗44

2
√

(g∆GMt)(I44 + A44)
(2.28)

In the equation, the added mass A44 is frequency dependent. Therefore, βη4 will also be
frequency dependent. The undamped solution from a potential solver must be performed
first, and the damping ratio for all wave frequencies is calculated by using formula 2.28.
A value β′ must be computed as shown in formula 2.29 for all frequencies.

β′ =
1

2βη4
(2.29)

The difference between the estimated ratio and the undamped RAO can be calculated as
shown in formulae 2.30. This must be done for all wave frequencies.

∆β = β′ − undamped RAO in roll [deg] (2.30)

Next step is to determine the value for the last positive number before the sign of ∆β
changes from positive to negative, and the minimum value of ∆β. This is the range where
the values for βη4 are plotted against ∆β. The plot is fitted with least square regression,
and the estimated damping ratio is the intersect point in x-axis of the fitted line. To
summarize, a chart in figure 2.3 gives an overview of the method. This method is used
for all roll damping estimation in the numerical model.
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Figure 2.3: The procedure of the roll damping ratio estimation

2.7 Parametric roll

Parametric roll is defined as a spontaneous rolling motion which can cause a great am-
plitification of roll motions. This is usually related to ships with a forward speed in head
or following seas which causes dynamic instabilities. Parametric roll motion in ships was
first discovered in late 1930s [Sheikh, 2008]. However, it is believed that this phenomenon
was a result of a byproduct and related to small ships with forward speed in following
seas until a few incidents with container ships in 1990. The APL CHINA container ship
was exposed to the parametric roll and was heavily damaged. This brought the attention
to this topic.

Parametric roll is initially triggered by a small disturbance in roll motion. This distur-
bance can cause oscillatory motion that grows large over a few cycles. For ships, it is
defined that the parametric roll occurs when the ship’s encounter frequency is approxi-
mately twice of the natural roll frequency with a damping that is insufficient to dissipate
the roll energy as described in the assessment document by ABS [ABS, 2004]. There has
been large attention which focused on the trigger conditions that causes the instability in
order to prevent this. Some mitigating methods listed in [Sheikh, 2008] are suggested by
adjusting the forward speed, changing direction of the ship, or by installing active fins or
other devices.

The estimation can be done according to [Faltinsen, 2012] by using the classical Mathieu
equation. The theory considers a type of instability that occurs in the same manner
as the parametric roll instability. There are similar requirements for this instability to
occur. As described in [Faltinsen, 2012], it is required that the waves should not change
much in amplitude or period. Due to this, it is expected to be easier to demonstrate
this instability in the experiments with regular and linear waves, rather than irregular
waves. Furthermore, it is required that the ratio between the natural frequency in roll
and the encounter frequency should be approximately 0.5, 1.0, 1.5, 2.0 etc. with a low
roll damping in these regions.

The Mathieu equation is obtained when a damping ratio ξ is set to zero in equation 2.31.

d2η4
dt2

+ 2ξωn
dη4
dt

+ ω2
n(1 +

δGM

GMm

sin(ωet+ β))η4 = 0 (2.31)

The stability as shown in figure 2.4 is dependent on the ratio of the natural frequency
and the encounter frequency, ωn/ωe, δGM/GM and the damping ratio ξ. Here, δGM is
the amplitude of the harmonically oscillating part of the metacentric height. It is shown
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in figure 2.4 that the region for instability lies when ωn/ωe = 0.5, 1.0, 1.5, 2.0 and so on,
when the ratio of δGM/GM is small.

Figure 2.4: Stability diagram for the Mathieu equation for ship rolling motion. The
shaded area represents the stable region when the damping ratio is zero

2.8 Slamming

There have been reviews of the theories for the two cases of slamming with Wagner the-
ory and Korobin theory. These two methods have been used to express the slamming
phenomena in deep- and shallow-water, and especially impacts with small or zero dead-
rise angles. This is reviewed in [Howison et al., 2002] where the two theories have been
analyzed and tested.

Slamming are impulse loads with high pressure that occur during an impact between a
body and water. The characteristic of this phenomena is that the impact loads usually
appear in a very short time. According to [Faltinsen, 1993], slamming has the highest
probability when the relative velocity between the body and the waves is largest. In
addition, the duration of the slamming pressure measured is usually of the order of mil-
liseconds. The pressure from slamming are sensitive to how the water hits the structure.
From an experiment measuring the slamming pressure presented by [Kim et al., 2015], it
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shows that the harmonic oscillations do not give a pressure variation which is also har-
monic. It is observed that the magnitude and the duration of the pressure peaks tend to
vary. This trend is also described by [Faltinsen, 1993].

2.8.1 Analytic studies

It is stated that the first analytic approach of the slamming problem is based on the work
of von Kármán (1929). His method is used to analyze a horizontal cylinder that is forced
through an infinity calm water surface with a constant velocity. Further assumptions made
are that the body has small submergence and that the form is blunt. The potential theory
can in addition be used as the flow is simplified to be irrotational and incompressible.
Details of the analytic slamming theory can be found in Appendix A.4.

Wagner model

This chapter is based on Chapter 11.3.1 in the book Sloshing, written by O.M. Faltinsen
and A.N. Timokha [Faltinsen and Timokha, 2009]. The theory is based on the tank roof
impact inside a tank regarding a sloshing problem. The problem can be theoretically
modelled after the Wagner’s method (1932) with assumption that there is no hydroelas-
ticity. Other assumptions are that the liquid is incompressible with no air influence. The
method also requires that the geometry of the free surface is known at the instant time
of the impact. This can be done by the particle image velocimetry measurements. The
Wagner model is generalized by taking the profile of the tank roof as the edge impact.
This is illustrated in figure 2.5 which is taken from [Faltinsen and Timokha, 2009].

Figure 2.5: Wagner theory applied to the tank roof impact illustrated from
[Faltinsen and Timokha, 2009]

The focus of the method lies on the outer flow domain, which is located below the inner
and jet domains that is illustrated in figure 2.5. The details about the inner domain is
unknown due to the rapid variation of the flow at the spray roots.

The Wagner model presents a symmetric wedge body with edge impact as illustrated in
figure 2.6. The body impacts the free surface with a constant uniform speed V (t) which
comes from the assumption that the case is a local scenario. The vertical velocity of the
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free surface is approximately constant on the length scale of the wetted body due to the
impact.

Figure 2.6: Wagner model of outer flow domain solution and the boundary value problem
of the outer domain analysis. The boundary value problem is represented in the right
hand side figure with a velocity potential φy = ∂φ/∂y

It should be noted that y is used as the vertical coordinate, which should not be confused
with the usual notation as z. The reason for this is that the value z is denoted as a
complex variable in this analysis. The boundary value problem in figure 2.6 must be
solved at each time instant to find the velocity potential φ due to the impact. The body
boundary condition is transferred to a straight line between x = −c(t) and x = c(t)
by using Taylor expansion with the respect to the penetration depth and ignoring the
higher order terms. The endpoints where x = ±c(t) correspond to the instantaneous
intersections between the outer flow free surface and the body surface. This is shown in
right hand side of figure 2.6.

The free surface condition where φ = 0 at y = 0 is because the liquid has an acceleration
that are much larger than the gravitational acceleration during the impact. Furthermore
the free surface geometry is changed to a straight line by neglecting the higher order
terms.

For experimental measurements, it is convenient to represent the slamming force as a
dimensionless coefficient. From experiments conducted by [Smith et al., 1997] with alu-
minum plates dropped in waves, a slam force coefficient expressed in equation 2.32 is
used. The coefficient is based on neglegible effect of gravitational acceleration, water and
air compressibility.

Cs =
Fs

0.5ρV 2lb
where l =

√
m

ρb
(2.32)

Where l is a length scale of the hydrodynamic impact at the time of the maximum
deceleration, b is the plate width and m is the mass. From the various experiments in
[Smith et al., 1997], slamming force is a function of the parameters as shown below:

Fs = Fs(ρ,m, V, β, g,H, λ) (2.33)

Where H and λ are the wave height and wave length respectively, and β is deadrise angle
of the plate.

The theoretical slamming force results for a wedge are shown in figure 2.7 taken from
[Faltinsen, 2012]. The results are based on a constant vertical velocity during the water
entry stage. Wagner’s flat plate approximation is good for structures with small deadrise
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angles, whereas the general method is good for large angles. It is shown that von Karman
solution underpredicts the force.

Figure 2.7: The force prediction distribution during water entry of a rigid wedge with a
constant velocity taken from [Faltinsen, 2012] for different deadrise angles

2.8.2 Added mass effect

The added mass theory is based on the DNV ’s recommended practice DNV-RP-H103
[DNV, 2011]. In the proceedings of DNV, the slamming is modelled as an added mass
effect. The slamming force is a result of the rate of change of the added mass. It is
expressed as a function of the rate of change of the instantaneous high frequency limited
added mass in heave, A∞33, and the slamming velocity vs, that is assumed to be positive
as expressed in equation 2.34.

Fs(t) =
d(A∞33vs)

dt
= vs

dA∞33(t)

dt
(2.34)

The slamming force can be directly expressed as the slamming coefficient, Cs, and is
expressed as in equation 2.35 for the added mass effect.

Cs =
2

ρApvs

dA∞33
dt

=
2

ρAp

dA∞33
dh

(2.35)

where dA∞33/dh is the rate of change of added mass with submergence, Ap is taken as the
horizontal projected area of the object and h is the submergence that is relative to the
wave elevation.

Related to water entry that takes place in waves, the relative velocity between the lowered
object and the sea surface must be used. The slamming force can be expressed as in
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formula 2.36.

Fs(t) =
1

2
ρCsAp(ζ̇ − η̇)2 (2.36)

Where ζ̇ and η̇ are the vertical velocity and the vertical motion of the object respectively,
and Ap is the projected area during the impact. When measuring the vertical force
on an object during water entry, the buoyancy force and viscous force will be a part
of the measurement. However, during the initial water entry, the dominant force will be
slamming force which is why the effect of the buoyancy and the viscosity can be neglected.



3 Numerical Simulations

A numerical model has been made in WADAM in order to calculate the barge motion
characteristics. The response amplitude operator (RAO) of the barge can be obtained,
and the wall effects from the experiment has been modelled in the simulations by using
mirroring technique. A sensitivity test of the mass center has been performed.

3.1 WADAM

Potential solver program, WADAM, for Wave Analysis by Diffraction and Morrison The-
ory, is a program in DNV GL’s sesam package. According to the user manual for the
program, [WAD, 2015], the program uses a calculation method based on the potential
theory to calculate the first order radiation and diffraction effects on large volumes.

Two analysis are carried out in WADAM. One with finite water depth and one with
infinite water depth. This is because the experiment has a set up with finite water depth
waves. The simulations are first carried out with deep water configurations. However, the
effect of the finite water depth is significant which will affect the results. This is shown
in the comparisons of the results of the added mass, damping coefficients, and the results
of the motions in terms of response amplitude operator.

3.1.1 Numerical model

In WADAM, a panel model made by four patches is used in order to solve the boundary
value problem, and obtain the global motion responses of the barge. WADAM runs in
the batch mode together with HydroD as a graphical user interface. Wave and structure
interaction simulations are simulated, and the results can be presented in a graphical
post-process program, Postresp.

The modeling in WADAM is executed for a model in full scale, and the properties are
listed in table 3.1. The global axis system in WADAM is set to be at the center of the
model. The loading condition is based on the loading condition carried out during the
experiments. It is first considered to have a loading condition with a center of gravity
(COG) located in the same plane as the buoyancy center (COB). However, this is not
possible in the experiments, and hence the loading condition is changed. By changing
the gravity center, the natural frequency of the roll motion will also change due to the
dependency of GM . In order to compare the results from the experiments, the numerical
model is modified to be consistent with the physical model.

25
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Table 3.1: Input parameters used in the numerical model in WADAM

COG R44 R55 L B D ∇ COB ∆ in tonnes
(0, 0, 4.75) 0.338B 0.25L 20 12.5 7 1750 (0, 0, 3.5) 1793.75

The total mass (∆) of the structure can be calculated within the program, and the sta-
bility calculation is performed. The main goal with this numerical model is to determine
the global motions characteristics. The panel model generated in WADAM with the
properties in table 3.1 is shown in figure 3.1.

Figure 3.1: Panel model used for simulations in WADAM in open sea configurations.
Wall reflection effects which will be discussed in following chapter are simulated based on
this panel model

As shown in the figure, the side deck is not modelled. This is because the potential solver
only takes the wet part of the structure into account. The dry part of the structure is
not taken into account in the linear potential solver. The mass is set to be uniformly
distributed in the body, and the center of gravity is indicated in figure 3.1 as a sphere at
the center of the model. This model is furhter used for wall reflection simulation which
will be discussed in the following chapter.

3.1.2 Additional matrices

As mentioned in Chapter 2.6, viscous damping is needed in order to simulate roll motions.
In WADAM, it is possible to add external damping matrix as a percentage of the critical
damping. As the body is moored during the experiments, external restoring matrix must
be taken into account.

Some viscous damping for heave motions is found due to the sharp edges of the body
which create vortices that contribute to heave damping. The heave damping is taken as
3% of the critical damping as expressed in equation 3.1.

B33 = 0.032
√
C33(M + A33) (3.1)
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The model is moored with four springs that represents the mooring lines in the experi-
ments. This effect is included as an additional stiffness in surge and pitch. The stiffness
of the springs is approximately 28N/m in model scale, and attached with an angle of 45
degrees to the model. This gives a total restoring forces, C11 = 4.9496 · 104N in full scale
in uncoupled surge direction. Due to the restoring in surge, a stiffness in uncoupled pitch
direction will also be affected. By using the geometry relation of the model, the stiffness
in pitch was found to be the pretension of the mooring lines multiplied with the breadth
of the model. A side view of the model is shown in figure 3.2, where two springs act as
the mooring system with a pretension as Fpretension.

Figure 3.2: Geometry of the model to determine the pitch restoring forces, C55

By decomposing the pretension in the springs, the initial force in pitch, F0,pitch, about the
mass center is expressed as in equation 3.2 due to small angle approximation (sin(θ) ≈ θ).

F0,pitch = Fpretensionθ
B

2
(3.2)

For the two mooring lines on both port and starboard side, the final expression of the
initial pitch force is expressed as in formula 3.3.

F0,pitch = FpretensionBθ with C55 = FpretensionB (3.3)

The stiffness in pitch motion is added to the numerical simulations for the comparison of
the results.

Because of the orientation of the model with the coordinate system as shown in figure 3.1,
roll motion in beam sea is equivalent to pitch motion in head sea. Hence, the roll motion of
the barge is actually the pitch motion in the numerical model. The damping considered
for the pitch motions is applied in the model. To summarize, the values of the added
parameters for the mooring forces and viscous damping in the numerical simulations are
presented in table 3.2.
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Table 3.2: Values for external matrices used in the numerical model analysis

Value Magnitude Description
C11 49497.47 [N] Mooring line stiffness in surge
C55 636328.125 [N] Mooring line pretension
B33 3% of critical damping in heave Heave damping
B55 1.6633 · 107 [N] Estimated pitch damping with 19 mirroring bodies

3.2 Wall effects

As the experiments are executed in a towing tank, the wall reflections may affect the
results. This comes from that the model is relatively large compared to the tank width.
In order to include the wall effect in the numerical simulations, the mirroring technique
is used. The distance between the two consecutive bodies is the distance of the model
to the tank wall in full scale. Figure 3.3 shows the modelling for the wall effect with 19
bodies rigidly connected.

Figure 3.3: Panel model to account for the wall effects. Left: 19 bodies rigidly connected
to each other. Right: Zoomed in view of three panel models

The multiple bodies are considered as one body rigidly connected. Therefore, there will be
only one response amplitude operator from the results. The parameters for the mooring,
the mass property, and viscous damping are similarly applied to each of the body. The
estimated pitch damping ratio is shown in table 3.3 for different number of bodies in deep
water.

Table 3.3: External damping estimation results for a model in infinite water depth

No. boxes damping ratio No. boxes damping ratio No. boxes damping ratio
1 Box 3.95% 9 Box 7.74% 17 Box 10.57%
3 Box 6.42% 11 box 8.70% 19 Box 11.13%
5 Box 8.10% 13 Box 9.36% 21 Box 12.18%
7 Box 7.12% 15 Box 9.99% 23 Box 11.68%

3.2.1 Convergence test

It is believed that with more bodies added, the tank wall reflection effects will be better
simulated. However, this will lead to a longer computational time. In order to find an
optimal number of the bodies with sufficient accuracy, a convergence test is performed
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in both damped and undamped cases where the motions in surge, heave and pitch are
evaluated. The standard deviations of the response amplitudes in the three motions are
calculated and plotted against number of the bodies. This is shown in figure 3.4 for all
three motions. It can be seen that heave motions are most unstable. The results are
presented in more detail in Appendix C.2.

Figure 3.4: Convergence test results in infinite water depth analysis with the estimated
damping calculated from the method presented in Chapter 2.6.2

3.3 Consideration of water depth

The previous simulations have considered an infinite water depth. However, in the ex-
periments, the water depth is finite due to the scale factor and a relatively large body.
This can be corrected in WADAM by defining the water depth in the environmental con-
ditions. It is observed that water depth may affect the results significantly. This can be
seen by the comparison of the experimental results, with the numerical simulated results.
Furthermore, the added mass and the potential damping are different in different water
depths which is shown in figure 3.5.

(a) Added mass in heave (b) Potential damping in heave

Figure 3.5: Added mass and potential damping in heave for infinite and finite water depth

Figure 3.5a shows that the added mass does not differ much in the resonance region, but
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not for the large periods. The reason for an increase of added mass in finite water depth
is because the sea bottom creates a reflection in longer waves.

There is a significant increase in potential damping in resonance region for the finite
water depth case. This is caused by the difference in the velocity potential of infinite
water depth and finite water depth. In finite water depth analysis, the body displaces
more water, which makes it easier to make waves due to the sea bottom. The waves will
then contribute to the damping in the mass-spring system.

Due to the large difference between the results of finite and infinite water depth, analysis
for finite water depth with 17.5m has been conducted. This depth is the full scale value
of the largest water depth in the small towing tank during the experiments. The purpose
of this is to check and compare simulations with the experimental results.

3.3.1 Finite water analysis

As shown in figure 3.5, the potential damping is different. This leads to a different damping
that must be added to the numerical model. The results for pitch damping estimation
for finite water depth analysis are listed in table 3.4. Furthermore, the responses of the
body will be different with different water depth. Thus, a new convergence test and new
pitch damping estimation need to be carried out. All results of the convergence test in
finite water depth can be found in Appendix C.1.

The heave response amplitude operator (RAO) from the finite water analysis shown in the
Appendix differs from the results from infinite water analysis. In the heave RAO from the
finite water depth analysis, there is a second peak for the cases with more bodies. This
is the effect of the wall reflection, and has been checked with the experimental results.

Table 3.4: Viscous damping for finite water depth analysis

No. boxes damping ratio No. boxes damping ratio No. boxes damping ratio
1 Box 3.4017% 9 Box 5.1704% 17 Box 6.7176%
3 Box 3.6858% 11 box 5.5281% 19 Box 7.0618%
5 Box 4.1909% 13 Box 5.9581% 21 Box 6.9198%
7 Box 4.7736% 15 Box 6.3531% 23 Box 7.2042%

The results for the convergence test in the finite water depth are presented in figure 3.6
with a water depth of 17.5m. The results show that the optimal number of bodies is 19,
similar to the results obtained from the convergence test in the case with infinite water
depth. It is shown that heave motion is most unstable compared to the other two motions.
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Figure 3.6: Convergence test result for finite water depth analysis with a water depth of
17.5m and external damping estimated from the method presented in Chapter 2.6.2

3.4 Sensitivity test of the center of gravity

The mass center will change with different loading conditions. It is shown that pitch
motion is most sensitive of the change of the gravity center. The heights of the center of
gravity used in the sensitivity test are 3.75m, 4.45m, 4.55m, 4.65m, 4.75m and 6m. The
results are shown in figures 3.7 and figure 3.8.

In the simulations, the wall effects are included with 19 bodies and a finite water depth
of 17.5m. As expected, the location of the peak in pitch response for head sea waves
is moving further to the right due to the decreasing value of GMT . The surge response
is coupled with the pitch motions, and surge response gives different RAOs for different
height of the center of gravity

(a) Plot of pitch RAO obtained from WADAM
during the sensitivity test

Plot of pitch RAO obtained from WADAM
during the sensitivity test

Figure 3.7: Results of the sensitivity test of pitch and surge motion from WADAM
with 19 mirroring bodies. The heights of center of gravity considered are COG =
3.75m, 4.45m, 4.55m, 4.65m, 4.75m, 5m
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Figure 3.8: Result of the sensitivity test of heave motion. The height of center of gravity
varies from COG = 3.75m, 4.45m, 4.55m, 4.65m, 4.75m, 5m and with 19 bodies

It can be seen in figure 3.8 that the heave motion is not affected by the change of the
gravity center.



4 Experimental Modeling

The main goal of the experiment is to verify the method for the damping estimation,
and to establish slamming characteristics. This chapter describes how the experiment is
conducted, regarding the model test set up and instrumentation, and how the measured
data are post-processed. The model has a symmetric mooring system, which is modelled
by springs. The side deck is mounted on the model, and the height of the plate can
be adjusted. However, in most of the tests, the height of the side deck is set to be
in the middle of the free board height. A force sensor is attached at the attachment
point, in order to measure the slamming force. Global motions will be measured by four
accelerometers mounted at the main deck.

Two experiments are carried out. One in January and one in April. During the laboratory
work in January, it is observed that there are large reflections due to the large body, and
too few wave periods had been tested. It is then decided in April to run a test without
a model in the tank in order to get better result for the waves. In the tests with more
wave periods, parametric instability is observed. During the second experiment, some
modifications are made in order to measure how the waves are moving up to the deck.

4.1 The model and the instrumentation

The physical model has a wall thickness of 8cm, and is constructed by wood, which is later
polished by polyester by Trond Innset from NTNU. The loading condition of the model
is different from the expected. It was first decided that the physical model should have
a center of gravity located at the same level as the buoyancy center, and the radius of
gyration in roll at beam sea should be 35% of the beam length. However, when the model
was ballasted, the desired center of gravity and the radius of gyration in roll cannot be
achieved at the same time. This is the main reason why the numerical model is modified,
and it is tested for different locations of mass center. The properties of the model are listed
in table 4.1, for a global axis system with origin at the keel and in the aft perpendicular
of the model.

Table 4.1: Data for the physical model used in experiment

COG R44 R55 ∇ ∆ in [kg] COB L B D H thic
(0.25, 0, 0.19) 0.338B 0.25L 0.112 112 (0.25, 0, 0.14) 0.8 0.5 0.28 0.4 0.08

On the deck, the model is mounted with a small weight for fine adjustment of trim,
and four accelerometers. Accelerometers are used to measure the vertical and horizontal
acceleration of the body. Two accelerometers are mounted to measure the horizontal
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accelerations which are attached in transverse direction. The last two accelerometers are
mounted in longitudinal direction and measure the vertical accelerations. The arrange-
ment of the equipment on the main deck is shown in figure 4.2.

Figure 4.1: The physical model ballasted and moored in the small towing tank

Figure 4.2: Arrangement of the equipment attached to the model viewed from above

In figure 4.1, it can be seen that a wave probe is mounted on the main deck. This
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is to measure the incoming wave when it hits the model. Since it is attached to the
model, it can also be used to measure the relative motion of the model and the waves.
On the side deck, there is an accelerometer attached in order to measure the vibrations
and hydroelasticity effects when slamming occurs. A force transducer is fixed on the
platform in order to measure the slamming force. The model is moored with four springs
on each corners. This is to prevent the model from drifting away. The forces from the
springs are measured by a force sensor. To summarize, the different equipment with the
corresponding properties used in the experiment are listed in table 4.2.

Table 4.2: Measured quantities and equipment used during the experiments

Sensor name Quantity measured
Accelerometers Acceleration

Quantity Unit Description
AX1 m/s2 Horizontal acceleration in starboard side
AX2 m/s2 Horizontal acceleration in port side
AZ1 m/s2 vertical acceleration in forward section
AZ2 m/s2 Vertical acceleration in rear section

AZslam m/s2 Vertical acceleration in deck
Forces transducer Forces
Quantity Unit Description
slamForce N Slamming force on deck

F1 N Mooring line force in starboard side in forward section
F2 N Mooring line force in port side in forward section
F3 N Mooring line force in port side in rear section
F4 N Mooring line force in starboard in rear section

Wave probes Wave elevation
Quantity Unit Description

WP1 - WP10 m wave elevation of the incident waves from the wave maker

(a) Solid plate mounted on the model with the
force sensor, an accelerometer and one wave
probe

(b) The perforated plate that is used in few
tests

Figure 4.3: Snapshots of the solid and perforated plate

The plate attached to the model is solid and made of aluminum with the dimensions
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L × B × D = 0.12m × 0.06m × 0.004m. This is shown in figure 4.3a. The weight of
the solid plate is 90g excluding the weight of the sensor. If the weight of the sensor is
accounted, the total weight is 255g for the solid plate. In addition to the solid plate for
modeling the side deck, a few tests are carried out with a perforated plate as the side deck
and this is shown in figure 4.3b. The data of the perforated plate are listed in table 4.3.

Table 4.3: Data of the perforated plate

Length Width Thickness Perforate rate Weight
0.12 [m] 0.06 [m] 0.0025 [m] 34.5% 65 [g]

4.2 Calibration

The zero reference has to be determined before the calibration takes place. This is due
to the variations of different parameters that the sensors are sensitive of. After the zero
reference has been found, the sensors can be calibrated. By calibration, [Steen, 2014]
defines it that there should be an agreement of the the output signals and the known
physical properties. The relationship of the input and output signal should be linear.
If the relationship becomes non-linear, there will be some complications in handling the
non-linearities in the data acquisition and the post-processing process. The procedure of
the calibration is the same for all sensors, and the steps are described as following:

1. Find a set of known values of the specific parameters that is going to be measured

2. Measure the parameters by the sensors. Analyze the measured values, and get the
linear relationship between the input and output signal

3. The calibration factor can be obtained, as the trend line from step 2 will give a
linear function expressed as in formula 4.1. The formula gives a factor a, which is
the calibration factor and it is used in the logging program. Linear regression can
be used to obtain this factor.

y = ax+ b (4.1)

4.3 Set up

The experiments are conducted in ”Lilletanken” at the Center of Marine Technology.
They are carried out twice with different test set ups and arrangements described in this
chapter.

4.3.1 January tests

Nine wave probes are placed in the tank as shown in figure 4.4, to measure the wave
elevations. The 10th wave probe is placed on the model in order to measure the relative
motion of the body and the waves. Due to the test set up in the global axis system as
shown in the same figure, the roll motion in beam sea will correspond to the pitch motion
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in head sea. The parabolic beach in the tank is acting as a damper for the waves, and
the waves are made by a piston wave maker.

Figure 4.4: Test set up viewed from the top

A side view of the test set up is shown in figure 4.5. The tank is filled up to the deepest
water depth possible and was taken to be 0.7m. However, the water depth is not constant
at all time due to the small leakage behind the piston wave maker. There is a pump which
pumps the water from the leakage behind the wave maker, which keeps the water depth
approximately the same level.

Figure 4.5: Side view of test set up

The full scale water depth is supposed to be infinite. This cannot be achieved with
the current scaling factor. Therefore, the finite water depth analysis in the numerical
simulation is considered. In the experiments, some modifications are made. This is done
under the supervision of professor Trygve Kristiansen. The parabolic beach is raised
higher at later stage in the experiment in order to damp out the incoming waves and
prevent reflection. The beach is raised to a level as shown in figure 4.5.

4.3.2 April tests

The test set up for the second experiment has different arrangement for the wave probes
in the tank. The model used is the same, and the arrangement of the accelerometers on
the main deck is not altered. The main difference is the arrangement of the wave probes
in the tank and on the main deck. Three wave probes are attached to the model as shown
in figure 4.7a in order to measure the wave profile when the waves hit the plate. The
arrangement of the wave probes placed in the tank is shown in figure 4.6.
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Figure 4.6: Test set up viewed from the top during second lab visit

(a) Arrangement of the wave probes viewed from
the side without the side deck

(b) Snapshot of the three wave
probes attached to the model

Figure 4.7: Model mounted with three wave probes instead of the side deck

As mentioned, there are significant reflections from the experiment carried out in January.
In order to obtain proper measurements of the waves, a few wave probes have been
subjected in the tank without model. The same wave series have been used for testing
the model and the deck slamming afterwards. The procedure of the second experiment is
described as following:

1. Wave probes 1 to 4 are used to measure the wave elevation of undisturbed waves
without body in the tank

2. The body is placed in the tank, but the deck is not mounted on the hull. Instead,
three wave probes are mounted on the model

3. The deck is mounted on the body with one wave probe
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4.4 Test matrix

The test matrices used in the experiments are made by a MATLAB script called gener-
ateRegular.m created by professor Trygve Kristiansen. The script gives the output data
file in binary that the wave maker uses to make the desired waves. The main focus of the
tests is different for the two experiments. The first test focused more on different wave
steepness, and less wave periods are tested. In the second experiment, more wave periods
are tested with less wave steepness.

4.4.1 January tests

The input for the test matrix of first laboratory work is presented in table 4.4. It shows
the input for the MATLAB scripts to generate the data file for the test with a sampling
frequency of 200Hz. The input show that the wave amplitude is ramped up to full am-
plitude in 5 periods. Between two wave tests, there is a 240 second pause in order for the
water to calm down.

Table 4.4: Test matrix inputs for test series 200 and 7000

Test serie Tmin Tmax Tstep Steepmin Steepmax Steepstep water depth nperiod nramp tzero
200 6 13 1 40 15 1 17.5 60 5 240
7000 5 13 0.5 60 24 18 17.5 60 5 240

In order to capture the slamming forces in more detail, two test series are conducted with
a sample frequency of 1200Hz. The results of the two test series are merged together in
post-processing. The input data for the two series are presented in table 4.5.

Table 4.5: Test matrix inputs for test series 80000 and 90000

Test series Tmin Tmax Tstep Steepmin Steepmax Steepstep water depth nperiod nramp tzero
80000 6 8 1 30 15 3 17.5 60 5 240
90000 8 11 1 30 15 3 17.5 60 5 240

4.4.2 April tests

The input data for test series used in the second experiment are presented in table 4.6,
where the data are all sampled with a sampling frequency of 200Hz. More periods with
smaller step size are tested with short pause time.

Table 4.6: Test matrix for second laboratory visit

Test series Tmin Tmax Tstep Steepmin Steepmax Steepstep water depth nperiod nramp tzero
401003 3 15 0.5 50 50 1 17.5 60 5 120
4090011 2 15 0.2 40 40 1 17.5 60 5 120
4012003 3 10 0.2 60 30 10 17.5 60 5 120
4012002 5 10 0.2 26 22 2 17.5 60 5 120
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4.5 Analysis procedures

The procedure for processing the measured data is very important. The measured test
data from the test equipment are discrete numbers. The data are recorded and sampled
at an equal interval of time. The sampling frequency must be sufficiently to capture
all variations of the measured quantity. However, too high sampling frequency will give
too much data which is a challenge to the digital memory. On the other hand, too low
sampling frequency may give poor resolution in the measured data. This is illustrated in
figure 4.8.

Figure 4.8: Example where the sampling frequency is too low and capture the wrong
picture of the observed data illustrated from [Steen, 2014]

According to [Steen, 2014], it is necessary to at least have two samples per wave period in
order to properly represent the wave in the digitized data, and more samples per period
is necessary to capture a good representation. If the signals are sampled less than two
times per wave period, it will give false representations as shown in figure 4.8. The default
sampling frequency during the experiments is taken as 200Hz. This sampling frequency is
good enough to have a proper measurement for the global motion of the body. However,
the slamming is a phenomenon that occurs in a very short time duration, which requires
higher sampling frequency. Thus, a few tests with a sampling frequency up to 1200Hz
are conducted.

As mentioned in Chapter 4.4, wave amplitude is ramped up in 5 oscillations. The mea-
sured data in the transient phase should not be taken into account. Figure 4.9 shows the
data of a selected time series window that are used in the post-processing of the measured
data.
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Figure 4.9: Selected time series window for the steady state data of the flap motion for
the piston wave maker. The red lines are the selected time series, and blue line are the
original recorded time series

The quantity shown in figure 4.9 is the flap position of the piston wave maker. This is
used as a reference for selecting the relevant time series window for other quantities. The
waves will take some time to reach the wave probes and the model that are placed in
the tank. Therefore, the distance and the group velocity of the incoming waves must
be calculated, and thus the time for the waves to reach the different equipment can be
obtained.

4.5.1 Accelerometers

The sign of the accelerometers must be checked in order to interpret the measured data.
This can be determined from a decay test in pitch. The accelerometers are supposed
to measure a positive acceleration upwards and the component is shown in figure 4.10
along with the definition of the local axis system that is defined for the analysis. The
accelerometer will not measure any gravitation acceleration after the zero setting. This
means that the only recorded measurement is the vertical acceleration.
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Figure 4.10: Model with local axis system and the accelerometer

In the decay test, all measured data from the four accelerometers are plotted in figure
4.11. It shows that the horizontal accelerometers have similar measurements. This is
expected as the horizontal accelerometers are located at symmetric locations. For the
accelerometers used to measure vertical accelerations, they should measure same value
but with opposite signs. When the body is inclined, the horizontal accelerometers will
measure the contribution of the gravity acceleration. This can be verified by taking an
initial pitch angle for the decay test.

Figure 4.11: Time series of the accelerations during the pitch decay test

The inclination angle during the decay test was approximately 15 degrees. This gives
a measured horizontal acceleration as expected as AX1 = AX2 = g sin(15), which is
2.53m/s2. If it is assumed that the positive pitch angle is counter clockwise as shown in
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figure 4.12, the accelerometer that measures the vertical acceleration at the right hand
side should measure a positive acceleration and the opposite with approximately same
value for the accelerometer on the left. Furthermore, the accelerometer that measure
the horizontal acceleration should both measure a negative value that is approximately
2.53m/s2. This is proved to be correct in the time series of the pitch decay test.

Figure 4.12: Illustration of the measured accelerations on the model during a pitch decay
test according to the local axis system

4.5.2 Mooring line pretension

As mentioned in Chapter 3.1.2, mooring lines in the numerical model which represent the
springs in the experiments will affect the global motions. This is because surge motion
and pitch motion are coupled. During the test set up in January, the pretension of the
mooring lines is set to be approximately equal to each other in order for the model to
stay at the symmetry plane. The values of the pretension and the spring stiffness of the
four springs are listed in table 4.7 for the tests conducted during January.

Table 4.7: Pretension of the springs and the spring stiffness during experiments in January

Mooring line no. H Mooring line no. H
1 3.0797 N 3 3.3547 N
4 3.4036 N 2 3.1939 N

Average pretension
3.258 [N]

Spring stiffness
28 [N/m]

From the experiences of the first experiment in January, it is observed that the pretension
is too small as the spring went slack for large and steep waves. This causes a drift force
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as the model is pushed backwards. In order to prevent this in the second experiment in
April, the pretensions are changed to largest possible value which are listed in table 4.8.
The pretension used in the numerical simulations is the average value of the pretensions
in this table.

Table 4.8: Pretension of the springs during experiments in April

Mooring line no. H Mooring line no. H
1 4.8 N 3 5.6 N
4 4.6 N 2 5.1 N

Average pretension
5.025 [N]

4.5.3 Filtering

Before filtering, the data has to be cleaned in order to remove sample points that are
measured incorrectly. According to lecture notes by [Chabaud, 2015], missing data points
can occur of a test series with a long duration, and this will affect the results even if
the mean value is small. The script for data cleaning is based on the linear interpolation
between the sampling points after the outliers are removed.

During the experiments, there will be some unwanted noise and interference that will be
recorded and captured by the sensors. It is then necessary to post-process the data and
filter out the unnecessary measurements. This is also relevant to filter away the second
order effect for the analysis of the linear wave theory. In addition, the reflected waves will
disturb the incident waves from the wave maker. The filter used in this case is a band
pass filter where the low and high frequency limit must be specified.

The time series for the waves must be corrected with the group velocity since the wave
probes are placed some distance away from the wave maker. The consequence of this is
that the time series window will be delayed than the time series window measured for the
wave flap. Figure 4.13 shows the time series for the data measured in wave probe 3 during
the tests in January. The correct time interval is taken as the group velocity divided by
the distance of the selected wave probe from the wave flap. In the same figure, it shows
that the transient phase is cut out from the selected time interval at the start of the time
series. As a result, only the steady state time series are selected for the post processing.

Figure 4.13: Selected time series of the measured waves during experiments in January.
The red lines are the selected time series window, and the blue lines are the originally
recorded data
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Figure 4.13 shows that the water level is not constant. However, this will not affect
the body motions, as the structure is freely floating in the water. The band pass filter
used in the data analysis is a MATLAB script called bpass2.m made by professor Trygve
Kristiansen. This filter is applied to the selected time series window. The frequency of
interest is the same frequency of the incoming waves, because most of its energy will be
concentrated here. An illustration of the filtering is shown in figure 4.14 for a wave with
a period of 2 seconds. As the result of the band pass filter, the power spectrum density
plot shows that the relevant data that have been in the filtering range are concentrated
at a frequency of 0.5Hz with ± 0.2Hz for a wave with period of 2s in model scale.

Figure 4.14: Illustrating of the filtering process of the experimental data. PSD plot on
the right with the green line as the band pass filter window, red line as the filtered signal
and blue as the unfiltered signal from tests conducted in January

In figure 4.14, it is shown in the time series that 5 oscillations from the selected time
interval are selected and plotted in black. This is the selected time window for the waves
that are used for calculation of the response amplitude operator (RAO). Due to the large
disturbance from the model, it is necessary to only select the first 5 oscillations from the
wave elevation time series.

4.5.4 Converting measured quantities

As mentioned, the measured quantities related to the body motions are the accelerations.
In order to obtain the motions of the model, it is necessary to integrate the measured
accelerations into the motions. This is done by another MATLAB code written by Profes-
sor Trygve Kristiansen, called acc2pos.m, where the sampled data of the acceleration are
integrated to the corresponding motions. The method used is the Fourier transform. In
order to obtain the results for the pitch motion, the data are obtained from the difference
of the measured vertical accelerations. According to [Mukhlas, 2017], the pitch motion
about the center of the gravity can be as expressed in equation 4.2.

η̈5 =
¨η3,1 − ¨η3,2
Lacc

(4.2)

The positive of the pitch motion is defined as in figure 4.15. Lacc is the length between
the centers of the accelerometers which measure the vertical acceleration of the body.
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Figure 4.15: Definition of the positive pitch and the measured accelerations

For heave motion, the results are obtained by considering the average of the measured
vertical acceleration. Thus the heave and pitch motion can be compared with the results
obtained from WADAM which is calculated from the reference point at the center of
gravity.

However, for surge, the local horizontal acceleration is measured in the experiment. The
surge motion is coupled with pitch, and it will be different depending on reference. In
order to compare the results with the numerical calculation with the reference point at
the mass center, the data measured from the experiments must be adjusted. Equation 4.3
shows the formula used for this adjustment, where η1,local, η5,meas and η1,meas are the local
surge motion, measured pitch angle and measured surge motion respectively. The overdots
represent the time derivative of the parameters. The basis of the adjustment is illustrated
in figure 4.16. Furthermore, the horizontal accelerometers will measure the contribution
of the gravity acceleration as mentioned in Chapter 4.5.1. This must be considered by
subtracting the product of the gravitational acceleration and the corresponding pitch
angle from the measured horizontal accelerations. Second part of equation 4.3 shows the
horizontal acceleration before the integration takes place.

η1 = η1,local − 0.21η5,meas and ¨η1,local = ¨η1,meas − gη5,meas (4.3)

Figure 4.16: Body with a pitch angle θ adjusted for surge motion
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4.5.5 Motion response amplitude operator

The response amplitude operator (RAO) for surge, heave and pitch are calculated from
the measured data obtained from the experiments. The concept of RAO is introduced
in Chapter 2.3, by using the relationship between the input and output signal. In
[Steen, 2017], it is recommended that the standard deviation for a regular wave test should
be used to quantify the oscillation amplitudes. If the maximum and minimum values for
the measured peaks are used instead, it will be considered as the instantaneous response.
Therefore, the standard deviations of the results for the motions and the undisturbed
incoming waves are used for representation of RAO.

The pitch RAO calculated from WADAM is normalized. This is done by taking the pitch
amplitude in radians and dividing it by the wave number k. A sinusoidal wave can be
defined as a function of wave elevation expressed by ζ = ζa sin(ωt−kx). Thus, the slope of
the wave elevation is mathematically kζa by differentiation of the function. Normalization
of the pitch response from the experiments can be done in a similar manner. By taking
the measured pitch amplitude divided by the product of the corresponding wave steepness
and π, the pitch motion is normalized. Since the wave height is the same as the twice
of the wave amplitude, the product of the wave steepness and π is same as the slope kζa
from the differentiation of the wave elevation function. Heave and surge RAOs obtained
from the experiments will be presented in the same manner as the WADAM calculated
RAOs.

4.5.6 Slamming forces

Based on the water entry analysis presented in Chapter 2.8.1, the slamming force obtained
from the experiments are compared with the results in figure 2.7 for Wagner solutions.
By using the equations, the expression of the vertical force at a given deadrise angle can
be given as following:

F3 =
AρV 3t

tan2 β
(4.4)

Where A is the factor presented in y-axis in figure 2.7 for wedge structure with different
deadrise angles. The deadrise angle can be estimated from the experiments for different
periods, and the time must be defined. This can be done by studying the local wave
profile during the impact. A sketch of the plate during the impact is shown in figure 4.17.

The time expression can be expressed as in equation 4.5 based on the body geometry from
figure 4.17. This can be explained by assuming that time variable t can be expressed as
t = t1 − t0, where t0 is the time when the plate is dry and and t1 is the time when the
body is wetted.

t1 =
lplate tan β

V
+ t0 (4.5)
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Figure 4.17: Local analysis of the impact. The plate is viewed from the side. β is the
angle between the water and the plate during the impact, lplate is the plate width, V is
the local vertical velocity, and t is the time during the impact



5 Results and discussion

In numerical estimations, the peak in heave and pitch response in the response amplitude
operator appear at T = 7s and 13s respectively. From the results obtained from the
experimental work, the RAO is in good agreement with the results obtained from WADAM
with respect to the natural periods.

In this chapter, results from the experiments and WADAM are compared, and the wave
heights estimated from the linear wave theory are compared with the waves measured
from the experiments. Discussions about the time series and the slamming forces are
followed.

5.1 Experimental results and discussion

The results from the experiments are presented in this chapter, where they are post-
processed with the methods presented in previous chapters.

5.1.1 Decay tests

Before the model is exposed to the incoming waves, it is important to obtain the natural
periods of the system. Decay tests are carried out for all six motions, and the plate that
is mounted on the barge is also tested by hitting it gently with a hammer. The decay test
can give useful information about the natural frequencies, added mass and the damping
of a dynamic system according to [Steen, 2014].

Motions

The results of the natural periods in all six motions are listed in table 5.1 for the exper-
iments that are conducted in January. The natural periods are obtained by converting
the decay test time series into a power spectrum density (PSD) function by using the fast
Fourier transformation. The plot of the PSD shows at least one peak, which gives the
natural frequency. The result of a plotted PSD with the corresponding time series of the
pitch decay test is shown in figure 5.1. The rest of the results from decay tests can be
found in Appendix B.1.

49
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Table 5.1: Result of the decay test in model and full scale from tests in January

Motion η1 η2 η3 η4 η5 η6
Natural period in model scale 15.57 s 15.77 s 1.59 s 1.41 s 2.50s 6.49 s

Natural period in full scale 77.85 s 78.85 s 7.95 s 7.05 s 12.50 s 32.45 s

The decay test results for the second experiment with a model mounted with three wave
probes, and with the deck are shown in table 5.2. It can be seen that the two results are
slightly different. This is because the deck that is mounted on the model contributes an
additional weight which changes the mass property.

In the set up shown in Chapter 4.3, the only accelerometers that measures the horizontal
acceleration are in surge direction. In order to obtain the time series and the decay test
results in sway direction, the measured spring forces are used instead. The time series
in sway are shown in Appendix B.1, and they are obtained by utilizing the simple mass-
spring relation.

Table 5.2: Result of the decay test in model and full scale from the laboratory experiments
in April

η1 η2 η3 η4 η5 η6
Model scale 19.45 s 14.48 s 1.54 s 1.39 s 2.33 s 5.47 sModel without

deck Full scale 97.25 s 72.40 s 7.70 s 6.95 s 11.65 s 27.35 s

Model scale 19.60 s 13.75 s 1.52 s 1.41 s 2.41 s 5.60 s
Model with deck

Full scale 98.00 s 68.75 s 7.6 s 7.05 s 12.05 s 28.00 s

The damping can be estimated by using the method in Chapter 2.6.1. The linear damping
can be calculated from the decay test time series. The damping ratio can be estimated by
using equation 2.18, and the results for the linear damping are listed in table 5.3 for all
six motions. It should be noted that the linear damping listed in table 5.3 is the average
damping in 5 oscillations (n = 5). This will be different from the damping ratio estimated
by using the method in Chapter 2.6.2. The analytic method for damping estimating
will give the damping related to the resonance area. From the results for pitch motion
calculated from WADAM, it is observed that the pitch RAO without external additional
damping has a peak up to 120 degrees, which is too large to perform in the decay test.
Therefore, it is not possible to estimate the corresponding damping at the resonance area
from the decay test.

Table 5.3: Linear damping from the decay test in model and full scale, averaged by taking
5 oscillations (n = 5) from the time series

η1 η2 η3 η4 η5 η6
January test with deck 0.1137 0.0655 0.01916 0.0132 0.047 0.07177

April test with deck 0.076 0.06 0.019 0.01813 0.029 0.0529
April test without deck 0.1009 0.0799 0.0217 0.01842 0.0363 0.0727

However, the exact damping can be estimated from the decay test for specific amplitudes.
Assume a case where the amplitude of the pitch motion is 5 degrees from the potential
solver. The decay test from the experiments gives a time series of the pitch motion as
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shown in figure 5.1. Then, the total damping for pitch with an amplitude of 5 degrees
can be estimated from equation 2.18. The two amplitudes that are taken into the cal-
culations are the ones that are closest to 5 degrees, and n = 1 for one oscillation. The
estimated damping ratio is 9.23%. This is very different if a pitch amplitude of 3 degrees
is considered, where the estimated damping ratio is 4.9%.

Figure 5.1: Time series and the power spectrum of a pitch decay test with side deck
mounted performed in April

Another possible method to calculate the damping is to use the model for nonlinear
damping. According to [Steen, 2014], one should avoid using the results from the first
oscillation and the last oscillations from the time series of the decay test. This is due to to
the transient effects for the first few oscillations, and questionable accuracy for the small
amplitudes. The nonlinear damping is obtained by plotting the logarithmic decrements
of the peaks as expressed in equation 2.18 against the mean amplitude of two successive
amplitudes. The results of the nonlinear damping in pitch motion are shown in figure
5.2. The damping coefficients obtained from the corresponding figure is 0.47 and 0.017
for nonlinear and linear damping coefficient respectively.

Figure 5.2: Measured damping in pitch decay test using linearized damping equation for
a model with the side deck mounted. Pitch angle is given in degrees
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The plate

In order to find the natural period of the platform, a pluck test is performed five times
for both the perforated and solid plate. The procedure for finding the natural period is
same as for the global motions. The results are shown in table 5.4, and the time series
and the corresponding power spectrum density (PSD) plot are shown in figure 5.3 for the
first test with the solid plate.

(a) Time series for pluck test no. 1
(b) Power spectrum density of the plutck
test no. 1

Figure 5.3: Pluck test results for test no. 1 for a solid plate

As the PSD plot in figure 5.3 shows, there are two large peaks. The second peak may pos-
sibly be due to a different modal motion. When the hammer hits the deck, it might not be
exactly in the middle of the plate. This can trigger other vibrations that are not from the
plate center. The decay test is repeated five times in order to have reliability of the results.
All plots of the power spectrum density and the time series can be found in Appendix B.2.

Table 5.4: Natural frequencies for solid and perforated plate of same dimensions obtained
from the pluck test

Test no.
Plate type 1 2 3 4 5

1st peak 263.9 Hz 266.0 Hz 279.0 Hz 268.2 Hz 266.4 Hz
Solid plate

2nd peak 313.0 Hz 314.0 Hz N/A 320.4 Hz 316.5 Hz
1st peak 268.7 Hz 271.2 Hz 271.5 Hz 267.4 Hz 272.2 Hz

Perforated plate
2nd peak 324.8 Hz 323.1 Hz 337.8 Hz 307.7 Hz 324.1 Hz

The natural frequency obtained from the pluck test is considered as the natural frequency
of the plate where the force sensor is mounted. This is useful with respect to the measured
slamming forces to filter out the system oscillations which are not the actual responses of
the structure.
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5.1.2 Measured waves

The measured waves in experiments are compared with the estimated wave height. The
calculated waves are linear waves in finite water depth. The test results from the exper-
iment in January are shown in figure 5.4. The measured results are obtained by taking
first five oscillations after the transient phase of the waves from wave probe 1 in test set
up from January.

Figure 5.4: Measured wave height plotted against estimated wave height for a wave series
with steepness 1/40. The wave height is measured when the model is present in the tank

The error is estimated to be about 10%. This might be due to the reflection of the
parabolic beach in the towing tank. However, the error is expected to be greater as the
wave steepness increases due to the validity of the linearization of the wave propagation
theory, which is mentioned in Appendix A.3. With increased wave steepness, the second
order effect becomes more important, and thus the waves described by the linear wave
theory gives larger deviations. The error of the measured waves from each period and the
analytically calculated wave height for wave steepness of 1/40 can be found in table 5.5.

Table 5.5: Relative error of all waves with steepness 1/40 in test series 200 from January
by using linear wave theory with the model present in the tank

Wave period [s] Absolute error [%]
1.2 7.99
1.4 8.44
1.6 6.45
1.8 2.89
2.0 1.44
2.2 0.65
2.4 1.54
2.8 0.92

The group velocity and phase velocity are calculated based on the linear wave theory for
finite water depth. The measured waves from the experiments conducted in April without
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the model show a better agreement with the linear wave theory with an error less than
2.3%. This small error may be due to the leakage of the piston wave maker behind the
tank. The plot of the measured waves and the estimated waves from test series in April
is shown in figure 5.5.

Figure 5.5 shows that there are larger deviations at the longer wave periods. This may
possibly be due to the reflection from the parabolic beach at the end of the tank. For
large and long waves, there are more reflections from the beach. Therefore, it is better
to utilize the test results of period below 12s in full scale. In this region, heave and pitch
have the natural frequencies where the slamming on the deck occurs.

Figure 5.5: Measured waves with steepness 1/40 from test series 4090011 without the
model in the tank, plotted against the linear wave theory for finite water depth. Dots are
the measured data, the solid line is the theoretically results

Figure 5.6: Measured wave elevation with reflections when a model is present in the
towing tank for the same test series as in figure 5.5

The reflection of the waves can be clearly observed when the model is present in the tank.
This is shown in figure 5.6, where the measured waves deviate from the linear wave theory.
The waves are tested with the same test series as in figure 5.5, and the deviations are large
from T = 5s up to T = 9s. This is due to the large body motions within these periods.



5.1. Experimental results and discussion 55

From the decay tests, it is seen that heave resonance is 7.6s and pitch is at 12.05s in
full scale. It should be noted that parametric pitch occurs approximately at T = 6.025s
which also increases reflections that disturb the incoming waves.

5.1.3 Response Amplitude Operator

The response amplitude operator obtained by using the normalization method described
in Chapter 4.5.5 for heave, surge and pitch for test no. 4012003 are shown in figures 5.7,
5.8 and 5.9 respectively. It can be seen that for larger wave steepness, the RAO will have
lower value. A peak at T = 6.2s from the experimental results can be seen, and it might
be the consequences of parametric instability, which will be discussed later.

From a report on closed fish farms written by [Kristiansen et al., 2018], it is stated that
the wall effects have most influence on heave motions. The results of the RAO in heave,
surge and pitch show that pitch motion gives less influence than the other two motions.
From figure 5.7 for heave RAO, it can be seen that the wall effects simulated in WADAM
show a good agreement with the experimental results.

Figure 5.7: Heave RAO calculated from WADAM results with wall effects implemented
by 19 bodies, plotted with wave steepness H/λ = 1/60, 1/50, 1/40 and 1/30 from the
experiments. Peak at T = 6.2s can be due to parametric instability

The reason that heave motion is more influenced by the wall effects is because the water
particles are prevented from moving outwards when the body is oscillating in heave. The
wall from the towing tank prevents the water from moving, and reflects the radiated waves
back to the model. This can cancel or amplify the heave motion.
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Figure 5.8: Surge RAO plotted with the results simulated from WADAM

Figure 5.9: Normalized pitch RAO with different wave steepness plotted with WADAM
results for 19 mirroring images where external damping is added
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Figure 5.8 shows the surge motion RAOs for experiment and WADAM calculations. The
lower periods show good agreement, but not for higher periods. This is possibly due to
the coupling effect between surge, heave and pitch motions. The pitch response shows an
agreement between the numerical and experimental results. In general, the results show a
good agreement. At T = 6.8s, a peak appears from the experimental results in pitch RAO.
This is possibly a result from the parametric instability as the natural period of pitch is
at T = 12.05s. Furthermore, it can be seen that the pitch motion in the resonance region
is heavily damped compared to the estimated damping. The estimated natural period
for pitch is at 12.05s and 12.50s from the decay test, dependent if the model is mounted
with the deck or not. Using the calculated RAO from test series 4090011 in figure 5.10, it
can be seen that the pitch RAO from the experiments is lower than the WADAM results.
This is possibly due to the viscous damping in the experiment. In addition, the method
used for damping estimation from [Dhavalikar and Negi, 2009] stated that the results are
more accurate for a structure with natural angular frequency near unity. In this case the
pitch natural frequency is 2.60rad/s. Therefore, some deviations are expected.

Figure 5.10: Normalized pitch RAO from test series 4090011 plotted against WADAM
results with 19 bodies from wave periods T = 2s to T = 15s in full scale with external
damping

5.1.4 Time series

The time series presented in this chapter are discussed and compared with the results
obtained from WADAM. The experimental results are post-processed with analysis pro-
cedures presented in Chapter 4.5.
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Waves

The time series of waves with different steepness for test series 4012003 without a model
present in the tank are shown in figure 5.11, for a regular wave with full scale wave period
T = 8s and T = 8.2s. The filtered waves are represented by the green lines in the same
plot. As expected, the steepest waves with H/λ = 1/30 show some second order effects.
The positive peaks are more peaked, and the through are more flat.

(a) Waves with T = 8s, H/λ = 1/60 (b) Waves with T = 8.2s, H/λ = 1/60

(c) Waves with T = 8s, H/λ = 1/40 (d) Waves with T = 8.2s, H/λ = 1/40

(e) Waves with T = 8s, H/λ = 1/30 (f) Waves with T = 8.2s, H/λ = 1/30

Figure 5.11: Measured time series of wave elevation in wave probe 3 for test series 4012003
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Time series for all wave steepness with same wave period T = 8s (T = 1.6s in model
scale) are shown in figure 5.12. The filtered wave elevations are plotted in the same figure
as dotted lines. As expected, the wave peaks are increasing with increased wave steepness
because the wave number is constant for the same period. With a constant wave number
for the same period, the wave length will increase for higher wave steepness.

Figure 5.12: Time series of waves with wave period T = 8s (model scale T = 1.6s) for
different wave steepness in test series 4012003. Dotted lines represent the filtered time
series

Motions

The time series of the motions for the barge may be simulated by using the RAO calculated
from the experiments and WADAM. This can be done by inserting the incoming wave
amplitude with the corresponding wave frequency in the wave elevation equation for the
sinusoidal waves, ηij = ηa sin(ωt). The time series of the pitch motion with full scale wave
period T = 7s are shown in figure 5.13. It is shown that the pitch amplitude from the
numerical results are larger than the experimental results.

Figure 5.13: Time series obtained by using RAO from the experiments and WADAM for
wave period T = 7s, H/λ = 1/60 for test series 4012003

Motions of the barge may also be calculated by using the added mass, potential damping
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and the excitation force which are calculated from WADAM, and solve the differential
motion equations. This can be done by using the build-in solver in MATLAB, ode15s. This
solver can solve first order ordinary differentiation equations, thus the method mentioned
in Chapter 2.4 can be implemented.

The time series simulated by using the hydrodynamic coefficients obtained from WADAM
have been compared with the measured time series 4012003 from the experiments. The
simulations have the wave periods in full scale because the hydrodynamic coefficients from
WADAM are dependent on wave frequencies. Hence, the results from the experiments
are scaled to full scale.

The results are shown in figures below for wave steepness H/λ = 1/60. The numerical
simulations are obtained by solving the differential equation with the hydrodynamic co-
efficients obtained from WADAM for a wave with period T = 7s and T = 9s. It can be
seen that the transient part are present in the simulated results.

(a) T = 7s (b) T = 9s

Figure 5.14: Time series in pitch with H/λ = 1/60 simulated in MATLAB in full scale
with hydrodynamic coefficients from WADAM

(a) Wave period T = 7s (b) Wave period T = 9s

Figure 5.15: Pitch motions from the experiments for full scale wave period T = 7s and
T = 9s and steepness 1/60 from test series 4012003

As shown in the figure 5.15a, the amplitude from the measured data are varying. This
is due to the disturbance of the waves and the parametric instabilities. It can be seen
that the numerical simulations give a pitch amplitude approximately 0.7 degrees, which
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is larger than the measured data. From another time series with T = 9s, it can be seen
that the pitch motions are more stable, and the experimental results show a larger pitch
amplitude than the numerical simulated results. This difference can be seen in the RAOs
in figure 5.9. This can possibly be due to the tank reflections or coupled effects. The rest
of the time series simulated from MATLAB can be found in Appendix B.6.

The time series for pitch and surge motions are shown in figure 5.16. The pitch motion
at T = 6s (model scale wave period T = 1.2s) has not a constant amplitude. This is
possibly due to the parametric instabilities that occur during the half of the pitch natural
frequency. It is shown that approximately at the natural frequency of the pitch motion
T = 12s (T = 2.4s in model scale), the pitch motion has a constant amplitude. By
comparing the time series of surge motion, it can be shown that the surge motion is
coupled with pitch motion.

(a) Pitch motion with T = 6s, H/λ = 1/40 (b) Pitch motion with T = 12s, H/λ = 1/40

(c) Surge motion with T = 6s, H/λ = 1/40 (d) Surge motion with T = 12s, H/λ = 1/40

Figure 5.16: Pitch and surge motion time series from the experiments
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5.2 Parametric pitch

From the time series presented in previous chapters, it is shown that the pith motion is
unstable when the incoming wave has a period of T = 6s (T = 1.2s in model scale),
approximately half of the natural frequency of the pitch in model scale. The RAO for
the motions can be obtained by data that are filtered with 0.5ω from a band pass filter.
The results are plotted in figure 5.17 where the green lines are filtered with half of the
frequencies of the incoming waves. It can be seen that the heave motion is not affect
much by this effect.

Figure 5.17: RAO in pitch (left) and heave (right) for test series 4012003 in full scale
wave periods. Results are filtered with band pass filter with concentration at ω and 0.5ω

As the pitch RAO in figure 5.17 shows, the RAO obtained by filtering the measured
accelerations with 0.5ω show a peak at T = 6s in full scale. This corresponds to the
time series presented in previous sections, showing that the pitch motion is unstable with
varying amplitudes. This instability occurs close to the heave natural period, which is
about T = 7s in full scale. From Mathieu instability, it shows the unstable area for 0.5ω
is larger than for ω. This correspond well to the measured results, as the instability is
present for other periods at T = 6.2s and T = 6.4s. The RAOs in Appendix B.3 for the
results filtered with 0.5ω show that peak has different width for different wave steepness.

This instability can possibly be a result of the sloshing modes inside the tank. From
the MATLAB script written by professor Trygve Kristiansen, linwave.m, the sloshing
period is estimated to be approximately around T = 6.2s, which is the period when the
parametric instability occur. The trigger of the instability can also be a consequence of
the asymmetric forces during the heave motion. This is illustrated in figure 5.18. The
vortex shedding from the sharp corners of the structure can be another possibility to
trigger the instability.
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Figure 5.18: Heave excitation force that can trigger parametric instabilities, in addition
to vortex shedding from the sharp edges of the structure
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5.3 Slamming forces

The force sensor that measures the impact force has its own natural frequency. Oscillations
from this system can possibly affect the measured results. In order to check this, a
sensitivity test of the low-pass filtering has been performed. From the plate decay test,
the results give the dominating peaks that are located approximately at 265Hz, which
means that the natural frequency for the sensor is at this region. It is expected that
the power spectrum from the time series of the slamming forces should give a peak at a
frequency lower than this because of the added mass. This is due to that the decay test
is performed in air.

The results of the sensitivity test are shown in figure 5.19, where the PSD of the cut off
frequency are shown in a green window. The filtered time series are plotted against the
original signal in figure 5.20.

(a) PSD of the time series filtered between fre-
quencies 0.1Hz and 250Hz

(b) PSD of the time series filtered with frequen-
cies between 0.1Hz and 200Hz

(c) PSD of the time series filtered with frequencies
between 0.1Hz and 150Hz

Figure 5.19: Time serie of the slamming forces filtered with different values in the low
pass filter. PSD for different cut-off frequencies
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Figure 5.20: Time series of the slamming forces where different filtered data are plotted

The time series in figure 5.20 show that the filtering affects the maximum peak and the
oscillations after the peak. The filtered data with the cut-off frequency at 200Hz and
150Hz show approximately the same results. Whereas the filtered data with a cut-off
frequency at 250Hz show similar trend to the original signal. This is because the peak
at approximately 220Hz in the spectrum is taken into account. This peak might be
the responses from the sensor, and not from the structure. Thus, the time series of the
slamming forces should be filtered with a low-pass filter in frequency range 0.1Hz to
200Hz.

The contribution of the sensor mass can alternatively be estimated by using the mass of
the system that can be determined by the local acceleration. The measured forces are
the sum of the hydrodynamic forces, slamming forces, and the forces due to the local
acceleration. The local acceleration can be determined from the time series. When there
are no slamming events, the sensor will measure a time series due to the local acceleration.
This can be seen in figure 5.21, where there are small oscillations. The mass of the sensor
can be determined by using the time series of the measured force divided by the local
accelerations, and subtract the mass of the plate. The estimated mass of the sensor is
0.088kg, which is not much from than the exact value of the sensor which is 0.082.5kg.

The actual slamming force can be obtained by subtracting the force due to the sensor
mass multiplied with the local acceleration from the measured time series. This method
is used for the test series that have sampling frequency of 200Hz. The reason is that the
low pass filtering mentioned earlier will not work in this case. However, this force is not
dominating as the contribution is small.
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Figure 5.21: Time series of the measured slamming force when no slamming events occur

The impulse from a slamming force time series is analyzed. This is done by integrating
the area under the force as the impulse is the integral of force over a time interval. The
analyzed time series are taken from test series 80000 with a full scale wave period T = 6s
and a wave steepness H/λ = 1/26. The slamming force time series with the corresponding
impulse is shown in figure 5.22.

(a) Slamming force time series where the
green line is the filtered data

(b) Corresponding impulse plotted against
the number of peaks from the time series

Figure 5.22: Slamming force time series for test series 80000 with T = 6s and H/λ = 1/26
and the corresponding impulse

The impulse plot from figure 5.22b shows that the impulse are varying consistently with
the slamming peaks from the time series. The values of the impulse are small which can
imply that the duration of the impact is short. This means that for a high impact force,
the structure has not enough time to react.

5.3.1 Implementing Wagner solution

The impact problem of the platform can be analyzed in an analogy to the water entry
problem of a wedge structure by assuming symmetry and rigid body during the impact. By
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using the method introduced in Chapter 4.5.6, the slamming forces from the experiments
can be compared with the numerical solutions from Wagner model. Investigations of the
local wave profile from a regular wave with model scale wave period T = 1.4s (full scale
T = 7s) is shown in figure 5.23.

Figure 5.23: Wave profile from test series 4012003 with different methods at mode scaled
wave period T = 1.4s (T = 7s in full scale) with wave steepness H/λ = 1/60

The originally measured wave profile at the deck area is extrapolated in order to obtain
a deadrise angle for the wedge theory. The estimated angle of each wave profile are listed
in table 5.6.

Table 5.6: Estimation of deadrise angle from test series 4012003 with wave period T =
1.4s and steepness 1/60 with corresponding factor from the Wagner solution

Wave profile 1 Wave profile 2

Description
Extrapolated between
WP1cm and WP4cm

Extrapolated between
WP1cm and WP7cm

Estimated angle [deg] 14.22 56.87

Factor from Wagner theory 6.1 3.8

Wave profile 3 Averaged profile

Description
Extrapolated between
WP4cm and WP7cm

Average of all
wave profiles

Estimated angle [deg] 73.23 70.36

Factor from Wagner theory 2.1 2.1
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The local vertical velocity during the motion is estimated to be 0.7259m/s. This value
is obtained by differentiate the measured time series from the three wave probes that
are attached to the body with respect to time. By using figure 2.7 in Chapter 2.8.1,
the vertical force can be found for the different wave profiles. The slamming force varies
linearly with the time. A comparison of the experimental result and the theory is shown
in figure 5.24. It can be seen that the experimental result lies between the smallest and
largest values of the theoretically estimated results.

Figure 5.24: Estimated slamming forces from wedge theory by using the four wave profiles

By analyzing more slamming peaks, the results are observed to lie within the estimated
ones. Time series of the corresponding four slamming peaks are compared with the
estimated results. This is shown in figure 5.25.

(a) Slamming Estimation of the forces (b) Slamming force time series used in the esti-
mation

Figure 5.25: Estimated slamming force compared with the slamming force measured from
the time series from test series 4012003 with wave period T = 1.4s with wave steepness
H/λ = 1/60 in model scale
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Due to large uncertainties to the deadrise angle, which is estimated from the wave profiles
from the corresponding time series, it is expected that the estimated slamming forces
would not correspond well with the experimental results. However, the experimental
results are within the solutions by using the angles estimated from wave profile 2 and
wave profile 3. This implies that the exact deadrise angle in the time series of a regular
wave with period T = 1.4s and steepness 1/40, will approximately be between 57 and 74
degrees.

The Wagner model is very sensitive to the deadrise angle and the impact surface. Time
series with a different wave period has been analyzed. It is mentioned earlier about the
parametric instability occurs about T = 6.2s in full scale, and the time series of the
slamming forces during this wave period in model scale, T = 1.24s, are shown in figure
5.26. The resulting wave profiles are different. This leads to different estimations of the
slamming forces which is shown in figure 5.27a.

Figure 5.26: Slamming force time series with wave period T = 1.24s in model scale and
steepness 1/60 from test series 4012003

(a) Slamming Estimation of the forces (b) Wave profiles estimated from a time series
with wave period T = 1.24s and steepness 1/60

Figure 5.27: Estimated slamming force compared with the slamming force measured from
test series 4012003 with model scale wave period T = 1.24s and H/λ = 1/60

The local relative velocity for the regular wave with period T = 1.24s is estimated to be
0.7118m/s, and the estimated angle between the water and the body are listed in table
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5.7. As the results show, the estimated angles within 50 degrees in this case overestimate
the slamming forces. Hence, the accuracy of the deadrise angle and the wave length are
essential for the estimation of the slamming forces by using Wagner model.

Table 5.7: Estimated deadrise angle in degrees for the wave profiles with time series for a
period T = 1.24s and steepness 1/60 for test series 4012003

Wave profile 1 Wave profile 2 Wave profile 3 Averaged profile
54.67 50.29 44.813 50.186

5.3.2 The slamming coefficient

The slamming coefficient is plotted against the wave periods. Formula 2.32 from Chapter
2.8.1 is used, and the vertical force is the mean maximum force in the slamming force
time series from each wave period with a wave steepness. This is shown in figure 5.28.

Figure 5.28: Slamming coefficient from test series 4012003 for the mean maximum slam-
ming force in the time series

It can be seen that the slamming coefficient is largest at wave period T = 6s to T = 9s
in full scale. The peak at T = 6s is due to the parametric instability. At T = 7s, it is



5.3. Slamming forces 71

close to the heave resonance that creates large heave motions. At T = 4s, it is shown a
peak that appears in the slamming coefficient plot. This is when the waves are higher
than the height of the deck. It is the same as for the higher periods where the slamming
coefficient is not zero even if there is no impact at all.

5.3.3 Comparison with Perforated plate

The slamming force time series of the perforated plate are compared with the solid plate.
The perforated plate is tested with same waves as test series 80000 and 90000 with a
sampling frequency of 1200Hz. Time series of the measured slamming forces are shown
in figure 5.29 for an incoming regular wave with full scale wave period T = 7s and wave
steepness of 1/30.

The comparison shows that the maximum slamming force is much smaller for the perfo-
rated plate than the solid plate. This is due to the difference of added mass of the two
plates. The slamming force is a consequence of the rate of change of the added mass
as explained in Chapter 2.8.2. As the dry mass is different for the perforated plate, the
added mass during the impact will be different.

Figure 5.29: Time series of slamming force for perforated and solid plate. Blue lines:
Slamming forces measured from solid plate. Green lines: Slamming forces measured from
perforated plate

With the perforated plate, the water will flow between the small openings. For the solid
plate, the water particles are forced to move along the plate during the impact which give
larger acceleration. This effect, alongside with the effect of the water that flows around
the plate edges, will contribute to a rotational flow.

From [An and Faltinsen, 2013], it is discovered that for a perforated plate with a single
opening in the middle of the plate, the added mass and drag coefficient of the plate are
dependent on KC number which is the Keulegan Carpenter number. The KC number is
defined in [Keulegan and Carpenter, 1958] as a number that describes the relationship of
the drag and inertia forces for objects in oscillatory fluid flow. [Tao and Dray, 2008] have
performed a test with a circular solid and perforated disk which is submerged in water.
The results show that the heave added mass and damping coefficients are nearly linearly
dependent of KC number. Furthermore, if the perforation ratio of the plate is large, the
value of the drag coefficient will become large and the added mass will decrease.
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A distribution of the maximum slamming force is plotted for both perforated and solid
plate. It shows that the maximum impact force is much lower for the perforated plate.
This means that the perforated plate will be more suitable with respect to the structure
responses.

Figure 5.30: Histogram of the slamming force time series in test series 80000 with wave
period T = 7s in full scale and H/λ = 1/30

5.4 Experimental errors

It is observed after the experiments that there is water inside the model. The total
weight of the water is 1235g during tests in January, and 335g in April. This is taken
into consideration by running the numerical simulations with new gravitation center and
added the scaled weight to the mass model. However, the water inside the body might
give other effects which can affect the measured responses.

The decay tests show some differences for tests in January and April. This can possibly
be that the loading condition in the two laboratory works are slightly different.

Tank leakage occurs during all experiment tests. Deviations on all wave probes are found
before and after the experiments. This can possibly be due to incorrect calibration. With
a changing water level, the zero reference point will be difficult to determine.



6 Further work and conclusions

6.1 Conclusions

Global motions for an aquaculture barge are studied both using numerical and experi-
mental models. A numerical model is made in full scale in WADAM as a panel model,
where the roll damping is estimated. Other additional matrices are added in order to
imitate the physical model used during the experiments. The global motions are solved
numerically by using linear wave theory, and the wall effects from the experiments are
imitated by using mirroring techniques.

The numerical model is analyzed with finite and infinite water depth. The numerical
results show that the added mass and damping are different for different water depths.The
results from the finite water analysis are in good agreement with the experimental results.
The experiments are carried out twice with total 9 test series in the small towing tank at
the center of Marine Technology, ”Lilletanken”. The physical model has 1:25 scale, and
the small platform is made by aluminum. The model is moored with four springs, where
the forces on each mooring line are measured. The tests consist of only regular waves
with varying wave period and steepness.

The RAOs obtained from the experiments show good agreement with the numerical re-
sults. It is observed that large responses in heave occur for waves with full scale wave
period of T = 7s. This is the natural period in heave, which lies close to the period for
the parametric instability. The parametric roll in beam sea occurs at the half value of
natural period of roll, which is in full scale T = 6.02s. This instability can possibly be a
consequence of the asymmetric heave excitation forces from the waves, the wall reflection
effect, and the vortex shedding at the sharp edges of the barge.

The largest slamming forces occur at the largest heave motions. This is about T = 7.2s
and T = 7.6s in full scale. The side deck is periodically submerged in the water, and the
water exit force is observed as the negative suction force in the time series. It is observed
that the slamming force is dependent on the wave steepness, the global motions, the wave
amplitude and the relative local velocity. The slamming force is observed to be largest at
the steepest waves, and the high impact force has very short time duration.

Wagner model does not correspond well with the experimental results. Due to large
uncertainties of the wave profile, the deadrise angle cannot be accurately estimated. A
few tests with a perforated plate which has the same dimensions as the solid plate are
conducted with same test series. It is observed that the perforated plate has smaller
slamming force. This is due to the water that flow through the small openings during the
impact which cause less acceleration to the water particles.

73
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The experimental work is time consuming, and experiences are required for a faultless
laboratory exercise. To plan and design an experiment requires guidance and advice
from experienced people. The post-processing of the measured data from the laboratory
exercises is important, and the data should be filtered consistently to make sure that the
useful data are not filtered out. To be able to understand and interpret the measured
data is important in order to relate the theory and physical events.

6.2 Further work

It is shown that the slamming loads are periodic with waves, but with different peaks
on each cycle. This can be a fatigue related problem, and a fatigue analysis can be
performed. A model for the fatigue trend of the side deck can be established. If necessary,
the slamming loads can be analyzed by using advanced computational fluid dynamic
programs. As shown from the time series of the slamming forces, the duration of the
negative forces is longer than that of positive impact forces. Investigations of the water
exit force can be carried out in future work.

It is recommended to run more tests with same test set up, but with irregular waves. This
gives the possibility to investigate the responses of the model in a realistic environment.
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Appendix

A Additional theory

A.1 Reynolds scaling

Another scaling method is the equality of the Reynolds number as expressed in equation
1. This is called Reynolds scaling, and it implies that the flow around the structure
will be scaled correctly. Reynold scaling applies to the cases where the viscous forces
are important. For slamming analysis, viscous effect is second dominating effect. Hence,
Reynold scaling should be considered.

Re =
ρUL

µ
(1)

According to [Steen, 2014], it is impossible to satisfy Froude scaling and Reynolds scaling
at the same time. This means, by choosing Froude scaling, the viscous forces will not
be correctly scaled. It is further explained in [Faltinsen and Timokha, 2009], that there
exist no fluid in model scale that can satisfy the scaling factor expressed in equation 2.

Lm/Ls = (νm/νs)
2/3 (2)

However, it is shown that a modified Reynolds number is possible by combining the
Reynolds and Froude number as in formula 3.

Re =
L3/2g1/2

ν
(3)

A.2 Boundary value problem

This section is based on Chapter 2 in Sea Loads on Ships and Offshore Structures by
[Faltinsen, 1993], and Chapter 1 in Hydrodynamikk by [Pettersen, 2007]. Consider a body
in a control surface with incident waves as presented in figure 1.

Figure 1: A body in two dimensional waves



From the physics’ point of view, if there is a flow that passes through a well defined
control volume, the continuity equation must be satisfied. This assumption is valid as
long as the space in the control volume is significantly larger than the distance between
the molecules inside it according to [CENGEL, 2013]. Mathematically, the continuity is
expressed as in equation 4.

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (4)

If the flow is incompressible, irrotational and inviscid, the potential theory can be used.
The velocities of the fluid domain can expressed in terms of a velocity potential, φ, and
the total velocity can be expressed as in equation 5.

V = ∇φ =
∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k = ui + vj + wk (5)

Vectors i, j and k are the unit vectors in x, y and z-directions in a Cartesian coordinate
system respectively. Due to the assumptions that the flow is incompressible and irrota-
tional, the equation of continuity can further be expressed as in equation 6, which is the
Laplace equation.

∇2φ = 0 (6)

Equation 6 must be satisfied at all time within the defined fluid domain with an exception
of air-water interface. From figure 1, the vertical velocity at the sea bed must be zero for
a finite water depth.

Dynamic free surface condition

On the free surface, the Bernoulli equation must be satisfied which is shown in figure 2
for two arbitrary points on the free surface. The Bernoulli equation will be expressed as
in formula 7.

Figure 2: Dynamic free surface condition requirement of constant pressure on the free
surface
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ρ
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1

2
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p

ρ
+

1

2
U2 + gζ +

∂φ

∂t
= Constant (7)



In linear wave theory, the velocity U and U1 are assumed small compared with the other
parameters in the formula, therefore the quadratic term of U are neglected. Waves are
usually assumed to be harmonic. Thus, gζ1 will disappear because of the phase shift. The
expression on the left hand side will be zero, and the Bernoulli equation will be simplified
as expressed in equation 8.

gζ + (
∂φ

∂t
)z=ζ = 0 (8)

This formula will give the wave elevation profile, ζ, in terms of the time derivative of the
velocity potential.

Kinematic boundary conditions

According to [Pettersen, 2007], the water particles at the free surface will stay on the
surface when the waves are small. This indicates that the fluid particles at the surface have
the same vertical motion of the wave profile. Figure 3 illustrates the velocity component
of the water particle on the surface. This can be mathematically expressed as in equation
9.

Figure 3: Velocity at the free surface and for the water particles

∂ζ

∂t
=
∂φ

∂z
(9)

By using equation 8 obtained from the dynamic free surface condition, and taking the
derivative of the wave elevation profile, ζ, the kinematic free surface condition can be
rewritten as equation 10. Assuming small wave elevation, the free surface condition is
satisfied on the mean free surface at z = 0.

∂2φ

∂t2
+ g

∂φ

∂z
= 0 (10)

If the velocity potential oscillates harmonically with an angular frequency, ω, equation 10
can be rewritten as following:

− ω2φ+ g
∂φ

∂z
= 0 (11)



If a finite water depth is assumed, the boundary condition for an impermeable sea can
be applied. Equation 11 will give a solution of the velocity potential of incident waves as
expressed in formula 12 for finite water depth.

φ =
gζ

ω

cosh k(z + h)

cosh kh
cos(ωt− kx) (12)

Where h is the water depth, and k is the wave number that depends on the wave angular
frequency. The dispersion relation is shown in equation 13 for constant water depth.

ω2

g
= k tanh(kh) (13)

If infinite water depth is assumed, h will approach to infinity, and tanh(kh) will approach
to 1. The dispersion relation with the corresponding velocity potential will be expressed
in equation 14 for deep water condition.

φ =
gζ

ω
ekz cos(ωt− kx)

ω2

g
= k (14)

On the body surface, it is required that the normal velocity is equal to the differentiation
of the velocity potential. This is generalized as in equation 15.

∂φ

∂n
= V · n (15)

Where V is any type of velocity the body moves with, and ∂/∂n denotes the differentiation
along the normal direction of the body surface, where the positive normal direction is
defined into the fluid domain. This condition implies that there is no fluid that enters or
leaves the body surface.

A.3 Regular wave theory

Linear wave theory gives the linearized mathematical formulation of gravity induced
waves. This is achieved by using the free surface condition together with Laplace equation
and the sea bottom condition.

The wave number, k, can be expressed as a function of the wave length, λ. This is shown
in equation 16.

k =
2π

λ
(16)

The restrictions for linear analysis for propagating waves is stated in [Dingemans, 1996],
that the wave steepness has to be small for deep water waves. As for shallow water waves,
the restrictions is that the wave amplitude has to be small compared to the water depth.
With this, it can be expected that the linear wave theory will differ for physical waves
with higher steepness.



Phase and Group velocity

As mentioned in section A.2, the dispersion relation for deep water and shallow water are
different. This will lead to different expressions for phase velocity and group velocity of
the waves that travel in deep and shallow water.

If some interference of the two sinusoidal waves occurs, and the two waves have slightly
different wave lengths but same amplitude and the propagation direction, a wave group
can be defined with the group velocity. The group velocity are generally expressed as in
equation 17.

cg =
dω

dk
(17)

The group velocity is different depending on which dispersion relationship of the ω and
k from the wave. Table 1 gives an overview of three cases for a linear wave with a wave
number k = 2π/λ and the angular frequency as ω = 2π/T . The formulas has been taken
from [Dingemans, 1996] and [Faltinsen, 1993]. It should be noted that for intermediate
depth, the wave length is the solution of the implicit equation by solving λ for a specific
period, T .

Table 1: Linear theory frequency dispersion of gravity waves

Quantity deep water (h ≥ 0.5λ) shallow water (h ≤ 0.05λ) Intermediate depth (all λ and h)

Dispersion relation ω2/g = k ω2 = k2gh ω2 = gk tanh(kh)

Phase velocity cp = g
2π
· T cp =

√
gh cp =

√
g
k
tanh(kh)

Group velocity cg = g
4π
· T cg =

√
gh cg = 1

2
cp(1 + 2kh

sinh(2kh)
)

Wave length g
2π
· T 2 T ·

√
gh ( 2π

T
)2 = 2πg

λ
tanh( 2πh

λ
)

A.4 Analytic slamming theory

Slamming on a cylinder

According to [Faltinsen, 1993], the free surface condition is φ = 0 when z = 0. This
comes from the kinematic condition expressed in equation 10 in A.2 with the assumption
of the fluid accelerations are much larger than the gravitational acceleration. The pressure
is assumed to be constant and equal to atmospheric pressure. In order to simplify the
problem further, the cylinder is replaced by an equivalent flat plate. The boundary
condition can approximately be described as in equation 18.

∂φ

∂z
= −V on z = 0 (18)

This boundary value problem can be solved. In [Faltinsen, 1993] the solution is obtained
as the velocity potential on the body, expressed as in formula 19.

φ = −V (c2 − x2)
1
2 |x| ≤ c(t) (19)



Here, V is the constant velocity, x is the x-coordinate on the body, and c is the wetted
body area expressed as in formula 20 related to the Von Karma method. The wetted
body area is illustrated in figure 4 for a cylinder.

c2(t) = 2V tR− V 2t2 (20)

Figure 4: Definition of the wetted body area

In this case, the body is a circular cylinder with a characteristic length R as the cylinder
radius. When the velocity potential is obtained, the pressure and the force can be cal-
culated. However, as mentioned, the slamming occurs over a small time duration. This
means that the change of time will be larger than the change in space. This indicates that
the time derivative will be dominating in the pressure term. The hydrodynamic pressure
will approximately be expressed as following:

p = −ρ∂φ
∂t

= ρV
c

(c2 − x2) 1
2

dc

dt
(21)

The force can be obtained by integrating along the body surface, which is expressed in
formula 22.

F3 =

∫ c

−c
pdx = ρV c

∫ c

−c

dx

(c2 − x2) 1
2

= V
d

dt
(ρ
π

2
c2) (22)

By using equation 22 for slamming force, and inserting the expression for wetted body
area, the slamming coefficient can be determined as formula 23.

Cs =
F3

1
2
ρV 22R

(23)

The slamming coefficient is used to compare the experimental results with the analytic
calculations. It has been proved in many experiments in [Faltinsen, 1993] that the exper-
imental Cs is larger than the calculated one. Wagner (1932) presented his method, which
suggests that the reason for Cs is larger during the experiments is that the estimated
wetted body in Von Karman method is too small. His work concludes that the wetted
body area for a circular cylinder should be defined as in equation 24.

c = 2
√
V tR (24)



Solution of Wagner model

The solution of the boundary value problem in Wagner model can be found in com-
plex representation. In [Faltinsen and Timokha, 2009], the complex velocity potential is
expressed as in equation 25.

W = φ+ iψ = iV z − iV (z2 − c2)1/2 (25)

Where φ is the velocity potential and ψ is the stream line function. The complex velocity
is the partial derivative with respect to z, and the expression becomes ∂W/∂z = iV −
iV z

(z2−c2)1/2 .

In order to check if the boundary conditions are satisfied, the polar coordinates can be
used related to the complex number analysis. By introducing z − c = r1 exp(iθ1) and
z+ c = r2 exp(iθ2) the expression of the partial part from the compelex velocity becomes:

(z2 − c2)1/2 =
√
r1r2 exp[i

1

2
(θ1 + θ2)] (26)

When θ1 = π and θ2 = 0, the |x| ≤ c and y = 0− which gives (z2 − c2)1/2 = i(c2 − x2)1/2
with y = 0− corresponding to the underside of the body. When x ≥ c and y = 0, both θ1
and θ2 are zero. This leads to an expression as expressed in formula 27.

(z2 − c2)1/2 = (x2 − c2)1/2 for x ≥ c y = 0 (27)

Furthermore, x ≤ −c and y = 0± means that θ1 = θ2 = ±π. This gives to equation 28.

(z2 − c2)1/2 = −(x2 − c2)1/2 for x ≤ −c y = 0 (28)

With expression 27 and 28, the solution of the boundary problem gives a velocity potenial
φ = 0 for |x| ≥ c on y = 0. This gives a complex velocity as following:

∂W

∂z
= u− iv = iV + V x(c2 − x2)−1/2 for |x| ≤ c on y = 0− (29)

From the imaginary part of v as v = ∂φ/∂y, the boundary condition φy = −V will be
satisfied. The complex velocity potential can be rewritten as W = iV x − V (c2 − x2)1/2
when |x| ≤ c(t) and y = 0−. This gives the velocity potential on the body as equation 30.

φ = −V (c2 − x2)1/2 for |x| ≤ c(t) (30)

In Chapter 8.3.1 from Hydrodynamics of High-Speed Marine Vehicles by O.M. Faltinsen
[Faltinsen, 2012], the hydrodynamic pressure is expressed as p − pa = −ρ∂φ/∂t. It is
stated that there is nothing in the derivations that prevents the velocity V from being
dependent on time. This gives a pressure difference as expressed in equation 31.



p− pa = ρV
c

(c2 − x2)1/2
dc

dt
+ ρ

dV

dt
(c2 − x2)1/2 (31)

The first therm in the equation is the slamming pressure as it is associated with the rate
of change of the wetted surface which is approximately 2dc/dt. The second part is the
added mass pressure. However, the slamming pressure will be infinite at the edges when
x = ±c, which is nonphysical.

The two dimensional vertical force acting on the body can be expressed as in formula 32.

F3 =

∫ c

−c
pdx = ρV c

dc

dt

∫ c

−c

dx√
x2 − x2

+ρ
dV

dt

∫ c

−c
(c2−x2)1/2dx = ρφV c

dc

dt
+ρ

π

2
c2
dV

dt
(32)

The last therm ρπc2/2 is the two dimensional added mass in heave direction for the plate
as shown in the boundary value problem in figure 2.6. This is due to the linearization of
the problem, by assuming that dc/dt = 0 and that the velocity V is positive downwards.
The damping is not present due to the free surface condition φ = 0 where no wave can
be generated. In order to generate waves, surface tension or gravity must be included.

The added mass of the plate is half of the added mass in heave of the plate in infinite fluid.
This is because velocity potential is antisymmetric about x-axis. After the hydrodynamic
force on the plate in infinite fluid is found, the integration is on both sides of the plate.
During an impact, the pressure can be integrated on the lower side in order to get the
correct forces. It follows that the heave added mass is half of the added mass of the plate
in infinite fluid.

The slamming problem is considered in two dimensions. Then by using Wagner’s method,
the wetted surface can be predicted from the intersection of the body surface and the free
surface. Due to the condition of φ = 0 on the free surface, the horizontal velocity is zero
on the surface. The vertical velocity can be expressed with the complex velocity and
equations 27 and 28 which give following result:

∂φ

∂z
=

V |x|√
x2 − c2(t)

− v on z = 0 |x| ≤ c(t) (33)

The relative vertical velocities between the fluid particle on the free surface of the body
must be known. This can be expressed as in equation 34.

wr =
∂φ

∂z
+ V (34)

The predicted vertical distance of the fluid particles that moved along the body surface
can be expressed as in formula 35.

ηb(x) =

∫ t

0

V |x|√
x2 − c2(t)

dt (35)



In [Faltinsen, 2012], the vertical distance ηb(x) is a known function. Thus equation 35
can determine the wetted length, c(t). By changing the integration variable from t to c,
equation 35 can be rewritten as:

ηb(x) =

∫ x

0

xµ(c)dc√
x2 − c2

with µ(c)dc = V dt (36)

Where µ(c) is unknown. Therefore the integral in 36 can be used to determine µ(c) which
can afterwards be used to find the wetted length. [Faltinsen, 2012] suggested an approxi-
mation for expression of µ(c) as expressed in formula 37 with two unknown constants A0

and A1.

µ(c) ≈ A0 + A1c (37)

When integrating equation 35 by using expression 37 for µ(c) the vertical distance ηb(x)
can be rewritten as following:

ηb(x) = A0
π

2
x+ A1x

2 (38)

If the vertical distance in equation 38 is given as a second-order polynomial, the unknown
coefficients from formula 37 can be determined. This leads to an expression of µ(c) which
further can be used to determined the wetted length c as a function of time. For a case
with a symmetric impact of a wedge with a deadrise angle β, the vertical distance is
dependent on the angle as ηb(x) = |x| tan β. If a constant vertical velocity is considered,
the wetted length is expressed as in equation 39.

c(t) =
πV t

2 tan β
(39)

If a time varying velocity is considered with a body shaped described as ηb(x) = Ax+Bx2,
equation 40 along with equation 36 must be solved in order to obtain the wetted length.

(
2A

π
c+

B

2
c2) =

∫ t

0

V dt (40)

By assuming that velocity is changing linearly during the impact, V (t) = V0 + V1t, the
wetted length is expressed as in formula 41 with a condition that the wetted length is a
positive and real value.

c(t) = − 2A

πB
+

√
(2A/π)2 + 2BV0t+BV1t2

B
(41)

It should be noted that the Wagner method is not valid for water exit analysis. This
is due to the free surface condition φ = 0. It is explained in [Faltinsen, 2012] that
during the water exit analysis, the fluid acceleration is no longer dominant relative to the
gravitational acceleration. If the water exit is considered, then von Karman’s solution for
this problem can be used. This requires a numerical method.



A.5 Piston wave maker

The waves that were used during the experiments are generated by a piston wave maker.
According to [Miskovic et al., 2008], there is a general procedure for producing the desired
waveform. From the report, it is expressed by the Biesel function as described in equation
42.

η(f) = 0 + ic0x(f) with c0 =
2(cosh(2kh)− 1)

sinh(2kh) + 2kh
(42)

η(f) and x(f) are the surface elevation and paddle motion in frequency domain respec-
tively, and c0 is the Biesel transfer function for a piston wave maker.



B Experimental results

B.1 Decay test

January tests

The results of the decay test conducted in January, 2018 are presented in this section.
The model is attached with one wave probe on the deck, and the side deck is mounted
with a force sensor.

Surge decay test results measured by two accelerometers. Left: Surge motion time series.
Right: PSD of the time series, peak at 0.0642Hz

Sway decay test results measured by the springs attached to the model. Left: Sway
motion time series. Right: PSD of the time series, peak at 0.0634Hz



Heave decay test results measured by the accelerometers. Left: Heave motion time series.
Right: PSD of the time series, peak at 0.63Hz

Roll decay test results measured by the accelerometers. Left: roll motion time series.
Right: PSD of the time series, peak at 0.71Hz

Pitch decay test results measured by the accelerometers. Left: Pitch time series. Right:
PSD of the pitch time series, peak at 0.4006Hz



Yaw decay test results measured by the accelerometers. Left: Yaw time series. Right:
PSD of the yaw time series, peak at 0.1542Hz

April tests

Results from the decay test conducted April, 2018 at Lilletanken are presented in this
section. The model is mounted with one wave probe, and deck is attached to the model
with a force sensor.

Surge decay test results. Left: Surge motion time series. Right: PSD of the time series,
peak at 0.051Hz

Sway decay test results. Left: Sway motion time series. Right: PSD of the time series,
peak at 0.0727Hz



Heave decay test results. Left: Heave motion time series. Right: PSD of the time series,
peak at 0.66Hz

Roll decay test results. Left: Roll motion time series. Right: PSD of the roll motion time
series, peak at 0.71Hz

Pitch decay test results. Left: Pitch motion time series. Right: PSD of the time series,
peak at 0.4159Hz



Yaw decay test results. Left: Yaw motion time series. Right: PSD of the time series,
peak at 0.1786Hz

The results of the decay test where the model is mounted with three wave
probes, and the platform is not attached.

Surge decay test results. Left: surge motion time series. Right: PSD of the time series,
peak at 0.0514Hz

sway decay test results. Left: sway motion time series. Right: PSD of the time series,
peak at 0.06906Hz



Heave decay test results. Left: Heave motion time series. Right: PSD of the time series,
peak at 0.65Hz

Roll decay test results. Left: Roll motion time series. Right: PSD of the time series, peak
at 0.72Hz

Pitch decay test results. Left: Pitch motion time series. Right: PSD of the time series,
peak at 0.4284Hz



Yaw decay test results. Left: Yaw motion time series. Right: PSD of the time series,
peak at 0.1825Hz



B.2 Pluck test of the plate

Solid plate

Decay test of the deck. The decay test results for test no. 2. Left: Time series. Right:
The PSD of the measured time series of the force

Decay test of the deck. The decay test results for test no. 3. Left: Time series. Right:
The PSD of the measured time series of the force



Decay test of the deck. The decay test results for test no. 4. Left: Time series. Right:
The PSD of the measured time series of the force

Decay test of the deck. The decay test results for test no. 5. Left: Time series. Right:
The PSD of the measured time series of the force



perforated plate

Decay test of the perforated plate. Test results for test no. 1. Left: Time series. Right:
The PSD of the measured time series of the force

Decay test of the perforated plate. Test results for test no. 2. Left: Time series. Right:
The PSD of the measured time series of the force



Decay test of the perforated plate. Test results for test no. 3. Left: Time series. Right:
The PSD of the measured time series of the force

Decay test of the perforated plate. Test results for test no. 4. Left: Time series. Right:
The PSD of the measured time series of the force

Decay test of the perforated plate. Test results for test no. 5. Left: Time series. Right:
The PSD of the measured time series of the forcee



B.3 RAO

Response Amplitude Operator obtained from the experiments are plotted with the calcu-
lated RAO from WADAM

January tests: Test series 200

Test results from the test series 200 conducted January, 2018 at Lilletanken are presented
in this section.

Heave RAO from test series 200 which is compared with results calculated from WADAM
with 19 mirroring images

A region which is zoomed in from period T = 6s to T = 13s of heave RAO from test
series 200 with results from WADAM calculated with 19 bodies for all steepness



Pitch RAO from test series 200 which is compared with results calculated from WADAM
with 19 mirroring images

A region which is zoomed in from period T = 6s to T = 13s of pitch RAO for all steepness
from test series 200 with results from WADAM calculated with 19 bodies



Surge RAO from test series 200 which is compared with the results calculated from
WADAM with 19 mirroring images

A region which is zoomed in from period T = 6s to T = 13s of surge RAO from test
series 200 with results from WADAM calculated with 19 bodies



January tests: Test series 7000

Heave RAO from the test series 7000 with wave steepness of H/λ = 1/60, 1/42, 1/24 that
are compared with results calculated from WADAM with 19 mirroring bodies

A zoomed in region from period I = 5s to T = 13s of heave RAO obtained from test
series 7000 compared with WADAM results with 19 mirroring images.



Pitch RAO from the test series 7000 with wave steepness of H/λ = 1/60, 1/42, 1/24 that
are compared with results calculated from WADAM with 19 mirroring bodies

A zoomed in region from period I = 5s to T = 13s of pitch RAO obtained from test
series 7000 compared with WADAM results with 19 mirroring images.



Illustration of the parametric instability with heave RAO obetained by filtering the mea-
sured data with a band pass filter. The high and low frequency are concentrated around
ω, 0.5ω where ω is the frequency of the incoming waves. The plot is for a wave with
steepness of H/λ = 1/60.

Pitch RAO obetained by filtering the measured data with a band pass filter with high
and low frequency concentrated around ω, 0.5ω where ω is the frequency of the incoming
waves. The plot is from a wave with a wave steepness of H/λ = 1/60. Two peaks located
at T = 6s and T = 7s



January tests: Merged test series of 80000 and 90000 with sample frequency
1200Hz

Heave RAO from the merged test series with wave steepness of H/λ =
1/30, 1/27, 1/24, 1/21, 1/18, 1/15 compared with results calculated from WADAM with
19 mirroring bodies

A zoomed in region with period from T = 6s to T = 11s from heave RAO compared with
WADAM results calculated from 19 mirroring bodies



Pitch RAO from the merged test series with wave steepness of H/λ =
1/30, 1/27, 1/24, 1/21, 1/18, 1/15 compared with results calculated from WADAM with
19 mirroring bodies

A zoomed in region with period from T = 6s to T = 11s from pitch RAO compared with
WADAM results calculated from 19 mirroring bodies



surge RAO from the merged test series with wave steepness of H/λ =
1/30, 1/27, 1/24, 1/21, 1/18, 1/15 compared with results calculated from WADAM with
19 mirroring bodies

A zoomed in region with period from T = 6s to T = 11s from surge RAO compared with
WADAM results calculated from 19 mirroring bodies



April tests: Test series 401003

Heave RAO from test series 401003 with wave steepness H/λ = 1/50 compared with
results calculated from 19 mirroring bodies in WADAM

A zoomed in region from period T = 3s to T = 15s of the heave RAO from test series
401003 compared with results from WADAM



Pitch RAO from test series 401003 with wave steepness H/λ = 1/50 compared with
results calculated from 19 mirroring bodies in WADAM

A zoomed in region from period T = 3s to T = 15s of pitch RAO from test series 401003
compared with results from WADAM



Surge RAO from test series 401003 with wave steepness H/λ = 1/50 compared with
results calculated from 19 mirroring bodies in WADAM

A zoomed in region from period T = 3s to T = 15s of surge RAO from test series 401003
compared with results from WADAM



April tests: Test series 4090011

Heave RAO from test series 4090011 with wave steepness H/λ = 1/40 compared with
WADAM results of 19 mirroring models

Zoomed in region from period T = 2s to T = 15s of heave RAO from test series 4090011
with wave steepness H/λ = 1/40 compared with WADAM results



Pitch RAO from test series 4090011 with wave steepness H/λ = 1/40 compared with
WADAM results of 19 mirroring models

Zoomed in region from period T = 2s to T = 15s of pitch RAO from test series 4090011
with wave steepness H/λ = 1/40 compared with WADAM results



Surge RAO from test series 4090011 with wave steepness H/λ = 1/40 compared with
WADAM results of 19 mirroring models

Zoomed in region from period T = 2s to T = 15s of surge RAO from test series 4090011
with wave steepness H/λ = 1/40 compared with WADAM results



Illustration of parametric instability by plotting pitch RAO obtained from test series
4090011 by filter the data concentrated at ω and 0.5ω of the signal, where ω is the
frequency of the incoming waves. Peak in green line at T = 6.2s

Heave RAO obtained from by using band pass filtering of ω and 0.5ω of the signal, where
the ω is the frequency of the incoming waves



April tests: Test series 4012002

Heave RAO from test series 4012002 with wave steepness H/λ = 1/26, 1/24, 1/22 com-
pared with WADAM results of 19 mirroring models

Zoomed in region from period T = 2s to T = 15s of heave RAO from test series 4012002
compared with WADAM results



Pitch RAO from test series 4012002 with wave steepness H/λ = 1/26, 1/24, 1/22 com-
pared with WADAM results of 19 mirroring models

Zoomed in region from period T = 2s to T = 15s of pitch RAO from test series 4012002
compared with WADAM results



Surge RAO from test series 4012002 with wave steepness H/λ = 1/26, 1/24, 1/22 com-
pared with WADAM results of 19 mirroring models

Zoomed in region from period T = 2s to T = 15s of surge RAO from test series 4012002
compared with WADAM results



Pitch RAO obtained by using band pass filtering of ω and 0.5ω of the signal, where the
ω is the frequency of the incoming waves. This plot is for waves with wave H/λ = 1/22.
Peak at the green line at T = 5.6s and T = 6.4s

Heave RAO obtained from test series 4012002 by using band pass filtering of ω and 0.5ω
of the signal. This plot is for waves with wave steepness H/λ = 1/22



Pitch RAO obtained by using band pass filtering of ω and 0.5ω of the signal, where the ω
is the frequency of the incoming waves. Peak at the green line at T = 5.6s and T = 6.4s.
This plot is for waves with wave steepness H/λ = 1/24

Heave RAO obtained from test series 4012002 by using band pass filtering of ω and 0.5ω
of the signal. This plot is for waves with wave steepness H/λ = 1/24



Pitch RAO obtained by using band pass filtering of ω and 0.5ω of the signal, where the
ω is the frequency of the incoming waves. Peak at the green line at T = 6.25s. This plot
is for waves with wave steepness H/λ = 1/26

Heave RAO obtained from test series 4012002 by using band pass filtering of ω and 0.5ω
of the signal. This plot is for waves with wave steepness H/λ = 1/26



April tests: Test series 4012003

Heave RAO from test series 4012003 with wave steepness H/λ = 1/60, 1/50, 1/40, 1/30
compared with WADAM results of 19 mirroring models

Zoomed in region from period T = 3s to T = 10s of heave RAO from test series 4012003
compared with WADAM results



Pitch RAO from test series 4012003 with wave steepness H/λ = 1/60, 1/50, 1/40, 1/30
compared with WADAM results of 19 mirroring models

Zoomed in region from period T = 3s to T = 10s of pitch RAO from test series 4012003
compared with WADAM results



Surge RAO from test series 4012003 with wave steepness H/λ = 1/60, 1/50, 1/40, 1/30
compared with WADAM results of 19 mirroring models

Zoomed in region from period T = 3s to T = 10s of surge RAO from test series 4012003
compared with WADAM results



Pitch RAO obtained by using band pass filtering of ω and 0.5ω of the signal, where the
ω is the frequency of the incoming waves. Peak at the green line at T = 6.2s. This plot
is for waves with wave steepness H/λ = 1/30

Heave RAO obtained from test series by using band pass filtering of ω and 0.5ω of the
signal. This plot is for waves with wave steepness H/λ = 1/30



Pitch RAO obtained by using band pass filtering of ω and 0.5ω of the signal, where the
ω is the frequency of the incoming waves. Peak at the green line at T = 6.2s. This plot
is for waves with wave steepness H/λ = 1/40

Heave RAO obtained from test series by using band pass filtering of ω and 0.5ω of the
signal. This plot is for waves with wave steepness H/λ = 1/40



Pitch RAO obtained by using band pass filtering of ω and 0.5ω of the signal, where the
ω is the frequency of the incoming waves. Peak at the green line at T = 6.2s. This plot
is for waves with wave steepness H/λ = 1/50

Heave RAO obtained from test series by using band pass filtering of ω and 0.5ω of the
signal. This plot is for waves with wave steepness H/λ = 1/50



Pitch RAO obtained by using band pass filtering of ω and 0.5ω of the signal, where the
ω is the frequency of the incoming waves. Peak at the green line at T = 6.2s. This plot
is for waves with wave steepness H/λ = 1/60

Heave RAO obtained from test series by using band pass filtering of ω and 0.5ω of the
signal. This plot is for waves with wave steepness H/λ = 1/60



B.4 Comparison of the waves

The comparison of the linear wave theory and the measured waves. The results of the
wave measurement when the towing tank is subjected with four wave probes. For all plots,
dots represent the measured wave height, and solid blue line represent the theoretically
estimated wave height for intermediate water depth.

Comparison of the measured waves and the theoretically estimated wave height from the
linear wave theory. The waves are tested with test series 401003, with wave steepness
H/λ = 1/50

Comparison of the measured waves and the theoretically estimated wave height from the
linear wave theory from test series 4090011, with wave steepness H/λ = 1/40



Comparison of the measured waves and the theoretically estimated wave height from the
linear wave theory from test series 4012002 with wave steepness H/λ = 1/26

Comparison of the measured waves and the theoretically estimated wave height from the
linear wave theory from test series 4012002 with wave steepness H/λ = 1/24



Comparison of the measured waves and the theoretically estimated wave height from the
linear wave theory from test series 4012002 with wave steepness H/λ = 1/22

Comparison of the measured waves and the theoretically estimated wave height from the
linear wave theory from test series 4012003 with wave steepness H/λ = 1/60



Comparison of the measured waves and the theoretically estimated wave height from the
linear wave theory from test series 4012003 with wave steepness H/λ = 1/50

Comparison of the measured waves and the theoretically estimated wave height from the
linear wave theory from test series 4012003 with wave steepness H/λ = 1/40



Comparison of the measured waves and the theoretically estimated wave height from the
linear wave theory from test series 4012003 with wave steepness H/λ = 1/30



B.5 Wave profile of the run-up area

Wave profiles estimated from the three wave probes, WP1cm, WP4cm and WP7cm before
the platform from experiments conducted in April, 2018. The wave profiles estimated for
periods listed in the table below for the corresponding test series.

Test series Periods in full scale where wave profiles are estimated
Wave steepness
that are considered

401003 T = 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 H/λ = 1/50
4090011 T = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 H/λ = 1/40
4012002 T = 5, 6, 7, 8, 9, 10 H/λ = 1/26, 1/22
4012003 T = 3, 4, 5, 6, 7, 8, 9, 10 H/λ = 1/60, 1/50

Wave profile of the run-up area before the deck tested with test series 401003. Plotted
with waves periods from T = 3 to T = 15s with a step size of 1s and wave steepness of
H/λ = 1/50. The location of the deck is marked as a black line

Wave profile of the run-up area before the deck tested with test series 4090011. Plotted
with waves periods from T = 2 to T = 15s with a step size of 1s and wave steepness of
H/λ = 1/40. The location of the deck is marked as a black line



Wave profile of the run-up area before the deck tested with test series 4012002. Plotted
with waves of periods from T = 5 to T = 10s with a step size of 1s with wave steepness
of H/λ = 1/26. The location of the deck is marked as a black line

Wave profile of the run-up area before the deck tested with test series 4012002. Plotted
with waves of periods from T = 5 to T = 10s with a step size of 1s with wave steepness
of H/λ = 1/22. The location of the deck is marked as a black line



Wave profile of the run-up area before the deck tested with test series 4012003. Plotted
with waves of periods from T = 3 to T = 10s with a step size of 1s with wave steepness
of H/λ = 1/60. The location of the deck is marked as a black line

Wave profile of the run-up area before the deck tested with test series 4012003. Plotted
with waves of periods from T = 3 to T = 10s with a step size of 1s with wave steepness
of H/λ = 1/50. The location of the deck is marked as a black line



B.6 MATLAB Simulations

The MATLAB simulations are calculated by using the hydrodynamic coefficient from
WADAM and the RAO from the experiments are presented. Table below gives the period
and wave steepness of the pitch time series. The periods in the table are given in full
scale.

Test series Period [s] Steepness Wave height in full scale [m]
T = 7 H/λ = 1/60, 1/50, 1/40, 1/30 H = 1.167, 1.4, 1.75, 2.33

4012003
T = 9 H/λ = 1/60, 1/50, 1/40, 1/30 H = 1.168, 2.016, 2.52, 3.36
T = 7 0.1, 0.11, 0.12, 0.15 with k = 0.0898Pitch RAO from

the experiment T = 9 0.45, 0.525, 0.575, 0.6 with k = 0.0623
T = 7 0.8651Pitch amplitude

from WADAM T = 9 1.889

Pitch time series solved by ODE using the hydrodynamic coefficients from WADAM. Left:
results with H/λ = 1/60. Right: results with H/λ = 1/50 with a period T = 7s in full
scale

Pitch time series solved by ODE using the hydrodynamic coefficients from WADAM. Left:
results with H/λ = 1/40. Right: results with H/λ = 1/30 with a period T = 7s in full
scale



Pitch time series solved by ODE using the hydrodynamic coefficients from WADAM. Left:
results with H/λ = 1/60. Right: results with H/λ = 1/50 with a period T = 9s in full
scale

Pitch time series solved by ODE using the hydrodynamic coefficients from WADAM. Left:
results with H/λ = 1/40. Right: results with H/λ = 1/30 with a period T = 9s in full
scale

Pitch time series solved by using the pitch amplitude from RAO calculated from WADAM
multiplied with the wave amplitude for different wave steepness. Left: Results with
T = 7s. Right: Results with T = 9s



Pitch time series solved by using pitch amplitude from RAO obtained from the exper-
iments. The pitch amplitude are multiplied with wave number, k. Left: Results with
T = 7s. Right: Results with T = 9s



B.7 Time series

The time series results from the experiments during January and April are presented
with the parameters according to the table below. Time series of wave elevations are only
plotted for test series 80000.

Test serie Periods in full scale considered Steepness considered
80000 T = 6, 7 H/λ = 1/30, 1/15
401003 T = 6, 6.5, 7, 9 H/λ = 1/50
4012002 T = 6, 6.2, 7, 9 H/λ = 1/22
4012003 T = 6, 6.2, 7, 9 H/λ = 1/60, 1/40, 1/30

Wave elevation

Time series of the wave elevation measured by WP3 for a regular wave with wave steepness
H/λ = 1/30 and corresponding wave period T = 6s in full scale for test series 80000

Time series of the wave elevation measured by WP3 for a regular wave with wave steepness
H/λ = 1/30 and corresponding wave period T = 7s in full scale for test series 80000



Time series of the wave elevation measured by WP3 for a regular wave with wave steepness
H/λ = 1/15 and corresponding wave period T = 6s in full scale for test series 80000

Time series of the wave elevation measured by WP3 for a regular wave with wave steepness
H/λ = 1/15 and corresponding wave period T = 7s in full scale for test series 80000



Motions

Time series of the heave motions

Time series of the heave motion from a regular wave with wave steepness H/λ = 1/30
and corresponding wave period T = 6s in full scale for test series 80000

Time series of the heave motion from a regular wave with wave steepness H/λ = 1/15
and corresponding wave period T = 6s in full scale for test series 80000



Time series of the heave motion from a regular wave with wave steepness H/λ = 1/30
and corresponding wave period T = 7s in full scale for test series 80000

Time series of the heave motion from a regular wave with wave steepness H/λ = 1/15
and corresponding wave period T = 7s in full scale for test series 80000



Time series of the heave motion from a regular wave with wave steepness H/λ = 1/50
and corresponding wave period T = 6s in full scale for test series 401003

Time series of the heave motion from a regular wave with wave steepness H/λ = 1/50
and corresponding wave period T = 6.5s in full scale for test series 401003



Time series of the heave motion from a regular wave with wave steepness H/λ = 1/50
and corresponding wave period T = 7s in full scale for test series 401003

Time series of the heave motion from a regular wave with wave steepness H/λ = 1/50
and corresponding wave period T = 9s in full scale for test series 401003



Time series of the heave motion from a regular wave with wave steepness H/λ = 1/22
and corresponding wave period T = 6s in full scale for test series 4012002

Time series of the heave motion from a regular wave with wave steepness H/λ = 1/22
and corresponding wave period T = 6.2s in full scale for test series 401003



Time series of the heave motion from a regular wave with wave steepness H/λ = 1/22
and corresponding wave period T = 7s in full scale for test series 4012002

Time series of the heave motion from a regular wave with wave steepness H/λ = 1/22
and corresponding wave period T = 9s in full scale for test series 4012002



Time series of the heave motion from a regular wave with wave steepness H/λ = 1/60
and corresponding wave period T = 6s in full scale for test series 4012003

Time series of the heave motion from a regular wave with wave steepness H/λ = 1/40
and corresponding wave period T = 6s in full scale for test series 4012003



Time series of the heave motion from a regular wave with wave steepness H/λ = 1/30
and corresponding wave period T = 6s in full scale for test series 4012003

Time series of the heave motion from a regular wave with wave steepness H/λ = 1/60
and corresponding wave period T = 6.2s in full scale for test series 4012003



Time series of the heave motion from a regular wave with wave steepness H/λ = 1/40
and corresponding wave period T = 6.2s in full scale for test series 4012003

Time series of the heave motion from a regular wave with wave steepness H/λ = 1/30
and corresponding wave period T = 6.2s in full scale for test series 4012003



Time series of the heave motion from a regular wave with wave steepness H/λ = 1/60
and corresponding wave period T = 7s in full scale for test series 4012003

Time series of the heave motion from a regular wave with wave steepness H/λ = 1/40
and corresponding wave period T = 7s in full scale for test series 4012003



Time series of the heave motion from a regular wave with wave steepness H/λ = 1/30
and corresponding wave period T = 7s in full scale for test series 4012003

Time series of the heave motion from a regular wave with wave steepness H/λ = 1/60
and corresponding wave period T = 9s in full scale for test series 4012003



Time series of the heave motion from a regular wave with wave steepness H/λ = 1/40
and corresponding wave period T = 9s in full scale for test series 4012003

Time series of the heave motion from a regular wave with wave steepness H/λ = 1/30
and corresponding wave period T = 9s in full scale for test series 4012003



Time series of pitch motions

Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/30 and
corresponding wave period T = 6s in full scale for test series 80000

Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/15 and
corresponding wave period T = 6s in full scale for test series 80000



Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/30 and
corresponding wave period T = 7s in full scale for test series 80000

Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/15 and
corresponding wave period T = 7s in full scale for test series 80000



Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/50 and
corresponding wave period T = 6s in full scale for test series 401003

Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/50 and
corresponding wave period T = 6.5s in full scale for test series 401003



Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/50 and
corresponding wave period T = 7s in full scale for test series 401003

Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/50 and
corresponding wave period T = 9s in full scale for test series 401003



Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/22 and
corresponding wave period T = 6s in full scale for test series 4012002

Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/22 and
corresponding wave period T = 6.2s in full scale for test series 401003



Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/22 and
corresponding wave period T = 7s in full scale for test series 4012002

Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/22 and
corresponding wave period T = 9s in full scale for test series 4012002



Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/60 and
corresponding wave period T = 6s in full scale for test series 4012003

Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/40 and
corresponding wave period T = 6s in full scale for test series 4012003



Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/30 and
corresponding wave period T = 6s in full scale for test series 4012003

Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/60 and
corresponding wave period T = 6.2s in full scale for test series 4012003



Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/40 and
corresponding wave period T = 6.2s in full scale for test series 4012003

Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/30 and
corresponding wave period T = 6.2s in full scale for test series 4012003



Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/60 and
corresponding wave period T = 7s in full scale for test series 4012003

Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/40 and
corresponding wave period T = 7s in full scale for test series 4012003



Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/30 and
corresponding wave period T = 7s in full scale for test series 4012003

Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/60 and
corresponding wave period T = 9s in full scale for test series 4012003



Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/40 and
corresponding wave period T = 9s in full scale for test series 4012003

Time series of the pitch motion from a regular wave with wave steepness H/λ = 1/30 and
corresponding wave period T = 9s in full scale for test series 4012003



Slamming forces

Time series of the slamming force from a regular wave with wave steepness H/λ = 1/30
and corresponding wave period T = 6s in full scale for test series 80000

Time series of the slamming force from a regular wave with wave steepness H/λ = 1/15
and corresponding wave period T = 6s in full scale for test series 80000



Time series of the slamming force from a regular wave with wave steepness H/λ = 1/30
and corresponding wave period T = 7s in full scale for test series 80000

Time series of the slamming force from a regular wave with wave steepness H/λ = 1/15
and corresponding wave period T = 7s in full scale for test series 80000



Time series of the slamming force from a regular wave with wave steepness H/λ = 1/50
and corresponding wave period T = 6s in full scale for test series 401003

Time series of the slamming force from a regular wave with wave steepness H/λ = 1/50
and corresponding wave period T = 6.5s in full scale for test series 401003



Time series of the slamming force from a regular wave with wave steepness H/λ = 1/50
and corresponding wave period T = 7s in full scale for test series 401003

Time series of the slamming force from a regular wave with wave steepness H/λ = 1/50
and corresponding wave period T = 9s in full scale for test series 401003



Time series of the slamming force from a regular wave with wave steepness H/λ = 1/22
and corresponding wave period T = 6s in full scale for test series 4012002

Time series of the slamming force from a regular wave with wave steepness H/λ = 1/22
and corresponding wave period T = 6.2s in full scale for test series 401003



Time series of the slamming force from a regular wave with wave steepness H/λ = 1/22
and corresponding wave period T = 7s in full scale for test series 4012002

Time series of the slamming force from a regular wave with wave steepness H/λ = 1/22
and corresponding wave period T = 9s in full scale for test series 4012002



Time series of the slamming force from a regular wave with wave steepness H/λ = 1/60
and corresponding wave period T = 6s in full scale for test series 4012003

Time series of the slamming force from a regular wave with wave steepness H/λ = 1/40
and corresponding wave period T = 6s in full scale for test series 4012003



Time series of the slamming force from a regular wave with wave steepness H/λ = 1/30
and corresponding wave period T = 6s in full scale for test series 4012003

Time series of the slamming force from a regular wave with wave steepness H/λ = 1/60
and corresponding wave period T = 6.2s in full scale for test series 4012003



Time series of the slamming force from a regular wave with wave steepness H/λ = 1/40
and corresponding wave period T = 6.2s in full scale for test series 4012003

Time series of the slamming force from a regular wave with wave steepness H/λ = 1/30
and corresponding wave period T = 6.2s in full scale for test series 4012003



Time series of the slamming force from a regular wave with wave steepness H/λ = 1/60
and corresponding wave period T = 7s in full scale for test series 4012003

Time series of the slamming force from a regular wave with wave steepness H/λ = 1/40
and corresponding wave period T = 7s in full scale for test series 4012003



Time series of the slamming force from a regular wave with wave steepness H/λ = 1/30
and corresponding wave period T = 7s in full scale for test series 4012003

Time series of the slamming force from a regular wave with wave steepness H/λ = 1/60
and corresponding wave period T = 9s in full scale for test series 4012003



Time series of the slamming force from a regular wave with wave steepness H/λ = 1/40
and corresponding wave period T = 9s in full scale for test series 4012003

Time series of the slamming force from a regular wave with wave steepness H/λ = 1/30
and corresponding wave period T = 9s in full scale for test series 4012003



Local acceleration and measured forces

Time series of slamming forces plotted with the local vertical acceleration of the side deck.
The period of the incoming wave is T = 6s with a wave steepness H/λ = 1/24

A zoomed in region of one impact cycles of the slamming force time series plotted with
the local vertical acceleration of the side deck from test series 80000 with a period of
T = 6s and a wave steepness of H/λ = 1/24



Time series of slamming forces plotted with the local vertical acceleration of the side deck.
The period of the incoming wave is T = 6s with a wave steepness H/λ = 1/21

A zoomed in region of one impact cycles of the slamming force time series plotted with
the local vertical acceleration of the side deck from test series 80000 with a period of
T = 6s and a wave steepness of H/λ = 1/21



Local velocity

Time series of the local velocity beneath the deck, i.e at the run-up area. The velocity is
obtained from the average wave elevation on the deck area and differentiated with respect
to time. The results in the plot is obtained from a wave with a period of T = 6.2s and a
wave steepness of H/λ = 1/26

Time series of the local velocity beneath the deck, i.e at the run-up area. The velocity is
obtained from the average wave elevation on the deck area and differentiated with respect
to time.The results in the plot is obtained from a wave with a period of T = 6.4s and a
wave steepness of H/λ = 1/26



Time series of the local velocity beneath the deck, i.e at the run-up area. The velocity is
obtained from the average wave elevation on the deck area and differentiated with respect
to time. The results in the plot is obtained from a wave with a period of T = 6.8 and a
wave steepness of H/λ = 1/26

Time series of the local velocity beneath the deck, i.e at the run-up area. The velocity is
obtained from the average wave elevation on the deck area and differentiated with respect
to time. The results in the plot is obtained from a wave with a period of T = 7.2s and a
wave steepness of H/λ = 1/26



B.8 Slamming

Slamming coefficients

Slamming coefficient of the maximum slamming forces in the time series. Left: test series
4012002. Right: test series 80000 from January

Slamming coefficient of the maximum slamming forces in the time series. Left: test series
401003. Right: test series 4090011

Slamming coefficient of the maximum slamming forces in the time series for the perforated
plate with test series 80000 from tests in January



Slamming force analysis

Estimation of slamming force with waves T = 1.4s and steepness 1/50. Left: Time series.
Right: estimated wave profiles

Figure 14: Estimated slamming force plotted with experimental results for time series
with T = 1.4s and wave steepness 1/50

Estimation of slamming force with waves T = 1.4s and steepness 1/40. Left: Time series.
Right: estimated wave profiles



Figure 15: Estimated slamming force plotted with experimental results for time series
with T = 1.4s and wave steepness 1/40

Estimation of slamming force with waves T = 1.4s and steepness 1/30. Left: Time series.
Right: estimated wave profiles

Figure 16: Estimated slamming force plotted with experimental results for time series
with T = 1.4s and wave steepness 1/30



Comparison with the perforated plate

Maximum slamming force time series of test series 80000 with H/λ = 1/30 for solid and
perforated plates. Green line is the perforated plate, blue is the solid plate. Left figure:
with a wave period T = 6s. Right figure: With a wave period T = 7s

Maximum slamming force distribution of test series 80000 with H/λ = 1/30 for solid and
perforated plates. The orange is the histogram for the perforated, and blue is for solid
plate. Left figure: with a wave period T = 6s. Right figure: With a wave period T = 7s



Maximum slamming force time series of test series 80000 with H/λ = 1/27 for solid and
perforated plates. Green line is the perforated plate, blue is the solid plate. Left figure:
with a wave period T = 6s. Right figure: With a wave period T = 7s

Maximum slamming force distribution of test series 80000 with H/λ = 1/27 for solid and
perforated plates. The orange is the histogram for the perforated, and blue is for solid
plate. Left figure: with a wave period T = 6s. Right figure: With a wave period T = 7s



Maximum slamming force time series of test series 80000 with H/λ = 1/24 for solid and
perforated plates. Green line is the perforated plate, blue is the solid plate. Left figure:
with a wave period T = 6s. Right figure: With a wave period T = 7s

Maximum slamming force distribution of test series 80000 with H/λ = 1/24 for solid and
perforated plates. The orange is the histogram for the perforated, and blue is for solid
plate. Left figure: with a wave period T = 6s. Right figure: With a wave period T = 7s



C Convergence test result

The convergence test results for surge, heave and pitch performed in WADAM. The plots
are based on the standard deviations of the motion amplitudes. This is plotted against
the number of boxes, marked as N .

C.1 Finite depth analysis

The water depth is set to be 17.5m.

Plot of the RAO in heave obtained from different numbers of the mirroring bodies in
undamped case

Plot of the RAO in heave obtained from different numbers of the mirroring bodies when
3% of the critical damping in heave is used



Plot of the RAO in pitch obtained from different numbers of the mirroring bodies in
undamped case

Plot of the RAO in pitch obtained from different numbers of the mirroring bodies when
empirical estimated damping in pitch is used



Plot of the RAO in surge obtained from different numbers of the mirroring bodies in
undamped case

Plot of the RAO in pitch obtained from different numbers of the mirroring bodies when
damping in heave and pitch motion is used



C.2 Infinite depth analysis

The water depth is set to be 10000m in WADAM.

Plot of the RAO in heave obtained from different numbers of the mirroring bodies in
undamped case

Plot of the RAO in heave obtained from different numbers of the mirroring bodies when
3% of the critical damping in heave is used



Plot of the RAO in pitch obtained from different numbers of the mirroring bodies when
no external damping is added

Plot of the RAO in pitch obtained from different numbers of the mirroring bodies when
empirical estimated damping in pitch is used



Plot of the RAO in surge obtained from different numbers of the mirroring bodies in
undamped case

Plot of the RAO in pitch obtained from different numbers of the mirroring bodies when
damping in heave and pitch motion is used
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