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Project Description
Subsea inspection, maintanance and repair (IMR) missions require remotely operated ve-
hicles (ROVs). These tasks are traditionally performed manually, but is well suited for au-
tomation. The vehicles considered in this project are therefore fully actuated ROVs and/or
AUVs. Survey AUVs with torpedo shape and no sway actuation are thus not considered.

This project is part of addressing the main challenge of increasing the level of au-
tonomy and robustness for automatic mapping, monitoring and intervention, high-level
planning/re-planning and reconfiguration of single and multiple vehicles subject to the
particular mission, environmental condition, available energy, communication constraints,
and any failure conditions.

This project will consider a Merlin class ROVs, which is a Class 3 work class-ROV
with fully electric propulsion. The vehicle is equipped with a front-facing, single beam
sonar that should be used to implement an obstacle detection and avoidance system. The
developed system should be able to give commands to the vehicles autopilot system and
provide a level of safety during automatic operations. IKM Technology facilitates a high-
fidelity simulator to aid the development and verification of the proposed motion planning
algorithms prior to full-scale tests.

Scope
The following subtasks should be addressed:

1. Develop an algorithm for obstacle detection using measurements from a sonar and
available maps. The sonar is single beam, front facing with 180 degrees viewing
angle. Secondary input is two-dimensional map data.

2. Develop a motion-planning algorithm for obstacle avoidance using the developed
obstacle detection algorithm.

3. Use the algorithms and design a guidance system that can give commands to an
autopilot system. Assume the autopilot is capable of dynamic positioning and path
following of curved paths by providing it waypoints.

4. Implement and verify the guidance system in Matlab/Python.

5. Verify the developed system using the high-fidelity Merlin simulator at Bryne.

6. Verify the developed system in full-scale experiments by implementing the solution
into the existing guidance and control system.

7. Conclude your results.

Supervisor: Professor Ingrid Schjølberg
Co-supervisor: Vegard Wie Henriksen, IKM Technology AS





Abstract

Unmanned underwater vehicles, such as remotely operated vehicles (ROVs) and autonomous
underwater vehicles (AUVs) are commonly used for inspection, maintenance and repair
(IMR) missions in the oil and gas industry. This is a cost-driven industry and advances in
autonomy is a key factor to reduce the mission expenses.

Collision avoidance is one of the main challenges in the field of AUVs. In this thesis a
system for detecting obstacles and planning a new path around the obstacles is proposed.
The system is divided into three modules: an object detection module, a collision avoid-
ance module and a guidance module.

The object detection module uses a single-beam mechanically scanning sonar to pop-
ulate a probabilistic occupancy grid. The sonar data is related to the probability of occu-
pancy through a dynamic inverse-sonar model. The occupancy grid is vehicle-fixed and
thus position or velocity data is needed for translating and turning the grid. The translation
and rotation is archived using an image processing technique known as affine transforma-
tion.

A global occupancy grid has to account for the growth of the positional uncertainty,
and thus the accuracy of the map will fall over time. With a local map the obstacles will be
correctly located with respect to the vehicle, which is sufficient for the purpose of collision
avoidance. The obstacles are detected through a contour detection algorithm. The detected
contours are then expanded to make a safety margin around the obstacles.

The collision avoidance module compares the current path with the detected obstacles
and initiates a path recalculation if they coincide. The path recalculation is done with
a combination of Voronoi diagrams and a modified version of Dijkstra’s shortest path
algorithm. Once a new path is calculated, it is smoothed using Fermat’s spiral and sent to
the guidance system.

The guidance system is a classic line of sight guidance scheme, with a velocity de-
pendent lookahead distance. The velocity guidance uses the path curvature as an input
parameter. This enables the guidance system to reduce the commanded velocity when
sharp turns are detected.

Several simulations were performed and the complete system was tested on a ROV
stationed on the Snorre B oil field. During the field experiments, it was confirmed that
a mechanically scanning single-beam sonar is sufficient as the only sensor for detecting
and avoiding obstacles in an underwater environment. The technology is also applicable
to AUVs as the calculated paths have a continuous curvature.

Regarding further developments of this system, it is suggested to look into other guid-
ance schemes, such as trajectory tracking. The object detection system would benefit from
introducing additional sensors, such as cameras for detection of close obstacles.
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Sammendrag

Ubemannede undervannsfarkoster, som fjernstyrte kjøretøyer (ROVer) og autonome un-
dervannsfarkoster (AUV), brukes ofte til inspeksjon, vedlikehold og reparasjon (IMR) op-
erasjoner i oljesektoren. Dette er en kostnadsdrevet industri, og fremskritt i autonomi er
en sentral faktor for å redusere kostander forbundet med IMR operasjoner.

Kollisjonsunngåelse er en av hovedutfordringene innen AUV-feltet. I denne oppgaven
er det foreslått et system for å oppdage hindringer og planlegge en ny bane rundt hindrin-
gene. Systemet er delt inn i tre moduler: en modul for å oppdage objekter, en for å oppdage
kollisjoner og planlegge en ny bane og en navigasjonsmodul.

Modulen for objektoppdagelse bruker en sonar med en mekanisk roterende stråle.
Disse dataene blir så brukt for å beregene sannsynligheten for at celler i et rutenett har
en hindring i seg. Sonardataene er relatert til sannsynligheten i rutenettet gjennom en dy-
namisk omvendt sonarmodell. Rutenettet er festet til kjøretøyet, og dermed er det behov
for posisjon- eller hastighetsdata for å flytte og rotere rutenettet. Dette gjøres ved hjelp av
en bildebehandlingsteknikk kalt affin transformasjon.

Et globalt rutenett er nødt til å ta hensyn til posisjonsusikkerheten, og dermed vil
nøyaktigheten falle over tid. Med et lokalt rutenett er hindringene være riktig plassert
i forhold til kjøretøyet, noe som er tilstrekkelig for å en unngå en kollisjon. Objektene
oppdages gjennom en konturdeteksjonsalgoritme. Konturene blir deretter ekspandert for
å lage en sikkerhetsmargin rundt dem.

Modulen for kollisjonsunngåelse sammenligner den nåværende banen med de kjente
hindringene og setter i gang beregningen av en ny bane, hvis det er fare for kollision.
Denne beregningen er gjennomført med en kombinasjon av Voronoi-diagrammer og en
modifisert versjon av Dijkstras algoritme for å finne korteste rute. Når en ny bane er
beregnet, blir den glattet med Fermats spiral og sendt til navigasjonssystemet.

Navigasjonssystemet er et klassisk siktelinjesystem (LOS) med en hastighetsavhengig
synsavstand. Hastighetsveiledningen bruker banekurvaturen som en inngangsparameter.
Dette gjør det mulig for Navigasjonssystemet å redusere hastigheten når skarpe svinger
oppdages.

Flere simuleringer ble kjørt og hele systemet ble testet på en ROV stasjonert på Snorre
B platformen. Ved hjelp av disse testene ble det bekreftet at en sonar med en mekanisk
roterende stråle er tilstrekkelig som den eneste sensoren for å oppdage og unngå hindringer
i et undervannsområde. Teknologien virker også for AUVer fordi de beregnede banene har
en kontinuerlig krumning.

For videre forskning og utvikling av dette systemet anbefales det å undersøke andre
navigasjonssystemer, slik som banesporing. Det vil være hensiktsmessig å inkludere flere
sensorer i modulen for objektdeteksjon, for eksempel et kamera slik at det blir lettere
å oppdage hindringer på nært hold.
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Chapter 1
Introduction

1.1 Background and Motivation
Unmanned underwater vehicles, such as remotely operated vehicles (ROVs) and autonomous
underwater vehicles (AUVs) are commonly used for inspection, maintenance and repair
(IMR) missions in the oil and gas industry. This is a cost-driven industry and advances in
automation is a key factor to reduce the mission expenses.

ROVs are underwater robots connected to the surface or an underwater hub through
an umbilical transferring power and information. Due to the supply of power from the
surface, ROVs can normally carry large payloads and tools, such as robotic arms, multiple
cameras and powerful lights. ROVs are normally fully actuated, meaning that it can be
controlled in all degrees of freedom (DOFs).

AUVs are not directly connected to the surface, and thus the power supply is limited.
Communication with the surface is possible through acoustic transmissions, but the data
rate is limited. In contrast to ROVs, AUVs are normally underactuated, which limits the
hover capabilities.

The industry-driven innovation is currently moving towards resident underwater inter-
vention drones (UIDs) [16], where the goal is to have vehicles with the intervention po-
tential of an ROV with the freedom of an UAV. This is a way of greatly reducing costs, as
the need for costly surface intervention vessels is removed. A resident and tetherless UID
can also service several subsea production areas as it can move freely between docking
stations. The need for such innovation is expressed in Equinor’s (former Statoil) devel-
opment schedule for the next 4-7 year period [16], where they plan to install a pilot for
autonomous UIDs that can fly between docking stations. This goal introduces the need for
innovation in several areas such as power, communication and autonomy systems.

The National Research Council [6] defines an autonomous vehicle as an ”unmanned
vehicle with some level of autonomy built in”, which includes vehicles such as UAVs and
UIDs, but also less autonomous vehicles such as ROVs. The National Research Council
[6] also defines four levels of autonomy, where the highest level of autonomy describes
a system where all mission-related functions are executed automatically. Several other
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descriptions of an autonomous system exist in the literature, but the main point is that the
system should be able to sense, plan and act on its own. The ability to sense, plan and act
introduces the possibility of performing complex tasks without human intervention.

Collision avoidance is one of the main challenges in the field of autonomous underwa-
ter operations. This challenge is often solved using multibeam sonars, in a simultaneous
localization and mapping (SLAM) approach as done by Palomer et al. [30] or with image
recognition based techniques such as the method proposed by Braginsky and Guterman
[2]. To accommodate these methods a multibeam sonar is needed. Multibeam sonars have
superior performance for obstacle detection as they scan a large sector in one scan. The
superior performance does however come at a price, the cost is significantly higher, the
physical size is larger and the power consumption is higher. These factors is a concern
when UIDs are shifted towards battery power, which requires smaller vehicles to reduce
power usage. However; a single beam sonar does not scan the entire sector in front of the
vehicle at once, which complicates the object detection process. This has been done with
occupancy grids by authors such as Ganesan et al. [13] and with a potential field method
by authors such as Solari et al. [32].

1.2 Scope
The objective of this thesis can be formulated on the basis of the challenges presented in
the previous section. In order to perform safe autonomous ROV operations, the following
tasks should be performed.

1. Perform a literature study on underwater object detection, sonar theory and collision
avoidance.

2. Propose and develop a set of algorithms to perform collision detection and avoid-
ance.

3. Verify the developed system in simulations using the MORSE simulator.

4. Implement and verify a guidance system, using the high-fidelity Merlin simulator at
IKM’s headquarters at Bryne.

5. Perform preliminary field tests of the collision avoidance system using the resident
Merlin UCV at the Snorre B oil field.

1.3 Contributions and Thesis Outline
The contribution of the thesis is a collision avoidance system combining the theory of oc-
cupancy grids for single-beam sonar object detection and Voronoi diagrams for the plan-
ning of a new path. The work in this thesis resulted in a contribution to 2018 IEEE OES
Autonomous Underwater Vehicle Symposium, and the preliminary abstract is presented in
the appendix. The outline of the thesis is as follows:
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1.3 Contributions and Thesis Outline

In Chapter 2 the background theory necessary for the developed algorithms are presented
together with a short literature study regarding occupancy grids, Voronoi Diagrams and
Fermat’s spiral is presented. The chapter also includes a presentation of the software
frameworks used in the thesis.

In Chapter 3 a study of underwater acoustics, with a special focus on relevant theory for
single-beam sonars are presented.

In Chapter 4 the developed system is presented. The chapter describes the object detection
module, the collision avoidance module and the guidance module. The main contributions
of the thesis are presented in this chapter.

In Chapter 5 the experimental setup for the MORSE simulations, the Merlin simulator
simulations and the field trials are presented.

In Chapter 6 the results from the simulations are presented.

In Chapter 7 the results from the field trials at the Snorre B oil field are presented.

In Chapter 8 the results from Ch. 7 and Ch. 8 are discussed.

In Chapter 9 a conclusion is formulated and suggestions for further work in the subject
are presented.

In Appendix A the preliminary abstract of a contribution to the 2018 IEEE OES Au-
tonomous Underwater Vehicle Symposium is presented.

In Appendix B additional results from the field trials are presented.

Appendix C lists the electronic attachments delivered in DAIM.
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Chapter 2
Background

In this chapter previous work in the field of underwater collision avoidance will be pre-
sented. Then the necessary background theory for the developed collision avoidance sys-
tem will be presented. The last section is a short introduction of the software used in
the thesis. In this chapter previous work in the field of underwater collision avoidance
and the necessary background theory for the developed collision avoidance system will
be presented. Finally, section 2.9 presents a short introduction of the software used in the
thesis.

2.1 Spatial Mapping Using Occupancy grids

An occupancy grid is a powerful tool for a robot moving in an unknown environment. It
can be used as a basis for obstacle detection, collision avoidance and simultaneous local-
ization and mapping(SLAM). The first occupancy grids were developed in the early 90’s
by Elfes [8]. Since then it has become the dominant solution for environment modeling for
mobile robots. An occupancy grid is a spatial representation of the robot’s surroundings.
It is most common to divide the grid into a set of equally spaced quadratic cells, but it is
also possible to use a polar occupancy grid. The occupancy grid map can be given either
as a set of probabilities of occupancy or as a binary set of occupied or empty cells.

2.1.1 Occupancy Grids

In this section, the mathematics behind the occupancy grid is described. Most of the
information in this section is based on Elfes [8] and Thrun [37].

An occupancy grid is a mapping of the environment into grid cells. Each grid cell
contains an estimate of the probability of occupancy. In addition, each grid cell can also
contain a binary occupied or not occupied value. To make the estimation problem less
complex the high-dimensional problem is decomposed into a set of binary problems, one
for each cell.
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Chapter 2. Background

The state of one cell with index (x, y) can either be occupied, mx,y or not occupied,
m̂x,y . The occupancy grid mapping problem can then be formulated as the probability of
each cell being occupied given the measurements, as stated in Eq. (2.1) [37].

p(m|Zt) = p(m|{zt, zt−1, . . . , z0}) (2.1)

where zt is the range measurement at time instant t, and Zt is all the range measurements
up to time t. These measurements also might include the pose of the vehicle as well as
the sonar heading, beam-width and other relevant parameters. These measurements have
information about all the grid cells overlapping the sonar beam up to the measurement
distance. The formulation in Eq. (2.1) is hard to compute, due to the interdependence of
the cells and can be simplified by making two basic assumptions [37]:

• Static world assumption: The past sensor readings are conditionally independent,
given knowledge of the map.

• Cell independence assumption: Different grid cells are conditionally independent,
given knowledge of the individual cell.

Using these assumptions together with Bayes’ theorem the recursive equation for updating
grid cells can be written on a log-odds form [37]

ltx,y = log
p(mx,y|zt)

1− p(mx,y|zt)
+ log

p(mx,y)

1− p(mx,y)
+ lt−1x,y (2.2)

where ltx,y is the log-odds of a grid cell at time t. This equation consists of two parts,
the prior p(mx,y) which depends on the expected obstacle density in the environment
and p(mx,y|zt) which is the probability that there is an obstacle given the current sensor
measurement. This probability is called the inverse sensor model.

2.1.2 Inverse sensor model
The probability p(mx,y|zt) is the probability of the grid cell being occupied given the
sensor measurement zt. In other words, this is a mapping from the measurement to the
cause. Elfes [8] used a probability density function depending on the range and angle,
where both parameters were modeled as Gaussian uncertainties. This model was later
extended by Konolige [21] to include multiple targets and specular reflections.

The inverse sensor model was extended by Zhou et al. [44], which uses a dynamic
inverse-sensor model based on the sonar equation where the probabilities are adjusted for
the incident angle. The incident angle is calculated by using linear regression on all cells
above a certain threshold to find the face of the obstacle, and subsequently computing the
angle between the sonar beam and the face of the obstacle.

2.1.3 Forward sensor model
The mapping from measurement to cause in the inverse sensor model is the opposite of
how the measurement process is done. Thrun [37] introduced a method for Occupancy grid
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mapping with a forward sensor model. The forward sensor model computes the probability
of getting the measurement given the obstacle, p(Zt|m).

This method creates more accurate maps, but due to computationally expensive op-
timization algorithms, the method is not capable of running in real time. The greatest
difference between the forward and inverse sensor model is that the forward model does
not have to assume independence of cells.

Shvets et al. [31] extended the method by using a gradient descent optimization method,
and claim that it is capable of running in real time, but no such experiments have yet been
carried out.

2.2 Image Processing

Several different image processing techniques were used throughout the thesis. This sec-
tion describes these techniques and how a digital image is represented.

2.2.1 Image representation

In a computer, an image is represented as a series of bytes. Some common image repre-
sentations are:

• Grey-scale image where each pixel is represented by an unsigned byte, with an
integer value between 0 and 255.

• Red-green-blue (RGB) image where each pixel are represented by 3 bytes, one for
each color. This is the most common for color-images.

• Blue-green-red (BGR) image. This uses the same structure as RGB images, but with
the colors switched. This is the format used by OpenCV.

With a higher level interface, such as in Python, the images are represented as a matrix
Mh×w×c, where h is the height of the image, w is the width of the image and c is the
number of colors. With this matrix structure, the coordinate system of an image has the
y-axis flipped as opposed to the normal Cartesian coordinate system.

2.2.2 Histogram

Histograms are used for images as a way for quantifying the distribution of pixel intensi-
ties. An example of a gray-scale histogram for a plot of raw sonar data can be observed in
Fig. 2.1b. Histograms can be used for applications such as identifying the correct thresh-
old value. In this thesis, histograms were used to identify a good threshold value for the
sonar signals.
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(b) Histogram of the image in Fig. 2.1a.

Figure 2.1: Example of the histogram from raw data plot.

2.2.3 Thresholding

The most simple form of thresholding is to modify the pixels as described in Eq. (2.3).

IT (i, j) =

{
k, for I(i, j) ≥ T
0, for I(i, j) < T

(2.3)

where IT is the intensity values of the thresholded image, I is the original intensity values,
T is the threshold value and k is a constant, often 1, 255 or True. More sophisticated
thresholding methods include histogram-shape methods, where the shape of the histogram
is used to find a thresholding value and clustering-based methods. A common example
of clustering based methods are Otsu’s method, where the optimum threshold is selected
such that the variance within the two groups is minimal [29].

2.2.4 Dilation

Dilation is a mathematical morphology operation defined in Eq. (2.4) [14, p. 19]. The
dilation operation can be used for inflation of obstacles to create a safety margin or other
purposes where inflation of an image feature is necessary. The dilation operation can be
explained as looking at each pixel ai,j ∈ A 6= 0 and superimposing a structuring element
S, as a binary OR-operation, centered at (i, j) onto the final image.

A⊕ S ≡
⋃
s∈S

As (2.4)

where ⊕ is the dilation operator, A is the image, S is the structuring element and As

is the translation of A by s. An example of dilation of a binary image can be observed
in Fig 2.2, where the original image is to the left and the right image is dilated with a
structuring element S = 120×20.
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(a) Original image. 200×200
pixels

(b) Dilated image. S =
120×20

Figure 2.2: Example of image dilation.

2.2.5 Contour detection

A contour is a continuous curve around the boundary of an object, where the object is nor-
mally defined by the image intensity. A contour detection algorithm can efficiently trans-
form the pixel information to geometrical shapes, which are useful for a collision avoid-
ance algorithm. Computer vision tools, such as OpenCV usually use a border following-
algorithm developed by Suzuki and Be [34] to detect the contours. This algorithm works
best on binary images, and thus thresholding has to be performed first. The result of run-
ning the algorithm on an image will be the set of every border point of each contour. This
can consume a lot of memory and thus it is common to approximate the contours with
fewer points. A simple way to do this is to remove all points on a straight line, except the
endpoints. A more accurate representation can be archived by using Teh and Chin [35]’s
algorithm for detecting dominant points on a closed curve. To further reduce the number
of points the contours can be approximated as different shapes, such as rectangles, ellipses
or a convex shape. In Fig. 2.3 an example of the different contour approximation methods
can be observed, and in Tab. 2.1 an overview of the number of points is shown.

Approximation method Number of points

No approximation 1203
Simple approximation 156
Teh-Chin approximation 82
Convex approximation 14

Table 2.1: Number of approximation points for different contour approximations for the shape
shown in Fig. 2.3.

9



Chapter 2. Background

Figure 2.3: Example of different contour approximations.

2.2.6 Affine Transformation

An affine transformation is a map between two affine spaces, where collinearities are pre-
served [40]. Affine transformations are commonly used for many different purposes in
image manipulation. Some examples are scaling, reflection, rotation and translation of
images. The transformation is done by multiplying the transformation matrix, M with the
position of each pixel in the image, to get a new position as shown in Eq. (2.5) [40]. When
every pixel has a new position, an interpolation algorithm has to be applied as the new
positions are not necessarily in a position that fit the integer requirements of an image.
A common interpolation method for images is a bicubic interpolation, but other methods,
such as a nearest-neighbour interpolation or a linear interpolation can also be used.

T = MP = M
[
x, y, 1

]T
(2.5)
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where T =
[
x′, y′

]T
is the vector of transformed xy-coordinates. Some common trans-

formation matrices are shown in Eq. (2.6).

M rotation =

[
cos θ sin θ 0
− sin θ cos θ 0

]
, P =

[
x− x0, y − y0, 1

]
(2.6)

M translation =

[
1 0 ∆x
0 1 ∆y

]
(2.7)

M translation =

[
s 0 0
0 s 0

]
(2.8)

where (x0, y0) is the point to rotate around, (∆x,∆y) is the translation and s is a scale
factor.

2.3 Voronoi Diagrams
A Voronoi diagram is a method of dividing a plane, X into regions based on the distance
to a set of finite points. These points are called generator points, P = {p1, ..., p2}. A
metric function d(x, pi) associates each point x ∈ X into a region, Ri such that the
metric function for all points in the region is less than or equal to the metric function for
all other regions. This can be expressed mathematically as in Eq. (2.9) [23].

Ri = {x ∈X|d(x, pi) ≤ d(x, pj) ∀i 6= j} (2.9)

A common candidate for the metric function is the Euclidean distance, as expressed in
Eq. (2.10).

d(x, pi) = |x− pi| =
√

(xx − pix)
2

+
(
xy − piy

)2
(2.10)

From this, a set of lines, vi ∈ V can be chosen as the the borders of the regions Ri. Using
Eq. (2.10) as the metric function will result in the set V being connected by a set E of
straight edges.
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Figure 2.4: Example of Voronoi diagram, showing the generator points, the vertices and the edges.
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2.4 Dijkstra’s Algorithm
Dijkstra’s algorithm is an algorithm used for finding the shortest path between nodes in
a graph. It was first developed by Dijkstra [7], but further developments made by Fred-
man and Tarjan [12] drastically reduced the runtime of the algorithm from O(|V |2) to
O(|E| + |V | log |V |), where V is the number of nodes and E is the number of edges.
The algorithm visits all nodes in the graph uniformly and finds the shortest paths between
them. A more common variation of the algorithm finds the shortest path between a source
and sink node.

Yen [43] made a variation of the algorithm that can be used to find the k-shortest path,
meaning the second shortest path, the third shortest path and the k-shortest path. This
algorithm is the basis for a modification made by Lekkas [23]. This algorithm uses the
optimal path from the previous run, but once a node is invalid due to clearance constraints
all connections to this node are removed. A new path is then constructed from the previous
node to the goal node. The final path will then be constructed of the initial path up to, but
not containing the invalid node and the new path to the goal node.

2.5 Fermat’s Spiral
A path consisting of straight line segments is possible to follow with a fully actuated ROV,
but due to the curvature discontinuous nature of such a curve, a full stop would be required
at each waypoint. A better solution would be to modify the path such that the curvature
is continuous and as small as possible. A solution to this is presented by Lekkas [23],
where Fermat’s spiral is used to make a continuous curvature path. Fermat’s spiral is a
geometrical curve which can be described in Cartesian coordinates as done by Lekkas
[23]: [

x
y

]
=

[
x0 + a

√
θ cos (ρθ + χ0)

y0 + a
√
θ sin (ρθ + χ0)

]
(2.11)

where a is a scaling factor, ρ = 1,−1 is the turning direction and χ0 is the initial tan-
gent angle. The formulation of Fermat’s spiral in Eq. (2.11) can then be used to join
two straight line path segments in a continuous curvature path consisting of two mirrored
curves [23]. A continuous path is not suitable for a waypoint based guidance system, and
thus a discretization should be performed.

2.6 Coordinate Systems
In this thesis, several different reference frames and coordinate systems are in use. A
description of these reference frames is presented in this section.

2.6.1 World Geodetic System - 1984
The World Geodetic System (WGS84) is a geodetic reference system centered at the
Earth’s center of mass [27]. This is the reference system used by Global Positioning
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System (GPS), and the position is provided as a latitude and longitude.

2.6.2 Universal Transverse Mercator
The Universal Transverse Mercator (UTM) projection is a 2-dimensional coordinate sys-
tem. The projection is divided into 60 different zones [20]. A position consists of nor-
thing, easting and a grid zone. It is also possible to specify a vertical position. In this
thesis all coordinates given in UTM-coordinates are in zone 32 North, which covers most
of the southern part of Norway, and the offshore-areas. The UTM system can be used as a
North-East-Down (NED) coordinate system, denoted n.

2.6.3 Body-fixed reference frame
A body-fixed reference frame is a moving coordinate frame that is fixed to the body. In
this thesis two different body-fixed reference frames are used. The vehicle reference frame
is denoted with veh subscript and has units meters. The axis are defined, by Fossen [9] as:

• xveh - Longitudinal axis, from aft to fore

• yveh - Transverse axis from port to starboard

• zveh - Normal axis from top to bottom

The grid reference frame is a two-dimensional body-fixed reference frame used for the oc-
cupancy grid and is denoted with a g subscript. This reference frame has no units. The ori-
gin of g is located at the upper left corner of the grid, which has a position (xveh, yveh) =
(rscale,−rscale) with rscale being the sonar range. The horizontal x-axis is from left to
right and the vertical y-axis is from top to bottom. An example of this coordinate system
can be seen in Fig. 4.6.

2.7 Translation between reference frames
The transformation of velocities between the vehicle-fixed reference frame and the NED-
frame is done by using the rotation matrix Rn

veh(Θnb), as described by Fossen [9, p. 22].
Assuming stability and small angles in pitch and roll, the rotation matrix can be reduced
to Rn

veh(ψ), which is shown in Eq. (2.12).

Rn
veh(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (2.12)

The transformations between veh and n, and back are then

vveh = Rn
veh(ψ)vn (2.13)

vn = (Rn
veh(ψ))

T
vveh (2.14)

The conversion between the latitude and longitude in the WGS84 reference frame to NED
in UTM coordinates can be done by tools such as the Helmert 7 point transformation,
described in [27]. The transformation uses a set of 7 parameters to do the transformation.
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2.8 Guidance and Control

The guidance system of a vehicle is a system that translates high-level objectives to set-
points for the control system. A typical guidance system will decide the heading needed
to get the vehicle to converge on a path, or keep the vehicle in a stable position.

2.8.1 Line-Of-Sight Guidance

Line-of-Sight (LOS) guidance is a 3-point guidance scheme, which is commonly used for
path following of straight-line paths. The idea behind this guidance scheme is to force the
vehicle to track the path. This is done by constructing a vector from the vehicle, to either
the next waypoint on the path or to a point on the line between two waypoints. The desired
heading angle can then be calculated from the LOS-vector. The following definitions are
based on Fossen [9, Ch. 10.3].

The first step is to calculate the cross-track error, e(t) and the along-track distance,
s(t) as shown in Eq. (2.15).

ε(t) =
[
s(t), e(t)

]T
= Rp(αk)T (pn(t)− pn

k ) (2.15)

where Rp is the rotation matrix, defined in Eq. (2.16) from the path-frame to the NED-
frame of reference, αk is the angle between the line segment and the north-axis, defined in
Eq. (2.17), pn(t) is the vehicle position and pn

k is the LOS-point.

Rp(αk) ≡
[
cos(αk) − sin(αk)
sin(αk) cos(αk)

]
(2.16)

αk = arctan

(
yk+1 − yk
xk+1 − xk

)
(2.17)

where the waypoints are defined as WPk = (Nk, Ek) = (xk, yk). The desired course-
angle can then be calculated as

χd(e) = χp + χr(e) = αk + arctan

(
−e(t)
∆(t)

)
(2.18)

where ∆(t) is a look-ahead-distance which could be fixed or time-varying. A switching
mechanism is needed, such that a new waypoint can be selected once the vehicle is close
enough. This is normally done by the use of a region-of-acceptance (ROA). The ROA can
be understood as a circle enclosing the waypoint, and the switch to the next waypoint will
happen when the vehicle enters this circle. The ROA is defined in Eq. (2.19).

|pn(t)− pn
k | = |ε(t)| ≤ ROAk (2.19)

To achieve the motion control objective a velocity-guidance law is needed as well. This
law can be fixed velocity or it can be a time-varying velocity depending on for example
the curvature.
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2.8.2 PID-controller
A PID-controller is a commonly used control-loop consisting of the different terms: pro-
portional (P), integral (I) and derivative (D). These three terms is efficient and easy way
of controlling a dynamic system. The P-term handles the error, the I-term takes care
of steady-state offset and the D-term prevents rapid change. Mathematically the PID-
controller can be formulated as in Eq. (2.20). The error is defined as x̃(t) = x(t)− xd(t),
where x is the state to be controlled and xd(t) is the desired state. The control objective is
then to force x̃(t) to zero.

τ = Kpx̃+Kd
dx̃

dt
+

∫ t

0

x̃dt (2.20)

where τ is the control-action and Kp,Kd,Ki are tunable gains. All the terms are not
necessary for every application. For a heading controller, it is normally sufficient with
a PD-controller and the surge-velocity can normally be handled with PI-controller. A
controller does not normally handle big steps in the desired state well, and thus a smooth
reference signal is often needed.

2.8.3 Reference Models
A reference model is a method for creating a smooth trajectory for the controller. This
is helpful for avoiding steps, which in the worst case can make a controller unstable. A
common way of designing a reference model is a low-pass filter. Another solution is to
use a mass-damper-spring system, which is convenient for marine vehicles, according to
Fossen [9]. The transfer-function for such a system is given as

h(s) =
ω2
n

s2 + 2ζωns+ ω2
n

(2.21)

where ωn is the natural frequency and ζ is the relative damping ratio. ωn and ζ are tunable
variables, which should be as close as possible to the real signal.

2.9 Software frameworks
In this section, a brief overview of the different software frameworks used in this project
is presented. All of the software mentioned in this section is open-source if not stated
otherwise.

2.9.1 Python
Python is a high-level programming language, well suited for rapid prototyping. It has an
extensive standard library, which makes code development effective.

The NumPy library is an open-source library for mathematics. It has good support for
matrices and vectors. One of the main advantages of NumPy is that the core functions of
the library are written as compiled C/C++ code, which makes it computationally effective.
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The SciPy library is an extensive library for mathematics and scientific programming.
It has support for making Voronoi diagrams, using Dijkstra’s algorithm and a variety of
interpolation algorithms.

The pyProj wrapper for PROJ.4 is a library for performing cartographic transforma-
tions and geodetic computations [41]. This is a useful library for transforming between
latitude and longitude in the WGS84 system to UTM-coordinates.

PyQt is a Python interface to the Qt framework for Graphical User Interface(GUI)
programming. This is a useful and powerful tool to easily make a cross-platform GUI for
Python code.

PyQtGraph is an extension to PyQt which makes plotting and displaying/images easier
and faster.

2.9.2 OpenCV

The OpenCv library is a software library for computer vision and machine learning. The
library is written in C++, but has interfaces for multiple languages across several platforms
[28]. In this thesis the main use is for it’s contour and drawing features

2.9.3 Software for field test

IKM Autopilot Server

The IKM Autopilot Server(APS) software is a proprietary guidance and control software
for IKM’s ROVs. The software runs on the onshore control rack, and communicates with
the ROV over a network connection. The APS can operate in five different modes, which
are listed below[1]:

• Dynamic Positioning

• Semi Automatic Mode

• Circular Inspection Mode

• Path following of predefined paths

• Cruise mode for external path following algorithms

In this thesis Dynamic Positioning and Cruise Mode(CM) are the only modes necessary.
The CM accepts desired trajectories in surge, sway, heave and yaw, which is then filtered
through a reference model. The APS reads position data from an INS onboard the ROV,
and uses this data to calculate the control action. The communication interface to the
APS is a binary data protocol, which uses UDP-messages as means of transportation. A
screen-shot of the APS is shown in Fig. 2.5
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Figure 2.5: A screen-shot of the IKM Autopilot Server.

2.9.4 Software for Simulation

Modular Open Robots Simulation Engine

MORSE (Modular Open Robots Simulation Engine) is an open source python based robot
simulator [22]. The simulator integrates Blender game engine for 3D rendering and editing
and the Bullet Physics Library for rigid-body physics simulations. MORSE is written in
python which makes it easy to modify and extend the simulator. MORSE also integrates
several middle-wares, such as MOOS and ROS. Through these middle-wares, MORSE can
both send and receive messages in an easy manner.

Blender

Blender is an open source software suite for 3D modelling and rendering. In MORSE, the
Blender game engine is used to render the environment and robots, as well as providing
input to several sensors, such as the sonar.

Bullet Physics Library

Bullet Physics Library is physics engine used by blender for simulation rigid-body dynam-
ics and collisions.
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Chapter 2. Background

Mission Oriented Operating Suite

MOOS (Mission Oriented Operating Suite) is an open source software package, whose
main goal is to provide infrastructure for autonomous marine vehicles. In this section
MOOSDB and pyMOOS will be the main focus, as these are the only parts of the MOOS
package used in this thesis. The MOOS communication network’s core is the MOOSDB
application [26]. This is a server application that handles all the MOOS messages in the
network. In this communications network, all applications can send and receive messages
to and from the server, but not to each other. The messages have to follow a strict format,
which is handled by the python interface to MOOS, pyMOOS. pyMOOS is capable of
sending and receiving messages as well as handling message queues and executing call-
back functions when a message is received.
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Chapter 3
Underwater Acoustics

This section presents a description of sonar theory. A short section is also dedicated to
other uses of underwater acoustics. Most of this information is based on Hodges [17].

Sonars can be divided into two main groups, namely active and passive sonars. In this
section, only active sonars will be discussed, as passive sonars do not have much of an
application for collision avoidance. In an active sonar system sound waves are emitted
from a transmitter/projector. These sound waves propagate through the medium and are
reflected by a target. The reflected sound waves will then propagate back to a hydrophone,
which is the receiver. A common name to use for transmitters and hydrophones is a trans-
ducer, and in most systems, they are the same unit. In the following text, transducer will
be used when they are the same unit, and hydrophone/transmitter will be used when they
are separate.

3.1 Acoustics

Acoustic waves can move through a medium as longitudinal and transverse waves. Due
to the lack of shear strength in water, only transverse waves are possible. The relationship
between the velocity and frequency is given in Eq. (3.1).

c = λf (3.1)

where λ is the wavelength, f is the frequency and c is the speed of sound through water.
The speed of sound through water depends on several different parameters, where the most
important are temperature, salinity and depth.

During the signal’s travel from the transducer to the target, and back it is distorted and
weakened by different factors, such as sound attenuation, ambient noise, reverberation,
which will be discussed below.
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3.1.1 Sound attenuation
The term sound attenuation includes losses caused by surfaces absorbing sound and trans-
forming it into heat energy, as well as well as losses caused by the interaction with the
surface and seafloor. The sound that is absorbed by the ocean itself is mainly caused by
two factors: the excitation of ions from magnesium sulfate, boric acid and carbonate and
the viscosity of the water [17, p. 92-92]. The most common equation for calculating the
sound attenuation is given by Thorp [36] as

α = 1.09

(
0.1

f2

1 + f2
+ 40

f2

4100 + f2

)
(3.2)

where α is the intensity absorption coefficient given in dB/km and the frequency is given
in kHz. A more thorough calculation, that also includes temperature, salinity, viscosity,
depth, pH, and pressure is given by Francois and Garrison [10, 11].

3.1.2 Sea surface and seafloor interaction losses
The interaction with the sea surface causes losses that are heavily dependent on the sea
state and are deemed outside the scope of the thesis as ROVs on IMR missions mostly
operate well below the wave interaction depth.

The sound also interacts with the seafloor, which is typically not a solid object, and
thus absorbs much energy. The energy absorption is heavily dependent on the type of the
sea floor.

3.1.3 Ambient Noise
The dominant source of ambient noise is from thrusters and engines [4, p. 380-381], both
from close and far-away surface vessel. According to Christ and Wernli Sr. [4] the ambient
noise from surface vessels is approximately 40 dB stronger than other sources. Some other
sources are listed below.

• Seismic background noise

• Turbulent pressure fluctuations

• Surface waves

• Second order pressure effects

• Marine life

3.1.4 Reverberation
The transmitted sound can return from several different sources than the target. These
returning sound waves are called reverberation and can originate from inhomogeneities in
the water, air bubbles, marine life, seafloor and sea surface. Reverberation is often the
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3.1 Acoustics

dominant source of noise for high-frequency sonars [17, p. 143]. The level of reverbera-
tion, Rl can according to Hodges [17, p. 153-154] be calculated as

Rl = 10 log

(
I0
r4
Ss

∫
Bt (θ, φ)Br (θ, φ) dA

)
(3.3)

Where Bt and Br are the beam patterns of the transmitter and receiver, depending on
the horizontal angle, θ and the vertical angle φ. The range of the sonar is r, and the
transmission power is I0. Ss is the backscattering strength, which is determined by the
surface type and incident angle. This strength can vary from −45dB for soft ground to
−25dB for solid ground. The strength will also increase with the frequency for smooth
surfaces.

3.1.5 Target strengths

The target strength refers to the targets ability to return an echo. According to [17, p. 167]
the target strength is defined as

Nts = 10 log

(
Ir
Ii

)
(3.4)

where Ir is the reflected sound intensity at a 1 meter distance and Ii is the incident acoustic
intensity. The target strength is heavily dependent on the geometry and reflective proper-
ties of the target.

3.1.6 Doppler Effect

The Doppler effect is the change in frequency when there is a relative velocity between
the observer and the source[17, p. 9-10]. If the source and observer are moving away from
each other the frequency will be reduced, and if they are moving towards each other the
frequency will increase. This relationship is given by Hodges [17, p. 9] as

fr = fs
c− vr
c− vs

(3.5)

where fr is the observed frequency, fs is the source frequency, c is the sound velocity and
vr and vs is the velocity of the observer and source. In the ocean, this can be approximated
by

∆f ≈ 3.5 ∗ 10−4fs∆v (3.6)

where ∆f is the change in frequency and ∆v is the relative velocity in knots.
For a ROV with a typical operational velocity of 1.5 knots and a sonar frequency of

625 kHz the resulting frequency shift is 0.35 kHz, which is negligible. For an AUV with an
operational velocity of 5 knots and a sonar frequency of 625 kHz the resulting frequency
shift will be over 1 kHz, which should be considered by a digital sonar system.
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Chapter 3. Underwater Acoustics

3.2 Sonar equation

The signal to noise ratio(SNR) is a method of estimating the quality of the signal from the
transmitter, to the target and back again. The SNR of an active sonar is defined by Horton
[18] as

SNR = Lp− 2Nw− Nts + Nag (3.7)

where all units are in dB. The variables are defined as
Lp = Strength of source signal
Nw = Losses due to transmission
Nts = Strength of target
Ln = Total noise level
Nag = Gain from antenna array

The SNR is an important parameter for estimating the performance of a sonar. Using
Eq. (3.7) the following equation can be obtained [18].

Xs = Lp− 2Nw− Ln + Nag− Nrd (3.8)

where Xs is the excess signal to noise ratio and Nrd is the detection threshold. The excess
signal to noise ratio is the amount of SNR above the threshold value. This means that the
Xs is the signal strength that will be measured by the receiver.

3.3 Measurement and discretization

Using the time difference between the transmitted and received signal, the distance, d to a
measurement of Xs can be calculated as

d =
t1 − t0

2
∗ c (3.9)

where c is the sound velocity, t0 is the time of transmittance and t1 is the time of reception.
The sonar pulse is discretized in the receiver. The receiver measures sound intensity,

and this level is sampled with a sampling time, t according to

δt =
2 ∗R

Vsound ∗ nbins

where R is the scan range, and nbins is the number of sampling bins. Each of these bins
contains the sampled sound intensity at range ri, given by

ri =
bini
nbins

R

The measurements are then returned as a set of polar bins, where each bin corresponds
to a polar grid cell at a position (r, θ). The length of a grid cell is given as lcell = R/nbins
and the width of the cell is equal to the beam width.
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3.3.1 Statistical Detection Theory

In this section, the classic approach to statistical detection theory will be presented. The
received signals can be divided into two categories[17, Ch. 12]:

• H0 : Null hypothesis, no target present

• H1 : Alternative hypothesis, target present

These two hypotheses can either be true or false, which makes two different types of errors
possible, namely false alarms when the null hypothesis is true, but is falsely rejected and
false rests when the alternative hypothesis is true, but the null hypothesis is selected. The
probability of H0 and H1 can according to [17, p. 202] be calculated by Baye’s theorem
as

P (H0|yt)) =
p0 (yt)P (H0)

p(yt)
(3.10)

P (H1|yt)) =
p1 (1− P (H0))

p(yt)
(3.11)

where P (Hi|yt) is the probability of Hi being true, and pi(y) is the probability density
function for the measurement. This can also be rewritten as the likelihood ratio

λ =
p1(yt)

p0(yt)
(3.12)

p1 can be modelled as a white noise signal with a Gaussian probability distribution. The
probability of detection versus the probability of false alarm can be modelled as a ROC(Receiver
operating characteristics) curve where the probabilities are parameterized by a detection
threshold[17, p. 205]. This curve will depend on the SNR and other environmental char-
acteristics and is a useful tool for choosing the correct parameters in a model.

3.4 Types of Sonar

This section presents a brief overview of different sonar configurations. The two main
types of sonars are passive and active. Passive sonars only listen for sound waves and
active sonars transmit the sound waves as well. Most sonars use directional transducers,
and they can be further divided by the use of a single transducer(single beam) or an ar-
ray of transducers(multibeam) [5, p. 401-416]. Single and multibeam sonars are further
described below.

Another categorization is imaging and profiling sonars. Profiling sonars only return
the strongest echoes, which corresponds to the cross-section of the scanned object, while
imaging sonars return all the echoes along the sonar beam. Profiling sonars are mostly
used for depth profiles and bottom characterization, while imaging sonars are very useful
for object detection and collision avoidance.
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Chapter 3. Underwater Acoustics

3.4.1 Single Beam Sonars
Single beam sonars have three possible configurations: Fixed, mechanically rotating and
mechanically translating. Fixed sonars are not useful for object detection.

Mechanically rotating sonars use a stepper motor to rotate the sonar head a small step
between each subsequent scan. At each step, the transducer sends out a highly directional
pulse of acoustic energy. The transducer listens for a predefined time interval correspond-
ing to the time the signal uses to travel to the set range and back again. When the listening
period is done the stepper motor rotates one step and repeats the process. The frame rate is
limited by the travel time for the sound, as well as the time it takes to rotate the transducer.
For a 50 m range and a 180◦ field of view, with steps of 3◦, assuming a sound velocity of
1500 m/s the complete field of view is updated in approximately 4 seconds.

A side-scan sonar uses the same technology, but the difference is in the locomotion of
the sonar head. The side-scan sonar is linearly translated, either by the movement of an
AUV, a tow fish, etc. or by a motor.

3.4.2 Multibeam Sonars
A multibeam sonar system transmits one wide pulse of acoustic energy and the backscat-
ter is received by an array of highly directional receivers. The time delay between the
different receivers enable the sonar to distinguish the direction of the signal. Multibeam
sonars requires much computing power and more complex electronics than single beam
sonars, and this drives the price up. Due to the complex calculations, the frame rate in
commercially available multibeam sonars is limited to around 10 frames per second at a
short range [5, p. 403]. To allow the distinction of different echoes a technique called
CHIRP is used.

3.4.3 Compressed High-Intensity Radar Pulse
Compressed High-Intensity Radar Pulse (CHIRP) is a great tool to increase the resolution
from both single- and multibeam sonars. CHIRP sends out a signal consisting of a wide
range of frequencies[5, p. 410-413]. This signal burst functions as a ’signature’ and using
signal processing techniques more of the noise can be filtered out and targets closer to-
gether can be distinguished. With a bandwidth of 100 kHz the resolution can be improved
by a factor of 5. Another advantage over single or dual frequency sonar is the reduced
power consumption from the high-speed digital circuitry.

3.5 Other Applications for Underwater Acoustics
In addition to sonars, underwater acoustics is also useful for communication and localiza-
tion. These applications are briefly discussed below.

3.5.1 Communication
Sound waves transmitted from a hydrophone can be used to send information over greater
distances than the electromagnetic(EM)-waves commonly used above the sea surface[45,
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p. 3-4]. The main advantage over the EM-spectrum is small power loss as the waves prop-
agate through water. The main disadvantage is the low propagation speed and bandwidth.
The information is transmitted through phase- and frequency modulation.

3.5.2 Localization
Acoustic positioning is based on triangulation between transducers [25] and can be used
with transducers mounted either on the seafloor, or on a support vessel. The time difference
between the departure and arrival of the signals is used to calculate the position relative to
each other. The positioning systems can be divided into three different classes, dependent
on the distance between the transducers(baseline).

Ultra Short Base Line

Ultra-Short-Base-Line(USBL)/Super-Short-Base-Line(SSBL) systems normally mount one
single unit, containing an array of three or four transducers, on a surface vessel [24, p. 29].
The baseline is normally less than 10 cm. The underwater vehicle has a transponder that
sends out an acoustic pulse. The position is calculated by the time of flight and the bearing
is calculated by using the phase difference between the transponders. The global position
can then be calculated by using the navigation system of the surface vessel. USBL sys-
tems loose accuracy with depth, as the angular distance between the transducers, become
smaller.

Short Base Line

Short-Base-Line(SBL) has a baseline from 5m to 20 m. Normally three to four hy-
drophones are placed on the surface vessel’s hull[25]. The bearing and position is cal-
culated in the same manner as for USBL. SBL systems are more expensive to install and
requires more calibration than USBL systems, but they are more accurate.

Long Base Line

In Long-Base-Line(LBL) positioning the pulse transmitted from the vehicle transducer is
measured by hydrophones fixed to the sea floor. The position and orientation are then
calculated by triangulation. LBL systems are more accurate than SBL and USBL systems,
but the disadvantage is that the hydrophones must be mounted on the sea floor and then
calibrated.
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Chapter 4

Collision Avoidance

The task of avoiding collisions can be divided into three different parts: object detection,
path planning and path execution. This chapter describes this process in depth, while
presenting the developed algorithms. An overview of the different modules composing the
complete system can be seen in the flowchart in Fig. 4.1.
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Figure 4.1: Flowchart of the object detection and collision avoidance process. The sharp-cornered
boxes indicates a module, while the ones with rounded corners represent functions/methods for the
corresponding module.
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4.1 Object detection

4.1 Object detection
The purpose of the object detection module is to use the available sensor data to generate
a object map, that is as accurate as possible.

4.1.1 Occupancy Grid
A local occupancy grid is constructed as a an m×m matrix of real numbers. The position
of the sonar is placed at (c, c) with c = m−1

2 and the size of each cell is given as l × l,
where l = rscale

c . The cell size is dependent on the current range of the sonar. Each cell
contains the log-odds representation of the probability of occupation PO(i, j) of that cell.

4.1.2 Measurement model
When a new measurement is obtained, the occupancy grid has to be updated. The first
step here is to determine if any of the return echoes could belong to an obstacle. Three
different methods was used. The first method use a threshold value which is a function
of the operators sonar settings. This method has the benefit of being easy to tune using
the IKM sonar software to adjust the settings for base and span. The threshold value is
transformed according to Eq. (4.1).

Tf =
T × span

255
+ base (4.1)

where Tf is the final threshold and T is the selected threshold value. The data above Tf is
then selected as hits. This method can be observed in Fig. 4.2a.

The second method analyses the shape of the signal. The method is described in Alg. 1,
and an example can be observed in Fig. 4.2b.

Algorithm 1: Pseudo-code for threshold method 2.
Data: signal, threshold T
Output: pret
s = Convolution of signal and In×1
p = All peaks in s, where a peak is a point with lower values on both sides
v = All valleys in s, where a valley is a point with higher values on both sides
Remove consecutive peaks in p, such that only the tallest remains
Remove consecutive valleys in v, such that only the lowest remains
Remove insignificant peaks in p
Remove insignificant valleys in v
pret = peaks in p where p− v > T

The last method selects a threshold based on the value in the sample after the sample
having the greatest gradient. The gradient has to be above a threshold Tg to be considered
a hit, otherwise the threshold will be selected as 255. An example of this method is shown
in Fig. 4.2c.
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Figure 4.2: Three different methods for finding the return echoes over a certain threshold.
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Figure 4.2: Three different methods for finding the return echoes over a certain threshold (cont.).

The grid can now be updated in two different ways depending on the already detected
obstacles. If the scan-line intersects an obstacle the Zhou-method[44] is used, otherwise
the Thrun-method[37] is used. Both methods are described in Ch. 2.1.2. The intersection
check is done by a binary-AND-check, where the matrix has the convex-obstacle-contours
and the second matrix contains a straight line from the sonar position to the end of the grid,
in the same direction as the scan-line. If the scan-line and a contour intersects, the angle
between them is calculated as the angle between the scan-line and the first intersecting
line-segment of the contour.

Both the Thrun-method and the Zhou-method requires the cells which overlaps the
sonar-cone. An example of the overlap between the sonar-cone and the grid cells is shown
in Fig. 4.3. This is done by a range-scale independent lookup table. The table is structured
as two arrays of lists, one for each beam-width, where each row in the array corresponds to
a sonar-cone angle discretized in steps of 1

16gradian. This results in 6400 rows. Each row
contains a sorted list of the indices of the cells in the corresponding sonar-cone. A cell is
overlapping the sonar-cone if at least one of the angles are between the limits of the sonar-
cone. The indices are sorted by the distance from the center. The indices corresponds to a
flat indexing-scheme, where each row of the matrix is placed into a single row. This form
of indexing speeds up the process.
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Figure 4.3: Overlap between grid cells and sonar-cone and angles used in the generation of lookup-
tables.

4.1.3 Motion

The occupancy grid is vehicle fixed, and thus any motion of the vehicle needs to be taken
into account. The motion can be modeled as probabilistic or deterministic, but due to the
high accuracy of relative motion it is reasonable to model the motion as deterministic.
Using the approach given by Ganesan et al. [13] the probabilities of occupation proved to
diminish quickly, and thus a new approach is described here. Each cell in the occupancy
grid,G can be discretized as n×n smaller cells, such that the discretized grid,Gd becomes
mn ×mn cells. The discretized grid is centered at (cd, cd) with cd = m∗n

2 and the size
of each cell is given as lc × ld, where ld = rscale

cd
. The relation between the two grids are

then given by Eq. (4.2), where ⊗ is the Kronecker product.

Gd = G⊗ In×n (4.2)

The rotation and translation of the grid is archived through an affine-transformation, as
described in Ch. 2.2.6 with a transformation-matrix, T as described in Eq. (4.3) and linear
interpolation over the transformation. The border points are chosen as pinitial.

T =

[
α β (1− α) cd − βcd −∆xg
−β α βcd + (1− α) cd + ∆yg

]
(4.3)
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, where the variables are defined in Eq. 4.4.

α = cos ∆ψ

β = sin ∆ψ

∆xg = ∆yveh
cd

rscale

∆yg = ∆xveh
cd

rscale
(4.4)

, where g denotes the grid reference frame and veh denotes the vehicle reference frame.

4.1.4 From occupancy grid to obstacles

Going from the probabilistic occupancy grid representation to an obstacle representation
suited for the path planning algorithm involves several steps. These are listed below.

• Binary thresholding

• Contour detection

• Filtering out small contours

• Dilation to include safety margins

• Finding contours of dilated map

• Approximating contours as convex hulls

The the thresholding process is shown in Eq. (4.5).

Bd (i, j) =

{
1 if Pd (i, j) ≥ Pth

0 if Pd (i, j) < Pth

(4.5)

where Bd is the discretized binary grid and Pth is the thresholding value. To save compu-
tation time, Pth can be log-odds representation of the probability. The contours are then
extracted as described in Ch. 2.2.5 and the areas of each contour is calculated. All con-
tours with an area smaller than a certain threshold is filtered out, as these are likely due to
noise or obstacles such as fish.The grid is then dilated, as described in Ch. 2.2.4, with a
structuring element, E given in Eq. (4.6)

E = 1n×n ,where n =
Dcd
rscale

(4.6)

where D is the safety margin. The contours of the dilated image is then extracted as a
convex hull. The complete process can be observed in Fig. 4.4. After the objects are
detected the next step is to check if there is a collision danger.
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Figure 4.4: Object detection procedure.
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Figure 4.4: Object detection procedure (cont.).
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4.2 Collision Detection

Collision detection is an important part of the system. A simple way of doing this is to
draw the path and the obstacles on two different binary images and do a logical AND-
check. This procedure is illustrated in algorithm 2. The path is drawn as a line, with
a thickness corresponding to the width of the vehicle. The collision margin around the
obstacles are already implemented during the the object-detection part.

Algorithm 2: Pseudo-code for collision check
Data: waypointList, obstacleContours, rangeScale, gridSize,

vehicleMargin
Output: collisionIndex, -1 if no collision

obstacleGrid = binary drawing of all obstacleContours
pathWidth = vehicleMargin× gridSize/(2× rangeScale)
pathSegments = segments between a waypoint and the next
collisionIndex = −1
for segment s of pathSegments do

pathGrid = binary drawing of segment with pathWidth
if any item in (pathGrid&&obstacleGrid) = True then

collisionIndex = i
break

4.3 Path planning

The purpose of the path planning module is to calculate a new and effective path once a
collision has been detected. An example of the path planning process could be seen in
Fig. 4.5. The process is described below.
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Figure 4.5: Voronoi diagram and path calculation.

4.3.1 Voronoi Diagrams

The Voronoi diagrams (VD) described in section 2.3 can be implemented into a path plan-
ning algorithm. The generator points can be chosen as the vertices of of the contour points
from the object detection algorithm, and thus the set V will consist of the points fur-
thest away from each obstacle. This can be observed in Fig. 4.5a, where the green circles
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Chapter 4. Collision Avoidance

indicate a vertex of V and the green lines is the set V itself. In addition to this four
corner-points are added. The positions of these corner-points are chosen as the outermost
points of the occupancy grid corners and the last waypoint included in the optimization
process. It is also possible to add the center-points between the corner-points to get ad-
ditional possible paths. To get a set of safe piece-wise linear paths, all paths intersecting
with an obstacle has to be removed. This can be observed in Fig. 4.5b, where the invalid
paths and vertices is purple.

The start and end positions also has to be included to get a complete path. These
positions are included as a vertex, which are connected to all other vertices surrounding
the corresponding region. In addition to these two points, another fixed point is inserted
straight ahead of the vehicle to account for the run-time of the algorithm. The position of
this point is a tuneable parameter, that should be tuned according to the cruising velocity
of the vehicle.

The next step is to find the shortest valid path, and here Dijkstra’s algorithm is a good
candidate.

4.3.2 Dijkstra’s algorithm

The first step in Dijkstra’s algorithm is to populate the distance matrix D with the distances
of each valid path in the Voronoi diagram. D(i, j) = D(j, i) is the distance between node
i and j. A distance of zero indicates that there is no connection. Running Dijkstra’s algo-
rithm, as described in section 2.4 will return the shortest path between the two waypoints.

4.3.3 Removal of unnecessary waypoints

The path found by Dijkstra’s algorithm is the optimal solution to the shortest path along
the edges of the VD, but this is not the overall optimal solution. The VD generates edges
that are as far away as possible from the obstacles, which results in a path that has a greater
clearance-margin than necessary, as well as containing too many waypoints. An algorithm
inspired by [23] is developed to remove the unnecessary waypoints. First, almost co-
linear waypoints are removed based on path-segment heading threshold. The next step is
to remove waypoints that has a greater clearance-margin than necessary, which is done by
checking if a waypoint can be removed, without violating the clearance constraints. If a
waypoint can be removed, a check is performed to see if removing the next waypoint is
more beneficial. This process is outlined in Alg. 3.
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4.3 Path planning

Algorithm 3: Algorithm for removal of unnecessary nodes. The Pa→b→c notation
is the path segment from node na trough node nb to node nc, and |P | is the length
of path segment P . collisionDanger() is function checking whether a path-segment
is violating clearance constraints.

Data: List of points in optimal path, PL

Output: PL with unnecessary waypoints removed

for nodes ni in PL do
P0→2 = ni → ni+2

if collisionDanger(P0→2) then
P1→3 = ni+1 → ni+3

if collisionDanger(P1→3) then
if |P0→2→3| > |P0→1→3| then

Remove ni+2

else
Remove ni+1

else
Remove ni+1

The resulting path consists of linear path-segments, which gives a non-continuous cur-
vature. Flying this path with a fully-actuated vehicle will cause the vehicle to slow down
to a full stop between each path-segment, which is ineffective. The path is unfeasible for
a under-actuated vehicle. To solve this problem, the path has to be smoothed to ensure a
continuous curvature.

4.3.4 Fermat Spirals

The smoothing of the calculated path is done as described in Ch. 2.5. Once a feasible and
smooth path is generated it is translated to the NED-frame as described in Ch. 4.3.5 and
sent to the guidance system along with a status update from the algorithm. The possible
statuses and their corresponding responses are described in Tab. 4.1. An example of the
smoothed path can be seen in Fig. 4.7b.

The resulting smooth path might violate the clearance constraints. In this case, Di-
jkstra’s algorithm has to be run again, but with a modification suggested by [23]. This
modification erases the connection to the first node resulting in a constraint violation and
calculates a new path from there. The algorithm can be run multiple times to generate a
feasible path. If the algorithm can not find a feasible and smooth path, the guidance system
receives the non-smoothed path.

4.3.5 Conversion between coordinate systems

Conversion between the different reference frames and coordinate systems are frequent.
In addition to the transformations presented in Ch. 2.7 it is also necessary to transform
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waypoints from g to veh, which is shown in Eq. (4.7). The conversion back is presented
in Eq. (4.8)

xveh = (cy − yg)
rscale
cy

yveh = (xg − cx)
rscale
cx

(4.7)

where c is half the number of cells in the associated direction.

xg = round
(
cx

(
yveh
rscale

+ 1

))
yg = round

(
cy

(
1− xveh

rscale

)) (4.8)

where round is the rounding and conversion to an integer. This is necessary as the grid
reference-frame consists of a finite number of cells, rather than a position.

The transformation of a position from the vehicle frame of reference to the NED-frame
is shown in Eq. (4.9) and back again in Eq. (4.10)

r =
√
x2veh + y2veh

α = arctan

(
yveh
xveh

)
N = pN + r cos (α+ ψ)

E = pE + r sin (α+ ψ)

(4.9)

r =
√

(N − pN )2 + (E − pE)2

β = arctan

(
E − pE
N − pN

)
− ψ

xveh = r cos(β)

yveh = r sin(β)

(4.10)

The relations between the coordinate systems are shown in Fig. 4.6.
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4.4 Guidance and Control

The guidance-system is responsible for providing input to the vehicles control system. A
LOS-guidance system with surge-velocity control is implemented as described in Ch. 2.8,
with a few modifications.

The lookahead-distance is implemented as a lookahead-time, such that lookahead-
distance is a time-varying parameter dependent on the vehicle velocity. The region of
acceptance is reduced if the curvature is large, resulting in close waypoints.

The setpoint for the surge-controller is also time-varying. When a new path is calcu-
lated, the guidance-system will calculate the curvature for each path-segment-corner and
subsequently choose the correct velocity for the turn. The turn velocity is implemented
as a constant multiplied by the curvature between the path-segments. An example of the
velocity along the path in Fig. 4.7b is shown in Fig. 4.7a.

As the vehicle will need some time to reduce the velocity to the turn-velocity a break-
distance is implemented in the same manner as the region of acceptance.

The guidance system tries to make the transition between paths as smooth as possible,
which means that as long as the vehicle is on the new path, or sufficiently close to it, the
new path is started immediately. If these conditions are not satisfied, the vehicle will stop
and enter DP-mode to reach the start of the new path.

The guidance system receives status updates from the collision avoidance algorithm.
The different statuses and their corresponding responses are listed in Tab. 4.1. The No
feasible path status triggers the guidance system to a full stop. The mean values of the
starboard and port sides of the occupancy grid is then calculated, such that the vehicle can
start to turn towards the side with the smallest obstacle density.
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Figure 4.7: A smooth path and the original waypoints are to the right. The velocity profile and
curvature of the path is to the left.

Status Response

No danger Continue current path
No feasible path Stop and turn
Smooth path violates collision margin Execute non-smooth path, with stops between WPs
New route OK Execute new path

Table 4.1: Possible collision avoidance statuses, and their corresponding response in the guidance
system

In addition to the LOS-guidance system, a control system was also needed for the
simulations. It was decided that a simple PID-controller was sufficient for controlling
altitude, heading and surge-velocity. The tuning was straightforward due to the noise-free
signals.
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Chapter 5
Experimental setup

In this chapter, the experimental setup during the simulations and field experiments are
described. The chapter is divided into one section for each of the simulators and one
section for the field experiments. The computer used for the MORSE simulations and the
collision avoidance system is described in Ch. 5.4.

5.1 Simulation with MORSE

The initial simulations were done with the modified version of the MORSE simulator de-
veloped by Henriksen et al. [15]. The communication was done trough MOOSDB, which
provided an easy communication interface. A description of the simulated environment
and the ROV is provided in Ch. 6. A screenshot of the ROV can be seen in Fig. 5.1.

Figure 5.1: Close up screenshot of the ROV used in the MORSE simulations.
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5.2 Simulation with Merlin Simulator

The Merlin Simulator is a high-fidelity ROV simulator, complete with a normal control
system. This is a useful simulator for testing the communication with the IKM Autopilot
server and getting some initial tuning values for the field experiments. The simulator lacks
the possibility of extracting sonar data, and thus no object detection or collision avoidance
tests could be carried out. An example of a simulated environment in the simulator is
shown in Fig. 5.2.

Figure 5.2: Screenshot from the simulated environment in IKM’s simulator.

5.3 Field Experiments

All field experiments are performed at Equinor’s Snorre B field. The field is located in the
34/4 block. The approximate position of the semi-submersible drilling rig can be observed
in Fig. 5.3.

Figure 5.3: Location of the Snorre field[33].
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5.3 Field Experiments

5.3.1 Equipment

The equipment used in the field experiments include the ROV, the sonar and the positioning
system. This equipment is described below.

Merlin UCV

The drilling rig has a resident ROV, which means that it is permanently stationed subsea.
A 3D-model of the ROV is shown in Fig. 5.4. The ROV is called Merlin UCV and is a
work-class ROV, with electric propulsion. The dimension of the ROV 2.5m×1.5m×1.5m.

Figure 5.4: 3D model of Merlin UCV, with the location of the sonar highlighted. Courtesy of IKM
Technology.

Onshore Control Room

The ROV can be controlled from an onshore control room at IKM’s headquarters at Bryne.
A picture from the control room can be seen in Fig. 5.5.
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Figure 5.5: Picture from the control-room at IKM Subsea’s headquarters at Bryne. Courtesy of
IKM Subsea.

Tritech SuperSeaking Mechanically Scanning Sonar

The Merlin UCV is equipped with a mechanically scanning sonar called SuperSeaking
DST. This sonar is manufactured by Tritech. The SuperSeaking sonar is utilizing Digital
Sonar Technology(DST) as well as Compressed High-Intensity Radar Pulse(CHIRP). The
sonar has two separate transducers with frequencies centered around 650 kHz and 325 kHz
to accommodate high resolutions and long ranges.

The SuperSeaking sonar has an RS-232 interface for serial communication. The serial
data is then sent over Ethernet as UDP-packages. The communication protocol is defined
in [39]

Some key properties of the SuperSeaking sonar are listed in tab 5.1.

Specifications High-Frequency Low-Frequency

Frequency center 650 kHz 325 kHz
Horizontal beam width 1.5◦ 3.0◦

Vertical beam width 40.0◦ 20.0◦

Maximum range 100 m 300 m
Minimum range 40 cm
Maximum range resolution 15 mm
Mechanical resolution 0.45◦, 0.9◦, 1.8◦ and 3.6◦

Source level 210 dB re 1 µm

Table 5.1: Key properties of Tritech SuperSeaking DST Sonar[38]

Inertial Navigation System

The Merlin ROVs are equipped with an INS called Sprint 500, which uses a combination
of accelerometers, gyroscopes, Doppler velocity log (DVL), depth sensors and position
measurements from transponders to estimate the ROV’s position.
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5.4 Computer

Acoustic Positioning System

The rig at Snorre B is equipped with a super-short-base-line acoustic positioning system,
see section 3.5.2, from Kongsberg called HPR-400. According to [1] the accuracy is
approximately 6 meters.

Communication

The test computer was connected to the wired network in the control room and messages
were sent over UDP to the IKM Autopilot Server (APserver). The APserver communicates
with the with the control room, which forwards the commands offshore. This process is
outlined in Fig. 5.6.

ROV Offshore 
Control 
Room 

Onshore 
Control 
Room 

Collision 
Avoidance 

System 

Offshore Onshore

UDP
Serial
TCP/IP

Figure 5.6: Communication with ROV.

5.4 Computer
The collision avoidance system was run on an Acer Aspire Nitro VN7-791G with a 4-core
Intel Core i7-4720HQ processor with a clock frequency of 2.6GHz [19]. The laptop has
8 GB of DDR3L SDRAM, with a clock frequency of 1600 MHz and a NVIDIA GeForce
GTX 860M - 2 GB GDDR5 SDRAM graphics processor. The graphics processor was not
used for the collision avoidance algorithm, but is necessary for the running the simulations
through MORSE/Blender.
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Chapter 6

Simulation Results

In this chapter the results from several simulations are presented. The first three sections
contains different simulations, using MORSE to test the guidance system, the object de-
tection system and the complete collision avoidance system. The last section is a test of
the guidance system, and the communication with the IKM’s Autopilot program, using
their simulator.

The simulated environment used in the MORSE simulations contains several simple
obstacles, such as ellipsoidal and rectangular pillars, as well as a more complex obstacle
consisting of three small cylinders and a wall on one side. A map of this environment is
shown in Fig. 6.1 and a picture of the environment is shown in Fig. 6.2. In all the experi-
ments the sonar was running with an update frequency of 16 Hz, which is approximately
equal to the update frequency of the sonar used in the field trials. The range of the sonar
was 30 m and the beam width and height was equal to those of the SuperSeaKing sonar.
The shorter range is due to the available ROV model being smaller than the Merlin UCV.
A Gaussian distributed noise, with a mean of 10 and standard deviation of 2.9 was added
to the sonar-signal. The cruising velocity was set to 0.4m/s ≈ 0.8knots. The ROV is quite
different from the one used in the field-trial, but the result are still useful.
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Figure 6.1: Map of the simulated environment used during the MORSE-simulations. The objects
are numbered.

Figure 6.2: Screenshot from the simulated environment used during the MORSE-simulations.

The simulations carried out in IKM’s simulator was for testing the communication with
the autopilot server. The simulator has high fidelity dynamics, but there is no possibility
of outputting sonar-data for usage in the system, and thus no test were carried out on the
object detection part. The test where run without a tether, as no automatic tether system is
implemented.
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6.1 Object Detection

6.1 Object Detection
The object detection system was tested in several different trials on the simulated environ-
ment described above. The vehicle was flying pre-planned paths or controlled manually.
The results from one of these experiments is shown in Fig. 6.3, where the vehicle is fly-
ing a pre-planned path. The detected obstacles are logged every 10 seconds, and plotted
as transparent shapes, such that obstacles that are detected on multiple occasions are less
transparent. It can be observed that all the objects are clearly detected. There are also
objects detected at (N,E) ≈ (−5,−45), (40,−20) and (10,−40), which are caused by
steep terrain elevations at these positions, which can be observed in the background in
Fig. 6.2. There is also an object at (N,E) ≈ (3,−15), which is due to cluttered noise.
As can be observed from the opacity of the object, it was only detected for a short while,
and as soon as the ROV moved, the probability was below the threshold again. It should
be noted that all the objects appear larger than they are, which is due to the applied safety-
margin of two meters.

Figure 6.3: Results from simulated object detection trial. The detected obstacles are logged every
10 seconds and plotted as transparent polygons.

6.2 Guidance System
In this section a trial of the guidance system is presented. The ROV is flown trough a path
in the simulated environment. A plot of the path is shown in Fig. 6.4. The figure shows
both the planned path and the flown path, as well as the ROAs for each waypoint (WP).
It should be noted that there is a deviation from the path after WP9, as the ROV does not
manage to slow down sufficiently. This deviation can also be seen in Fig. 6.7, where the
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Chapter 6. Simulation Results

cross-track error is shown. The reason for this is a too high velocity, which can be observed
in Fig. 6.8, where an excerpt from the velocity profile is shown. The guidance system tries
to reduce the velocity before WP9, but the distance available for the velocity reduction is
not sufficient, and thus the velocity trough the turn is too large. There is a large deviation
at WP4 as well, but this is mainly due to the large angle between the path-segments and
the size of the region of acceptance (ROA). As the ROV reach the ROA of WP4, the path
segment between WP4 and WP5 is selected, but the ROV is still not on the path. It should
be noted the ROV reduces the cross-track error fast, as it converges towards the new path
segment.

In Fig. 6.5 a plot of the heading throughout the path is displayed. It should be noted
that the setpoint is too fast for the ROV, but the reference signal smooths out the steps in
the setpoint. The difference between the heading angle and the reference signal can be
seen in Fig. 6.6. This error is sufficiently small, except right after the change to WP4. This
suggests that the acceleration of the reference signal should have been smaller.

The overall performance of the guidance system is sufficient, but the large cross-track
error after WP9, might be a problem when a path is close to an obstacle.
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Figure 6.4: North-east plot of the path of the ROV during simulated guidance system trial. The
ROAs are plotted at each waypoint.
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Figure 6.5: Plot of the heading, the reference signal and setpoint of the heading, during simulated
trial of the guidance system.
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6.3 Collision Avoidance

6.3 Collision Avoidance

In this section a collision avoidance test is performed in the simulated environment. An
excerpt from the results is provided in Fig. 6.9-6.11. In Fig. 6.9 the first re-planning of
the path is presented. It should be noted that only object 7 is detected as this point, even
though both object 5 and 6 is within the sonar field of view. The reasons for this is that the
sonar beam started from the left, and has not yet reached these objects. The new path is
planned in a wide curve around the detected obstacle, which is due to the nature of VDs.
The VD finds the lines which are as far apart from the generator points as possible, and
since only one obstacle is present the only present generator points are the edges of the
grid and the obstacle.
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Figure 6.9: First path re-calculation during simulated trial of the complete collision avoidance sys-
tem.

In Fig. 6.10 another path recalculation is shown. It should be noted that all the obstacles
that has been inside the sonar field of view is now detected. The steep terrain at the edge of
the map is also detected as an obstacle in (N,E) ≈ (5,−45). It should be noted that the
old path is not passing trough obstacle 1, but rather the width of the vehicle, and thus the
path is overlapping the detected obstacle. A new path is calculated around the obstacles.

55



Chapter 6. Simulation Results

-4
0

-3
0

-2
0

-1
0   0  1

0
 2

0
 3

0
 4

0

East [m]

-3
0

-2
0

-1
0

  0

 1
0

 2
0

 3
0

N
o
rt

h
 [
m

]

Installation Line

Obstacles

Sonar Field of View

ROV

Old Path

New Path

End of optimization

Actual Path

Figure 6.10: Second path re-calculation during simulated trial of the complete collision avoidance
system.

In Fig. 6.11 the old path is to close to obstacle 1, as the detected part of the obstacle
has grown when the ROV moved closer. The path is thus adjusted to get a better clear-
ance. It should be noted that obstacle 5-7 has disappeared as they are no longer inside the
occupancy grid.
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Figure 6.11: Last path re-calculation during simulated trial of the complete collision avoidance
system.

6.4 Merlin Simulation
Several simulations were done in the Merlin Simulator, but no results are presented as
the simulations were done to fix the communication with the IKM Autopilot Server. The
ROV model in the simulator is not the same as the one used in the field experiments, but
the tuning provided good initital tuning values.
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Chapter 7

Full-Scale Experiments

The complete system consisting of the object detection module, the path planning module
and the guidance system was tested through real-time experiments at the Snorre B field.
The raw network traffic was logged, but most of the data presented here is the result of
log-files generated by the developed system. A map of the area can be seen in Fig. 7.1.
Most of the experiments starts from the garage, as this is where the ROV is tethered to.
The chapter is divided into three different sections, where the object detection module is
tested first, then the guidance-system. The last section is a test of the complete system.
Some key parameters that are equal in all of the experiments are given in Tab. 7.1.
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Figure 7.1: Map of the subsea area of the Snorre B field.
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7.1 Object detection

Parameter Value

Sonar range 50 m
Sonar frequency 650 kHz

Obstacle safety-margin 2 m
Vehicle safety-margin Equal to vehicle beam
Distance for second waypoint 4 m
Co-linear threshold for removal of waypoints 2 deg

Cruising velocity 0.5m/s ≈ 1knot
LOS look-ahead time 20 s
Heading update limit 0.5 deg
Turn-velocity factor 1

32

Initial probability 0.5
Binary probability threshold 0.6
Free probability 0.3
Occupied probability 0.7
Discrete grid size 1601× 1601
Occupancy grid size 100× 100
Minimum rotation of grid 0.5 deg
Minimum translation of grid 1 discrete grid cell

Table 7.1: Key parameters for all field-tests.

7.1 Object detection

The purpose of this trial was to test the object detection capabilities of the system. The
ROV was flown by a pilot from the garage, around a subsea-module and back again. The
results from this flight is presented in Fig. 7.2. The detection data is logged once every 10
seconds and plotted over the map of the area. The detected obstacles are marked with red
transparent, filled polygons. This results in object being detected on multiple occasions
being a darker shade of red. It should be noted that the ROV sometimes appear to be flying
straight through the detected obstacles. This is foremost due to the safety margin of of two
meters included in the object detection procedure, as mentioned in Ch. 4.1.4, but also due
to the ROV was flying above them. The ROV is flying at a mean altitude of approximately
2 meters until it reaches module C, then the mean altitude is increased to 3.5 meters for
the remainder of the flight. It can be observed that all obstacles are clearly detected. It
should be noted that there is some drift in the position, which can be observed by looking
at the tool stand in Fig. 7.3, which has changed location between the beginning and the
end. The detected obstacles appear larger than the obstacles on the map, and this is due to a
safety-margin of two meters. It should also be noted that the algorithm has some problems
accurately detecting the south-side of module D. This is likely due to the high altitude and
proximity to the module, which causes the sonar to miss it completely.
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Figure 7.2: Detected objects and position of the ROV on a round-trip from the garage around module
C and D.
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Figure 7.3: Closer look at the view in Fig. 7.2.

7.2 Guidance System

In this trial the purpose was to test the developed guidance system. The trial started be-
tween module A and B and was terminated when sufficient data was gathered, near module
D. A North-east plot over the map is shown in Fig. 7.4. The result from this trial can be ob-
served in Fig. 7.4-7.8. The numbers indicate when a new waypoint was selected. This shift
happen when the ROA, indicated in orange in Fig. 7.4 is reached. In Fig. 7.5 a close-up
of Fig. 7.4 can be observed. It is apparent that there are some deviations in the beginning,
which can also be observed in the plot of the cross-track error in Fig. 7.8. This is due to
aggressive tuning and the fact that the ROV did not start from a steady state.
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Figure 7.4: North-East plot of flight-path. The numbers indicate when a new waypoint is selected.
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Figure 7.5: Close-up look at the first part of the path in Fig. 7.4.
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In Fig. 7.6 a plot of the commanded heading from the LOS-controller together with
the reference-signal and the estimated heading is shown. It should be noted that there is
some deviations in the beginning, but as soon as the heading has had time to stabilize, the
ROV is able to follow the commanded heading sufficiently good. When a new waypoint is
selected there is a step in the LOS-output, but this is handled well by the reference signal.

15:15:00 15:15:30 15:16:00 15:16:30 15:17:00 15:17:30 15:18:00

Time May 15, 2018   

100

110

120

130

140

150

160

Y
a

w
 -

 [
D

e
g

]

2

3

4

5

6

7

Los output

Real

Reference signal

Figure 7.6: Plot of heading, heading reference and desired heading for the flight-path from Fig. 7.4.
The numbers indicate when a new waypoint is selected.

In Fig. 7.7 the surge velocity of the ROV is shown. The last two minutes are omitted, to
make the first part more visible. During the last two minutes, the velocity profile appears
similar as from 15:16:30 to 15:18:00. I can be seen that between the second and third
waypoint, the setpoint for the velocity is reduced to accommodate the sharper turn radius.
Notice that the ROV is not able to follow the reduction in velocity, as the waypoints are
to close together. After the the third waypoint, there are no more sharp turns, and thus the
velocity-setpoint is adjusted back to the normal velocity again. It should be noticed that
the ROV is never able to reach the commanded velocity, which is due to improper tuning
of the surge-controller.
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Figure 7.7: Plot of surge velocity, surge velocity reference and desired surge velocity for the flight-
path from Fig. 7.4. The numbers indicate when a new waypoint is selected.

In Fig. 7.8 a plot of the cross-track error can be observed. The cross-track error is
large in the beginning, which is due to the same reasons mentioned above. it should be
noticed that for the last waypoints, there is a sudden spike in the cross-track error. This is
due to ROA = 2m, which in causes the cross-track error to be evaluated against the next
path-segment.
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Figure 7.8: Plot of cross-track error for the flight-path from Fig. 7.4. The numbers indicate when a
new waypoint is selected.

The results presented in this section indicate that the tuning of the controllers are not
perfect, but due to the limited time available for testing the tuning was considered satis-
factory.

7.3 Collision Avoidance

In this experiment the goal was to test the complete system. A path from the garage, going
trough several obstacles towards module G was planned. As the vehicle progresses along
the path, and discovers new obstacles, new paths are calculated and executed. During the
experiment the obstacles and occupancy grid is logged every 10 seconds, and the detected
obstacles are logged along with the path recalculation data every time a new path is cal-
culated. An excerpt results can be observed in Fig. 7.9-7.10. All the plots of new paths
in this experiment can be found in Appendix B.1 and a movie with the all the logged data
can be found in Appendix B.1.

In Fig. 7.9 it can be observed that the old path is passing through one of the detected
obstacles. The system then calculates a new path around the obstacle. The sharp turn
between module C and D is due to an earlier recalculation of the path. It should be noted
that the toolstand and module A is not detected as obstacles. Due to the altitude and
close proximity several subsequent scans has showed a clear path, and thus reduced the
probability below the detection threshold. These issues are further discussed in the next
chapter.
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Figure 7.9: Excerpt from test of the collision avoidance system.

In Fig. 7.10 module C has barely come into the sonar field-of-view and the old path is
once again passing straight trough the detected obstacles. The calculated path is the best
possibility given the known information, but as can be seen from the map, it is passing
straight through module C. The scrap-metal is not yet visible due to the current orientation
of the sonar-head.
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Figure 7.10: Excerpt from test of the collision avoidance system.

In Fig. 7.11 and 7.12 the same input data is used. Fig. 7.11 is the real-time recalculation
of the path, and Fig. 7.12 is post-processing with a revised algorithm. As can be seen in
Fig. 7.11 the new path takes an unnecessary long detour around module D. This is due to
the nature of VD’s, where the edges are as far away from each generator point as possible.
In Fig. 7.12 a revised algorithm, where the midpoints between the corner points are added
as generator and the revised removal of unnecessary waypoints described in Ch. 4.3.3.
This algorithm has proved to calculate similar path-lengths in most cases, but significantly
shorter in cases similar to this one. The new path includes a u-turn, but the path-length is
shorter. Looking at the past recalculations in Appendix B.1 and the new calculations in
Appendix B.2 with the revised method, it can be observed that the path on the west-side
of module C would have been selected earlier, and thus removed the need for a u-turn.
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Figure 7.11: Excerpt from test of the collision avoidance system.
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Figure 7.12: Excerpt from test of the collision avoidance system. This recalculation is done after
the experiment, using a revised version of the recalculation method. The input data is the same as in
Fig. 7.11.
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Chapter 8
Discussion

In this chapter the results presented in Ch. 6 and Ch. 7 will be discussed and compared.
The chapter is divided into the same sections as the result chapters. In addition, Ch. 8.4
evaluates the runtime efficiency of the developed algorithms.

8.1 Object Detection
The results show that the object detection module is capable of efficiently and reliably
detecting obstacles with some exceptions.

During the initial simulations, the three different methods described in Ch. 4.1.2 for
identifying a hit from the sonar signal was tested. All three methods gave satisfactory
results, with method two giving the most accurate results. During the first field trial, it was
discovered that method 2 and 3 gave too many false positives. Method 1 requires more
tuning than the other two, but due to the coupling with the sonar settings, it is easy to tune
for a skilled ROV pilot.

Occupancy grids rely heavily on two assumptions, the static world assumption (SWA)
and the cell independence assumption (CIA). These two assumptions are imperfect, which
might cause some problems. The SWA assumes a static world, which is mostly true for a
subsea production environment, but for other environments, there might be other moving
and unknown objects, which violates the assumption. The CIA is violated due to the fact
that each measurement gives information about a set of grid cells, not a single cell. The
reliance on CIA is somewhat reduced as the dynamic inverse-sonar model is introduced as
the probability of occupancy is in fact connected to the neighbouring cells. The SWA is
not considered a problem in this thesis as fish and other small moving obstacles are filtered
out, and larger moving obstacles normally have a known position.

A local occupancy grid has several benefits compared to global occupancy grid. A
global occupancy grid has to account for the growth of the positional uncertainty, and
thus the accuracy of the map will fall over time. With a local map, the obstacles will be
correctly located with respect to the vehicle, which is sufficient for the purpose of collision
avoidance. A global map will also require a lot of memory to retain all the information. As
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an example: The discretized local grid has a resolution of 256 cells
m2 when a sonar range of

50 is used, with double precision floating point which amounts to a storage space of 20.48
MB. Using the same parameters for the main subsea-area of the Snorre B field, which
occupies approximately 20000m2. This amounts to 44 MB, while an area of 1km2 would
take up 2 GB of memory.

On of the main problems with underwater-SLAM is the need for reliable features to use
as landmarks. Reliable features can be easy to find in man-made environments, such as the
subsea-production area considered in this thesis, but for other scenarios it can be difficult.
One example of such a scenario is a vehicle moving between two sub-sea production areas,
where unknown obstacles might recede.

During the field trials, it was discovered that the location of the sonar is of great im-
portance. As the sonar is mounted more than a meter from the bottom of the ROV and the
vertical beam-width is 40◦ when the sonar is at the high frequency, there will be a consid-
erable blind-spot close to the ROV. This can be observed in Fig.8.1. This blind-spot causes
the scans to have no echo of objects close to ROV, which in turn reduces the probability of
occupation. Due to time constraints on the field trials, this problem was not addressed and
further investigation is needed.

Figure 8.1: ROV with sonar cone and blind-spot at an altitude of two meters.

A major difference between the simulations and the field trials is the accuracy of the
position and velocity measurements. During the simulations the correct position and ve-
locity measurements where available noise free. During the field trials the position and
velocity data were estimated by an INS system. This system experience drift over time
and a steady-state error of approximately 90 meters was discovered. To account for this
error an offset was added. To acquire this offset value, the ROV was flown to a fixed
location and the difference in estimated position was compared to the position from the
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map. There was also some drift during the trials, as noted in the object detection trial in
Ch. 7.1. Even though this drift can be a problem for accurate localization of the ROV
and subsequently the validation of the results, it is not a problem for the collision avoid-
ance system. The ROV has an accurate compass and the velocity measurements from the
DVL is accurate, which results in the change in translation and rotation of the grid being
accurate.

The occupancy grid has some tunable parameters. The size of the discrete grid was
chosen on the basis the of maximal number of bins generated by the sonar. During the
earlier versions of the object detection module, the raw data had to be interpolated to fit
the grid cells, and thus the same number of cells as bins was needed. The occupancy grid
size was reduced from this, such that multiple hits has the possibility of affecting the same
cell. With a smaller cell size, a single-grid cell would only be updated once during a 180◦

scan, and no detection of obstacle would occur. Another important parameter is the initial,
free and occupied probabilities. The initial probability was set to pinit = 0.5, since it is
unknown.

The simulations were run with different values for free and occupied probabilities. It
was found that pfree = 0.7 and poccupied = 0.3 gave the best detection to false positive
ratio. The threshold value used for the object detection was found to be effective at 0.6.
During the initial field experiments the hit threshold, T = 170 was found to bee accurate,
in collaboration with the pilots.

8.2 Guidance System
The results in Ch. 6.2 and Ch. 7.2 indicates that the guidance system is performing suf-
ficiently with respect to cross-track errors. The line-of-sight (LOS) guidance, with the
variable lookahead distance is providing the control system with a desired heading, which
makes the ROV converge to the chosen path. The cross-track errors are small during the
execution of the paths, but there are some errors when a new path is started and the vehicle
is not aligned with the path. The velocity dependent lookahead distance then makes the
LOS-guidance to aggressive, which causes the convergence to the path to be more time
consuming than necessary.

The region of acceptance (ROA) was implemented as a variable region, dependent on
the proximity of the waypoints (WPs). This did not cause any problems when the ROA
became small, but it should be considered for further work. A better solution would be to
implement the WP-switching with respect to the along-track distance instead of a ROA, as
suggested by [9, p. 265].

The surge-velocity guidance did not work as well as expected. The time allocated
to reducing the velocity was not enough, and more time should have been spent on the
tuning. Another problem with this algorithm was that the smoothing was done in the path
planning and the velocity guidance was working against each other. The velocity guidance
considers only the angle between two path-segments, which is small due to the smoothing.
A possible solution to this problem is discussed in Ch. 9.2.2. It was discovered that the
path following algorithms implemented on the Merlin UCV was not capable of the fast
WP-switching needed by the collision avoidance system. To fix this problem the surge-
velocity guidance algorithms were developed.
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During the field experiments it was discovered that reference signal for both the surge-
velocity and the heading was faster than the dynamics of the system. This caused some
unnecessary oscillations, but due to time constraints during these experiments no addi-
tional tuning was performed.

8.3 Collision Avoidance
The complete collision avoidance system was tested both in simulations and in the field
tests. In this section, the results from both of these trials will be discussed.

Both the simulations and the field tests showed similar results. The obstacles were
detected in a timely manner and a new path was calculated.

The Voronoi diagram (VD) is an effective method for finding a set of feasible paths.
From this set of feasible paths, the shortest one is found through the use of Dijkstra’s
algorithm. Dijkstra’s algorithm provides the optimal solution from the feasible set, but not
the overall optimal path. The algorithm handles multiple obstacles very well, and is able
to calculate a good path through them.

The VD has several possible configurations of the generator points as discussed in
Ch. 4.3.1. The runtime difference for these configurations are presented in Tab. 8.1. On the
basis of this comparison the convex-contour method was chosen, even though the accuracy
of the obstacle representation is lower. Due to the real time requirements of the system, a
long runtime can cause problems. As stated in Ch. 8.1 the runtime comparison was done
on a sample grid, but more complex grids can significantly increase the runtime. During
the field trials the algorithm sometimes ran for up to 2 seconds, which with a normal AUV
velocity of 4 knots would give a travel distance of approximately 4 m. To account for this a
waypoint was inserted straight ahead of the vehicle as discussed in Ch. 4.5a. The insertion
of this point also turned out to make it easier for the guidance system to transition between
paths, as the first piece of the new path had the same orientation as the current piece of the
old path. The other possibility of changing the generator points, is to use the mid-points
between the corner-points, as described in Ch. 4.5a. During the trials, both possibilities
were tested, and using the mid-points turned out to select negligible longer paths in most
cases. In cases where the only path is around an obstacle at the outer corner of the grid,
the mid-point method selected significantly shorter paths and was thus chosen as the final
method.

The location of the destination point inserted into the VD has a large impact on how
the final path will look. The initial algorithm used the first WP outside the occupancy grid
as the destination point. This worked well in most cases. However; when the old path
reentered the grid, the new path ended up in a loop. To solve this problem, a check to find
the first WP after the last time the path exits the grid was implemented.

The path smoothing with the use of Fermat’s spiral worked well, and a minimal curva-
ture path was generated and subsequently discretized into the necessary number of way-
points.

A problem with the developed collision avoidance system is that a new path is only
generated once the current path intersects a detected obstacle. This occasionally caused
the vehicle to fly a longer path than necessary, as new information about the obstacles were
gathered. A system where the path was recalculated more often was developed to solve
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this problem, but the path was then changed more often than the guidance system could
handle.

8.4 Performance

During the development of the algorithm several options for the contour approximations
described in Ch. 2.2.5 were evaluated with regards to performance. A test script was
constructed, where the input was an image of dilated contours. The test script then detected
the contours, using the appropriate approximation. The collision avoidance algorithm was
then run, until a new path was calculated. This script was run 10 times for each contour
approximation. A runtime comparison for the data set used in Ch. 4.3 in can be seen in
Tab. 8.1.

Approximation Mean time

No approximation more than 6000 ms
Simple 4344 ms
Teh-Chin 2893 ms
Convex 662 ms

Table 8.1: Mean runtime for collision avoidance algorithm, with different contour approximations
from dilated contours to a finished path. Each method was run 10 times, and a mean value was cal-
culated. The simulation was stopped after one minute runtime. The dilated contours were generated
from the same data as in Ch. 4.3.

The results indicate that the convex contour approximation is about four times as fast
as the Teh-Chin approximation and 6.5 times as fast as the simple approximation. The
Teh-Chin approximation has the benefit of accurately displaying convexity-defects, which
could be helpful for large concave structures, such as the example shown in Fig. 8.2. A fast
algorithm does, however, have more benefits than such special cases, and thus the convex
contour approximations was selected for the algorithm.
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Figure 8.2: Example of a path following a concave structure, with a convex contour approximation
and the Teh-Chin contour approximation.

When running the complete collision avoidance algorithm the CPU-utilization was
below 30 %. Most of this CPU-usage is due to the graphic display of the program, which
is only needed for the convenience of the user. This suggests that the algorithm is capable
of running on on-board hardware on other underwater-vehicles such as AUVs.
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Conclusions and Further Work

In this chapter a conclusion will be formulated based on the results in Ch. 6 and Ch. 7, and
the discussion in Ch. 8. In the end recommendations for further work will be presented.

9.1 Conclusion

In this thesis, the problem of avoiding obstacles when following a pre-defined path was
investigated. An effective approach using a single-beam sonar to populate a probabilistic
vehicle-fixed occupancy grid, and subsequently detect obstacles was found. The detected
obstacles were used to calculate a new collision free and smooth path adhering to the vehi-
cles constraints. The complete collision avoidance system was simulated using a simulator
called MORSE and implemented on IKM Subsea’s Merlin UCV. Both the simulations and
the field trials showed promising results, where the system was capable of efficiently de-
tecting and avoiding obstacles.

The presented approach has several advantages over other methods such as SLAM-
based methods. Using a vehicle-fixed grid greatly reduces the computational complexity
as well as removing the reliance on landmarks, which can be hard to detect in a noisy envi-
ronment. The vehicle-fixed grid also has the advantage of being independent of positional
error-growth.

It was shown that a mechanically scanning single-beam sonar is sufficient as the only
sensor for detecting obstacles in the vehicles planned path. The presented object detection
procedure has some weaknesses, which were discussed.

The developed system for calculation of new paths is efficient, but the results are not
always optimal. The usage of Voronoi diagrams and Dijkstra’s algorithm always gives a
collision-free path, but it might be longer than necessary. These aspects were thoroughly
discussed, and suggestions for improvements will be presented in the next section.
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9.2 Further Work
This section will present a proposal for further work, with aspects of the thesis that needs
improvement and exploration.

9.2.1 Object Detection

With respect to the object detection system, several challenges have emerged during the
work that should be addressed. The tuning of the sonar is a process that is easy for a
skilled ROV pilot, but this takes a lot of practice, and thus further research should be done
to develop either an algorithm that is independent of the sonar tuning, or tunes the sonar
automatically. The current system uses operator controlled range and step settings, but the
accuracy of the system could be increased by applying bat-inspired techniques for aiming
and adjusting the sonar beam as described by Yamada et al. [42]. The main problem in
testing such a system is that the ROV pilots rely heavily on the sonar for navigation, and are
thus reluctant to release control over it. This could also be combined with a dynamically
sized occupancy grid to fit the obstacle density.

The rotation and translation of the grid follow a deterministic manner, but the position
and orientation are seldom perfectly known, and a probabilistic implementation of the
rotation and translation, as done by Ganesan et al. [13] should be considered. The current
translation of the grid relies on position updates, but to make the system more independent
of inaccurate and unknown variables, this should be changed to use velocity measurements
instead.

9.2.2 Guidance System

As described in Ch. 8.2, the velocity was occasionally too high trough sharp turns. A
possible solution to this problem is to consider the curvature trough several waypoints, not
just the first. It is also recommended to look into other guidance options, such as trajectory
tracking.

9.2.3 Collision Avoidance

The collision avoidance system has some drawbacks that should be addressed. When
an obstacle in the current path is detected it would be preferable if the guidance system
is notified immediately, such that no collisions can happen during the time it takes to
calculate a new path. Another drawback is that a path recalculation is only triggered by
an obstacle on the current path. This can cause the vehicle to fly sub-optimal paths as new
information is discovered. To solve this problem it is possible to try to recalculate the route
more often, and change the route if the new route is better.

This system only considers paths in the two-dimensional space, but Voronoi diagrams
can easily be extended to work in a 3D-space, but this will most likely not be possible
without the use of extra sensors, such as a camera, an extra sonar or a 3D-sonar to extract
information about the height of obstacles. Adding data from a camera will also improve
the detection capabilities at a close range.
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9.2.4 Simulations
The sonar model in MORSE has a few drawbacks as mentioned earlier. The simulator
could be drastically improved by implementing a more realistic sonar model. To do this
more research on underwater acoustics and comparison with real sonar data would be
needed. The work done on accurate sonar simulators on GPUs done by Cerqueira et al.
[3] is a good place to start.
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Abstract— Collision avoidance is one of the main challenges 
in the field of autonomous underwater vehicles (AUV). In this 
paper a method for detecting obstacles, using a single-beam 
mechanically scanning sonar, including planning of an  optimal 
path around the obstacles is proposed. The obstacle detection is 
archived with an inverse-sonar model updating a vehicle-fixed 
occupancy grid. A new and obstacle-free path is planned using 
Voronoi diagrams and Dijkstra’s algorithm. The path is 
smoothed using Fermat’s spiral and a LOS-guidance system 
with a time-varying lookahead-distance as guidance. The 
method is implemented and a full-scale test is performed from 
IKM’s onshore control room on a remotely operated vehicle 
(ROV) operating at Statoil’s Snorre B oil field. The technology 
is applicable to ROVs and AUVs in underwater operations.  

Keywords—obstacle detection, collision avoidance, path 
planning, single-beam sonar 

I. INTRODUCTION 

Underwater vehicles and specifically remotely operated 
vehicles (ROVs) are commonly used for Inspection, 
Maintenance and Repair (IMR) missions in the oil and gas 
industry. This is a cost-driven industry and advances in 
automation is key-factor to reduce the mission expenses. One 
of the main difficulties during automated missions is the risk 
of collision. The collision avoidance challenge is often solved 
using multi-beam sonars, in a Simultaneous Localization And 
Mapping approach  [1] or with the image recognition based 
techniques  [2]. By using a single-beam sonar the costs can be 
significantly reduced. The object detection challenge is 
thougher with  single-beam sonars , but can be solved with 
occupancy grids  [3] or with a potential field method  [4]. 

In this paper, occupancy grids are populated using the 
dynamic inverse-sonar model developed in [5]. The detected 
obstacles are then used as input to an online re-planning 
algorithm. This algorithm is motived by the work presented in 
[6] 

II. SYSTEM DESCRIPTION 

The system developed in this paper is tested on IKM’s 
Merlin UCV, which is a work-class ROV permanently 
situated at Statoil’s Snorre B oil field. The ROV is shown in 
Fig. 1. However, the method is applicable also to autonomous 
underwater vehicles (AUVs). The ROV has a Doppler-
velocity log aided INS system, which together with a hydro-
acoustic positioning system, situated at the rig provides 
accurate attitude and position information. This is a useful tool 
in the verification of the developed system.  

The ROV is equipped with a Tritech Super SeaKing sonar. 
The mounting position of the sonar is highlighted in Fig. 
1Feil! Fant ikke referansekilden.. The sonar is a single 

beam, mechanically scanning sonar, which utilizes CHIRP 
technology with frequencies centred at either 325 kHz or 675 
kHz. 

The ROV is operated from IKM’s onshore control-room 
at Bryne, Norway, which makes it accessible for testing of 
new algorithms. The communication with the ROV’s control 
system and the sonar is performed with UDP-messages 
following a binary protocol. The position updates are received 
as NMEA-messages. 

METHODS AND IMPLEMENTATION 

The collision avoidance system is divided into three 
modules. First, the obstacles are detected in the object 
detection module. The detected obstacles are then passed on 
to the path planning module, which checks for potential 
collision threats, and calculates a new path if needed. The last 
module is the guidance system. 

III. RESULTS 

The system is first tested for object detection capabilities, 
then the complete system is tested with pre-planned paths, 
going straight through obstacles. 

      
Fig. 1: The Merlin UCV. The sonar position is 
highlighted in blue. 
 

 

 
Fig. 2: Recalculation of the path during collision 



A. Obstacle detection 

 In the first test the ROV was flown by a pilot, from the 
garage, around a subsea-module and back again. The results 
from this test can be observed in Fig. 3. A snapshot of the 
detected obstacles is taken every 10 seconds and then plotted 
in the same figure. The altitude of the ROV is controlled by 
the pilot and thus it appears to be flying straight through some 
obstacles, such as the toolstand and Module 4. In these cases, 
the ROV was flying above them. The ROV is flying at a mean 
altitude of approximately 2 meters until it reaches Module 2, 
then the mean altitude is increased to 3.5 meters for the 
remainder of the flight. It can be observed that all obstacles 
are clearly detected.  It should be noted that there is some drift 
in the position, which can be observed by looking at the tool 
stand, which has changed location between the beginning and 
the end. The detected obstacles appear larger than the 
obstacles on the map, and this is due to a safety-margin of two 
meters. It should also be noted that the algorithm has some 
problems accurately detecting the south-side of Module 3. 
This is likely due to the high altitude and proximity to the 
module, which causes the sonar to miss it completely. 

B. Collision Avoidance 

Several tests on collision avoidance are performed. All of 
the tests start close to the garage, with a preplanned path. The 
ROV was never able to reach the destination point due to 
constraints with the tether and ongoing operations. 

Results from the first collision avoidance test can be 
observed in  Fig. 2. It should be noted that most of the 
obstacles in the sonar’s field of view are detected. The only 
undetected obstacle is Module 4 (see Fig. 3), which is due to 
proximity and altitude. The system is calculating a short 
deviation from the planned route, and is able to avoid the 
obstacle before the new path rejoins the old one. Right after 
the point where the optimization stops, between Module 2 and 
3, there is a sharp bend in the path. This is the result of an 
earlier path recalculation. Since it is outside the optimized 
region, it is not smoothed away before it is closer to the 
optimized region. Fig. 5 shows a later time in the same test. 
The planned path on the east-side of Module 2 and 3 is longer 
than the one on the west-side, and thus the shorter one is 
selected. There is also an opening between Module 2 and 3, 
but due to the width of the ROV, this path is not feasible. It 

should be noted that the small obstacle south-east of Module 
4 has disappeared from the grid, as the ROV flew at a high 
altitude close to it, and therefore several scans showed no 
obstacles. 

The second test is made a few days later, with a different 
configuration of the sonar. The sonar configuration is decided 
by the pilot, and has implications for the effectiveness of the 
algorithm. When looking at Feil! Fant ikke 
referansekilden.Fig. 6 and Fig. 4 it can be observed that the 
obstacles appear smaller. This is due to the change in the sonar 
configuration causing less distinguishable return echoes. The 
system still manages to calculate a route around the obstacles. 

IV. DISCUSSION AND CONCLUSIONS 

This paper has presented an effective method for detecting 
obstacles using a single-beam sonar, as well as an effective 
way of calculating a new obstacle-free path. A vehicle-fixed 
local occupancy grid has several advantages over a global 

 
Fig. 5: Recalculation of the path during collision 

avoidance test 1. 
 

 
Fig. 4: Recalculation of the path during collision 

avoidance test 2 
 

Fig. 3: Obstacle detection test. Some obstacles on the 
map are labeled 

 



map. The complexity is reduced, and thus calculation time is 
significantly less. The major advantage is that the grid can be 
completely decoupled from global positions. The changes in 
position can then come from only a doppler-velocity log and 
a compass. 

The full-scale test showed that the system is capable of 
detecting the obstacles in its path in an effective manner. A 
new and obstacle-free path is calculated and executed. The 
full-scale test showed that a mechanically-scanning single-
beam sonar is adequate for detecting and avoiding obstacles. 

The dependence on the sonar configuration is a problem 
that should be addressed, either through making the detection 
algorithm independent of the sonar configuration, or by 
making an algorithm that can automatically tune the sonar. 

This system only considers paths in the two-dimensional 
space, but Voronoi diagrams can easily be extended to work 
in a 3D-space, but this will most likely not be possible without 
the use of extra sensors, such as a camera, an extra sonar or a 
3D-sonar to extract information about the height of obstacles. 

Adding data from a camera will also improve the detection 
capabilities at a close range. The methods are applicable to any 
underwater vehicle equipped with a single beam sonar. 
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Fig. 6: Recalculation of the path during collision 
avoidance test 2 
 



Appendix B
Complete results for a selection of
field trials

B.1 Complete results for collision avoidance test at May
15th, 15:39

The collision avoidance results in this section are presented in chronological order.
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B.2 Revised results for collision avoidance test at May
15th, 15:39

The revised collision avoidance results in this section are presented in chronological order.
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Appendix C
List of Electronic Attachments

C.1 Attachments delivered in DAIM
The attached files delivered electronically in DAIM is listed here.

• A video describing the work done in the thesis was made as a mandatory assignment.

• PDF-version of abstract for paper contribution to 2018 IEEE OES Autonomous Un-
derwater Vehicle Symposium. The abstract is an A4-document, which means that it
can be difficult to read in the B5-format.

C.2 Source code
The source code developed in the project is available at https://github.com/orjan1992/
pySonar.
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