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Abstract— Collision avoidance is one of the main challenges 
in the field of autonomous underwater vehicles (AUV). In this 
paper a method for detecting obstacles, using a single-beam 
mechanically scanning sonar, including planning of an  optimal 
path around the obstacles is proposed. The obstacle detection is 
archived with an inverse-sonar model updating a vehicle-fixed 
occupancy grid. A new and obstacle-free path is planned using 
Voronoi diagrams and Dijkstra’s algorithm. The path is 
smoothed using Fermat’s spiral and a LOS-guidance system 
with a time-varying lookahead-distance as guidance. The 
method is implemented and a full-scale test is performed from 
IKM’s onshore control room on a remotely operated vehicle 
(ROV) operating at Statoil’s Snorre B oil field. The technology 
is applicable to ROVs and AUVs in underwater operations.  

Keywords—obstacle detection, collision avoidance, path 
planning, single-beam sonar 

I. INTRODUCTION 

Underwater vehicles and specifically remotely operated 
vehicles (ROVs) are commonly used for Inspection, 
Maintenance and Repair (IMR) missions in the oil and gas 
industry. This is a cost-driven industry and advances in 
automation is key-factor to reduce the mission expenses. One 
of the main difficulties during automated missions is the risk 
of collision. The collision avoidance challenge is often solved 
using multi-beam sonars, in a Simultaneous Localization And 
Mapping approach  [1] or with the image recognition based 
techniques  [2]. By using a single-beam sonar the costs can be 
significantly reduced. The object detection challenge is 
thougher with  single-beam sonars , but can be solved with 
occupancy grids  [3] or with a potential field method  [4]. 

In this paper, occupancy grids are populated using the 
dynamic inverse-sonar model developed in [5]. The detected 
obstacles are then used as input to an online re-planning 
algorithm. This algorithm is motived by the work presented in 
[6] 

II. SYSTEM DESCRIPTION 

The system developed in this paper is tested on IKM’s 
Merlin UCV, which is a work-class ROV permanently 
situated at Statoil’s Snorre B oil field. The ROV is shown in 
Fig. 1. However, the method is applicable also to autonomous 
underwater vehicles (AUVs). The ROV has a Doppler-
velocity log aided INS system, which together with a hydro-
acoustic positioning system, situated at the rig provides 
accurate attitude and position information. This is a useful tool 
in the verification of the developed system.  

The ROV is equipped with a Tritech Super SeaKing sonar. 
The mounting position of the sonar is highlighted in Fig. 
1Feil! Fant ikke referansekilden.. The sonar is a single 

beam, mechanically scanning sonar, which utilizes CHIRP 
technology with frequencies centred at either 325 kHz or 675 
kHz. 

The ROV is operated from IKM’s onshore control-room 
at Bryne, Norway, which makes it accessible for testing of 
new algorithms. The communication with the ROV’s control 
system and the sonar is performed with UDP-messages 
following a binary protocol. The position updates are received 
as NMEA-messages. 

METHODS AND IMPLEMENTATION 

The collision avoidance system is divided into three 
modules. First, the obstacles are detected in the object 
detection module. The detected obstacles are then passed on 
to the path planning module, which checks for potential 
collision threats, and calculates a new path if needed. The last 
module is the guidance system. 

III. RESULTS 

The system is first tested for object detection capabilities, 
then the complete system is tested with pre-planned paths, 
going straight through obstacles. 

      
Fig. 1: The Merlin UCV. The sonar position is 
highlighted in blue. 
 

 

 
Fig. 2: Recalculation of the path during collision 



A. Obstacle detection 

 In the first test the ROV was flown by a pilot, from the 
garage, around a subsea-module and back again. The results 
from this test can be observed in Fig. 3. A snapshot of the 
detected obstacles is taken every 10 seconds and then plotted 
in the same figure. The altitude of the ROV is controlled by 
the pilot and thus it appears to be flying straight through some 
obstacles, such as the toolstand and Module 4. In these cases, 
the ROV was flying above them. The ROV is flying at a mean 
altitude of approximately 2 meters until it reaches Module 2, 
then the mean altitude is increased to 3.5 meters for the 
remainder of the flight. It can be observed that all obstacles 
are clearly detected.  It should be noted that there is some drift 
in the position, which can be observed by looking at the tool 
stand, which has changed location between the beginning and 
the end. The detected obstacles appear larger than the 
obstacles on the map, and this is due to a safety-margin of two 
meters. It should also be noted that the algorithm has some 
problems accurately detecting the south-side of Module 3. 
This is likely due to the high altitude and proximity to the 
module, which causes the sonar to miss it completely. 

B. Collision Avoidance 

Several tests on collision avoidance are performed. All of 
the tests start close to the garage, with a preplanned path. The 
ROV was never able to reach the destination point due to 
constraints with the tether and ongoing operations. 

Results from the first collision avoidance test can be 
observed in  Fig. 2. It should be noted that most of the 
obstacles in the sonar’s field of view are detected. The only 
undetected obstacle is Module 4 (see Fig. 3), which is due to 
proximity and altitude. The system is calculating a short 
deviation from the planned route, and is able to avoid the 
obstacle before the new path rejoins the old one. Right after 
the point where the optimization stops, between Module 2 and 
3, there is a sharp bend in the path. This is the result of an 
earlier path recalculation. Since it is outside the optimized 
region, it is not smoothed away before it is closer to the 
optimized region. Fig. 5 shows a later time in the same test. 
The planned path on the east-side of Module 2 and 3 is longer 
than the one on the west-side, and thus the shorter one is 
selected. There is also an opening between Module 2 and 3, 
but due to the width of the ROV, this path is not feasible. It 

should be noted that the small obstacle south-east of Module 
4 has disappeared from the grid, as the ROV flew at a high 
altitude close to it, and therefore several scans showed no 
obstacles. 

The second test is made a few days later, with a different 
configuration of the sonar. The sonar configuration is decided 
by the pilot, and has implications for the effectiveness of the 
algorithm. When looking at Feil! Fant ikke 
referansekilden.Fig. 6 and Fig. 4 it can be observed that the 
obstacles appear smaller. This is due to the change in the sonar 
configuration causing less distinguishable return echoes. The 
system still manages to calculate a route around the obstacles. 

IV. DISCUSSION AND CONCLUSIONS 

This paper has presented an effective method for detecting 
obstacles using a single-beam sonar, as well as an effective 
way of calculating a new obstacle-free path. A vehicle-fixed 
local occupancy grid has several advantages over a global 

 
Fig. 5: Recalculation of the path during collision 

avoidance test 1. 
 

 
Fig. 4: Recalculation of the path during collision 

avoidance test 2 
 

Fig. 3: Obstacle detection test. Some obstacles on the 
map are labeled 

 



map. The complexity is reduced, and thus calculation time is 
significantly less. The major advantage is that the grid can be 
completely decoupled from global positions. The changes in 
position can then come from only a doppler-velocity log and 
a compass. 

The full-scale test showed that the system is capable of 
detecting the obstacles in its path in an effective manner. A 
new and obstacle-free path is calculated and executed. The 
full-scale test showed that a mechanically-scanning single-
beam sonar is adequate for detecting and avoiding obstacles. 

The dependence on the sonar configuration is a problem 
that should be addressed, either through making the detection 
algorithm independent of the sonar configuration, or by 
making an algorithm that can automatically tune the sonar. 

This system only considers paths in the two-dimensional 
space, but Voronoi diagrams can easily be extended to work 
in a 3D-space, but this will most likely not be possible without 
the use of extra sensors, such as a camera, an extra sonar or a 
3D-sonar to extract information about the height of obstacles. 

Adding data from a camera will also improve the detection 
capabilities at a close range. The methods are applicable to any 
underwater vehicle equipped with a single beam sonar. 
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Fig. 6: Recalculation of the path during collision 
avoidance test 2 
 


