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Work description
The field of underwater robotics are moving towards more autonomous and automatic opera-
tions. With human interference kept at a minimum, strict requirements are put on the underwater
vehicles ability to interpret its surroundings. In such setting it is crucial that the vehicle is able
to determine its current position, attitude and velocity at any given time. These states can be
observed either directly or indirectly through a given set of measurements. A common method
is to use a mathematical model of the vehicle to predict the future states, and then correct the
predictions by comparing them to other measurement sources.

This thesis aims to further investigate model based state estimators, with emphasis on methods
that are both more robust and more accurate than the methods used for this purpose today. On
basis of theoretical findings, two model based state estimators are proposed in this thesis. The
proposed state estimators are tested, compared and verified in simulations. Experimental data
are collected from experiments conducted in the NTNU Marine Cybernetics Laboratory. These
data are used for offline testing.

Scope of work

1. Literature review of topics relevant for the thesis work. The main focus is observer design
and state estimation for underwater vehicles.

(a) Investigate and analyse different methods for implementation of the recursive Bayesian
estimator.

(b) Investigate how the methods in a) have been applied for underwater applications.

2. Re-design and propose your own observer designs on basis of the findings in the literature
review. The proposed designs should be based on ROV thruster models.

3. Develop a simulator for testing of the estimation filters.



4. Perform simulations on real data.

5. Discuss and compare results from simulations and experimental work.

6. Write thesis on basis of theoretical findings and results.
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Summary

Robust and accurate observer design is a prerequisite for safe and efficient underwater navi-
gation. Especially with today’s increased focus on automation and autonomy. In this thesis
two model based observer designs for underwater vehicles are proposed and compared. One
is based on the eXogenous Kalman Filter (XKF) and the other is based on the Particle Filter
(PF). The designs are also compared to the Extended Kalman Filter (EKF) which is one of the
standard observers used today. The drawback of the EKF is the lack of global stability due to
a destabilising feedback loop providing linearization points. In the XKF this problem is solved
by instead providing linearization points from a globally stable auxiliary state estimator . In the
proposed XKF design, a Nonlinear passive Observer (NLO) is implemented for this purpose.
The PF however uses the mathematical model directly to generate a number of plausible state
hypotheses. Only the most plausible hypotheses makes up the final state estimates. Using the
model directly, i.e. without linearization, theoretically makes the PF a more accurate observer
than the EKF and the XKF. Albeit global stability cannot be proven for the PF either.

A simulator was developed in Matlab/Simulink to evaluate and compare the filters. In simu-
lations it was assumed that noisy measurements of thrust were available for use with a math-
ematical ROV model. In addition, it was assumed that noisy measurements of position and
heading were available from other measurement sources. Experimental data were also gathered
from physical experiments using a ROV in the NTNU MC-lab. While the proposed observers
were designed with the intention of using measured thrust as input, such measurements were
not available with the equipment in the MC-lab. Hence, measurements from an Inertial Mea-
surement Unit (IMU) were used as a replacement of the thruster model. As a consequence only
the PF was tested using experimental data.

Simulations shows that the EKF and XKF performs relatively similar when both filters are
given correct initial values. In the case of inaccurate initial values the differences are larger.
As expected, the EKF diverges if the initial values are too erroneous, while the XKF is always
able to converge. In cases where both filters are able to converge, the XKF has much faster
convergence rates. The XKF gives slightly longer computational times, but its great stability
properties makes it the preferable filter compared to the EKF. The PF proves to be the most
accurate observer, and it has the fastest convergence rates when the initial values are erroneous.
Using the PF with experimental data verifies that the implementation suggested in the thesis
works as intended also outside the simulator. The big drawback of the PF is however that it uses
approximately 20 times longer time than the Kalman filters. In addition the PF may diverge if
not tuned properly. Taken everything into consideration the XKF is considered the best observer
for autonomous vehicles.
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Sammendrag

En robust og presis tilstandsestimator er en forutsetning for sikker og effektiv undervannsnav-
igering. Spesielt med tanke på det stadig økende fokuset på autonomi og automatisering. I
denne oppgaven er det derfor foreslått to modellbaserte tilstandsestimatorer for undervanns-
fartøyer. Den ene estimatoren baserer seg på teorien bak eksogent Kalman filter (eXogenous
Kalman Filter / XKF), mens den andre baserer seg på partikkelfilteret (PF). Begge estimatorene
er sammenliknet med hverandre, og de er også sammenliknet med det utvidede Kalman fil-
teret (Extended Kalman Filter / EKF). EKF er en av mest brukte tilstandsestimatorene i dag,
men ulempen med denne tilstandsestimatoren er at den har en tilbakekoblingssløyfe som gener-
erer lineariseringspunkter for filteret. Tilbakekoblingen gjør at global stabilitet ikke er mulig
å oppnå. Dette problemet er løst i XKF ved at lineariseringspunktet i stedet kommer fra en
hjelpeestimator. Denne hjelpeestimatoren er designet med global stabilitet. I XKF-designet
som er foreslått i denne oppgaven, brukes et passivfilter som hjelpeestimator. I PF brukes den
matematiske modellen direkte for å generere et sett med mulige tilstandshypoteser. Kun de
mest sannsynlige tilstandshypotesene utgjør det endelige tilstandsestimatet. Da PF bruker den
matematiske modellen direkte er det i teorien mer presist en EKF og XKF, men global stabilitet
kan heller ikke oppnås med dette filteret.

For å evaluere filtrene ble det utviklet en simulator i Matlab/Simulink. I simuleringene ble det
antatt at undervannsfartøyets posisjon og kurs var kjent fra støyete målinger. Det var også antatt
at målinger av pådraget fra undervannsfartøyets propeller var kjent. Eksperimentelle data ble
også samlet fra forsøk utført med et undervannsfartøy i NTNU sin MC-lab. I laben var det
ikke mulig å måle pådraget, slik som filtrene baserer seg på. Det ble derfor samlet data fra et
akselerometer og et gyroskop i stedet. Som en konsekvens av dette var det kun mulig å bruke
eksperimentelle data med PF.

Simuleringene viser at EKF og XKF har relativt lik ytelse når begge filterne er gitt korrekte ini-
tialverdier. Ved ukorrekte initialverdier er forskjellene derimot større. Som forventet divergerer
EKF hvis feilen i initialverdier blir for stor. Dette gjelder ikke for XKF som alltid konvergerer,
samme hvor stor feilen er. I tilfeller hvor begge filtrene konvergerer gjør også XKF dette mye
raskere enn EKF. Det viser seg at PF er den mest nøyaktige estimatoren og det har også den
raskeste konvergenstiden ved feilaktige initialverdier. Den store ulempen med dette filteret er
at det bruker nesten 20 ganger lenger tid en Kalman-filtrene. Og dersom man ikke stiller inn
PF riktig er det en viss sjans for at estimatene vil divergere. Alt tatt i betraktning er XKF ansett
som det beste filteret for fremtidige autonome undervannsfartøyer.
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Chapter 1
Introduction

This thesis considers topics on nonlinear state estimation for underwater vehicles. This chapter
presents the motivation for further exploration of this topic, recent advances of this topic, and
how the thesis is organized.

1.1 Motivation and background

The field of underwater robotics has expanded at fast rates the latter years as technology has
become both cheaper and better. The result is unmanned underwater vehicles (UUVs) designed
for a large variety of applications. The main driving force being the UUVs capability of ef-
ficiently operating in the harsh environments of the ocean space. Both industry, military and
researchers are amongst others that benefit from this technology.

Subsea Inspection, Maintenance and Repair (IMR) operations are frequently carried out in the
oil and gas industry by use of Remotely Operated Vehicles (ROVs) (Henriksen et al., 2016).
ROVs are a subclass of UUVs and are characterized of being tethered (Candeloro, 2016). The
physical link between the ROV and the surface vessel allows for power- and data transfer. And
it is essential for communication with the human operator controlling the ROV with a joystick.
However, having a human in the control loop comes with certain disadvantages. A human
needs lots of training to gain experience, there is a need for rest at certain time intervals, having
a human on-site is expensive, and human errors are unavoidable. Huge costs are also associated
with the support vessel which can cost hundreds of thousands of dollars each day depending on
vessel size and zone of operation (Schjølberg and Utne, 2015). In addition the current weather
condition may prevent the support vessel from operation.
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Chapter 1. Introduction

Due to the mentioned reasons, the focus on automation and autonomy in underwater applica-
tions are increasing. This imposes strict requirements to the systems implemented on the UUV
in terms of safety, robustness and accuracy. In general, the motion control system consists of
three independent blocks denoted Guidance, Navigation and Control (GNC) (Fossen, 2011).
Figure 1.1 shows the signal flow between these blocks.

Trajectory 
Generator  Sensors

Motion 
Controller 

Control 
Allocation 

Observer

Guidance Control Navigation

Figure 1.1: GNC

Each block in the GNC system serves a specific task and a short summary of their function is
provided below. A more detailed explanation is found in (Fossen, 2011).

• Navigation: The task of this block is to estimate the current state of the vehicle based on
measurements from different sensors. For underwater vehicles the main states of interest
are position, attitude and velocity. However, in many cases states cannot be measured
directly, and all measurements are in addition contaminated with noise. The purpose of
the observer is to combine different measurement sources, and ultimately suppress noise
and estimate the states that are not directly observable.

• Guidance: With the current state of the vessel known from the navigation block, this
block calculates how to bring the vehicle to the desired state. Hence, desired positions,
velocities and accelerations are calculated in this block.

• Control: The motion controller calculates the necessary control forces and moments
necessary to bring the vessel to the desired positions, velocities and accelerations found
in the guidance block. The control allocation decides how the control forces are best
distributed between the thrusters on the vessel.

Based on the GNC system it is evident that every decision and movement made by an au-
tonomous vehicle are based on the systems own perception of its surroundings. Hence, both
safety and the degree of accuracy are strongly dependent of how well the true system state is
known. The main focus in this thesis is therefore to look further into the observer part of the
navigation system. This is labeled with colour in figure 1.1.
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1.2 Previous work

The work in this thesis assumes position and attitude are known directly through noisy mea-
surements, while velocities are estimated using a mathematical model together with noisy mea-
surements of the thruster output. Regardless of what method is chosen to estimate the states,
the common factor is that all filters have access to the exact same information. Hence, the per-
formance of the observer is a result of how well it is able to extract useful information from
raw data. In addition, constraints in form of time consumption and available computer power
are always present. One obvious constraint for filters to be used in Autonomous Underwater
Vehicles (AUV), and many other applications, is the ability to run in real-time. For this reason
only recursive algorithms are considered in this thesis. The goal is to investigate methods that
are both more robust and more accurate than the industry standard today, which is the Extended
Kalman Filter (EKF).

1.2 Previous work

Due to the importance of having accurate state estimates of the UUV, the field of observer
design is widely investigated. Traditional estimation methods for the nonlinear nature of UUVs
are often based on the EKF. This method approximate nonlinear models using linearization, and
being a stochastic estimator makes it handle noise well. However, it comes without guarantees
on stability. Another method that is widely developed is the NonLinear passive Observer (NLO)
which avoids linearization and usually comes with great stability properties. These estimators
typically assumes a deterministic relation between measurements and states. Hence, no analysis
of noise in sense of minimum variance etc. can be made. See (Candeloro et al., 2012a) for
more details on NLOs for ROVs. In (Candeloro et al., 2012b) both methods were implemented
and tested using a ROV. The results reviled that the EKF gave the best performance in terms
of estimation and control error, while the passive filter resulted to be highly sensible on the
parameters settings and less accurate.

Recent publications suggests that the two methods can be combined in order to obtain the best
qualities from both. This method is referred to as the eXogenous Kalman Filter (XKF) (Jo-
hansen and Fossen, 2017). Using this implementation, the lack of stability in the EKF is solved
by making the EKF inherit the stability properties of an auxiliary estimator. The main focus
when designing the auxiliary estimator is to make sure it has great convergence capabilities,
preferably global. No specific requirements are put on the optimally or sensitivity with respect
to noise (Johansen and Fossen, 2017). This endorse for use of the NLO as an auxiliary es-
timator. Implementations of the XKF for use with underwater vehicles using measurements
from Inertial Measurement Units and hydroacoustic sensor networks may be found in (Stovner,
2018).
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With the growth in computational power the last decades, more computationally expensive sta-
tistical methods has been made possible. This entails that the estimation problem can be solved
directly by use of numerical Monte Carlo methods. Monte Carlo methods uses sample means
to estimate population means (Dunn and Shultis, 2011). The most popular Monte Carlo method
for state estimation is the Particle Filter (PF). Recent advances using the PF for underwater state
estimation is found in (Zhao et al., 2012). Here, a PF is implemented using a pure kinematic
model of a ROV with hydroacoustic position and a doppler speed logger measurements. It is
found from the conclusion of this paper that Simulations based on real data showed the esti-
mation from the PF to outperform that of traditional Kalman filter approaches. Handling of
transients when the ROV motion went from stationary to manoeuvring was also found better
with the particle filter.

1.3 Objectives and limitations

The main objective of this thesis is to explore and investigate different model based observer
designs for underwater vehicles. With the industry standard today being the EKF, the focus in
this thesis is investigate observer designs that have both better stability properties and are more
accurate. This involves a thorough theoretical analysis in addition to practical implementation
of the theory. Relevant filters are derived and compared in simulations. The PF is also used
with experimental data to verify its performance in more realistic cases.

Observers rely on data from different sensors, but in this thesis less attention is put on the
source of the sensor data itself. Thus, some input data are only assumed to be available through
a linear relation between measurements and states. More specific implementations may involve
instruments with given characteristics that must be taken into consideration.

1.4 Contributions

The contributions of the work in this thesis is given in the list below.

• A suggestion of an XKF for use with ROV thruster models is derived.

• A suggestion of a PF for use with ROV thruster models is derived.

• The observer designs are verified using a simulator developed in Matlab/Simulink.

• The implementation of the PF is verified using experimental data.
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1.5 Outline of thesis

1.5 Outline of thesis

The thesis is comprised by a total of 9 chapters. A presentation of the rest of the chapters is
given below.

Chapter 2 introduces the general theory behind recursive state estimation. This includes a
presentation of different recursive estimators, where some of these will be further analysed later
in the thesis. Theory on how some of these state estimators have been applied in underwater
applications is also included.

Chapter 3 presents all relevant mathematical models used for later simulations and evaluation
of experimental data.

Chapter 4 builds upon the theory presented in chapter 2, but the focus of this chapter is general
implementation and design of the EKF, XKF, and PF. This forms the basis of the observer
implementation later derived for ROVs.

Chapter 5 is a continuation of the previous chapter where the specific case of EKF-, XKF-, and
PF-implementation for ROVs are considered.

Chapter 6 presents relevant plots and tables from simulated scenarios.

Chapter 7 presents relevant plots and tables from the PF using experimental data.

Chapter 8 compares and discusses the results obtained in chapter 6 and 7.

Chapter 9 makes a conclusion on basis of the results and the discussions. This chapter also
contains a suggestion for further work on this topic.
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Chapter 2
Background theory on state estimation

State estimators can be implemented in many different ways, and the prerequisites for using
one or the other depends on several factors. This chapter presents the underlying theory of
state estimation and gives a introduction on different implementations of the recursive Bayesian
estimator. Relevant applications for underwater applications are also presented and discussed.

2.1 Characterization of nonlinear state estimation

The goal of nonlinear filtering is to estimate the states of a dynamic system using the informa-
tion available at any given time. This information comes from observations using either internal
on-board sensors measuring inertial motion and relative positions, or from external sensors mea-
suring bearing and range to the target for instance (Gustafsson, 2012). Perfect observations of
system states are rarely available in practice due to uncertainty in sensor measurements and
mathematical modelling. Highly accurate sensors are also associated with high costs and tech-
nical difficulties. This motivates for combination of different information sources to produce a
state estimate that is more accurate than each of the information sources individually.

To be able to estimate the system states it is necessary to write the dynamical system on state
space form. This is done using a set of differential equations on the form

ẋ = f(t,x,u,w) (2.1)

where t is the time, x ∈ Rn is the state vector, u ∈ Rm is the input to the system andw ∈ Rn is
the process noise. Using this procedure, the vector x contains values for all important properties
of the system. In navigation cases for example, like in this thesis, the relation between position,
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Chapter 2. Background theory on state estimation

velocity and acceleration is typically described by Eq. (2.1).

The mathematical model in Eq. (2.1) is not impeccable as it is only an approximation of the
physics of the real system. Hence, this model alone is not enough to determine the true states of
the system. In addition it is required a measurement model that relates states and observations.
In its general form the measurement model is expressed as

y = h(t,x,u,v) (2.2)

where y ∈ Rp is the measurement vector and v ∈ Rp is the measurement noise. Notice that
the measurement vector do not necessarily have the same dimension as the state vector. This
implies that some of the states are not directly measured.

With both models available, the idea of state estimation is to guess the current state of the
system with the dynamic model. Then use the measurement model to correct this guess. Using
this approach one seeks to find the best estimate x̂ of the real state of the system. As both
models are prone to errors and noise, the challenge of estimation is to decide how much to rely
on either model.

2.2 Stability properties of non-linear systems

The stability properties of a system plays an important role as this defines the practicable use-
fulness of the given system. There are many different types of stability, but generally speaking
stability implies the system stays within known boundaries. This section serves to present the
different stability classifications used for non-linear systems. This is based on (Khalil, 2015),
and the reader is also referred to this book for an introduction on how to perform an stability
analysis as this will not be covered here.

Consider f(x, t) where f : [0,∞)×D → Rn is piecewise continuous in t and locally Lipschitz
in x on [0,∞)×D. Here D ⊂ Rn is a domain that contains the origin x = 0. The equilibrium
point x = 0 of ẋ = f(x, t) is

• Stable if for each ε > 0, and any t0 ≥ 0 there is a δ = δ(ε, t0) > 0 such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀ t ≥ t0 (2.3)

Hence, stability only guarantees that the states stays bounded for all time, given any bounded
initial conditions. Stronger requirements on stability must therefore be set in order to guarantee
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convergence to the equilibrium point. The rate of which convergence to the equilibrium occur
is divided in two main classes.

• Asymptotic stability is obtained if the system is stable and there exists a constant c = c(t0)

such that x(t)→ 0 as t→∞, ∀ ‖x(t0)‖ < c

• Exponential stability is obtained if if there exists positive constants c, k and λ such that

‖x(t)‖ ≤ k ‖x(t0)‖ e−λ(t−t0), ∀ ‖x(t0)‖ < c (2.4)

From the above definitions one sees that both asymptotic- and exponential stability guarantee
convergence to the equilibrium point. Being bounded by an exponential function implies faster
convergence rates. With c being a positive constant, convergence to the equilibrium point can
only be guaranteed for a local region of attraction. If convergence can be guaranteed for any
initial conditions, the region of attraction is said to be global. In addition to this, the stability of
time-varying systems is said to be uniform if it is independent of t0.

2.3 Recursive Bayesian estimation

In statistics, Bayesian theory makes it possible to use prior knowledge and observed data to
more accurately model the probability of an event. This is also referred to as conditional prob-
ability. The idea behind this concept is to calculate the probability of an event being true, given
that another event has occurred. Instead of events it is often convenient to talk about the prob-
ability of a hypothesis H being true, given an evidence E. In terms of Bayes’ theorem this is
stated mathematically as

P (H|E) =
P (E|H)P (H)

P (E)
(2.5)

Here, P (H) is the prior probability, i.e. the probability of the hypothesis being true, before the
evidence is evaluated. Hence, P (H|E) is the posterior probability as this takes the evidence
into account. The term P (E) is the probability of observing the evidence, while P (E|H) is the
probability of observing the evidence, given that hypothesis H is true.

In the case of state estimation, all observations up to and including time k are available from the
set of observations y1:k = {y1, y2, . . . , yk}. In Bayes’ theorem this is the evidence used to eval-
uate a state hypothesis. In filtering applications this information is used to extract information
about states at time k. While in prediction applications this information is used to derive infor-
mation about states some time k + τ in the future. To obtain a state estimate the intention is to
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recursively compute the filtering density and the prediction density of the system (Gustafsson,
2012). The basis of these calculations are the dynamical model and the measurement model
presented in the previous section. To implement these models in the Bayesian framework, it
is convenient to rewrite the models on a more general form. Thus, the dynamical model is
equivalent to p(xk|xk−1) and the measurement model is equivalent to p(yk|xk).

Using Bayes rule, the recursive Bayesian filter can now be derived under two assumptions. First
assumption is that states follow a first-order Markov process, i.e. future states depends on the
current state only. Secondly, it is assumed that the observations are independent of the given
states (Chen, 2003). The filtering/posterior density from the previous timestep k − 1, denoted
p(xk−1|y1:k−1), is used as input at the current timestep k. In the first step of the recursive
algorithm this is used togheter with the dynamical model to obtain the predicted density

p(xk|y1:k−1) =

∫
Rn

p(xk|xk−1)︸ ︷︷ ︸
dynamic
model

p(xk−1|y1:k−1)︸ ︷︷ ︸
previous
posterior

dxk−1 (2.6)

The measurement model is then used to obtain the new filtering/posterior density

p(xk|y1:k) =

measurement
model︷ ︸︸ ︷

p(yk|xk)

prediction
density︷ ︸︸ ︷

p(xk|y1:k−1)

p(yk|y1:k−1)︸ ︷︷ ︸
normalization

(2.7)

where the normalization term is given by

p(yk|y1:k−1) =

∫
Rn

p(yk|xk)p(xk|y1:k−1)dxk (2.8)

As can be seen in the above equations, the filtering density updates the model based on measure-
ments. This distribution is also referred to as the posterior distribution of the state vector. This
distribution depends on the prediction density which is calculated from the posterior density of
the previous timestep. Hence, at the start of the recursion an initial guess of p(x1|y0) must be
made. At each timestep the filtering density can be used to calculate standard measures such as
the minimum variance estimate

xMV
k =

∫
Rn

xkp(xk|y1:k)dxk (2.9)

and the corresponding covariance of this measure

P k =

∫
Rn

(xk − xMV
k )(xk − xMV

k )Tp(xk|y1:k)dxk (2.10)
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2.4 Realisation of the recursive Bayesian filter

The recursive Bayesian filter provides a general solution on state estimation from a dynamical
model, when the states are partially observed through a measurement model. However, the
nature of the dynamic model and the measurement model determines how to implement the
Bayesian framework in practice. For this reason there are an extensive amount of different
implementations to choose from. All having benefits and disadvantages. The methods range
from analytical solutions when certain restrictions are fulfilled, to numerical solutions in the
more general cases. In this section some of the most common methods are presented, starting
with the most restricted one. By loosen the restrictions it is shown how the implementations are
changed to account for this.

2.4.1 Linear Kalman Filter

The Linear Kalman Filter (LKF) was introduced in (Kalman, 1960) and laid the foundation for
the most known implementation of the recursive Bayesian filter today. Due to large progress in
digital computing last decades, the Kalman filter has been subject to extensive research. This
has resulted in numerous extensions to the original LKF and some of these will be presented
later.

As the name suggests, the LKF requires both the dynamic model f(t,x,u,w) and the mea-
surement model h(t,x,u,v) to be linear functions. In addition, the LKF assumes the posterior
density is Gaussian distributed at every timestep. In other words, the posterior filtering distri-
bution is fully described through its mean and variance. Under these assumptions it is possible
to benefit from a huge advantage illustrated in figure 2.1; a linear transformation of a Gaussian
is also a Gaussian.

Figure 2.1: Linear transformation of Gaussian
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In practice this means that when the posterior distribution from the last timestep is processed
through the linear dynamic- and measurement models, the new posterior distribution is also
Gaussian. Having this knowledge about the posterior is essentially what makes it possible
to derive an analytical solution to this problem. It is shown that the linear Kalman filter is
globally stable, and provides the optimal solution to the minimum variance estimate in Eq. (2.9)
(Gustafsson, 2012). Hence, under these assumptions the LKF is not only a plausible solution,
it is also the best possible solution.

For underwater vehicles the LKF is generally not applicable due to the mathematical models
being non-linear. However, in (Candeloro et al., 2012b) it is suggested that the ROV system
model could be divided in several modules with a proper switching strategy. By dividing the
360◦ heading interval in sectors of 10◦ it is possible to approximate the vehicle dynamics by 36
linearized system models. A benefit of this method is that each of the 36 linearized models can
be calculated and stored offline. Field tests using the ROV Minerva showed that this method
gave satisfactory performance.

2.4.2 Extended Kalman Filter

Linear modelling of dynamics and measurements are rarely a good approximation of real sys-
tems. Ergo, the LKF is not applicable in many cases. Fortunately this problem can be solved
by assuming linear behaviour of the system dynamics around the current system state. The
strategy of the EKF is therefore to make a linearization of the system model around the state
estimate from the previous timestep. See (Fossen, 2011) for instance, where relevant examples
for marine vessels are also included. The overall structure of the EKF is illustrated in figure 2.2.

Figure 2.2: The Extended Kalman Filter

By linearizing the mathematical models it is possible to use the LKF equations with nonlinear
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systems. However, the assumption of Gaussian noise distribution still applies. Figure 2.3 illus-
trates how a nonlinear function is linearized around the state estimate x̂. In the same way as the
all linear case seen in figure 2.1 earlier, the linearization ensures the Gaussian assumption is not
violated.

Figure 2.3: Gaussian transformation with linearized function

The EKF is probably the most used state estimator for underwater vehicles due to its simplicity
and versatility. This observer was also tested in (Candeloro et al., 2012b) where it proved
to give better results than the 36 sector implementation of the LKF. In this case however, all
calculations must be done on-line as it is inconvenient/impossible to store system models for all
possible linearization points.

2.4.3 Difficulties and drawbacks using EKF

The EKF makes the Kalman filter much more versatile by allowing use of nonlinear system
models. The linearization do however come with limitations and the EKF is thus not a complete
solution for nonlinear systems with Gaussian noise.

The linearization requires the Jacobian of the models to be calculated. Hence, the EKF will
not work for non-linear models if it is not differentiable at every possible linearization point.
Another drawback is related to the calculation of the Jacobian itself. Finding this analytically
can be difficult as the derivatives may be complicated. An alternative is to calculate the Jacobian
numerically, but this might lead to high computational times. The degree of nonlinearity is also
essential for the success of the EKF. With severe nonlinearities a linearization is not a good
approximation of the real system. This is clearly shown in figure 2.4 on the next page.
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Figure 2.4: Poor linear approximation

While the LKF is shown to be the optimal state estimator, the same is not true for the EKF.
This is because the linearization is only an approximation of the mathematical models and thus
erroneous. The EKF is therefore said to be near-optimal.

When it comes to stability the EKF can only be proven to be locally stable, while the LKF is
globally stable. This implies that the convergence of the EKF is sensitive to the initial state,
while the LKF will converge regardless of the initial state. The sensitivity in initial conditions
is due to the feedback loop seen in figure 2.2. Choosing a poor initial condition leads to a poor
linearizaion of the system, which again leads to a poor new state estimate. Hence, the feedback
loop is unstable and the EKF may have convergence problems due to this. How to solve this
problem is discussed in the next section.

2.4.4 The eXogenous Kalman Filter

With the EKF linearization is only possible around the previous state estimate as there is no
other source to feasible linearization points. This might lead to instability and for this reason
the EKF comes without guarantees on stability. Avoiding the destabilising feedback-loop would
ergo be an great advantage, and this problem is solved using the XKF.

The structure of the XKF is shown i figure 2.5. Compared to the structure of the EKF shown
in figure 2.2 one sees that the only difference is how the estimates to linearize about are gen-
erated. While the EKF uses its own estimates to linearize about, the XKF uses estimates from
an auxiliary state estimator. Hence, the XKF is a cascaded system where the feedback-loop is
avoided.
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Figure 2.5: The eXogenous Kalman Filter

It is shown that an XKF consisting of an auxiliary state estimator and a LKF in cascade inherits
the stability properties of the auxiliary state estimator. See (Johansen and Fossen, 2017) or
(Johansen and Fossen, 2016) for the full proof. This is an important property of the cascaded
system as it allows the designer to make an auxiliary state estimator with global or near global
stability properties.

It is evident that the auxiliary state estimator is able to make a globally convergent state estimate
on its own. So why is it necessary to make the cascaded structure with the Kalman-filter as in
figure 2.5? The answer to this question is that the auxiliary state estimator is only designed
with respect to stability. This means that the noise in the system is typically not considered at
this stage. Instead the noise is considered in the KF at the next stage. As a result the cascaded
system yields both global stability and great noise suppression.

2.4.5 Designing the auxiliary state estimator

The main focus when designing an auxiliary state estimator is strong stability properties. From
section 2.2 it is clear that an estimator with GES or GAS characteristics is preferred. This allows
for many different approaches, but for many systems it is not trivial and maybe impossible to
design an estimator with these properties.

In some cases it may be possible to design a nonlinear passive observer. This category of
observers assumes a deterministic relation between measurements and states. The benefit of
these observers are that they usually take asymptotic or exponential stability as the starting
point for the design (Johansen and Fossen, 2017). Based on for instance Lyapunov-stability,
proper tuning parameters can be chosen in order to achieve the desired performance.
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Another approach may be to use a LKF as this is known to have global stability properties. This
method is for instance used in (Johansen et al., 2016) where pseudorange measurements yield
a nonlinear relation between measurements and the true range. By introducing new variables it
is possible to rewrite the nonlinear pseudorange measurement function to a quasi-linear form.
This allows for use with the LKF. If noise is not present, the new quasi-linear time varying
(LTV) measurement function is free from approximations and the second stage of this XKF is
thus not necessary. Noise is however always present in real applications and in this case the
LTV measurement function only provides sub-optimal estimates. This is due to prior infor-
mation about nonlinearities being eliminated in the transformation. For this reason the LTV
measurement model is only used for generation of the linearization point about which the true
nonlinear measurement function is linearized. This implementation is called the Three-Stage
Filter and the overall structure is illustrated in figure 2.6. This filter is highly relevant for un-
derwater applications as hydroacoustic sensor networks yields pseudorange measurements.

Figure 2.6: Three-Stage Filter

2.4.6 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) is another improvement of the EKF where the posterior
Gaussian distribution is determined with higher precision. In the EKF the dynamical model and
the measurement model are approximated using linearizaton. The UKF does not approximate
the nonlinear models. Instead it approximates the posterior Gaussian distribution by evaluating
a set of sample points using the nonlinear models directly. These points are carefully selected
using an unscented transformation and are named sigma points (Wan and Merwe, 2000). Each
sigma point is associated with a given weight and this forms the basis of the reconstruction of
the posterior Gaussian distribution. The concept of this method is illustrated in figure 2.7.
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Figure 2.7: Gaussian construction from sigma points

This method captures the the posterior mean and covariance of the Gaussian accurately to the
third order Taylor expansion (Wan and Merwe, 2000). This makes the UKF more applicable
to systems with severe nonlinearities compared to the EKF. As the UKF evaluates the system
model directly and not its Jacobian, it solves the problem of the Jacobian might being hard to
derive. Like the EKF, global stability cannot be proven for the UKF either.

In (Allotta et al., 2016) the performance of the UKF was investigated using experimental data
from an AUV. Sensor data were gathered from an Inertial Measurement Unit (IMU), a pressure
sensor, and a global position system during periodic resurfing. In this paper it is concluded that
the UKF was more accurate than the EKF. In (D’Alfonso et al., 2015) however, the two filters
were implemented on a ground robot for estimation of position and orientation using range
measurements. In this case the results showed that neither filter was better than the other in
terms of accuracy. A plausible explanation to this result is that the nonlinearities in the system
were not to severe. Hence, it is not guaranteed that the UKF will perform better than the EKF.

2.4.7 Particle Filter

The filtering methods presented above are limited to systems where the nonlinearities are not
too severe, and the noise characteristics are assumed to be Gaussian. Under these assumptions
the state estimation problem is all about transforming one Gaussian distribution into another
Gaussian distribution at the next timestep. Ergo, the update laws only consider the mean and
variance at each timestep. For non-Gaussian systems however, it is generally not possible to
know the posterior Probability Density Function (PDF) on forehand as it can have any arbitrary
shape. As a consequence no analytical solution can be derived for this problem.
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Chapter 2. Background theory on state estimation

The PF solves this by use of a Monte-Carlo method where the posterior PDF is approximated
using a set of weighted particles (Doucet et al., 2000). According to (Gustafsson, 2010) the
first PF methods dates back to the 1950s. However, due to limited computing power, it was not
before later the PF as it is known today originated. The approach used in (Gordon et al., 1993)
is therefore regarded as the beginning of the particle filter era. As mentioned in the related
work section, recent advances of the PF for underwater vehicles indicates that this filter is able
to provide better state estimates than the traditional Kalman filter methods. In (Zhao et al.,
2014) it is also shown that the PF can be implemented to effectively detect faults on underwater
vehicles. This results in the PF being able to efficiently estimate states even in case of sensor
drop outs etc. However, just like most of the other filters presented earlier, global stability
cannot be proven.

In the PF, the known posterior PDF from the last timestep k−1, i.e. p(x0:k−1|y1:k−1), is used to
approximate the unknown posterior PDF p(x0:k|y1:k) at the current time step. At each iteration
a finite number of N state hypothesises, also called particles are drawn from p(x0:k−1|y1:k−1).
Then all particles are evaluated using the mathematical model of the system, much like the
UKF. However one important difference is that the particles in the PF are drawn randomly and
not according to a set of rules as in the UKF. Next, on basis of the measurements, each particle
is assigned a weight which tells how sufficient the given particle is describing for p(x0:k|y1:k).
Finally, p(x0:k|y1:k) is constructed by relying more on the high-weighted particles. When the
posterior PDF at the current timestep is constructed, it can be evaluated to find its mean and
variance for instance.

To understand the workings of the PF it is an advantage to know the principle of importance
sampling (IS). Hence, a somewhat detailed presentation of this principle, based on (Owen,
2013), is given next. This makes it easier to understand the implementation in later chapters.

Importance sampling
To demonstrate the principle of IS, assume that the expected value of a function f(x) is to be
calculated when the PDF of this function is given by p(x). The expected value is then found
from the integral

E {f(x)} =

∫
D

f(x)p(x)dx (2.11)

The domain that is to be evaluated is denoted D, hence p(x) = 0 ∀ x /∈ D. It is often difficult
to evaluate the integral in Eq. (2.11) directly. Instead it can be approximated using

E {f(x)} ≈ 1

N

N∑
i=1

f(Xi) (2.12)

where Xi are samples drawn independently from p(x).
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Unfortunately it is not always possible to draw samples efficiently from p(x), even though it
might be trivial to evaluate p(x). In such case one is forced to use a proposal distribution q(x)

to approximate the true target distribution p(x). The proposal distribution should be easy to
sample from, and must fulfil p(x) > 0 → q(x) > 0 (Thrun et al., 2001). This is to ensure
that all possible samples in p(x) can be reconstructed using q(x). By introducing the proposal
distribution, Eq. (2.11) is rewritten

E {f(x)} =

∫
D

f(x)p(x)

q(x)
q(x)dx =

∫
D

f(x)w(x)q(x)dx (2.13)

where w(x) = p(x)
q(x)

is a weighting function. The value of this function indicates how well the
proposal distribution describes the target distribution at the given x. Similar to Eq. (2.12), the
last integral in (2.13) is approximated using

E {f(x)} ≈ 1

N

N∑
j=1

f(Xj)w(Xj) (2.14)

where Xj are samples drawn independently from q(x). The expected value of f(x) is now
obtained by sampling from q(x) instead of p(x). This solves the problem of p(x) being difficult
to sample from. Only evaluation of p(x) at the given samples are necessary.

The idea of IS is visualised in figure 2.8 on the next page. The grey bars at the top of the illus-
tration represents samples from the proposal distribution q(x). All bars are equally important
and have the same height, but one can see there are more bars where the value of q(x) is larger.
The bars at the bottom of the illustration are the exact same bars as the ones at the top. However,
the bottom bars are weighted according to how well they describe the target density p(x). For
instance, the bars to the right have little importance as p(x) ≈ 0 in this area. This is illustrated
by the short height. Consequently these samples have little influence when calculating the ex-
pected value using Eq. (2.14). Notice that the proposal distribution in the illustration is not the
best one. If q(x) had a shape more similar to p(x), more samples with high weights would have
been obtained.
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Chapter 2. Background theory on state estimation

Figure 2.8: Visulization of importance resampling

The relative importance of each sample is found by normalizing the weights.

w̃(xi) =
w(xi)∑N
j=1w(xj)

(2.15)

The target distribution can then be approximated as

p(x) ≈
N∑
i=1

w̃(xi)δ(x− xi) (2.16)

where δ(·) is the Dirac-delta function.
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2.5 Summary of filtering methods

The choice of a state estimator is essentially a trade-off between accuracy, computational effort
and stability. In the case of linear and Gaussian systems the choice is obvious. In this case the
LKF is proven to be the optimal solution and in addition it has global stability properties. Using
a UKF or a PF will only contribute to higher computational times. This is illustrated in figure
2.9a.

(a) Linear and Gaussian (b) Nonlinear and/or non-Gaussian

Figure 2.9: Comparison of Bayesian estimators

For non-linear systems it may be harder to determine what filter to use. Of the prior mentioned
methods, only the PF is able to handle non-Gaussian noise characteristics. However it is not
trivial to know which method yields the best results if the system is nonlinear and the Gaus-
sian assumption holds. In such case the EKF probably gives the fastest solution considering
computation time. And if it is possible to design an auxilliary estimator, an XKF with great
stability properties can be made. However, the accuracy of these methods may not be at an ac-
ceptable level. The UKF might perform better as the linearization in the EKF/XKF is a source
to errors. Further improvements in accuracy may be obtained by using the PF. By increasing
the number of particles one gets closer to the real posterior distribution of the system, but this
also yields higher computational times. Figure 2.9b shows how the different methods compare
to each other in theory when the nonlinearities are severe and noise deviates from the Gaussian
assumption.
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Chapter 3
Modeling

Relevant models for marine vessels and state estimation are presented in this chapter. The
models and notation presented here will be frequently used throughout the thesis.

3.1 Reference frames

When describing the position and orientation of a rigid body in space, there are three possible
translations: surge, sway, heave, and three possible rotations: roll, pitch, yaw. Together they
constitute six degrees of freedom (DOF). Figure 3.1 below shows how the different degrees of
freedom are related. The outline of a ship is also drawn to see how this is applies to marine
vessels. The parameters are used according to the SNAME standard in table 3.1.

Figure 3.1: Six degree of freedom representation
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Chapter 3. Modeling

Table 3.1: SNAME (1950) notation from (Fossen, 2011)

DOF
Forces and
moments

Linear and
angluar velocities

Position and
Euler angles

1 Surge X u x
2 Sway Y v y
3 Heave Z w z
4 Roll K p φ

5 Pitch M q θ

6 Yaw N r ψ

In order to relate the orientation of the vessel relative to the surface of the earth, two different
coordinate systems or reference frames must be used. There are many different reference frames
to choose from, but for marine applications two of the most widely used are the NED- and
BODY reference frames which are in the category of geographic reference frames (Fossen,
2011).

NED: The North-East-Down coordinate system {n} = (xn, yn, zn) with origin on is usually
defined as a moving tangent plane on the surface of earth. The x-axis points to the true north,
the y-axis points towards east, and the z-axis points downwards normal to the surface of earth.
For local navigation an earth-fixed tangent plane of the surface is used. In this case one can
assume that {n} is inertial and Newton’s laws apply.

BODY: The body-fixed reference frame {b} = (xb, yb, zb) is moving with the vessel with the
origin ob fixed to the craft. Usually xb points forwards, yb towards starboard and zb down-
wards. Linear and angular velocities of a vessel are expressed in this frame, while position and
orientation should be expressed relative to an inertial frame.

The inertial frame is often approximated by {n}, but other alternatives exists. In global nav-
igation for instance there are other more convenient reference frames where the origin of the
frames are fixed to the center of the earth.

Figure 3.2 shows how {n} and {b} are related. The square field is the tangent plane in the
NED-frame, while the box is represented using BODY-frame. How to mathematically relate
these frames will be shown in the next section.
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3.2 Vessel modeling

Figure 3.2: NED-frame and BODY-frame

3.2 Vessel modeling

In the development of a mathematical model for a vessel, one distinguish between the kinematics
which deals with the pure geometrical aspects of motion. And the kinetics which is the analysis
of the forces that causes the motion (Fossen, 2011). This chapter serves to introduce how these
two topics together make up the total vessel model and will be described according to (Fossen,
2011).

3.2.1 Kinematics

To fully describe the orientation of a body in space a six-DOF model is needed. Using the
SNAME notation from table 3.1, the positions in {n}-frame and the velocities in {b}-frame can
be represented as

η = [pnb/n,Θnb]
T = [x y z φ θ ψ]T (3.1)

ν = [νbb/n,ω
b
b/n]T = [u v w p q r]T (3.2)
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Chapter 3. Modeling

These can be related using a rotation matrix transforming ν to {n}-coordinates

η̇ = J(η)ν (3.3)

where

J(η) =

[
Rn
b (Θnb) 03×3

03×3 TΘ(Θnb)

]
(3.4)

The sub-matrices of J(η) are a result of the principal rotation matrices presented below

Rx,φ =

1 0 0

0 cφ −sφ
0 sφ cφ

 ,Ry,θ =

 cθ 0 sθ

0 1 0

−sθ 0 cθ

 ,Rz,ψ =

cψ −sψ 0

sψ cψ 0

0 0 1

 (3.5)

where s· = sin(·) and c· = cos(·) and x, y, z corresponds to the axis the rotation is about.

The linear velocity transformation matrix can then be defined as

Rn
b (Θnb) := Rz,ψRy,θRx,φ (3.6)

And the angular velocity transformation matrix TΘ(Θnb) can be found from the relation

ωbb/n =

φ̇0
0

+RT
x,φ

0

θ̇

0

+RT
y,θR

T
x,φ

0

0

ψ̇

 := T−1
Θ (Θnb)Θ̇nb (3.7)

Expanding Eq. (3.7) yields

TΘ(Θnb) =

1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ

 (3.8)

A disadvantage of using the Euler angles Θnb = [φ θ ψ] to represent attitude is that TΘ(Θnb)

is singular for pitch angles of θ = ±90◦. An alternative to the Euler angles, that are free from
singularities, is the quaternion representation (Fossen, 2011).
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3.2.2 Kinetics

The kinetics of a vessel are comprised of rigid-body forces, hydrodynamic forces and hydro-
static forces according to the manoeuvring theory of (Fossen, 2011). In presence of irrotational
currents the hydrodynamic forces are dependent on the relative velocity vector νr = ν − νc,
while the rigid body forces depends on ν only. Hence,

MRBν̇ +CRB(ν)ν︸ ︷︷ ︸
rigid-body forces

+MAν̇r +CA(νr)νr +D(νr)νr︸ ︷︷ ︸
hydrodynamic forces

+

· · · g(η) + g0︸ ︷︷ ︸
hydrostatic forces

= τ + τ env
(3.9)

It is however shown that this equation can be represented using relative velocities only if
currents are irrational and constant in {n}. Using this assumption, and introducing M =

MRB +MA and C(νr) = CRB(νr) +CA(νr) for simplicity of notation, vessel kinetics are
represented as

Mν̇r +C(νr)νr +D(νr)νr + g(η) + g0 = τ + τ env (3.10)

WhereM is the rigid body inertia and added mass matrix, C is the rigid body and added mass
Coriolis matrix,D is the damping matrix, g(η) and g0 are the restoring forces, and τ and τ env
are the control forces and environmental forces respectively.

3.2.3 Complete vessel state space model

The kinematic and the kinetic models are put together in a state space formulation to represent
the full mathematical model of a vessel. Combining Eq. 3.3 and Eq. 3.10 in a state space model
yields

[
η̇

ν̇r

]
=

[
J(η)νr

M−1[−C(νr)νr −D(νr)νr − g(η)− g0 + τ + τ env]

]
(3.11)

When all 6 DOFs are represented this model consists of 12 states, i.e. η = [x y z φ θ ψ]T and
ν = [u v w p q r]T . Depending on the application, the model is often reduced to represent less
DOFs. For a regular surface ship for instance, it is often not necessary to model heave, pitch
and roll. The model is thus reduced to η = [x y ψ]T and ν = [u v r]T in such case.
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3.3 Bias models

A bias model is often used in observers to better account for slowly-varying forces and unmod-
elled effects. A properly designed bias model will in turn lead to no steady-state offset in the
velocity estimates (Sørensen, 2013). According to (Fossen, 2011) a common source to slowly
varying forces and moments in marine applications are second order wave forces, ocean cur-
rents and wind forces. The bias estimate is therefore composed of a wide range of components
and is nonphysical. There are two mathematical models frequently used to determine the bias
term according to (Fossen, 2011). The first is the first order Markov model

ḃ = −T−1
b b+ wb (3.12)

where wb is a zero mean Gaussian white noise vector and Tb is a diagonal matrix with positive
bias time constants. The other alternative is to model the bias as a Wiener process

ḃ = wb (3.13)

This method is also referred to as random walk and is simply the integrated of the Gaussian
white noise.
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Chapter 4
Filter design

In chapter 2 several implementations of the recursive Bayesian filter were presented and dis-
cussed. In this chapter equations and mathematical foundation needed to implement the LKF,
EKF, XKF and PF are presented. The first three filters have a very similar structure as the EKF
builds upon the LKF, and the XKF further builds upon the EKF. It is therefore natural to first
present the LKF even tough it is not further used in the thesis. All implementations and concepts
presented in this chapter are general and may be applied to any dynamical system.

Recall from the introduction that the general structure of the dynamical model and the measure-
ment model is expressed as

ẋ = f(t,x,u,w) (4.1a)

y = h(t,x,u,v) (4.1b)

4.1 The Linear Kalman Filter

In the special case of linear systems Eq. (4.1a) and Eq. (4.1b) are rewritten on the form

ẋ = Ax+Bu+Ew (4.2a)

y = Hx+Du+ v (4.2b)

where A is the system matrix, B is the input matrix, E is the noise matrix, H is the mea-
surement matrix, and D is the feedforward matrix. The matrix D is set to zero when there is
no feedforward in the system. The variables w and v represents the process noise and mea-
surement noise respectively. Both are assumed to be normally distributed with zero mean, i.e.
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p(w) ∼ N(0,Q) and p(v) ∼ N(0,R). The two noise contributions are also assumed to be
independent of each other.

4.1.1 Discretization

The state space model in Eq. (4.2) is continuous and not applicable with the discrete LKF before
it is discretized. The discretized state space model is obtained by applying simple changes to
the continuous state space model. Following the notation of (Fossen, 2011), Eq. (4.2a) and
(4.2b) are rewritten to discretized form as

xk+1 = Φxk + ∆uk + Γwk (4.3a)

yk = Hxk +Duk + vk (4.3b)

where the discretized matrices are found using Euler integration with time step h

Φ = exp(Ah)

≈ I +Ah+
1

2
(Ah)2 + · · ·+ 1

N !
(Ah)N

≈ I +Ah

(4.4)

∆ = A−1(Φ− I)B (4.5)

Γ = A−1(Φ− I)E (4.6)

4.1.2 General implementation

For the very first iteration there are no state estimate or covariance of the state estimate available.
A prior estimate x̄0 and a corresponding error covariance P̄ 0 must therefore be given as input
to the filter at the first iteration. The Kalman gain matrix which minimizes the mean-square
estimation error can then be found as

Kk = P̄ kH
T
k (HkP̄ kH

T
k +Rk)

−1 (4.7)

Using the Kalman gain and the measurements, the predicted states are updated.

x̂k = x̄k +Kk [yk −Hkx̄k] (4.8)
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The error covariance are calculated in the next step.

P̂ k = [I −KkHk]P̄ k[I −KkHk]
T +KkRkK

T
k (4.9)

Finally, the propagation of states and covariances to be used in the next step are calculated.

x̄k+1 = Φkx̂k + ∆kuk (4.10)

P̄ k+1 = ΦkP̂ kΦ
T
k + ΓkQkΓ

T
k (4.11)

The matrices Qk = QT
k > 0 and Rk = RT

k > 0 are tuning matrices chosen by the designer of
the filter. More about their function is discussed in section 4.2.3.

4.2 The Extended Kalman Filter

The EKF is based on linearization of the state space model in Eq. (4.1). This is done by
calculating the Jacobians of f and h. The Jacobians are then evaluated at the previous state
estimate x̂, and the current input u. Denote the JacobiansA,B,H andD as

Aij =
∂f i
∂xj

∣∣∣∣
x̂

and Bij =
∂f i
∂uj

∣∣∣∣
u

and H ij =
∂hi
∂xj

∣∣∣∣
x̂

and Dij =
∂hi
∂uj

∣∣∣∣
u

(4.12)

The linearized system in a small interval ∆ around x̂ and u is then given by

∆xk+1 ≈ A ·∆xk +B ·∆uk +E ·wk (4.13a)

∆yk ≈H ·∆xk +D ·∆uk + vk (4.13b)

where E is assumed to be independent of x and u and thus a matrix with constant values. It is
apparent that the system in Eq. (4.13) has a structure identical to the linear state space.

4.2.1 General implementation and discretization

With the linearized system in Eq. (4.13) it is possible to use the Kalman filter equations for
linear systems presented in section 4.1.2. Some modifications must be done first. The state
propagation in Eq. (4.10) is now calculated using the original nonlinear function. Hence,

x̄k+1 = F(x̂k,uk) (4.14)
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where
F(x̂k,uk) = x̂k + hf(x̂k,uk) (4.15)

is obtained using Euler integration (Fossen, 2011).

Likewise, if the measurement equation is nonlinear, the state update estimate in Eq. (4.8) must
be implemented as

x̂k = x̄k +Kk [yk − ŷk] (4.16)

where
ŷk = h(x̄k,uk) (4.17)

Discretization is done as in section 4.1.1, using the matrices from Eq. (4.13).

4.2.2 Implementation of an auxiliary state estimator for XKF

Assuming a state estimate x̌ is available from an auxiliary state estimator, the implementation
of an XKF is done with simple changes to the EKF. If the dynamical model is nonlinear it must
be linearized around x̌ according to

x̂k+1 = f(x̌k,uk) +
∂f i
∂xj

∣∣∣∣
x̌k,uk

(x̂k − x̌k) (4.18)

where x̂ is the estimate from the complete XKF. To make the original EKF applicable with the
new linearization point x̌, the right hand side of Eq. (4.18) replaces f(x̂k,uk) in the estimate
propagation equation in Eq. (4.15).

If the measurement function is nonlinear, it must be linearized around x̌ in the same manner.
Hence, the measurement function becomes

ŷk = h(x̌k,uk) +
∂hi
∂xj

∣∣∣∣
x̌k,uk

(x̂k − x̌k) (4.19)

Using the same notation as earlier this implies (4.16) should be implemented with

ŷk = h(x̌k,uk) +
∂hi
∂xj

∣∣∣∣
x̌k,uk

(x̄k − x̌k) (4.20)

as the measurement function instead of Eq. (4.17).

Discretization is done in the same way as for the EKF, using the matrices linearized around x̌.
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4.2.3 Tuning of Kalman filters

In the Kalman filter equations there are two dedicated tuning matrices. The noise covariance
matrices Q and R represents the process noise and measurement noise respectively. Usually
the measurement noise is known from the characteristics of the sensors, while the process noise
is unknown and must be determined by the designer of the filter. High values in these matrices
corresponds to large uncertainty, and vica verca. The ratio between these matrices is thus im-
portant. If Q is large compared to R it implies the measurements should be trusted more than
the mathematical model. Similarly, if Q is small compared to R it implies the mathematical
model should be trusted more than the measurements.

4.3 Particle Filter

As previously discussed there are no analytical solution to the PF. This implies no exact equa-
tions exists for the general case of particle filtering. A detailed and general approach supported
by theory is therefore presented in this section. A more specific implementation for state esti-
mation of ROVs are presented in the next chapter.

4.3.1 Sequential importance sampling

The principle of importance sampling introduced in section 2.4.7 should now be implemented
to fit with the recursive Bayesian estimator. This is done using the principle of sequential
importance sampling. At every iteration the aim is to approximate the true posterior PDF of
the states p(x0:k|y1:k) by a set of samples. Notice that x0:k and y1:k are the whole trajectory of
states and measurements. This implies the PF not only considers the current state xk, but in the
general case it generates and evaluates a set {xi0:k}

N

i=1 of N different trajectories. Where N is
the number of samples used in the iterations.

The true posterior PDF is unknown and samples cannot be drawn from this distribution directly.
Using the principle of importance sampling, samples are drawn from a known proposal dis-
tribution q(x0:k|y1:k) instead. This makes it possible to augment the trajectories xi0:k−1 from
the previous iteration with new state samples xik drawn from q(xk|x0:k−1,y1:k). This gives the
current set of trajectories xi0:k =

{
xi0:k−1,x

i
k

}
. From the theory of importance sampling, the

weight of trajectory i can now be expressed as

wik ∝
p(xi0:k|y1:k)

q(xi0:k|y1:k)
(4.21)
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It is shown, see for instance (Arulampalam et al., 2002), that the weight updates in Eq. (4.21)
can be calculated recursively from

wik = wik−1

p(yk|xik)p(xik|xik−1)

q(xik|xi0:k−1,y1:k)
(4.22)

This equation is straightforward to evaluate as p(yk|xik) is obtained from the measurement equa-
tion h(·) and the known PDF of the measurement noise vk. Similarly, p(xik|xik−1) is obtained
from the system equation f(·) and the known PDF of the system noise wk. The denominator
is the proposal density. Using the weights from Eq. (4.22), the posterior density can now be
approximated as

p(x0:k|y1:k) ≈
N∑
i=1

wikδ(x0:k − xi0:k) (4.23)

Estimation of the filtering stage only
In many cases only the filtering posterior PDF p(xk|y1:k) is of interest. A proposal distribution
that only depends on xk−1 and yk, i.e. q(xk|xk−1,yk) is then used. This means that only the
most recent state estimates have to be stored for the next iteration. Eq. (4.22) then changes to

wik ∝ wik−1

p(yk|xik)p(xik|xik−1)

q(xik|xik−1,yk)
(4.24)

Using the weights in Eq. (4.24) the filtering posterior PDF can be approximated according to

p(xk|y1:k) ≈
N∑
i=1

wikδ(xk − xik) (4.25)

and this is the method which is used in the implementation described in the next section.

4.3.2 General implementation

The theory presented above is often implemented as what is known as the Sampling Importance
Resampling (SIR) filter. Here, the proposal distribution q(xk|xk−1,yk) is set equal to the prior
density p(xk|xik−1) which is the system model. In addition, a crucial resampling step is added to
avoid particles ending up in areas with low posterior probability. The approach and terminology
used in this section is mainly based on the work of (Arulampalam et al., 2002) and (Gustafsson,
2012). When following the steps it is a good idea to look at figure 4.1 simultaneously as this
provides a visual interpretation of the PF.

34



4.3 Particle Filter

Figure 4.1: Illustration of steps in SIR-filter

Step 1: Prediction using system model
The set of particles χk−1 =

{
xik−1

}N
i=1

from the previous iteration is used as input to the next
iteration. Said differently, the posterior PDF of the last iteration is the proposal distribution for
the current iteration. Based on this the state prediction p(xk|xk−1) is calculated. This is done
using the system model

x̄ik = f(xik−1, e
i
k−1) , i = 1, · · · , N (4.26)

Here eik−1 is generated randomly using the known PDF of the noise contribution in the system
model. This is done to spread the state hypotheses in the particles and thus ensure diversity. In
step 1 of figure 4.1 it is seen how the particles are spread due to the noise added to the system
model. Notice that uk is omitted from the state prediction notation. This is done to simplify
notation only. The state predictions are stored as a temporarily set of particles

χ̄k =
{
x̄ik
}N
i=1

(4.27)

Step 2: Assign weights based on measurements
Next step is to assign weights to each of the N particles. By setting the proposal distribution
equal to the system model, i.e. q(xk|xk−1,yk) = p(xk|xik−1), the weights from Eq. (4.24)

35



Chapter 4. Filter design

reduces to
wik ∝ p(yk|xik) (4.28)

The term wik−1 is disregarded from the weight calculations due to the weight of all particles
being set to 1/N after resampling. This is further discussed in the next step. On basis of Eq.
(4.28) the weight of particle i is found from

wik = p(yk|x̄ik) (4.29)

This entails the weights being equal to the probability of the measurement being true, given
the state prediction x̄ik of particle i being true. The calculation is done using the measurement
equation h(·) and the known PDF of the measurement noise vk.

The weight of a particle itself is not particularly interesting. It is the weight relative to other
particles that provides useful information. Hence, all weights are normalized according to

w̃ik =
wik∑N
j=1w

j
k

(4.30)

Step 3: Resampling
Unless the proposal distribution is the true posterior distribution itself, the variance of the im-
portance weights will increase with time when using sequential importance sampling (Doucet
et al., 2000). This will in turn lead to all but one particle having normalized weights close to
zero after some iterations. This does not mean that this one particle is a good guess of the true
state. It only means that this particle is more plausible than the others. Consequently, huge
computational effort is put into particles that do not contribute to the final estimate.

Resampling is introduced as a solution to this problem. The idea behind this technique is to get
rid of the particles with low weight in the temporarily set of particles χ̄k. A new set of particles
χk is then obtained by drawing particles from χ̄k, where the probability of drawing a random
particle is proportional to its normalized weight. This process is visualised in figure 4.2.
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Figure 4.2: Sampling based on particle weight

Imagine that the arrow in the figure will stop randomly at any location if it is given a spin.
The particle that corresponds to the field where the arrow points when it stops will be added
to the set χk. When a temporally state hypothesis x̄k is added to χk, it is denoted xk. By
repeating this procedure N times, the final set of particles χk is obtained. From the illustration
it is straightforward to see that particles with low weights rarely makes it to χk. Likewise will
particles with high weights probably get sampled multiple times. In this way only the most
plausible state hypothesises survive for the next iteration, without changing the original PDF.
The final set of particles to be used as input in the next iteration is thus

χk =
{
xik
}N
i=1

(4.31)

As mentioned in step 2, all weights are set equal to 1/N after resampling. This is because
the importance of a particle is now indirectly reflected by how many times it got sampled in
this step. Put differently, the posterior PDF is described through the density of the resampled
particles in χk.

Step 4: Evaluate the posterior PDF
The posterior PDF is now represented by the resampled particles. The PDF can then be eval-
uated using standard statistical measures. The expected value is typically the most interesting
value in estimation problems. This is found by calculating the mean of each respective state at
the given timestep

µ = E(xk|yk) ≈
1

N

N∑
i=1

xik (4.32)

The variance of the states may also be interesting as this tells the degree of uncertainty in the
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expected values. This is calculated from

V ar(xk|yk) ≈
1

N

N∑
i=1

(xik − µ)2 (4.33)

4.3.3 Effective resampling

As mentioned in the previous section, the resampling stage is necessary to make sure the parti-
cles maintain high weights. If not the PF will suffer from degeneracy, which means most of the
particles gets negligible weights after a few iterations. This is illustrated in figure 4.3. At every
iteration the spread of the particles becomes larger and the result is poor state estimates.

Figure 4.3: Particle evolution without resampling

In the SIR-implementation presented in the previous section, resampling is done in step 3 at
every iteration. This step is computationally expensive and a proper choice of resampling al-
gorithm is thus important. If a poor resampling algorithm is chosen computing power will
be wasted unnecessary. In (Gustafsson, 2012) an algorithm named Ripley’s method is recom-
mended. This algorithm has a complexity linear to the number of particles N. If implementation
at a sufficiently low level this complexity level cannot be beaten.

Another measure that will reduce computational time is to resample only when it is necessary.
Even if the variance of the particle weights increases between iterations without resampling, it
may stay below an acceptable limit some iterations forward in time. If this is the case, resam-
pling is only necessary when the effective number of samples becomes to low. This is referred
to as sampling importance sampling. As stated in (Arulampalam et al., 2002) and (Gustafsson,
2012) the effective number of samples can be approximated from the relation

N̂eff =
1∑N

i=1(wik)
2

(4.34)

The value of this function lies in the interval 1 ≤ N̂eff ≤ N . A small value implies severe
degeneracy, while N̂eff = N is obtained directly after resampling. A threshold value NT is
chosen and resampling is done whenever N̂eff ≤ NT .
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4.3.4 Tuning of the particle filter

The tuning of the PF is rather intuitive and consists of tuning parameters for the process noise
and the measurements noise, just like the Kalman filters. In addition, the number of particles
used in the filter is also considered as a tuning parameter.

When specifying the process noise, one is determining how much the particles should be spread
between iterations. With a high degree of uncertainty in the mathematical model it is necessary
with a widespread particle cloud. This makes sure at least some of the particles ends up in areas
of interest. Likewise, if the model is very accurate, the particle cloud can be more concentrated.

The choice of tuning parameters for the measurement noise depends on what measurement
distribution is chosen to evaluate the particles. On a general basis the tuning parameters must be
chosen to shape the measurement distribution as desired. In the case of a Gaussian distribution
for instance, the tuning parameter is the variance.

The last tuning parameter is the number of particles N. This parameter is significant both for
the accuracy of the filter, and the computational effort needed to run the filter. It is conspicuous
that a larger number of particles leads to more particles in the areas of interest, and thus yield
better estimates. It is also evident that more particles leads to more calculations as each particle
is evaluated individually. The designer must therefore choose a number of particles such that
the balance between accuracy and computation time is satisfactory.

Some pitfalls might occur when tuning the PF. If the particles are not spread sufficiently between
each iteration, all particles will be very similar to each other. Having an infinite number of
identical particles is just as effective as having only one particle, due to all providing the same
information. With low diversity in the particles one ends up with a poor representation of the
posterior distribution of the estimated states. In worst case low spread of the particles might
lead to the particles loosing track of the measurements and diverge. Imagine having only one
particle (or many identical/low spreading). In such situation it does not matter what weight
the particle is given as the filter is only able to resample this one particle anyways. Hence, the
measurement becomes irrelevant and the filter runs on the mathematical model only. This will
eventually lead to divergence of the state estimates.
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Chapter 5
Implementation on a ROV

In the previous chapters the general theory behind the various Kalman filters and the PF were
presented. In this chapter the theory is applied to design model based state estimators for a
ROV. It is further shown how the Matlab/Simulink simulator was assembled, and how the ex-
perimental data was gathered.

5.1 The eXogenous Kalman Filter

The proposed XKF design is comprised by a KF at the second stage, having a NLO as the
auxiliary estimator. This section presents how both these estimators can be derived using the
mathematical ROV model in section 3.2. A bias term is also added to better handle imperfec-
tions in the model and for estimation of slowly varying forces.

5.1.1 Derivation of matrices for the second stage KF

The bias state estimates are implemented as a first order Markov model. It is further assumed
that the ROV is passively stable in pitch and roll. Hence, these DOFs are not modeled in the
filter. The resulting state space model of this system is given in Eq. (5.1).

η̇ = R(ψ)ν (5.1a)

Mν̇ = −D(ν)ν −C(ν)ν +R(ψ)Tb+ τ +wν (5.1b)

ḃ = −T−1
b b+wb (5.1c)

where η = [x y z ψ]T ∈ R4×1, ν = [u v w r]T ∈ R4×1 and b = [bx by bz bψ]T ∈ R4×1.
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With the state space model in (5.1), the EKF design in (Candeloro et al., 2012b) can be used
to derive the matrices for the second stage KF. From this model it is evident that the system
matrix contains nonlinearities due to several rotation matrices relating {b} and {n} frame. In
addition, both the damping and coriolis matrices may contain nonlinear functions with respect
to the velocities of the ROV. This motivates for use of the EKF. The state space of the ROV
model in 5.1 has the following structure

ẋ = F (x) +Bτ +Ew (5.2)

where x = [η ν b]T ∈ R12×1. Expanding the matrices in Eq. 5.2 yields

ẋ =

 R(ψ)ν

M−1(−D(ν)ν −C(ν)ν +RT (ψ)b)

−T−1
b b


︸ ︷︷ ︸

F (x) ∈ R12×1

+

 0

M−1

0


︸ ︷︷ ︸
B ∈ R12×4

τ +

0 0 0

0 M−1 0

0 0 14×4


︸ ︷︷ ︸

E ∈ R12×12

w (5.3)

Noisy measurements of x, y, z and ψ are assumed available. It is also assumed a linear relation
between measurements and states. The measurements model can thus be written on the form

y = H(x) + v (5.4)

where expansion of this model yields

y =
[
14×4 04×8

]
︸ ︷︷ ︸

H ∈ R4×12

x+ v (5.5)

After discretization the above matrices are ready for use in the second stage KF. Linearization
of this model is done as described in section 4.2.2, where the linearization point is given by the
auxiliary state estimator. Alternatively the EKF is implemented by instead linearize around the
state estimates from the previous iteration. See appendix B.3 for the Matlab implementation of
this observer.

5.1.2 The auxilliary state estimator

The auxilliary state estimator is implemented as a NLO. In (Refsnes, 2007) it is shown how
such estimators can be implemented on underwater vehicles with GES stability properties. The
derivation builds upon the same state space as in Eq. (5.1), but without the Coriolis matrix. The
most important property of the auxilliary estimator is however the stability properties. Hence,
neglecting the Coriolis matrix should still give a feasible linearization point at sufficiently low
speeds. In addition, the system is assumed to be noise-free when designing the NLO. For this
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reason there are no terms in the NLO equations that are dedicated to evaluation of noise. The
NLO derived in (Refsnes, 2007) which is used as an auxiliary estimator in the XKF is given in
Eq. (5.6) below.

˙̂η = R(ψ)ν̂ +L1η̃ (5.6a)

M ˙̂ν = −D(ν̂)ν̂ +RT (ψ)(L2η̃ + b̂) + τ (5.6b)
˙̂
b = −T−1

b b̂+L3η̃ (5.6c)

where η = [x y z ψ]T ∈ R4×1, ν = [u v w r]T ∈ R4×1 and b = [bx by bz bψ]T ∈ R4×1.
The matrices L1 = diag[l11 l12 l13 l14]T ∈ R4×1, L2 = diag[l21 l22 l23 l24]T ∈ R4×1 and
L3 = diag[l31 l32 l33 l34]T ∈ R4×1 are tuning matrices specified by the designer.

The idea behind the NLO is to use the mathematical model of the ROV together with an injection
term to correct for deviations in the model. The injection term is comprised by the measured
states and their corresponding estimates. With measurements available on η, the injection term
becomes η̃ = ηmeas − η̂ multiplied with the tuning matrices. Higher values in the tuning
matrices thus imply more aggressive convergence of the states. The Simulink-diagram of the
NLO is attached in appendix A.2.1.

5.2 Particle Filter

A proposal of how the general implementation of the PF from chapter 4 could be implemented
with the mathematical model of a ROV is given in this section. The implementation is limited
to the three DOFs surge, sway and yaw. This implies that each particle in the filter contains
a hypothesis of ηhyp = [x y ψ]T and νhyp = [u v r]T . The number of states are kept at a
minimum due to the high computational cost associated with the PF. See appendix B.1 for the
Matlab code derived on basis of the equations presented in this section.

Input to new iteration
Input to every new iteration are the measured thrust τ k = [τx,k τy,k τψ,k], the pose measurement
yk = [xmeas,k ymeas,k ψmeas,k], and the set of N resampled particles χk−1 from the previous
iteration. Each of the particles in χk−1 contains a state hypothesis for each of the six states in
the filter. Hence, particle i in this set is expressed as χik−1 = [ηihyp,k−1 ν

i
hyp,k−1].

Step 1: Guess states using mathematical model
In the first step of the PF the six state hypotheses within each particle are augmented using
the mathematical model of the ROV. Keep in mind that a mathematical model will never fully
capture the true vehicle dynamics, and the values in τ k comes from noisy measurements. For
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this reason every particle is updated using slightly different values of τ k by adding a random
parameter ετ . In this way diversity in the particles are ensured.

The velocity rate of change used for calculations in particle i, denoted νirate,k, can be found
from the recursive implementation of the kinetic equation of the ROV. This is expressed in Eq.
(5.7) below.

νirate,k = M−1[τ k + εiτ −D(νihyp,k−1)νihyp,k−1 −C(νihyp,k−1)νihyp,k−1] (5.7)

Here, νihyp,k−1 is the velocity hypothesis within particle i from the previous iteration. In the
implementation, εiτ takes random values from a Gaussian distribution with variance στ =

[σx σy σψ]T . The size of the intervals where εiτ takes random values determines the spread-
ing of the particles. Hence, στ is a tuning parameter which corresponds to the uncertainty in
the mathematical model.

The velocity hypotheses contained in particle i are now augmented by integrating νirate,k with
the previous velocity hypotheses νihyp,k−1 of the given particle. This yields the following nu-
merical integration

νihyp,k = νihyp,k−1 + h · νirate,k (5.8)

The new velocity hypothesis from Eq. (5.8) can then be used with the kinematic equation of
the ROV to augment the position and heading hypothesis ηihyp,k−1. This is done using using Eq.
(5.9) below.

ηihyp,k = ηihyp,k−1 + h ·Rn
b (ψihyp,k−1) · νihyp,k (5.9)

where Rn
b (ψihyp,k−1) is a rotation matrix and ψihyp,k−1 is the yaw hypothesis of particle i from

previous iteration.

Repeating this procedure for all N particles gives the temporarily set of particles

χ̄k = {ηihyp,k νihyp,k}Ni=1 (5.10)

Step 2: Weight the particles
From step 1 are now N temporarily particles, each with their own state hypothesis [ηihyp,k ν

i
hyp,k],

available. Pose measurements given by yk = [xmeas,k ymeas,k ψmeas,k] are also available. Only
ηihyp,k can be directly compared to yk, but recall that ηihyp,k is calculated on basis of the values
in νihyp,k. This implies that if ηihyp,k fits well with the pose measurement yk, it is because the
corresponding velocity hypotheses νihyp,k is also close to the true velocities. In this way the
velocity estimates are indirectly compared to yk. Each particle can thus be imagined to exists
in the three dimensional space illustrated in figure 5.1.
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Figure 5.1: Measurement and particle

The weights assigned in this step is therefore calculated on basis of how well the particle fits
with the measurement in all three measured dimensions. Assuming the noise of the measure-
ments are normally distributed, the multivariate normal distribution in Eq. (5.11) can be used
to calculate the weight of each particle.

p(ηihyp,k|yk,Σ) =
1

(2π)
n
2 |Σ| 12

exp

(
−1

2
(ηihyp,k − yk)Σ−1(ηihyp,k − yk)T

)
(5.11)

The co-variance matrix is denoted Σ, and |Σ| is the determinant of this. The number of variables
n is in this case equal to three. Assuming there are no co-variance in the noise of the pose
measurements, the co-variance matrix is written on the form

Σ =

σ2
x 0 0

0 σ2
y 0

0 0 σ2
ψ

 (5.12)

where σ2
x, σ2

y and σ2
ψ reflects the uncertainty of each measurement.

As discussed earlier the PF can also handle other distributions. The only requirement is that the
distribution of the measurement is known. In case of another distribution of the measurements,
one simply replaces Eq. (5.11) with the desired evaluation function.

Step 3 and 4: Resampling and evaluation
Step 3 and 4 are similar to the corresponding steps in the general implementation. By resam-
pling only the high-weighted particles in the temporarily set χ̄k survives. The resampled and
high-weighted particles are stored in a final set of particles χk. The mean of all the state hy-
potheses in χk are used as output from the filter. Then χk are used as input for next iteration.
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5.3 Simulator

To evaluate the different filter designs, a simulator was developed in Matlab/Simulink. A fully
functional simulator must contain all three GNC-blocks presented in the introduction. The
navigation block is the foundation of the thesis and different implementations are presented in
the previous sections. This section therefore briefly presents how the guidance-block and the
controller-block were implemented in the simulator. The ROV-model used in simulations are
also presented.

5.3.1 ROV model

The ROV model used in the simulator is based on the Videoray Pro 4 ROV and is developed
by Bent O. Arnesen. No changes has been made to this model in this thesis. Details and
assumptions made, beyond what is presented in this section, can be found in (Arnesen and
Schjølberg, 2016) where the model is also compared to real experiments. The mathematical
model used in the implementation follows the general structure of vessel modeling presented
in chapter 3.2. It is a 4 DOF model as roll and pitch is passively stable for this ROV. The state
vector of the ROV is thus comprised by η = [x y z ψ]T and ν = [u v w r]T .

Some general assumptions the model builds upon: center of mass is zero in x- and y-direction,
density is evenly distributed, off-diagonal terms inM andD are assumed to be small compared
to diagonal terms, low velocities, and the center of gravity (CG) and the center of buoyancy (CB)
coincides. All matrices used in the implementation are given next, and the parameter values are
listed in appendix A.1.

• The {b} to {n} reference frame transformation matrix is given by

J(η) = J(ψ) =


cos(ψ) − sin(ψ) 0 0

sin(ψ) cos(ψ) 0 0

0 0 1 0

0 0 0 1

 (5.13)

• M = MRB +MA is the system inertia matrix comprised of the rigid-body and added
mass matrices.

MRB =


m 0 0 0

0 m 0 0

0 0 m 0

0 0 0 Iz

 , MA =


−Xu̇ 0 0 0

0 −Yv̇ 0 0

0 0 −Zẇ 0

0 0 0 −Nṙ

 (5.14)
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• C(ν) = CRB(ν) +CA(ν) is the Coriolis-centripetal matrix comprised of the rigid-body
and added mass effects when the body frame rotates about an inertial frame.

CRB(ν) =


0 0 0 −mv
0 0 0 mu

0 0 0 0

mv −mu 0 0

 , CA(ν) =


0 0 0 Yv̇v

0 0 0 −Xu̇u

0 0 0 0

−Yv̇v Xu̇u 0 0

 (5.15)

• D(ν) = DL +DNL(ν) is the linear and non-linear hydrodynamic damping. There are
many sources to hydrodynamic damping, where the most important ones are potential
damping, skin friction, wave drift damping and vortex shedding (Faltinsen, 1993).

DL =


−Xu 0 0 0

0 −Yv 0 0

0 0 −Zw 0

0 0 0 −Nr

 (5.16)

DNL(ν) =


−X|u|u|u| 0 0 0

0 −Y|v|v|v| 0 0

0 0 −Z|w|w|w| 0

0 0 0 −N|r|r|r|

 (5.17)

• g0 is the restoring forces that try to bring the system to its natural equilibrium. It is
implemented as

g0 =


0

0

−(W −B)

0

 (5.18)

where W is the gravitational force and B is the buoyancy force.

• τ is the control input to the ROV model. The model is actuated in surge, sway, heave and
yaw which yields τ = [τx τy τz τψ].

5.3.2 Guidance system

To make the ROV follow a desired path a guidance system was implemented. One of the most
convenient ways to make desired paths is by specifying waypoints the ROV should visit. Then
make the ROV follow the lines connecting the waypoints. This can be achieved using the line
of sight (LOS) guidance law (Breivik and Fossen, 2008). The idea behind this algorithm is
to generate a desired heading ψd which makes the ROV converge towards the line segments
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between the waypoints. This also requires the ROV to maintain a desired surge velocity. In this
context there are two main guidance objectives. If the ROV should be at a given location at a
given time it is referred to as path tracking, where both temporal and spatial constraints should
be met. In the other case only spatial constraints are considered and this is referred to as path
following (Breivik et al., 2008). Only the latter is implemented in this thesis. The field of LOS-
guidance is extensive and the method chosen in the implementation was the Lookahead-Based
Steering law. The geometry of this implementation is illustrated in figure 5.2.

Figure 5.2: Lookahead-based straight line LOS

A vector denoted the LOS-vector goes from the vessel to a pointP LOS = [xLOS, yLOS]T located
at the path tangential line at lookahead distance ∆ > 0. The course angle is thus comprised by
two parts.

χd(e) = αk + χr(e) (5.19)

The first term is the path-tangential angle, i.e. the tilt angle of the path reference frame (xp, yp)
relative to the global reference frame

αk = tan−1

(
yk+1 − yk
xk+1 − xk

)
(5.20)

The second term is the velocity-path relative angle

χr(e) = tan−1

(
−e
∆

)
(5.21)

where e is the referred to as the cross-track error. This is the shortest distance between the
vessel and the path, and may be found by simple geometric derivations.
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The value of ∆ greatly affects the manoeuvring characteristics of the vessel. A smaller value
implies a more aggressive convergence towards the path compared to a larger value (Lekkas
and Fossen, 2014). This is also intuitive by looking at figure 5.2. Further, it is clear that the
velocity-path relative angle becomes zero when the vessel has converged fully to the path as
this renders e = 0. This implies the heading is set equal to the path-tangential angle.

Switch way-point
Unless the vessel is going to follow a straight line from start to finish, it is necessary to specify
the desired path by multiple straight lines when using straight line LOS. Hence, a method to
determine when to follow the next line segment, i.e. switch way-point, must be implemented.
In the two-dimensional plane this is solved by using a circle of acceptance. More specific, a
circle with radius R is placed around the waypoint (xk+1, yk+1). If the position (x(t), y(t)) of
the vessel satisfies

[xk+1 − x(t)]2 + [yk+1 − y(t)]2 ≤ R2
k+1 (5.22)

the next waypoint is selected.

Alternatively, in three dimensions one could either implement a cylinder of acceptance or a
sphere of acceptance. The principle is the same as the circle of acceptance, and what method
to choose depends on the application. In the simulator developed in this thesis, a circle of
acceptance was used. This means depth could have any arbitrary value inside the circle. This is
equivalent to a cylinder of acceptance with infinite length.

5.3.3 Controller

Controllers for heading and surge speed were implemented in the simulator for the ROV to be
able to follow the path from the LOS-guidance. Due to the ROV having actuators in sway, it
is also possible to make a controller in this DOF to reduce the cross-track error even faster. In
addition, a controller for depth may also be necessary. This was however not implemented.

Advanced controllers may take the system model into consideration. Examples on such con-
trollers are the feedback linearization controller and the backstepping controller (Fossen, 2011).
However, the Proportional-Integral-Derivative (PID) controller proved to work well in the sim-
ulator. Input to such a controller is the error value of a given state, and it is thus independent of
the mathematical model of the system. That is, the state has a current value x(t) and a desired
value xd(t). The error term is then expressed as e(t) = x(t) − xd(t), and the PID-controller
seeks to minimize this value by finding the optimal thrust value u(t). As the name suggests, the
PID-controller can be divided in three terms and a mathematical representation is given by Eq.
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(5.23).

u(t) = Kp · e(t) +Ki

∫ t

0

e(τ) dτ +Kd ·
d

dt
e(t) (5.23)

The controller gains Kp ≥ 0, Ki ≥ 0 and Kd ≥ 0 determines the contribution of each term on
u(t). The proportional term calculates a thrust value proportional to the error and the derivative
term calculates a thrust value proportional to the rate of change in the error. The integral term
sums up the errors over time which eventually will lead to no stationary error. The gains can
also take the value zero, resulting in a PD-controller or a PI-controller for instance. See (Ang
et al., 2005) for more details on the PID-controller.

In the simulator, PID-controllers were implemented for surge velocity using e(t) = u(t) − ud.
Where u(t) is current surge speed and ud is the constant desired surge speed. For heading the
error e(t) = ψ(t)−ψd(t) was used, where ψ(t) and ψd(t) are current and desired heading angles
respectively.

5.3.4 Putting all modules together

With the ROV-model and all three GNC-blocks being specified, what remains is to connect
all modules to render the simulator complete. In a real system the modules are connected as
presented in illustration 1.1 in the introduction, where all modules are part of a closed loop. In
the simulator however, not all modules were part of the closed loop as can be seen from the
draft of the Simulink diagram in figure 5.3.

Figure 5.3: Draft of Simulink diagram

In this implementation the observer is placed outside the closed loop and the guidance-module,
controller-module and ROV-model runs on noise-free/true values. This is because it is a well-
known fact that observers and controllers influence each other in a closed loop. As the thesis
aims to compare observers, it is desirable to eliminate any sources to disturbance.

As the closed loop runs on noise-free estimates it is necessary to add noise to the signals sent
to the observer. Hence, Gaussian white noise is added to τ = [τx τy τz τψ] and y = [x y z ψ]

and is illustrated by the noise block in figure 5.3. Further it is seen that the desired surge speed
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ud is set as an external input to the controller. This implies that this value is constant and not
determined by the guidance block. See appendix A for the real Simulink diagrams.

5.4 Experimental setup

In order to verify the implementation of the PF, an experiment to gather sensor data was con-
ducted in the NTNU MC-lab. This is a 40 meter long, 6.45 meter wide and 1.5 meter deep basin
designed for cybernetic purposes. One of the core features of this lab is the Qualisys motion
capturing system. This is a camera system comprised by both surface- and underwater cameras
that are able to track a set of markers with high accuracy. Placing these markers on a vessel
makes it possible to keep track of the vessels true position and attitude in the basin.

All sensor data were logged in the MC-lab and later processed using the PF offline. This follows
the same analogy as in the simulator implementation. I.e. the observers put to the test are not
part of the closed loop.

5.4.1 Available sensor data in MC-lab

The observers developed in previous sections essentially combines two sensor measurements
in each DOF. First sensor data is the measured pose η = [x y z ψ]T that is assumed to be
available from noisy mesaurements. These measurements are generated by adding noise to the
measurements from the Qualisys camera system in the MC-lab. Secondly is the the measured
thrust τ = [τx τy τz τψ] that is used to approximate the velocities of the ROV by transforming τ
to the velocity vector ν using a mathematical model of the ROV. For this reason it would have
been desirable to measure the thrust in the experiments to investigate how all the the proposed
observer designs work with real data. However, due to the available equipment not being able
to measure thruster RPM, this was unfortunately not possible.

Due to this only the PF is tested with experimental data, using measurements obtained from
an Inertial Measurement Unit (IMU) instead of the thruster model. Even if this is not directly
comparable with the simulations, it will still show if the proposed PF design works in a more
realistic setting. It will indeed also show if the PF is able to handle IMU-data well. While the
PF can easily be altered to fit with IMU-data, the same is not true for the XKF proposed in this
thesis. The NLO which ensures GES estimates requires measurement of thrust. Implementa-
tions of the XKF that fits with IMU-data may instead be found in (Seel and Schjølberg, 2016)
and (Stovner, 2018).
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Chapter 5. Implementation on a ROV

5.4.2 BlueROV

Due to the experimental data not being based on the thruster model it did not matter what ROV
was used to gather sensor data in the MC-lab. Rather than using the Videoray Pro 4 as in the
simulations, a BlueROV 2 was used in the MC-lab.

The BlueROV 2 is a small observation class ROV where a total of six thrusters provide actuation
in surge, sway, heave, roll and yaw. Pitch is thus the only DOF where this ROV is not actuated.
Communication with the ROV is done using a tether connected to the MC-lab network, while
power is supplied from an on-board battery-pack. A picture of NTNU’s BlueROV is shown i
figure 5.4.

IMU-data comprised by 3-DOF gyroscope, accelerometer and magnetometer are together with
pressure/depth measurement available from the ROV. In addition it is possible to get video-feed
from the on-board camera. It is also worth mention that the BlueROV is based on open-source
electronics and software. Hence, this system is well-suited for configurations by the user. More
information about the BlueROV is available at the website (BlueRobotics).

Figure 5.4: BlueROV with markers for Qualisys camera system

5.4.3 The Qualisys Motion Capture system

As previously mentioned the Qualisys Motion Capture (QMC) system was used to get the po-
sition and attitude of the ROV in the basin. Due to the high accuracy of this system the mea-
surements from the QMC is regarded as the true state values. A set of minimum four reflective
markers are placed on the object that is to be tracked by the QMC. Then a rigid body is made
from the marker configuration in the Qualisys Track Manager (QTM) software. The rigid body
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5.4 Experimental setup

is essentially an unique pattern of markers, and whenever the QTM recognise this pattern it
knows it is the object of interest.

A total of six underwater cameras are available for underwater tracking in the NTNU MC-
lab. Each camera emits infrared light. This light is reflected by the markers on the ROV and
then caught by the camera lenses. This makes the QMC sensitive to various disturbances. It
is essential that the cameras are able to recognise the rigid body, if not the signal drops out.
The markers must therefore be placed clearly visible on the ROV. Placing the markers on long
aluminium bars makes it easier for more cameras to see the markers simultaneously. Due to
marker visibility the rather large volume of the basin is reduced to a much smaller operational
space when using the QMC. Too close to either side of the basin makes the cameras loose track
of the rigid body. It is also desirable to have as little light disturbance as possible. Both ceiling
lights and internal lights on the ROV may disturb the cameras. Getting long measurement series
without drop-outs is therefore sometimes challenging.

5.4.4 IMU sensor characteristics

As previously mentioned IMU-data were used as a replacement of the thruster model. An typi-
cal IMU provides measurements from 3-DOF gyroscopes, accelerometers and magnetometers.
For the objectives of this thesis, the magnetometer is not necessary and will not be further dis-
cussed. The accelerometer measurements are integrated once to obtain velocities, and twice to
obtain positions. Similarly, the gyro measures angular velocity and is integrated once to obtain
attitude. Hence, the augmentation of the velocity hypotheses in Eq. (5.8) of the PF is now based
on the integrated linear accelerations, and the angular velocities from the IMU. See appendix
B.2 for the Matlab code of the PF using IMU data.

The mathematical representation of the measurements from an acceleromter and a rate gyro,
as represented in (Fossen, 2011), is given below. These equations assumes the axis of the
measurement-frame and the body-frame are parallel. This is also known as the strapdown
assumption.

abimu = Rb
n(Θ)(ν̇n + gn) + bbacc +wb

acc (5.24)

wb
imu = wb + bbgyro +wb

gyro (5.25)

Here, Θ = [φ θ ψ]T is a vector with the Euler angles and Rb
n(Θ) is the rotation matrix from

{n} to {b}. The gravitational force is represented as gn = [0 0 g], where g ≈ 9.81 [m/s2].
Both the accelerometer and the gyro are prone to biases and zero mean measurement noise,
here denoted bbacc, b

b
gyro and wb

acc,w
b
gyro respectively.
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Chapter 5. Implementation on a ROV

5.4.5 Sensor fusion

Integrating IMU-data to obtain velocities, positions and attitudes will quickly lead to large off-
sets from the true states. Sensor biases, misalignments and temperature variations are all sources
to sensor drift (Fossen, 2011). Hence, estimation based on IMU-data alone is only applicable
for short time intervals. The measurements from the QMC, where noise is added, do not suffer
from sensor drift over time. Even if bias is present in these measurements, it would not get
amplified from integration as position and heading are measured directly.

The two measurement sources complement each other well. The IMU-data are used to estimate
velocities and positions some iterations forward in time. At approximately every 5th output
from the IMU, new sensor data from the QMC are also available. This is due to the much lower
sampling rate of the QMC. The QMC-data which is free from offsets, but noisy, is then used to
correct any offsets that have built up from the integration of IMU-data.

5.4.6 Controlling the BlueROV

An Xbox controller was used to steer the BlueROV in the basin. The two joysticks on the Xbox
controller was used to determine desired thrust in surge, sway, heave and yaw. In this way the
user was free to steer the ROV independently in each of these 4 DOFs. In heave however, a PID-
controller was implemented to make the ROV maintain a desired depth automatically. All these
features, plus the communication with the QMC, required lots of software implementation.
Everything regarding the implementation was organized by Mikkel Cornelius Nielsen. The
resulting control loop for the user is seen i figure 5.5.

Figure 5.5: Human in-the-loop ROV control
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5.4.7 Challenges with setup

One of the main challenges with the setup used in the lab was the underactuation of the BlueROV.
Without actuation in pitch the ROV suffered from severe pitching when accelerating. As can
be seen from Eq. 5.24, an accelerometer alone cannot determine if acceleration is due to ve-
locity changes or gravity. Hence, the pitching introduced large uncertainties in the measured
accelerations.
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Chapter 6
Simulation results

In this chapter the results from the Matlab/Simulink implementation described in chapter 5 are
presented. Computer simulations offers the opportunity of conducting multiple test-runs of the
ROV-system at a relatively short amount of time. In addition it does not require access to the
ROV-hardware or lab-facilities. Hence, when evaluating the state estimator designs, simulations
makes it simpler to test out new ideas.

In simulations one can also benefit from the fact that all information about the system is avail-
able. With the real states being directly observable allows for effective evaluation of the per-
formance of the state estimators. The Root-Mean-Square (RMS) error estimate is used as a
measure of performance of the simulations in this thesis, and are calculated according to

RMS =

√√√√ 1

N

N∑
i=1

(xiest − xitrue)2 (6.1)

where N is the number of samples. A lower RMS value implies there is less offset and fluctua-
tion from the true state estimates.

Albeit simulations have many advantages, it is also important to know the limitations of a sim-
ulator. Ultimately the simulator is only a mathematical approximation of the real ROV-system,
and simulations are only as good as the model they are based upon. For this reason one cannot
expect the simulator to behave identical to the real system. This is also confirmed in (Arnesen
and Schjølberg, 2016) where the ROV-model used for simulations in this thesis is compared
with real experiments. Here it is seen that both simulations and experiments behave quite sim-
ilar, but not identical. However, the goal of this thesis is not to examine how well simulations
mimics a real Videoray Pro 4 ROV. It is rather to examine which filter is best suited to evaluate
information from a given mathematical model and a number of given measurements. Hence,
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Chapter 6. Simulation results

this comparison is to some degree independent of the accuracy of the simulator as it will still
show which filter works best using this particular model. However, some filters may perform
better than others if unmodeled effects are accounted for. An accurate model is therefore any-
ways desirable.

In the next subsections follows a presentation of each simulation case. Then relevant plots from
each case are presented, before the RMS values of positions and velocities are listed. Different
simulation runs yields slightly different RMS values due to the random characteristics of the
noise. For this reason the RMS values presented later are comprised of the mean from 10
different simulations.

6.1 Simulation specifications

All particle filter simulations assumes linear and noisy measurements are available in surge,
sway and yaw. The same is true for the Kalman filter simulations, but here it is also assumed
that a linear and noisy measurement is available in heave. Five different cases are conducted in
order to compare the performance of the filters described in chapter 5. These simulations are
designed with the goal of revealing benefits and weaknesses of each filter.

The ROV follows the same lawn mower pattern in all simulations, where the LOS-algorithm
has a lookahed distance of ∆ = 0.5 [m] and a circle of acceptance of R = 1 [m]. The small
value of ∆ means the ROV will converge aggressively to the desired path. The rov follows the
path with a speed of u = 0.3 [m/s].

The simulations are run for 120 seconds with a timestep of h = 0.05. The noise added to the
simulations are Gaussian with a variance specified in table 6.1.

Table 6.1: Noise added to simulations

Surge Sway Heave Yaw
σ2
y 0.02 0.02 0.02 0.01
σ2
τ 0.02 0.02 0.02 0.02
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6.1 Simulation specifications

6.1.1 Simulation 1: Steady state behaviour of EKF and XKF

The first simulation seeks to compare the steady state behaviour of the EKF and the XKF. This
will in turn tell which of the two filters work best under normal operation. Hence, both filters are
provided with the correct initial values p0 = [0 0 − 10 90◦], v0 = [0 0 0 0] and b0 = [0 0 0 0].
The initial covariance is set to P0 = 0.1 for all states. The observer gains are summarized in
table 6.2.

Table 6.2: Simulation 1: Observer gains

EKF XKF
R = diag[0.2, 0.2, 0.2, 0.08] R = diag[0.2, 0.2, 0.2, 0.08]
Q = diag[0, 0, 0, 0, 5, 5, 5, 0.01, 1, 1, 1, 0.8] Q = diag[0, 0, 0, 0, 5, 5, 5, 0.01, 1, 1, 1, 0.8]

L1 = diag[1.2, 1.2, 1.2, 5]
L2 = diag[10, 10, 10, 1]
L3 = diag[3, 3, 3, 2.5]

The mathematical model of the ROV implemented in the filters is rather accurate in this sim-
ulation. The mass is set to 7.5 [kg] which is ∼ 7% offsett from the real value. This leads to
both the mass matrix and the Coriolis matrix being slightly different from the real ones. The
damping parameters are also reduced to 95% of the original values.

Figure 6.1: Simulation 1: XY-plot

59



Chapter 6. Simulation results

-0.5

0

0.5
Measured NLO XKF

-0.5

0

0.5

-0.5

0

0.5

0 20 40 60 80 100 120

-20

0

20

Figure 6.2: Simulation 1: From measurement to final XKF estimate, error plot
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Figure 6.3: Simulation 1: Error in position estimates
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Figure 6.4: Simulation 1: Error in velocity estimates
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Figure 6.5: Simulation 1: Bias estimates in XKF
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Figure 6.6: Simulation 1: Bias estimates in NLO

6.1.2 Simulation 2: Transient behaviour of EKF and XKF

This simulation is similar to the first one, but the initial conditions are erroneous. This will
thus show if either filter has better transient behaviour. The initial values are chosen as p0 =

[10 3 − 11 0◦], v0 = [0.4 0.2 0.3 0.2] and b0 = [0.06 0.08 0.1 0.03]. The initial covariance is
set to P0 = 0.1 for all states. The observer gains are summarized in table 6.3. The mathematical
model of the ROV is the same as in simulation 1.

Table 6.3: Simulation 2: Observer gains

EKF XKF
R = diag[0.2, 0.2, 0.2, 0.08] R = diag[0.2, 0.2, 0.2, 0.08]
Q = diag[0, 0, 0, 0, 50, 50, 50, 0.01, 1, 1, 1, 0.8] Q = diag[0, 0, 0, 0, 5, 5, 5, 0.01, 1, 1, 1, 0.8]

L1 = diag[5, 5, 5, 6]
L2 = diag[10, 10, 10, 1]
L3 = diag[3, 3, 3, 2.5]
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6.1 Simulation specifications

Figure 6.7: Simulation 2: XY-plot
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Figure 6.8: Simulation 2: From measurement to final XKF estimate, error plot
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Figure 6.9: Simulation 2: Error in position estimates
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Figure 6.10: Simulation 2: Error in velocity estimates
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6.1.3 Simulation 3: Steady state behaviour of PF

In simulation 3, the PF is put to the test using two different number of particles in the filter. The
simulation with fewest particles uses a number of 500, while the simulation with most particles
uses a number of 5000. These numbers are chosen as 500 seems to be the lower limit to obtain
feasible results, and using more than 5000 seems to not provide noticeable better results. The
filter is initialized using the correct values, i.e. p0 = [0 0 90◦] and v0 = [0 0 0]. The tuning
matrices are equal in both cases and are summarised in table 6.4

Table 6.4: Simulation 3: Observer gains

Particle filter
σ2
τ = [0.9, 0.9, 0.6]

Σ = [0.045, 0.045, 0.017]

The mathematical model of the ROV used in the filter is implemented with the same parameters
as in simulation 1. Simulation 1 and 3 therefore have access to exactly the same information
about position and velocity. Later comparisons of RMS values will thus show which filter utilize
this information best.

Comments to plots:
In figure 6.11 and 6.12 the particle clouds and corresponding measurements are only plotted for
some iterations. This is done to make the plots easier to interpret.
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Figure 6.11: Simulation 3: XY-plot, N=500
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Figure 6.12: Simulation 3: XY-plot, N=5000
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Figure 6.13: Simulation 3: Error in position estimates
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Figure 6.14: Simulation 3: Error in velocity estimates
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6.1.4 Simulation 4: Transient behaviour of PF

In this simulation the transient behaviour of the PF is investigated. For the PF to be able to
recover from a bad initial guess, it is necessary to spread the initial particles in the whole
interval of state values where it is believed that the true state exists. It is assumed that the best
knowledge about the true initial state lies somewhere in the intervals x ∈ [−1, 10], y ∈ [−2, 7]

and ψ ∈ [0, π]. Hence, all particles are distributed randomly in these intervals. The same
analogy goes for the velocities where each particle is given a velocity somewhere in the intervals
u ∈ [0, 0.5], v ∈ [0, 0.5] and r ∈ [0, 0.5]. The intervals may off course be adjusted according
to the prior knowledge, but using the intervals specified above requires a high number of initial
particles. For this reason only the PF with 5000 particles are used in this simulation. This
method requires more spreading in the particles compared to the steady state situation, and the
new observer gains are summarised in table 6.5.

Table 6.5: Simulation 4: Observer gains

Particle filter
σ2
τ = [1.8, 1.8, 1]

Σ = [0.045, 0.045, 0.017]
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Figure 6.15: Simulation 4: XY-plot, N=5000
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Figure 6.16: Simulation 4: Error in position estimates
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Figure 6.17: Simulation 4: Error in velocity estimates
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6.1.5 Simulation 5: Less accurate mathematical model

In the previous simulations all filters were implemented with a rather precise mathematical
model of the ROV. In this simulation the different filters are implemented using a less accurate
model. The mass is set to 8.5 [kg] which is ∼ 21% more than the real value, and the damping
parameters is set to 50% of the actual values. This will in turn show which filter is most robust
against modelling errors. The filters are initialised with the true states p0 = [0 0 − 10 90◦]

and v0 = [0 0 0 0]. The Kalman filters are also initialised with b0 = [0 0 0 0] and the initial
covariance is set to P0 = 0.1 for all states. The observer gains are summarised in table 6.6 and
table 6.7 below.

Only RMS values are provided from this simulation. The figures are very similar to the figures
from the steady state simulations, only with more noise in the estimates. Hence, the figures do
not provide more information than the RMS values.

Table 6.6: Simulation 5: Observer gains Kalman filter

EKF XKF
R = diag[0.2, 0.2, 0.2, 0.08] R = diag[0.2, 0.2, 0.2, 0.08]
Q = diag[0, 0, 0, 0, 40, 40, 40, 0.01, 1, 1, 1, 0.8] Q = diag[0, 0, 0, 0, 40, 40, 40, 0.01, 1, 1, 1, 0.8]

L1 = diag[5, 5, 5, 6]
L2 = diag[10, 10, 10, 1]
L3 = diag[3, 3, 3, 2.5]

Table 6.7: Simulation 5: Observer gains particle filter

Particle filter
στ = [2.8, 2.8, 0.8]
Σ = [0.045, 0.045, 0.017]
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6.2 RMS values simulation 1 and 3: Steady state behaviour

6.2 RMS values simulation 1 and 3: Steady state behaviour

Table 6.8: Simulation 1 and 3: RMS values of position and heading estimates

EKF XKF PF, N=500 PF, N=5000
Surge [m] 0.0226 0.0240 0.0397 0.0202
Sway [m] 0.0296 0.0289 0.0418 0.0233
Heave [m] 0.0163 0.0165 - -
Yaw [deg] 3.0923 3.1799 3.5645 3.2449

Table 6.9: Simulation 1 and 3: RMS values of estimated velocities and angular rates

EKF XKF PF, N=500 PF, N=5000
Surge [m/s] 0.0186 0.0210 0.0150 0.0101
Sway [m/s] 0.0173 0.0201 0.0145 0.0126
Heave [m/s] 0.0049 0.0054 - -
Yaw [deg/s] 13.3176 13.8452 13.6243 13.0816

6.3 RMS values simulation 2 and 4: Transient behaviour

Table 6.10: Simulation 2 and 4: RMS values of position and heading estimates

EKF XKF PF, N=5000
Surge [m] 0.2611 0.2378 0.1429
Sway [m] 0.0918 0.0803 0.0906
Heave [m] 0.0352 0.0344 -
Yaw [deg] 3.9224 3.4012 3.3460

Table 6.11: Simulation 2 and 4: RMS values of estimated velocities and angular rates

EKF XKF PF, N=5000
Surge [m/s] 0.0681 0.0471 0.0209
Sway [m/s] 0.1493 0.1105 0.0261
Heave [m/s] 0.0338 0.0352 -
Yaw [deg/s] 30.0281 21.3439 13.8766
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6.4 RMS values simulation 5: Less accurate model

Table 6.12: Simulation 5: RMS values of position and heading estimates

EKF XKF PF, N=500 PF, N=5000
Surge [m] 0.0300 0.0318 0.0563 0.0326
Sway [m] 0.0415 0.0415 0.0597 0.0367
Heave [m] 0.0294 0.0294 - -
Yaw [deg] 3.1419 3.2189 3.9902 3.4093

Table 6.13: Simulation 5: RMS values of estimated velocities and angular rates

EKF XKF PF, N=500 PF, N=5000
Surge [m/s] 0.0525 0.0542 0.0473 0.0280
Sway [m/s] 0.0279 0.0297 0.0378 0.0284
Heave [m/s] 0.0147 0.0149 - -
Yaw [deg/s] 15.1504 16.1782 16.3510 14.3529

6.5 Execution times

Table 6.14: Execution times

EKF XKF PF, N=500 PF, N=5000
Total execution time

Total simulated time
[−] 0.025 0.033 0.058 0.57
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Experimental results

In this chapter the results obtained from using the PF with experimental data are presented. As
discussed earlier, only measurements from the QMC system and from an IMU were available in
the MC-lab. This makes it impossible to test the proposed XKF design as it relies on measure-
ments of thrust. It is however possible to verify that the structure of the PF works as intended.
Using the mathematical model or an IMU essentially builds upon the same principle. First the
accelerations are found, then these are integrated to find the positions. If promising results can
be obtained from using the IMU, it should also work using the mathematical model.

7.1 Experimental specifications

Both steady state and transient behaviour are tested using data from a ∼ 27 [s] long measure-
ment series. The measurements from the QMC are regarded as true due to their low variance.
Hence, these measurements are used to make the RMS values and error plots. The velocities
are not directly measured by the QMC. These are instead found by numerical derivation of the
position measurements. To make inputs for the observer however, the QMC measurements are
added Gaussian noise with a variance of σ2 = 0.2. This leads to the measurements having RMS
values of ∼ 0.2 [m] in surge and sway position, and a RMS value of ∼ 11◦ in heading. A
successfully implementation of the PF will reduce these values noticeably, while also providing
accurate velocity estimates. Both the steady state and transient case turned out to work best
with the same gains. These gains are summarized in table 7.1.

73



Chapter 7. Experimental results

Table 7.1: Experiment 1 and 2: Observer gains particle filter

Particle filter
σimu = [2.8, 2.8, 1.2]
Σ = [0.01, 0.01, 0.01 ]

In this case, σimu specifies the uncertainty in the IMU-data.

7.2 Experiment 1: Steady state

In the first experiment the states are initialised with the true values to see how the filter works in
the steady state case. Hence, the initial states used in the filter are [x y ψ] = [0.03, −0.92, 293◦]

and [u v r] = [0.44, −0.24, 0.23].

Comment to plots: Due to the large spread in particles, only two particle clouds are plotted in
figure 7.1. The smallest being the initial one.
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Figure 7.1: Experiment 1: XY-plot
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7.2 Experiment 1: Steady state
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Chapter 7. Experimental results

7.3 Experiment 2: Transient

The second experiment is based on the same experimental data as the first one. This time
however it is assumed that the initial values are not known. This will show how well the filter
is able to converge using real sensor data. Remember from simulation 4 that uncertainty in the
initial states must be specified as an interval of uncertainty in the PF. For experiments conducted
in a basin, the uncertainty intervals of positions may be set equal to the dimensions of the
basin. The intervals used in this experimental evaluation are set to cover the known operational
space of the ROV. Hence, the intervals used are x ∈ [−1, 10], y ∈ [−2, 7] and ψ ∈ [0, 360◦]

for position and heading. And for velocities the intervals u ∈ [−2, 2], v ∈ [−2, 2] and
r ∈ [−20, 20] are used. The gains used in this simulation are the same as the gains in table 7.1.

Comment to plots: Figure 7.4 and 7.5 are essentially the same plot, but the latter shows how
the initial particle cloud evolve after the first resampling. Only the initial and one more particle
cloud are plotted in order to avoid too many particle clouds overlapping each other.
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Figure 7.4: Experiment 2: XY-plot

76



7.3 Experiment 2: Transient
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Figure 7.5: Experiment 2: XY-plot with resampled initial particles
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Figure 7.7: Experiment 2: Error in velocity estimates

7.4 RMS values and computational time

The RMS values from experiment 1, i.e. the steady state case are provided in table 7.2.

Table 7.2: RMS values from experiment 1

Surge Sway Heave
η 0.1255 [m] 0.1133 [m] 5.0071 [deg]

ν 0.6919 [m/s] 0.4712 [m/s] 19.448 [deg/s]

The computational time using experimental data yields a ratio of 0.49 when the total execution
time is divided on the length of the measurement series. Unlike the simulations this ratio only
considers the time used to run the filter. While the ratios found from the simulations also takes
into account the time used to drive the simulator itself.
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Chapter 8
Discussion of results

In this chapter the figures and RMS values are compared and discussed. Results from both
simulations and experiments are covered in this chapter.

8.1 Simulation results

The simulated results are covered first. The focus of the discussion is how each filter behave in
the steady state- and transient case, and how the filters compare to each other.

8.1.1 Steady state behaviour of EKF and XKF

In the case of correct initial conditions, i.e. simulation 1, there is not much that separates the
two filters based on the results. From the XY-plot in figure 6.1 it is nearly impossible to separate
the EKF estimate from the XKF estimate, and both are very close to the true trajectory. This
figure also gives a visual impression of the measurement noise, and as can be seen the noise is
greatly reduced by both filters. The reduction in measurement noise is further investigated for
the XKF in figure 6.2. Here it is shown how the measurements are first transformed in the NLO,
and how the final estimate of the XKF looks like. The NLO estimates fluctuates a lot in surge,
sway and heave. In yaw one can also see that the error estimate is somewhat shifted away from
the desired value of zero at certain time intervals. This is due to the slowly varying assumption
of the mathematical model used in the NLO, and the shifts occurs at every turn as the velocities
changes in order to make the ROV follow the desired path. However, the fluctuations and shifts
are not reflected in the final estimates of the XKF. This proves the NLO estimates are feasible
lineariazation points.
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Chapter 8. Discussion of results

Figure 6.3 confirms that the position estimates of the EKF and the XKF are almost identical,
only with some deviations at certain occasions. The RMS values of table 6.8 shows the same.
Figure 6.4 shows that the velocity estimates of the two filters are also very similar. However,
in this case the linearization point from the NLO is causing especially the surge estimate from
the XKF to deviate slightly more than the estimate from the EKF when the ROV is turning.
The bias estimates are also plotted for this simulation. It is seen that the bias estimates of the
NLO in figure 6.6 have a much larger scale than the bias estimates in the final XKF estimates
in figure 6.5. This is due to the bias estimates in the NLO are trying to compensate for the
missing Coriolis matrix. Looking closer at the biases in the NLO it is evident, especially for the
bias in yaw, that these estimates follows a periodically pattern in compliance with the turning
of the ROV. The bias estimates of the XKF are small and have little influence on the velocity
estimates.

8.1.2 Transient behaviour of EKF and XKF

In simulation 2, where the transient behaviour is put to the test, the differences between the two
filters are larger. From the XY-plot in figure 6.7 one sees that the XKF converges faster and with
less overshoot than the EKF. When both filters eventually reaches steady state their trajectories
in the XY-plane coincides as earlier. The error plots of positions and velocities in figure 6.9 and
6.10 shows the same behaviour. I.e. faster convergence rates and less overshoots for the XKF
in the transient stage, and similar behaviour in the steady state stage. From the RMS values of
position and velocity in table 6.10 and 6.11 all values are high due to the offset in the transient
stage, but the XKF has lower values because of the abovementioned reasons.

The fast convergence rates of the XKF is due to the great convergence capabilities of the NLO.
As shown in the overview of the observer gain values in table 6.3, the NLO is tuned with higher
values in L1 in the transient simulation. This leads to faster convergence rates, but as can be
seen in figure 6.8 this also makes the NLO estimate being more noisy. As previously mentioned
the main task of the NLO is not to reduce noise, but to make a reasonable linearization point.
The noise in the NLO estimates is thus not a problem. Noise reduction is the primary objective
of the Kalman filter in the second stage and as can be seen from the figure, the final estimates
of the XKF has suppressed almost all noise.

Notice that the Kalman gain matrices in the XKF remains the same as in the steady state case.
Only the NLO gain matrices are used to tune the transient behaviour. This is not the case with
the EKF, where the gains are set higher to make it converge faster. As seen from the position-
and velocity error plots in figure 6.9 and 6.10, this makes the EKF estimates slightly more noisy
when the filter reaches steady state.
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8.1 Simulation results

Finally, it must be mentioned that the initial values in simulation 2 were chosen such that the
EKF was able to converge. Albeit not shown in the results, just slightly more erroneous initial
conditions leads to the EKF estimates diverging and growing to infinity. This is not the case
with the XKF. Here all states will converge, but it might take longer time if the initialisation is
very inaccurate. Hence, the XKF has superior convergence capabilities compared to the EKF.

8.1.3 Steady state and transient behaviour of PF

Simulation 3 shows how the number of particles affects the performance of the steady state
estimation of the PF. In the XY-plot of figure 6.11 a number of 500 particles are used. This
yields an estimated trajectory which is relatively smooth, but with some clear deviations from
the true path. Figure 6.12 shows the same case, but here it is used ten times as many particles.
As can be seen from the figure this leads to much denser and more widespread particle clouds.
The result is a more accurate approximation of the posterior distribution of the states, and the
estimated trajectory is eminently close to the real trajectory. The degree of accuracy is best
illustrated in figure 6.13 where it is seen that the position error of the PF with 5000 particles
stays close to zero in surge and sway for all time instances. In the same figure one can see
that the position error in surge and sway for the PF with 500 particles fluctuates much more
around zero. This is also rooted in table 6.8 where the position RMS values in surge and sway
are reduced significantly when using more particles. The yaw estimate is less affected by the
increased number of particles.

Looking at figure 6.14 all velocity error estimates fluctuates around zero, and it is evident that
the estimates using 5000 particles fluctuates slightly less than the estimates using 500 particles.
The RMS values in table 6.9 confirms that the velocity estimates are more precise using 5000
particles. The price to pay for more accurate estimates is increased computational time. As
seen from table 6.14 it takes approximately ten times longer to run the filter with ten times the
number of particles.

From simulation 4 it is clear that the PF is capable to recover from erroneous initial conditions
with very fast convergence rates and with little overshoot in the state estimates. In the XY-plot in
figure 6.15 the particle cloud initially covers the whole operational space. As long as a sufficient
number of particles are used, some of the initial particles will be close to the true state of the
ROV. These particles gets a high weight and gets sampled more frequently in the next iteration.
In this way the particle cloud quickly shrinks from covering the whole operational space to only
cover the state space in close proximity to the ROV. From the position error estimates in figure
6.16, and the velocity error estimates in figure 6.17, it can be seen that the filter reaches the true
states in just about a second.
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8.1.4 Comparison of the EKF/XKF and PF

In this section the the Kalman filter implementations are compared against the PF. In the case of
steady state and a accurate mathematical model, it is evident from the RMS values in table 6.8
and 6.9 that the PF with 5000 particles outperforms the Kalman filters in surge and sway. Both
position and velocity estimates are more accurate. In yaw however, the Kalman filters estimate
heading slightly more precise. The PF with 500 particles makes the least accurate position and
heading estimates of all. On the other hand, its surge and sway velocity estimates are better
than the estimates of the XKF and the EKF.

When using a less accurate mathematical model, the RMS values of table 6.12 and 6.13 yields
different relations. The PF with 5000 particles still has the most accurate position estimate in
sway, but the Kalman filters are more accurate in surge. The ratio between the heading estimates
remains approximately the same. The PF with 500 particles still produces the most inaccurate
position and heading estimates. Based on the RMS values of the velocities, the PF with 5000
particles produces a clearly better estimate of the surge velocity than the Kalman filters. It also
produces a better yaw rate estimate. In sway the differences are smaller, but also less important
as the main movement is in surge and yaw.

In the transient case, table 6.11 shows that the PF has significantly lower RMS values for all
velocity estimates. This suggests that the velocity estimates of the PF converges much faster
than in the EKF and XKF. Also the RMS value for position in surge from table 6.10 is much
lower for the PF. For position in sway and heading, the differences are smaller. What is not
reflected in the numbers is however the steady state performance of the filters after the transient
stage. The XKF has one big advantage over the PF in this case. The NLO in the first step of
the XKF can be tuned for the transient stage, while the KF in step two can be tuned for steady
state. This is not possible with the PF, and as can be seen from table 6.5 the gains used for the
PF in the transient simulation are higher than the gains used in the steady state simulation. This
implies that the fast convergence of the PF is at expense of slightly less accurate estimates in
the following steady state.

One of the biggest differences between the PF and the Kalman filters are the computational
times. From table 6.14 it is evident that the PF with 5000 particles uses approximately 23 times
longer time than the EKF, while The PF with 500 particles uses approximately 2.3 longer time.
The XKF only uses about 1.3 longer time.
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8.2 Experimental results

8.2 Experimental results

In this section the experimental results from chapter 7 are discussed. As previously mentioned
only the PF is tested using experimental data.

8.2.1 Experiment 1

The results from experiment 1 shows that the PF is able to suppress the measurement noise.
However, from the XY-plot of figure 7.1 it is apparent that even though noise is reduced, the
position estimates are still fluctuating a lot around the true estimates. It is also seen from this
figure that the spreading of the particles is rather large. This is due to the error sources discussed
in section 5.4.7. It is thus necessary with large particle spreading to ensure that the true vehicle
accelerations are captured by some of the particles. Figure 7.2 gives a visual interpretation of
how well the PF is able to filter out noise from the measured states. The PF estimates fluctuates
less and have lower peaks than the measurements. The RMS values in table 7.2 confirms this,
where the estimates of surge and sway positions are reduced by ∼ 38% and ∼ 43% compared
to the measurements. The RMS value of the heading is reduced by ∼ 55%.

Figure 7.3 shows that the velocity estimates are not very accurate. With the relatively low ve-
locities of the ROV, the scale of the velocity error estimates are way above the acceptable limit.
The error estimates are however fluctuating around zero. This suggest that the filter is working
as intended, but the IMU-data are too inaccurate to determine velocities with higher precision.
The reason for the large fluctuations is that many particles have reasonably high weights even
if not all state hypothesis within the particle are accurate. For instance, a particle can contain
inaccurate hypotheses of the heading angle and the velocities. Albeit these estimates being inac-
curate, they may still produce a feasible position estimate together. Hence, the feasible position
estimate gives the particle high weight even though the velocity and heading estimates are not
accurate.

Running the filter offline with 5000 particles shows that the filter uses approximately 0.5 [s] to
evaluate 1 [s] of measured data. This number depends on what software is used to implement
the filter, and the specifications of the computer running this software. However, as this number
is found using Matlab running on a standard up to date laptop, it confirms that the PF is highly
computational expensive.
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8.2.2 Experiment 2

The results from experiment 2 shows that the PF is able to locate the ROV in the basin with high
convergence rates. The XY-plot in figure 7.4 is very similar to the XY-plot of the steady state
XY-plot in experiment 1. However, here it is shown how the initial particles are spread over
the whole operational space of the ROV. The XY-plot in figure 7.5 shows the reason for the fast
convergence rate of the PF. After only one resampling the initial particles have transformed from
a uniformly random distribution to a distinct cross. In the middle of the cross is the location
of the ROV. This indicates that the resampling step efficiently removes low weighted particles.
However, as can be seen there are still some particles outside the cross that seems to not contain
accurate hypothesis. This is because the randomness in the resampling step leads to some
low-weighted particles also being resampled. Another explanation is that these particles may
contain very accurate yaw estimates that still gives a decent weight. The steady state behaviour
of position errors in figure 7.6 and velocity errors in figure 7.7 is the same as in experiment 1.
The interesting part of these plots are the first 1-2 seconds where one sees that the PF converges
very fast. It is also evident that there are no overshoots in the estimates.

8.2.3 Simulations vs. experiments

The PF has been evaluated using both simulated data and experimental data. Even if the simula-
tions uses a thruster model and the experiments uses IMU-data, there are still some comparisons
that can be made. In both cases it seems to be an upper and a lower limit of how many particles
are needed in the filter. More than 5000 particles only leads to higher computational times, and
not more accurate estimates. The lower limit is around 500-1000 particles before the estimates
becomes too inaccurate. Hence, both experimental and simulated data shows that an increase
in particles is not always analogous with higher accuracy in the estimates. Albeit the velocity
estimates are not very accurate in the experiment, they fluctuate around zero. This suggest that
the implementation works, but that the sensor uncertainty is too large for accurate estimates. In
the transient case both simulated and experimental data yields the same convergence rates of
just a few seconds. There are very little overshoot in the transition to steady state. Hence, exper-
iments confirms that the proposed PF design used in the simulations is working. The accuracy
of the filter depends on the available information used as input source. In the simulations the
input source is of high quality. These inputs are not affected by the pitch angle of the ROV or
misalignment of the instruments etc. Hence, the input used in the simulations are much more
predictable and accurate.
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Chapter 9
Concluding remarks

In this section a conclusion is made on basis of the results and theory presented in the previous
chapters. A section with suggestions for further work is also included.

9.1 Conclusion

In this thesis two observer designs for use with ROV thurster models has been proposed. The
proposed designs are based on the theory behind the eXogenous Kalman filter and the particle
filter. The observers have then been compared both with each other, and the Extended Kalman
filter, which is one of the most widely used state observers for underwater vehicles today.

In the steady state case where all filters were given correct initial values, the EKF and the
XKF performed relatively similar in simulations. Both filters were however outperformed by
the PF in terms of estimation accuracy. In the transient case, where the filters were given
erroneous initial values, the differences between the filters were larger. The XKF and the PF
were both able to handle erroneous initial values well, but for the PF this was only possible
if the initial uncertainty intervals were specified correctly. In addition, the cascaded structure
of the XKF made it possible to tune the NLO for transient behaviour and the Kalman filter
for steady state. In this way the XKF could provide the best possible estimates also after the
transient stage. In terms of stability and transient behaviour the XKF can be concluded to have
the best characteristics.

Experimental data were gathered from an ROV in the NTNU MC-lab. As thruster measure-
ments were not available in the lab, IMU-data had to replace the thruster model in the PF. Due
to the lack of thruster measurements, the EKF and the proposed XKF design could not be tested
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using experimental data. However, two conclusions can be made from using the PF with exper-
imental data. The first is that the proposed PF, and the underlying method used in this thesis,
works with other and more realistic measurement sources. The second is that the PF should be
used with sensors having low update frequencies. The high update rates of the IMU gave long
computational times even if no simulator had to be run simultaneously with the filter.

Due to its superior stability properties, and fast computational times it is concluded that the XKF
is the most suitable filter for autonomous underwater applications. It increases computational
times slightly compared to the EKF, but in return it is much more robust and the accuracy in
estimates are approximately the same. It is also implemented with rather simple extensions to
the original EKF. Even though the PF is more accurate and has the fastest convergence rates, it
is not voted the best alternative due to two reasons. First reason is the high computational times.
In simulations the best performing PF used approximately 20 times longer time than the Kalman
filters. This leads to the PF demanding too much computational power in many situations. It
is also the reason why only six states were estimated with the PF in this thesis. In comparison
the Kalman filter implementations estimates twelve states in a fraction of the time. The second
reason is that the PF estimates are at risk of diverging if particles are not handled correctly. Too
little spread in particles may lead to the particles loosing track of the measurements and the
estimates diverges. However, the PF is highly customizable and it can handle any systems or
noise disturbances. For this reason there are certainly special cases where the PF could do a
better job than the Kalman filters.

9.2 Further work

Further work on this topic should include experimental testing where measurement of thrust
is available. This would make it possible to also test the proposed XKF design with more
realistic data sources. More importantly it would make it possible to directly compare the
simulated results with experimental results. A further step would be to conduct simulations and
experiments with the filters running in the control-loop.

It would also have been interesting to investigate the use of a nonlinear measurement function in
the filters. The linear assumption made in this thesis is not necessarily true for real measurement
sources. Hence, further work should investigate how other and more specific measurement
sources affect the different filters.

Including more states in the XKF, for instance states for estimation of wave motion would be a
great feature for a more robust filter. In the PF this is probably not applicable due to the high
computational cost.
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Appendix A
Simulator specifics

A.1 Model parameters

The parameters used in the Videoray Pro 4 model in Simulink are summarized below. These
parameters are the same parameters as found in (Arnesen and Schjølberg, 2016).

Table A.1: Hydrodynamic derivatives and damping coefficients

Xu̇ = 2.5028 kg Xu = 2.31 kg/s X|u|u = 18.5741 kg/m

Yv̇ = 7.1401 kg Yv = 5.0326 kg/s Y|v|v = 29.4535 kg/m

Zẇ = 8.0125 kg Zw = 6.6261 kg/s Z|w|w = 60.139 kg/m

Nṙ = 0.0395 kg m2 Nr = 0.0288 kg m/s N|r|r = 0.052 kg m/s

Table A.2: Weight and balance data

xg = 0.00 m xb = 0.00 m m = 7 kg

yg = 0.00 m yb = 0.00 m Iz = 0.0521 kg m2

zg = 0.10 m zb = 0.14 m
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A.2 Simulink diagram XKF

Figure A.1: Simulink diagram of simulator with XKF

A.2.1 Simulink diagram NLO

Figure A.2: Simulink diagram of the NLO used in the XKF
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A.3 Simulink diagram PF

Figure A.3: Simulink diagram of simulator with PF
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Appendix B
Program code

B.1 Particle filter using thruster model

This is the Matlab code used in the PF-block in the Simulink-diagram in appendix A.3.

B.1.1 Main

1 function x_hat = PF(y, init, noise, N, h, tau)

2 % y − measurement vector

3 % init − initial value vector

4 % noise − system/measurement noise tuning parameters

5 % N − number of particles

6 % h − timestep

7 % tau − thruster measurements

8
9 % Initial particle values

10 persistent prevParticles

11 if isempty(prevParticles)

12 prevParticles = zeros(N,6);

13 prevParticles(:,1) = init(1)*ones(N,1); % x

14 prevParticles(:,2) = init(2)*ones(N,1); % y

15 prevParticles(:,3) = init(3)*ones(N,1); % psi

16 prevParticles(:,4) = init(4)*ones(N,1); % u

17 prevParticles(:,5) = init(5)*ones(N,1); % v

18 prevParticles(:,6) = init(6)*ones(N,1); % r
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19 end

20
21 % Noise in system (e) and measurement (v)

22 e = noise(1:3);

23 v = noise(4:6);

24
25 % Predict states based on ROV model

26 statePred = projectParticles(h,N,e,prevParticles,tau);

27
28 % Weight particles using measurement

29 Wmeas = weights(statePred,v,N,y);

30
31 % Resample based on weights

32 index = resample(Wmeas');

33
34 X = statePred(index,1)';

35 Y = statePred(index,2)';

36 Psi = statePred(index,3)';

37 U = statePred(index,4)';

38 V = statePred(index,5)';

39 R = statePred(index,6)';

40
41 % Store particles for use in next iteration

42 prevParticles = [X ; Y ; Psi ; U ; V ; R ]';

43
44 % Final estimate

45 x_hat = [mean(X); mean(Y); mean(Psi); mean(U); mean(V); mean(R)];

46 end %PF

B.1.2 Sub-routines

1 function predictParticles = projectParticles( h,N,e,prevParticles,tau)

2
3 % Generate velocity hypothesises

4 tau_X = tau(1) + (e(1))^2*randn(N,1);

5 tau_Y = tau(2) + (e(2))^2*randn(N,1);

6 tau_Psi = tau(3) + (e(3))^2*randn(N,1);

7
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8 %% State projection

9 predictParticles = zeros(N,6);

10
11 for i=1:N

12 tau = [tau_X(i), tau_Y(i), tau_Psi(i)]';

13 nu = [prevParticles(i,4), prevParticles(i,5), prevParticles(i,6)]';

14
15 % Velocity rates from mathematical model

16 nu_dot = VideorayPro4(tau, nu);

17
18 % Update velocity hypotheses

19 predictParticles(i,4) = prevParticles(i,4) + h*nu_dot(1);

20 predictParticles(i,5) = prevParticles(i,5) + h*nu_dot(2);

21 predictParticles(i,6) = prevParticles(i,6) + h*nu_dot(3);

22
23 % Update pose hypotheses

24 psi = prevParticles(i,3);

25 predictParticles(i,1) = prevParticles(i,1) + ...

26 h*(predictParticles(i,4)*cos(psi)− ...

27 predictParticles(i,5)*sin(psi));

28
29 predictParticles(i,2) = prevParticles(i,2) + ...

30 h*(predictParticles(i,4)*sin(psi) + ...

31 predictParticles(i,5)*cos(psi));

32
33 predictParticles(i,3) = psi + h*predictParticles(i,6);

34
35 end %projectParticles

1 function nu_dot = VideorayPro4(tau, nu)

2
3 %Velocities

4 u = nu(1); % surge

5 v = nu(2); % sway

6 r = nu(3); % yaw

7
8 % Mass

9 m = 7; % Mass

10 Izz = 0.05205; % Yaw inertia
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11 Xdu = −2.5028; Ydv = −7.1401; Ndr = −0.0395;
12 M = diag([m−Xdu, m−Ydv, Izz−Ndr]);
13
14 % Damping

15 Xu = 2.31+1; Yv = 5.0326; Nr = 0.0288; %D_Lin

16 Xuu = 18.5741+2; Yvv = 29.4535; Nrr = 0.0520; %D_Quad

17 D = diag([Xu + Xuu*abs(u), Yv + Yvv*abs(v), Nr + Nrr*abs(r)]);

18
19 % Coriolis

20 CRB = [ 0 0 −m*v; 0 0 m*u; m*v −m*u 0];

21 CA = [ 0 0 Ydv*v; 0 0 −Xdu*u; −Ydv*v Xdu*u 0];

22 C = CRB + CA;

23
24 % Velocity rates

25 a = inv(M)*tau;

26 b = inv(M)*D*nu;

27 c = inv(M)*C*nu;

28
29 nu_dot = a(1:4,1) − b(1:4,1) − c(1:4,1);

30 end % VideorayPro4

1 function W = weights(statePred,v,N,y)

2
3 W_x = zeros(1,N);

4 W_y = zeros(1,N);

5 W_psi = zeros(1,N);

6
7 % Assign weight to each particle in each measured dimension

8 for i=1:N

9 W_x(i) = (1/sqrt(2*pi*v(1)))*...

10 exp(−(y(1)−statePred(i,1))^2/(2*v(1)));
11
12 W_y(i) = (1/sqrt(2*pi*v(2)))*...

13 exp(−(y(2)−statePred(i,2))^2/(2*v(2)));
14
15 W_psi(i) = (1/sqrt(2*pi*v(3)))*...

16 exp(−(y(3) − statePred(i,3))^2/(2*v(3)));

17 end

18
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19
20 % Normalize weights

21 W_x = W_x./ sum(W_x);

22 W_y = W_y./ sum(W_y);

23 W_psi = W_psi./ sum(W_psi);

24
25 % Final weight is the mean of each normalized

26 % weight in measured dimensions

27 W = (W_x + W_y + W_psi)/3;

28
29 end %weights

1 function ind=resample(w)

2 % Return index of resampled particles

3 N=length(w);

4 u = rand(N,1);

5 wc = cumsum(w);

6 wc=wc/wc(N);

7 [dum,ind1]=sort([u;wc]);

8 ind2=find(ind1<=N);

9 ind=ind2−(0:N−1)';
10 end %resample
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B.2 Particle filter using IMU data

B.2.1 Main

1 function x_hat = PF(y, init, noise, N, h, imu)

2 % y − measurment vector

3 % init − initial value vector

4 % noise − system/measurement noise tuning parameters

5 % N − number of particles

6 % h − timestep

7 % imu − IMU measurements

8
9 % Initial particle values

10 if isempty(prevParticles)

11 prevParticles = zeros(N,6);

12 prevParticles(:,1) = init(1)*ones(N,1); % x

13 prevParticles(:,2) = init(2)*ones(N,1); % y

14 prevParticles(:,3) = init(3)*ones(N,1); % psi

15 prevParticles(:,4) = init(4)*ones(N,1); % u

16 prevParticles(:,5) = init(5)*ones(N,1); % v

17 prevParticles(:,6) = init(6)*ones(N,1); % r

18 end

19
20 % Noise in system (e) and measurement (v)

21 e = noise(1:3);

22 v = noise(4:6);

23
24 % Predict states based on IMU−data
25 statePred = projectParticles(h,N,e,prevParticles,imu);

26
27 % Weight particles using measurement

28 Wmeas = weights(statePred,v,N,y);

29
30 % Resample based on weights

31 index = resample(Wmeas');

32
33 X = statePred(index,1)';

34 Y = statePred(index,2)';

35 Psi = statePred(index,3)';
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36 U = statePred(index,4)';

37 V = statePred(index,5)';

38 R = statePred(index,6)';

39
40 % Store particles for use in next iteration

41 prevParticles = [X ; Y ; Psi ; U ; V ; R ]';

42
43 % Final estimate

44 x_hat = [mean(X); mean(Y); mean(Psi); mean(U); mean(V); mean(R)];

45 end %PF

B.2.2 Sub-routines

Only one subroutine is changed to use IMU-data. Hence, the rest of the sub-routines are the
same as in appendix B.1.

1 function predictParticles = projectParticles( h,N,e,prevParticles,imu)

2
3 % Generate velocity hypothesises

4 a_x = imu(1) + (e(1))^2*randn(N,1);

5 a_y = imu(2) + (e(2))^2*randn(N,1);

6 r = imu(3) + (e(3))^2*randn(N,1);

7
8 % State projection

9 predictParticles = zeros(N,6);

10
11 % Update velocity hypotheses

12 predictParticles(:,4) = prevParticles(:,4) + a_x*h;

13 predictParticles(:,5) = prevParticles(:,5) + a_y*h;

14 predictParticles(:,6) = r;

15
16
17 % Update pose hypotheses

18 psi = prevParticles(i,3);

19 predictParticles(i,1) = prevParticles(i,1) + ...

20 h*(predictParticles(i,4)*cos(psi)− ...

21 predictParticles(i,5)*sin(psi));

22
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23 predictParticles(i,2) = prevParticles(i,2) + ...

24 h*(predictParticles(i,4)*sin(psi) + ...

25 predictParticles(i,5)*cos(psi));

26
27 predictParticles(i,3) = psi + h*predictParticles(i,6);

28
29 end %projectParticles
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B.3 eXogenous Kalman filter

This is the Matlab code used in the KF-block in the Simulink-diagram in appendix A.1.

B.3.1 Main

1 function [x_hat,x_bar_n,P_bar_n] = EKF(y,tau,Q,R,h,x_hat_NLO,x_bar,P_bar)

2 % y − measurement vector

3 % tau − measured thrust

4 % Q − system noise matrix

5 % R − measurement noise matrix

6 % h − timestep

7 % x_hat_NLO − lin. point from NLO

8 % x_bar − state projection from last iteration

9 % P_bar − covariance projection from last iteration

10
11 I = eye(12,12);

12
13 %% State space

14 % This is only the linear matrices of the state−space.
15 % Non−linear system matrix is found in function "fx"

16
17 m = 7; %Mass

18 Izz = 0.05205; %Yaw inertia

19 Xdu = −2.5028; Ydv = −7.1401; Zdw = −8.0125; Ndr = −0.0395;
20 M = diag([m−Xdu, m−Ydv, m−Zdw, Izz−Ndr])
21
22 %% State space matrices

23 % Input matrix

24 B = [zeros(4,4)

25 inv(M)

26 zeros(4,4) ];

27
28 % Noise matrix

29 E = [zeros(4,4) zeros(4,4) zeros(4,4)

30 zeros(4,4) inv(M) zeros(4,4)

31 zeros(4,4) zeros(4,4) ones(4,4)];

32
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33 % Measurement matrix

34 H = [1 0 0 0 0 0 0 0 0 0 0 0

35 0 1 0 0 0 0 0 0 0 0 0 0

36 0 0 1 0 0 0 0 0 0 0 0 0

37 0 0 0 1 0 0 0 0 0 0 0 0];

38
39 %% Extended kalman filter with linearization point from NLO

40
41 % Kalman gain

42 K = (P_bar*(H.')*inv(H*P_bar*(H.') + R));

43
44 % Update state estimate

45 x_hat = x_bar + K*(y − H*x_bar);

46
47 % Update error covariance

48 P_hat = (I − K * H)*P_bar*(I − K * H)' + K*R*(K.');

49
50 % State projection

51 x_bar_n = x_hat + h* ((fx(x_hat_NLO)+...

52 jacobian(x_hat_NLO)*(x_hat−x_hat_NLO)) + B*tau);

53
54 % Error covariance projection

55 phi = I + h*jacobian(x_hat_NLO); % Discretize

56 gamma = h*E;

57 P_bar_n = phi*P_hat*(phi.') + gamma*Q*(gamma.');

58 end %EKF
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B.3.2 Sub-routines

1 function f = fx(x_hat)

2 %Nonlinear system model

3
4 psi = x_hat(4); % Heading estimate

5 nu = x_hat(5:8)'; % Velocity estimates

6 b = x_hat(9:12); % Bias estimates

7
8 % Mass

9 m = 7;

10 Izz = 0.05205;

11 Xdu = −2.5028; Ydv = −7.1401; Zdw = −8.0125; Ndr = −0.0395;
12 M = diag([m−Xdu, m−Ydv, m−Zdw, Izz−Ndr]);
13
14 % Damping

15 Xu = 2.31+1; Yv = 5.0326; Zw = 6.6261; Nr = 0.0288;

16 Xuu = 18.5741+2; Yvv = 29.4535; Zww = 60.139; Nrr = 0.0520; %D_Quad

17 D = diag([Xu + Xuu*abs(u), Yv + Yvv*abs(v), Zw + Zww*abs(w), Nr + Nrr*abs(

r)]);

18
19 % Coriolis

20 CRB = [ 0 0 0 −m*v;0 0 0 m*u; 0 0 0 0;m*v −m*u 0 0];

21 CA = [ 0 0 0 Ydv*v;0 0 0 −Xdu*u;0 0 0 0;−Ydv*v Xdu*u 0 0];

22 C = CRB + CA;

23
24 % Rotation matrix

25 R = [cos(psi) −sin(psi) 0 0

26 sin(psi) cos(psi) 0 0

27 0 0 1 0

28 0 0 0 1 ];

29
30 % Non−linear system−matrix
31 f = [R*nu

32 −inv(M)*(C+D)*nu+inv(M)*R'*b
33 −ones(4,4)*b];
34 end %fx
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1 function [J]=jacobian(x)

2 % Numerical computation of the Jacobian of fx at x

3
4 n=length(x);

5 J=zeros(n);

6 f = fx(x);

7 eps=1.e−8;
8 xperturb=x;

9 for i=1:n

10 xperturb(i)=xperturb(i)+eps;

11 fperturb = fx(xperturb);

12 J(:,i)=(fperturb−f)/eps;
13 xperturb(i)=x(i);

14 end %jacobian
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