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Preface
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Summary

In the present Master thesis three-dimensional viscous flow simulations of flow
past a curved circular cylinder is investigated by utilization of the open source
Computational Fluid Dynamics (CFD) code OpenFOAM. The focus of the present
study has been to establish a basic setup for analysing the curved cylinder flow
problem in OpenFOAM by verification with recent unpublished Direct Numerical
Simulations (DNS) of the same problem.

The geometry considered is defined by three parts; a curved quarter-of-ring cylin-
der with a radius of curvature of 12.5D, a horizontal straight extension of length
10D and a vertical straight extension of 24D, where D is the cylinder diameter.
Straight extension lengths are chosen to eliminate free-end effects according to
recent research. The plane of curvature is aligned with the incoming flow and
directed towards the concave face of the curved part.

Uniform inflow at Re = 200 and 500 is considered and the solution is compared
to DNS results by means of analysing near wake flow details. The OpenFOAM
solution captures overall wake topology similar to the DNS. Shedding frequencies
are close to DNS however reduced slightly due to a stronger spanwise flow. Details
in the transitional region around the intersection between the curved and vertical
parts for Re = 500 are not captured correctly by the present study. Mean
and root-mean-square values of drag and lift forces are overpredicted by the
OpenFOAM solution. The tendency increases for larger Re and is owed to the
relatively low grid resolution near the cylinder compared to DNS.

Three variants of sheared inflow conditions are investigated. A linear shear pro-
file is considered both for positive and negative shear rate with Reynolds number
extrema of Re = 200 and Re = 500. An additional negative shear is considered
for extrema of Re = 700 and Re = 200. Three-dimensionalities in the freestream
introduces additional spanwise flow leading to different wake topologies for neg-
ative and positive shear. Positive shear exhibits cellular vortex shedding along
the vertical extension as seen for straight cylinders in shear flow. Interactions
between upwash from the curved part and downwash from shear results in a
high-frequency shedding region placed along the span of the vertical extension.
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Sammendrag

I denne masteroppgaven utforskes tredimensjonal viskøs strømning rundt en kurvet
sirkulær sylinder med diameter D ved hjelp av numerisk strømningsberegning og
“open source”-programmet OpenFOAM. Fokuset har vært å etablere en fun-
gerende modell for analyse av en kurvet sylinder for å danne et grunnlag for
videre arbeid. Modellen blir verifisert med eksisterende data fra DNS (Direct
Numerical Simulation) studier.

Geometrien er definert av en kvartsirkelformet sylinder med konstant krumn-
ingsradius 12.5D p̊amontert rette sylinderendestykker der en horisontal del av
lengde 10D begynner i strømningsinnløpet av beregningsdomenet og en vertikal
del av lengde 24D ender i øverste ytterpunkt av domenet. Endestykkene skal
sørge for at effekter fra grensebetingelser elimineres. Strømningen er parallel
med krumningsplanet og rettet mot den konkave flaten av den kurvede delen.

Uniform innstrømning ved Reynoldstall Re = 200 og 500 sammenliknes med
DNS- resultater i kjølvannet nært sylinderen. Den implementerte modellen fanger
opp de generelle trendene i strømningen godt men detaljer blir mer utydelige ved
høyere Re. Virvelavløsningsfrekvenser er nære DNS men noe redusert grunnet
høyere hastigheter aksielt langsmed sylinderen. Krefter p̊a sylinderen blir over-
estimert av OpenFOAM-modellen og trenden øker for økende Re, noe som trolig
skyldes lav grid-oppløsning nært sylinderen.

Tre varianter av innkommende skjærstrøm presenteres. Lineært varierende
skjærstrømsprofiler utbredt i sylinderens vertikale spenn for positiv og negativ
skjærrate sammneliknes, samt effekten av sterkere negativ skjærrate. Tredi-
mensjonale effekter i innstrømningen fører til en økning i aksialhastighet langs
nedstrømssiden av den vertikale delen for positiv skjærrate. En negativ aksial-
hastighet langs nedstrømssiden indusert av negativ skjærrate møter den positive
aksialstrømmen fra kurven og danner et omr̊ade langs vertikaldelen med høy
virvelavløsningsfrekvens. Høyfrekvensomr̊adet flyttes nedover med økende nega-
tiv skjærrate.
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Nomenclature

Abbreviations

CAD Computer Aided Design

CylRefLvl Refinement level in SHM used for approximating the cylinder surface.

ffRefLvl Refinement level in SHM used in the farfield wake region grid.

FLUENT Commercial CFD software by ANSYS

FVM Finite Volume Method

IP Independence Principle.

L Laminar state.

nfRefLvl Refinement level in SHM used in the nearfield wake region grid.

PISO Pressure Implicit with Splitting of Operators

SHM SnappyHexMesh

SIMPLE Semi-Implicit Method for Pressure-Linked Equations.

STAR-CCM+ Commercial CFD software by Siemens

TrSL Transition-in-Shear-Layer.

TrW Transition-in-wake state.

VIV Vortex Induced Vibration.

Symbols

a Wake domain length. Distance from trailing edge of the vertical cylinder
to the end of the domain. [m]

α Angle of incidence.

Aref Cylinder face area projected in the inflow direction. [m2]

b Distance from bottom of horizontal extension to lower domain boundary.
[m]



β Angle of non-orthogonality between cells.

c Total computational domain width (along y-axis). [m]

CL Cylinder lift force coefficient. Fy/
1
2ρU

2
0S [−]

CL,rms Root mean square of the cylinder lift force coefficient. [−]

CD Mean of the cylinder drag coefficient. [−]

CD Cylinder drag force coefficient. Fx/
1
2ρU

2
0S [−]

Co Courant number.

Comean Mean Courant number in the domain.

Comax Max Courant number in the domain.

D Cylinder diameter. [m]

∆t Finite time step. [s]

t∗ Non-dimensional time.

∆t∗ Non-dimensional finite time step.

∂Ω The boundary surface of control volume Ω. [m2]

e1, e2, e3 Unit vectors in standard cartesian coordinate system, for x, y, and z

respectively.

f Acceleration vector of arbitrary volume force on control volume. [m/s2]

Fx Integrated force component on the cylinder in x-direction. [N ]

Fy Integrated force component on the cylinder in y-direction. [N ]

f∗c Non-dimensional frequency based on median inflow velocity. fD/Uc [−]

f∗peak Non-dimensional peak frequency obtained in frequency spectrum of lift
force. [−]

f∗l Local non-dimensional frequency based on local inflow velocity. fD/U0(z)
[−]

f∗ Non-dimensional frequency based on free-stream velocity. fD/U0 [−]



h Total domain height. (In introduction: horizontal extension length.) [m]

K Non-dimensional shear steepness. [−]

Λ Cylinder yaw angle.

Lh Length of horizontal extension. [m]

LnF Length (along x-axis) of the nearfield wake grid. [m]

Lx, Ly, Lz Domain dimension in each coordinate direction. [m]

Lv Height of vertical extension. [m]

n Fluid control volume outward normal vector [n1, n2, n3].

NcellsT ot Total number of finite volume cells in the domain.

Nx, Ny, Nz Number of cells in x-, y- and z-direction for the background mesh.

Nlayers Number of boundary layer elements outwards from the cylinder surface.

Ω A general finite control volume. [m3]

ω Vorticity vector.

P ∗ Non-dimensional fluid pressure, P/ρU2
0 . [−]

P Fluid pressure. [N/m2]

p Kinematic fluid pressure as solved by OpenFOAM, P/ρ. [m2/s2]

R Radius of curvature from origin to leading edge of curved cylinder. [m]

Re Cylinder diameter Reynolds number based on uniform free-stream Re =
U0D/ν [−]

Rebottom Local Reynolds number at the bottom of the domain. [−]

Rec Reynolds number according to median velocity. [−]

Rel(z) Local Reynolds number. [−]

Retop Local Reynolds number at the top of the domain. [−]

ρsim Fluid mass density used by OpenFOAM in calculations. ρsim = 1 [kg/m3]



S Spanwise ordinate. [m]

∆xrefined Cell size in x-direction after refining by SHM according to NrefLvl.
[m]

∆xbackground Background cell size in x-direction as defined in BlockMesh.

NrefLvl Refinement level set in SHM for grid refinement.

δfinal Thickness of the layer farthest from the geometry when adding layers in
SHM.

∆ Size of nearest cell outside layer mesh region.

ζ Size ratio of final layer cell to nearest non-layer cell δfinal/∆.

er Expansion ratio of boundary layer grid cell size.

t∗ Dimensionless time variable, tU0/D. [−]

t Time variable. [s]

τ µ∇U , viscous stress tensor for a Newtonian fluid. [N/m2]

tBL Thickness of the boundary layer grid along the cylinder. [m]

θ Angular ordinate along teh curved part.

U∗ Non-dimensional velocity vector [u∗, v∗, w∗] = U/U0. [−]

U0 Inflow velocity. [m/s]

U0(z) Variable inflow velocity. [m/s]

U Velocity vector [u, v, w]. [m/s]

Û(t) Spatial average of U(x, y, z) over a control volume cell. [m/s]

Uax Velocity component along the cylinder span. [m/s]

Ubottom Inflow velocity at bottom of the domain. [m/s]

Uc Median velocity in case of shear flow. [m/s]

Uconcave Definition of concave flow direction used in introduction section.



Uconvex Definition of convex flow direction used in introduction section.

Un Component of the inflow velocity which is normal to the cylinder axis

Un Flow normal to cylinder axis. [m/s]

Us Component of the inflow velocity which is parallell to the cylinder axis

Us Spanwise velocity component for yawed cylinders.

Utop Inflow velocity at top of domain. [m/s]

u∗, v∗, w∗ Non-dimensional velocity components, u/U0, v/U0, w/U0. [−]

u, v, w Velocity components in x-, y- and z-direction respectively. [m/s]

ϕ Scalar flow variable.

WfF Width (along y-axis) of the farfield wake grid. [m]

WnF Width (along y-axis) of the nearfield wake grid. [m]

x∗, y∗, z∗ Non-dimensional cartesian coordinates, x/D, y/D, z/D. [−]

x, y, z Cartesian coordinates. [m]
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1 Introduction C. Skjulstad

1 Introduction

Flow past cylinders with circular cross-section is a widely studied subject in re-
search due to its practical importance in engineering application on typical marine
structures exposed current and waves. Typical examples in marine engineering
are marine risers, offshore platform legs, underwater cables for transport of oil,
gas and electricity, however also underwater vehicles such as submarines. Most
of the research is conducted on two-dimensional cylinders and three-dimensional
straight cylinders including both experimental and numerical research. Next in
amount of research is the inclined straight cylinder where flow features have been
compared to that of the straight cylinder. A rather recent area of research is the
flow past curved cylinders, where only a handful of researchers have stepped in
so far.

In this section the basic flow phenomena governing flow past circular cylindrical
structures are summarized in section (1.1) and flow around inclined cylinders in
section (1.2) as they define important apsects also related to curved cylinders.
The specific research conducted on the flow past curved cylinders is summarized
in section (1.3). Regarding the flow past straight and inclined cylinders, the
presentation is limited to most important aspects relevant for the present study.
This applies also to the range of Reynolds numbers considered.

Following sections are presented in the outline below:

• Section 2: Governing Equations and Numerical Treatment. Presents the gov-
erning fluid flow equations and the assumptions of the flow. Then the discretization in a
Finite Volume Method of the resulting equations are explained and related to the model
applied in OpenFOAM.

• Section 3: Computational Grid and Domain. Describes the generation of a com-
putational grid in the tool SnappyHexMesh supplied with OpenFOAM and the resulting
grid and domain layout applied in the present study. Flow variables and normalization
practices are explained and boundary conditions are outlined.

• Section 4: Grid Independence Study. Describes the analysis that lead to the
choice of a computational grid.

• Section 5: Simulations - DNS Comparisons. Verification with existing results
from a previous DNS study.

1



1 Introduction C. Skjulstad

• Section 6; Simulations - Effect of Shear Inflow. Results of a sheared inflow are
presented.

• Section 7: Conclusions. A conclusion summary of the main findings.

• Section 8: Appendix. Additional plots and data which were not discussed in the
main body.

Additional scripts and files developed are included along this thesis in a Zip-
directory. These include:

• H10V24R12 template: A template OpenFOAM case-directory with homemade (be
aware!) shell-scripts for running the shear-flow case. It is easy modifiable to run other
cases as well on the same grid.

• OF ANALYSIS: MATLAB scripts for loading and post-processing of OpenFAOM
data. MATLAB script and excel-sheet for preparing numerical probes. MATLAB script
for preparing inflow velocity fields (shear profiles).

The template is not in working order as it requires a grid. A more complete set
of data, details for simulations settings on Vilje and a working template for pre-
processing, simulations and post-processing in OpenFAOM and SnappyHexMesh
will be included on a harddrive to my supervisor Bjørnar Pettersen for further
work.

2



1.1 Flow Past Circular Cylinders C. Skjulstad

1.1 Flow Past Circular Cylinders

The main characteristics of viscous fluid flow is often categorized in terms of the
Reynolds number. Flow past bluff bodies, such as the circular cylinder, is no
exception and the flow regimes occurring is often characterized by some range of
the Reynolds number for the cylinder defined by (1).

Re = U0D

ν
(1)

Where U0 is the incident flow velocity, D is the cylinder diameter and ν is the
kinematic viscosity of the fluid. As the Reynolds number is increased from zero,
the flow around the cylinder experiences large changes. There are many defini-
tions on the different regimes in the literature (especially regarding the Reynolds
number range), however this text will consider the definitions of (Zdravkovich
1997), where the rough outline is according to table (1) below.

Table (1): Rough Reynolds number ranges for flow regimes around a circular cylinder in
uniform flow. According to (Zdravkovich 1997)

.
State Characteristic stages Reynolds number range

Laminar state L
Creeping flow, steady sep-
aration, laminar vortex
shedding.

0 < Re < 200

Transition-in-wake
state TrW

Transition of laminar ed-
dies in the wake, mov-
ing upstream with Re un-
til transition during eddy
formation.

180 < Re < 400

Transition-in-shear-
layers TrSL

Transition waves, transi-
tion eddies, burst to tur-
bulence.

350 < Re < 2× 105

The laminar state of flow (L) represents first the creeping flow range 0 < Re <

4− 5 where the flow remains symmetric about both an axis parallell and perpen-

3



1.1 Flow Past Circular Cylinders C. Skjulstad

dicular to the free stream flow direction, hence the shear layers remains symmet-
rical and attached and there is no wake behaviour. The next range considered
is the steady laminar separation for 4 − 5 < Re < 30 − 48 where the shear lay-
ers separate and forms a closed wake near the cylinder body. The so-called free
shear layers meet at a distance downstream, which is gradually increasing with
Re (Çengel 2014), leaving this closed loop of two recirculating regions of opposite
direction. The steady behaviour reaches an end when the elongated near-wake
becomes unstable. Instability in the wake causes the periodic laminar regime to
commence and it lasts through 30 − 48 < Re < 180 − 200. The instability in
the wake initializes a wave-like oscillatory motion of the shear layers which am-
plitude increases with Re (Zdravkovich 1997) until the shear layers roll up in the
”crests” and ”troughs” when Re > 45 − 65, at which the wake flow is known as
Karman-Benard eddy street (Zdravkovich 1997) after the French physicist Henri
Benard and the Hungarian physicist Theodore von Karman. The phenomenon
of eddies being formed on alternating sides of the cylinder and then convected
downstream is also referred to as vortex shedding.

The range 180 < Re < 400 is the transition-in-wake state (TrW) where the
laminar eddies in the wake transitions to turbulence far downstream and the
transition moves upstream as Re is increased. When 220−250 < Re < 350−400
the transition happens during the formation of the eddies.

Transition-in-shear-layers (TrSL) state develops during a rather large range of
Re as indicated in table (1). Three phases of this regime is used by (Zdravkovich
1997). First off in the range 350− 400 < Re < 1− 2× 103 there is a development
of transition waves in the shear layers which roll up into discrete eddies along
the free shear layers as Re is increased. The small discrete eddies roll up into
alternate eddies downstream once becoming turbulent. A burst to turbulence
occurs in the free shear layers somewhere in the range 20× 103 < Re < 2× 105

and the formation of alternate eddies takes place close to the rear of the cylinder.

4



1.2 Flow Past Inclined Circular Cylinders C. Skjulstad

1.2 Flow Past Inclined Circular Cylinders

Describing only the flow past a straight circular cylinder would be insufficient con-
sidering that many engineering applications will involve that cylindrical members
are inclined in some way relative to the direction of inflow. A problem involv-
ing some certain yaw angle defining the relative angle between the cylinder axis
normal and the free stream direction is convenient. This text will follow the
nomenclature proposed by (Ramberg 1983) and according to figure (1). Accord-
ing to the figure, the component of the inflow velocity U0 which is normal to the
cylinder axis is defined by Un in equation (2)

Un = U0 cos Λ (2)

Where Λ is the yaw angle. In figure (1) the angle of incidence α, spanwise velocity
component Us and the cylinder coordinate system (x′, z′) relation to global axis
systems (x, z) are indicated.

Figure (1): Definition sketch and nomenclature of the inclined cylinder problem.

A few initial observations of the problem can be made according to (Zdravkovich
2003):

5



1.2 Flow Past Inclined Circular Cylinders C. Skjulstad

• The cross-section of the circular cylinder becomes elliptical relative to the
inflow U0, and the ratio of major-to-minor axis of the ellipse is proportional
to the yaw angle Λ.

• The free stream velocity has two components: one normal to the cylinder
axis and one parallel to the cylinder span.

• It may be argued that Un has a major effect on the flow, while Us should
have a minor effect.

• For Λ = 45◦, Un = Us, while for Λ > 45◦, Us > Un. Intuitively a larger Λ
will contribute to a change in flow dynamics near the cylinder, and the Un

should become insignificant at some point.

A tempting solution to the problem is to regard the yawed cylinder as a straight
cylinder only with an inflow velocity of Un = U0 cos Λ. This is a convenient and
widely applied method in engineering, and it is named the independence principle
or the cosine law (Zdravkovich 2003). A theoretical confirmation for this veloc-
ity decomposition was given by (Sears 1948). He simplified the Navier-Stokes
equations of motion for viscous fluids and applied the same order of magnitude
analysis done by Prandtl in 1904 (see e.g. (White 2006)) for the laminar bound-
ary layer equations, applying them to the special case of a yawed cylinder of
infinite length. He found that U0 cos Λ for the yawed cylinder follows the same
equations as the U0 for an unyawed cylinder. He also found that the spanwise
boundary layer flow can be found by integration of a linear second-order differen-
tial equation. Combined this yields independence of normal flow and yaw angle,
and hence the basis of the Independence Principle. However, several limitations
must be mentioned for the use of this principle:

• Laminar boundary layer theory becomes invalid beyond flow separation,
limiting the theory’s applicability to within the stagnation and separation
lines. This implies that base pressure and drag force might not be accurately
described.

• By the infinite span approximation a 2D flow is implied and the theory will
not account for end-effects.
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• Flow disturbances introduced by spanwise flow is responsible for transition
around separation for unyawed cylinders. The spanwise flow is likely to
modify the disturbances and the value of Re at which transition around
separation occurs for yawed cylinders.

1.2.1 Some Remarks in the TrSL state

Some interesting findings in research are reported for inclined cylinders in the
TrSL state. The Reynolds number range is somewhat outside the target range
in this study, however research on cylinders are historically mostly experimental
and thus often at higher Reynolds numbers.

As the IP is not valid beyond separation, it is not expected to correlate vortex
formation length and width in terms of Λ (Zdravkovich 2003). (Ramberg 1983)
studied somewhat larger Reynolds numbers of Re = 550 and Re = 750. He scaled
the vortex formation length and also the base pressure coefficient according to
IP, and the results were not coinciding with the unyawed case.

In the range of 1 × 103 < Re < 52 × 103 (Shirakashi, Wakiya, and Hasegawa
1986) tested the validity of using equivalent elliptical straight cylinders for de-
scribing the inclined cylinder problem. The elliptical cylinder are less bluff than
circular cylinders implying a narrower wake and higher St, however the case for a
yawed cylinder is exactly the opposite (Zdravkovich 2003). (Shirakashi, Wakiya,
and Hasegawa 1986) verified this concluding that the analogy between elliptic
cylinders and the yawed circular cylinder does not hold.

(Tournier and Py 1978) conducted experiments measuring surface velocity gra-
dients along the circumference and the span of a circular cylinder tested at
Re = 13.9 × 103 for Λ = 0◦, 10◦, 20◦and 30◦. Time-averaged velocity gradi-
ents from each yaw angle projected normal to the flow was found to coincide
with the friction coefficient curve for an unyawed cylinder, proving the validity
of the IP. The IP scaling was however not appropriate for the spanwise velocity
gradient which is zero for a straight cylinder.

(Shirakashi, Ueno, et al. 1984) measured eddy shedding frequency in a wide
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range of 50 < Re < 1.2× 104 for Λ = 39◦. In the L3 (lanminar vortex shedding)
and TrSL1 (transition waves in shear layers) regimes experimental points were
found to collapse onto the empirical curve. However in TrW (transition in wake)
and TrSL2 (transition eddies in shear layers) a notable scatter was observed,
indicating complex interference between the inclined cylinder geometry and the
transitional three-dimensional wake.

(Hayashi et al. 1992) measured extended the measurement of shedding frequencies
to along the span of a cylinder inclined to Λ = 10◦ and Λ = 20◦ at a single
Re = 2× 104 with and without end plates. He found three notable features:

• Eddy shedding is not uniform along the span. A variation in shedding
frequency along span was observed.

• Addition of end plates for Λ = 10◦ improves the uniformity of eddy shed-
ding.

• At Λ = 10◦ the frequency density is irregularly distributed along the span
and narrow-banded. At Λ = 20◦ peaks are lowered by an order of magni-
tude, spectrum is more broad-banded and the spanwise distribution is more
regular.

(Hayashi et al. 1992) further plotted St along the span for each cylinder (Λ =
0◦, 10◦, 20◦, with and without end plates) and found evidence of distinct eddy
shedding cells along the span with different frequencies. Without end plates, the
St variation along the span was found to be similar for the straight and inclined
case. For Λ = 10◦ the St is preserved. However for end plates two eddy shedding
cells was indicated for Λ = 10◦ and three shedding cells for Λ = 20◦. It appears
that the weakening of eddy shedding is associated with shedding cells at different
frequencies (Zdravkovich 2003).

(Shirakashi, Wakiya, and Hasegawa 1986) found that partition plates placed
behind the inclined cylinder at φ = 180◦ prevented secondary flow in the spanwise
direction, thereby limiting interference with the vortex shedding mechanism and
providing a recovery of strong vortex shedding.

(Smith, Moon, and Kao 1972) confirmed the invalidity of the IP for determining
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the base pressure, thus also rendering the IP useless for evaluating the drag
coefficient for inclined cylinders.

1.3 Flow Past Curved Cylinders

Considering marine hydrodynamics application, the geometry of a curved cylin-
der becomes equally important as inclined cylinders. Examples are flexible ris-
ers, pipelines for transport of oil and gas, and components of subsea production
systems. Although the amount of research conducted on straight and inclined
cylinders are enormous, the documentation on flow past curved circular cylinders
is more limited. However since the beginning of the 2000s there has seemed to
become an increasing interest in gaining knowledge on curved cylinders as well.
A few numerical studies as well as some experimental studies have been done so
far on the curved cylinder, and the most common arrangement is according to
the sketch in figure (2).

Figure (2): Sketch of the most common idea of arrangements so far when dealing with
the curved cylinder problem.

In figure (2) above the general geometry is indicated by the constant curvature
section curved section as well as the two extensions vertical extension and hori-
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zontal extension. For the flow being parallel to the plane of curvature (i.e. the
(x, z)- plane) there has been two main cases of study; the inflow being in towards
the convex part of the geometry, denoted here by Uconvex, and the inflow being
in towards the concave geometry, denoted by Uconcave.

1.3.1 Experimental Studies

(Assi et al. 2014) cunducted model experiments with two degrees of freedom for
a rigid curved cylinder in the Reynolds number range of 750 < Re < 1.5 × 104.
Both convex and concave configurations were considered and compared to the
response of a typical straight cylinder. It was shown that the curved cylinder has
lower peak vibration amplitude than a comparable straight cylinder. Although
the peak amplitude was reduced, the curved cylinder may still present signigicant
levels of vibration that are sustained for a wider range of reduced velocity than the
typical synchronization range. Streamwise vibration was also observed for very
high reduced velocity (up to Vr = 18). Overall response showed little dependency
on the vertical section of length h = 0 to h = 10D. Different flow interactions in
the concave and convex configuration was observed, and it is proposed that this
could be related to buffeting, galloping, disturbed VIV or geometric instability.

1.3.2 Numerical Studies

In the extensive report by (Miliou et al. 2007) results of flow past a stationary
curved cylinder in both convex and concave configuration was given for Re = 100
and Re = 500. The flow was found to be highly three-dimensional for each flow
configuration, and also very dependent on the geometry. Flow visualization was
confirmed by towing the curved cylinder according to the straight cylinder exper-
iments by (Slaouti and Gerrard 1981). For both convex and concave geometry,
the flow at the stagnation face in spanwise direction was found to be significant
of magnitude up to 30% of free stream velocity. In the concave configuration sp-
wanwise flow was observed also immediately behind the cylinder. In the convex
configuration vortex shedding was driven mainly by the shedding from the ver-
tical section, resulting in a single shedding frequency occurring along the span,
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in contrast to what would be expected from an independence principle analysis.
Vortex shedding was completely suppressed at Re = 100 for concave geometry,
and a lower shedding frequency than expected was observed for Re = 500 at the
top of the cylinder. The vortex suppression resulted in a reduction in total drag.
The effect of the artificial boundary condition at the top (considering no vertical
extension) was investigated for the concave geometry by introducing a vertical
extension of 6D in length. The impact was tremendous as the flow went from
nearly non-interacting shear layers to a strong interaction due to axially aligned
flow in the near wake of the cylinder.

(Vecchi, Sherwin, and Graham 2008) studied the fundamental mechanism of vor-
tex shedding past a curved cylinder in both convex and concave configuration
at Re = 100. Two different kinds of oscillatory motion was tested; transverse
oscillation of the whole cylinder setup and a roll oscillation about the horizontal
cylinder axis. For the transverse oscillation of the convex configuration it was
found that vortices are shed more in phase along the span making the vortex cores
curve along the cylinder, while as (Miliou et al. 2007) found for the stationary
curved cylinder the phase of vortex shedding is shifted such that vortex cores are
straight. (Miliou et al. 2007) also found that for a stationary cylinder in the con-
cave configuration vortex shedding was suppressed, however by (Vecchi, Sherwin,
and Graham 2008) the transversely oscillating cylinder in concave configuration
exhibits the same curved vortex core shedding. A hydrodynamic damping force
was found due to the transverse oscillation of the horizontal section. For the case
of the rotation oscillation about the horizontal cylinder axis, the damping was
no longer present and the wake was completely different exhibiting out-of-phase
vortex shedding however twisted spanwise farther downstream.

(Canabes 2010) studied in his masters thesis the convex geometry by direct nu-
merical simulation at Re = 100 and Re = 500. Two inflow boundary conditions,
one uniform and one a linear shear profile. Stagnation line area, recirculation
region, vortical structures in the wake and shedding frequencies were investi-
gated. The normalized pressure coefficient was calculated along the front and
rear stagnation lines indicating that the Independence Principle may be used
for the stagnation lines up to an angle of 45◦measured from the top plane. A
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favourable pressure gradient induced a significant axial flow along the leading
edge of the cylinder for both Reynolds numbers. The presence of shear flow in-
creased this effect in the upper part of the cylinder, as well as exhibiting a region
of almost zero pressure gradient along the rear stagnation line affecting the recir-
culation zone. For uniform flow vortices were shed at one single frequency. The
increase of radius of curvature was found to have no effect on the Strouhal num-
ber, in contrast to earlier research. Some Strouhal dependence on domain size
was also reported. For uniform shear flow, two distinct vortex shedding cells were
observed for both Reynolds numbers. Vortical structures were in good agreement
with the studies by (Miliou et al. 2007).

(José P Gallardo, Bjørnar Pettersen, and Helge I Andersson 2011) investigated
the turbulent wake of the convex configuration at Re = 3900 finding similar
periodic vortex pattern to studies at lower Re (Miliou et al. 2007), however some
tilting of vortices was observed. Stronger influence from secondary flow along
the span was found to increase the degree of flow instability. Also influence of
the top symmetry boundary condition was found to suppress instability in shear
layers. Top boundary conditions are further investigated in (José P. Gallardo,
Bjørnar Pettersen, and Helge I. Andersson 2013).

In (José P Gallardo, Helge I Andersson, and Bjørnar Pettersen 2014) the convex
configuration at Re = 3900 is studied including a vertical extension to separate ef-
fects of free-slip top boundary condition. Slightly lower vortex shedding fequency
was found in the upper straight section compared to the dominant curved section.
A mild axial flow in the lee side of the cylinder was found to displace the recir-
culation region in the very near wake as well as impacting the wake behind the
vertical extension. A lower wake and upper wake was suggested due to the dis-
tinct enhanced three-dimensionality and less vigorous shedding in the lower wake.
Turbulence properties was found to be essentially unaffected by axial curvature.
Shear layer instabilities were significantly greater in the lower part compared to
the upper part. (José P Gallardo, Helge I Andersson, and Bjørnar Pettersen
2014) also suggests that enhanced scrambling in the lower wake at Re = 3900
tends to decorrelate the vortex dynamics in the lower part of the wake from the
shedding further up, reducing the risk of VIV.
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Further investigations of the turbulent wake for a curved circular cylinder was
conducted in (José P. Gallardo, Bjørnar Pettersen, and Helge I. Andersson 2014)
with the aim to investigate the possibilities of analyzing the curved cylinder
problem without the use of a full 3D approach as DNS (Direct Numerical Simu-
lation) or LES (Large Eddy Simulation). Simplified methods discussed are RANS
(Reynolds-Averaged Navier-Stokes) and ROM (Reduced Order Modelling). Es-
pecially for the use of RANS, a turbulence model capable of representing highly
anisotropic flow dynamics should be selected for curved cylinders. This is due to
the large variations in different Reynolds stress components along the depth.

(Xu and Cater 2016) studied the curved cylinder geometry numerically simulating
a marine riser in ocean currents at Re = 1.5×105 in a logarithmic velocity profile.
The geometry was defined by a constant radius of R = 12.5D, there was only a
straight extension of aspect ratio L/D = 20. The diameter of the cylinder was
D = 0.3m according to full scale, sea water properties at 15◦C were used, and thus
the maximum velocity in the logarithmic flow profile was set to 0.6m/s to obtain
the required reynolds number. Both the convex and concave configurations were
studied in both uniform and logarithmic inflow, as well as a straight cylinder of
same height and diameter.

(Xu and Cater 2016) used the commercial software ANSYS Fluent solving the
time-averaged Navier-Stokes equations. Wall function was used with a constraint
for the non-dimensional wall distance y+ < 30. A mesh refinement study of
intervals around the cylinder resulted in converged solutions for CD, CL,RMS

and St at 180-200 angular elements. 180 angular elements was found accpetable.
This was used for both straight and curved cylinder. Multiple closure models
were tested and the realizable k − ε model was used since it was found to be
the best match with experimental data for straight cylinders. In both uniform
and logarithmic flow, the concave configuration was found to have the lowest
value of CL. For both cases it was argued that the reduction in drag was due to
suppression of vortex shedding due to the geometry altering the local velocities.
Regular vortex shedding in concave configuration is suppressed more than in
the convex configuration. For the uniform inflow case, this effect is naturally
larger than for the logarithmic inflow, since the logarithmic profile introduce
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lower velocities around the curved section in any case. In both inflow conditions,
the cylinder experiences the smallest CL,RMS in the concave configuration, while
the straight cylinder experiences the largest CL,RMS .

Further for the uniform flow case (Xu and Cater 2016) found the convex con-
figuration to have a similar vortex structure as a straight cylinder in the wake,
and the concave configuration showed less vorticity shed in the lower section. In
logarithmic flow the concave configuration generated less circulation, and had
a smaller re-circulation zone compared to the convex configuration. Significant
limitations of the study is that fully turbulent flow has been assumed and tur-
bulent transition processes is not modelled. Also no matching experimental data
exist for these Reynolds numbers.

The concave problem for the curved cylinder configuration was studied by (F.
Jiang, B. Pettersen, and H. I. Andersson 2018) with a focus on the influences of
the horizontal extension. The unsteady three dimensional Navier-Stokes equa-
tions were solved directly for Reynolds number Re = 100. Due to the flow di-
rection, the interaction between the inlet boundary and cylinder is unavoidable.
The boundary layer development along the horizontal extension was studied and
the boundary layer was found to be thinner than for the Blasius solution given
in ((White 2006), p.232). Configurations with horizontal extensions of length
h = 5D and h = 10D were tested as well as one where h = 0. It was found
that the flow conditions entering the curved part of the cylinder is very different
whether a horizontal extension is considered or not. Streamwise velocity drops
abruptly over the first 2-3D and a further reduction is observed along the 5D or
10D extension. The boundary layer profile reaching the curved cylinder is con-
siderably thicker when horizontal extensions are considered, meaning that the
inflow boundary condition alone (exponential boundary layer profile) provides a
too thin boundary layer at the curved cylinder. Local peaks in streamwise and
vertical velocity was found using horizontal extensions, however only a vertical
velocity peak was found when no horizontal extension was included. Due to the
very different flow conditions, a minimum horizontal extension of h = 5D was
recommended, however h = 10D is preferred for numerical studies of the concave
problem.
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Recent unpublished studies of direct numerical simulations (F. Jiang, B. Pet-
tersen, H. I. Andersson, et al. 2018) at the Institute for Marine Technology,
NTNU1 considers the effect of the length of vertical extensions, and thus the top
boundary, in the concave flow configuration. Reynolds numbers in the range of
Re = 100− 500 are considered so far with vertical extension lengths spanning up
to 24 cylinder diameters. The spanwise flow has proven very strong with a value
of ∼ 20% of the incident flow velocity even as far as ∼ 20 diameters vertically.
There is a tendency of a complex transitional region occurring at the intersection
between the curved part and vertical extension. This region is more prominent
as Reynolds number increases.

1Norwegian University of Science and Technology
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2 Governing Equations and Numerical Treatment

This section describes the different aspects of solving the governing equations for
viscous flow known as the Navier-Stokes equations. Assumptions made about the
flow are listed and a resulting form of the governing equations are obtained. A
background on numerical treatment of the equations in a finite volume method
(FVM) formulation are reviewed and related to the settings used in OpenFOAM.

This section follows to some extent the reasoning of FVM methods compiled in
the excellent reviews on the subject given in (Versteeg 2007), (Ferziger 2002) and
(Pletcher 2013).

2.1 The Navier-Stokes Equations

The general set of equations to be solved for viscous flow are the Navier-Stokes
equations. They exist in various forms however they can be represented in gen-
eral as a set of four (in three spatial dimensions) equations consisting of three
momentum equations and one equation for mass conservation. The momentum
equations are represented by the vector integral equation (3) depicting Newtons
2nd law of motion for forces acting on a fluid control volume Ω of boundary ∂Ω.
Newtonian fluid is assumed.

∫
Ω

∂ρU
∂t

dV +
∫

∂Ω
ρU(U · n)dA = −

∫
∂Ω
PndA+

∫
∂Ω
τ · ndA+

∫
Ω
ρfdV (3)

Here τ = µ∇U is the viscous stress tensor for a newtonian fluid 2, U = [u, v, w]
the velocity vector with its respective cartesian components in x, y and z direc-
tions, n is the control volume outward normal vector along ∂Ω, P is the fluid
pressure on the control volume boundary and f represents an acceleration vector
of an arbitrary volume force acting on Ω.

2strictly a general deformation law for a linear newtonian fluid involves the coefficient of
bulk viscosity “λ”, however it is omitted already here as it disappears for incompressible flow
(White 2006)
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The mass conservation for a control volume Ω with boundary ∂Ω is expressed as
in equation (4).

∫
Ω

∂ρU
∂t

dV +
∫

∂Ω
ρU · ndA = 0 (4)

The flow assumptions below are imposed to obtain the governing equations for
this present study, that is the momentum equations (5),

Flow assumptions:

• Density ρ = const. (i.e. incompressible)

• Viscosity ν = const.

• No external body forces. (i.e. gravity is neglected.)

• Single component fluid.

• Newtonian fluid.

∫
Ω

∂U
∂t

dV +
∫

∂Ω
U(U · n)dA = −1

ρ

∫
∂Ω
PndA+

∫
∂Ω
µ∇2UdA (5)

as well as the continuity equation (6).

∫
∂Ω

U · ndA = 0 (6)

Equations (5) and (6) are now the equations that needs to be modelled, i.e.
discretized in a FVM formulation.

2.2 Accuracy and Numerical Stability

CFD methods are numerical methods which in general aim at approximating the
solution of partial differential equations (PDEs) describing the physics of fluids
in motion. The most general case will involve three dimensions in space and one
in time. With discretization schemes and computer calculations follows mainly
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two sources of error from the exact solution: round-off error in the computations
and a truncation error inherent in the discretization scheme used. For every
time step, iterations on flow variables u, v, w and p must be performed and the
criteria set for when to stop the iterations are also sources of error. The stopping
criterion must be specified either by maximum number of iterations or a limit for
maximum change in a variable from one iteration to the next, i.e. convergence
criterion.

OpenFOAM utilizes a finite volume method (FVM) for discretization in space,
meaning a discretization of the computational space (domain) in small volumes
of finite size, then using some method of advancing the solution in timesteps.
For the FVM to obtain accuracy it must be consistent, i.e. it must approximate
the PDE such that the truncation error TE = FVM −PDE goes to zero as the
discretization is refined in space and time (Ferziger 2002). Furthermore by the
well known Lax Equivalence Theorem for linear PDEs (Pletcher 2013, pp. 53),
the FVM is assumed to converge if it is also stable.

Stability analysis is in general quite complex and is based on analysing whether
the FVM solution stays bounded to the properties of the exact PDE as one
marches in time. However important work was done by Courant and Friedrichs in
the 1920s finding dimensionless numbers influencing the stability of the solution.
A simple case involving unsteady convection-diffusion resulted in a criterion for
the finite time step ∆t to ensure stability. The dimensionless Courant number
is given in equation (7). As the number has significance in each coordinate
direction it is defined in this thesis with index i. ui and ∆xi represents the
velocity component and a finite length in each coordinate direction i ∈ 1, 2, 3
representing ∆x, ∆y and ∆z respectively.

Coi = ui∆t
∆xi

(7)

If one considers convection transport to be dominant, the stability criterion in
equation (8) is obtained for an explicit time scheme by setting Co < 1 (Ferziger
2002). It is known as the CFL-condition.
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∆t < ∆xi

ui
(8)

The logic behind the criterion is that the combination of time step and discretiza-
tion in space must be such that no information in the domain travels faster in
one time step ∆t than what the grid ∆xi is able to capture during ∆t.

In the present study an implicit time scheme was used, known as the Crank-
Nicolson scheme (discussed in section (2.4)). The CFL-condition is a simplified
stability and convergence criterion based on an explicit time scheme, however it
has proven useful in practice as a rule of thumb.

2.3 Spatial Finite Volume Discretization

As for numerical discretization the Navier-Stokes equations are complicated.
Each term needs to be treated with care, and the choices of discretizations are
many, even in OpenFOAM. In particular the spatial discretization is described in
this section. As a cell-centered method is used, the finite volume method relies
on conservation of flow variables locally in control volumes and the use of cell
average values. Introducing the cell average of the velocity vector Û(t) such that
equation (9) holds,

Û(t) = 1
|Ω|

∫
Ω

U(x, y, z, t)dV (9)

where |Ω| =
∫

Ω dV is the volume of cell Ω, we can express the Navier-Stokes
vector equation as equation (10).

|Ω| dÛ(t)
dt

+
∫

∂Ω
U(U · n)dA = −1

ρ

∫
∂Ω
PndA+

∫
∂Ω
µ∇2UdA (10)

By the use of Gauss’ Divergence Theorem, we can go back to the volume integral
equation (11) for conservation of fluid momentum.
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|Ω| dÛ(t)
dt

+
∫

Ω
(∇ ·U)U︸ ︷︷ ︸

1

dV = −1
ρ

∫
Ω

∇P︸︷︷︸
2

dV +
∫

Ω
µ∇2(U)︸ ︷︷ ︸

3

dV (11)

2.3.1 OpenFOAM Numerical Schemes

In OpenFOAM the spatial discretizations get their name from the terms marked
in equation (11) as 1, 2 and 3, and these have different scheme settings. The
different options will not be discussed, however the settings used in the present
study is presented in table (2).

Table (2): OpenFOAM spatial FVM discretization.

OpenFOAM Setting Type Affected term
gradSchemes Gauss, Linear 2
divSchemes Gauss, Linear 1

laplacianSchemes Gauss, Linear, Corrected 3
snGradSchemes Corrected 3

The settings available have very compact names and need some explanation so
that the meaning of them are clear. As the name indicates, “gradSchemes” de-
fines the treatment of terms associated with the gradient operator, “divSchemes”
handles convective terms (divergence operator) and “laplacianSchemes” are used
for diffusive terms (laplace operator).

The settings are “Gauss, Linear” indicating that standard Gaussian integration
over cell faces is used on the area integrals in equation (5) and the interpolation of
cell centre averages to cell faces are linear. Otherwise the “Linear” setting states
that central differences are used for approximating derivatives in the diffusion
term 3 in equation (11).

Consequences of the settings are investigated by simplifying the governing equa-
tions, applying the discretization and observing the mathematical behaviour of
the solution. By removing the time dependency, the pressure link and considering
a scalar flow property, equation (3) becomes equation (12). It describes a scalar
conservation law for convection-diffusion problems for a general property ϕ.
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∫
∂Ω

n · (ρϕU)dA =
∫

∂Ω
n · (ν∇ϕ)dA+

∫
Ω
ρfdV (12)

Considering the absence of volume forces and only one-dimensional flow in the
x-direction, equation (12) reduces to the simple equation (13)

d(ρuϕ)
dx

= d

dx

(
ν
dϕ

dx

)
(13)

In figure (3) a one-dimensional grid is sketched along with a distribution of the
variable ϕ. A cell with centre node P and its West and East neighbour cells are
illustrated with their common cell faces. The linearly interpolated value of ϕ at
the cell faces are marked as ϕw and ϕe, and fluid velocity at the cell faces are
termed similarly as uw and ue.

Figure (3): A FVM cell with centre node P and its two neighbour cells W(est) and E(ast)
in one dimension. Cell faces are indicated by little “w” and “e”. The actual distribution of
a variable ϕ across the three cells are marked with its corresponding linearly interpolated
values at the cell faces. Convective velocities across cell faces indicated by uw and ue,
and ΩP is the volume of cell P.

Gaussian integration of equation (13) over the control volume in figure (3) yields
equation (14), where ρ is the fluid density, u the convective fluid velocity, A is the
cell face area, ν is the fluid kinematic viscosity and ϕ is the transported property.
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(ρuAϕ)e − (ρuAϕ)w =
(
νA

dϕ

dx

)
e
−
(
νA

dϕ

dx

)
w

(14)

Knowing only the cell centre values, it is now evident that the net convective
flux on the left hand side requires interpolated values on cell faces and the net
diffusion flux on the right hand side requires that gradients are approximated
across cell faces. The linear interpolation to cell faces on a uniform grid results
in equations (15)

ϕw = ϕW + ϕP

2 (15a)

ϕe = ϕE + ϕP

2 (15b)

and the central differencing scheme for gradients at cell faces on a uniform grid
yields equations (16).

(
dϕ

dx

)
e

= ϕE − ϕP

∆x (16a)(
dϕ

dx

)
w

= ϕP − ϕW

∆x (16b)

The accuracy analysis of the central difference scheme is well documented in liter-
ature. One example is found in (Versteeg 2007) and by Taylor series development
the spatial accuracy is shown to be O(∆x2) on a uniform smooth grid.
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Figure (4): Level of non-orthogonality between cells P and W denoted by the angle β. β
is the angle between the cell-to-cell distance vector d and the cell face normal vector n.

In figure (4) the level of non-orthogonality between two cells P and W is illustrated
as the angle β, which is the angle between the cell-to-cell distance vector d and
the cell face unit normal vector n. The surface-normal gradient of flow variable
ϕ between the two cells is just a projection of the cell-to-cell gradient along n,
which will mathematically look like equation (17).

∇fn(ϕ) = n · (∇ϕ)f (17)

Where now ∇fn(ϕ) is the face normal component of the cell-to-cell gradient of
ϕ, and ∇(ϕ)f the cell-to-cell gradient of ϕ.

The “Corrected” setting indicates the non-orthogonal correction of cell-to-cell
gradients. As discussed the central difference scheme for gradients is second order
in space, however any non-orthogonality between cells will degrade this behaviour.
The snGradSchemes “Corrected” applies correction to cell-to-cell gradients’ face
normal components with the aim of preserving second order accuracy. The level
of non-orthogonality in the present study is low, however the corrected scheme is
in general recommended (OpenFOAM 2018b) for any grid not fully orthogonal.

Equation (18) describes the implicit 1 and the explicit 2 correction made to the
surface normal gradient.
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∇fn(ϕ) = α
ϕP − ϕW

|d|︸ ︷︷ ︸
1

+ (n− αd̂) · (∇ϕ)f︸ ︷︷ ︸
2

(18)

Where α = 1/ cos(β) is the parameter increasing the corrections with increasing
angle of non-orthogonality β, |d| is the distance between cells P and W as in
figure (4) and d̂ is the unit distance vector.
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2.4 Time Integration

After looking at the spatial discretization it is natural to look into the treatment
of the temporal discretization as the flow around circular cylinders are highly
unsteady depending on the Reynolds number3 and in fact even oscillatory. The
spatial descretization is unaffected, however the time derivative term of equation
(11) must be discretized and the governing equations must be integrated over a
finite time step ∆t.

The spatial discretization can now be collected in the residuals vector R(Φ(t))
such that the transient equation to be discretized and solved in time takes the
form of equation (19). Now Φ(t) is the vector of conserved flow variables to be
solved for, such that

∂U
∂t

= R(Φ(t)) (19)

is the system of equations. Where for three-dimensional problems R(Φ(t)) is a
vector of residual vectors as a function of the conserved variables.

The general equation for the flow problem at hand will take the form of equation
(20) when integrating in time.

Ûn+1 − Ûn

∆t = 1
|Ω|

∫ t+∆t

t

[
−
∫

∂Ω
U(U · n)dA− 1

ρ

∫
∂Ω
PndA+

∫
∂Ω
µ∇2UdA

]
(20)

Where n + 1 represents the solution at the next time level and n represents the
current time level.

In the present study a time differencing scheme known as the Crank-Nicolson
scheme is applied. The scheme is accurate to O(∆t)2 as it uses a trapezoidal rule
approach in time (Ferziger 2002). For a scalar conservation law of a convection-
diffusion problem in one dimension (equation (21)),

3onset of laminar vortex shedding for Re > 40, (Sumer 2006)

26



2.5 Pressure-Velocity Coupling C. Skjulstad

d(ρϕ)
dt

+ d(ρuϕ)
dx

= d

dx

(
ν
dϕ

dx

)
(21)

a general time scheme is given as equation (22).

ϕn+1
P = ϕn

P + ∆t
[
ΨDn+1 + (1−Ψ)Dn

]
(22)

Where Dn+1 and Dn represent the spatial discretization evaluated at the new
time step and the present time step respectively. The Ψ ∈ [0, 1] is a weighting
parameter where Ψ = 0 and Ψ = 1 represent the explicit and fully implicit time
scheme respectively. To obtain the pure Crank-Nicolson scheme, a Ψ = 1/2 is
used.

In OpenFOAM the Crank-Nicolson scheme uses an “off-centering” parameter
between 0 and 1. The off-center parameter controls a blend between the pure
Crank-Nicolson scheme (parameter is 0) and the fully implicit Euler scheme (pa-
rameter is 1), i.e. the off-centering parameter is equivalent to adjusting Ψ between
1/2 and 1 in equation (22).

In the present study an off-centering parameter in OpenFOAM at 0.9 is used as a
good compromise between accuracy and stability according to recommendations
in (OpenFOAM 2018b).

2.5 Pressure-Velocity Coupling

The occurence of the pressure term (term 2 in equation (11)) in the Navier-Stokes
equations poses difficulties for incompressible flows as there is no independent
equation governing the pressure. However the momentum equations depend on
the gradient of the pressure, so it must be dealt with. A way of tackling the prob-
lem is to construct the pressure field so that continuity is guaranteed (Ferziger
2002). This is done by introducing a pressure-correction equation based on the
continuity equation (Ferziger 2002).

(Patankar 1980) reviews the implementation of a pressure-correction equation
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in the SIMPLE4 algorithm. It is an algorithm for solving the steady Navier-
Stokes equations by iterating on the pressure to enforce continuity. The algorithm
iteration sequence in short is as follows (Patankar 1980):

• Guess the pressure field.

• Solve discretized momentum equations to obtain preliminary velocity field.

• Solve pressure-correction equation.

• The pressure correction is added to the pressure field.

• Velocities are corrected according to corrected pressure field.

• The new pressure field is used as a guess in the first step.

The iterations continue until some quantity described as the “mass source” is suf-
ficiently small. The mass source formula is directly derived from the discretized
continuity equation (Patankar 1980). It is a measure of the magnitude of diver-
gence error and thus continuity error.

A further issue related to the pressure is discussed in (Patankar 1980) and relates
to how the pressure is discretized on the grid. The problem is that certain pressure
gradients might not be felt by the momentum equations if e.g. a “checker-board”
type pressure field emerges. This is illustrated in figure (5).

4Semi-Implicit Method for Pressure-Linked Equations
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Figure (5): A pressure field causing difficulties in calculating the net pressure force on cell
P when a conventional collocated grid is used. Neighbour cells W, E, N and S containing
pressure values pW , pE , pN and pS . N and S, and W and E might contain similar pressure
values resulting in a net zero pressure force on P.

The problem mainly arises when pressure and velocity both are defined in the
same cell centres, i.e. when a collocated grid is used. Pressure force on the
control volume P is then found by the gradient between cell W and E, which in
the illustrated case gives a net zero pressure forcing in cell P .

A remedy was proposed by (Harlow and Welch 1965) with the staggered grid
approach, where the “main grid” keeps the pressure values stored in cell centres.
Velocities are defined on cell centres in individual grid systems such that they
appear on the cell faces of the “main grid”. This is illustrated for a cell P in
figure (6).
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Figure (6): Illustration of a staggered arrangement where pressure is defined on the main
grid ( ), and velocities located at cell faces for u ( ) and v ( ).

OpenFOAM does not strictly utilize the staggered grid approach, as both veloc-
ities and pressure are located in the cell centres. However during pressure cal-
culations the velocities are interpolated to cell faces and included as face fluxes
(OpenFOAM 2018a).

The PISO5 (Issa 1986) algorithm is considered an extension of the SIMPLE
algorithm by including a predictor step for velocities and a second corrector
step (Versteeg 2007). The transient version of the PISO algorithm is used for
unsteady flows in OpenFOAM and it requires the number of corrector steps set
to 2 or more (OpenFOAM 2018b). It is obtained by including transient terms
in the discretized momentum equations and the pressure equation. Otherwise
the algorithm sequence is the same. In OpenFOAM there is a choice to include
multiple extra corrector steps in the PISO algorithm, however typically more
than 4 is not required (OpenFOAM 2018b).

As will be discussed later, it is preferable to have the ability of adjustable time
steps. The PISO solver in OpenFOAM does not support the ability to use ad-
justable time steps during the simulation, so the solver pimpleFoam (OpenFOAM
2018b) is used in the present study utilizing 2 corrector steps. The PIMPLE algo-
rithm is what OpenFOAM calls a combination of PISO and SIMPLE. By setting

5Pressure Implicit with Splitting of Operators
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number of corrector steps to 2 however retains the behaviour of the PISO solver
(OpenFOAM 2018b).
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3 Computational Grid and Domain

There are several possibilities for mesh generation for use in OpenFOAM as mesh
converters exist for a variety of formats. Popular commercial mesh formats as
produced by STAR-CCM+, ANSYS FLUENT have convenient mesh converters
to OpenFOAM format. Although these software packages are available, the mesh
generator of choice was the SnappyHexMesh utility supplied with OpenFOAM.
This section is included in the thesis to clarify concepts and parameters relevant
to the computational grid in the present numerical study of flow past curved
cylinders.

3.1 Grid Generation in SnappyHexMesh

The SnappyHexMesh utility is quite flexible and intended as an automatic mesh
generator for an arbitrary geometry. With great generality comes a control file
with many control parameters to be set by the user. Different geometrical setups
often require tweaking of control parameters on an experimental basis until an
acceptable mesh is achieved. For the curved cylinder geometry investigated here,
once a good control setup is achieved for one case, SnappyHexMesh is quite
predictable and stable for alterations like additions of straight cylinder extensions
or changing radius of curvature.

A discussion of every detail of SHM is not included in the present study as
proper documentation lacks and SHM is very complex. An important goal with
this thesis is to provide a basis for further work with the tools used, and this
will still be possible. The most important overall aspects of how SHM works
and some challenges related to the present problem are discussed. Further the
configuration file containing the best obtained settings for the curved cylinder is
included in the attached files for easy continuation of the work, along with PDFs
of online resources.

The input for SnappyHexMesh is a background mesh (a hexahedral mesh con-
fining the whole domain to be investigated) and geometry parts defined by a
triangulated approximation to the actual analytical surface of the geometry, in
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Stereolithography format also known as the .stl file format. The background
mesh is simply made with the OpenFOAM utility BlockMesh, and the cylinder
gemoetry is designed in the CAD software Rhinoceros. Any CAD software able
to export .stl will do, as long as one can specify the refinement of the exported
geometry mesh, which should be rather fine.

The CAD-model is designed in three separate parts, i.e. the vertical extension,
horizontal extension and the curved cylinder are defined separately, even though
SHM supposedly have the ability to split up .stl-geometries (OpenFOAM 2018b).
The geometry is divided so that forces can be tracked on each part separately
in OpenFOAM. Figure (7) illustrates the cylinder CAD model, visualized in
ParaView.

Figure (7): CAD model of the divided geometry of the curved cylinder configuration.
Curved part ( ); horizontal part ( ); vertical part ( ).

Another advantage of this separation is that cylinder parts can be put together
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to define any configuration of horizontal extension lengths, vertical extension
lengths and radius of curvature. This is convenient for fast design of various
configurations, making the investigation of different geometrical parameters more
efficient.

A prerequisite for the SnappyHexMesh to work is that there exists a background
mesh consisting of hexahedral elements. For stable performance of SHM, the
background mesh must be approximately cubic in the whole domain, or at least
near the geometry. The idea of a background mesh covering the computational
domain and the cylinder geometry is visualized in figure (8). The cylinder hor-
izontal and vertical extension is defined all the way to the inlet and the top
boundary respectively.

Figure (8): Left: Overview of the background mesh defining the boundaries of the com-
putational domain. Right: Overview of background mesh confining the whole cylinder
geometry.

From the geometry and background mesh, SnappyHexMesh works with its input
in three steps, given below.

• Castellation step.

• Snap step.

• Add layers step.
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3.1.1 Step 1: Castellated Mesh

The castellated mesh is the first approximation of mesh generation close to the
surface geometry. The background mesh cells are split in half in x-, y- and z-
direction inside and around the geometry-background mesh intersection a number
of times specified by the user. This number, say NrefLvl, defines the near geom-
etry refinement level. The background mesh is then refined or split according to
equation (23) given for the x-direction.

∆xrefined(NrefLvl) = ∆xbackground · (
1
2)NrefLvl (23)

Where ∆xrefined is the cell size in x-direction after refining the background mesh
cell ∆xbackground to level NrefLvl. Figure (9) illustrates how the level refinement
works from the background BlockMesh to, in this example, a refinement level of
NrefLvl = 3. The resulting castellated mesh is shown in practice for the domain
top boundary of a curved cylinder with a vertical straight extension indicated in
transparent yellow.

Figure (9): Left: Illustration of cell refinement in the castellation step. NrefLvl is indi-
cated by “Lvl”. Right: Castellated mesh around a circular cylinder. Cylinder geometry
indicated in yellow.

This level of refinement will obviously result in a quite coarse representation of
the geometry, and in turn a bad boundary layer mesh later.

36



3.1 Grid Generation in SnappyHexMesh C. Skjulstad

3.1.2 Step 2 and 3: Snapping and Layer Mesh

The next two steps involves the operation of step 2; geometrically altering the
cells made close to the geometry in step 1 to obtain a better fit to the geometry
(“snapping” to geometry), and step 3; add more cells close to and following the
geometry in a smooth fashion with multiple layers radially outwards from the
cylinder (“layer mesh” generation).

The “snapped” mesh and the resulting mesh after the addition of three mesh
layers around the cylinder is shown in figure (10). It is evident that the castel-
lated and snapped mesh highly influences the regularity of the boundary layer
mesh, which in this case is quite rough as it poorly represents the geometry
and is somewhat irregular. The number of cells left around the circumference
of the straight cylinder parts are now very much countable and apparently the
level 3 refinement amounts to 48 cells around the circumference. Keep in mind
that the relation between refinement levels and circumferential resolution also
is dependent on the size of the background mesh size, which in this case is
[∆x,∆y,∆z]background = [0.5, 0.5, 0.5]D.

Figure (10): Left: Castellated mesh “snapped” to cylinder geometry. Cylinder geometry
indicated in yellow. Right: Insertion of layer mesh around the cylinder.

Both the snapping and layer addition alters the grid cells nearby. The snap-
ping utility “stretches” and “squeezes” cells close to the geometry such that a
nice fit is obtained, whereas the layer addition actually makes room for the lay-
ers by pushing the snapped cells (as well as other surrounding cells) outwards
from the geometry. This process was found to be the main contributor to non-
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orthogonality and skewness in the grid, as especially the squeeze of cells from the
snapping process is further increased. This is viewed in the figure (11) below.
The squeezing of cells may easily trigger SHM to collapse the boundary layer
mesh when cells become too deformed.

Figure (11): Left: Cell squeezing during step 2, where the most affected cells are indi-
cated by . A reference line extending vertically with endpoints in two cells are indicated.
Right: The same cells further squeezed in step 3 and reference lines showing cell-to-cell
path before ( ) and after ( ) layer addition. Notice the distortion of cells.

The main parameters controlling the layer addition are: number of layers radially,
the layer thickness in the layer farthest from the geometry and cell size expansion
ratio. Either the closest layer size or the farthest layer size can be used as a
reference when including cell expansion in the layers, and the reference cell size
may be specified relative to the closest non-layer cell (relativeSizes = true) or
as an absolute size (relativeSizes = false). The combination of specifying the
farthest layer size (finalLayerThickness) using relative sizes was found to be the
most stable, as one is guaranteed that δfinal is in a reasonable size relative to ∆
and the collapsing of layers is less likely to happen (definitions in figure (12)).

An illustration of layers added close to a geometry and the different layer thick-
nesses using a cell expansion away from the body is shown in figure (12).
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Figure (12): Illustration sketch of the layer sizes with respect to outer mesh. δfinal defines
the outermost layer thickness according to equation (24), ∆ is the nearest non-layer grid
cell and δN is the layer closest to the geometry.

The equation for the final layer thickness δfinal (farthest from the geometry) is
defined as in equation (24), where ∆ is the size of the cell nearest to the final
layer and ζ is the ratio between them.

δfinal = ζ ·∆ (24)

Further the cell expansion ratio er in the layers is used to determine the thickness
δn of each layer n as n increases towards the geometry. This is illustrated in
figure (12). Equation (25) defines the thickness of each cell where n ∈ 1, 2, 3, ...
, Nlayers − 2, Nlayers − 1. Where Nlayers is the total number of layers specified
including the final layer.

δn = δfinal ·
1
ern

(25)

The layer addition was found to be most stable for low expansion ratios er ∈
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[1.01, 1.1], and a good starting point for the layers was ζ = δfinal/∆ ∈ [0.8, 1.0].

3.1.3 Refinement Regions

SnappyHexMesh also offers the possibility of defining regions in the domain where
user specified refinement levels are applied, and this functionality is strictly speak-
ing a part of step 1 as it appears under the same control section in the snap-
pyHexMeshDict. The same definitions for refinement as discussed in (3.1.1) is
applied in the refinement regions. In figure (13) the different regions are illus-
trated for the refinement in the near wake, far wake, and in the layer mesh close
to the cylinder. The background mesh is also visible in the bottom domain and
near the inlet. The layer mesh and the refinement region at the horizontal exten-
sion (bottom left of figure (13)) appears exactly the same, since in this case the
refinement level of the refinement region is the same as that used for resolving
the geometry and the horizontal part is parallell with the cells.
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Figure (13): Top: The plane (x, y, z) = (x, 0, z) showing the refinement regions in the
near and far wake of the cylinder. Bottom: Close up view of the layer mesh as it turns
out in the straight extensions and the curved part.
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3.2 Simulation Parameters and Numerical Setup

Now that the grid generator is known, the parameters used in the numerical
setup is introduced in this section for later reference. Geometrical parameters
are presented in section (3.2.1), definitons of variables as well as the normalization
practices are given in (3.2.2) and the implementation of boundary conditions is
found in section (3.2.3).

3.2.1 Geometrical Parameters

The overall picture of the domain is presented in figure (14), an overview of the
grid and refinement regions in figure (15) and an explanation of parameters found
in the figures are given in table (3). The layout presented here establishes the
“template” for all simulations in the present thesis.

Figure (14): Left: Geometrical configuration and definitions in the centre (x, z)-plane.
Right: Perspective view of the three-dimensional computational domain indicating centre
(x, z)-plane.
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Table (3): Explanations of parameters related to domain, grid and geometry.

Parameter Explanation
Lh Length of horizontal cylinder extension.
Lv Length of vertical cylinder extension.
R Radius of curvature of curved cylinder part.
D Cylinder diameter.
Lx Domain length in x-direction.
Ly Domain width in y-direction.
Lz Domain Height in z-direction.
θ Angular ordinate along the curved part.
S Spanwise ordinate along the curved part.
LnF Downstream length of the nearfield grid resolution.
WnF Width along y-axis of the nearfield grid resolution.
a Downstream length of the wake/farfield grid resolution.

WfF Width along y-axis of the farfield grid resolution.
b Distance from cylinder bottom to lower domain boundary.

Nlayers Number of boundary layer elements radially.
tBL Total boundary layer mesh thickness.

NcellsT ot Total number of cells in the domain.
Nx/Ny/Nz Number of cells in x-, y- and z-direction.
cylRefLvl Refinement level around the cylinder.
nfRefLvl Refinement level in the nearfield grid.
ffRefLvl Refinement level in the farfield grid.

In figure (15) a visual overview is given of how the refinement regions are defined
according to table (3). Notice that the total wake length a is the same as what
would be the farfield wake region length, since the farfield refinement is chosen
to always extend to the end of the domain. The top domain boundary face, the
(x, z) centre plane, the inlet boundary face and the outlet boundary face can be
seen.
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Figure (15): Top: Part of the top boundary indicating nearfield and farfield mesh widths,
WnF and WfF . Middle: Centre (x, z)-plane showing the nearfield length LnF and total
wake length a. Bottom Left: Inlet plane indicating WnF and WfF . Bottom Right:
Outlet plane indicating WfF .
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3.2.2 Variables and Normalization

The raw data outcome of the CFD-solutions are u, v, w and p. For clarity in
results and comparison purposes flow variables are normalized on characteristic
constant properties of the numerical setup. The normalization of the variables
may take different forms depending on the configuration studied in this thesis
(mainly depending on inflow velocity).

The inflow velocity is given by the constant uniform free stream U0. In case
of the shear flow the linearly varying free stream U0(z) is defined. We have in
addition the median of the velocity profile Uc and the velocities at the ends of
the profile given by Ubottom and Utop. This is further illustrated in section (6).

The overall flow Reynolds number is defined as equation (26)

Re = U0D/ν (26)

based on the uniform free stream and equation (27)

Rec = UcD/ν (27)

based on the centre median velocity in a shear profile. The kinematic viscosity is
now ν = µ/ρ [m2/s], where µ is the dynamic viscosity and ρ = 1000 [kg/m3] is
the mass density of the fluid. To obtain the required Re for each case, viscosity
is adjusted to ν = 0.01 and the inflow velocity is set according to the Re wanted,
e.g. ν = 0.01 and U0 = 3.5 giving a Re = 350. It is important to notice that
OpenFOAM uses a mass density ρ = 1 in the computations. A spanwise varying
local Reynolds number in equation (28) is defined for the shear flows.

Rel(z) = U0(z)D/ν (28)

Velocities output from the simulations are further normalized with respect to
either U0 or Uc during post-processing. Regarding the pressure, OpenFOAM

45



3.2 Simulation Parameters and Numerical Setup C. Skjulstad

solves for a kinematic pressure p [m2/s2] as in equation (29)

p = P/ρ (29)

relative to a reference pressure calculated near the inlet (user specified), where P
[N/m2] is the fluid pressure. During post-processing this p is normalized such that
a non-dimensional pressure is obtained as in equation (30) or of course equation
(31) for shear flow. Notice that many normalizations utilize the fractor of “1/2”
in the denominator, however this is absent for the pressure term in the present
study.

P ∗ = p/U2
0 = P/ρU2

0 (30)

P ∗ = p/U2
c = P/ρU2

c (31)

During post-processing other kinematic properties of the solution flow field are
calculated to obtain a fuller picture of the flow structure. An essential property
is the vorticity field ω defined as twice the angular velocity field (White 2006).
In vector calculus vorticity is related to the curl of the velocity field by equation
(32).

ω = ∇×U (32)

The vorticity field vector is given as (33)

ω = [ωx, ωy, ωz] (33)

where equations (34a), (34b) and (34c) defines the components in x, y and z.
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ωx = ∂w

∂y
− ∂v

∂z
(34a)

ωy = ∂u

∂z
− ∂w

∂x
(34b)

ωz = ∂v

∂x
− ∂u

∂y
(34c)

The vorticity components identifies vortices in its respective direction, however
to get a broader view of the vortex structures in the flow field, the method of
identifying vortex cores of a certain strength no matter direction is adopted in
this study. The method was developed by (Jeong and Hussain 1995) and is
based on extracting vortex cores directly from the instantaneous velocity field.
The velocity gradient tensor is given on tensor notation as equation (35) (White
2006), where i, j are any two coordinate directions.

Ui,j = ∂Ui

∂xj
= 1

2(Ui,j + Uj,i)︸ ︷︷ ︸
symmetric

+ 1
2(Ui,j − Uj,i)︸ ︷︷ ︸
anti−symmetric

(35)

Letting εi,j represent the strain rate tensor (symmetric) part and Ω̇i,j represent
the angular velocity (anti-symmetric) part of equation (35) (Jeong and Hussain
1995) found that vortices are well-represented by connected regions where the
second-largest eigenvalue λ2 of the tensor εi,jεj,i + Ω̇i,jΩ̇j,i is negative.

Further derived quantities include forces on the cylinder configuration. Force
coefficients are calculated by OpenFOAM from the integrated pressure over the
cylinder surface and normalized. The force in x- and y-direction Fx and Fy

respectively are normalized according to equation (36) and (37). The coefficients
represent drag (CD) and lift (CL) force on the cylinder configuration.

CD = Fx
1
2ρU

2
0Aref

(36)
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CL = Fy
1
2ρU

2
0Aref

(37)

Where U0 is the free stream velocity (Uc is used for shear flow) and Aref is the
projected area of the cylinder in the direction of the free stream. The projected
area is calculated as Aref = (R+D/2 + Lv).

Simple statistical quantities are calculated for the force coefficients. The time
average of the drag and lift coefficient is given as equation (38) and (39) respec-
tively.

CD = 1
NT

NT∑
i=1

CD,i (38)

CL = 1
NT

NT∑
i=1

CL,i (39)

Where the summation runs from the first element of the time series of the coef-
ficients to the total number of elements in the time series NT . The CL oscillates
around a mean of CL ≈ 0 depending on the length of the time series, so a rea-
sonable statistic for the oscillating lift coefficient is the root-mean-square CL,rms

calculated as equation (40).

CL,rms =

√√√√ 1
NT

NT∑
i=1

(
CL,i − CL

)2 (40)

3.2.3 Boundary Conditions

To solve the Navier-Stokes equations on a computational grid, boundary condi-
tions (BCs) are required for the flow variables at all boundaries of the domain.
Here the implemented boundary conditions are presented with respect to the
boundary names given in figure (14). The Finite Volume Method requires that
the boundary fluxes either be known or expressed in terms of known quantities
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and interior nodal values (Ferziger 2002). Boundary conditions differ by whether
a flow variable is prescribed on the boundary directly (Dirichlet BC) or that the
rate of change of the variable (or the gradient) across the boundary is specified
(Neumann BC).

Inlet and Outlet

Inlet and oulet boundaries are the most complicated to specify since usually all
values must be known and prescribed at inlets and it is hard to say much apriori
about the flow at the outlet. Another issue is the pressure-velocity coupling
and the interaction with inlet and oulet conditions. A common approach for
incompressible flows are to prescribe a velocity inlet and extrapolate to the outlet
(Ferziger 2002). This method is applied here.

The outlet BCs implemented are:

• Neumann condition for velocity:

∂u

∂x
= ∂v

∂x
= ∂w

∂x
= 0 (41a)

• and zero-pressure condition:

p = 0 (41b)

The inlet BCs implemented are:

• Dirichlet condition for uniform velocity:

u = U0 (42a)

• or a Dirichlet condition for a shear velocity profile:

u(z) = U0(z) (42b)
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Top, Bottom and Vertical Sides

The top, bottom and sides are all given slip-type boundary conditions, i.e. a
symmetry condition for all flow variables. This means physically that the bound-
aries are impermeable to mass-flow/velocities and pressure, however the flow is
allowed to run tangentially along the boundary.

Mathematically the conditions implemented on the horizontal top and bottom
planes are:

• Free-slip condition for velocity:

w = 0 and ∂u

∂z
= ∂v

∂z
= 0 (43a)

• Neumann pressure condition:

∂p

∂z
= 0 (43b)

The vertical sides at (y/D = ±Ly/2):

• Free-slip condition for velocity:

v = 0 and ∂u

∂y
= ∂w

∂y
= 0 (44a)

• Neumann pressure condition:

∂p

∂y
= 0 (44b)

Cylinder Surface

The cylinder surface is modelled as a “solid wall”, i.e. impermeable and imposed
no-slip condition at the surface. The implementation reads as follows:

• No-slip and impermeability condition for velocity:

U = 0 (45a)
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• Neumann pressure condition (where ns is the surface normal):

∂p

∂ns
= 0 (45b)

3.3 General Thoughts and Comments On This Chapter

• The boundary layer mesh might be improved significantly by creating a
thicker boundary layer mesh. This might be accomplished by the same ex-
pansion ratio and increased number of layer cells. This will rapidly increase
the total cell count in the domain and might not be beneficial in the end.

• Another way to increase layer thickness without a huge increase in cell
numbers, is to use absolute sizes and a higher expansion ratio. This way
the cell closest to the body could be specified sufficiently small to get a
good layer thickness at a reasonable number of cells. The problem with
standard SHM is that when the layer thickness and/or layer cells become
too large, the algorithm for moving the outer mesh away from the body
fails. The result is usually a collapse of the layer mesh. The reason is that
the deformation (cell squeezing) of outer mesh cells becomes too severe and
SHM “fixes” the bad cell problem by collapsing the layer mesh rather than
removing bad cells.

• A version of OpenFOAM with the suffix “+” as in “OpenFOAM v1612+”
exists. This version is supposed to include SHM with a better algorithm
for moving cells when making room for the boundary layer elements. Sup-
posedly SHM is able to prioritize the layer mesh and rather remove other
bad cells causing trouble. This might be worth trying to create a higher
quality boundary layer mesh without severely increasing total cell count.

• Another tool for creating body-fitted grids to complex geometries is called
CF-Mesh which works in a similar way as SHM. This is not investigated
further in the present study and the benefit of this software is unknown to
the author.

• Possible mesh generators are of course the ones issued with ANSYS Fluent,
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and with STAR-CCM+.

• Notice that the the built-in post-processor in OpenFOAM calculates and
outputs −λ2.
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4 Grid Independence Study

The choice of a computational domain and the generation of a grid is essential
for a CFD study, and the quality of a CFD solution is highly dependent on the
quality of the grid (Çengel 2014). Therefore it is necessary to have a certain
confidence about the chosen grid setup before proceeding to the solution of the
actual problem.

This procedure of deciding on a computational grid is in the literature often
termed a grid independence study. Grid refinements locally where high gradients
in the flow are expected, overall cell refinement in the domain and increase of
domain size are common focus points of the grid study.

High flow gradient areas typically include boundary layer regions near solid walls
where the flow velocities range from zero at the wall to the free stream velocity
outside the boundary layer. Flow past bluff bodies exhibit large flow gradients in
the wake as well, due to flow separation. In the present study natural refinement
regions are therefore in the near and far wake of the cylinder configuration, and
in the boundary layer across the whole cylinder geometry. The effect of domain
size on the flow solution is an important issue in CFD as well as in experimental
fluid dynamics and the concept usually goes by the name of “blockage”. For
CFD blockage depends on the choice of conditions set on the domain boundaries
and the size of the domain. The effect of boundary conditions vanish when the
boundaries are sufficiently far from the main flow dynamics.

Important domain size parameters in the present study not defined by cylinder
geometry are the width along the y-direction Ly, the gap b between the lower
domain boundary and the horizontal extension, and the wake length a. Domain
parameters associated with the cylinder geometry are inlet length (horizontal
extension) and the vertical height (vertical extension).

The horizontal and vertical extensions should be included for relevance to prac-
tical offshore and subsea engineering as the curved part rarely exist isolated. As
the cylinder has a free end in two boundaries, i.e. the inlet and the top bound-
ary, it is beneficial to include a long enough horizontal extension to ensure a fully
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developed boundary layer flow before reaching the curved part. The vertical
extension ends in the top boundary, which limits any vertical velocity compo-
nent that might be present. (F. Jiang, B. Pettersen, and H. I. Andersson 2018)
found that a horizontal extension of Lh = 10D prevents any disturbances from
the inlet/cylinder intersection from reaching the curved part. Unpublished DNS
data from the same author (F. Jiang, B. Pettersen, H. I. Andersson, et al. 2018)
indicates strong axial flow along the cylinder span which is still up to 20% of
the free stream velocity even at z/D = 20, depending on the Reynolds number.
The strength of the axial flow along the concave cylinder was also indicated in
(Miliou et al. 2007) where only Lv = 6D was used. A suppression of the vortex
shedding in the vertical extension compared to a regular straight cylinder was
found. The axial flow becomes parallel to the free stream when it reaches the slip
wall top boundary and acts as a base bleed mechanism similarly as investigated
by (Bearman 1967).

In addition, grid cell quality and non-orthogonality are important parameters for
assessing the grid effect on the solution, however due to little control over these
parameters in SHM these parameters are not investigated.

4.1 Measure of the Flow Solution

As problems in CFD rarely have exact analytical solutions, the grid independence
study should aim at finding the numerical setup where the solution is approx-
imately unaffected by further refinements. Flow variables u, v, w and p are
natural measures of the solution. Derived quantities such as the forces acting on
the cylinder (pressure and viscous stresses integrated over the cylinder surface)
and statistics related to them are also good indicators of the overall solution.

This present grid study measures and assesses the overall solution defined by:

Velocity

• Time averaged axial flow in the near wake along the cylinder span Uax

measured along a concentric arc of the curved cylinder, with radius of 14D,
and along the vertical extension at x/D = 14. I.e. the flow is measured at
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1D behind the cylinder trailing edge.

• Vortex shedding frequency distribution along the vertical extension mea-
sured as oscillations in v velocity signal at x/D = 16, i.e. 3D behind the
trailing edge of the cylinder.

Forces

• Root-mean-square of the lift force coefficient CL,rms.

• Time averaged drag force coefficient CD.

• Normalized lift force oscillation frequency f∗peak.
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4.2 M-series

The M-series are defined in the following tables (4) and (5) and are simulation
cases made of the base setup given below:

Parameter
Configuration Concave

Lh 10D
R 12.5D
Lv 6D

Inflow Uniform Re = 500

Figure (16): Basis flow configuration used in the grid study (M-series) simulations. All
tests are derived from this setup.

The horizontal extension is chosen based on (F. Jiang, B. Pettersen, and H. I.
Andersson 2018). The vertical extension is chosen for minimizing the computa-
tional efforts while having a comparable case to earlier studies by (Miliou et al.
2007) and (F. Jiang, B. Pettersen, and H. I. Andersson 2018).

The aim here is not to catch any meaningful flow physics (although one could
argue that the setup resembles a curved cylinder near a free surface), but to
carefully investigate grid parameters to find a grid and domain setup that is rea-
sonably accurate and not too computationally demanding. The Renyolds number
of Re = 500 is chosen for the grid study, since this is the upper limit to be inves-
tigated in the present study. It is thus assumed that the final grid is sufficient to
capture relevant flow dynamics in all cases below and including this Re.

The simulations were each run t∗ = 100U0/D dimensionless time units to ensure
a developed flow. Then data was gathered every ∆t∗ = 0.05U0/D for 1000U0/D
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time units, yielding 20000 data points for each variable in the time series.

4.2.1 Grid Parameters and Definitions

Table (4) describes the main parameters defining the geometry of the computa-
tional domain and refinement regions. All parameters are described in section
(3.2).

M01, M02 and M03 are equivalent with respect to domain and region sizes, while
M04 represents an extension of these domains by making the size of the wake
regions larger. That is nearfield region width, farfield region width and wake
length are extended considerably. Further M05 is also equivalent to the first
three domains, except that the distance from the lower part of the cylinder to
the lower boundary is increased from 5D to 10D. Finally the M06 and M07
represents a wake region extension from M05, in the same manner as M04 was
constructed.

Table (4): Geometrical parameters of various M-series setups. Horizontal extension length
Lh/D; vertical extension length Lv/D; radius of curvature R/D; nearfield length LnF /D;
nearfield width WnF /D; farfield width WfF /D; total wake length a/D; distance to lower
boundary b/D; domain width c/D

Case Lh/D Lv/D R/D LnF /D WnF /D WfF /D a/D b/D Ly/D

M01 10 6 12 6 3 5 15 5 24
M02 10 6 12 6 3 5 15 5 24
M03 10 6 12 6 3 5 15 5 24
M04 10 6 12 6 4 6 23 5 36
M05 10 6 12 6 3 5 15 10 24
M06 10 6 12 6 4 6 23 10 36
M07 10 6 12 6 4 6 23 10 36

It is further elaborated on M-series differences in table (5). The different M-series
cases are differentiated with respect to refinement levels in the different regions,
number of cells in total, boundary layer mesh thickness and the distribution of
elements in the background mesh.
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Table (5): Number of cells and refinement levels used in M-series. Refinement level around
the cylinder CylRefLvl; refinement level in nearfield wake nfRefLvl; refinement level in
farfield wake ffRefLvl; number of boundary layer elements outwards from the cylinder
Nlayers; total boundary layer mesh thickness tBL/D; total amount of cells in domain
NcellsT ot; Nx, Ny and Nz number of cells in x-, y- and z-direction for the background
mesh.

Case CylRefLvl nfRefLvl ffRefLvl Nlayers tBL/D NcellsT ot Nx/Ny/Nz

M01 5 3 2 15 0.222 9.3 · 106 70/40/44
M02 4 3 2 12 0.366 4.2 · 106 70/40/44
M03 4 2 1 12 0.366 1.9 · 106 70/40/44
M04 4 3 2 12 0.366 7.2 · 106 92/72/48
M05 4 3 2 12 0.366 5.8 · 106 76/48/58
M06 5 3 2 12 0.169 12.5 · 106 92/72/58
M07 4 3 2 12 0.366 7.2 · 106 92/72/58

From table (5) the refinement level around the cylinder surface is held at either
CylRefLvl = 4 ( in M02, M03, M04, M05 and M07) or at CylRefLvl = 5 (in M01
and M06). The refinements in the wake are set at nfRefLvl = 3 and ffRefLvl = 2
for all cases except M03. This is because a higher level increases the total cell
count considerably and becomes very computationally demanding, while a lower
level is simply too coarse (as will be evident for M03 later). The total cell count
effect is visible by comparing NcellsT ot in M06 and M07 which differs only in
CylRefLvl by 1 level and NcellsT ot differ by ∼ 5.3 · 106 cells.

The CylRefLvl = 5 of M01 and M06 makes the refined cell size so small that a
greater number of layers is required for the same layer thickness as obtained in
the cases of CylRefLvl = 4.

The number of cells in the background mesh is chosen on the basis of having a
sufficient number of cells in the z-direction. (H. Jiang et al. 2016) used Nz/D =
10 for their wake transition study of a straight cylinder in Re ≤ 300, and in
the present study the aim is to be at atleast Nz/D ≈ 20 within the near field
refinement region. The number of background cells in z-direction is then chosen
to fulfill that requirement. The number of cells in x- and y-direction is chosen
to get approximately cubic cells in the entire domain as discussed in section
(3). The cylinder surface refinement level of 4 and 5 is equivalent to 186 and 364
elements around the cylinder circumference respectively. As the background mesh
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is approximately cubic and ∆zbackground ≈ 0.5, the result are the minimum grid
sizes of ∆zrefined(NrefLvl = 4) = 0.03125 and ∆zrefined(NrefLvl = 5) = 0.01563.

The grids are not grouped in a very intuitive manner and the changes to the grid
parameters are chaotic at first glance. Therefore a definition of three paths are
given in figure (17). The paths represent three ways that one can move from grid
M03 (coarsest) to either M06 or M07. Each next step in each path is supposedly
an improved grid to the former. The grids M06 (extended domain and wake
region, and CylRefLvl = 5) and M07 (extended domain and wake region, and
CylRefLvl = 4) are then supposedly the “best” grids tested.

Figure (17): The path definition for tracking the effect of the various grids tested. M03 is
the coarsest grid and hence the starting point. By moving to the right, “better” grids are
obtained.

4.2.2 Force Coefficients

The force coefficients given as the root-mean-square of the lift force coefficient
CL,rms and the time averaged drag coefficient CD are presented in table (6) for
the various grids tested. The dominating frequencies of oscillation in the time
series of CL are also presented as the normalized frequency f∗peak = fpeakD/U0.
Coefficients and frequencies represent those of the forces on the total configura-
tion.
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Table (6): Results from the M-series force coefficient statistics and lift force frequency.
CL,rms is the root-mean-square of the oscillating lift-force coefficient, CD is the time
averaged drag coefficient and f∗

peak is the dominating frequency of oscillation for the lift-
force.

Case CL,rms CD f∗
peak

M01 0.0378 0.8523 0.1247
M02 0.0384 0.8776 0.1214
M03 0.0079 0.8043 0.1146
M04 0.0389 0.8683 0.1214
M05 0.0430 0.8835 0.1216
M06 0.0375 0.8500 0.1256
M07 0.0386 0.8672 0.1214

An immediate observation is that the results of the coarsest grid M03 deviates
significantly from the other grids. The most affected quantity seems to be the
CL,rms which for M03 lies ∼ 80% below the average CL,rms of the other grids.
The mean drag CD lies ∼ 7% below the average among the other grids.

For further differentiating the other grids the path definition is used in figure (18).
Paths are arranged in columns where the three parameters investigated are listed
below in rows. By moving from left to right along a row, the effect each path has
on the chosen parameter can be followed. In addition values of the parameters
for M06 and M07 are given explicitly in the plot.

The essence of figure (18) seems to be that there is a convergence towards the
grids M06 and M07. However there is still a difference between the two, which
then should be only the effect of the refinement around the cylinder and hence
in the boundary layer. Both CL,rms and CD are reduced from M07 to M06 while
the frequency has increased. The absolute percentage change from M07 to M06
reads: ∼ 2.9% for CL,rms; ∼ 2.0% for CD; ∼ 3.5% for f∗peak.
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Figure (18): Plot matrix indicating the grid effect on the CL,rms, CD and f∗
peak =

f∗
peakD/U0. The path system of distinguishing each grids effect on the parameters is

used. Each path is found column-wise, while the parameters are listed below in rows. In
each subplot in the matrix the “better” grid lies to the right on the lower axis. The value
of each parameter also stated in table (6) is given explicitly in the plot for M06 and M07.

The M06 simulation was run on 160 CPUs yielding ∼ 78125 cells per process.
With the current setup each time step is calculated in O(1) seconds (real time).
The time step was ∆t∗ = 0.002U0/D, which means that 500000 time steps must
be calculated. This amounts to a total runtime of ∼ 139 hours (real time), and
a computational effort of 22240 CPU-hours.

The M07 grid was run on 96 CPUs with ∼ 75000 cells/process. A time step of
∆t∗ = 0.005U0/D yielding 200000 time steps and a total runtime of ∼ 45 hours,
with a computational effort of 4320 CPU-hours.

4.2.3 Velocity Analysis

The v-component of velocity was logged in 7 points along the vertical extension.
Starting at z/D = 0 and every 1D up to z/D = 6. The probes were placed
at x/D = 16, i.e. 3D behind the trailing edge of the vertical cylinder. The
dominating frequency component f∗ was extracted from the time series of v with
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a DFT approach and the distribution along the vertical span was found to be
uniform6 for all grids tested.

The figure (19) reveals that M03 is the only grid where small variations in f∗

were found along the span. It is furthermore evident that the M-series are divided
in roughly three groups with respect to dominant frequencies. M01 and M06
(CylRefLvl = 5) shows the highest frequencies in the test, while M03 shows the
lowest frequency which is far from the other grids. M02, M04 and M05 (all
CylRefLvl = 4) ends up around the same frequency in the middle. This is the
same trend as observed in the lift force frequency f∗peak, which is natural as the lift
force was found to follow the shedding frequency exactly. Figure (19) indicates
that shedding frequency is heavily influenced by the grid-refinement around the
cylinder.
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Figure (19): Spanwise distribution of shedding frequencies extracted from time series v
at 3D behind the vertical extension. The distribution in each grid is shown: ( ), M01;
( ), M02; ( ), M03; ( ), M04; ( ), M05; ( ), M06; ( ), M07.

The direct comparison of dominating wake frequency f∗ for each grid M01-M07
is found in figure (20).

6or approximately uniform in M03
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Figure (20): The dominating frequency in the wake of simulation M01-M07 obtained from
a discrete Fourier transform of v at 3D behind the cylinder trailing edge. The frequency
of v matches the lift-force oscillation frequency on the configuration exactly.

The velocity was logged by numerical probes along a concentric arc of the curved
part in the centre plane which radius is 14D and a vertical line along the vertical
extension at x/D = 14. The velocity component Uax/U0 which runs tangentially
to the cylinder 1D downstream of the cylinder trailing edge was calculated from
the velocity field by equation (46).

Uax

U0
= u

U0
cos(θ) + w

U0
sin(θ) (46)

Where U0 is the free stream velocity and θ is the angular ordinate running along
the curved cylinder part as depicted in figure (16).

The time averaged Uax/U0 along the curved part is presented in figure (21) for
the various grids. The solution of grid M03 is once again clearly unable to capture
even the overall trend correctly. The other grids however exhibit the same overall
trends. The differences appear in the area around θ ≈ 80◦ − 90◦, that is the
intersection between the curved cylinder part and the vertical extension. The
flow clearly is more complex around this intersection as the various grids capture
different tendencies.

In the intersection area, the wake experiences a transition from a non-shedding
regime to a shedding regime, as later will be shown in figure (33), and deemed
to be computationally challenging. In other words, the transitional wake in this
area can be very grid sensitive. This is why descrepancies among the grids are
observed in this area.
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Figure (21): Variation of the time averaged axial velocity component Uax/U0 along a
concentric arc of the curved part whose radius is 14D, i.e. 1D behind the trailing edge of
the curved cylinder. ( ), M01; ( ), M02; ( ), M03; ( ), M04; ( ), M05; ( ),
M06; ( ), M07.

Additional 21 probes were placed in the region of θ ∈ [80◦, 90◦] leading to a finer
resolution of ∆θ = 0.5◦ compared to a ∆θ = 4.5◦ in figure (21). Uax/U0 in the
finer resolved region is presented in figure (22).
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Figure (22): Variation of the time averaged axial velocity component Uax/U0 along the
curved part for all grids. Probes located in θ ∈ [80◦, 90◦]. ( ), M01; ( ), M02; ( ),
M03; ( ), M04; ( ), M05; ( ), M06; ( ), M07.
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All grids in this intersection region seems to have a small drop in axial velocity
around the are region θ ≈ 84.5◦ − 86.5◦ though the drop is shifted between the
various grids. M05, M07 and M04 follows almost the exact same profile, then a
shift to the right is observed for M02 with a slightly higher peak velocity. M01
is shifted further to the right of M02 with an even higher peak. M06 is shifted
most to the right but has the same peak value as M02. The coarse M03 keeps
a higher overall velocity until θ = 87◦ where it drops fast towards θ = 90◦ and
ends up at a value of Uax/U0 about 40% lower than the other grids.

Going from M02 to M04, M05 and M07 represent all domain and refinement
region enlargements that was made. Going from M02 to M01 represents an
increase in surface refinement, and further going from M01 to M06 is a domain
and region enlargement. Therefore it seems that the effect of enlarging the domain
in the (x, y)-plane is shifting the drop to the left and decreasing the peak. While a
surface refinement level produces the opposite effect. It is clear that information
in this small intersection region is to some degree lost in M07 compared to M06.
Keep in mind that the surface level refinement is closely related to the boundary
layer resolution (section (3)).

Figure (23) shows an overview of the axial velocity profiles discussed along the
curved part. In the lower bottom plot figure (22) is zoomed in without regard to
M03, as to obtain a clearer view of the trends discussed above. In the top plot
figure (21) is reused along with close-up views of θ ∈ [0◦, 14◦] and θ ∈ [80◦, 90◦].
Observe the starting velocity at θ = 0◦ for the various grids. All starting slightly
above Uax/U0 = 1 and reads in decreasing order of magnitude: M02, (M01 and
M03), M04, M05, M06, M07. Domain enlargements seem to play a major role in
this arrangement, which supports the phenomenon of blockage effects as discussed
in the beginnning of this section.
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Figure (23): Time averaged axial velocity Uax/U0 along the curved cylinder with Top:
close-up views at θ ∈ [0◦, 14◦] as well as θ ∈ [80◦, 90◦]. Showing the slight differences
between grids. Bottom: Close up view of θ ∈ [80◦, 90◦] where a finer distribution of
numerical probes were used. ( ), M01; ( ), M02; ( ), M03; ( ), M04; ( ),
M05; ( ), M06; ( ), M07.

In figure (24) the time averaged Uax/U0 profile obtained along the span of the
vertical extension is presented. An important trend captured only by M07, M01
and M06 is the slight average negative flow occurring in z/D ≈ 2.5 − 4.5. Only
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M01 and M06 tracks the full extent of this region, while M07 turns to Uax/U0 = 0
at z/D ≈ 4.2. Further M07 turns negative again before reaching the boundary
condition of zero vertical velocity at z/D = 6.
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Figure (24): Variation of the time averaged axial velocity component Uax/U0 along the
vertical extension for all grids. Probes are located along a vertical line at x/D = 14, i.e.
1D downstream of the cylinder trailing edge. ), M01; ( ), M02; ( ), M03; ( ),
M04; ( ), M05; ( ), M06; ( ), M07.

Although there are a few apparent limits to the M07 grid compared to the most
refined M06, the computational efforts demanded by M06 compared to M07 is
considered too costly in the present study. It seems reasonable to believe that
the M07 type setup will be more than adequate for establishing a numerical basis
for the curved cylinder problem in OpenFOAM at this stage. This grid study is
however important to know in which aspects the current grid might give poorer
results.
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4.3 Effect of Time Step

As the semi-implicit Crank-Nicolson scheme used is rather robust with respect
to larger time steps, it is tempting to use as large time step as possible to save
computational time. Although the solver can handle larger time steps without
diverging, the order of accuracy of the solution might be degraded.

Schemes with the weighting parameter 1/2 ≤ Ψ ≤ 1 are said to be unconditionally
stable for all values of the time step (Fletcher 1991). However it is more important
to ensure that all coefficients are positive for physically realistic and bounded
results (Versteeg 2007). By investigating the scalar conservation law for unsteady
convection-diffusion the positive coefficient criterion was found to be according
to equation (47) for one-dimensional flow in x-direction (Versteeg 2007).

∆t < ρsim(∆x)2

ν
(47)

Where ρsim = 1 is used as the flow Re is defined in this study by specifying
kinematic viscosity and inflow velocity.

Equation (47) sets an upper limit on the time step ∆t, where ρ is the fluid mass
density, ν is the fluid kinematic viscosity and ∆x is the grid cell size. For a grid
of CylRefLvl = 4 and CylRefLvl = 5 it is obtained a positive coefficient criterion
for the time step of ∆t∗ < 0.098U0/D and ∆t∗ < 0.024U0/D respectively.

As stated in the beginning of section (4.2) simulations were run for 100U0/D

dimensionless time units before gathering data for statistics. In this first interval
an automatic regulation of time step was used. A maximum Courant number
was specified in OpenFOAM to never exceed Comax = 5, and time step was
adjusted accordingly. This allowed to get an estimation of a constant time step
for the second simulation interval. Data was still sampled each 0.05 time steps in
all simulations. A constant time step is essential for statistics, especially as the
discrete Fourier transform is very sensitive to irregularities in sampling period.

In this section the simulation M07 is compared to a simulation C04 utilizing
the same grid. C04 however utilizes a time step set so that a Comax = 0.79 is
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never exceeded in the domain. A mean Courant number of Comean = 0.014 was
preserved. In comparison M07 ran on a time step which ensured a Comax =
3.86 and Comean = 0.07. The computational time required for a full 1000U0/D

simulation is about 200 hours and 45 hours for C04 and M07 respectively.

The resulting time averaged spanwise flow profiles are given in figure (25).
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Figure (25): Variation of the time average of the axial velocity component Uax/U0 for two
cases, illustrating the effect of time step on the solution. ( ), M07; ( ), C04. Top:
Along the curved part. Middle: Close up view of θ ∈ [80◦, 90◦] where a finer distribution
of numerical probes was used. Bottom: Along the vertical extension.
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It can be seen that there actually are some slight differences in the obtained
profiles, and the deviations are found in the same locations that separated the
different grids in the M-series. Comparing quantitative data of the two cases we
can see in table (7) that some of the trends observed for the grid and domain
study persist. Frequency and drag is reduced, while the RMS of the lift has
increased when refining the time step.

Table (7): Force coefficient statistics and lift force frequency for M07 and C04. CL,rms is
the root-mean-square of the oscillating lift-force coefficient, CD is the time averaged drag
coefficient and f∗

peak is the dominating frequency of oscillation for the lift-force.

Case CL,rms CD f∗
peak

M07 0.0386 0.8672 0.1214
C04 0.0391 0.8646 0.1236

The results are still very close, and the increase in computational effort required
is rather large. Thus it is considered in the present study that a M07 type grid
and domain setup utilizing a larger time step is sufficient. However a lot has been
learned about the effects of the simulation setup on the quality of the solution.

4.4 General Thoughts On This Chapter

• A more focused grid study might be performed especially with respect to
the quality of the boundary layer mesh. (See section 3.3 for thoughts on
layer mesh.)

• A targeted grid study utilizing similar parameters as in the present study
might be beneficial. As can be seen in section 5, the velocity field and overall
wake dynamics of the present study seems to agree with DNS simulations,
however integrated forces are somewhat off. A grid study with a base in
the M07-type grid could be performed with the aim of obtaining a better
boundary layer mesh setup and investigating the effect on integrated force
coefficients.
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5 Simulations - DNS Comparisons

After establishing a numerical setup through grid generation and grid indepen-
dence testing, it is of interest to establish a common ground with DNS data. The
process in this section is that of verifying the simulation setup, i.e. establish to
what degree the “equations are solved right” (Roache 1998) by verification with
unpublished DNS data (F. Jiang, B. Pettersen, H. I. Andersson, et al. 2018).

It is important to know what the present OpenFOAM setup does right and what
are its shortcomings so that a continuation of the work in this thesis have a
starting point. In addition, the effect of shear inflow is discussed later in section
(6), of which there are no previously published results in the literature (at least to
the knowledge of the author). This section then establishes a basis for comparison
in later sections.

Comparisons are made with respect to near wake flow dynamics. Aspects of
comparison include: the overall wake vortical structures obtained by λ2 (Jeong
and Hussain 1995); profiles of time averaged axial flow along the cylinder span and
frequency components in the wake; as well as integrated forces on the cylinder.

5.1 Problem Description

The flow configuration follows that of the DNS study (F. Jiang, B. Pettersen, H. I.
Andersson, et al. 2018) and in accordance with the numerical issues discussed in
(4). The configuration is summarized in figure (26) and noticable properties are
Lh/D = 10, Lv/D = 24 and the standard radius of curvature R/D = 12.5. The
grid properties are directly derived from the M07-grid obtained in section (4) only
extending the vertical extension. The uniform inflow condition U0 is imposed in
the positive x-direction.
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Parameter
Configuration Concave

Lh 10D
R 12.5D
Lv 24D

Inflow (C01) Uniform Re = 200
Inflow (C02) Uniform Re = 500

Figure (26): The configuration used for verification with DNS results. This setup is
utilized for a Re = 200 (C01) and a Re = 500 (C02) flow. The configuration is derived
from the M07 grid (see section 4.2) only changing to a 24D vertical extension.

Two cases are studied and compared, that is one with Re = 200 and one with
Re = 500 which are named C01 and C02 respectively. For reference the DNS
results are named accordingly FC01 and FC02 for the two Re respectively.

In the present study all simulations were run t∗ = 100U0/D dimensionless time
units to ensure a developed flow, then data were gathered for 1000U0/D time
units. The instantaneous snapshots were then extracted from the last time instant
t∗ = 1100U0/D.
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5.2 Near Wake Velocity Analysis - RE200

The time averaged flow along the cylinder span is presented in figure (27) and (28)
for both the present study and the DNS data. The normalized axial flow velocity
component Uax/U0 is calculated as equation (48) and then time averaged.

Uax

U0
= u

U0
cos(θ) + w

U0
sin(θ) (48)

It is measured along a concentric arc of the curved part, which radius is 13.6D,
i.e. at 0.6D behind the trailing edge of the curved cylinder. In a similar manner
along the vertical extension, measurements are taken along a vertical line at
x/D = 13.6. Everything in the centre plane y/D = 0.
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Figure (27): Variation of the time average of the axial velocity component Uax/U0 along a
concentric arc of the curved part which radius is 13.6D, i.e. 0.6D behind the trailing edge
of the curved cylinder. Showing the present study ( ) compared to DNS data ( )
(F. Jiang, B. Pettersen, H. I. Andersson, et al. 2018). Re = 200.

The time averaged axial flow seems to follow the DNS solution quite well for
Re = 200. In figure (27) we see that the end-points of the graph are visually
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exactly the same for both solutions, beginnning at Uax/U0 ≈ 0.95 for θ = 0◦ and
ending at Uax/U0 ≈ 0.77 for θ = 90◦. Uax/U0 < 1 indicating that the probe
is inside the boundary layer at the intersection between the horizontal extension
and the curved part. This is in good agreement with the boundary layer study on
the horizontal extension by (F. Jiang, B. Pettersen, and H. I. Andersson 2018)
for Re = 100, where u/U0 was ∼ 0.85 at δh/D = 0.6 from the cylinder surface.

Some deviations from the DNS can be observed where large gradients occur. Ex-
amples in figure (27) are the sudden drop at θ ≈ 5◦ towards the graph minimum
at θ ≈ 20◦ where the graph then again increases.

Similar discrepancies are found along the vertical extension in figure (28) just
around the beginning of a steady drop of Uax/U0 at z/D ≈ 8. Near the top
boundary around z/D = 21− 24 a the axial flow persists further up than in the
DNS solution. The axial velocity deviates from the DNS line at z/D ≈ 21 and is
almost constant until a sudden drop begins at z/D ≈ 23 towards the boundary at
z/D = 24. The DNS solution has a more steady decrease from z/D = 7 towards
the boundary. This is further discussed in section (5.4).
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Figure (28): Variation of the time average of the axial velocity component Uax/U0 along
the span of the vertical extension at x/D = 13.6, i.e. 0.6D behind the trailing edge of
the vertical cylinder. Showing the present study ( ) compared to DNS data ( ) (F.
Jiang, B. Pettersen, H. I. Andersson, et al. 2018).
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5.3 Forces and Frequency Analysis - RE200

The force coefficients CL and CD of lift and drag respectively was logged sepa-
rately on the three cylinder parts. In table (8) the root-mean-square of the lift
coefficient CL,rms and the time averaged drag coefficient CD is presented for the
curved part, horizontal extension, the vertical extension and the configuration in
total. All individual cylinder parts are normalized on the same projected area
Aref = 37D2 corresponding to the projected area of the complete configura-
tion. The total value is calculated from statistics performed on the sum of the
force coefficient time series of the individual parts, such that phase differences
between forces on each part is accounted for. This is in accordance with the total
configuration being assumed completely rigid.

The corresponding values obtained from the DNS study (F. Jiang, B. Pettersen,
H. I. Andersson, et al. 2018) are also provided in table (8) and the percentage
difference between the studies are given as |∆|. Further the normalized frequency
f∗peak = fpeakD/U0 represents the dominating frequency occuring in the oscillat-
ing signal of CL, obtained by a discrete Fourier transform of the time series.

Table (8): The root-mean-square of the lift coefficient CL,rms, the mean drag coefficient
CD, and the dominating frequency of the lift force f∗

peak = fpeakD/U0 given for the
individual cylinder parts, total configuration and comparison values from DNS study. |∆|
is the percentage difference between the two studies. Re = 200.

Curve Horizontal Vertical Total Total DNS |∆|%
CL,rms 0.0003 0.0000 0.0215 0.0216 0.0179 20.7
CD 0.3094 0.0454 0.7201 1.0749 0.9816 9.5
f∗peak 0.1220 0.1680 0.1680 0.1680 − −

The CL,rms and CD is clearly larger in the present study compared to the DNS
results, with roughly an increase of ∼ 20% and ∼ 10% in lift and drag respectively
from DNS to the present study results. This is a possible consequence of grid
resolution as it was also observed as a general trend in section (4) that the
magnitude of the forces increase as the grid near the cylinder and in the boundary
layer especially is refined.
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Figure (29): Frequency spectrum of frequencies present in the time series of v measured
along a vertical line at x/D = 16 behind the vertical extension, i.e. 3D behind the
trailing edge of the cylinder. DFT (v) indicates the spectrum value in % of the largest
peak present; z/D is the vertical position; fD/U0 is the normalized frequency. Re = 200.

Figure (29) indicates the frequency spectrum obtained by a discrete Fourier trans-
form of time series of v measured along a vertical line at x/D = 16 behind the
vertical extension, i.e. 3D behind the trailing edge of the cylinder. The DFT (v)
indicates the values in percent of the largest peak present in the plot, z/D indi-
cates vertical position and f∗ = fD/U0 is the normalized frequency of oscillation
in v. There are predominantly two peak frequencies present in the wake, and
these are related to the shedding frequency in two cells along the span. The fre-
quency f∗ = 0.122 dominates in the range of z/D = [0, 14.5] while in the upper
part of z/D = [14.5, 24] the frequency is f∗ = 0.168. Between those two frequen-
cies there is a gradual overlap of frequency peaks in the spectrum. The DNS
study (F. Jiang, B. Pettersen, H. I. Andersson, et al. 2018) reports two similar
cells of frequency f∗ = 0.126 and f∗ = 0.172. The shedding frequencies are then
somewhat lower in the present study. This agrees with figure (28) in which a
slightly higher axial velocity is observed clsoe to the top boundary in the present
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study. The onset of the cell of higher frequency is reported in the DNS study at
z/D ≈ 15. These cells are from here on referred to as normal shedding regimes
for the concave flow configuration, after (F. Jiang, B. Pettersen, H. I. Andersson,
et al. 2018). The definitions are as indicated in figure (30) where iso-surfaces of
constant λ2 (Jeong and Hussain 1995) are used for visuals of the regimes. The
vortex topology is further discussed in the next section. The regime 1 is included
as the regime where there is no vortex shedding. The comparison of shedding
frequencies is summarized in table (9).

Figure (30): Iso-surfaces of λ2 = −0.1 (Jeong and Hussain 1995) for the uniform flow at
Re = 200 with dashed lines indicating shedding regimes.
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Table (9): Summary of the comparison of shedding frequencies in regime 2 and 3 for the
present study and the DNS solution.

f∗ = fD/U0 Present study DNS
f∗ Regime 2 0.122 0.126
f∗ Regime 3 0.168 0.172

Onset of regime 3 z/D ≈ 14.5 z/D ≈ 15
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5.4 Overall Near Wake Structure - RE200

In the case of uniform flow past the concave cylinder configuration at Re = 200,
the wake is still characterized by a large laminar non-shedding region around
the curved part. Figure (31) shows a direct comparison of instantaneous wake
vortical structures using iso-surfaces of constant λ2. The figure shows the present
study to the left and the DNS results to the right. The visualization of the two
are cut off at different x/D, however a dashed vertical line is added for reference
at x/D = 30.

Figure (31): Wake vortical structures indicated by iso-surfaces of λ2 for Re = 200. The
flow is viewed in the positive y-direction. View direction is further clarified by the grid
in the (x, z) plane. Left: Iso-surface of λ2 = −0.1 as a result of the present study.
Dashed line indicating downstream point where the DNS plot ends. Right: Iso-surface of
λ2 = −0.01 from unpublished DNS data (F. Jiang, B. Pettersen, H. I. Andersson, et al.
2018).

One immediate observation is that the two snapshots are taken at two differ-
ent time instants, with the right plot being slightly “ahead” of the left in time.
However this is of minor importance for comparison and the flow structures are
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clear. On the left plot in figure (31) a vortex dislocation is indicated by a solid
black circle which also can be found in the DNS plot (although not marked). A
vortex dislocation occurs at the intersection between different shedding regimes
as a “bridging” between two shedding frequencies (C. H. K. Williamson 1989).
By looking at z/D = 14 in both plots in figure (31) one can see the left end of
a small vorticity core related to this bridging. In the left plot it occurs slightly
upstream of x/D = 20. In the right plot the same vortex core is observed slightly
downstream of x/D = 20. One can observe that this bridging involves redistribu-
tion of vertical vorticity (ωz) to both streamwise (ωx) and cross-stream vorticity
(ωy). By visual inspection it is observed that the vortex dislocation links four
vortex cores in the upper domain to two vortex cores below the dislocation. This
is a result of the apparent high frequency shedding above z/D = 14 and the lower
shedding frequency below z/D = 14.

The left plot lacks some details in the smallest scales of the flow when compared
to the right (DNS) plot. This is clear e.g. in the mentioned vortex core at the
dislocation, which results in the visualization of the vortex being broken up in
two parts and is a fault of the relatively low grid resolution in the present study
compared to the DNS study.

Another point of figure (31) which calls for attention is the region marked in a
dashed oval. This is along the top boundary of the domain and the same pattern
is not present in the DNS solution. Rather strong streamwise vorticity cores
are observed even though the dominant flow is that of vortex shedding of ωz.
The pattern seems to be produced in a regular manner along the top part and
is clearly a result of three-dimensional spanwise instability. Examples of three-
dimensional instabilities in the wake of straight circular cylinders are given in the
famous review by (C. Williamson 1996) or the recent DNS study of (H. Jiang
et al. 2016) on 3D wake transitions. Especially the “mode A” instability which
onsets at around Re = 190 (C. Williamson 1996) bears a strong resemblence to
the streamwise vortex pairs observed in figure (31).

The “mode A” structure occurs even for straight cylinders with uniform inflow,
however in the case of the concave curved configuration it is known that also
a strong axial flow is present (section 5.2). In section (5.2) figure (28) shows
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that the time averaged Uax/U0 deviates from the DNS in the upper ∼ 3D of the
domain, and is actually stronger compared to the DNS. The measured frequencies
in the wake found in section (5.3) was lower than what the DNS study reported,
which supports the idea of an influence from spanwise flow.

The distribution of instantaneous vertical velocity component w in the centre
plane is plotted and compared for the two studies in figure (32). There is a
slight oscillation of w from negative to positive values happening in the region
z/D = [21, 24] in the left plot which is not present in a same manner in the DNS
results (right plot).

Figure (32): Instantaneous distribution of w in the y/D = 0 centre plane. Left: Result
of the present study. Mild oscillation of w is indicated by a black oval in the top domain.
Regions of positive and negative values are marked with plus and minus signs. Right:
Result of the DNS study (F. Jiang, B. Pettersen, H. I. Andersson, et al. 2018). The upper
region of comparison is marked by an oval.

This mild oscillation of w might be enough to trigger the 3D instability in the
upper region. It seems reasonable to believe that the oscillation occurs as a
result of the upper boundary condition in combination with a slightly stronger
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spanwise flow. The differences in axial flow between the two studies might owe to
grid effects, as a similar behaviour was observed in the poorly resolved M03 grid
in the grid study (section (4)) compared to the finer grids. The time averaged
axial flow along the vertical section was heavily overpredicted by the poor grid.

The phenomenon in figure (31) looks similar to flow topology for cases where the
spanwise flow interferes with the slip-wall boundary (e.g. (Miliou et al. 2007)).
In the DNS investigation (F. Jiang, B. Pettersen, H. I. Andersson, et al. 2018)
the effect of various lengths of Lv is studied and a similar behaviour can be seen
for Lv/D = 6 along the top boundary, however not in the exact same manner as
in the present analysis.
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5.5 Overall Near Wake Dynamics - RE500

At Re = 500 massive three-dimensional instabilities can be observed in the wake
with “mode B”-like streamwise vorticity structures (C. Williamson 1996) forming
along the complete span of the vertical extension as well as in the upper ∼ 4D
of the curved part. The wake becomes then more complex than in the Re = 200
case, and the wake is filled with fine vortical structures. This can easily become a
problem for the OpenFOAM setup used, compared to the DNS, as the grid cells
are not nearly as small as what is needed to catch the finest structures present
in the flow. The smallest scales present in a flow is related to the Kolmogorov
microscales (Tennekes 1972) and a DNS approach is required to come close to
resolving these structures (White 2006).

Figure (33): Wake vortical structures indicated by iso-surfaces of λ2 for Re = 500. The
flow is viewed in the positive y-direction. View direction is further clarified by the grid
in the (x, z) plane. Left: Iso-surface of λ2 = −1.0 as a result of the present study.
Dashed oval indicates that more oblique vortices are shed at the top. Black circle marks
a boundary between two distinct shedding frequencies. Right: Iso-surface of λ2 = −0.1
from unpublished DNS data (F. Jiang, B. Pettersen, H. I. Andersson, et al. 2018).
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In figure (33) the fine-scaled structures are very much visible and clear in the
DNS plot to the right. Although the present study to the left is able to catch
the large scale motions of the wake and some smaller scale motions close to the
cylinder, the grid further downstream is clearly contributing to a dissipation of
the finer scale motions. Notice that two very different magnitudes of λ2 is used in
the two plots. The OpenFOAM solution requires a plot of “stronger” λ2 = −1.0
compared to Λ2 = −0.1 for the DNS to display the similar structures properly.

It is noticable in figure (33) that the OpenFOAM solution exhibits a seemingly
more oblique shedding than the DNS near the top boundary. This is indicated
by a black dashed oval. A black solid line circle indicates a distinct boundary
between two shedding frequencies occurring at z/D = 4, which matches well with
the DNS result.

The frequency distribution along the vertical extension in the DNS study is re-
ported as one dominant shedding regime in the lower part of the vertical extension
at a frequency of f∗ = 0.127. Above this frequency there is a continous frequency
band of increasing frequency with increasing z/D until reaching a dominant fre-
quency in the straight shedding in the upper part (F. Jiang, B. Pettersen, H. I.
Andersson, et al. 2018). The regimes and wake topology can be seen in figure
(34). The limits of this frequency band is visualized in figure (35) as two straight
lines along with the peak frequencies of v obtained in the wake of the Open-
FOAM simulation. The lower frequency regime is captured with a frequency of
f∗ = 0.121 compared to f∗ = 0.127 in the DNS. Both studies extract the fre-
quencies at 3D behind the trailing edge of the vertical extension, in the centre
plane y/D = 0.
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Figure (34): Iso-surfaces of λ2 = −1 (Jeong and Hussain 1995) for the uniform flow at
Re = 500 with dashed lines indicating shedding regimes.
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Figure (35): Distribution of peak frequencies of v in the wake along a vertical line 3D
behind the vertical extension. ( ), f∗ = fD/U0 present study; ( ), ends of frequency
band in DNS study at f∗ = 0.186 and f∗ = 0.207 (F. Jiang, B. Pettersen, H. I. Andersson,
et al. 2018).
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The OpenFOAM solution obtains once again reasonable dominant frequencies
however the exact extent of the frequency band and how well it is represented
has not been analysed quantitatively. Figure (36) however shows a qualitative
estimation of the ends of the frequency band captured in the present study.

Figure (36): Frequency spectrum of frequencies present in the time series of v measured
along a vertical line at x/D = 16 behind the vertical extension, i.e. 3D behind the
trailing edge of the cylinder. DFT (v) indicates the spectrum value in % of the largest
peak present; z/D is the vertical position; fD/U0 is the normalized frequency. ( ),
approximate width of the frequency band. Re = 500.

The time averaged profiles of Uax/U0 along the curved part at Re = 500 is
presented in figure (37) and along the vertical extension in figure (38).

The curves in both studies show the same main trends in the curved part, however
larger discrepancies are observed at large curvatures in the profile compared to
the comparison on Re = 200. Both profiles begin at Uax/U0 ≈ 1.02, which means
the probes are outside the boundary layer at the intersection between the curved
part and the horizontal extension. The slight large value is likely due to blockage
effects (F. Jiang, B. Pettersen, H. I. Andersson, et al. 2018). As in the Re = 200
case the OpenFOAM solution drops sooner than the DNS in the region θ =
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0− 10◦. Otherwise the curves align well until the OpenFOAM solution deviates
somewhat from θ ≈ 75◦. The general trend seems to be preserved, however
the first trough (∼ 82◦) and the following peak (∼ 85◦) are underpredicted and
shifted to the right. The last trough at θ ≈ 88◦ is also underpredicted, but the
two graph endpoints (at curve-vertical intersection) are coinciding.
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Figure (37): Variation of the time averaged axial velocity component Uax/U0 along a
concentric arc of the curved part whose radius is 13.6D, i.e. 0.6D behind the trailing edge
of the curved cylinder. ( ), present study; ( ), DNS data (F. Jiang, B. Pettersen,
H. I. Andersson, et al. 2018). Re = 500.

The axial flow along the vertical extension (38) shows some significant deviations
from the DNS study. First the maximum at z/D = 2 and the details in graph
curvature in this area is lost. Afterwards the OpenFOAM solution drops more
sudden than the DNS at z/D ≈ 4. Even though the main trends are captured
along the span, small details are lost, and the present solution shows a constant
axial flow in z/D = 13−21.5 while the DNS solution is more steadily decreasing.
Similar to the Re = 200 case, this leads to the OpenFOAM solution dropping
more rapidly towards the boundary condition.
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Figure (38): Variation of the time averaged axial velocity component Uax/U0 along the
span of the vertical extension at x/D = 13.6, i.e. 0.6D behind the trailing edge of the
vertical cylinder. ( ), present study; ( ), DNS data (F. Jiang, B. Pettersen, H. I.
Andersson, et al. 2018). Re = 500.

The region starting at θ ≈ 75◦ in the curved part and up to z/D ≈ 2.5 in the
vertical part is a transitional area where the dynamics are significantly different
from both the lower and upper domain (F. Jiang, B. Pettersen, H. I. Andersson,
et al. 2018). The wake is very unstable in this region, and it seems to be the
most challenging part for the OpenFOAM study to capture.

5.6 Forces and Frequency Analysis - RE500

Regarding the logging and calculation of forces, the same approach and definitions
are as given for the Re = 200 case. The result and comparison values from the
DNS study is given in table (10).
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Table (10): The root-mean-square of the lift coefficient CL,rms, the mean drag coefficient
CD, and the dominating frequency of the lift force f∗

peak = fpeakD/U0 given for the
individual cylinder parts, total configuration and comparison values from DNS study. |∆|
is the percentage difference between the two studies. Re = 500.

Curve Horizontal Vertical Total Total DNS |∆|%
CL,rms 0.0266 0.0000 0.0593 0.0640 0.0329 95
CD 0.2770 0.0247 0.7060 1.0076 0.9052 11.3
f∗peak 0.1212 0.1212 0.1946 0.1946 − −

Even larger errors are observed in the Re = 500 case compared to Re = 200.
Now there is approximately a doubling of the CL,rms in the OpenFOAM solution
compared to DNS. The CD shows only a slightly increased error which is now
just above ∼ 11%.
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6 Simulations - The Effect of Shear Inflow

Three-dimensionalities in the wake of flow past bluff bodies are enhanced by the
introduction of non-uniform geometry. This has been seen in previous studies
of inclined cylinders where a yaw angle of the cylinder introduces slanted vor-
tex shedding (see e.g. extensive investigation (Ramberg 1983) of yaw and finite
length, or as early as (Hanson 1966)). The flow past tapered cylinders at low
Reynolds numbers studied by (Gaster 1969) showed a local Reynolds number
effect on the wake structure in the form of different shedding frequencies along
the span as the cylinder diameter changes. Curved cylinders in the recent years
studied by e.g. (Miliou et al. 2007), (Canabes 2010), (Xu and Cater 2016) and
section (5) of the present study indicate complex three-dimensional flow features.

For the cylinder, the three-dimensionality of the large scale wake dynamics often
involves oblique vortex shedding and the appearance of vortex shedding in cells
along the cylinder span. However the introduction of non-uniform inflow condi-
tions poses yet another trigger for three-dimensional effects. As seen recently by
(Xu and Cater 2016) studying both uniform and logarithmic inflow on straight
and curved cylinder configurations at large Reynolds numbers, (Canabes 2010)
investigating shear flow in curved convex configuration and (Parnaudeau et al.
2007) studying the effect of shear flow on straight circular cylinders as well as
tapered cylinders.

When shear is present in the spanwise direction of a straight cylinder, the vortex
shedding takes place in spanwise cells with a constant frequency over each cell
(Sumer 2006). In the review by (Griffin 1985) research show that the length of
the shedding cells decrease with increased shear rate.

(Maull and Young 1973) studied the effect of shear inflow on a bluff body of
length 19D with an oval leading edge and an extended body, and the spanwise
distribution of Strouhal frequencies f∗c = fD/Uc in the wake were presented as in
figure (39) as four spanwise cells. The cellular shedding frequencies was found to
increase with increasing spanwise location z/D and in turn local Reynolds number
Rel = U0(z)D/ν. When the strouhal frequency was based on the local velocity
along the span, the cells grouped along a frequency of f∗l = fD/U0(z) ≈ 0.25.
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Figure (39): Distribution of Strouhal frequency f∗ (figure: S) in the wake of a bluff body
in uniform spanwise shear at Re = 2.8 · 104, shear steepness K = 0.025. Taken from
(Maull and Young 1973). ( ), f∗

c = fD/Uc based on median reference velocity; ( ),
f∗

l = fD/U0(z) based on local inflow velocity; ( ), base pressure coefficient Cpb (figure:
Cp) based on median velocity. Spanwise coordinate in figure y/d, where d is the body
diameter.

(Zdravkovich 1997) reviews the main flow dynamics present in a shear flow past
a circular cylinder. Two secondary flows are present along the cylinder span.
A spanwise pressure gradient is established along both the leading and trailing
edge. The local stagnation pressure is proportional to the local inflow velocity
squared, i.e. a pressure coefficient of Cp(z) ∝ ±U0(z)2, the sign depending on
which side of the cylinder is evaluated. On the leading edge side a secondary
spanwise flow is driven by the pressure gradient from the high velocity end to the
low velocity end. On the trailing edge side the pressure gradient is negative, such
that the same phenomenon is produced, except flow runs from the low to high
velocity end. The secondary flow is visualized in figure (40) for both positive and
negative shear rate.

The secondary flows along the span will be referred to as upwash and downwash in
this section, with flow direction corresponding to positive and negative z-direction
respectively.
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Further (Zdravkovich 1997) points out as the vorticity created in the free stream
approaches the cylinder, the vortex filaments are bent around the cylinder surface
as can be seen in figure (41a) creating also a steady downwash along the sides
of the cylinder. The vortex filaments are bent around the cylinder such that
they align with the free stream direction, resulting in a convection of streamwise
vorticity ωx downstream. The streamwise vorticity is illustrated in the rear view
of figure (41b).

(a) SIDE VIEW (b) SIDE VIEW

Figure (40): Secondary flow along leading and trailing edge of a straight cylinder in case
of: (a) Positive shear rate, and (b) Negative Shear rate. Vorticity being formed in the free
stream is indicated in both cases. Figure inspired by (Zdravkovich 1997).
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(a) TOP VIEW (b) REAR VIEW

Figure (41): (a) Vortex filements produced in the free stream at some spanwise location
and being bent around the cylinder circumference. (b) Bent vortex filaments produce a
downwash near the sides of the cylinder and are transported downstream as streamwise
vorticity. Figure inspired by (Zdravkovich 1997).
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6.1 S-series - Problem Description

The understanding of the non-uniform free-stream effect on marine structures is
important for optimal design and thus a simple linear shear flow is considered in
this section as a first step into non-uniform flow conditions on the curved concave
cylinder configuration.

An inflow condition of a linear shear flow profile has been imposed in the concave
flow direction (see figure (42)).

Parameter
Configuration Concave

Lh 10D
R 12.5D
Lv 24D

Inflow type Spanwise Shear

Figure (42): The configuration used for investigating shear flow. The geometrical config-
uration is the same M07-based grid (see section 4.2). A spanwise shear inflow is imposed
at the inlet.

The shear profile imposed at the inlet boundary is represented mathematically
by equation (49) with U0(z) being the inflow velocity in x-direction.

U0(z)
Uc

= K
z + 23
D

+ Ubottom

Uc
(49)

Uc is the flow profile median velocity occurring at z/D = 0.5 with its respective
local Reynolds number Rec, Ubottom is the velocity at the bottom of the domain,
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in this case at z/D = −23 andK is the non-dimensional shear steepness according
to equation (50).

K = dU0(z)
dz

D

Uc
(50)

The simulations are run on the same domain, grid and geometry as in the DNS
comparison (section 5.1), that is the M07-grid from the grid study (section 4)
only extended to a 24D vertical extension. The simulations were run 100Uc/D

dimensionless time units with adjustable time step maintaining Comax = 5. Fur-
thermore data was logged for 1000Uc/D with a sampling period of 0.05Uc/D. All
simulations ensured a mean Courant number below ∼ 0.1 and Comax ≈ 3.5−5.0.
Instantaneous snapshots of the flow field are taken at t∗ = 1100Uc/D.

To keep a relation to the flow conditions in section (5) a shear profile extending
across the full height of the domain from z/D = −23 to z/D = 24 with extreme
values of local Reynolds number being Rel = 200 and Rel = 500 is used.

This ensures that the grid used in the uniform flow cases earlier remains valid
at least with respect to the inflow Reynolds number and that the wake flow
dynamics should be comparable to the uniform inflow cases.

The values for the shear flow parameters are indicated in table (11), and it can
be seen that when fixing the flow velocity extreme values and the height of the
shear profile to the domain height h/D = 47 gives a shear steepness magnitude
of |K| = 0.0182 in the cases S01 and S02. S01 and S02 represents the case of
positive and negative shear rate respectively.

Additionally a stronger shear rate S03 was simulated. The shear profile has
K = −0.0236, i.e. a stronger negative shear rate than S02. The shear rate
results from setting Rel(z/D = −23) = 700 and Rel(z/D = 24) = 200.
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Table (11): Shear flow parameters used in positive shear rate simulation (S01) and negative
shear rate simulations (S02 and S03).

Case Ubottom Rebottom Utop Retop Uc Rec K

S01 2 200 5 500 3.5 350 0.0182
S02 5 500 2 200 3.5 350 -0.0182
S03 7 700 2 200 4.5 450 -0.0236

Whether the grid can handle the larger local Reynolds number imposed at the
bottom is unknown and questionable, however the Renyolds number reduces to
Rel ≈ 604.3 already at z/D = −14 which is 1D below the bottom of the horizon-
tal extension. The simulations considered in the present study up to Re = 500 for
the same configuration has shown that the flow remains laminar and non-shedding
even up to z/D = −4. Thus the S03 flow configuration is considered reasonable,
if not for a quantitative study, at least for the presentation of qualitative trends.

Another limitation applies for how the shear flow is applied in general. The
introduction of three-dimensionality in the freestream itself poses a boundary
issue. The question must be raised of whether the domain size is reasonable
when the shear profile is extended from the bottom to top boundary, considering
the free-slip wall boundaries. (Parnaudeau et al. 2007) omitted the bottom and
top boundary condition issue by introducing a shear profile only partly along
the inlet span. Extended uniform constant inflow conditions were used near the
boundaries.
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6.2 Results and Discussion - Shear Flow

In this section the results and findings of the shear flow cases are presented. The
positive shear profile in S01 is considered first with comparisons to the uniform
constant inflow conditions on the curved cylinder as well as references to past
research on straight circular cylinders in a sheared free stream. The results of
negative shear rate introduced in S02 and S03 are analysed with a basis in S01
and the uniform constant simulations C01 and C02.

It is perhaps beneficial as a reference for the reader that a sketch of the velocity
profiles imposed at the boundary in each case is included. An overview of the
three velocity profiles along with the resulting instantaneous snapshots of the
wake topology illustrated by λ2 (Jeong and Hussain 1995) in each case is found
in figure (43).
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Figure (43): Top Row: The velocity profiles U0(z) imposed for S01, S02 and S03. Median
velocity Uc is indicated at z/D = 0.5 for each simulation. The profiles are indicated
relative to the cylinder, which is drawn to scale relative to the vertical position z/D.
Bottom Row: Iso-surfaces of λ2 (Jeong and Hussain 1995) for the three shear flow
cases. From left to right: λ2 = −0.5, S01; λ2 = −0.5, S02; λ2 = −1, S03.

Below in figure (44) and (45) the time averaged axial flow profiles are presented
in the same manner as discussed previously in section (5) for the curved part and
the vertical extension respectively. S01, S02 and S03 are all plotted together. As
the freestream velocity is continuously varying along the cylinder, the tangential
velocity component is now normalized on the median value Uc of the shear profile
as Uax/Uc. The normalization with respect to Uc applies in general in this section.
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6.2.1 Increased Upwash in S01

The axial flow along the curved part for S01 is observed in figure (44) to be
significantly lower than what is the case for S02. The velocity at the intersection
with the horizontal extension at θ = 0◦ starts up at Uax/Uc ≈ 0.73 and Uax/Uc ≈
1.28 for S01 and S02 respectively. This of course seems natural as the local
Reynolds number occurring in the free stream at z/D = −14 are ∼ 257.5 and
∼ 442.7 for S01 and S02 respectively. However as the two profiles approach
the intersection with the vertical extension at θ = 90◦, they match up exactly
reaching a velocity of Uax/Uc ≈ 0.8.

All shear flows studied seems to experience a drop in axial velocity during the
first interval of θ = 0◦ − 21◦, same as what was observed for the uniform flows
C01 and C02 in section (5). After the initial drop the uniform flows and the
shear flows all rise again to a maximum later in the region θ ≈ 50◦− 65◦. Figure
(45) shows that S01 preserves this maximum as an almost constant line from
θ = 65◦ to z/D = 4, whilst S02 experiences a monotonic decrease towards the
top boundary. It is evident that some effect is driving the axial flow in S01 around
θ ≈ 70◦ to z/D ≈ 4, overcoming the decrease in momentum experienced by S02
and the uniform flows.
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Figure (44): Variation of the time average of the axial velocity component Uax/Uc along
a concentric arc of the curved part which radius is 13.6D, i.e. 0.6D behind the trailing
edge of the curved cylinder. ( ), S01; ( ), S02; ( ), S03.

As with C01 (Re = 200), S01 shows a strong preservation of axial flow along the
vertical extension. S01 preserves a Uax/Uc ≥ 0.2 all the way to z/D = 22 before
dropping sharply towards the boundary. In this case this means that 20% of the
local freestream velocity at z/D = 0.5 is found as a pure vertical velocity all
the way up to z/D = 22. This is a large contribution considering that the local
freestream in the region of the curved cylinder (below z/D = 0) is in general
lower than Uc.
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Figure (45): Variation of the time average of the axial velocity component Uax/Uc along
the span of the vertical extension at x/D = 13.6, i.e. 0.6D behind the trailing edge of the
vertical cylinder. ( ), S01; ( ), S02; ( ), S03.

A likely parameter that is known to influence the flow in the way discribed is
the pressure, and more specifically the pressure gradient in the domain. The
phenomenon observed in S01 seems to be a result of a favourable pressure gra-
dient7. The instantaneous pressure field is indicated for S01 and C01 in figure
(46). The similar Re range around the curved part for the two cases leads to an
unsurprising display of the same behaviour of a negative pressure gradient along
the span on the trailing edge side.

7The effect of adverse and favourable pressure gradients are discussed in (White 2006)
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Figure (46): Instantaneous pressure field in the (x, z) centre plane. White arrows indi-
cating direction and relative magnitude of spanwise pressure gradient. Arrows are not to
scale nor based on a calculation of the gradient. P ∗ = p/ρU2

c is the normalized pressure.
Left: The S01 case with a positive shear rate in the freestream displaying strong spanwise
pressure gradients along leading and trailing edge. A negative flow along the leading edge
idicated in the far left plot. Right: The uniform flow case C01 at Re = 200 for com-
parison. A weaker spanwise pressure gradient along trailing edge and a visually uniform
stagnation pressure distribution along the leading edge is shown.

The magnitude of the gradient however seems to be stronger in S01, as the contour
colour indication in C01 is more uniform. Another feature of figure (46) indicates
a stronger positive stagnation pressure gradient on the leading edge side in S01
compared to C01, and hence a slight negative flow along the span indicated by
w/Uc to the far left in figure (46). These observations are in good qualitative
agreement with effects of shear in the freestream on straight circular cylinders
reviewed in (Zdravkovich 1997).

It is noticed in figure (45) that the axial flow along the vertical extension for
S01 seems to be forced to abruptly decrease at z/D = 22 towards zero at the
top boundary. This suggests that an investigation of the influence from the top
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boundary condition is needed.

6.2.2 Influence of Downwash in S02 and S03

As discussed and shown in figure (44), the axial flow along the curved part in
S02 shows similar trends as the uniform flows, and especially to the lower Re
case C01. S03 also bears strong resemblance to S02 and the uniform flows in this
region. The S02 and S03 does however deviate when the flow approaches the
area known as the transitional region (section (5)) from around θ ≈ 70◦. Here
The S03 takes on characteristics found in the higher Re case C02 (Re = 500).
At z/D = −14 a local Reynolds number of Rel ≈ 442 and Rl ≈ 604 for S02 and
S03 respectively. This means that the range of Re around the curved part in the
two cases are very different in magnitude, and it seems to govern the onset of the
transitional region in the intersection between the curved and vertical part.

In figure (45) the spanwise flow along the vertical extension can be compared
for the cases S02 and S03. A strong decrease in vertical spanwise velocity is
experienced for both cases, however S03 drops rapidly already at z/D ≈ 1.7 going
from Uax/Uc ≈ 0.7 to Uax/Uc ≈ 0.1 at z/D ≈ 4.5. S02 decreases more slowly.
In both cases axial flow velocity decreases monotonically towards a minimum at
z/D ≈ 16.5 and z/D ≈ 12.0 for S02 and S03 respectively, taking on an average
negative flow velocity. The negative trend persists all the way to the top boundary
and is rather strong at the minima of Uax/Uc ≈ −0.1 and Uax/Uc ≈ −0.18 for
S02 and S03 respectively.

Similarly as seen for the positive shear in S01, the velocity along the span is
heavily altered. By exploring the instantaneous pressure distribution in figure
(47) pressure gradients can be sketched as arrows.
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Figure (47): Instantaneous pressure field in the (x, z) centre plane. White arrows indi-
cating direction of spanwise pressure gradient. Arrows are not to scale nor based on a
calculation of the gradient. P ∗ = p/ρU2

c is the normalized pressure. Left: The S02 case
with shear rate K = −0.0182. Right: The S03 case with shear rate −0.0236.

The overall trends in pressure distribution and spanwise flow in S02 and S03
along the vertical extension matches what is predicted for shear inflow on straight
cylinders. However, consentrating on the flow along the trailing edge side of the
cylinder, the spanwise pressure gradient seems to change sign.

Furthermore in figure (48) the distribution of vertical velocity component w/Uc

is plotted for S02 and S03. It can be observed that the upwash induced by the
curved part is clearly suppressed by the downwash created by the freestream
shear, and the stronger shear provides a stronger suppression.
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Figure (48): Instantaneous snpashot of the distribution of w/Uc in the (x, z) centre plane.
The suppression of upwash from the curved part resulting from the induced downwash
along the upper part of the vertical extension. Left: S02. Right: S03.
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To clearly see the suppression of upwash by the shear flow, an instantaneous
contour plot of three characteristic quantities of w/Uc can be seen in figure (49).
On the next page in figure (50) the comparison of contour lines of instantaneous
w/Uc = 0.2 is shown for all three shear cases, depicting the gradual induced
suppression of upwash by changing the shear rate.

Figure (49): Contour lines of instantaneous distribution of w/Uc = 0.2, 0.5, 0.8. Left:
S02. Right: S03.
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Figure (50): Contour lines of instantaneous distribution of w/Uc = 0.2 for all three shear
flow cases. The lines are labeled by case names in the figure. S01 (K = 0.0182); S02
(K = −0.0182); S03 (K = −0.0236).
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6.2.3 Shedding Regimes in S01

In figure (51) the shedding frequencies measured in the near wake for S01 is
presented. It is extracted from the time series of v along a vertical line parallel to
the vertical extension at 0.6D downstream of the cylinder. The frequencies are
represented by normalized frequency f∗ either based on Uc such that f∗ = f∗c =
fD/Uc or based on the local inflow velocity U0(z) such that f∗ = f∗l = fD/U0(z).
An additional axis is added for reference to the local Reynolds number along the
span Rel(z).

Figure (51): Strouhal number variation along span of the vertical extension for S01. The
Strouhal frequency fD/Uc ( ) based on the median inflow velocity Uc, and the Strouhal
frequency fD/U0(z) ( ) based on the spanwise varying inflow velocity U0(z). Reference
Strouhal values fD/Uc ( ) for a bluff body in uniform shear at Re = 2.8·104, K = 0.025
(Maull and Young 1973).

Along with frequencies from S01 are data from (Maull and Young 1973). They
found that the introduction of a continous linearly varying inflow does not result
in a continuous frequency band. The shedding occurred in cells of constant
frequency as indicated in figure (51). Looking back at figure (39) the values of f∗l
were found to vary within each cell however grouping around a single shedding
frequency f∗l ≈ 0.25 related to the shedding frequency dominating in uniform
flow.
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In the present study a similar arrangement of shedding cells along the vertical
extension can be observed, including also a variation of f∗l within each cell. Only
the upper three cells seem to have a grouping of f∗l around a value of f∗l ≈ 0.18,
and the first cell displays a significantly lower frequency. The group around
f∗l ≈ 0.18 is in the region of z/D = [10, 24] where Rel(z) ≈ 410 − 500. The
uniform Re = 500 case of C02 showed a dominant shedding frequency in the
upper part of the vertical extension of f∗ ≈ 0.180 − 0.195. Uniform inflows
at lower Re exhibit slightly lower frequencies due to increased spanwise flow
(F. Jiang, B. Pettersen, H. I. Andersson, et al. 2018), which might indicate
that there is a local Reynolds number effect forcing the f∗l around a shedding
frequency similar to a uniform flow also for the curved cylinder problem.

For z/D < 10, the average of f∗l lies at ∼ 0.105. The Rel is still quite large
at ∼ 340 − 400, and the Re = 300 uniform flow shows dominant frequency of
f∗ = 0.122 in this region (F. Jiang, B. Pettersen, H. I. Andersson, et al. 2018).
The local Re analogy from the straight cylinder does not seem to hold close to
the influence of the strong axial flow from the curved part and the transitional
region.

Figure (52) relates the shedding frequencies observed in figure (51) to the wake
topology illustrated by λ2 = −0.5 (Jeong and Hussain 1995). The four shedding
cells are illustrated along with an estimated location of the end of the non-
shedding regime.

The occurrence of finer structures as in C02 is again apparent along the span, with
streamwise vortices being formed in a way resembling mode-B type structures (C.
Williamson 1996). The finer structures seems to be produced from as far up as
z/D ≈ 4, though transition seems to be apparent further downstream just above
regime 1. Strong oblique shedding has an effect to postpone three-dimensional
instabilities (C. Williamson 1996), therefore while mode B is observed up from
z/D ≈ 4, not even mode A is observed below this region.

In the lower part of cell 1 clear slanted vortex cores are formed close to the cylin-
der. The vortex cores quickly exhibit instabilities when convected downstream
where a wave pattern emerges along the cores resulting eventually in them break-
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ing up.

Figure (52): Plot of iso-surfaces of λ2 = −0.5 (Jeong and Hussain 1995) for S01 indicating
the shedding of vortices in cells along the span of the vertical extension. Regime 1 being
the non-shedding regime.

A more straight shedding occurs in cell 2 and cell 3 and cell 4 show again more
of an oblique shedding. Rel is however in the range of 500 this far up and the
problem of capturing details in the current numerical model arises.
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6.2.4 Shedding Regimes in S02 and S03

The effect of a conflict between two spanwise flow regimes on the wake topology
is clear in the plot of λ2 in figure (53) for S02 and S03. The location where
the downwash produced by freestream shear and the upwash from the curved
cylinder meet is visible as a “bump” in the vortical structures. The location of
the bump is observed to roughly coincide with the point of Uax/Uc = 0 in figure
(44) for S02 and S03.

Figure (53): Plot of iso-surfaces of λ2 = −0.5 (Jeong and Hussain 1995) for the negative
shear rate simulations. The conflict between two spanwise flow regimes are evident in the
vortical structures. The resulting regimes: D-Regime (downwash dominated); U-Regime
(upwash dominated). Non-shedding regime Regime 1 is indicated. Left: S02. Right:
S03.

Two distinct regimes appear above and below the bump. They are named for
convenience after which spanwise flow is dominant in the region, i.e. U-Regime
where the upwash dominates and D-Regime where the downwash dominates. The
boundary between them will be referred to as the “bump”. It can be observed
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that mode-A instabilities (C. Williamson 1996) seems to be characteristic of the
bump region for S02 and finer streamwise vortices forms in addition in S03. In
general S03 shows more finer structures than the S02, which is most likely due
to a combination of a higher shear rate in the free stream and overall larger
Reynolds number.

In figure (54) a tendency of a cell-like frequency distribution can be observed also
for S02 and S03, as was seen in S01. The regimes set in figure (53) seems to posess
a few characteristic behaviours when considering figure (54): The U-Regime is
characterized by a constant shedding frequency until reaching the bump. The
bump naturally displays the highest frequency over a short span. Directly after
the bump there are cells of constant frequencies which gradually decrease towards
a cell of lower constant frequency near the top boundary. Also the location of
the bump shifts downwards as the shear rate increases as a consequence of the
increased downwash from shear and a decreased upwash from the curved part.
Additionally f∗l groups around f∗l ≈ 0.173 and f∗l ≈ 0.165 for S02 and S03
respectively.
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Figure (54): Strouhal number variation along the vertical extension. ( ), fD/Uc; ( ),
fD/U0(z); ( ), fD/Uc for a bluff body in uniform shear at Re = 2.8 · 104, K = 0.025
(Maull and Young 1973). Top: S02. Bottom: S03.
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6.3 General Thoughts and Further Work

• Furhter work: For further investigation of shear flow on the curved concave
cylinder, a similar aproach as (Parnaudeau et al. 2007) could be utilized.
Two constant flow conditions could be used near the top and bottom bound-
aries. To compare with this study the setup here could be extended by a
longer Lv and extended distance b to lower boundary. The required ex-
tension of each length will likely depend on whether a positive or negative
shear is introduced. Not a huge increase in computational effort if the same
setup is used.
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7 Conclusions

This thesis presents the development of a numerical model in SnappyHexMesh
(SHM) (OpenFOAM 2018b) for use in the open-source CFD (Computational
Fluid Dynamics) code OpenFOAM. SHM was found to be somewhat unpre-
dictable with respect to proper generation of boundary layer grids. By exper-
imentation with control parameters in SHM a suitable overall grid was found,
however a perfect boundary layer grid was hard to obtain. This was found to be
a contributor to limit the quality of the solution.

The model was verified by comparison with DNS (Direct Numerical Simulation)
data obtained in an unpublished study (F. Jiang, B. Pettersen, H. I. Anders-
son, et al. 2018). The present model was found to reproduce overall wake flow
dynamics found in DNS, however as the Reynolds number was increased details
were lost due to a relatively much finer grid found in the DNS. Time averaged
axial flow curves were compared with DNS for Re = 200 and Re = 500, where
the former was reproduced well. Especially a transitional region near the inter-
section of the curved and vertical cylinder parts (F. Jiang, B. Pettersen, H. I.
Andersson, et al. 2018) were found challenging for the present model at Re = 500.
Furthermore shedding frequencies were underpredicted in the present model due
to an overestimated extension of the axial flow velocity. Forces were found to be
increasingly overpredicted and it was argued to be most likely an effect of grid
resolution near the cylinder surface. A mode A-type instability (C. Williamson
1996) manifested itself in the region near the top boundary for Re = 200 most
likely due to boundary condition effects. An oscillating vertical velocity near the
boundary not found in DNS results was found to be a likely reason to trigger the
instabilities. The vertical velocities related to the overprediction of axial flow is
then a limitation of non-DNS analysis.

The effect of shear flow was investigated for positive and negative non-dimensional
shear steepness K = ±0.0182 in addition the a stronger K = −0.0236. The
positive shear rate lead to an increasing positive axial flow along the vertical
extension due to upwash generated by a favourable pressure gradient along the
cylinder span. This is a phenomenon occurring also for straight cylinders in shear
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flow (Zdravkovich 1997). As for straight cylinders in shear inflow, a cellular shed-
ding arrangement occurred in the wake with cells of different constant shedding
frequencies. Unlike for straight cylinders a shedding region of significantly lower
frequency was observed closer to the curved cylinder and was likely an effect of
the stronger axial flow there.

The negative shear rates displayed a very different wake from the positive shear.
The pressure gradient created by the freestream shear behind the cylinder changed
sign creating thus a downwash along the vertical cylinder. The upwash inherent
in the curved concave problem and the shear generated downwash was found
to interact in a way that created a region of high frequency shedding along the
span of the vertical part. The high-frequent shedding lead to a “bump” in the
visualization of vortex cores in the wake which tended to be shifted downwards
as the negative shear rate increased.
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Çengel, Yunus A (2014). Fluid mechanics : fundamentals and applications. eng.
3rd ed. in SI units. Boston: McGraw-Hill. isbn: 9781259011221.

Ferziger, Joel H (2002). Computational methods for fluid dynamics. eng. 3rd, rev.
ed. Berlin: Springer. isbn: 3540420746.

Fletcher, C. A. J (1991). Computational techniques for fluid dynamics : 1 : Fun-
damental and general techniques. eng. Berlin.
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Appendix

7.1 Grid Study

Figure (55): Frequency spectra obtained from a discrete Fourier transform of v in the
near wake along the straight extension at 3D behind the cylinder trailing edge. For cases
M01-M04.
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Figure (56): Frequency spectra obtained from a discrete Fourier transform of v in the
near wake along the straight extension at 3D behind the cylinder trailing edge. For cases
M05-M07.
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Figure (57): Frequency spectra obtained from a discrete Fourier transform of CL for each
cylinder part. The lines at (1, 2, 3, 4) represents the frequency spectrum from the curved,
horizontal, vertical and the total configuration repsectively. Showing spectra from case
M01-M04 as indicated. Spectrum axis is normalized in % of maximum spectrum value.
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Figure (58): Frequency spectra obtained from a discrete Fourier transform of CL for each
cylinder part. The lines at (1, 2, 3, 4) represents the frequency spectrum from the curved,
horizontal, vertical and the total configuration repsectively. Showing spectra from case
M05-M07 as indicated. Spectrum axis is normalized in % of maximum spectrum value.

7.2 Simulations - Shear Flow

7.2.1 Forces

Table (12): Results from the S-series force coefficient statistics and lift force frequency.
CL,rms is the root-mean-square of the oscillating lift-force coefficient, CD is the time
averaged drag coefficient and f∗

peak is the dominating frequency of oscillation for the lift-
force. Reference values included from the uniform flow cases C01 and C02.

Case CL,rms CD f∗
peak Case CL,rms CD f∗

peak

S01 0.0629 1.2850 0.2580 C01 0.0216 1.0749 0.1680
S02 0.0335 0.8447 0.1183 C02 0.0640 1.0076 0.1946
S03 0.0369 0.7862 0.1329
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Table (13): Force analysis for S01, S02 and S03

Curve Horizontal Vertical Total
CL,rms 0.0066 0.0000 0.0628 0.0629

S01 CD 0.2327 0.0217 1.0305 1.2850
f∗

peak 0.1126 0.1126 0.2580 0.2580
CL,rms 0.0129 0.0000 0.0323 0.0335

S02 CD 0.3396 0.0414 0.4637 0.8447
f∗

peak 0.1260 0.1260 0.1183 0.1183
CL,rms 0.0308 0.0000 0.0257 0.0369

S03 CD 0.3508 0.0379 0.3975 0.7862
f∗

peak 0.1329 0.1329 0.0978 0.1329
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