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Abstract 

The objectives of this thesis have been to develop a script for a multiscale method based on 

first order homogenisation, to investigate estimation of properties and behaviour of 

unidirectional (UD) fiber composites.  

To model composites on the microscale, an algorithm that generates periodic representative 

volume elements (RVE) geometries from controllable parameters and a pseudo random factor 

was developed. The output of this algorithm (fiber populations) was used to create heuristic 

RVE models in the Finite Element Analysis (FEA) software, Abaqus 6.14-4. These heuristic 

RVE models consist of fibers, matrix and an interface. The fibers in the models were assigned 

linear elastic material properties and the matrix and interface were assigned elastic, plastic 

and damage material properties.  

To simulate deformations and loads, macro strains were imposed on the heuristic RVE 

models through constraint equations. As the properties of the RVE varied with the distribution 

of the fiber populations, the creation of RVE models was automated to perform multiple 

iterations to calculate estimations of the average properties and the statistical dispersion of 

these.  

The effect of design parameters on stiffness estimations was investigated. To get insight into 

the local stress field in the RVE models, the maximum principal stress and maximum shear 

stresses were found for normalized linear elastic load cases. The strength of the RVEs was 

predicted by simulating nonlinear behaviour with different assigned material models. 

Consistent macrostrains for the non-linear analyses were maintained by an iterative backward 

force balancing procedure. 

The results showed that the stiffness estimations generally follow micromechanical 

approximations based on the rule of mixture. For the strength estimations, the produced 

results correlate with comparable methods and results found in the literature. This suggests 

that the method is feasible for microscale modelling of an RVE of UD fiber composites. 

Further development into material models, damage models and confirmation and calibration 

of results with empirical data should be investigated before using such a tool for design 

estimates.   
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Sammendrag 

Målet med denne undersøkelsen var å utvikle et skript for en multiscale metode, basert på 

første ordens homogenisering, for å estimere egenskaper og oppførsel av pakkede ensrettet 

(UD) fiberkompositter. 

For å modellere kompositter på mikroskala ble en algoritme utviklet. Den genererer 

periodiske representative volumelementgeometrier (RVE-geometrier) fra kontrollerte 

parametere samt en pseudo-random faktor. Resultatene fra denne algoritmen 

(fiberpopulasjoner) ble brukt til å skape RVE-modeller i element metode programvaren, 

Abaqus 6.14-4. RVE-modellene består av fibre, matrise og grensesnitt. Fibrene i modellen ble 

tildelt lineær elastiske materialegenskaper. Matrisen og grensesnittet ble tildelt elastisk og 

plastiske materialegenskaper og enkle skade modeller. 

For å simulere deformasjoner og belastninger ble RVE-modellene utsatt for makrotøyninger 

gjennom randbetingelser. Egenskapene til de representative volumelementene varierte mellom 

de forskjellige fiberpopulasjonene. For å undersøke effekten av forskjellige fiber populasjoner 

i RVE-modellene, ble scriptet automatisert for å kunne utføre flere iterasjoner av forskjellige 

RVE modeller for å beregne gjennomsnittlige estimater med statistisk avvik. 

Effekten av designparametere på stivhetsestimater ble undersøkt. For å undersøke den lineære 

spenningsfordelingen i RVE-modellene ble maksimale hoved- og skjærspenninger for 

normaliserte elastiske belastningssaker beregnet. Styrken til RVEer ble testet ved simulering 

av ikke-lineær oppførsel. For å opprettholde den originale belastningstilstanden ble det 

undersøkt en bakoverseende iterasjonsmetode for justering av makrotøyningene. 

Resultatene fra stivhetsestimatene samsvarer med mikromekaniske beregningsmodeller og 

styrkeresultatene samsvarer med resultater fra tidligere forskning. Metoden kan dermed antas 

å kunne brukes for modellering av kompositt egenskaper på mikroskala, men resultatene må 

bekreftes og kalibreres med empiriske data. Før det utviklede verktøyet kan brukes i 

produktutviklingssammenheng burde også materialmodeller og skademodeller utvikles 

videre.  
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Abbreviations  

 

RVE - Representative Volume Element 

RVE is the minimum cross section of a material on the microscale, which can be modelled to 

make accurate predictions of the macro. In this report, RVE refers to the RVEs of fiber 

composites.  

 

SERVE – Statistically representative RVE 

SERVE is an RVE which follows statistical distribution functions, like neighbour fiber 

distance or radial distributions, to increase the probability of an RVE geometry being realistic. 

 

FEA/FEM - Finite Element Analysis/Method 

FEM is a coarse graining modelling method, which simplifies a model by dividing the 

geometry of a structure into small elements interacting with each other.  

 

UD – Unidirectional 

When referring to a UD fiber configuration in a composite the fibers are parallel to each other.
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1. Introduction 

In this chapter are aspects of fiber composites, multiscale modelling and micro modelling 

introduced. After that are the objectives and the structure for this thesis presented. 

 Overview 

In design cases where optimization between weight and strength is of importance, fiber 

composites have increasingly been applied due to their outstanding mechanical properties in 

combination with weight savings (Llorca et al., 2011). The increased use of composites has 

created a demand in the industries for better mechanical properties and improved 

understanding of characteristics like stiffness, strength and damage (Petersen, 2017). The 

estimation of these properties is vital to successfully design against damage and failure for 

longevity.  (Petersen, 2017) 

The damage progression in composites is a complex process with several failure mechanisms 

acting on different length scales. Due to this, data from experiments are traditionally used in 

estimation of properties in composite designs (Llorca et al., 2011). As experiments often are 

expensive and time-consuming, the use of computational modelling software is a cost-

effective alternative. Since first introduced, computational modelling methods have proven 

their potential in discovering and designing materials with improved properties (Llorca et al., 

2011).  

Incremental advances in computational power, algorithms and engineering design tools are 

steadily making virtual testing more relevant. Although higher computational power gradually 

becomes more available, the current power is not sufficient for creating models that examine 

every aspect of realistic structures within a reasonable timeframe. Simplified models are 

therefore required to be able to make practical estimates. Pulungan, Lubineau, Yudhanto, 

Yaldiz, and Schijve (2017, p. 1) state that: “to obtain the optimum design of composite 

materials with superior performance, manufacturing industries need to have a robust 

numerical tool to very quickly virtually test the influence of microstructural design 

parameters with respect to the damage behaviour of composites.” When modelling the effects 

of damage, it is often with respect to strength and stiffness to design against failure.  

Like damage progression, mechanical properties like stiffness, strength and toughness depend 

on multiple processes which take place on various scales, from the nanoscale to meters. 
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Multiscale methods that model 

composite behaviour on 

different length scales are used 

together to predict behaviour 

for the whole structure. 

Multiscale methods on 

composite are illustrated in 

Figure 1.1. Such methods 

(Geers, Kouznetsova, & 

Brekelmans, 2010, p.1) ”…has 

contributed to considerable 

progress in bridging the field of mechanics of materials to the field of materials science.“  

The combination of existing material models with the computational power was envisioned 

around the 1960-70s.  Pulungan et al. (2017, p.1) tell that: “several researchers have 

successfully developed micromechanical models for fiber-reinforced composites to study 

phenomena like the effect of thermal residual stress on the damage initiation and prediction 

of damage evolution in woven composites”. Some of these micromechanical models have 

been applied with advanced material models to mimic behaviour like tensile and compression 

hardening and failure modes like cracking in the matrix and delamination of the interface 

(Naya, González, Lopes, Van der Veen, & Pons, 2017). 

 

  

Figure 1.1: Multiscale methods 

(Vedvik, 2017) 
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 Multiscale modelling of fiber 
composites 

By combining material properties based on data from the smaller length scales with the 

geometry from each investigated length scale, the total response of the design can be 

estimated. The strategy is illustrated in Figure 1.2. 

Since the component and laminate scale of composites are highly dependent on each 

individual design case, a bottom-up approach from computational micromechanics is 

commonly used in the application of the multiscale method (Llorca et al., 2011). While 

mechanical failure starts on the nanoscale, which is usually thought of as the lowest scale 

length of interest, this scale is highly influenced by chemistry (Petersen, 2017) and is 

therefore outside the scope of this thesis.  

Due to the versatility of fiber composites, they are applied in a wide range of designs and will 

likely be exposed to a variety of multidirectional displacements and loads, depending on the 

design case. To get estimates of global stiffness and strength of the design, the properties are 

calculated from the behaviour at the microscale. By investigating composites behaviour when 

exposed to different stresses and strains at different length scales, a failure criterion for 

composites internal structures on the different length scales can be derived. These failure 

Figure 1.2: Modelling strategy 

(Llorca et al., 2011) 
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criteria can be used to ensure that the composite’s internal structures are dimensioned against 

abrupt failure. 

 Modelling composites on the micro 
scale 

A modelling approach based on the concept of first order homogeneity with periodic 

boundary conditions is investigated in this thesis. When applied in a multiscale method the 

homogeneity assumes the principle of separation of scales. This implies that microscopic 

length scale is assumed to be much smaller than the macroscopic length scale (Geers et al., 

2010). As illustrated in Figure 1.3, a 

material heterogeneous on the 

microscopic scale can be considered 

as homogenous on macroscopic 

scale. Estimations of properties like 

a homogenous anisotropic material 

(Figure 1.1) are based on constituent 

material properties and geometrical 

configuration on the microscale.  

 

Figure 1.3: Micromechanics for estimating 

properties of a homogenous anisotropic material 

 

Figure 1.4: First- and second-order deformation  

(Wang & Sun, 2016) 
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By applying first order deformation, a continuous repeating periodic behaviour on the 

microscale can be assumed. The difference between first and second order deformation is that 

first order is composed of extension/compression and shear modes. In second-order 

deformation there are additional curvatures in the deformation (Figure 1.4). 

To estimate material behaviour and properties of the fiber 

matrix structure on the microscale, the concept of the 

Representative Volume Element (RVE) or unit cell is 

introduced. RVEs are a microstructural sub-region which on 

average represents the entire microstructure (Swaminathan, 

Ghosh, & Pagano, 2005).  

RVEs with periodic boundary conditions have proven to be 

most versatile for both periodic and non-periodic 

microstructures (Geers et al., 2010). To model periodic fiber 

composites fibers with parts outside the RVE border are continued on the other side of the 

RVE, as illustrated in Figure 1.5. 

As the properties of a single RVE may vary for different distributions of fibers, an approach 

where several random generated RVEs, as illustrated in Figure 1.6, is investigated to get 

estimates and a statistical distribution. 

  

Figure 1.5: RVE with periodic 

boundary conditions.  

Figure 1.6: By generating several models the average 

properties can be estimated. 
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 Objectives and limitations 

The aim of this project is to develop and implement a framework for microscale modelling of 

unidirectional fiber composites. This is done by utilizing RVEs and finite element analysis 

(FEA) to identify macroscopic behaviour, like elastic properties, failure and damage evolution 

in the composite materials. 

To assess how this method manages to capture composite behaviour and whether the results 

from simulations might provide any practical insight into composite performance, a virtual 

tool will be developed. This tool shall automate the generation of RVEs models in a FEA 

environment and simulate load and deformation cases designed for estimating stiffness and 

strength properties. 

The project was defined as a feasibility study of a multiscale finite element modelling of fiber 

composites using a first order homogenization approach.  

This report will map out the development and design choices during the design of the 

numerical tool. Using simple elasticity and plasticity material models for the constituents, a 

possible relationship between design parameters the stiffness and strength shall be 

investigated. The implementation of some damage criteria will be done to present the concept. 

A method for investigation into the effects of the different design parameters shall be 

explored by performing parameter sweeps.  

 Limitations 

Environmental factors, fatigue, rate dependent aspects and impact of the structure may also be 

important factors which contribute to damage initiation, damage progression and failure in 

composite designs. While these factors should always be considered when designing against 

failure, they are not included as this is defined to be outside the scope of this thesis.  

The results in this thesis is intended to demonstrate the modelling method, explore the method 

and investigate the effect of different design choices and design parameters. The results 

presented are based on simple material models and are not intended to accurately represent 

properties in fiber composites for design purposes. As fidelity of the estimations are not in 

focus, are common test like convergence due to element size not investigated. Before 

applying the developed tool in design cases, all results should be confirmed with experimental 

data with material models matching the composite constituents.  
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 Structure of the Thesis 

Based on the objectives, the thesis is organized as follows: 

Chapter 2: Introduction of the relevant theory   

Chapter 3: Explanation of the approach in detail and how the simulations were done to 

estimate the stiffness and strength in the RVEs.  

Chapter 4: Estimation of linear elastic properties and the effect of different design choices and 

design parameters. 

Chapter 5: The concept of multiaxial strength tests and failure envelopes and linear elastic 

stresses and strains for biaxial stresses.  

Chapter 6: A strength testing approach through adjusting macrostrain with a backward 

iterative approach to maintain initial load case is investigated. 

Chapter 7: Discussion of the produced results, validity and physical phenomena. Some results 

are briefly compared to estimations from other publications, approximations, failure criteria 

and normalized empirical data with ideas for further development.  

Chapter 8: Conclusion 

Chapter 9: References  
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2. Theory 

In this chapter, the relevant theory of which the modelling method and simulations in this 

thesis are based on are briefly outlined. 

 Unidirectional fiber composites 

Composites with unidirectional (UD) fibers as the reinforcement material show proportionally 

greater specific stiffness and strength along the fiber direction (González & Llorca, 2007). 

Therefore, UD fiber composites are used in a wide range of applications as structural 

materials for products like aircrafts, pressure vessels, automotive and wind turbine blades. 

When applying UD fiber composites as structural materials in designs, a laminate 

configuration is common. These laminates are made by stacking thin layers of UD fibers, 

called plies, in different orientations into a layup before saturating the stack in a resin which 

hardens into the matrix material of the composite. The result is a single solid material which 

consist of several stacked UD fiber layers embedded in a matrix. In the manufacturing of such 

composites, the properties of the composite might be affected by several factors. Variations or 

differences in production methods, the properties of the constituents, volume fraction, shape 

and arrangement of the reinforcement in the matrix might lead to variations in the produced 

composites behaviour and properties.  

When examining composites on the microscale, the arrangement of the fibers i.e. spatial 

distribution of the fibers in the microstructure will vary depending on the processing 

technique, melt flow index of the matrix, and parameters employed during the manufacturing 

process (Romanov et al., 2013). This indicates a random factor in how the fibers are 

distributed even though the same process is repeated.   

Shrinkage of the matrix material during the curing process is an important aspect in 

manufacture. This process can cause the composite to develop residual stresses in the 

structure which affects the composites’ strength.  

To facilitate the stress transfer between the fiber and the matrix, fibers are often produced 

with a thin layer of hardened resin referred to as the sizing. Since fibers are produced goods 

there might be slight differences in fiber diameters and how successfully the sizing has been 

applied. 
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 Constitutive relations 

Hooke´s law is used to calculate the RVE deformations and stress states. Hooke’s in the form 

of a material stiffness matrix as shown in equation (1)Feil! Fant ikke referansekilden. is 

used. 
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1: Stiffness matrix 

 

(1) 

By applying single macro strains components (ε) to the RVE model the average stress state 

(σ) will be equal to the corresponding constants. By applying single strain components, each 

column in the matrix is estimated by measuring the average stress. The process for measuring 

the average stress state is described in the method chapter.  

The elastic properties of a material are dependent on the geometry and the material properties. 

To estimate strength, an increasing load will be applied until failure. During the load case, the 

geometry of the RVE will deform. If nonlinear behaviour is assumed the stiffness constants 

will change as the RVE deforms. At the point of failure, the average stress is defined as the 

strength or ultimate tension/compression/shear stress. 

Approximations 

When approached analytically the geometry of UD composites on the microscale allows for 

the composite to be simplified to an orthotropic material, with three planes of symmetry, or a 

homogenous transversely isotropic material, with one plane of isotropy. An orthotropic 

material stiffness matrix is shown in equation (2). 
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2: Orthotropic stiffness matrix 

(2) 



10 

 

While these approaches are useful for approximations, a real composite RVE might not have 

any of these idealized properties. Such assumptions can therefore not be made in the 

developed tool.    

 Micromechanical models 

Stiffness models 

Estimation of elastic constants when assuming composites as a transversely isotropic are done 

by calculating the constants of the stiffness matrix. By applying a rule of mixture, the stiffness 

constants for shear, transverse and parallel direction to the fibers can be approximated (Hull, 

1981). (Hull, 1981) 

In the approximation for the fiber parallel elastic constant the error is usually between 1-2% 

(Hull, 1981). For the transverse elastic constants there is reasonable agreement, while shear 

constants approximations are usually not very accurate (Hull, 1981). 

Strength models 

 According to González and Llorca (2007) the tensile and compressive strength of a 

composite in the fiber direction can be analytically estimated as the fiber and matrix 

behaviour closely follows the isostrain approximation. Analytical approximations of the 

mechanical behaviour under transverse loading are more difficult to approach.  

When subjected to transverse loading, the composite behaviour diverges from isostress and 

isostrain behaviour and micromechanical models which are capable of predicting strength 

from factors like the constituents’ properties, volume fraction and spatial distribution are not 

generally available (González & Llorca, 2007). 
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 Modelling RVE geometry 

To capture the geometric influence on the stiffness, a periodic RVE geometry is required. The 

information about fiber distribution and fiber radii in an RVE are described as that RVEs fiber 

population. Here, two methods of modelling a periodic fiber 

population are investigated. The first method is adjusting a 

realistic fiber population from picture recognition of microscopy. 

The second is generating close to realistic randomized fiber 

arrangements with an algorithm.  

 Describing composite RVE 
geometries  

When observing an RVE, the information about numbers of fiber 

in the fiber population is easily observable. If the diameter of the 

fibers are known, and assumed to be equal, the fiber volume 

fraction is also easily calculated.  

Specific fiber arrangement properties used when trying to describe 

an RVE are uniform distribution and periodic RVE, as illustrated in Figure 2.1. While these 

are highly descriptive terms, the fiber population of an empirical RVE is typically both non-

uniform and non-periodic (Romanov et al., 2013).  

RVE microscopic stress distribution is highly sensitive to the fiber distribution, while the 

macroscopic elastic effective response of a laminate may not be affected by it. Romanov et al. 

(2013) concludes that for an adequate prediction of the stress distribution on the micro-scale a 

realistic representation of fiber arrangements is required. 

  

Figure 2.1: Periodic uniform 

fiber distributions 
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 Critical RVE size 

For an RVE to be able to sufficiently represent the whole microstructure, a certain size is 

required. For smaller RVEs, the representative material properties cannot be accurately 

estimated. While there is no universal way to estimate critical RVE size, critical RVE size has 

been measured as the number of fibers in the RVE. As shown by Swaminathan et al. (2005) in 

Figure 2.2: Plots showing convergence in the stiffness matrix constants as the numbers of 

fibers increase and deviation decease in the stiffness matrix constants as numbers of fibers 

increase. The researchers found 50 fibers to be a point convergence for the stiffness matrix. 

Regarding strength estimations there is not a significant difference between a 50 fiber and a 

150 fiber RVE (Naya et al., 2017). 

 Fiber Population 

Romanov et al. (2013) states that the most straightforward way to find fiber populations is to 

use the fiber arrangement recorded from experimental composite samples. This is usually 

done by microscopy imaging of composite cross sections and ensures a realistic distribution in 

the fiber population.  

While this method is effective for getting realistic RVEs geometries, the method is described 

as expensive and slow (Pulungan et al., 2017) and requires specific software for image 

recognition and equipment for microscopy. Nevertheless has a method using image 

recognition on black and white microscopy images successfully been applied to obtain the 

coordinates and radii of the fibers (Swaminathan et al., 2005). 

A downside with realistic fiber populations is that they are rarely periodic. As mentioned on 

page 5, this is a challenge as periodic structures have proven to be the most versatile for 

modelling microstructures. While it is possible to adjust recorded fiber populations so they are 

Figure 2.2: Plots showing convergence in the stiffness matrix constants as the numbers of fibers increase and deviation 

decease in the stiffness matrix constants as numbers of fibers increase. 
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periodic, it might be necessary to do other adjustments as well due to FEA limitations. Given 

that the goal of this thesis is to model the RVEs in an FEA environment, some limitations of 

minimum inter-fiber distance apply. 

Another approach Romanov, Lomov et al. (2013) suggest, is to simulate fibre distributions 

through a numerical algorithm. When generating a fiber distribution, the task is simplified to 

filling a square with small circles which do not overlap. By placing enough fibers, a given 

volume fraction of the area of an RVE can be reached. 

Produced fiber composites have a practical max fiber volume fraction of around 65-75%. 

When using an algorithm which randomly places non overlapping fibers the algorithm usually 

stagnates for fibre volume fractions higher than 50-55 % (González & Llorca, 2007). As the 

practical maximum for the volume fraction in real composites are higher than this, methods 

for rearranging fibers can be applied to reach higher volume fraction values.  

  



14 

 

 Statistically comparing generated RVEs to recorded fiber 
distributions. 

Swaminathan et al. (2005) explain that a perfect RVE with precise representative values, 

according to the strictest definitions, may be impossible to simulate. The idea of statistically 

equivalent RVEs (SERVE) has therefore been proposed to identify whether a modelled RVE 

is a plausible realistic RVE and should be used to evaluate macroscopic homogenized 

properties in a microscopic analysis.  

SERVEs can be identified as the smallest volume element of the microstructure which 

exhibits the following characteristics: 

(i) The effective material properties, e.g., stress–strain behaviour in the SERVE 

should be equivalent to the properties of the entire microstructure, at least locally to 

a prescribed tolerance.  

(ii) Distribution functions of parameters reflecting the local morphology, like 

local volume fraction, neighbour distance, or radial distributions, in the SERVE 

should be equivalent to those for the overall microstructure.  

(iii) The SERVE chosen should be independent of the location in the local 

microstructure as well as of the applied loading direction, even for anisotropic 

material response. 

(Swaminathan et al., 2005, p. 2) 

Distribution functions of parameters reflecting the local morphology, like local volume 

fraction, neighbour distance, or radial distributions, in the RVE, should be equivalent to those 

for the overall microstructure to qualify as a SERVE. 

Other methods used to statistically describe fiber distribution in RVEs include nearest 

neighbour distance and orientation, pair distribution function, radial distribution functions and 

Ripley’s K function. Applying these in in a random algorithm models RVEs excludes certain 

fiber populations which may or may not be realistic. 
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 Material models 

The material effect of the RVE stiffness is based on 

material models for the different constituents. Some 

material properties are dependent on factors like 

time and temperature. Effects such as creep and 

relaxation are caused by the material reaction over 

time to the applied loads or displacements. Further 

are the constituents prone to several failure modes 

like micro buckling and brittle fracture in the fibers 

and cracking in the matrix. 

While some advanced material models can model 

failure modes like cracking, tension and compression 

hardening, the parameters in these advanced models can be difficult to obtain in experiments. 

When these advanced models are applied, these parameters are often iterated upon and 

calibrated to reflect macro experiments. Since advanced material models often are complex, 

the effects from the geometry and materials might be difficult to separate. To easily observe 

the effects of simple linear elastic and plastic behaviour, stress strain curves as in Figure 2.3 

could be applied.  

The type of stress variant used to decide effects like yield in an element will affect material 

behaviour. As Von Mises is the standard for isotropic materials in Abaqus, this was used in 

the plasticity models.  

It is possible to assign several different damage models for matrix, interface and fibers. In this 

project simple damage models are applied. Matrix damage is modelled as a ductile maximum 

strain in the matrix, and delamination of the interface is modelled as a traction-separation 

degradation model for cohesive elements. 

 

 

  

Figure 2.3: Simple elasticity and plasticity curves. 

The blue line models an elastic material and 

continues outside the graph. The red line, an 

elastic behaviour, then a plastic yielding until 

failure. 
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 Finite Element Analysis/Method   
(FEA/FEM) 

The finite element method (FEM) was used to model the RVE geometry, assign material 

properties and perform the simulations. 

 Modelling RVE constituents in FEA 

When modelling the RVE, three different constituents are discretized: the matrix material, the 

fibers and the interface. The interface is found between the fiber and matrix material, and 

contains the sizing layer as shown in Figure 2.4. The interface is important in the stress 

transfer which is responsible of the reinforcing effect of fibres (Petersen, 2017). 

The fibers and matrix geometry is defined in the fiber population and is easily divided into 

smaller elements in the FEA meshing of the RVE model. In the geometry of the sizing, the 

principle of separation of scales is challenged as this is much smaller than the RVE scale. The 

scale difference in the same model causes a problem with continuum mechanics.  

One option is to model the RVEs without the interface between the two other constituent 

materials. This might affect stress transfer and will exclude the possibility of delamination 

between the fiber matrix.  

The fibers were modelled with C3D6 elements and the matrix with C3D8R elements. 

To model delamination in FEA two possible methods were investigated: modelling the 

interface as a cohesive surface or as a cohesive element (COH3D8) adhesive between the two 

components. These methods for modelling delamination were investigated:  

• Cohesive surfaces. Infinitely thin layers inserted between the fiber and interface 

elements 

• Cohesive elements. A special element type between the fiber and matrix 

Figure 2.4: Sizing, the fiber matrix interface 

(Petersen, 2017) 
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While both cohesive surface and the close to zero-thickness cohesive element can be used to 

model zeros thickness they return slightly different values.  

 Imposing macro strain 

In the stress and strain simulations macro strains will be imposed on the periodic RVEs. The 

macrostrain is imposed as linear displacement. The periodic boundary conditions imply that 

for opposite surfaces, the deformation and the orientation are equal for stress continuity across 

the boundaries. At the opposite side of the RVE the stress vectors will be acting in the 

opposite direction. To apply periodic boundary conditions in FEA, constrain equations can be 

used to connect nodes on opposite boundaries. By defining a macro scale boundary value 

problem, which takes effect on the microscale, the structure displacements and micro stress 

distribution can be solved. 

 Simplified models 

When simplifying problems, usually the estimates are affected. Simplifications often lead to 

one of two things: Either they assume details which can make the estimates return different 

values before and after the simplification, or they smooth over information that may affect the 

resolution of the estimate. As simplifications are a necessity in many simulations, the idea of 

consistent error is used.  

When explaining consistent error, the difference between precision and accuracy becomes 

relevant. For a simulation which returns an estimate which is equal to the measurements from 

empirical tests, the simulation provides an accurate estimate.  Nevertheless, a simulation does 

not necessarily need to return accurate results to be useful. Another possibility is that the 

estimates from a simulation are for example consistently proportionally different to the 

empirical measurements. Although the simulation is not accurate, the results have a consistent 

error relative to the accurate solution and can therefore be described as precise. The accurate 

values can be estimated from a precise estimation by adjusting for known consistent errors. 

When creating a model for computer-aided testing with respect to strength and damage, it is 

still important that the model is complex enough to provide accurate and useful information 

about the phenomena investigated. 
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 Monte Carlo methods  

When creating a large amount of randomly generated fiber populations, each population can 

express either a plausible or an unrealistic fiber distribution. Although techniques to 

statistically test the fiber populations to find out whether they are plausible or not, these 

techniques are time consuming, might not filter away all unwanted fiber populations or might 

filter away interesting fiber populations. The estimations of material properties are therefore 

based on all created fiber populations.  

As generating RVE models from all fiber populations creates scenarios that may or may not 

happen, a Monte Carlo method may be used to estimate the deterministic outputs of the 

randomness in the inputs. 

Monte Carlo methods construct probabilistic models to describe real processes to estimate 

average characteristics. The effectiveness of Monte Carlo methods was first demonstrated by 

estimating pi. A number of points are pseudo randomly generated inside a square. Pi is then 

estimated by comparing the total number of points to the number of points which appeared 

inside a circle with the same diameter as the square sides, as illustrated in Figure 2.5. 

Simply by using random sampling in the inputs to a mathematical 

model and then logging the results, the deterministic range of the 

output of the model can be determined. By using the random 

RVEs, and testing a large amount of these, an estimation for 

material capabilities regarding strength and damage can be made. 

  
Figure 2.5: Pi estimated 

with a Monte Carlo method 
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3. Method 

In this chapter the approach to the creation and testing of the RVE models are presented. First, 

the methods which were investigated to obtain a fiber population are described. Further, the 

material models applied to the RVE are introduced. The creation of the virtual RVE models in 

the FEA program is next, describing how the matrix, interface and fibers parts are modelled 

from a fiber populations and material models. To preform stress and strain tests a method of 

applying macrostrain to the model by constraint equations is presented with the procedure to 

extract the homogenised data. 

 Digital Environment 

The FEA software Abaqus 6.14-4 was used to model and test the virtual RVEs as the software 

is provided by NTNU. The developed script which automates the process in Figure 3.1. The 

script was written in Python 2.7 with a structural programming approach. 

For calculations and data handling, Python was used. The Python package Matplotlib was 

used for plotting results. The programming and script operations were performed in Pycharm 

2017.3.1. Python 3.5.3 with the OpenCV package was used to investigate image recognition 

for obtaining fiber populations from microscopy.  

To facilitate for repeatability the entirety of the code will be available for download with a 

setup tutorial at GitHub at a later date. 
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  Overview of method  

 

  

Figure 3.1: Flowchart for method 
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 Finding fiber population 

To model a fiber population, a reference fiber 

population must be found. Two ways of finding a 

fiber population are investigated: recording from real 

samples and simulating an arrangement. Both were 

tested with further research in mind and are 

presented in this section.  

 

 

 Finding fiber population 
from microscopy image 

Microscopy images were investigated by utilizing the OPENCV Python package for picture 

recognition. The image recognition software is based on the Hough Transform. The software 

scans the image looking for edges. Whenever an edge is found it is assumed to be a point in 

the outline of a circle. By rotating a circle around this edge point several times and 

incrementally increasing the radius while doing edge recognition for several other points in 

the circle, the circle is found. 

The accuracy of the image recognition was found to be highly dependent on image sharpness 

and clarity. By editing the image contrast and establishing guiding parameters like expected 

diameter range for the fibers relative to the whole, image the software could make more 

accurate estimates. This method was quickly discarded as it either required consistent high 

Figure 3.2: Circle recognition in a microscopy 

image with OPENCV. 
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clarity microscopy images or a time-consuming calibration and visual inspection for each new 

image. Some attempts of circle recognition are shown in Figure 3.2. 

 Generating RVE fiber population 

When generating fiber populations to model RVEs in a FEM environment there are a few 

aspects which are important to keep in mind. One aspect is what properties are intended for 

the RVEs, another is that FEM calculations introduce some limitations, like for example thin 

elements. 

When imagining a repeating RVE as illustrated in Figure 1.3 it seems natural to model a 

periodic fiber population. To create this, the fibers at the edges or corners must be copied over 

to the other side to continue there as illustrated in Figure 1.5. This is done by placing another 

fiber on the oposite RVE border. In corner cases three extra fibers must be placed. 

Thin elements might occur when the fiber edges are too close to the edge or in between two 

fibers. To avoid these, a minimum distance was 

enforced between fiber edges. This was done by 

adding half this distance to fiber radii when 

checking for overlaps. 

Half this minimum distance was also enforced as 

the distance between fiber edges and borders. This 

was done by not allowing fiber centres to be in a 

dead zone, illustrated by the grey areas in Figure 

3.3. This dead zone ensured that no fibers would 

create too thin elements on the other side. 

As the distribution of fibers is inherently random, it seemed reasonable to generate random 

values for the fiber coordinates.  Pythons pseudo random generator was used to generate the 

fiber coordinates. Pythons random generator is based on the Mersenne Twister method, which 

is a common random generator even though it is completely deterministic. The deterministic 

property assures repeatability as a given random key will generate the same random values 

every time. 

The random generator generates a random number in the range 0 to 1. These generated values 

were multiplied with the size of the RVE to create fiber coordinates in the RVE. 

Figure 3.3: Fibers with  the centre in the grey 

areas are discarded 
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 Fiber variation 

The effect of fiber size variation is investigated by adding the possibility of fiber radius 

variation in the fiber population generation. From still to be published work at the department 

an average fiber radius value with standard deviation is presented for a glass fiber population.  

Fiber variation is implemented by assigning each individual fiber random radius generated 

from the mean and standard deviation before attempting to place the fiber in the fiber 

population. Due to the random assignment of radius the final fiber volume fraction in the 

populations can deviate some from the intended volume fraction. A 0.6 volume fraction in a 

ten-fiber fiber population may deviate up to around 10%. For larger populations this deviation 

is less.   

 Fiber placement algorithm 

The fiber population function was created to be dependent on a small set of parameters: Fiber 

volume fraction (Vf), number of fibers (nf) and fiber radius (r). From these values, the size of 

the square RVE (dL) was calculated through the Vf function. In this way r becomes a relative 

value to dL.  

 

The fiber adding algorithm used is illustrated in Figure 3.4.   
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Figure 3.4: Fiber placement algorithm 

Start 
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A hard-code random algorithm is used until no more fibers 

can be placed. Then a fiber rearrangement function, which 

attempts to move the fiber centre to several new points 

within a set distance, is applied. The process of the 

relocation is illustrated in Figure 3.5.  

The fiber rearrangement functions removes one fiber and 

tries to replace the fiber centre at a new location as 

illustrated in Figure 3.6. If this cannot be done within 20 

attempts, the fiber is put back and the function moves on to 

the next fiber. For the standard random relocation each 

fiber is replaced as shown in the left illustration. If this 

fiber rearrangement function was tried tree times for all 

fibers without a new fiber being placed, another fiber 

rearrangement function is used. The rearrangement shown 

in the right illustration is then performed for all fibers, 20 

times before the process continued. The massive relocation 

is intended to shake up the fiber distribution. 

Initially, all fibers were replaced, including edge and corner 

fibers. This lead to the fiber distribution looking very 

uniform and made it possible to reach volume fractions 

over 0,85. To avoid the uniform appearance, the edge and 

corner fibers are now locked in place. The algorithm 

has still been able to reach volume fractions of 0,78 

for RVEs above 30 fibers. 

When sufficient fibers have been placed, the massive 

rearrangement function is performed several times for 

a final shake up of the fibers. The values of the design 

parameters are stored, and the fiber coordinates and 

fiber radii are written to text files for storage. 

   

Figure 3.5: Rearrangement of fiber 

population  

Figure 3.6: Fiber relocation window 
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 Validity of fiber populations 

Three possible descriptions for RVE geometries are used in this thesis: realistic, statistically 

plausible and modellable, as illustrated in Figure 3.7. 

Due to practicalities, the modellable description of RVE’s must be true. While the statistically 

plausible RVE geometries might ensure that the RVE geometries investigated are realistic, the 

application of these descriptions might filter out both modellable and realistic distributions. 

This might oversimplify the investigated fiber populations.  

Therefore, all modellable generated RVE geometries were investigated. While the possible 

generation of unrealistic modellable RVE fiber populations might shift the estimations, the 

idea of consistent error may be applied to counter this. 

 

 

 Considerations 

While the hard-code random algorithm is quite straight forward, the fiber rearrangement can 

be done in several ways. Methods which actively try to place a new fiber by shifting other 

fibers, or creating open areas so new fibers can fit, could be applied. Since such strategic 

movements of fibers quickly get complex at tighter packing, the random method described 

was used due to its simplicity and efficiency. 

  

Figure 3.7: Validity of fiber populations 
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 Modelling RVEs 

 

 

 

To create an RVE model in the FEA software, the generated fiber coordinates and radii were 

imported into the FEA and drawn onto a square 2D sketch with the same size as the RVE. The 

sketch of the fiber population was used to create a shell part which was meshed to a given 

mesh resolution and extruded into a 3D RVE of solid elements as shown in Figure 3.8. A 

method for modelling the interface as cohesive elements was explored by drawing another 

slightly larger circle around each fiber into the 2D sketch as illustrated in Figure 3.9. This 

allowed for the creation of interface elements around each fiber. The interface is present in 

Figure 3.8, but due to the size difference, not visible.  

The thickness of the interfaces was set as a relative 

parameter to the mean fiber radii. To model the element 

thickness as zero, this parameter is set to be much smaller 

than any relative dimension (Dassult_Sysytems_Simula, 

2014). The max interface thickness is limited by the 

minimum inter-fiber distance in the fiber population. This 

causes the interface to have a practical max thickness 

around ¼ of the inter-fiber distance to avoid thin elements 

between the interfaces. For higher mesh resolutions the 

Problem 

Create RVE model in FEA software 

 

     Proposed solution 

     Create 2D sketch, mesh and extrude mesh to 3D 

     Assign material models and element behaviour 

 

          Toggles 

          Interface 

          Fibers 

          Material models 

          Cohesive element type in interface 

 

               Parameters 

               Fiber population 

               Interface thickness 

               Mesh resolution 

               RVE thickness 

               Constituent material properties 

Figure 3.9: Fiber interface modelling 

Figure 3.8: RVE model of composite 

microstructure 
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practical maximum tends towards ½ of the inter fiber distance. 

While both cohesive elements and cohesive surfaces can be used to model zero thickness 

interfaces, they may return slightly different values (Dassult_Sysytems_Simula, 2014). 

The mesh resolution or mesh element size is set by deciding how fine the circles should be in 

the model. The mean circumference of the fibers were divided by a required number segments 

around the fibers. In this way the element size is chosen as a fraction of the arclength. The 

extruded RVE thickness was set to be equal to the mesh element size. 

The elements in the RVE models were divided into groups of interface elements, matrix 

elements and fiber elements. The different groups were then assigned different material 

properties.  
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 Applying macro strains 

 

 

 

 

 

 

Kinetic constraint equations are used to maintain the periodic boundary condition of the RVE. 

By coupling the node pairs on opposite faces A and B to an external reference point outside 

the model periodicity and macro strains can be applied together. By then displacing the 

reference points the RVE border nodes are displaced. This allows for the possibility of 

applying compression, extension and shear strain.  

For each degree of freedom, the following constraint equations are derived: 

In equation (5) and (6) are the capital letters the initial node coordinates in x, y and z direction 

and u refers to the displacement of these nodes in the given degree of freedom.  

As FEA calculate values at different frames, the parameters describing step size may affect 

the resolution of the calculated behaviour change in the simulation. For analyses estimating 

linear behaviour this is not relevant, but in nonlinear behaviour the step size should be small 

enough to capture relevant effects from the deformation on the stiffness components.  
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5: Normal strain constrain equations 

(5) 
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6:  Shear strain constrain equations 

(6) 
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               Parameters 

               Step size 

               Direction and magnitude of load or deformation 

 



30 

 

 Considerations 

The initial simulations were constantly aborted as the cohesive elements proved to be 

dependent on the element orientation. Cohesive elements model delamination between the 

element top and bottom surface. In the extrusion of the 2D shell the front of the 3D RVE was 

defined as the top. To model delamination between fiber and matrix the cohesive elements 

should have the top or bottom surface towards the fiber and the other to the matrix. To fix this 

the cohesive elements were deleted and reconstructed with the top towards the matrix. 

In the process of identifying this error, techniques to create more stable simulations were 

investigated. This included applying boundary conditions to limit rigid body motion and 

assigning a very low viscosity to dampen the delamination in the interface (Gao and Bower 

2004). While these methods were implemented in the script they were deactivated in the 

performed simulations after cohesive elements orientation were identified as the problem. 

 Stiffness prediction  

For estimation of elastic properties, linear behaviour is modelled. To find the stiffness matrix 

for the RVE, single component macro strains were imposed on the RVE model. This way the 

average stresses which develop due to the imposed strain will be equal to one of the columns 

in the stiffness matrix.  

The average stresses were calculated as shown in equation (7):  

For each element the stress components were multiplied with the element volume. The 

element centroid stresses (measured stresses in the middle of each element) were used for the 

calculations. The sum of these where then divided by the sum of all element volumes. 

 Strength prediction 

In strength estimations non linear RVE behavior for a load case should be simulated. As the 

simulations work by imposing macro strain Hooke’s law in equation (8) is used. By inverting 

the stiffness matrix, the compliance matrix is found. By deciding load cases the corresponding 

macro strains can be found by multiplying the stresses with the compliance matrix. By 

applying these strains, the RVE will be subjected to this load case.  

 1
i i

i

V
V

 σ σ  

7:  Volume weighted average stresses 

(7) 
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The same approach as described in 3.6 was used to calculate the average stresses. 

When an RVE model is tested for strength a load case with nonlinear behaviour is imposed to 

cause deformations in the RVEs. As stiffness is based on geometry and material properties the 

stiffness will change as the deformation manifests. 

 Backward iterative macrostrains adjustment 

The initial load case was maintained through a backward iterative approach. By identifying at 

what frame in the simulations the average stress components diverge from the initial load case 

the point of divergance is found. To find the adjustment, the change the in average stresses 

between the diviation frame and the previous frame creates a gradient for each stress 

component. The gratidents for the stress components for the loadcase are set to zero as these 

are the ones being investigated. The rest of the stress gradients are scaled to the remainder of 

the test after the diverging frame. This way expected stress divergence values are quantified.  

Even though the initial stiffness matrix changes thorughout the load case it is still a reference 

to the RVE stiffness matrix. Therefore this was used to find the corresponding macro strain 

values to the stress divergence. After the strains were updated the simulation was restarted 

from before the divergion to continue the initial load case. The process was repeated until the 

simulation was complete, or the values diverged too much due to the RVE stiffness constants 

having changed from the deformation. 

Before this method was developed, a single strain component adjustment method and a 

method for finding the Jacobian was explored. Both methods requiered multiple iterations 

before any progress was made in the simulations. 

Another approach to do pure load tests is by using Abaqus user subroutines. While this 

approach is expected to improve the process it was not explored due to little experience with 

the Fortran programming languange. 
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 Summary of design parameters 

The design parameters the following modelling and simulations were based on are presented 

here. Unless explicitly stated the properties in the simulations are as presented here. In some 

simulations the parameters are changed to investigate the effects of these parameters. 

Constituent material properties 

The fiber is modelled as an isotropic material with elastic behaviour. The Youngs modulus 

and Possion ratio of the fiber material are 70 GPa and 0.2. 

The matrix material is modelled as an isotropic material with an elastic behaviour followed by 

a plastic yield. The Youngs modulus and Possion ratio of the elastic behaviour are 3.0 GPa 

and 0.35. The matrix yield limit was set to 0.06 Gpa. The interface is modelled as an elastic 

isotropic adhesive with the same Youngs modulous as the matrix. 

Matrix damage is modelled as a simple maximum strain of 0.035 for ductile metals with a 

close to instant damage evolution. The delamination is modelled as traction-seperation 

damage of the cohesive elements with damage initation at 0.061 GPa with the quadric 

nominal stress criterion. The damage evolution of the cohesive elemetns is a linear softening 

behaviour with the fracture energy parameter set to 0.0078. 

Geometry parameters 

The fiber variation was set to have a mean fiber radius of 8.7096 with a standard deviation of 

0.6374. The data was provided from still to be published data from the department. 

For all simulations a fiber volume fraction of 0.6 is used unless otherwise stated.  

The minimum clearing distance between fibers was set to be 2% of the fiber radius mean 

unless otherwise stated. 

Simulation parameters 

The mesh size used in all simulations was stated as a fraction of the average fiber 

circumference. A resolution of 25 elements around the fibers was used for all simulations. 

To perform stable simulations, no strain components in the macro strains exceed 0.15.  The 

simulations step size was automatically calculated by Abaqus with an initial step size of 

1/100. 
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4. Part 1 - Estimation of linear elastic properties 
and parameter effect 

In this chapter, linear behaviour is simulated to investigate elastic properties in the RVE 

models. When assuming linear behaviour, the stiffness matrix stays constant. To illustrate 

how design parameters effect estimations, an example of a parameter investigation will be 

given.  

To investigate the effects of different design parameters, it is necessary to get consistent 

estimations of the linear elastic properties of RVEs. Due to this, tests to estimate the critical 

RVE size and required number of samples to reach convergence was made. This test was 

done to get a benchmark of the effect of different fiber populations before investigating the 

effects of the design parameters. As the required RVE size and number of samples for the 

other tests were based on this benchmark, the results are presented before the other tests are 

described. 

 Effect of fiber distribution on different 
RVE’s sizes 

Swaminathan et al. (2005) found that when testing stiffness in smaller RVEs, the results 

deviate from properties found for RVEs of a certain size. By combining this with the 

approach of several random generated RVEs to estimate an average, the following hypothesis 

was formed: 

The average of the stiffness matrix constants for several RVE’s based on different fiber 

populations converges to the same value independently of RVE size. The accumulated 

average of the stiffness constants converges faster for larger RVEs due to less scatter in the 

larger RVE stiffness constants.  

Simulations 

To investigate stiffness convergence for different RVE sizes, 100 simulations based on 

different random keys were done for each test. The different tests investigated RVE models 

based on 5 to 59 fibers with nine fiber intervals in RVE size, resulting in seven tests with 100 

simulations. The limitation to seven tests is due to computational power. A high-end computer 

today, with eight CPU cores, can run seven simulations simultaneously without freezing.  
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The convergence of the stiffness components is investigated by finding the accumulated 

average for each component of the stiffness matrix. While there is no guarantee whether the 

RVE will reach convergence within 100 tests, a trend might become visible. From 100 

samples, a mean and standard deviation with some statistical significance can be found. 

 Results. 

The results are presented in the following figures. In Figure 4.1 the deviation of the stiffness 

matrix constants as the RVE size increases are presented. Figure 4.2 and Figure 4.3 show the 

convergence of the stiffness matrix constants for the different sized RVEs. The first graph of 

Figure 4.2 shows the elastic constant in fiber direction. The second graph presents the 

transverse constants. In Figure 4.3, the convergence of the shear and coupling constants are 

shown. The stiffness matrix of a single 10 fiber RVE is quantified in equation (9) for 

reference. 

  

Figure 4.1: Elastic properties for different RVE sizes. 



35 

 

  
Figure 4.2: Fiber parallel and transverse constants 
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While the exact value of convergence for the stiffness matrix constants are not identical for 

the different RVE sizes, they all seem to tend towards a similar value. In the following 

parameter investigations RVE models with 25 fibers were used. While this size seems to 

overestimate some properties, this value was chosen as a compromise between time and 

Figure 4.3: Shear and coupling stiffness constants 
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accuracy. The same compromise was made for the number of simulations in the test. 50 RVE 

samples, based on different random keys, were used in each test while the convergence only 

stabilizes after about 80 samples. If a clear effect of the parameter change is visible within this 

number of tests the parameter change is presumed to affect the linear properties. 

 Effect of geometric parameters on 
elastic properties 

Fiber volume fraction 

The stiffness approximations mentioned in 2.2.1 are based on the rule of mixture, which are 

dependent on the constituents’ volume fraction. The changing of the fiber volume fraction is 

therefore expected to affect the stiffness matrix constants. 

Generally higher fiber volume fractions show higher stiffness matrix constants. Seven tests 

were performed to investigate the effect of raising the volume fractions from 0.4 to 0.7 with 

0.05 increments.  

Minimum clearing distance 

As the fiber placement algorithm is designed to place fibers with a certain minimum inter-

fiber distance, the effect of the scale of this distance was investigated. Two tests to investigate 

the effect of changing the minimum distance from 0.5% to 5% of the mean fiber radius were 

done. Smaller minimum distances between fibers are expected to cause greater stresses which 

could cause higher stiffness. 

Effect of fiber variation on elastic properties 

The effect of modelling fiber variations was investigated by performing two similar tests with 

and without the fiber variation option. In one test all the fibers were given the same radius. In 

the other tests, the fiber variation was as described in 3.8.  
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 Effect of interface on elastic properties 

After a fiber population was created, it was used as the basis for an RVE model. To 

investigate the effect of modelling an interface, a single fiber population was investigated 

with different modelling choices and parameters.  

 

Effect of modelling interface 

To investigate whether the modelling of the interface in the RVE has any effect on the elastic 

properties, the stiffness was estimated with and without cohesive elements between the fiber 

and matrix. The interface elements were assigned matrix material properties. 

Effect of interface properties 

The interface element thickness was increased to a practical max size, ¼ of the minimum 

inter-fiber distance 0.02. For the tests, the interface elastic modulus and yield limit was first 

set as 100 times higher, and then 100 times lower compared the resin properties. These values 

are chosen to model a much stronger interface and a much weaker interface relative to the 

matrix.  

 Result of geometric parameter 
investigations 

Fiber volume fraction 

In Figure 4.5 and Figure 4.4, one can observe that the fiber volume fraction affects the 

stiffness matrix constants. In Figure 4.5, the change in elastic properties in the fiber- and 

transverse directions is found to increase as the fiber volume fraction increases. In Figure 4.4, 

the shear and coupling effects from Figure 4.5 are shown at an enlarged scale. The shear 

stiffness constants are also found to increase as the fiber volume increases. The increased 

volume fraction also causes a higher deviation in all constants. 
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Figure 4.5: Stiffness constants for different volume fractions 

Figure 4.4: Shear and coupling stiffness constants of different volume fractions 
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Minimum clearing distance 

In Figure 4.6, it seems like the deviation increases for smaller inter-fiber minimum distances. 

A further examination of the scale of the different stiffness matrix constants are presented in 

Figure 4.7. In the top left plot of this figure, the fiber parallel stiffness constant is presented 

and the transverse constants are below. The top right plot shows the shear constants and the 

bottom right, the coupling constants. From these figures, it seems that the stiffness matrix 

constants for parallel, transverse and shear directions, slightly increases for larger minimum 

inter- fiber distances.   

 

  

Figure 4.6: Effect of minimum clearing distance 1 
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Effect of fiber variation on elastic properties 

Figure 4.8 shows that the modelling of fiber 

variation in the fiber populations has an 

effect. The stiffness constants for the RVE 

models with fiber variation are found to 

deviate more than the constants for the RVE 

models without fiber variation. Some of this 

deviation is due to the fiber variation option 

introducing some deviation in the volume 

fraction. There also seem to be a slight 

difference in the converged values.  

  

Figure 4.7: Effect of minimum clearing distance 2 

 

Figure 4.8: Effect of fiber variation 
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 Results of interface options 

Effect of modelling interface 

The effect of modelling of an RVE with and 

without the cohesive interface elements on the 

different stiffness constants, are plotted in Figure 

4.9. The fiber parallel constant seems to be 

somewhat lower for the RVE without the 

cohesive interface. For the transverse and shear 

constants the values are somewhat higher without 

the interface.  

While the coupling constants are changing 

slightly with the interface toggling, the effects 

seem quite insignificant. In all cases the 

differences in constants are less than the 

converge scatter in test 4.1. 

Effect of interface properties 

The changes in the interface elastic modulus 

and yield limit influenced the elastic properties 

of the composite. From Figure 4.10, it seems 

that the upscaling of interface properties 

slightly increases the fiber parallel, transverse 

and shear constants compared to Figure 4.9. 

The fiber parallel constant is not very affected. 

The downscaling of the interface properties 

affects the transverse and shear constants a 

significant amount. The coupling constants are 

also changing with the interface changes, but 

these effects seems to be insignificant. The 

changes in fiber parallel and coupling constants 

are less than the converge scatter in test 4.1. 

  

Figure 4.9: Effect of interface modelling 

Figure 4.10: Effect of interface properties 
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5. Part 2 - Linear elastic exploration of load 
cases 

This chapter explores stress testing through imposing macro strains on the RVE models. The 

approach is here applied on linear behaviour. This allows for exploration of possible load 

cases and introduction of the concept of failure envelopes or lotuses through quick linear 

simulations. 

 Bi axial stress sweeps for initial stress 
distribution 

Hooke’s law is used to find the matching macro 

strains required to do different load cases. When 

investigating biaxial load cases, the loads can be 

imposed in many possible proportions and 

directions. An approach of choosing normalized 

load cases based on different stress components, 

as illustrated in Figure 5.1, is applied to sweep 

through several possible biaxial load cases. The 

approach can be done for any two stress 

components. All possible combinations of biaxial 

load cases can be investigated for several different load proportions. 

The stress values of the elements are presented through many different stress variants and can 

be extracted from the elements in the RVE. Abaqus offers several different stress variants 

which provides different information.  

 Test 

Transverse-transverse load cases were investigated. 180 possible load cases equally spaced 

around Figure 5.1 were done. With this level of resolution, the tension-tension, compression-

compression and tension-compression cases will be thoroughly investigated. The max stress 

value in the elements was extracted from the matrix for each load case and inversed to get the 

load proportionality factor for this load case. 

Several stress variants were extracted and a few of these are presented below. The fiber 

populations of the tested RVE models had 50 fibers. To consider the effect of fiber 

Figure 5.1: Possible normalized biaxial load cases 
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populations, three different RVE’s were tested. The small number of tests is because chapter 5 

is deemed as a brief intro to nonlinear testing addressed in chapter 6, and not a more thorough 

investigation as in chapter 4. 

 Linear envelope results 

Von Mises 

Figure 5.2 shows the load proportionality envelopes for the Von Mises stress variant in σ2-σ3.  

  

Figure 5.2: Initial Von Mises stress envelope for biaxial loads 
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Max principal stress and strain 

In Figure 5.3 are the load proportionality envelopes for the max principal stress variant in σ2-

σ3 load cases shown. The values at the 45-degree tension-tension state differ noticeably.

 

Figure 5.3: Initial max principal stress for biaxial loads 
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Figure 5.4 shows the load proportionality envelopes for the max principal strain variant for 

the σ2-σ3 cases. 

 

Figure 5.4: Initial max principal strain for biaxial loads 
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Max Shear stress and strain 

In the next two figures, Figure 5.5 and Figure 5.6, are the load proportionality envelopes for 

the max shear stress and max shear strain variants presented. In one of the max shear strain 

cases the envelope did not plot properly, due to poor scaling of the axes in addition to several 

spikes. The result of this RVE is not plotted. 

 

Figure 5.5 : Initial max shear stress for biaxial loads 
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Figure 5.6: Initial max shear strain for biaxial loads 
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6. Part 3 – Nonlinear behaviour  

In this chapter stress testing on RVE models with nonlinear behaviour is explored. In the first 

part is plasticity, fracture strain damage and interface degradation material models introduced 

to demonstrate the effects of these different material models.  

In the next part are biaxial stress tests introduced and transverse-transverse tests performed. 

From the transverse nonlinear tests is a failure envelope, based on a small number of tests, 

created. 

As some of the stress states on the different simulations are found to deviate from the initial 

load case, a backward iterative method is explored to maintain initial load case as explained in 

3.7 Strength Prediction.   

 Material models 

Plasticity models 

Nonlinear behaviour with plasticity material models as explained in 3.8 is tested. As this test 

does not include any damage, large deformation as illustrated in Figure 6.1, is possible. This 

level of deformation is far from realistic in composites. Because the fibers are modelled as a 

linear elastic, and the matrix as an elastic plastic material, little hinders the deformation in 

these simulations.  

Figure 6.1: A transverse macrostrain intended to stretch the plastic RVE by ~20% 
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Plasticity and Matrix damage  

To demonstrate damage modelling in the matrix, a simple max strain ductile damage model is 

added to the matrix elements to determine when the matrix elements breaks. This testing does 

not consider other damage and failure modes so the results may still be far from realistic. The 

tests are primarily intended to demonstrate a matrix damage model.  

Plasticity, matrix damage and cohesive. 

Delamination in the interface elements are modelled as described in 3.8. Now both the matrix 

and interface elements are assigned different simple damage models. The strength estimations 

are now based on interface degradation and matrix damage.  

 Simulations 

All tests were done with nonlinear stress simulations on a single ten-fiber RVE model as 

larger RVEs have a longer simulation time. The small RVE size might present inaccurate 

values, so the following tests are only intended as a demonstration of the method. The 

stiffness matrix of the tested RVE was found to be as in equation (9). 

The imposed macro strains were calculated as follow: by assigning a strain value to a single 

strain component, a corresponding stress state is calculated through the stiffness matrix. The 

other stress components were then set to zero and the compliance matrix were used to find the 

macro strains matching this stress state. A strain value of 0.16 are used for the material tests. 

In the plotted results, the 1 axis is defined as the fiber direction while the 2, 3 axes are the 

transverse directions. 
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 Results 

On the following pages, the stress strain curves for the different single stress component load 

cases for three different material model sets are tested. The average stresses are plotted 

against the load case stress components’ and corresponding strain throughout the simulations.  

Test: Tension and compression in fiber direction  

  

  

 

  

Figure 6.2: Stress strain curves for loading in fiber direction with plasticity only 

Figure 6.3: Stress strain curves for loading in fiber direction with plasticity and matrix damage 

Figure 6.4: Stress strain curves for loading in fiber direction with plasticity, matrix damage and interface degradation 
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Test: Tension and compression transverse directions  

Figure 6.5: Stress strain curves for transverse loading with plasticity only 

Figure 6.6: Stress strain curves for transverse loading with plasticity and matrix damage 
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Test: Shear in 2 - 3 direction  

 

  

Figure 6.7: Stress strain curves for transverse loading with plasticity, matrix damage and interface degradation 

Figure 6.8: Stress strain curves for transverse shear 

loading with plasticity only 
Figure 6.9: Stress strain curves for transverse shear 

loading with plasticity and matrix damage 
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Test: Shear in 1-2 and in 1- 3 direction  

 

Plasticity and matrix damage models 

Plasticity, matrix damage and interface delamination 

Figure 6.10: Stress strain curves for transverse shear loading with plasticity, matrix damage and interface degradation 

Figure 6.11: Stress strain curves for fiber parallel shear loading with plasticity only 

Figure 6.12: Stress strain curves for fiber parallel shear loading with plasticity and matrix damage 
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Figure 6.13: Stress strain curves for fiber parallel shear loading with plasticity, matrix damage and interface degradation 
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 Biaxial stress tests 

In this section multiaxial tests for different types of transverse stresses are explored. Equal 

tension2-tension3, tension2-compression3, compression2-tension3 and compression2-

compression3 stresses were imposed on the ten-fiber RVE model with plasticity, matrix 

damage and interface delamination. A strain value of 0.08 is used to find the stresses in the 

biaxial tests. 

Test: Biaxial loads in 2-3 transverse directions  

 

  

Figure 6.14: Stress strain curves for biaxial transverse loading with plasticity, matrix damage and interface degradation. 
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Creating Envelopes 

In Figure 6.15, the results of the 2-3 biaxial and the 2 and 3 uniaxial tests are plotted to create 

a rough failure envelope. The inner envelope shows the interface damage initiation in the 

tension-comporession cases. The other envelope shows the first element damage occurance. A 

finer resolution of loadcases is requiered for a more accurate envelope shape. 

 

Figure 6.15: An 8-point failure envelope showing initial damage for plasticity, matrix damage and interface 

degradation models  
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 Approach to backward iteration 

While the material models and stress state affect the stress strain curves, several of the 

simulations average stresses deviate from the initial load case throughout the simulations. 

These problems are almost not present in the damage and delamination cases presented, due 

to the small deformation before failure. While the tension 2-tension 3 load case seem to 

include a deviation in the average stresses, closer investigations showed that the inter-fiber 

matrix element failed before the stresses diverge.  

Therefore, this method is investigated with plasticity models only as other possible constituent 

material models and damage models might allow for greater deformations than the damage 

models applied in this thesis.  

When examining Figure 6.1 and Figure 6.16, the sharp edges on the first figure is apparent 

compared to the second figure. This is due to the stress divergence. When the stress is 

adjusted, the sharp edges soften. In Figure 6.1 is a tension manifesting in the other transverse 

direction as shown in graph Figure 6.5. 

The backward iterative method used to maintain initial load case is described in 3.7, Strength 

prediction. To identify when a stress component is marked as diverging, an absolute or a 

relative limit can be applied. A relative approach with a limit of 5% of the loaded stresses is 

used to identify when a stress is diverging. The high treshold for stress divergence is used, as 

an optimal solution is not the goal of this investigation. Any functional method is accepted.  

Figure 6.16: A transverse macrostrain with readjustment, intended to stretch the plastic RVE by ~10% 
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Test: Backward iteration to adjust load case for tension in transverse-2 direction  

 Test: Backward iteration to adjust load case for shear in 1-2 direction  

Figure 6.17: Stress strain curves showing the readjustment of the macro strains for transverse-2 tension with plasticity 

Figure 6.18: Stress strain curves showing the readjustment of the macro strains for 1-2 shear loading with plasticity 
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Test: Backward iteration for tension in transverse-2 and shear in 1-2 direction  

Test: Backward iteration of shear in 1-3 and shear in 1-2 direction  

 

  

Figure 6.19: Stress strain curves showing the readjustment of the macro strains for transverse-2 tension and shear in 1-2 

direction with plasticity 

Figure 6.20: Stress strain curves showing the readjustment of the macro strains for 1-2 and 1-3 shear loading with 

plasticity 
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7. Discussion: 

In this chapter the modelling, approach and results are discussed with respect to the feasibility 

of the applied method. After the RVE modelling is addressed, the results from chapter 4, 5 

and 6 are discussed before the entirety of the tool is assessed. Afterwards, ideas for further 

work will be discussed. 

RVE model generation 

A few of the generated RVE models caused errors in the simulations. From investigating the 

error messages, it seems that the fiber placement algorithm allowed for some fibers to be 

placed, so a minuscule bit of the fiber appeared in the opposite corner of the RVE. As these 

corner elements were much smaller than any modelling parameters, the script malfunctioned 

in applying the constraint equations. When this error occurred, a new random key was 

assigned and a new RVE model was created. While this workaround was used, the errors 

show that not all fiber populations generated by the developed fiber placement algorithm are 

modellable by the script. 

Another aspect in the modelling is the deviation in modelled fiber volume fraction in fiber 

populations, due to fiber variation. Currently, this parameter is free to deviate with each 

random key. This might cause greater deviations when performing a statistical amount of 

simulations, so the fiber volume fraction in the RVE models should be better constrained to 

obtain consistent results. 

Estimation of elastic properties 

The estimated elastic properties for the glass fiber correlate reasonably well with common 

micromechanical approximations (Hull, 1981). The modelling of an interface was shown to 

have little effect on the estimations, unless the interface was modelled as a weaker material. In 

these cases, the elastic properties in the transverse directions were affected.  

The parameter investigation illustrates how changes in the different parameters can provide 

information about the deterministic effect of these design parameters. As stiffness tests are 

performed with linear behaviour, these simulations can be performed very quickly. Due to 

this, extensive tests for investigations of these parameters can be investigated quickly.  
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Linear biaxial stress cases 

While these simulations were used to investigate load cases, the modelling of linear behaviour 

is quite limiting with respect to the investigation of physical phenomena. The envelopes 

produced might still be used to estimate initial load capabilities before damage initiation. Both 

the produced max shear stress and max principal strain envelopes indicate higher loading 

capabilities in the compression-compression load cases relative to the other load cases. This is 

a feature shared with common composite failure criteria like Hashin (Hashin, 1980) and Puck 

(Puck & Schürmann, 2004). 

Nonlinear behaviour 

While the plasticity tests in 6.1 provide little realistic insight, results from the simulations 

with damage models were more promising. The transverse compression cases for the damage 

models supports findings of González and Llorca (2007) and the transverse tension case 

supports the findings of Pulungan et al. (2017). In both cases, the general shape of the stress 

strain curves and the relative estimated values correlate reasonably well with the produced 

results.  

The 1-2 shear strength was compared to the results from Naya et al. (2017). In this case, a 

similar stress strain curve was found, but the shear strength was found to be distinctly lower 

than the estimations from Naya et al. (2017). A reason for this might be that the simulations 

by Naya et al. (2017) were performed on models where the interface is modelled as a 

transverse isotropic material with shear stiffness constants slightly higher, and the normal 

stiffness constant slightly lower than the matrix’s Youngs modulus. The interface material in 

the RVE models produced in this thesis are modelled as an isotropic material with the same 

properties as the matrix. This difference in the interface’s elastic properties might explain the 

differences in estimated strength values.  

The strength tests in this thesis were performed on a single RVE with slightly lower stiffness 

in one of the transverse directions as shown in equation (9). A similar difference was found in 

the transverse tension strengths in Figure 6.6 and Figure 6.7. The difference in elastic 

properties in the transverse directions, with a similar strengths difference in the same 

corresponding directions, further indicates a relationship between elastic properties in a 

direction and the strength in the same direction. As both the shear strength and the transverse 

tension strength, indicates a relationship between stiffness and strength, a relationship is 

assumed. This should be researched further and tested before any conclusions can be made. 
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Failure envelopes 

The produced failure envelope presented in Figure 6.15 was based on stresses at initial failure 

in the elements, caused by the applied damage models. The produced envelope shares features 

with failure criteria like Hashin (Hashin, 1980) and Puck (Puck & Schürmann, 2004). Still, 

there is a need for a finer load case resolution to determine the shape of the failure envelope.  

The produced envelope was based on strength test of a single ten-fiber RVE. To get an 

envelope which may be used to predict failure, the envelopes should be based on results from 

several RVE models to establish an average with a statistical deviation. The tests should also 

be performed on different sized RVEs to determine the effect of the RVE size. 

The stresses in the produced envelope are based on stress at damage initiation. While these 

values were chosen for this case, several other values, like max stress and failure strain, can 

be extracted and used to create several different models as done for different stress variants in 

chapter 5.  

Backward iterative process. 

As shown in the figures in 6.3 the developed backward iterative method manages to influence 

the stresses manifesting in the RVE. While this method was sufficient to adjust the stress case 

back to the initial load case after the initial stress deviation, the method stagnates before 

massive deformation manifests. The stagnation of the process is assumed to be due to the 

stiffness matrix changes throughout the deformation. At one point the initial stiffness matrix 

is no longer a valid reference between the average stresses and the macro strains.  

While this problem might be solved, the sharp edges on the figures in 6.3 are assumed to be 

caused by sudden changes in macro strain propagation. An approach with user subroutines in 

Abaqus is therefore recommended to achieve more stable load case simulations.   

Accurate estimations of composite properties 

As the aim of this thesis has been to investigate the modelling method, the material models 

and produced results are not intended to accurately portray and calculate a specific composite 

material. While epoxy and glass fiber material parameters are used in the investigations, 

accurate estimations of real composites will require specific constituent properties. In 

addition, the results should be confirmed with experimental results.  
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The simple material models used in this thesis are intended to demonstrate the effect of using 

different material models, and are not intended to find high fidelity estimations of composite 

properties. Even though element convergence tests are usually applied to increase fidelity, 

these are not performed in this thesis because they are outside the scope of this thesis. 

Multiscale modelling of fiber composites 

As demonstrated in this thesis, developing and implementing a modelling approach based on 

first order homogenization to perform stiffness and strength estimations in an FEA 

environment, is feasible. The script developed in this project can now model RVEs from 

given design parameters and perform stiffness and strength estimations which correlate 

reasonably well with similar published work. To perform high-fidelity estimations of 

composites with the developed tool, the results need to be confirmed with experimental 

results before they can be deemed accurate.  

The script is now functional, but seeing that the complexity of the script increases with added 

content, the code should be refactored to ensure repeatability and to make further 

development easier and more efficient.  

 Ideas for further work 

Thermal expansion 

To investigate residual stresses developed in the curing process, the specific volume change in 

the RVEs constituents can be modelled (González & Llorca, 2007). To model this, 

mechanical thermal expansion can be implemented to the developed tool. This also allows for 

investigation of expansions due to thermal effect or saturations. 

Improved stress tests 

To better maintain load cases, user subroutines in Abaqus and Fortran should be studied. This 

might lead to more stable nonlinear load case simulations which might be necessary for other 

material models which might improve the estimations. 
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Interface modelling 

While cohesive elements were used to model the interface in this thesis, this does not exclude 

the possibility of adding an option of switching between cohesive surfaces and cohesive 

elements in the tool.  Both options are possible to use when modelling delamination, and the 

investigation of the different results might be interesting.  

Material models  

The script is organized to facilitate for implementation of new material models. This option 

allows for easy toggling between different material models and the possibility of cycling 

through several material models when performing simulations. This would allow for failure 

envelopes based on several possible material models. The concrete plasticity damage model 

used by Naya et al. (2017) has been imported to the script. By investigating other publications 

and getting material parameters from experiments, a library of different material models can 

be created to test the effects of these different models.  

Inter-fiber area 

A finer mesh resolution will also help in the investigation of minimum inter-fiber distance. 

Currently, the mesh resolution is so large that only a single element is placed between the 

interfaces of two closely packed fibers. With smaller mesh sizes this area can be investigated 

with a greater resolution which might provide insight to the effects in this area.  
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8. Conclusion: 

A script which applies a multiscale modelling method based on a first order homogenization 

approach has successfully been developed and implemented in an FEA environment to model 

the microscale of composites and perform simulations to estimate stiffness and strength. The 

script is able to generate RVE models from a set of controllable design parameters and given 

material models to perform stiffness and strength estimations. To demonstrate the developed 

tool, an epoxy and glass fiber composite was modelled from simple material- and damage 

models.  

In a brief investigation of elastic properties, the converged average from several different 

fiber distributions was found to converge toward similar values. It was also shown that the 

scatter in these results decreases as the RVE size increases, which provides a convergence 

from fewer samples. The strength estimates were found to correlate with findings from similar 

published work.  

Altogether, this indicates that a script based on this method could provide practical insight to 

composite performance. As the project was defined as a feasibility study, the achievements 

from the developed tool have not been confirmed with experimental data. Before such a tool 

is applied in product development cases with composites, the results procured through this 

method should be confirmed with experimental data. 
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