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Abstract
In order to speed up molecular design efforts, we examine the utility of chemo-

metric approaches to estimate ∆Est of blue TADF based OLEDs. In order to

create efficient blue emitting OLEDs, ∆Est is required to be sufficiently small.

This makes it an import part of the design strategy for blue OLED. To this end

structural and experimental data for 60 different blue emitting dyes were collected

from a recent review paper. Various 3D molecular descriptors based on energies,

charges and geometry were calculated using KRAKENX and used to identify quan-

titative structure-property relationships (QSPR) for ∆Est. Exploratory analysis

using principal component analysis (PCA) and k-means cluster analysis were per-

formed to observe the variance in the data and to detect patterns and potential

outliers. Partial least squares regression (PLSR) and the non-linear regression tree

method Cubist was used to create models for estimating ∆Est. Based on the result

obtained from the exploratory analysis, different approaches were tested to poten-

tially improve the models. All the models created in this thesis were incapable of

producing high accuracy estimates of ∆Est. The best results were obtained with

Cubist, indicating that there is a non-linear relation between the descriptors and

the ∆Est property. The best model had a R2
CV of 0.59 and a RMSE of 0.08 with

variable selection performed. The data used in this thesis proved to be highly het-

erogeneous, which resulted in a insufficient coverage of the chemical space. Also,

the descriptors chosen may not be the most ideal to obtain QSPR for ∆Est. An

attempt was made to calculate ∆Est using TDDFT on a selected set of structures.

The computation was unfortunately not completed due to time constraints and

problems with convergence.

3



4



Sammendrag
I et forsøk p̊a å assistere design av nye bl̊a OLEDs har vi i denne oppgave førsøkt å

utnytte kjemometri til å estimere ∆Est. For å kunne oppn̊a effektive OLEDs basert

p̊a TADF må ∆Est være tilstrekkelig liten. ∆Est representerer derfor en kritisk

parameter i design av nye bl̊a organiske fargestoff. Strukturdata og eksperimentelle

verdier for 60 ulike bl̊a fargestoff ble hentet fra en nylig utgitt oversiktsartikkel.

Ulike 3D molekylære deskriptorer ble generert ved bruk av programvaren KRAK-

ENX for å identifisere QSPR for ∆Est. Principal component analysis (PCA) og

k-means cluster analysis ble gjennomført for å vurdere variansen i dataene og for

å kunne identifisere mønstre og potensielle punkt liggende utenfor det kjemiske

rommet. Lineær partial least squares regression (PLSR) og den ikke-lineær meto-

den Cubist ble brukt for å generere ulike modeller for å estimere ∆Est. Ingen av

modellene produsert i denne oppgaven viser tilstrekkelig nøyaktighet i estimerin-

gen av ∆Est. Den beste modellen ble oppn̊add ved bruk av Cubist metoden, som

indikerer at det er en ikke-lineær relasjon mellom deskriptorene of ∆Est. Denne

modellen hadde en R2
CV verdi p̊a 0.59 og en RMSE p̊a 0.08 n̊ar variabel selek-

sjon ble utført. Resultatene viser at dataene brukt i denne oppgaven er svært

heterogene. De molekylære deskriptorene brukt i denne oppgaven representerer

ogs̊a et usikkerhetsmoment. Det er vanskelig å vite nøyaktig hvilke deskriptorer

som er best egnet for å danne QSPR for ∆Est. Det er derfor ikke sikkert at de

deskriptorene som ble valgt i denne oppgaven er de som er mest relevante for å

kunne estimere ∆Est. Det ble ogs̊a forsøkt gjennomført en TDDFT beregning for

utvalgte strukturer for å bestemme ∆Est. Dessverre lyktes vi ikke med å fullføre

disse beregningene innenfor den aktuelle tidsrammen grunnet problemer knyttet

til konvergens.
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1 Introduction
Ever since the invention of the first Organic Light Emitting Diode (OLED) in 1987

by Tang and Van Slyke [1], much research has been devoted to the subject as it

represents great advantages in both lighting and display technologies [2]. Some of

these advantages are improved image quality and contrast, faster response time,

faster refresh rate, wider viewing angles and thinner and lighter devices. Thus, the

application range of such OLEDs are extensive and some of them are presented in

Fig. 1.1.

Figure 1.1: Application possibilities for OLEDs. The figure is taken

from http://www.braemac.co.uk/oledapplications.html [3]

For the OLEDs to be applicable for the commercial market there are some chal-

lenges that have to be addressed. The devices should have high photoluminescence

quantum yield, in particular a high external quantum efficiency [2, 4]. The organic

material used in the OLED must also be morphologically stable and demonstrate

thermal stability. The energy levels of the frontier orbitals, i.e. highest occupied

molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), in

each layer of the device should be reasonably aligned. The alignment of the en-
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ergy levels is important for the control of the exciton recombination region and

to minimize the barrier to charge injection [2, 5]. A simplified representation of

an OLED cell is presented in Fig. 1.2a and the energy alignment is presented in

Fig. 1.2b.

(a) A simplified representation of an

OLED cell where an organic emis-

sive layer and a organic conduct-

ing layer is situated between the

electrodes. The figure is taken

from website https://electronics.

howstuffworks.com/oled1.htm writ-

ten by Craig Freudenrich [6]

(b) Example of energy alignment of

HOMO and LUMO in the different lay-

ers of an OLED cell. The figure is taken

from an article by Martin Oehzelt et al.

[7]

Figure 1.2: A simplified representation of the layers in an OLED cell

and an example of the energy level alignment in those layers

Another key feature that is of great importance is the management of hole and

electron recombination[2]. Exciton formation through charge recombination re-

sults in 25 % singlet and 75 % triplet excited states. Only the former contributes

to light emission by fluorescence whilst the latter contributes by phosphorescent

emission. However, the triplet excitons can contribute to fluorescent emission by

means of inter system crossing (ISC) and reversed inter system crossing (RISC)
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[8]. In order for RISC to occur, the energy difference between the lowest singlet

and triplet excited state, termed ∆Est, must be sufficiently small. Generally the

triplet state lies lower in energy than the singlet state, which indicates that the

transition from triplet to singlet states must be thermally activated by the ther-

mal motion of the organic molecules. A low ∆Est makes a thermal upconversion

from the triplet state to the singlet state possible. Although much research has

been devoted to OLEDs there are still problems related to the construction of high

performance blue TADF based OLEDs [9, 10, 11].

1.1 Organic Light Emitting Diodes

Most organic semiconductors used in OLEDs are mainly amorphous π-conjugated

system and thus differ from the conventional valence band theory. The conjuga-

tion of the systems determines the conductivity of the the organic semiconductor.

The energy levels, in particular the energy band gap of the emitting material, de-

termines the wavelength of the light emitted. A suitable energy level alignment of

the different layers in the diode is important in order to minimize the barrier to

charge injection and to control the recombination region within the device. Also,

the alignment is important because of its great impact on the external quantum

efficiency, luminance and lifetime of the OLEDs[5, 2].

OLEDs normally consist of two layers of organic materials combined with a cathode

and an anode. These two organic layers represents the conductive and the emissive

part of the diode. Electrons and holes are injected into the organic layers on either

side of the diode through the electrodes creating self-localized electronic states such

as excitons [12, 13]. In a semiconducting organic material an exciton is a bound

electron-hole pair state formed due to strong electron-lattice interactions. The

efficiency of the OLED is related to the exciton dissociation mechanism [13, 14]

When the electron and hole recombination occurs the resulting excited state can ei-

ther be a singlet state or an triplet state due to the spin wavefunction formed from

the two spin electronic charges[8]. According to spin statistics, 25 % of the excited

states produced through exciton formation corresponds to singlet states and 75 %

triplet states [2]. Since only singlets fluoresce, and given that the exchange energy
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is large, cross-over from triplet to singlet is highly unlikely to happen [14]. But,

triplet states can contribute to the recombination radiation through either phos-

phoroscence, thermally activated delayed fluorescence (TADF) or triplet-triplet

annihilation [8]. A device of solely fluorescence light emission can only yield a

theoretical external quantum efficiency (EQE) of 25 %, but by exploiting both

the singlet and triplet states, an internal quantum efficiency (IQE) of 100 % is

achievable [2, 8].

The first OLED based on pure organic TADF emitter was reported in 2011 by

Adachi et al. [15] and has ever since been a subject of tremendous research in

order to improve the device’s performance [16]. In thermally activated delayed

fluorescent OLEDs a charge transfer (CT) from excited singlet state to excited

triplet state occurs through an intersystem crossing (ISC) followed by a reversed

intersystem crossing (RISC) and relaxation to ground state [4]. See Fig. 1.3 il-

lustrating the different transitions. According to quantum mechanical theory of

selection rule, this ISC and RISC is spin forbidden as charge transfer between

states with different spin multiplicities is theoretically not allowed [17]. TADF

yields an emission with a longer lifetime than the direct fluorescence since the

process of ISC and RISC are slow processes due to the change of electron spin

between the states [4]. The difference between the lowest excited singlet state and

lowest excited triplet state (S1 and T1 in Fig. 1.3 respectively) is denoted ∆Est.

Usually T1 lies lower in energy than S1 meaning that the transition from T1 to

S1 is an endothermic process. The ∆Est is thus desired to be small in order to

thermally activate the process. The RISC can be thermally activated by thermal

motion of the organic molecule at sufficient temperatures (> 300 K)[4].

Adatchi et al. showed that by reducing the overlap between the highest occupied

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO),

the ∆Est could be reduced yielding more efficient TADF OLEDs [15]. This allows

for all the excited states to be harvested, both singlet and triplet, resulting in an

increase in the exciton statistical limit of fluorescent materials from 25 % to 100

%. The relation between ∆Est, RISC and temperature can be expressed through

12



following Boltzmann distribution,

kRISC ∝ exp

(
∆Est
kBT

)
(1.1)

where kRISK is the rate constant of RISC, kB is the Boltzmann’s constant and

T is the temperature [2, 4]. Also, ∆Est is related to the structure of the emitter

through the relation,
∆Est = ES − ET = 2J (1.2)

where ES and ET is the energy of the singlet and triplet state respectively and J

is the exchange integral. J depends on the overlap between HOMO and LUMO,

i.e. small overlap yields small ∆Est. In addition to ∆Est and kRISC , the radiative

rate constant, rr, of the singlet exciton transition from S1 to S0 is important to

get efficient TADF emission.

Figure 1.3: The transition processes in a TADF based OLED follow

the steps 1, 2, 3, 4 and 5. The figure is taken from an article by Yang

et al. [4]
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2 Methodology
Quantum chemical calculations and experimental procedures can be used to deter-

mine ∆Est for a given structure. However, these methods are very time consuming.

The purpose of the study presented here is to used chemometrics in an attempt

to create regression models which can yield reliable ∆Est responses based on cal-

culated molecular descriptors. If such models could be constructed it would be

a great advantage because it would reduce the time required to determine ∆Est.

To determine ∆Est of an unknown sample one would only need to calculate the

molecular descriptors for the sample and employ them to the model. The reason

for choosing ∆Est and not some other property is because it is a critical property

of blue TADF based OLEDs. As presented in the introduction the ∆Est must be

sufficiently small in order to achieve TADF. Also, experimental values are often

reported in articles on OLED dyes, which is needed in the regression model. To

the best of our knowledge ∆Est has not been used as the property of interest in a

QSPR model before. Nantasenamat et al. and Chen et al. have both done QSPR

studies on the emission maximum of different dyes [18, 19]. Barbosa et al. have

studied the glass transition temperature of different OLED materials [20]. The

estimation of ∆Est thus represent uncharted territory. The most relevant molecu-

lar representations for describing ∆Est is thus unknown. In this study some well

known and frequently used descriptors are calculated as a starting point.

In this study, experimental values of ∆Est for blue light emitting dyes have been

collected from an resent review paper [2]. Different 3D molecular descriptors based

on energies, charges and geometry were used to identify quantitative structure-

property relationships (QSPR) for ∆Est. The exploratory analysis methods prin-

cipal component analysis (PCA) and k-means cluster analysis were performed on

the descriptors to study the distribution of the data and to evaluate patterns and

potential outliers. Regression analysis was then performed using the experimen-

tal data and the molecular descriptors. The linear regression method partial least

squares regression (PLSR) and the non-linear regression tree method Cubist where

chosen in this study because they are easily interpreted. In order to validate some

of the experimentally determined ∆Est values and responses from the regression

14



model, density functional theory (DFT) and time-dependent density functional

theory (TDDFT) was performed on selected structures.

The work presented in this thesis is a continuation of the work done on the master

project conducted fall of 2017. The result of the PCA and PLSR calculations

where the full data set is used was obtained during that project. However, the

discussion of of the result has been altered. In order to avoid confusion, results

obtained during the project will be specified in the relating plots and figures.

Chemometrics has for over 30 years been developing classification and regression

methods able to provide reliable models, both for reproducing experimental data

and for predicting unknown values. The use and interest for reliable prediction

models has been growing in the last few years as they are considered to be useful

and safer tools for predicting data for chemicals. Chemoinformatics encompasses

the design, creation, organization, management, retrieval, analysis, dissemination,

visualization and use of chemical information [21, 22]. Exploratory data analysis

consist of techniques used on a data set to disclose information about the data

distribution, outliers, clusters and relationship between objects and/or variables.

Principal component analysis (PCA) and k-means cluster analysis are two exam-

ples of such techniques, which are used in this study. PCA and k-means cluster

analysis will be explained in more detail in Section 3.1 and Section 3.4, respec-

tively. Another topic within chemometrics is regression analysis where the purpose

is to find a relationship between experimental data and molecular descriptors. The

regression model that describe this relationship can then be used to predict future

unknown samples. Two different regression methods which are used in this study

are partial least squares regression (PLSR) and Cubist, which will be explained in

more detail in Section 3.2 and Section 3.3, respectively. Chemometrics provides

useful tools for data analysis and modelling in quantitative-structure property re-

lationship (QSPR) methods. The development of a QSPR model requires three

fundamental components: i) experimental data of a biological activity or property

for a group of chemicals, ii) molecular descriptors and iii) mathematical methods

to find the relationships between a molecular property and the molecular struc-

ture [23]. The accuracy of a property estimated by the use of QSPR methods
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are dependent on the accuracy of the input data to the model. It is therefore of

vital importance to obtain high-accuracy experimental data and relevant molecu-

lar representation of the structures used in a QSPR model in order to achieve an

accurate predictive model. The molecular representations of the structures should

be chosen such that they reflect the property of interest. This is not an easy task,

because this is not necessarily known a priori.

The work done is this study is structured according to the development of a QSPR

model described in the previous section. A simple representation of the work flow

is depicted in Fig. 2.1. All the calculations, except the DFT and the TDDFT

computations, were done on a desktop computer with Intel Core i5-7200U, 2,5

GHz and 8 GB RAM.

Figure 2.1: A simple representation of the work flow.

2.1 Data collection

Experimental and structure data for blue TADF based OLEDs were collated from

a recent review article [2], and is presented in Table 2.1. All of the structures was

drawn in two dimensions using MarvinSketch [24] and is attached in Appendix A.

A three dimensional representation of all the structures were generated using Open

Babel [25].
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Table 2.1: Experimentally determined values of ∆Est.

Structure name ∆Est ref.

1 0.54 [26]

2 0.45 [26]

3 0.32 [26]

2DAC-Mes3B 0.058 [27]

2PXZ-TAZ 0.23 [28]

34TCzPN 0.16 [29]

35IPNDCz 0.14 [30]

3CzFCN 0.06 [31]

44TCzPN 0.21 [29]

4CzFCN 0.06 [31]

5CzCF3Ph 0.02 [32]

Ac-HPM 0.18 [33]

Ac-MPM 0.19 [33]

Ac-PPM 0.19 [33]

ACRPOB 0.06–0.12 [34]

ACRSA 0.03 [35]

ATP-ACR 0.16 [36]

BCzT 0.29–0.33 [37]

BFCz-2CN 0.13 [38]

BTCz-2CN 0.17 [38]

CC2BP 0.14 [39]

CCT2A 0.06 [40]

CNBPCz 0.27 [41]

CPC 0.04 [42]

Cz2BP 0.21 [39]

CzAcSF 0.14 [43]

CzBPCN 0.27 [41]

DABNA-1 0.18 [44]

DABNA-2 0.14 [44]
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DAC-BTZ 0.18–0.22 [45]

DAC-Mes3B 0.062 [27]

DCBPy 0.07 [46]

DCN-3 0.13 [47]

DCzIPN 0.05 [48]

DCzmCzTrz 0.20 [49]

DCzTrz 0.25 [50]

DDCzIPN 0.13 [51]

DDCzTrz 0.27 [50]

DMAC-DPS 0.08 [52]

DMAC-PXB 0.013 [53]

DMAC-TRZ 0.046 [54]

DMOC-DPS 0.21 [55]

DPXZPO 0.19 [56]

DPAA-AF 0.021 [57]

DTC-mBPSB 0.24 [58]

DTC-pBPSB 0.05 [58]

DTPDDA 0.14 [59]

m-ATP-ACR 0.13 [60, 36]

m-ATP-CDP 0.26 [60, 36]

mPTC 0.01 [61]

PPZ–4TPT 0.43 [52]

SFDPAPOB 0.06–0.12 [34]

SpiroAC-TRZ 0.072 [62]

SPXZPO 0.26 [56]

SXDPAPOB 0.06–0.12 [34]

TB-1PXZ 0.12 [63]

TB-2PXZ 0.05 [63]

TCzTrz 0.16 [49]

TMCPOB 0.06–0.12 [34]

TPXZPO 0.11 [56]
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Studying all the different structures in the data set it is evident that they consist of

a multitude of different combinations of donor and acceptor units. The architecture

is also quite different, including donor-acceptor (D-A), donor-acceptor-donor (D-

A-D), combination of two D-A-D, acceptor-ndonors (A-nD) and donor-acceptor-

acceptor-donor(D-A-A-D). These different designs are proposed to spatially sep-

arate HOMO and LUMO in order to reduce the overlap. As mentioned earlier,

a reduced overlap has shown to decrease the ∆Est. There is one exception to

this type of design strategy among the structures. DABNA-1 and DABNA-2 have

HOMO and LUMO separation as a result of multiple resonance effects, not as a

result of spatial separation[44]. Regardless, all structures have been reported to

have sufficiently small HOMO-LUMO overlap which yield small ∆Est. The struc-

tures are also quite different in size, with the largest consisting of 126 atoms and

the smallest consisting of 54 atoms. A first impression of the structures is that

they look fairly rigid. As a consequence it is expected that there will be few or no

multiple conformations available.

2.1.1 Molecular representation

Molecular representations are descriptions of a molecular system. From these

molecular representations different molecular descriptors, which yield different

types of chemical information, can be computed. Descriptors, which are quan-

titative descriptions of molecular structures, can be computed as a combination of

atomic properties and the distribution of these properties in the molecular struc-

ture [64]. Descriptors can be grouped into five categories

• Descriptors that can be derived from molecular formulas, such as molecular

weight

• Descriptors that depend on constitutions such as topological surface area

• Configuration dependent descriptors

• Conformation dependent descriptors

• Descriptors that take conformational flexibility into account
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The most useful descriptors are those with the highest information density and

minimal addition of noise. Descriptors play a fundamental role in chemistry, biol-

ogy and many other fields, and are as mentioned of great importance in research

fields of QSPR [65]. There are more than 5000 descriptors derived from different

theories and approaches up til today [66], and most of them can be computed by

means of software applications[65]. For a detailed description of many different

descriptors the reader is referred to the book Molecular Descriptors for Chemoin-

formatics Volume I: Alphabetical Listing / Volume II: Appendices, References by

R. Todeschini and V. Consonni [23].

Molecular properties was calculated for each structure using the Molecular Orbital

PACkage (MOPAC), which is a semi-empirical quantum chemistry program based

on Dewar and Thiel’s neglect of diatomic differential approximation (NDDO) [67].

The program uses concepts of quantum theory and thermodynamics to calculate

molecular properties such as molecular orbital energies, heat of formation, elec-

trophilic and nucleophilic delocalizability, etc. KRAKENX was used to calculate

different molecular descriptors. KRAKENX is an open-source software [68] that

calculates a variety of different groups of descriptors: vibrational frequency based

eigenvalue descriptors (EVA), molecular orbital energy based electronic eigenvalue

descriptors (EEVA), charge partial surface area (CPSA), Weighted Holistic Invari-

ant Molecular (WHIM), BCUT, radial distribution function (RDF), autocorrela-

tion, 3D molecule representation of structures based on electron diffraction (3D-

MORSE), graph eigenvalues, geometry, charge and MOPAC generated energies

[69]. For the purpose of predicting ∆Est the CPSA, autocorrelation, charge, ge-

ometry, EVA, EEVA and MOPAC descriptors were calculated. Here the MOPAC

descriptors refer to the molecular properties which was calculated using MOPAC.

Some of the descriptors used in this study are explained in more detail in the

following paragraphs.
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The ovality index, O, is an anisometry (having unsymmetrical parts) descriptor

based on the property that the spherical shape presents the minimum surface[70,

71]. It is calculated from the ratio between the actual molecular surface area (SA)

and the minimum surface area (SA0), corresponding to the Van der Waals volume

(Vvdw)
O =

SA

SA0

=
SA

4πR2
=

SA

4π(3Vvdw
4π

)2/3
(2.1)

The ovality index is equal to 1 for spherical molecules and increase with increasing

linearity of the molecule

Structure 1 has the largest ovality factor, O = 38, and is depicted in Fig. 2.2. The

structure with the lowest ovality factor, O = 2.39, is attributed to DABNA-1 and

is depicted in Fig. 2.3.

Figure 2.2: Molecular surface of structure 1 which displays the largest

ovality with O = 38

Figure 2.3: Molecular surface of structure DABNA-1 which displays

the lowest ovality with O = 2.39
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The inverse of the ovality index is the globularity factor, G, which is between zero

and one[72]. The most spherical molecules have globularity factors approximating

unity, but for two molecules that have non-equal volumes the globularity factor

reflects the relative compactness. When both the effective surface area and the

volume of the molecule are available, the surface-volume ratio G′ = SA/V can be

interpreted as a measure of the capability of a compound to adapt its shape to the

requirements of an approaching reagent[73].

Fig. 2.4 and Fig. 2.5 shows the molecular surface of structure DDCzIPN and

CC2TA, respectively. DDCzIPN has the largest globularity factor G = 0.81 and

CC2TA the smallest with G = 0.03

Figure 2.4: Molecular surface of structure DDCzIPN which displays

the largest globularity with G = 0.81

Figure 2.5: Molecular surface of structure CC2TA which displays the

lowest globularity with G = 0.03
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Asphericity, ΩA, is also a shape descriptor which measures the deviations from a

spherical shape[74]. It is calculated from the eigenvalues, λi, of the inertia matrix

and takes values between 0 and 1.

ΩA =
1

2

(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

λ21 + λ22 + λ23
(2.2)

The Molecular eccentricity (ε) is a shape descriptor defined as

ε =
(I2A − I2C)1/2

IA
(2.3)

where I is the principal moment of inertia, which is a physical quantity related

to the rotational dynamics of a molecule [74]. The subscripts A, B and C label

the principal inertia axes. The molecular eccentricity takes values between zero

and one where ε = 0 corresponds to a spherical molecule and ε = 1 to a linear

molecule.

Fig. 2.6 pictures the molecular surface of structure CC2BP which has the largest

molecular eccentricity with ε = 0.994. The structure with the lowest molecular

eccentricity ε = 0.54 is DDCzIPN, pictured in Fig. 2.7.

Figure 2.6: Molecular surface of structure CC2BP which displays the

largest molecular eccentricity with ε = 0.994
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Figure 2.7: Molecular surface of structure DDCzIPN which displays

the lowest molecular eccentricity with ε = 0.54

The CPSA descriptors combine shape and electronic information to characterize

molecules, thus they encode features responsible for polar interactions between

molecules [75]. In deriving the CPSA descriptors the molecules are viewed as

hard spheres defined by the Van der Waals radius and the surface area used is

the solvent-accessible surface area. The contact surface where polar interactions

can take place is characterized by a specific electronic distribution obtained by

mapping atomic partial charges on the solvent-accessible surface. Some of the

CPSA descriptors are defined as [23]:

• PNSA-1: partial negative surface area, the sum of the solvent-accessible

surface area of all negatively charged atoms

• DPSA-3: difference in atomic charge weighted surface area, the atomic

charge weighted positive solvent-accessible surface area minus the atomic

charge weighted negative solvent-accessible surface area (DPSA-3=PPSA-3-

PNSA-3)

• PPSA-3: atomic charge weighted positive surface area is the sum of the

product of atomic solvent-accessible surface area and the partial charge over

all positively charged atoms

• PNSA-3: atomic charge weighted negative surface area is the sum of the

product of atomic solvent-accessible surface area and the partial charge over

all negatively charged atoms
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• FNSA-2: fractional charged partial negative surface area, the total charge

weighted negative surface area divided by the total molecular solvent-accessible

surface area (SASA)

• PPSA-5: PPSA-1 multiplied with the sum of all positive charges, divided by

the number of positively charged atoms [76]

• PNSA-4: PNSA-1 multiplied with the total negative charge, divided by the

total number of atoms[76]

• PNSA-5: PNSA-1 multiplied with the total negative charge, divided by the

total number of negatively charged atoms

• RNCS: relative negative charge surface area, is the solvent-accessible sur-

face area of the most negative atom divided by the relative negative charge

(RNCG)

• RNCG: relative negative charge is the partial charge of the most negative

atom divided by the total negative charge

3-dimensional autocorrelation (3DA) generates a histogram of atom pair distances

within a molecule up to a cutoff distance. Interatomic distances are represented in

terms of Euclidian distances. To extend the 3DA descriptor beyond the geometric

characteristics of a molecule, atom pair distances are weighted by atom properties.

The formal definition of 3DA is

Autocorrelation(ra, rb) =
n∑
i

n∑
j

δ(ra ≤ rij < rb)PiPj (2.4)

where rij is the distance between atom i and j, and n is the total number of atoms

in the molecule. ra and rb represent the lower and upper cutoff distance, respec-

tively. Pi and Pj are the atomic properties for atom i and j used to weight the

autocorrelation. Weighting of the 3DA allows the descriptor to explain the dis-

tribution of specific atom properties within a molecule. The problem arises when

the property used to weight the atom distances are heterogeneously signed, e.g
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partial charge. Significant information loss arises due to sign-cancellation. Gre-

gory Sliwoski et al. propose a solution by separating the 3DA histogram into three

parts, negative-negative, positive-positive and opposite sign property pairs. By

doing this the different types of information loss are revealed. 3D descriptors such

as 3DA are computed from a single structure conformation. As interatomic dis-

tances increase, the degree of flexibility and rotatable bonds may increase, leading

to greater degrees of conformational uncertainty at larger distances. In this study

the autocorrelation is weighted by charges. In order to distinguish between the

different autocorrelation descriptors they have been given a number, e.g. ”auto-

correlated charge property 1”.

MOPAC descriptors are mostly energy descriptors including HOMO and LUMO

energies, HOMO-LUMO fraction, total dipole moment, maximum and minimum

electrophilic delocalizability (DER) and nucleophilic delocalizability (DNR), among

others. The HOMO-LUMO fraction is simply the ratio of HOMO energies to

LUMO energies. The electrophilic delocalizability is defined as [77]

DN(r) = 2
vac∑
k

∑
µ(r)

c2µk
α− εk

(2.5)

and the nucleophilic delocalizability is defined as

DE(r) = 2
occ∑
i

∑
µ(r)

c2µi
εi − α

(2.6)

The outer sum in Eq. (2.5) and Eq. (2.6) goes over all vacant MOs, k, and all

occupied MOs, i, respectively. The inner sum put together the contributions of all

atomic orbitals (AO), µ, belonging to the reagent center, r, of interest. cµj is the

linear combination of atomic orbitals (LCAO) of AO, µ, at a reagent center, r, of

MO, j. εj, is the energy of the j th MO. α is defined as the average of the HOMO

and LUMO energies, i.e.

α =
1

2
(εHOMO + εLUMO) (2.7)
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The delocalizability was introduced by Fukui et al. [78] as a reactivity index for

saturated compounds, thus generalizing the superdelocalizability of conjugated

compounds[79].

Fig. 2.8 shows the electrostatic potential surface for the structures that displayed

the largest and smallest value of total dipole moment. DTC-mBPSB has a total

dipole of 9.72 Debye and represents the structure with the largest total dipole.

The smallest total dipole is attributed to the DDCzIPN structure with a value of

0.05 Debye.

Figure 2.8: Electrostatic potential surface of structure DTC-mBPSB

(left) and DDCzIPN (right), which displays the largest total dipole

with a value of 9.72 Debye and the lowest total dipole with a value of

0.05 Debye, respectively.

Vibrational frequency based eigenvalue descriptors (EVA) developed by Ferguson

et al. is based on molecular vibrational motion [80, 81]. The idea is that, given the

implicit dependence of the vibrational frequencies and the atomic displacement on

the molecular wave function, this descriptor would yield reliable characterization

of the molecular structure with adequate information on the shape, size and elec-

tronic properties of the molecule. The vibrational frequencies are projected onto

a bounded frequency scale with individual vibrations represented along the axis.

For a system of N atoms there are 3N-6 normal modes of vibration, all having a

unique frequency of vibration. Each vibration is then represented by a Gaussian

curve which is dependent of the vibrational frequency and the standard deviation,

σ. The resultant spectrum is then sampled at fixed increments. At each incremen-

tal point a EVA value is calculated as the sum of amplitudes of the overlapping

27



Gaussian function. The typical range of the bounded frequency scale is from 0 to

4000 cm−1 to cover all fundamental vibrations. Typical σ value is 10 cm−1 and

increment size is 5 cm−1. The EVA descriptors calculated in this study were cal-

culated using a frequency scare ranging from 1-4000 cm−1, sigma value of 2 cm−1

and an increment size of 1 cm−1.

Molecular orbital energy based electronic eigenvalue descriptors (EEVA) is a mod-

ification of the EVA descriptor[82]. The same principals are used, but with the

molecular orbital (MO) energies rather than the vibrational frequencies. The MO

energies are projected onto a bounded energy scale and a Gaussian function is

placed over each eigenvalue. As for the EVA descriptor, at given increments the

EEVA is calculated as the sum of the overlapping Gaussian functions. Here the

energy scale is usually ranging from -45 to 10 eV. The σ value is often set to 0.5

eV and the size of the increments to 0.25 eV. The EEVA descriptors used in this

study is calculated with the energy scale ranging from -45 to 10 eV, a sigma value

of 0.05 eV and an increment size of 0.025 eV.

2.2 Exploratory analysis

PCA were performed using an in-house GUI based application. The statistical

computer software R [83] was used to preprocess the descriptor data before sub-

jecting them to PCA. The preprocessing consisted of removing all ”Not available”

(Na) entries and near zero variance columns. The cleaned descriptor data was

then incrementally subjected to PCA with different groups of descriptors, i.e. the

PCA was run for EVA, EEVA, EVA and EEVA, REST, EVA and REST, EEVA

and REST and finally for all the descriptors. Here the REST abbreviation means

all descriptors except for EVA and EEVA, i.e. autocorrelation, CPSA, MOPAC,

charge and geometry descriptors. Appropriate plots were generated in order to

evaluate the results.

In order to investigate how multiple structural conformations would impact the

model performance, multiple conformations were generated using the confab pack-

age in Open Babel[25]. The maximum number of confirmations to be generated

was set to ten. The default RMSD cutoff was 0.5 Å and the default energy cutoff
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was 50.0 kcal/mol. Given these cutoffs there were only five structures that had

multiple confirmations, namely DMAC-DPS, DMAC-TRZ, DTPDDA, SpiroAC-

TRZ and SPXZPO. The descriptors for the multiple conformations pertaining to

one structure were then calculated collectively using KRAKENX. Two different

strategies were used to process the descriptors of the multiple conformations. One

strategy was to take the mean of the descriptors. The other method was to use

the Boltzmann weights of each conformation. After either of these methods, the

descriptors was added to the descriptors for the rest of the data set. Then, PLSR

were performed according to the procedure presented in Section 2.3.

K-means cluster analysis was performed and visualized utilizing the NbClust pack-

age [84] and factoextra package [85] in R. The optimal number of clusters was

determined using the method of gap statistics. The descriptor input was scaled

and the Na entries removed before employing them to the kmeans function.

2.3 Regression analysis

The PLSR modelling were performed using a PLSR script retrieved from kraken-

miner.com [68]. The script utilizes the R packages pls [86], parallel [87], plyr

[88] and getopt [89]. Inputs given to the script were the preprocessed descriptors

and the experimental ∆Est values. The third root of the ∆Est values was used in

order to get an approximate normal distribution. Note that some of the reported

experimental values are given in an interval, for which the mean value have been

used instead. In addition to the input, several conditions were set. 25 % of the

calibration data were ascribed as test set. A random seed value was given and used

for all the calculations to ensure the same objects in the test set for each calculation.

Calculations included randomization test of the dependent variables, 10-fold cross-

validation and VIP based variable selection. The VIP selection criteria ranged from

a VIP value of 0.8 to 1 by increments of 0.05. A simple representation of the steps

in the PLSR computation is presented as a flowchart in Fig. 2.9.
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Figure 2.9: Flowchart showing the general structure of the PLSR cal-

culation.

Based on the result from the PLSR and the observations made in PCA, two dif-

ferent approaches were taken to improve the performance of the PLSR model. A

PLSR computation without the eleven points seen as separated from the rest of the

data in PCA was performed. And a computation where only object with experi-

mental ∆Est values measured in toluene was performed. Note that the percentage

of objects reserved as test set was changed to 20 % and 15 %, respectively. For

both these computations all the descriptors were included.

Three Cubist regression tree models were created using an in-house script. The

script utilizes the R packages Cubist [90], caret[91] and doParallel[92]. The

input files are the preprocessed descriptors and the experimental ∆Est values. Note

that, contrary to the PLSR calculations, the predictors were not altered. Only the

REST set of descriptors were considered. In addition to computation with the

full data set, separate computations where done with the eleven objects excluded

and only toluene as solvent included. Prediction were done using the same objects

which were used to build the model. Then the Spearman rank correlation were

calculated.
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2.4 Density functional theory

Because of time constraint only a few structures were chosen for further study

using DFT and TDDFT. The selection was based on chemistry, size and ∆Est

values. A histogram showing the distribution of the ∆Est values in the data set is

given in Fig. 2.10. K-means cluster analysis, described in Section 2.2, was used to

separate the structures based on chemistry. The size in terms of number of atoms

was also an important factor given that calculations on large molecules are more

computationally demanding. These three tings taken into account, the structures

given in Table 2.2 were selected.

Figure 2.10: Distribution of ∆Est values in the data set. The x-axis

represents the intervals the ∆Est lies within. The y-axis shows the

frequency of ∆Est values which lie within each interval.
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Table 2.2: Selected structures for further DFT calculations based on

distribution of ∆Est values, size and chemistry.

Structure name ∆Est Cluster affiliation No. atoms

1 0.54 C1 69

3 0.32 C2 113

2DAC-Mes3B 0.058 C8 122

2PXZ-TAZ 0.23 C3 80

BCzT 0.31 C3 89

BTCz-2CN 0.17 C5 72

Cz2BP 0.21 C4 64

SPXZPO 0.26 C6 56

TCzTrz 0.16 C9 99

TMCPOB 0.09 C7 92

The DFT and TDDFT were performed on a computer with Intel Xeon E5-2687W

v2, 3.4 GHz CPU and 198 GB RAM and computations were done using the chem-

ical computation program NWChem [93]. A geometry optimization of each struc-

ture in gas phase were performed using DFT with the s12g functional and pcs-0

basis set. The frequencies were also calculated in order to ensure that ground state

was achieved. The output coordinates where then used in geometry optimization

and frequency calculations in the COSMO solvation model [94, 95]. The s12g

functional and pcs-1 basis set was used. The output coordinates were then used

in TDDFT with the COSMO solvation model, CAM-B3LYP functional and aug-

pcs-1 basis set. Unfortunately, there were some issues running the last calculation

and due to time constraints these calculations were not completed.
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3 Methods

3.1 Principal component analysis

Principal component analysis is a data compression method where the goal is to

express the main information in the observed variables X in a few latent variables

called scores or principal components (PC), T [96]. Compression of the data is

done by projecting the observed data onto a lower dimensional space by means of

the projection matrix P, also called the loading matrix [97, 98]. The scores matrix

comprises the new coordinates for the observed data and the loading comprise

the direction coefficients of the PCs. PCs are constructed such that the first PC

points in the direction of maximum variance. The second PC is orthogonal to the

first PC and points in the direction of maximum variance not explained by the

first PC, and so forth. The mathematical least squares model relation between the

observed data X, the scores T and the loadings P is defined as

X = TAP′A + EA (3.1)

where the subscript A indicates that matrices has been generated using A principal

components [97, 98]. The EA matrix is the residual matrix which contains infor-

mation about the variance not explained by the model part TAP′A. The model

shows that the scores can be viewed as linear combinations of the variables with

coefficients p′a and conversely, the loadings as a linear combinations with coeffi-

cients ta. Thus, PCA is categorized as a bilinear model (BLM). Before a PCA is

performed the observed data is usually centered and scaled in order to let each

variable contribute equally to the PCA model.

Compression of large amounts of observed data by utilizing the PCA method in-

creases the interpretation and visualization possibilities. By plotting the scores,

e.g. T2 against T1, clusters, patterns and possible outliers can be detected. Vari-

ables with large score along a PC is important for its direction. A loadings plot

can give information about the variable contribution to the model and variable

correlation. Unimportant variables clusters at the origin. The direction of the
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loadings and the angle between them from the origin determines their correlation.

An angle of 0◦ indicate positively correlated variables, 180◦ negatively correlated

and 90◦ non-correlated.

3.2 Partial least squares regression

Partial Least Squares Regression (PLSR) is a bilinear modelling method for mul-

tivariate calibration [97, 96]. It can yield reliable predictors Ŷ by projecting many

variables X onto few latent variables T and then using T as regressors for Y. The

hat notation denotes predicted values as opposed to observed values. The X ma-

trix contains the independent variables and Y contains the dependent variables.

It is usually assumed that there is a causal relation between X and Y. Thus, Y is

actively used in the decomposition of X such that the latent variable projection of

X is directly relevant for the prediction of Y. The matrix structure of the bilinear

structure model of X and Y is depicted in Fig. 3.1 [99]. Note that Y can be

expressed directly from X by the regression coefficient B.

Figure 3.1: Bi-linear structure model for X and Y

The observed X- and Y-variables are usually centered and scaled to unit variance,

corresponding to giving each variable equal weight[100, 101, 97, 96, 102, 99].

3.2.1 Validation

For calibration methods, validation is of vital importance. The validation of the

model is done to assess the models predictive ability and to determine the optimal
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number of components [101, 96]. If too few components are included in the model

it means that important information in the data is not captured by the model,

resulting in an underfitting. If too many components are included, which increases

the model complexity, it results in an overfitting and noise is affecting the model

[97]. The determination of optimal number of components is a balance between

reducing the complexity of the model and reducing the error. If the choice is

between adding one more component for a minimal reduction of error and not

including the component, the component is most likely not included because this

will increase the dimensions and thus the complexity of the model. One way of

validating the model is by the method of n-fold internal cross-validation. The

method consists of dividing the objects in the calibration data into n segments.

One segment is left out, retained as a test set. A model is then created from the

remaining training set with the one segment left out. The process is repeated

until all segments have served as a test set. The n models produced can then be

combined to produce a single model. Note that when a model is constructed for

a cross-validation segment with few objects it will often perform worse than the

model with all the objects included in the calibration data [97].

3.2.2 Randomization testing

The statistical method of randomization testing, also called permutation testing,

is based on destroying an assumed relationship between the X and Y data by

shuffling the dependent variables [97]. By doing so, systematic error can be elim-

inated [103]. For each principal component in PLSR a test statistic is calculated

e.g. the covariance between the scores and the y-values[104]. By permuting the

y-values a distribution of test statistics is obtained. Then a parameter α is calcu-

lated as the number of times the test statistics of the permuted y-values is equal

to or higher than the statistic of the unperturbed situation. If α is larger than

a predetermined significant level the component is seen as not being significantly

different from noise and should not be included in the model.
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3.2.3 Performance metrics

There are several different statistics used to describe the performance of a calibra-

tion model. Here, the variable importance for projection (VIP), mean absolute

error (MAE), correlation coefficient R2 and root mean square error of prediction

(RMSEP), but there are many others that can be used and evaluated. The VIP

parameter is frequently used to evaluate how important a variable is for the mod-

elling of both Y and X. VIP is a weighted sum of squares of the PLS-weights,

where the weights are calculated from the amount of Y-variance of each PLS

component[101, 105]. The VIP value is calculated for each variable, thus its can

be used as a means for variable selection. As a rule of thumb, a VIP value below

1 is considered as an unimportant variable. However, the model appearance must

be checked before blindly leaving out all variables below 1 [105]. Note that VIP is

restricted to PLSR and can not be used in e.g. Cubist.

MAE is defined as
MAE =

1

I

I∑
i=1

|yi,obs − yi,pred| (3.2)

where yi,obs is the observed y-value for object i, yi,pred is the predicted y-value for

object i and I is the total number of objects. The MAE is sometimes preferred

as a measure of average error compared to RMSEP because it does not deal with

squares. Large errors have a greater impact on the total sum of squares, making

statistics such as RMSEP harder to interpret [106]. The RMSEP is expressed as

RMSEP =

√∑I
i=1(yi,obs − yi,pred)2

I
(3.3)

The correlation coefficient is a measure of the predictive ability of a model and is

defined as
R2 = 1−

∑I
i=1(yi,obs − yi,pred)2∑I
i=1(yi,obs − ȳobs)2

(3.4)

where ȳobs is the mean of the observed y-values [69, 107]. When the model is

calibrated by cross-validation the correlation coefficient is denoted R2
CV and yi,pred

is replaced by cross-validated prediction of the y-variables. R2 and R2
CV have

different value ranges, 0 < R2 < 1 and −∞ < R2
CV < 1 [107]. A high R2 value
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indicates a good predictive model.

A standard method for outlier detection in PLSR is plotting the studentizes resid-

ual against the leverage. The leverage considers the position of the object’s X-

variables relative to each other. It is proportional to the Hotellings T 2 statistic

and the object’s Mahalanobis distance measured from the centroid of the training

set [96, 97, 108, 109]. It is defined as

HA = XA(X ′AXA)−1X ′A (3.5)

Here the subscript A is included to emphasis that the leverage is dependent on the

number of principal components used. The diagonal element hii of matrix HA is the

leverage of object i in the data set. A threshold is set as the distance corresponding

to a 95th percentile. Objects with a leverage higher than the threshold value are

considered unreliable and may be potential outliers. Studentized residual of object

i is defined as
ri =

ei√
MSE(1− hii)

(3.6)

where ei is the y-residual and here MSE is the mean square error of the y-residuals

[110, 96].

Sprearman’s rank correlation coefficient, rs, is a statistical measure of the strength

of a monotonic relationship between variables [111, 112]. Given two samples X and

Y of size n the Spearman coefficient can be defined as

rs = 1− 6
∑n

i=1(RXi
−RYi)

n(n2 − 1)
(3.7)

where RXi
and RYi is the rank of object i compared to the other values in the

sample X and Y respectively. If Xi is the smallest value in the sample, then

it would have rank equal to 1. rs takes values between -1 and 1 where rs = 1

represents perfectly positive correlated samples.
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3.3 Cubist

Cubist is a rule-based model that merges several methodologies introduced by

Quinlan [113, 114, 115]. The method distinguish itself from other decision trees,

such as random forrest and bagging trees, in the techniques used for linear model

smoothing, creating rules and pruning[116]. Also, the model consists of an optional

boosting-like procedure called committees. The tree is constructed by splitting the

data set based on the expected reduction in the node’s error rate. The split that

is associated with the largest reduction in error is chosen. Then a linear model is

created at each node using the splitting variable at that node and all the preceding

splitting variables at parenting nodes. The tree growing process continues along

the branches until there are no further improvements in error rate or there are not

enough samples to continue. When the complete set of linear models have been

generated the tree is simplified. For each linear model at the nodes, an adjusted

error rate is computed. The adjusted error rate is calculated by removing one

model term at a time. Only the model terms that result in a decrease in error

rate are removed from the linear model. After the simplification process, yielding

the final linear model at each node, the tree undergoes a smoothing process. The

models in each branch are combined using a linear combination of two models

ŷpar = aŷk + (1− a)ŷp (3.8)

where a is the smoothing coefficient, ŷk is the prediction from the current model

and ŷp is the prediction from the parent node. The smoothing coefficient is ex-

pressed as
a =

V ar(ep)− Cov(ek, ep)

V ar(ep − ek)
(3.9)

where ek is the residuals from the child model and ep is the residuals for the parent

model. The model with the smallest RMSE has a higher weight in the smoothed

model. The final model tree is used to construct the initial set of rules where one

linear model is associated with each rule.

In addition to the composite rule-based model, committees can be created which

are made up of several rule-based models. The models in the committee are affected
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by the result of the previous model. The first member of a committee is always

the same as the rule-based model without the committee. The second committee

member is a rule-based model which is aimed at improving the prediction of the

first member, and so forth. This means that the training set outcome is adjusted

based on the prior model fit and then builds a new set of rules using this pseudo-

response. The adjusted response for the mth committee model can be expressed

as
y∗m = y − (ŷm−1 − y) (3.10)

where ŷm−1 is the predicted value of the prior model, y is the observed value and

y∗m is the adjusted response. Each member of the committee predicts the target

value and then the committees’ predictions are averaged to give a final prediction.

Committee models are in general more suited for fine-tuning a good model rather

than overcoming the deficiencies of a poor model.

Once the rule-based model is finalized, Cubist can further adjust the model pre-

diction with samples from the training set. When a new sample is predicted, the

K most similar neighbours are determined from the training set. The prediction

of a new sample can then be determined based on the neighbours’ observed and

predicted value and a calculated weight factor.

Final prediction =
1

K

K∑
t=1

wl[tl + (ŷ − tl)] (3.11)

tl is the observed value for a training set neighbour, t̂l is the predicted value of

the training set neighbour, ŷ is the predicted value of the new sample and wl is

a weight factor. The weight factor is calculated using the distance between the

training set neighbour, Dl, and the new sample.

wl =
1

Dl + 0, 5
(3.12)

The distance used in these calculations are Manhattan distances. Also, in order to

filter the neighbors, the average pairwise distance of the data points in the training

set is used as a threshold.
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3.4 K-means cluster analysis

Cluster analysis has the goal of separating a collection of objects into clusters such

that objects within a cluster are more closely related to one another than objects

in other clusters[97, 117]. Central to cluster analysis is the concept of similarity.

Similarity is a measure of how close two instances are to each other. In K-means

clustering the similarity measure is the Euclidean distance

d(xi, xi′) = ||xi − xi′ ||2 (3.13)

The K-means algorithm requires an estimate of the N number of clusters before

finding the centre points of these clusters. Each object is assigned to the cluster it

is closest to based on the distance between that object and the cluster centre. For

each cluster the mean distance between the objects and the centre is computed

which is ascribed as the new cluster centre. The cluster assignment and mean

distance is itteratively calculated until converged. The main problem with this

method is that the optimal number of clusters are not knowna priori and has to

be guessed. A method based on gap statistics enables the determination of the

optimal number of clusters. The optimal number of clusters is determined such

that the within cluster sum of squares is minimized. Generally the within cluster

sum of squares decreases with increasing N.

3.5 Density functional theory

The density functional theory (DFT) is a computational procedure for molecular

electron structure calculations[118, 17]. Unlike wave function methods which use

the wave function to represent the electronic system, DFT uses the electron den-

sity. The energy of the system can be uniquely determined as a functional of the

electron density. One advantage using DFT instead of wave function approaches

is that the number of variables are independent of the size of the system whereas

for wave function methods the complexity increases exponentially. Perhaps the

biggest problem with DFT is the functional that connects the density and the

ground state energy. The functional in question is the exchange-correlation func-
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tional, which is unknown and needs to be approximated. The exchange-correlation

functional will be discussed later in this section along with the fundamental theo-

rems of Hohenberg-Kohn, Kohn-Sham equation, approximations of the exchange-

correlation functionals and basis sets.

The proof that the electron density determines the properties of a molecule was

given by Hohenberg and Kohn in 1964[119]. Their theorems represents the founda-

tion of all modern density functional theories. The first Hohenberg-Kohn (HK) the-

orem, often referred to as the Hohenberg-Kohn existence theorem, states that the

ground state energy and all other ground state electronic properties are uniquely

determined by the electron density[17]. Quoting the Hohenberg-Kohn paper:”the

external potential Vext(~r) is (to within a constant) a unique functional of ρ(~r);

since, in turn Vext(~r) fixes Ĥ we see that the full many particle ground state is

a unique functional of ρ(~r)”[119]. The second Hohenberg-Kohn theorem, often

called the Hohenberg-Kohn variational theorem, states that the energy functional

cannot be less than the true ground state energy of the molecule, and delivers

the ground state energy if and only if the density is the true ground state density

[17, 120]. This is the variational principle; the obtained energy is an upper bound

to the true ground state energy. In practice the variational principle does not hold

as an approximated universal functional is used, which by extension means that

the Hamiltonian is approximated. The HK theorems provide no means of access-

ing the density that determines the ground state energy, only that the connection

exists.

In 1965 Kohn and Sham derived a set of equations which enabled the electron den-

sity to be determined [121]. The derivation was done by considering a hypothetical

reference system consisting of N non-interacting electrons in an external potential

selected so that the electron density of the reference system was the same as the

true electron density[120]. This made it possible to calculate the major part of

the kinetic energy to a good accuracy and then approach the remaining part in

an approximate manner. The non-interacting kinetic energy is not equal to the

true kinetic energy of the interacting system, even if the systems share the same
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density. Kohn and Sham accounted for that by separating the universal functional

F [ρ(~r)] = TS[ρ(~r)] + J [ρ(~r)] + Exc[ρ(~r)] (3.14)

where Exc[ρ] is the exchange-correlation energy containing everything that is un-

known, TS is the non-interacting kinetic energy and J is the Coulomb interaction.

The exchange-correlation energy is here defined as

Exc[ρ] = TC [ρ] + Encl[ρ] (3.15)

where TC is the true kinetic energy and Encl is a non-classical contribution. Con-

sidering the energy of the real interacting system the one-electron Kohn-Sham

(KS) equation can be expressed as

f̂KSφi = εiφi (3.16)

with the one-electron Kohn-Sham operator f̂KS being defined as

f̂KS = −1

2
∇2 + Veff (~r) (3.17)

Veff is the effective potential including the exchange-correlating potential, which is

defined as the functional derivative of the exchange-correlation energy with respect

to the density.

As mentioned earlier, all the unknown contributions to the electronic energy are

collectively folded into the exchange-correlation functional. These contributions

cannot be determined exactly in the DFT environment, thus approximations are

necessary. The quality of the density functional approach is solely dependent on

the accuracy of the chosen approximation to Exc. Numerous schemes have been

developed in order to approximate the exchange-correlation functional and the

search for better and improved approximations is at the very center of DFT re-

search. Here, the local density and the local spin-density approximations will be

considered along with the generalized gradient approximations and hybrid func-

tionals.
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Virtually all approximate exchange correlation functionals are based on the idea

of a hypothetical uniform electron gas. This is a system where electrons move on a

positive background charge distribution such that the total ensemble is electrically

neutral. This type of system is far from the real situation where densities rapidly

change within the molecule. The reason for using it in DFT is that it is the only

system where the form of the exchange and the correlation energy functionals are

known exactly or at least to a very high accuracy.

The uniform electron gas system is utilized in the local density approximation

(LDA). Central to the LDA is the assumption that the exchange-correlation func-

tional can be split into an exchange functional and a correlation functional. An

explicit expression can be found for the exchange functional, but not for the corre-

lation functional. Analytical expressions for the correlation functional have been

proposed by many different authors. The local spin-density approximation (LSD)

is an extension of the LDA to an unrestricted case. Here the local spin-densities,

ρα(~r) and ρβ(~r), are used as primary input instead of the electron density. The

benefit of using the LSD is increased flexibility as a result of having two variables

instead of just one. Also, for open shell systems with even or uneven number of α

and β electrons, LSD can perform better due to symmetry breaking.

Further extension of local approximations propose that the exchange-correlation

functional should not only depend upon the electron density at a certain posi-

tion, but also the gradient. The inclusion of the gradient account for the non-

homogeneity of the true electron density. Functionals that include the gradient

of the electron density are collectively known as generalized gradient approxi-

mations (GGA) and are the workhorses of DFT. These functionals also include

some restrictions regarding the exchange and correlation holes, which separates

these functionals from the gradient extension approximation. The GGA exchange-

correlation energy functional is split into exchange and correlation contributions

and approximations for each are sought separately. A popular exchange functional,

referred to as B or B88, was developed by Becke in 1988[122]. It was designed to

recover the exchange energy density asymptotically far from a finite system. Other

functional based on the same principles are the CAM(A) and CAM(B) function-
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als developed by Handy, Thermath and Laming in 1993 [123]. A corresponding

correlation functional which is very much used today is the LYP functional by

Lee, Yang and Parr [124]. This functional distinguishes itself from the rest of the

functionals mentioned. It is not based on the uniform electron gas but on wave

function based theory by Colle and Salvetti [125]. It should also be noted that

this correlation functional only includes dynamical correlations effects [120].

In principle, each exchange functional could be combined with any of the corre-

lation functionals. However, only a few combinations are used. The exchange

functional is almost always chosen to be Becke’s (B) and a popular combination

is with the LYP correlation functional. This combination is referred to as the

BLYP functional. Usually the exchange contributions are significantly larger in

absolute numbers than the corresponding correlation effects. In order to get good

results from the density functional theory, it is important to express the exchange

functional accurately.

Hybrid functionals are functionals of which the exchange-correlation energy is ex-

pressed as a linear combination of multiple exchange and correlation contributions.

It is a hybrid because it includes pure density functionals and exact Hartree-Fock

exchange. Currently, the most popular hybrid functional is known as B3LYP and

was suggested by Stephens et al. in 1994 [126]. The B3LYP exchange-correlation

energy expression is

EB3LY P
xc = (1− a)ELSD

X + aEHF
x + bEB88

X + cELY P
C + (1− c)ELSD

C (3.18)

where a, b, and c are semi-empirical coefficients to determine the weight of each

contribution. a determines the amount of exact exchange, b and c determine the

exchange and the correlation gradient corrections to the local density approxima-

tion. EHF
x is the exact Hartree-Fock exchange energy, ELSD

x and ELSD
c are the local

exchange and correlation functionals from the LDS approximation, respectively.

EB88
X is Becke’s gradient correction to the exchange energy and ELY P

c is Lee, Yang

and Parr’s gradient correction to the correlation functional. Although it performs

better than LDA and other combinations of functionals, B3LYP has some short
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comings. In practical applications it is unsuccessful in describing the polariza-

tion of long chains, excitations using TDDFT for Rydberg states [127, 128, 129]

and charge transfer excitations[130, 131, 132]. The reason for these failings are

the behavior of the exchange potential at long range. Yanai, Tew and Handy

proposed using the range-separated Coulomb-attenuating method (CAM)[133] in

combination with the hybrid functional, i.e. CAM-B3LYP, to overcome these

short comings. Another type of GGA functional is the s12g functional developed

by Marcel Swart [134]. It includes a dispersion contribution in order to improve

the description of weakly bound systems without any computational cost.

3.5.1 Basic machinery of density functional theory

Some of the most central strategies for making the Kohn-Sham scheme computa-

tionally manageable are presented here. At the core of DFT is the one-electron

Kohn-Sham equation as given in Eq. (3.16). This equation is handled by applying

the linear combination of atomic orbitals (LCAO) to a finite set of basis functions

in order to expand the KS-orbitals. The full one-electron KS-equation can be

expressed as(
−1

2
∇2 +

[
N∑
j

∫
|ϕj(−→r2 )|2

r12
d−→r2 + Vxc(

−→r1 )−
M∑
A

ZA
r1A

])
ϕi = εiϕi (3.19)

The KS-orbitals is expressed as a linear combination of the predefined basis func-

tions ηµ

ϕi =
L∑
µ=1

cµiηµ (3.20)

Then the KS-equation can be written in matrix notation as

FKSC = SCε (3.21)

where FKS is the KS-matrix, S is the overlap matrix, ε contains the orbital energies

and C contains the expansion coefficients. Through the LCAO expansion the

problem has been translated from a non-linear one to a liner one which can easily

be implemented in computer programs. By expanding the Kohn-Sham operator
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into its components, the individual elements of the Kohn-Sham matrix become

FKS
µν = hµν + Jµν + V xc

µν (3.22)

where hµν is the one-electron contribution which describes the electronic kinetic

energy and the electron-nuclear interaction. Jµν is the Coulomb contribution while

V xc
µν represents the exchange-correlation contribution. A simplified expression for

the Coulomb contribution is

Jµν =

∫ ∫
ηµ(~r1)ην(~r1)

ρ(~r2)

r12
d~r1d~r2 (3.23)

The exchange-correlation part of Eq. (3.22) can be expressed as

V xc
µν =

∫
ηµ(~r1)Vxc(~r1)ην(~r1)d~r1 (3.24)

An analytical expression for Vxc, even for the simplest approximations such as LDA,

is out of reach due to the complicated mathematics. Numerical techniques based on

a grid is therefore employed to solve these integrals. Once the suited grid is chosen,

the exchange-correlation potential must be evaluated at each grid point. Most

computer programs follow the design principles of Becke [135], where the integrals

are broken up into separate but overlapping atomic contributions. Once the atomic

contributions are determined, the corresponding integrals are computed on grids

which comprise of points on concentric spheres around each atom. By converting to

polar coordinates the integration can be separated into an angular contribution and

a radial contribution. There are many different numerical quadratures available

for both the angular and the radial contributions, and different computer programs

utilize different schemes. E.g. the quantum chemical software NWChem uses the

Euler-McLaurin scheme proposed by Murray, Handy and Laming in 1993 [136],

with a modified Mura-Knowles transformation [137], as numerical quadrature for

integration of the radial part. The numerical quadrature for the angular part is

almost always explicitly chosen to be the Lebedev grids [138, 139, 140, 141, 142,

143].
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Some of the problematic aspects inherent in the numerical quadrature techniques

originates from the fact that none of the numerically approximated quantities are

exact. A severe problem is that the total energy of a molecule is not rotationally in-

variant, i.e. different orientations in space yield different energies. A second major

problem connected to the use of finite grids for the evaluation of the exchange-

correlation energy is associated with the determination of derivatives of the energy,

such as the gradient used in geometry optimizations. The numerical quadrature

approximation of the exchange-correlations energy leads to a non-zero gradient at

the lowest energy configurations while the structure with vanishing gradient is not

the one with lowest energy.

3.5.2 Basis functions

In the Kohn-Sham formalism the orbitals play an indirect role and are introduced

only as a tool to construct the charge density according to

ρ(~r) =
N∑
i

|φi(~r)|2 (3.25)

where φi is given by Eq. (3.20). There are two types of basis functions commonly

used in calculations, Slater type orbitals (STO) and Gaussian type orbitals (GTO)

[118]. STOs are mainly used for atomic and diatomic systems where high accuracy

is required, and in semi-empirical methods where all three- and four-center inte-

grals are ignored. Density functional methods which do not include exact exchange

and where the Coulomb energy is calculated by fitting the density into a set of

auxiliary functions are also suitable for the use of STOs. The GTOs are inferior to

STOs for two reasons, i) GTOs have problem describing the proper behavior near

the nucleus because at the nucleus the GTO has a zero slope in contrast to STOs

which have a cusp. ii) The tail of the wave function is represented poorly as GTOs

fall off too rapidly far from the nucleus. The consequences of these shortcomings

of the GTOs are that, in general, more GTOs are required for achieving a given

accuracy compared with STOs. However, the number of GTO basis functions re-

quired are compensated for by the computational efficiency. Therefore, GTO basis

functions are almost always the preferred basis functions in electronic structure
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calculations.

The simplest and least accurate basis set is called the minimum basis set and

includes only one basis function for each atomic orbital up to and including the

valence orbitals[120, 118]. The next level of sophistication is the double-zeta(DZ)

basis sets. Here, the set of functions are doubled, i.e. there are two functions for

each orbital. This allows for a more exact description of the electron distribution

which can be different in different directions. Taking into account the fact that

chemical processes occur in the valence space, the doubling of basis functions can

be limited to the valence orbitals. This gives rise to the split-valence type basis

sets, where the core orbitals are treated in a minimal set. Typical examples are

the 3-21G and 6-31G Gaussian basis sets.

In most applications, basis sets are augmented by polarization functions, i.e.

functions of higher angular momentum than those occupied in the atom, e.g.

p-functions for hydrogen or d-functions for the first-row elements. Polarization

functions have by definition more angular nodal planes than the occupied atomic

orbitals and thus ensure that the orbitals can distort from their original atomic

symmetry and better adapt to the molecular environment. At the HF level, the

polarization functions describe charge polarization and at correlation level they

describe the electron correlation. In DFT the polarization functions describe both

effects[144]. Polarized double-zeta and split-valence basis sets are the mainstay of

routine quantum chemical applications since they usually offer a balanced com-

promise between accuracy and efficiency[120].

Frank Jensen has developed a design principle to convert general contracted ba-

sis sets[145] to segmented basis sets[146]. The conversion is done under the re-

quirement that the total energies of the general and the segmented basis sets are

identical[147]. Based on the observation made by Davidson[148], that segmenta-

tion schemes eliminates the redundancies in the general contraction, more compu-

tationally efficient segmented basis sets can be generated with the full accuracy

of the general contracted basis sets. The pcs-n basis sets are segmented versions

of the polarization consistent pc-n basis sets [147, 144, 149, 150, 151, 152, 153].

Jensen has shown in his research that DFT calculations using these basis sets pro-
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duce the lowest basis set error at a given zeta level. Also, they are among the

computationally most efficient basis sets.

3.5.3 Excited states - time dependent density functional theory

TDDFT has become a much used method, specially in quantum chemistry and

electronic structure theory for many different reasons. Firstly, the TDDFT is a

formally exact method according to the theorems of Runge-Gross[154] and van

Leeuwen[155]. Secondly, in analogue with the ground state DFT, TDDFT utilizes

a non-interacting reference system to obtain the density of the many-body interact-

ing system, which makes it more computationally efficient and easier to implement

in computer programs[120, 156]. Time-dependent density functional response the-

ory considers the response of a system, initially in a stationary state, to a infinites-

imal perturbation, assuming adiabatic conditions[127]. The density response can

be expressed as a response function of a non-interacting Kohn-Sham system and

a frequency-dependent exchange-correlation kernel. This method could be used to

extract the excitation energies which lie at the poles of the density-density response

function [127, 157]. The details of TDDFT will not be discussed here, but a brief

presentation of the foundation will be presented below. The reader is referred to

literature such as [127, 158] for a more detail description of these methods.

Runge and Gross extended the Hohenberg-Kohn theorems to time-dependent sys-

tems, i.e. that observables of a many-body system could be determined from the

time-dependent one-body density [159, 158, 127, 160]. They also showed that there

must be a one-to-one mapping between the time-dependent density and the time-

dependent external potential. In analogue with the ground state DFT the density

of a many-body system is obtained as the density of a one-body non-interacting

system in a local effective potential. This effective potential is the time-dependent

Kohn-Sham potential, which is a function of the exchange-correlation potential,

Hartree-Fock potential and an external part. Here the KS potential is assumed

to exist, however Runge and Gross do not provide any proof of its actual exis-

tence. Thanks to van Leeuwen it was proven that under certain conditions this

potential does in fact exist. As for the ground state DFT, the exchange-correlation

potential is unknown and must be approximated. However, in TDDFT this is a
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much more complicated case as the potential is dependent on the entire history

of the density and the initial state of the interacting and non-interacting system

[161, 162, 163]. The adiabatic local density approximation, also referred to as the

time-dependent local density approximation, is the simplest approximation and

has become the workhorse of TDDFT[158, 128, 127]. In this approximation the

exchange-correlation potential of TDDFT is approximated by a ground state DFT

functional.
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4 Results and discussion

4.1 Principal component analysis

As mentioned in the methodology section, the descriptor groups were applied in-

crementally. This was done in order to see how the increase in variable amount

and variable type would affect the variance explained by the number of compo-

nents. The variance explained by the ten first PCs for each PCA calculation is

presented in Table 4.1. As can be seen, the variance explained does not differ much

between the different calculations, with the exception of PCA with the descriptor

set REST. The 91 % variance explained for the REST set of descriptors is to be

expected as the data contained in these descriptors is strongly correlated. A plot

of the variance explained by the ten first PCs for the REST set of descriptors is

presented in Fig. 4.1. The PCA result for the other combinations of descriptors is

presented in Appendix B.1. Because EVA and EEVA are not easily interpreted in

the PCA environment, the main PCA result of interest is where these are excluded.

Further discussion of the PCA result is based on the REST set of descriptors, if

not specified otherwise.

Table 4.1: Variance explained by the first ten PCs for each PCA com-

putation with different combinations of descriptors. Obtained during

the master project, fall 2017.

Descriptor Variance (%)

EVA 50.4

EEVA 47.1

EVA + EEVA 47.1

EVA + REST 51.1

EEVA + REST 48.2

ALL 47.7

REST 91.5
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Figure 4.1: Variance explained by the ten first PCs for PCA calculation

including the REST set of descriptors. Obtained during the master

project, fall 2017.

The scores plots for the PCA computation are depicted in Fig. 4.2. The scores

plot where PC 2 is plotted against PC 1, see Fig. 4.2a, clearly shows a separation

of the data, with eleven points located above a PC 2 value of 5. These eleven

points represent the structures 1, 2, 3, DTC-mBPSB, DTC-pBPSB, TPXZPO,

DPXZPO, SPXZPO, DMOC-DPS, DMAC-DPS and CzAsSF. In the scores plot

where PC 3 is plotted against PC 2, a small cluster of objects can be seen at the

bottom of the plot. Including the point at the very bottom, this cluster consists

of eight structures, namely DAC-Mes3B, 2DAC-Mes3B, ACRPOB, SXDPAPOB,

SFDPAPOB, TMCPOB, TB-1PXZ and TB-2PXZ. In PCA calculations patterns

can be seen, but nothing certain can be said regarding clusters and potential

outliers. That is one of the reasons the k-means cluster analysis is performed. The

result of this analysis will be presented in Section 4.2.
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The scores plots reveal an uneven distribution of points which raises some con-

cerns regarding the data set. Fig. 4.2a shows a relatively large empty area, which

represents an area where the chemical space is not explained. Such observations

are also made in score plot in Fig. 4.2b. The objects and their descriptors are

therefore insufficient for describing the full chemical space.

(a) PC 2 plotted against PC 1 (b) PC 3 plotted against PC 2

(c) PC 3 plotted against PC 1

Figure 4.2: Scores plot for when the REST set of descriptors is used

and all the objects are included. Obtained during the master project,

fall 2017.

Fig. 4.3 is included to illustrate that objects having a high score value along a PC

are important for determining the direction of that PC. The ten most contributing

objects to PC 2, see Fig. 4.3b, coincides with ten out of eleven points which were
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observed separated from the rest of the population. Also, object contribution to

PC 3 include seven out of eight points which was observed clustering at the bottom

of the scores plot in Fig. 4.2b.

(a) Object contribution to PC 1 (b) Object contribution to PC 2

(c) Object contribution to PC 3

Figure 4.3: Object contribution to the first three PCs when the REST

set of descriptors is used and all objects are included. Obtained during

the master project, fall 2017.

The ten most contributing variables to the three first PCs are presented in Fig. 4.4.

It is interesting to see that for PC 1 only MOPAC descriptors are contributing. For

PC 2 and PC 3 a combination of CPSA and MOPAC descriptors are contributing,

with the CPSAs being the most dominant ones. Neither geometry or the autocor-
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related charge descriptors are included. This does of course not mean that they

do not contribute at all, but compared to the MOPAC and CPSA descriptors they

contribute only to a fairly small extent.

(a) Variable contribution to PC 1 (b) Variable contribution to PC 2

(c) Variable contribution to PC 3

Figure 4.4: Variable contribution to the first three PCs when the REST

set of descriptors is used and all objects are included. Obtained during

the master project, fall 2017.

The result from the PCA where all the descriptors were included is depicted in

Fig. 4.5. There are some points that stand out. E.g. Fig. 4.5a and Fig. 4.5b show

four points with large score values for PC 2. The four points represent structure

1, 2, DTC-mBPSB and DTC-pBPSB. By examining the scores plots for EVA,
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where PC 2 is plotted against PC 1 (see Fig. 4.6), the same four points stand

out by having large PC 2 values. As a consequence of EVA and EEVA being

spectral like they are not suited for interpretation in a PCA environment, which

here is exemplified by how EVA seem to affect the scores in the PCA with all the

descriptors included.

(a) PC 2 plotted against PC 1 (b) PC 3 plotted against PC 2

(c) PC 3 plotted against PC 1

Figure 4.5: Scores plot for when all the descriptor and all the objects

are included. Obtained during the master project, fall 2017.
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Figure 4.6: Score plot where PC 2 is plotted against PC 1. The EVA

descriptors are used and all the objects are included. Obtained during

the master project, fall 2017.

As a result of the uneven distribution of objects and due to poor PLSR results

(discussed in Section 4.3), PCA was repeated without the eleven objects separated

from the rest of the data. The eleven objects will later be referred to as ”the eleven

potential outliers”. The exclusion of these objects was done especially to see if that

would improve the PLSR model. For this case the variance explained by the first

ten PCs was 90.3 % and the plot is given in Fig. B.2 in Appendix B.2. The

scores plots are presented in Fig. 4.7 with the REST set of descriptors. Here

there are two points which stand out, having larger values along the PC 3 axis, see

Fig. 4.7b and Fig. 4.7c. These objects represent the Cz2BP and CC2BP structures

and can also be seen as the most contributing objects to PC 3 in Fig. B.3iii in

Appendix B.2. There is still some empty space associated with the main grouping

of objects as can be seen in e.g. the lower left quadrant of Fig. 4.7b. Regarding the

most contributing variables, the same trend can be seen as for the original data

with the MOPAC and CPSA descriptors being the dominant ones. The variable

contributions are given in Fig. B.3 in Appendix B.2.
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(a) PC 2 plotted against PC 1 (b) PC 3 plotted against PC 2

(c) PC 3 plotted against PC 1

Figure 4.7: Scores plots for when the REST set of descriptors are used

and the eleven potential outliers are excluded

Another approach to potentially improve the PLSR model was to only consider

structures for which the experimentally determined ∆Est was determined in toluene.

The ∆Est values do not affect the PCA, but are important in the PLSR. The PCA

is therefore performed as an instructive step in regards to the descriptors. The

variance explained by the ten first PCs is 93.8 %, which is a slight improvement

from the PCA of the full data set. Notice however that the variance explained by

PC 1 is less than that of the full data set. The increase in variance explained is due

to an increase along PC 2 and PC 3. The scores plots are given in Fig. 4.8. The
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same separation of the data can be seen here as that of the full data set in Fig. 4.2a.

One difference is that for the full data set there was eleven points seen as sepa-

rated from the rest, whereas here there are only eight. Structure DTC-mBPSB,

DTC-pBPSB and CzAsSF are among the structures which have been removed. In

Fig. 4.2a the two points to the far left in the group of separated points represents

DTC-mBPSB and DTC-pBPSB. Removing these may be an explanation for why

the variance explained by PC 1 has been reduced in this case. The most contribut-

ing variables and objects are presented in Fig. B.7 and Fig. B.6, respectively, in

Appendix B.3. In accordance with the PCA result of the full data set, the most

contributing objects to PC 2 correspond to the objects separated from the rest of

the population. Regarding the variable contributions, the same trend is observed

as for the PCA result with the full data set and with the eleven objects removed,

only MOPAC and CPSA descriptors are contributing to the first three PCs.
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(a) PC 2 plotted against PC 1 (b) PC 3 plotted against PC 2

(c) PC 3 plotted against PC 1

Figure 4.8: Scores plots for when the REST set of descriptors are used

and only the structures with experimental ∆Est values measured in

toluene are considered
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4.2 K-means cluster analysis

All the results from the k-means cluster analysis are presented with the REST

set of descriptors. The argument here is the same as for the PCA case, EVA

and EEVA are not easily interpreted in this kind of environment. The analysis is

done on the full data set as well as without the eleven potential outliers and when

only objects with experimental ∆Est values measured in toluene are considered.

First considering the result using the full data set, the optimal number of clusters

was determined by gap statistics to be 9, see Fig. 4.9. The clusters and cluster

affiliations are depicted in Fig. 4.10. Fig. 4.10 is the same as the scores plot in

Fig. 4.2a, only with the objects partitioned into clusters. Here, the same partition

can be seen as in the PCA result where eleven objects are clearly separated from

the rest of the population. The eleven potential outliers are partitioned into three

different clusters, namely clusters 3,5 and 9.
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Figure 4.9: Optimal number of clusters when all the structures are

included. The y-axis represents the calculated gap statistic for each

component. The x-axis represents the number of components.
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Figure 4.10: The figure display the clusters and the structures affilia-

tion to each of these clusters. The REST set of descriptors are used

and all the objects are included. The y- and x-axis represents PC 2

and PC 1, respectively, with the variance explained by each PC given

in parenthesis.

What seems to be the main separation factors are the size in terms of number

of atoms, shape and charge distribution. The two former factors are evident by

inspection of the structures in the different clusters. The latter is more difficult

62



to see directly from comparing the structures, but it is evident from the main

attributing descriptors in the Cubist model discussed in Section 4.4. Also, by

inspecting the electrostatic potential surface a clear difference can be observed,

especially between the eleven potential outliers and the rest of the population.

The members of clusters 3, 5 and 9 all contain sulfonyl groups or phosphine oxide

groups which give rise to a charge distribution that is different than for all other

structures. An example is DTC-mBPSB in cluster 3, with the highest total dipole

moment which is mainly attributed to its two sulfonyl groups. The average total

dipole moment and the average charge dipole for clusters 3, 5, and 9 are one average

higher than for the other clusters. By inspecting the maximum and minimum

values of the descriptors that is shown most attributing in the Cubist model, the

CPSA, the total dipole and the charge dipole descriptors are almost exclusively

paired with the eleven structures and the rest of the structures. For example,

TPXZPO in cluster 3 has the maximum value for the CPSA PPSA-5 descriptor

whereas the minimum belongs to DCzIPN in cluster 1.

The fact that there is an optimal number of 9 clusters suggests that the popula-

tion of structures are highly heterogeneous. All the clusters constitute a variety

of different donors and acceptors and have highly different donor-acceptor archi-

tectures. This is an undesired situation as the consequence is poor spanning of

the chemistry and general variation in the data. 60 objects are considered a small

data set, and when these 60 structures display different properties which vary a

lot, the data is not sufficient to capture all these variations. The descriptors may

also not be sufficient for describing the data and its full variation. It might also

be possible that the descriptors chosen in this study as molecular representations

of the structures are not the most relevant for predicting ∆Est.
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4.2.1 Identification of potential outliers

The optimal number of clusters is again decided by gap statistics to be 5, see

Fig. 4.11. Fig. 4.12 displays the clusters along PC 1 and PC 2. Considering only

the remaining objects and comparing them with the result where the full data set

is used, it can be seen that the number of clusters have been reduced from 6 to

5 and the total reduction is from 9 to 5. This is a positive development, but 5

clusters are still an unsatisfactory number. There are still large regions where no

objects can be found and relatively large empty spaces within the clusters as well.
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Figure 4.11: Optimal number of clusters when the eleven potential

outliers are excluded. The y-axis represents the calculated gap statistic

for each component. The x-axis represents the number of components.
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Figure 4.12: The figure display the clusters and the structures affilia-

tion to each of these clusters. The REST set of descriptors are used

and the eleven potential outliers are excluded. The y- and x-axis rep-

resents PC 2 and PC 1, respectively, with the variance explained by

each PC given in parenthesis.
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4.2.2 Solvent effects

Optimal number of clusters was here determined to be 9 as can be seen in Fig. 4.13.

Cluster affiliations is given in Fig. 4.14. Of course, the same separation of the data

can be seen here, although here there are 8 objects instead of 11.
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Figure 4.13: Optimal number of clusters when only the structures with

experimental ∆Est values measured in toluene are included. The y-axis

represents the calculated gap statistic for each component. The x-axis

represents the number of components.
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Figure 4.14: The figure display the clusters and the structures affilia-

tion to each of these clusters. The REST set of descriptors are used and

only the structures with experimental ∆Est values measured in toluene

are included. The y- and x-axis represents PC 2 and PC 1, respectively,

with the variance explained by each PC given in parenthesis.
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4.3 Partial least squares regression

Statistics from the PLSR calculation of the full data set is presented in Table 4.2,

Table 4.3 and Table 4.4 for the case of no variable selection, variable selection with

VIP value of 0.8 and variable selection with VIP value of 1, respectively.

Table 4.2: Results for the training and testing of the PLSR model with

no variable selection. NC is the number of principal components, NV

is the number of variables, R2
CV is the correlation coefficient of the

cross-validated training set and R2
test is the correlation coefficient of

the test set. Obtained during the master project, fall 2017.

Training Testing

Descriptor NV NC R2
CV RMSEP MAE R2

test RMSEP MAE

EVA 1808 3 -0.19 0.15 0.02 0.19 0.12 0.09

EEVA 1683 1 -0.25 0.15 0.07 0.08 0.12 0.10

EVA+EEVA 3490 3 0.14 0.13 0.02 0.19 0.12 0.09

REST 58 1 0.13 0.13 0.08 0.07 0.14 0.10

EVA + REST 1871 3 -0.48 0.16 0.02 0.17 0.14 0.10

EEVA + REST 1738 1 -0.16 0.15 0.07 0.10 0.12 0.10

ALL 3554 3 0.08 0.13 0.02 0.17 0.12 0.09
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Table 4.3: Results for the training and testing of the PLSR model in-

cluding variable selection with VIP = 0.8. NC is the number of princi-

pal components, NV is the number of variables, R2
CV is the correlation

coefficient of the cross-validated training set and R2
test is the correla-

tion coefficient of the test set. Obtained during the master project, fall

2017.

Training Testing

Descriptor NV NC R2
CV RMSEP MAE R2

test RMSEP MAE

EVA 918 3 0.54 0.09 0.02 0.19 0.12 0.09

EEVA 725 3 0.33 0.11 0.02 0.16 0.12 0.09

EVA+EEVA 1788 3 0.57 0.09 0.02 0.18 0.12 0.09

REST 35 1 0.22 0.11 0.08 0.07 0.14 0.11

EVA + REST 943 3 0.60 0.09 0.02 0.19 0.13 0.10

EEVA + REST 731 1 0.29 0.11 0.06 0.10 0.12 0.10

ALL 1823 3 0.62 0.08 0.02 0.17 0.12 0.09
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Table 4.4: Results for the training and testing of the PLSR model

with VIP = 1. NC is the number of principal components, NV is the

number of variables, R2
CV is the correlation coefficient of the cross-

validated training set and R2
test is the correlation coefficient of the test

set.Obtained during the master project, fall 2017.

Training Testing

Descriptor NV NC R2
CV RMSEP MAE R2

test RMSEP MAE

EVA 613 3 0.63 0.08 0.02 0.19 0.13 0.10

EEVA 537 3 0.37 0.11 0.02 0.15 0.13 0.09

EVA+EEVA 1157 3 0.59 0.09 0.02 0.16 0.12 0.09

REST 28 1 0.21 0.12 0.08 0.05 0.14 0.11

EVA + REST 623 3 0.68 0.08 0.02 0.19 0.13 0.10

EEVA + REST 537 1 0.35 0.11 0.06 0.08 0.12 0.10

ALL 1174 3 0.70 0.07 0.02 0.17 0.13 0.10

The variable selection does improve the cross-validated model, as can be seen from

the increase in R2
CV from 0.08 to 0.7 and the decrease in RMSEP from 0.13 to 0.07.

However, it does not improve the predictive ability of the calibration model. The

R2
test is the same for the case of no variable selection and variable selection with

VIP values of 0.8 and 1 when all the descriptors are included. The same applies

to the RMSEP of the test set. Consequently, the variable selection is not justified

as it should result in an increase in R2 and a reduced RMSEP. Note that 25 % of

the calibration data was ascribed as an independent test set, which corresponds to

15 objects. However, 17 objects were set aside as a test set in order to get normal

distributed y-values. The remaining 43 objects were used as the training set. With

a 10-fold cross-validation this amounted to each segment containing only four or

five objects, which means that for each fold the cross-validated models were only

tested with four or five test objects. This may have led to an overestimation of

the predictive ability for the cross-validated model. None of the calculated PLSR

models give any satisfactory results due to the low R2
test.
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For the case where all the descriptors were included, the optimal number of com-

ponents, determined by the cross-validation, was three. Fig. 4.15 shows how the

RMSEP improves as the number of components increase. This illustrates quite

well the balance of complexity versus number of components. From the plot it

can be seen that an additional component would reduce the RMSEP both for NO-

VARSEL and for VIP, but the reduction is considered to small compared to the

increase in complexity of adding another component.

Figure 4.15: RMSEP calculated for each added component. The plot

shown how the RMSEP evolve when more components are added for

the case of no variable selection (NOVARSEL) and for variable selec-

tion with VIP equal 0.8 and 1.
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The model fit for the training set and the response of the test set are presented

in Fig. 4.16, Fig. 4.17 and Fig. 4.18 for the case where all the descriptors are

included and no variable selection is performed. As can be seen, the fit of the

training set is relatively good, but when an independent test set is applied to the

model it reveals a quite bad predictive ability. The objects in the test set were 2,

35IPNDCz, 3CzFCN, 3, Ac-MPM, BTCz-2CN, CC2BP, Cz2BP, DAC-BTZ, DAC-

Mes3B, DCzIPN, DMAC-DPS, DTC-mBPSB, DTC-pBPSB, DTPDDA, SPXZPO

and TB-1PXZ. The observed values and the responses for these test objects are

presented in Table 4.5. In the results from PCA, structure 2, 3, DAC-Mes3B,

DMAC-DPS, DTC-mBPSB, DTC-pBPSB, SPXZPO and TB-1PXZ were observed

as clusters and points separated from the rest of the population. The result shows

that the structures DMAC-DPS, DTC-pBPSB, SPXZPO and TB-1PXZ have par-

ticularly bad responses.

Figure 4.16: Fit of the predicted ∆Est values in the training set and the

testing set when all the descriptors are included. The y- and x-axis rep-

resents the predicted and the experimental ∆Est values, respectively.

Obtained during the master project, fall 2017.
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Figure 4.17: Fit of the predicted ∆Est values in the training set and the

testing set when all the descriptors are included and variable selection

is performed with VIP=0.8. The y- and x-axis represents the predicted

and the experimental ∆Est values, respectively. Obtained during the

master project, fall 2017.

Figure 4.18: Fit of the predicted values in the training set and test-

ing set when all the descriptors are included and variable selection is

performed with VIP=1. The y- and x-axis represents the predicted

and the experimental ∆Est values, respectively. Obtained during the

master project, fall 2017.
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Table 4.5: Observed and predicted ∆Est values for the test set, ∆Eobs
st

and ∆Epred
st , respectively. All descriptors are included with no variable

selection. Note that the observed values are the third root of the

experimental ∆Est values. Obtained during the master project, fall

2017.

Structure ∆Eobs
st ∆Epred

st

2 0.77 0.76

35IPNDCz 0.52 0.43

3CzFCN 0.39 0.46

3 0.68 0.65

Ac-MPM 0.58 0.52

BTCz-2CN 0.55 0.49

CC2BP 0.52 0.58

Cz2BP 0.59 0.45

DAC-BTZ 0.59 0.50

DAC-Mes3B 0.40 0.40

DCzIPN 0.37 0.45

DMAC-DPS 0.43 0.55

DTC-mBPSB 0.62 0.69

DTC-pBPSB 0.37 0.70

DTPDDA 0.52 0.49

SPXZPO 0.64 0.43

TB-1PXZ 0.49 0.36

The scores plots where all the descriptors are used without variable selection are

depicted in Fig. C.1, Fig. C.2 and Fig. C.3 in Appendix C.1. It is interesting to

see here that the structures with the same type of chemical scaffold are situated

close to each other. For example, Ac-HPM, Ac-MPM and Ac-PPM can be ob-

served as grouped together, which is also the case for ACRPOB, SFDPAPOB,

TMCPOB and SXDPAPOB. As for the result in PCA there are some large empty

areas, which means that the chemical space is not fully captured by the data. An
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additional observation is that there are some objects lying relatively isolated at

the periphery of the plots. These objects may be potential outliers. A plot of

the studentized residuals against the leverage is presented in Fig. 4.19. As can be

seen, 5CzCF3Ph, DPAA-AF, DDCzIPN, DDCzTrz and 1 have leverages beyond

the leverage threshold. These points represent potential outliers in the data and

should in reality be removed from the data set. However, given the poor PLSR

result and the distribution of the variables and the objects in PCA and PLSR,

it is strongly suspected that removing these would only result in the discovery of

new ones. These five points belong to four different clusters according to Fig. 4.10,

which may substantiate this claim.
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Figure 4.19: Studentized residuals plotted against leverage in the case

of no variable selection. All the objects are included and all the de-

scriptors are used.

The first impression of the structures is that all of them seem fairly rigid and

that the probability that they have multiple conformations is small. Still, multiple

conformations are possible and have been searched for to see if it would impact

the result of the PLSR. It was found that there were five structures that had mul-

tiple conformations, namely DMAC-DPS, DMAC-TRZ, DTPDDA, SPXZPO and

SpiroAC-TRZ. Two different approaches were taken to assess the conformations,
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using the mean of the descriptors for each conformation pertaining to one struc-

ture and using the Boltzmann weights. The result from PLSR with and without

multiple configurations is shown in Table D.1 in Appendix D. The result is shown

for when all descriptors are used. By considering multiple conformations there is

no significant improvement. The predictive ability of the model is still poor. The

predicted values are given in Table D.2 and show no discernible change. Further

study regarding conformations was therefore discarded.

4.3.1 Identification of potential outliers

An attempt to improve the PLSR model was made by removing the eleven objects

which were seen in PCA as separated from the rest of the population. The statistics

are given in Table 4.6 where all the descriptors are included. The model does in

fact improve a little. The R2
CV has increased from 0.08 for the original data to

0.16 and the R2
test has increased from 0.17 to 0.46. Although this is promising,

the RMSEP of the training set is approximately the same and the reduction of

RMSEP for the test set from 0.12 to 0.09 is negligible. A key point to mention

here is that by removing the eleven objects the test set has naturally changed

from that of the original PLSR model. As a consequence, these two models are not

directly comparable. The test set consisted of the structures 35IPNDCz, 3CzFCN,

Ac-MPM, CNBPCz, CPC, Cz2BP, CzBPCN, DABNA-1, DCzIPN, m-ATP-ACR,

SFDPAPOB and SXDPAPOB. The predicted values of the test set are given in

Table C.1 in Appendix C.2 when all descriptors are included and without variable

selection. The model fit of the training set and the test set is given in Fig. C.4,

Fig. C.5 and Fig. C.6 in Appendix C.2 without variable selection and variable

selection with VIP values 0.8 and 1, respectively. Another important factor to

consider here is that the data set now only consists of 49 structures of which 12

are reserved as a test set. The number of objects in the test set should probably

have been reduced a little, but it would not have changed the fact that 49 objects

are a very small data set to perform regression on. The validity of the result is

therefore compromised.
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Table 4.6: Results for the training and testing of the PLSR model

for which the eleven potential outliers are excluded. All descriptors

are included. NC is the number of principal components, NV is the

number of variables, R2
CV is the correlation coefficient of the cross-

validated training set and R2
test is the correlation coefficient of the test

set.

Training Testing

Descriptor NV NC R2
CV RMSEP MAE R2

test RMSEP MAE

NOVARSEL 3523 3 0.16 0.12 0.01 0.46 0.09 0.08

VIP = 0.8 1822 4 0.70 0.07 0.007 0.49 0.09 0.08

VIP = 1 1194 3 0.73 0.07 0.01 0.41 0.09 0.08

The scores plots, given in Fig. C.7, Fig. C.8 and Fig. C.9 in Appendix C.2, show

the same trend as that of the original data. Fairly isolated objects can be seen at

the periphery of the plots. The studentized residuals is plotted against the leverage

in Fig. 4.20. There are still potential outliers present, where four objects can be

seen having a larger leverage than the threshold. The reason for not removing

these outliers are the same as before, it is suspected that removing them would

yield new outliers. Moreover, the small data set containing objects which are

highly heterogeneous, increases the possibility of new outliers being discovered

when others are removed. Judging by the improvement in R2
test the model seems

at first glace significantly better than that of the original data. But considering the

small data set, small reduction in RMSEP and the fact that there is still potential

outliers present the result is still unsatisfactory.
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Figure 4.20: Studentized residuals plotted against leverage in the case

where the eleven potential outliers are removed. No variable selection

is performed and all descriptors are included.
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4.3.2 Solvent effects

Another approach to improve the PLSR result was to only consider structures for

which the reported experimental ∆Est value was measured in toluene. In that

way, solvent effects would to some extent be accounted for. The statistics are

presented in Table 4.7. The R2
test improves slightly, but the RMSEP of the test set

is approximately the same as the result when the full data set is used. Notice that

without variable selection the optimal number of components is 10. The RMSEP

plot without variable selection is given in Fig. 4.21. The decrease in RMSEP for

each added component is very small. Only when going from 6 to 7 or from 9 to

10 components is the decrease more than 5 %. Considering the model fit of the

training set and test set given in Fig. C.10 in Appendix C.3 in conjunction with

the change in RMSEP, the result clearly indicates that the model is overfitted.

The fit of the training set is exceptionally good, at least relative to that seen

for the other models. The fit of the test set however shows a poor predictive

ability. The overfitting may be a symptom of the small data set. By removing the

structures which did not have experimental ∆Est values measured in toluene, only

50 structures remained. The studentized residual plotted against the leverage is

given in Fig. 4.22 and it reveals five potential outliers. These points belong to four

different cluster according to Fig. 4.14.
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Table 4.7: Results for the training and testing of the PLSR model

where only the structures with experimental ∆Est values measured in

toluene are considered. All descriptors are included. NC is the number

of principal components, NV is the number of variables, R2
CV is the

correlation coefficient of the cross-validated training set and R2
test is

the correlation coefficient of the test set.

Training Testing

Descriptor NV NC R2
CV RMSEP MAE R2

test RMSEP MAE

NOVARSEL 3520 10 0.21 0.11 0.0001 0.28 0.13 0.09

VIP = 0.8 1905 3 0.54 0.08 0.02 0.22 0.14 0.10

VIP = 1 1242 3 0.66 0.07 0.02 0.26 0.14 0.10

Figure 4.21: RMSEP calculated for each added component. The plot

shows how the RMSEP evolve when more components are added. No

variable selection (NOVARSEL) is performed and only the structures

with experimental ∆Est values measured in toluene are considered..
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Figure 4.22: Studentized residuals plotted against leverage for the case

where only objects with experimental ∆Est values measured in toluene

are considered. No variable selection is performed and all the descrip-

tors are included.
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4.4 Cubist

The result from the Cubist model is given in Table 4.8 when the REST set of

descriptors are included. And the most attributing variables to the model is given

in Table 4.9. The model was constructed using 50 committees and 9 neighbours.

Both the correlation coefficient R2
CV and the error have improved from the PLSR,

which suggest that there is most likely a non-linear relationship between the chosen

descriptors and ∆Est. The predicted ∆Est values for each structure are given in

Table E.1 in Appendix E. The Spearman’s rank correlation coefficient between the

predicted and observed values is 0.98, which means that there is an almost perfect

positive monotonic relationship between the observed and the predicted values.

The correlation coefficieent between the predicted and observed values was also

calculated, which gave a R2 value of 0.96. Notice however that here the same

objects are used to construct the model and for testing. This is not the same as

for PLSR where an independent test set is used. Thus, R2 and R2
test is not the

same. The high R2 value may be misleading and is not sufficient to determine

the models predictive ability. Moreover, the interest here is to see how the model

respond to new unseen samples, which is the core objective of this thesis.

Table 4.8: Performance metrics for the Cubist model when all the

objects are included and the REST set of descriptors is used. NO-

VARSEL denotes the results obtained when no variable selection is

performed and VARSEL denotes results obtained when variable se-

lection is performed. ND denotes the number of descriptors included

in the model, R2
CV is the correlation coefficient of the cross-validated

model and RMSE is the root mean squared error.

ND R2
CV RMSE MAE

NOVARSEL 86 0.38 0.10 0.079

VARSEL 43 0.48 0.08 0.068
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An interesting aspect of the most contributing descriptors in the Cubist model is

the introduction of shape descriptors. In the PCA calculations only CPSA and

MOPAC descriptors was seen as contributing to the first three PCs. In PCA the

objective is to explain as much as possible of the variance in the descriptor data.

It is not related to ∆Est at all. The fact that different descriptors are shown most

contributing to the model when ∆Est is actively used in the model construction

may give some indication as to which descriptors are relevant for ∆Est. As CPSA

is contributing to a large extent in both PCA and Cubist, it is reasonably to as-

sume that these descriptors are important for ∆Est and are strong distinguishing

factors between the structures. Generalizing the CPSA descriptors it can be said

that the charge distribution is an important molecular representation of the struc-

tures in order to relate them to ∆Est. The occurrence of the autocorrelated charge

properties, total dipole moment and charge dipole moment as most contributing

descriptors also indicates that charge distribution is in fact an important represen-

tation. It is hard to say if the shape descriptors are directly relevant for predicting

∆Est based on just the attribution in Cubist. It may perhaps be a consequence of

the data containing structures which vary a lot in size and shape.
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Table 4.9: Descriptor attribution in the Cubist model when all the

structures are included and the REST set of descriptors is used.

Percentage Descriptor

50% Autocorrelated charge property 8

30% CPSA-RNCS

40% Ovality

20% Radius of gyration

20% CPSA-FNSA-2

17% CPSA-WNSA-3

10% CPSA-PNSA-5

10% Total dipole moment

10% Maximum DER

10% Minimum DNR

10% CPSA-PNSA-1

10% Molecular eccentricity

10% Electrophilicity

10% Asphericity

10% Minimum DER

10% Maximum SPOL

10% CPSA-PNSA-2

10% CPSA-RPCG

10% Heat of formation

10% CPSA-WNSA-2

10% Maximum DNR

7% Charge dipole moment

7% CPSA-PPSA-5

7% CPSA-FNSA-3

6% Autocorrelated charge property 7

4% CPSA-PPSA-4
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4.4.1 Identification of potential outliers

Here the results of the Cubist modelling are presented when the eleven points seen

in PCA and k-means cluster analysis as separated from the rest of the population

is removed. The reason for removing these objects is the same as that for the

PLSR case, to see if that would improve the Cubist model. There is a large area

between the separated data and the rest of the objects where the chemistry is not

spanned. The goal is to reduce this non-spanned area by removing these eleven

objects. The results from the Cubist model is presented in Table 4.10 and the

most attributing descriptors are listed in Table 4.11. The model was constructed

using 10 committees and 7 neighbours. Without variable selection, the correlation

coefficient and the error have slightly improved. With variable selection the result

is approximately the same as for the previous model. Although an improvement

can be observed the model is still not accurate enough to consider it a good model.

Table 4.10: Performance metrics for the Cubist model when the eleven

potential outliers have been removed and the REST set of descriptors

is used. NOVARSEL denotes the results obtained when no variable

selection is performed and VARSEL denotes results obtained when

variable selection is performed. ND denotes the number of descriptors

included in the model, R2
CV is the correlation coefficient of the cross-

validated model and RMSE is the root mean squared error.

ND R2
CV RMSE MAE

NOVARSEL 86 0.44 0.08 0.061

VARSEL 36 0.48 0.07 0.057

Much of the same types of descriptors can be seen as most contributing. According

to the eleven points having on average a higher dipole moment, it not surprising

that the total dipole moment descriptor is no longer a contributing descriptor.

However, the shape of the structures still seem to be an important distinguishing

factor. The same can be said for the different autocorrelated charge descriptors

and the CPSA descriptors.
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Table 4.11: Descriptor attribution in the Cubist model when the eleven

potential outliers are excluded and the REST set of descriptors is used

.

Percentage Descriptor

20 % Maximum DNR

32 % Ovality

30 % Maximum DER

23 % Globularity

22 % Autocorrelated charge property 4

15 % CPSA-PNSA-4

15 % CPSA-WNSA-3

12 % Autocorrelated charge property 2

10 % Spherosity

10 % Maximum SPOL

10 % CPSA-FNSA-1

5 % CPSA-PNSA-3

5 % Molecular eccentricity

5 % CPSA-PNSA-1

5 % CPSA-DPSA-3

The predicted values from this model is given in Table E.1 in Appendix E. R2 is

in this case calculated to be 0.98. It is a slight increase from the previous model,

but again, this is not a sufficient measure of the models predictive power as the

prediction is not done on an independent test set. Calculating the Spearman’s rank

correlation gives a value of 0.99, meaning an almost perfect positive monotonic

relationship between the predicted values and the observed values.

4.4.2 Solvent effects

Here the solvent effects are considered. Note that it is only considered in the sense

that only the structures with experimental values of ∆Est measured in toluene are

included. The solvent effects are not included in the calculation of the descriptors.

The results from the Cubist model with 50 committees and 5 neighbours used
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are given in Table 4.12. The most attributing descriptors are given in Table 4.13.

The correlation coefficient show some improvement from the Cubist model where

all the objects are included. This applies both to when variable selection is not

performed and when variable is performed. The RMSE has improved slightly for

when no variable selection is performed, whereas the RMSE is the same for when

variable selection is performed. The predicted values for this model are given in

Table E.1 in Appendix E. An R2 of 0.98 was calculated, but the same notes made

earlier about the R2 applies here. The Spearman’s rank correlation coefficient for

this case is 0.995.

Table 4.12: Performance metrics for the Cubist model when only the

objects with experimental ∆Est values measured in toluene are in-

cluded and the REST set of descriptors is used. NOVARSEL de-

notes the results obtained when no variable selection is performed and

VARSEL denotes results obtained when variable selection is performed.

ND denotes the number of descriptors included in the model, R2
CV is

the correlation coefficient of the cross-validated model and RMSE is

the root mean squared error.

ND R2
CV RMSE MAE

NOVARSEL 86 0.51 0.08 0.07

VARSEL 12 0.59 0.08 0.07

Much of the same type of descriptors can be seen as most contributing to the

model. The total dipole moment has reentered as contributing descriptor. As seen

in PCA and k-means cluster analysis, only considering objects with experimental

∆Est values measured in toluene did not remove the separation of the data, just

reduced the number of objects in the separated group. Therefor, some of the

objects which on average have a larger dipole moment are still included, explaining

why the dipole moment is again a contributing descriptor.
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Table 4.13: Descriptor attribution in the Cubist model when only the

objects with experimental ∆Est values measured in toluene are in-

cluded and the REST set of descriptors is used.

.

Percentage Descriptor

34 % Charge dipole moment

29 % CPSA-PNSA-3

12 % Total dipole moment

18 % Asphericity

48 % Maximum DER

34 % Ovality

32 % Autocorrelated charge property 8

30 % Spherosity

20 % CPSA-PNSA-4

15 % Autocorrelated charge property 6

15 % CPSA-WNSA-3

15 % LUMO energy

14 % CPSA-PNSA-1

14 % Radius of gyration

14 % Minimum DER

9 % Autocorrelated charge property 2

8 % Minimum DNR

5 % Molecular eccentricity

4 % Autocorrelated charge property 4
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4.5 Density functional theory

As explained in the methodology section (Section 2.4), the quantum chemical

computations where performed in three steps on a selected set of structures. The

reason for selecting the structures in the way presented in Section 2.4 was not

just in regards to the computational time, but also to make sure that the struc-

tures represented the whole chemical space spanned by the data. Unfortunately,

we were not successful in completing the TDDFT computations within the time

frame of this master thesis. There were some issue with the TDDFT calculation

causing it to produce excited state energies with severe discrepancies. Some of the

articles on the structures used in this thesis have reported ∆Est values calculated

with TDDFT. An example is the structures 1, 2 and 3 [26]. Zang et al. reported

experimentally determined values for these structures of 0.54, 0.45 and 0.32 eV,

respectively. The ∆Est values they calculated using TDDFT with a B3LYP func-

tional and 6-31G* basis set was however 0.65, 0.6 and 0.34 eV, respectively. This

goes to show that calculating high accuracy excited stated is a difficult task.

We have sadly not been able to find the source of the TDDFT problem. The

output coordinates from the DFT calculation with the COSMO solvation model are

therefore given in Appendix F so that it can be used in further study. The chosen

basis set and functional have to be assessed in order to determine if they are suited

for the calculation of the excited state energies of the structures in our data set.

The computation time for the geometry optimization in solvent took on average

118 hours, with the longest computation running for 323 hours. The TDDFT

computations that did converge included only the three smallest structures, for

which the computation time was on average 44 hours. In comparison, PLSR and

Cubist only takes a couple of minutes to complete.
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5 Conclusion
In this thesis a QSPR approach was used in an attempt to create a model which

could aid the design of blue TADF based OLEDs. The structural data and exper-

imental ∆Est values for 60 different blue emitting structures used in this work was

collected from a recent review paper. Based on different molecular representations

of these structures, a set of descriptors were calculated. In the exploratory anal-

ysis of these descriptors the PCA and k-means cluster analysis was performed to

investigate the variance in the data, patterns and potential outliers. Both methods

revealed a highly uneven distribution of objects and large areas where the chem-

ical space was not-spanned. Eleven objects were seen as separated from the rest

of the population. In the k-means cluster analysis the objects were separated into

nine different cluster. These observation suggested that the data was fairly het-

erogeneous, differing in multiple ways. All the structures consisted of a variety of

different donor and acceptor moieties and with a multitude of different donor and

acceptor architectures. They also differed in shape, size and charge distribution.

In the regression analysis the linear method of PLSR was performed first. When all

the objects were included the best model had a R2
CV of 0.7 and a R2

test of 0.17. Two

different approaches to improve the PLSR was tested. The first was to remove the

eleven objects seen in PCA and k-means cluster analysis as separated from the rest

of the population. The second approach was to only consider objects which were

reported having experimental ∆Est values measured in toluene. The best result

from the first approach was with a R2
CV of 0.73 and R2

test of 0.41 when variable

selection was performed with VIP=1. The best result from the second approach

was also obtain when variable selection was performed with VIP=1, yielding a R2
CV

of 0.66 and a R2
test of 0.26. However, removing objects from the data set may have

caused the data set to be too small for the purpose of a PLSR. The performance

of these two models were therefore questioned despite the improvement in the

correlation coefficients. The relatively large difference in R2
CV and R2

test for these

models suggested an overfitting of the data, especially in the case where the solvent

effects were considered. The RMSEP, both for the training set and the test set,

was approximately the same for all the PLSR models. All put together, the PLSR
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did not give satisfactory results.

The non-linear regression tree method Cubist was performed for which the results

showed an improvement from the PLSR models. The Cubist model with all the

objects included had a R2
CV of 0.38 without variable selection. With variable

selection this result was improved giving a R2
CV of 0.48. A small reduction in

RMSE could also be observed when variable selection was performed. The same

two approaches was tested here as for the PLSR to see if it would improve the

model. When the eleven potential outliers were removed the result displayed a

small improvement for the model without variable selection, but approximately

the same result was obtained when variable selection was performed. Considering

only objects which had experimental ∆Est values measured in toluene improved

the model even more. The result showed a R2
CV of 0.51 and 0.59 without variable

selection and when variable selection was performed, respectively. The RMSE was

approximately the same as the best result from the two other models. Predictions

were done with all the Cubist models, but regrettably not with an independent test

sets. The same objects used for constructing the models were used in the testing of

these models. The predictive ability of the Cubist models was therefor not tested

properly. The writer acknowledges this flaw and that and independent test should

have been employed to each Cubist model. That being said, the relative small

R2
CV indicates that the models would not be able to display a predictive ability of

a satisfactory level of R2
test above at least 0.8.

Non of the models created in this thesis have shown particularly good predictive

abilities. There are different aspects of the data used in this study that may have

caused these failings. The data have been shown to be quite heterogeneous. The

small data set has therefor been rendered insufficient for spanning the whole chem-

ical space. All the different and varying chemical properties of the blue emitting

structures are therefore not fully captured. A consequence of ∆Est not having

been used as a property of interest in a QSRP study before is that the molecular

descriptors most relevant for predicting ∆Est are unknown. The most attributing

descriptors in the Cubist models may give some indications as to which molecular

representations may be relevant, in particular the charge distribution. However,
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more research on molecular descriptors relevant for ∆Est must be performed in

order to say anything certain. Another factor which may have caused the poor

performing models is ∆Est itself. Although it is a critical property for achieving

TADF, which is the reason it is chosen in this study, it may not be the easiest

property of interest to use in a QSPR approach. ∆Est has a fairly small range,

which requires the models to be highly accurate in order to give good responses.

Solvent effects may also affect the ∆Est. In this study the solvent effects are only

considered indirectly by generating models using only objects with experimental

∆Est values measured in toluene. Ideally the molecular descriptors should be cal-

culated using a solvation model for explicitly including the solvent effects. Other

researchers have been successful with using the emission maxima and the glass

transition temperature in QSRP approaches.

A TDDFT computation for determining ∆Est for a selected set of structures was

attempted using the CAM-B3LYP functional and the aug-pcs-1 basis set. The

calculations that did converge showed serious discrepancies. The difficulty of ob-

taining accurate results for the excited state energies using TDDFT was exempli-

fied with an example from Zhang and coworkers’ previous work done one three of

the structures used in this study. The functional and basis set used have to be

assessed in order to determine their applicability in these calculations.

There are several different ways to improve the result presented in this study.

The first thing is that the data set should be increased as much as possible in

order to properly span the chemical space. If possible, a data set comprised of

structures with the same type of scaffold is recommended. The choice of molecular

representation of the structures can also be changed in order to achieve molecular

descriptors which may be more suited for the prediction of ∆Est.
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B PCA result

B.1 Full data set

(i) EVA (ii) EEVA

(iii) EVA and EEVA (iv) EVA and REST

vii



(v) EEVA and REST (vi) ALL

Figure B.1: Variance explained by the first ten PCs for the PCA with

different descriptor sets. Obtained during the master project, fall 2017.

B.2 Identification of potential outliers

Figure B.2: Variance explained by the first ten PCs for the case where

the eleven possible outliers are removed and the REST set of descrip-

tors is used.

viii



(i) Object contribution to PC 1 (ii) Object contribution to PC 2

(iii) Object contribution to PC 3

Figure B.3: Object contribution to the first three PCs for data set

where the eleven potential outliers are removed. The REST set of

descriptors is used.
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(i) Variable contribution to PC 1 (ii) Variable contribution to PC 2

(iii) Variable contribution to PC 3

Figure B.4: Variable contribution to the first three PCs for the data

set where the eleven potential outliers are removed. The REST set of

descriptors is used.
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B.3 Solvent effects

Figure B.5: Variance explained by the first ten PCs for when the REST

set of descriptors is used and only the objects with experimental ∆Est

values measured in toluene are considered.
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(i) Object contribution to PC 1 (ii) Object contribution to PC 2

(iii) Object contribution to PC 3

Figure B.6: Object contribution to the first three PCs when the REST

set of descriptors is used and only the objects with experimental ∆Est

values measured in toluene are considered.

xii



(i) Variable contribution to PC 1 (ii) Variable contribution to PC 2

(iii) Variable contribution to PC 3

Figure B.7: Variable contribution to the first three PCs for when the

REST set of descriptors is used and only the objects with experimental

∆Est values measured in toluene are considered.
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C PLSR result

C.1 Full data set
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Figure C.1: Scores plot full data set with all descriptors included and

no variable selection is performed. PC 2 plotted against PC 1, where

the percentage represents the X-variance.
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Figure C.2: Scores plot full data set with all descriptors included and

no variable selection is performed. PC 3 plotted against PC 1, where

the percentage represents the X-variance.
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Figure C.3: Scores plot full data set with all descriptors included and

no variable selection is performed. PC 3 plotted against PC 2, where

the percentage represents the X-variance.
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C.2 Identification of potential outliers

Table C.1: Observed and predicted ∆Est values for the test set, ∆Eobs
st

and ∆Epred
st , respectively. The eleven potential outliers are excluded.

All descriptors are included and no variable selection is performed.

Note that this is the third root of the experimental ∆Est values.

Structure ∆Eobs
st ∆Epred

st

35IPNDCz 0.52 0.46

3CzFCN 0.39 0.46

Ac-MPM 0.58 0.50

CNBPCz 0.65 0.52

CPC 0.34 0.45

Cz2BP 0.59 0.43

CzBPCN 0.65 0.53

DABNA-1 0.57 0.47

DCzIPN 0.37 0.43

m-ATP-ACR 0.51 0.48

SFDPAPOB 0.45 0.41

SXDPAPOB 0.45 0.43
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Figure C.4: Fit of the predicted values in the training set and the

testing set when all the descriptors are included. The eleven potential

outliers are excluded. The y- and x-axis represents the predicted and

the experimental ∆Est values, respectively.

Figure C.5: Fit of the predicted values in the training set and the

testing set when all the descriptors are included and variable selection

is performed with VIP=0,8. The eleven potential outliers are excluded.

The y- and x-axis represents the predicted and the experimental ∆Est

values, respectively.
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Figure C.6: Fit of the predicted values in the training set and the

testing set when all the descriptors are included and variable selection

is performed with VIP=1. The eleven potential outliers are excluded.

The y- and x-axis represents the predicted and the experimental ∆Est

values, respectively.
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Figure C.7: Scores plot from the PLSR when the eleven potential

outliers are removed. All the descriptors are included and no variable

selection is performed. PC 2 is plotted against PC 1 and the descriptor

variance explained by each of these PCs is given in parenthesis.
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Figure C.8: Scores plot from the PLSR when the eleven potential

outliers are removed. All the descriptors are included and no variable

selection is performed. PC 3 is plotted against PC 1 and the descriptor

variance explained by each of these PCs is given in parenthesis.
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Figure C.9: Scores plot from the PLSR when the eleven potential

outliers are removed. All the descriptors are included and no variable

selection is performed. PC 3 is plotted against PC 2 and the descriptor

variance explained by each of these PCs is given in parenthesis.
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C.3 Solvent effects

Table C.2: Observed and predicted ∆Est values for the test set, ∆Eobs
st

and ∆Epred
st , respectively. Only the objects with experimental ∆Est

values measured in toluene are considered. All descriptors are included

and no variable selection is performed. Note that this is the third root

of the experimental ∆Est values.

Structure ∆Eobs
st ∆Epred

st

1 0.81 0.50

2 0.77 0.68

3CzFCN 0.39 0.46

Cz2BP 0.59 0.44

DCBPy 0.41 0.49

DPXZPO 0.58 0.56

DTPDDA 0.52 0.53

m-ATP-ACR 0.51 0.49
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Figure C.10: Fit of the predicted values in the training set and the

testing set when all the descriptors are included. Only objects with

experimental ∆Est values measured in toluene are considered. The y-

and x-axis represents the predicted and the experimental ∆Est values,

respectively.
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Figure C.11: Fit of the predicted values in the training set and the

testing set when all the descriptors are included and variable selection is

performed with VIP=0.8. Only objects with experimental ∆Est values

measured in toluene are considered. The y- and x-axis represents the

predicted and the experimental ∆Est values, respectively.
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Figure C.12: Fit of the predicted values in the training set and the

testing set when all the descriptors are included and variable selection

is performed with VIP=1. Only objects with experimental ∆Est values

measured in toluene are considered. The y- and x-axis represents the

predicted and the experimental ∆Est values, respectively.
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D Multiple conformations
The Boltzmann distribution can be regarded as a probability distribution of pos-

sible states for a molecule [164]. The probability of finding a molecule in state i

with energy εi is given by

Pi =
exp−ε/kbT∑n
i=1 exp εi/kBT

(D.1)

where kB is the Boltzmann constant, T is the temperature and n is the number of

states accessible to the system. The numerator represents the weight of each state

and the denominator is the sum of weights, also knows as the partition function.

Table D.1: Results for the training and testing of the PLSR model

when multiple conformations are considered. O denotes the result ob-

tain with the original data set, M for when the mean of the multiple

conformations are used and B for when the Boltzmann weights are

used. All of the descriptors are included. NC is the number of princi-

pal components, NV is the number of variables, R2
CV is the correlation

coefficient of the cross-validated training set and R2
test is the correlation

coefficient of the test set.

Training Testing

Descriptor NV NC R2
CV RMSEP MAE R2

test RMSEP MAE

O

NOVARSEL 3554 3 0.08 0.13 0.02 0.17 0.12 0.09

VIP=0.8 1823 3 0.62 0.08 0.02 0.17 0.12 0.09

VIP=1 1174 3 0.70 0.07 0.02 0.17 0.13 0.10

M

NOVARSEL 3558 3 0.14 0.13 0.02 0.18 0.12 0.09

VIP=0.8 1849 3 0.62 0.08 0.02 0.18 0.12 0.09

VIP=1 1178 3 0.70 0.07 0.02 0.19 0.12 0.09

B

NOVARSEL 3550 3 0.15 0.12 0.02 0.18 0.12 0.09

VIP=0.8 1837 3 0.60 0.09 0.02 0.19 0.12 0.09

VIP=1 1178 3 0.69 0.08 0.02 0.18 0.12 0.09
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Table D.2: Observed and predicted ∆Est values for the test set when

multiple conformations are considered. ∆Eobs
st is the third root of the

experimental ∆Est values, ∆EO
st denotes the predicted values of the

original data, ∆EM
st denotes the predicted values when the mean of the

multiple conformations is used and ∆EB
st denotes the predicted values

when the Boltzmann weights are used. All descriptors are included.

NOVARSEL VIP=0.8 VIP=1

Molecule ∆Eobs
st ∆EO

st ∆EM
st ∆EB

st ∆EO
st ∆EM

st ∆EB
st ∆EO

st ∆EM
st ∆EB

st

2 0.77 0.76 0.75 0.75 0.77 0.77 0.77 0.79 0.80 0.79

35IPNDCz 0.52 0.43 0.44 0.43 0.42 0.42 0.42 0.41 0.42 0.41

3CzFCN 0.39 0.46 0.46 0.46 0.45 0.45 0.45 0.44 0.44 0.44

3 0.68 0.65 0.65 0.65 0.65 0.64 0.63 0.65 0.65 0.63

Ac-MPM 0.58 0.52 0.52 0.52 0.52 0.52 0.52 0.51 0.51 0.51

BTCz-2CN 0.55 0.49 0.49 0.49 0.49 0.50 0.50 0.50 0.50 0.50

CC2BP 0.52 0.58 0.57 0.57 0.59 0.58 0.58 0.59 0.57 0.57

Cz2BP 0.59 0.45 0.44 0.45 0.44 0.44 0.44 0.43 0.43 0.43

DAC-BTZ 0.59 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.52 0.51

DAC-Mes3B 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.41 0.40

DCzIPN 0.37 0.45 0.45 0.45 0.42 0.45 0.45 0.45 0.45 0.45

DMAC-DPS 0.43 0.55 0.54 0.54 0.56 0.55 0.54 0.57 0.57 0.56

DTC-mBPSB 0.62 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.70 0.70

DTC-pBPSB 0.37 0.70 0.70 0.70 0.70 0.70 0.70 0.71 0.71 0.71

DTPDDA 0.52 0.49 0.51 0.51 0.50 0.50 0.50 0.50 0.51 0.51

SPXZPO 0.64 0.43 0.45 0.45 0.42 0.45 0.45 0.43 0.45 0.45

TB-1PXZ 0.49 0.36 0.36 0.36 0.37 0.37 0.38 0.38 0.38 0.38
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E Cubist result

Table E.1: Observed and predicted ∆Est values from the three Cubist

calculations. ∆Epred,a
st denotes the prediction with the full data set,

∆Epred,b
st where the eleven objects are exluded and ∆Epred,c

st when only

toluene as solvent is considered.

MOLECULE ∆Eobs
st ∆Epred,a

st ∆Epred,b
st ∆Epred,c

st

1 0.54 0.15 - 0.46

2DAC-Mes3B 0.06 0.06 0.06 0.07

2PXZ-TAZ 0.23 0.17 0.22 0.22

2 0.45 0.15 - 0.46

34TCzPN 0.21 0.24 0.22 0.22

35IPNDCz 0.14 0.14 0.14 0.14

3CzFCN 0.06 0.07 0.07 0.07

3 0.32 0.12 - 0.31

44TCzPN 0.21 0.24 0.22 0.22

4CzFCN 0.06 0.10 0.08 0.07

5CzCF3Ph 0.02 0.02 0.03 0.03

Ac-HPM 0.18 0.19 0.18 0.18

Ac-MPM 0.19 0.20 0.18 0.18

Ac-PPM 0.19 0.19 0.19 0.18

ACRPOB 0.09 0.08 0.09 0.09

ACRSA 0.03 0.03 0.03 0.03

ATP-ACR 0.16 0.17 0.16 0.16

BCzT 0.31 0.23 0.28 0.29

BFCz-2CN 0.13 0.14 0.13 0.14

BTCz-2CN 0.17 0.13 0.16 0.16

CC2BP 0.14 0.17 0.15 0.16

CCT2A 0.06 0.10 0.09 -

CNBPCz 0.27 0.24 0.25 0.26

CPC 0.04 0.06 0.04 0.04
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Cz2BP 0.21 0.16 0.20 0.19

CzAcSF 0.14 0.07 - -

CzBPCN 0.27 0.24 0.26 0.26

DABNA-1 0.18 0.09 0.15 -

DABNA-2 0.14 0.16 0.14 -

DAC-BTZ 0.20 0.23 0.21 0.20

DAC-Mes3B 0.06 0.06 0.06 0.08

DCBPy 0.07 0.10 0.08 0.08

DCN-3 0.13 0.17 0.14 0.14

DCzIPN 0.05 0.11 0.05 -

DCzmCzTrz 0.20 0.20 0.20 0.20

DCzTrZ 0.25 0.20 0.21 0.23

DDCzIPN 0.13 0.11 0.14 0.14

DDCzTrz 0.27 0.24 0.26 0.26

DMAC-DPS 0.08 0.06 - 0.08

DMAC-PXB 0.01 0.06 0.02 0.02

DMAC-TRZ 0.05 0.11 0.06 0.05

DMOC-DPS 0.21 0.39 - 0.21

DPAA-AF 0.02 0.12 0.05 0.04

DPXZPO 0.19 0.17 - 0.19

DTC-mBPSB 0.24 0.01 - -

DTC-pBPSB 0.05 0.25 - -

DTPDDA 0.14 0.14 0.14 0.14

m-ATP-ACR 0.13 0.12 0.13 0.13

m-ATP-CDP 0.26 0.26 0.26 0.26

mPTC 0.01 0.03 0.02 -

PPZ-4TPT 0.43 0.26 0.38 0.42

SFDPAPOB 0.09 0.09 0.09 0.09

SpiroAC-TRZ 0.07 0.12 0.10 0.10

SPXZPO 0.26 0.15 - 0.25

SXDPAPOB 0.09 0.09 0.09 0.09

xxx



TB-1PXZ 0.12 0.06 0.10 -

TB-2PXZ 0.05 0.06 0.05 -

TCzTrz 0.16 0.17 0.17 0.18

TMCPOB 0.09 0.07 0.09 0.09

TPXZPO 0.11 0.13 - 0.11
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F DFT output coordinates

Table F.1: Output coordinates for structure 1 from the DFT calcula-

tion in COSMO solvation model. Coordinates are in atomic units.

Atom X Y Z

C -2.186005 -6.863399 -0.40596

C -1.023608 -9.214837 -0.008476

C -2.171668 -11.011715 1.535263

C -4.505367 -10.513467 2.667223

C -5.678217 -8.186558 2.243171

C -4.531708 -6.362833 0.727435

N -0.984923 -5.01897 -1.925831

C 1.564083 -4.407465 -1.556112

C 3.01744 -3.509425 -3.600095

C 5.383784 -2.457621 -3.193807

C 6.363349 -2.370611 -0.740765

C 5.064188 -3.515907 1.25632

C 2.685775 -4.543692 0.854939

S 8.676682 0.00861 0.001313

O 10.059231 0.71859 -2.341184

O 10.06075 -0.701413 2.342903

C 6.363501 2.38741 0.744835

C 5.384079 2.472286 3.198044

C 3.016 3.520031 3.604674

C 1.561311 4.416021 1.560808

C 2.68311 4.556334 -0.849849

C 5.063063 3.532265 -1.251675

N -0.989622 5.020464 1.929752

C -2.48504 3.455027 3.516587

C -2.231535 0.813652 3.441299

C -3.7306 -0.69823 4.98961

C -5.516613 0.390202 6.602427

C -5.778315 3.017081 6.665237

C -4.266034 4.548274 5.146141

C -2.193132 6.864032 0.41075

C -4.533601 6.358157 -0.730979

C -5.681475 8.181613 -2.246066

C -4.515058 10.513428 -2.661019

C -2.18643 11.016786 -1.520909

C -1.037168 9.220102 0.022122

C -2.482501 -3.4632 -3.520302

C -4.252401 -4.568205 -5.153872

C -5.767142 -3.047243 -6.68077

C -5.51892 -0.418985 -6.621344

C -3.744122 0.681263 -5.004177

C -2.242402 -0.820511 -3.448477

H 0.791419 -9.613997 -0.907062

H -1.241869 -12.832024 1.83054

H -5.406009 -11.932655 3.866013

H -7.500165 -7.767606 3.121448

H -5.445788 -4.538015 0.424692

H 2.213992 -3.524706 -5.500131

H 6.437482 -1.622985 -4.75957

H 5.847069 -3.466394 3.165078

H 1.635545 -5.331551 2.445112

H 6.438954 1.638304 4.763362

H 2.212009 3.532799 5.504507

H 1.631624 5.343344 -2.439621

H 5.846097 3.484548 -3.160423

H -0.85745 -0.052637 2.168396

H -3.520023 -2.751501 4.900433

H -6.69827 -0.803529 7.803159

H -7.159391 3.891509 7.927773

H -4.459083 6.602669 5.202738

H -5.442383 4.529558 -0.435137

H -7.499304 7.758705 -3.130962

H -5.41678 11.932408 -3.859246

H -1.261764 12.840818 -1.809249

H 0.773902 9.622904 0.927062

H -4.434841 -6.623656 -5.207295

H -7.1395 -3.930588 -7.946598

H -6.70251 0.766748 -7.828088

H -3.54427 2.735756 -4.917675

H -0.877029 0.054631 -2.18225

xxxiii



Table F.2: Output coordinates for structure 2DAC-Mes3B from the

DFT calculation in COSMO solvation model. Coordinates are in

atomic units.

Atom X Y Z

N 0.181098 0.686262 0.322232
C 2.275631 2.258923 0.122936
C 1.450345 4.811981 0.125083
C -1.265248 4.759078 0.306212
C -1.980767 2.176219 0.430346
C 0.217109 -1.989065 0.303377
C 1.340456 -5.924374 -1.769888
C 1.310876 -3.283594 -1.716555
C -0.867033 -3.339429 2.291449
C -0.939029 -5.979794 2.245391
C 0.170922 -7.318479 0.202915
C 2.554107 -7.193571 -4.006232
C -2.185159 -7.314626 4.424978
B 0.035686 -10.294134 0.083175
C -2.591112 -11.654831 0.405721
C 2.503131 -11.883196 -0.39579
C -7.316494 -14.207229 0.911685
C -7.039404 -12.149022 -0.718565
C -4.749091 -10.847421 -0.973794
C -2.856686 -13.755007 2.063249
C -5.197387 -14.95718 2.304894
C 4.732503 -11.446711 1.040444
C 6.88845 -12.90864 0.601677
C 6.968246 -14.77365 -1.272144
C 4.784603 -15.160969 -2.704378
C 2.56137 -13.786568 -2.28587
C -4.679027 -8.64835 -2.779467
C -9.799535 -15.537376 1.210013
C -0.69381 -14.735013 3.631176
C 0.311305 -14.373962 -3.925986
C 9.318472 -16.296249 -1.700891
C 4.854761 -9.469599 3.082528
C 4.845822 1.655164 -0.005466
C 6.566872 3.631596 -0.176994
C 5.782178 6.187009 -0.153959
C 3.212209 6.77651 0.02286
C -3.112977 6.646283 0.273089
C -5.658413 5.953261 0.422196
C -6.332869 3.371273 0.574666
C -4.524505 1.467091 0.548097
N 7.607603 8.13714 -0.328365
C 9.830545 8.010653 1.13458
C 7.155983 10.229716 -1.918666
C 6.20656 14.407503 -5.068308
C 7.26918 14.751533 -2.675367
C 7.727361 12.691504 -1.101253
C 6.103476 9.885254 -4.333307
C 5.626633 11.961308 -5.879804
C 9.758948 7.103483 3.631169
C 11.972708 6.942136 5.048073
C 14.286599 7.698121 4.024096
C 14.358706 8.618294 1.548955
C 12.162926 8.762079 0.104952
N -7.57676 7.820261 0.408764
C -9.705846 7.512257 -1.164094
C -7.271112 10.044871 1.846151
C -9.455325 6.472569 -3.59634
C -11.575807 6.139246 -5.121496
C -13.972452 6.851558 -4.271833
C -14.222651 7.90255 -1.860994
C -12.120913 8.2185 -0.308714

C -5.966267 12.132941 5.715355
C -6.618497 14.483833 4.701882
C -7.601753 14.601412 2.254002
C -7.91319 12.412087 0.825372
C -6.294787 9.92873 4.31452
H 2.12905 -2.209705 -3.278481
H -1.669902 -2.309369 3.890562
H 3.032719 -5.809239 -5.477667
H 4.30191 -8.175518 -3.454757
H 1.31283 -8.62683 -4.857473
H -1.075537 -8.940348 5.08836
H -4.052186 -8.051238 3.877175
H -2.456796 -6.025776 6.030318
H -8.666653 -11.528575 -1.835158
H -5.373093 -16.549752 3.614402
H 8.573618 -12.572418 1.754706
H 4.807324 -16.592418 -4.19797
H -4.475372 -6.842 -1.769063
H -3.086045 -8.765618 -4.10867
H -6.427196 -8.557861 -3.896336
H -11.11955 -15.048977 -0.317031
H -10.703446 -15.016856 3.013827
H -9.555484 -17.602462 1.230995
H -1.372184 -16.069133 5.071034
H 0.325093 -13.210192 4.60801
H 0.706463 -15.725865 2.455766
H 0.860129 -15.579093 -5.52605
H -0.572705 -12.658923 -4.697091
H -1.166069 -15.372746 -2.855872
H 9.117273 -17.584545 -3.317055
H 10.957588 -15.063728 -2.055423
H 9.778792 -17.441437 -0.023817
H 6.58712 -9.674888 4.209074
H 4.842242 -7.551288 2.279545
H 3.237324 -9.576851 4.382546
H 5.489268 -0.304172 -0.00311
H 8.581685 3.211749 -0.318862
H 2.59053 8.743643 0.061195
H -2.578977 8.634054 0.127622
H -8.330756 2.870796 0.692578
H -5.079974 -0.517226 0.637421
H 5.835354 16.029679 -6.290004
H 7.71745 16.653574 -2.004951
H 8.528407 12.973059 0.779873
H 5.654515 7.977076 -4.979073
H 4.811593 11.658442 -7.753747
H 7.955138 6.521972 4.448142
H 11.880116 6.238405 6.988085
H 16.016094 7.576966 5.14469
H 16.155085 9.203055 0.712927
H 12.236138 9.453836 -1.838025
H -7.585371 5.926502 -4.277782
H -11.343897 5.334264 -7.009903
H -15.628935 6.59547 -5.476927
H -16.086231 8.454949 -1.160825
H -12.331076 9.011993 1.584979
H -5.211712 12.007124 7.634218
H -6.364684 16.207391 5.80936
H -8.10339 16.426117 1.425383
H -8.653011 12.519906 -1.098072
H -5.789304 8.096478 5.109033

xxxiv



Table F.3: Output coordinates for structure 2PXZ-TAZ from the DFT

calculation in COSMO solvation model. Coordinates are in atomic

units.

Atom X Y Z

O 1.443419 17.459207 0.107448

C 2.036292 15.877167 2.094266

C 3.58247 16.857051 3.973386

C 4.274522 15.361495 6.041844

C 3.402458 12.88472 6.193855

C 1.84761 11.895453 4.299529

C 1.134146 13.373991 2.223678

N -0.423427 12.469447 0.28687

C -1.104293 9.864174 0.220328

C 0.428346 8.148615 -1.074158

C -0.206928 5.599804 -1.138239

C -2.379367 4.725667 0.116321

C -3.922286 6.474227 1.388835

C -3.29127 9.026194 1.437785

C -3.149454 2.071047 0.086881

N -5.530531 1.286485 0.100915

N -5.535835 -1.272774 0.045086

C -3.158006 -2.065777 0.003201

N -1.571058 -0.000322 0.026638

C 1.124563 -0.005543 -0.005317

C 2.394036 -0.868923 -2.151134

C 5.028198 -0.877052 -2.168007

C 6.374126 -0.016186 -0.067013

C 5.081487 0.850259 2.064922

C 2.447669 0.853024 2.10976

C -2.397365 -4.722749 -0.047104

C -0.204487 -5.60575 1.164768

C 0.42247 -8.155997 1.082263

C -1.138115 -9.863851 -0.189071

C -3.345582 -9.017128 -1.36262

C -3.968888 -6.463553 -1.294688

N -0.461526 -12.469618 -0.280733

C 1.063556 -13.362829 -2.248626

C 1.73261 -11.875742 -4.333061

C 3.255617 -12.853357 -6.259082

C 4.140134 -15.327013 -6.130368

C 3.493325 -16.830734 -4.053261

C 1.978747 -15.862264 -2.14269

O 1.431129 -17.45144 -0.148761

C -0.034182 -16.523346 1.799201

C -1.002672 -14.042789 1.776609

C -2.488026 -13.262001 3.82237

C -2.985362 -14.901539 5.833901

C -2.006583 -17.342974 5.835213

C -0.52435 -18.149072 3.798433

C -1.013067 14.035862 -1.762259

C -0.056485 16.520786 -1.809022

C -0.593822 18.140215 -3.801231

C -2.112654 17.323213 -5.806446

C -3.080278 14.877493 -5.78077

C -2.535469 13.244198 -3.776393

H 4.233153 18.806163 3.782483

H 5.488258 16.148813 7.512807

H 3.922087 11.687258 7.7924

H 1.173747 9.951726 4.424962

H 2.115685 8.831836 -2.045477

H 0.991953 4.296123 -2.189817

H -5.622709 5.804295 2.34441

H -4.482179 10.386374 2.431977

H 1.315732 -1.52663 -3.782345

H 6.033004 -1.554007 -3.839371

H 8.438589 -0.020764 -0.091338

H 6.127502 1.522806 3.712621

H 1.410304 1.515074 3.765516

H 1.017372 -4.307452 2.196523

H 2.125984 -8.846362 2.019708

H -4.557975 -10.371324 -2.338848

H -5.684965 -5.786414 -2.216616

H 1.048918 -9.934388 -4.440511

H 3.740321 -11.649396 -7.863684

H 5.329145 -16.105727 -7.625898

H 4.155899 -18.777464 -3.879782

H -3.257848 -11.34993 3.831296

H -4.151088 -14.237815 7.402263

H -2.382994 -18.632881 7.400688

H 0.276415 -20.049847 3.728797

H 0.199824 20.044573 -3.75111

H -2.526178 18.608347 -7.366465

H -4.274335 14.205562 -7.32412

H -3.29691 11.328812 -3.776339

xxxv



Table F.4: Output coordinates for structure 3 from the DFT calcula-

tion in COSMO solvation model. Coordinates are in atomic units.

Atom X Y Z

C 8.675116 2.224733 -0.892735

C 6.788521 3.745155 -1.941562

C 7.289449 4.903834 -4.247546

C 9.597069 4.599432 -5.568278

C 11.43543 3.036736 -4.495618

C 10.991967 1.846388 -2.172463

N 8.690391 0.809113 1.333123

C 6.67435 0.620688 3.061934

C 5.730282 -1.762768 3.73783

C 3.722324 -1.954021 5.42021

C 2.644975 0.247008 6.400133

C 3.568572 2.630783 5.750926

C 5.601255 2.812758 4.093949

S 0 0 8.525109

O 0.225387 -2.43876 9.902443

O -0.225387 2.43876 9.902443

C -2.644975 -0.247008 6.400133

C -3.722324 1.954021 5.42021

C -5.730282 1.762768 3.73783

C -6.67435 -0.620688 3.061934

C -5.601255 -2.812758 4.093949

C -3.568572 -2.630783 5.750926

N -8.690391 -0.809113 1.333123

C -10.991835 0.468968 1.493972

C -12.467199 -0.134667 -0.651938

C -14.896396 0.883404 -0.921911

C -15.884965 2.488342 0.926746

C -14.367285 3.013736 3.06833

C -11.948867 2.035753 3.391993

C -8.675116 -2.224733 -0.892735

C -6.788521 -3.745155 -1.941562

C -7.289449 -4.903834 -4.247546

C -9.597069 -4.599432 -5.568278

C -11.43543 -3.036736 -4.495618

C -10.991967 -1.846388 -2.172463

C 10.991835 -0.468968 1.493972

C 12.467199 0.134667 -0.651938

C 14.896396 -0.883404 -0.921911

C 15.884965 -2.488342 0.926746

C 14.367285 -3.013736 3.06833

C 11.948867 -2.035753 3.391993

C 18.526096 -3.671301 0.727059

C 20.148203 -2.781937 2.969125

C 18.285695 -6.567481 0.784373

C 19.876499 -2.923674 -1.722161

C 9.982252 5.975045 -8.092564

C 12.563356 5.399194 -9.270432

C 9.801495 8.842226 -7.650714

C 7.921944 5.145448 -9.967457

C -9.982252 -5.975045 -8.092564

C -18.526096 3.671301 0.727059

C -20.148203 2.781937 2.969125

C -18.285695 6.567481 0.784373

C -19.876499 2.923674 -1.722161

C -7.921944 -5.145448 -9.967457

C -12.563356 -5.399194 -9.270432

C -9.801495 -8.842226 -7.650714

H 4.973805 4.016634 -1.001

H 5.813271 6.095469 -5.059547

H 13.237353 2.708092 -5.439892

H 6.565062 -3.460331 2.916461

H 2.985124 -3.805993 5.951768

H 2.734958 4.325169 6.580735

H 6.38187 4.658891 3.606877

H -2.985124 3.805993 5.951768

H -6.565062 3.460331 2.916461

H -6.38187 -4.658891 3.606877

H -2.734958 -4.325169 6.580735

H -15.986633 0.388618 -2.599007

H -15.110423 4.235434 4.556296

H -10.855285 2.47123 5.085128

H -4.973805 -4.016634 -1.001

H -5.813271 -6.095469 -5.059547

H -13.237353 -2.708092 -5.439892

H 15.986633 -0.388618 -2.599007

H 15.110423 -4.235434 4.556296

H 10.855285 -2.47123 5.085128

H 22.057453 -3.604261 2.853369

H 19.328473 -3.348016 4.793796

H 20.336794 -0.709451 2.970297

H 20.164262 -7.451542 0.628582

H 17.118623 -7.246417 -0.799376

H 17.418775 -7.241776 2.549417

H 21.748405 -3.827183 -1.7904

H 18.82039 -3.536672 -3.405843

H 20.166684 -0.868214 -1.851336

H 12.753708 6.428693 -11.067368

H 14.129248 5.995206 -8.038197

H 12.794429 3.372706 -9.678384

H 10.080431 9.869418 -9.440234

H 11.258235 9.478526 -6.307525

H 7.947129 9.393127 -6.889177

H 8.180588 6.104786 -11.797151

H 6.014755 5.60644 -9.280758

H 8.00267 3.09229 -10.297321

H -22.057453 3.604261 2.853369

H -19.328473 3.348016 4.793796

H -20.336794 0.709451 2.970297

H -20.164262 7.451542 0.628582

H -17.118623 7.246417 -0.799376

H -17.418775 7.241776 2.549417

H -21.748405 3.827183 -1.7904

H -18.82039 3.536672 -3.405843

H -20.166684 0.868214 -1.851336

H -8.180588 -6.104786 -11.797151

H -8.00267 -3.09229 -10.297321

H -6.014755 -5.60644 -9.280758

H -12.753708 -6.428693 -11.067368

H -12.794429 -3.372706 -9.678384

H -14.129248 -5.995206 -8.038197

H -10.080431 -9.869418 -9.440234

H -11.258235 -9.478526 -6.307525

H -7.947129 -9.393127 -6.899177

xxxvi



Table F.5: Output coordinates for structure BCzT from the DFT cal-

culation in COSMO solvation model. Coordinates are in atomic units.

Atom X Y Z

C -0.026657 6.668912 -1.869378

C 1.10847 4.30547 -1.959481

C 3.168944 3.761637 -0.384947

C 4.097695 5.626688 1.251441

C 2.978641 8.00042 1.304344

C 0.890102 8.553089 -0.238732

N 4.280942 1.337645 -0.443023

C -0.329528 11.060471 -0.138043

N 0.821404 12.88233 1.203181

N -2.519839 11.356002 -1.386196

C -3.563846 13.66355 -1.226105

N -2.577754 15.597635 0.08863

C -0.385164 15.113994 1.271457

C 0.778711 17.176609 2.755893

C -5.964872 14.10303 -2.587354

C 0.629133 21.44064 4.437384

C -0.459204 19.51114 3.016687

C 3.131225 16.82131 3.935456

C 4.214447 18.758803 5.348886

C 2.967998 21.07238 5.606826

C -7.114168 12.138272 -3.955283

C -7.122996 16.492 -2.534932

C -9.378246 16.903582 -3.826515

C -10.506593 14.942158 -5.188136

C -9.368995 12.559687 -5.244862

C 2.983021 -0.935552 -0.155822

C 4.713994 -2.962494 -0.421263

C 7.160468 -1.854553 -0.873988

C 6.825013 0.808018 -0.876561

C -0.3505 -3.870775 0.635717

C 1.317475 -5.940007 0.329527

C 3.869615 -5.453893 -0.181659

C 0.441295 -1.374913 0.408933

C 9.564168 -2.871751 -1.305877

C 11.581071 -1.237407 -1.737487

C 11.209786 1.394084 -1.763708

C 8.835505 2.45569 -1.345845

C 0.369217 -8.56376 0.525776

C 0.200077 -12.86854 -1.024641

C -1.498868 -13.499921 0.951541

C -2.295242 -11.690026 2.702013

C -1.344014 -9.251778 2.463177

C 1.131297 -10.404571 -1.218038

C -0.963841 -17.034471 -1.386298

N -2.179567 -16.025344 0.714764

C 0.53812 -15.118878 -2.518447

C 0.390833 -19.997419 -4.50586

C -1.038782 -19.492017 -2.352582

C 1.962176 -15.680701 -4.677031

C 1.875087 -18.119224 -5.662753

C -3.83158 -17.355494 2.350088

C -6.030434 -18.465001 1.385673

C -7.640262 -19.789164 2.997755

C -7.084997 -19.980284 5.571165

C -4.897998 -18.854263 6.527853

C -3.258724 -17.555867 4.924938

H -1.6244 7.092135 -3.100944

H 0.418479 2.86668 -3.266262

H 5.679993 5.192343 2.501407

H 3.687983 9.446028 2.591408

H -0.354424 23.245455 4.633092

H -2.285334 19.784772 2.09983

H 4.09379 15.010026 3.727878

H 6.045689 18.463388 6.255943

H 3.82054 22.589727 6.719138

H -6.217346 10.282031 -3.986207

H -6.228614 18.014936 -1.471561

H -10.26231 18.768758 -3.774527

H -12.275438 15.269356 -6.203192

H -10.24744 11.018454 -6.301641

H -2.344419 -4.23998 1.020617

H 5.209173 -7.015803 -0.354873

H -0.891515 0.180366 0.646032

H 9.838504 -4.918575 -1.308276

H 13.469238 -2.002532 -2.068698

H 12.813933 2.642674 -2.1252

H 8.55785 4.498303 -1.388634

H -3.611312 -12.173389 4.214673

H -1.921305 -7.82575 3.839363

H 2.407516 -9.908419 -2.763761

H 0.360507 -21.901475 -5.303959

H -2.179228 -20.957797 -1.455816

H 3.122472 -14.22069 -5.564095

H 2.971856 -18.584845 -7.348278

H -6.463967 -18.275442 -0.622972

H -9.352153 -20.657199 2.236472

H -8.357568 -21.006776 6.832339

H -4.44785 -19.004344 8.537581

H -1.528393 -16.697566 5.641098

xxxvii



Table F.6: Output coordinates for structure BTCz-2CN from the DFT

calculation in COSMO solvation model. Coordinates are in atomic

units.

Atom X Y Z

C -1.072388 -0.802447 -9.508

C 1.072388 0.802447 -9.508

C 2.085363 1.615061 -7.208611

C 1.043716 0.846785 -4.910865

C -1.043716 -0.846785 -4.910865

C -2.085363 -1.615061 -7.208611

C 2.189399 1.633326 -11.809947

C -2.189399 -1.633326 -11.809947

N 2.077955 1.767097 -2.645237

N -2.077955 -1.767097 -2.645237

C 4.490413 1.165189 -1.736672

C 4.58393 1.785422 0.863

C 2.166276 2.822911 1.549026

C 0.670297 2.81775 -0.670578

C -0.670297 -2.81775 -0.670578

C -2.166276 -2.822911 1.549026

C -4.58393 -1.785422 0.863

C -4.490413 -1.165189 -1.736672

C 1.125743 3.738896 3.804577

C -1.348546 4.637472 3.788833

C -2.763749 4.704568 1.544419

C -1.76237 3.824452 -0.724986

C 1.76237 -3.824452 -0.724986

C 2.763749 -4.704568 1.544419

C 1.348546 -4.637472 3.788833

C -1.125743 -3.738896 3.804577

C -6.500196 0.001516 -3.006126

C -6.793626 -1.187485 2.19162

C -8.846625 -0.008548 0.953645

C -8.666085 0.568435 -1.639966

C 6.500196 -0.001516 -3.006126

C 8.666085 -0.568435 -1.639966

C 8.846625 0.008548 0.953645

C 6.793626 1.187485 2.19162

S -7.365009 -1.698512 5.40635

C -10.383876 -0.341313 5.153521

C -10.921636 0.475614 2.66428

C 10.921636 -0.475614 2.66428

C 10.383876 0.341313 5.153521

S 7.365009 1.698512 5.40635

C 13.268892 -1.613926 2.17954

C 15.000741 -1.914408 4.133061

C 14.429977 -1.089626 6.588981

C 12.116551 0.046544 7.122449

C -13.268892 1.613926 2.17954

C -12.116551 -0.046544 7.122449

C -14.429977 1.089626 6.588981

C -15.000741 1.914408 4.133061

N -3.132824 -2.322801 -13.686776

N 3.132824 2.322801 -13.686776

H 3.692493 2.905659 -7.198911

H -3.692493 -2.905659 -7.198911

H 2.22346 3.744112 5.550979

H -2.194681 5.322118 5.541953

H -4.690604 5.443902 1.568812

H -2.854005 3.885768 -2.471144

H 2.854005 -3.885768 -2.471144

H 4.690604 -5.443902 1.568812

H 2.194681 -5.322118 5.541953

H -2.22346 -3.744112 5.550979

H -6.364954 0.498852 -5.0009

H -10.252919 1.484653 -2.588322

H 6.364954 -0.498852 -5.0009

H 10.252919 -1.484653 -2.588322

H 13.719896 -2.255957 0.269589

H 16.826788 -2.798788 3.752324

H 15.810752 -1.335855 8.103888

H 11.669277 0.690224 9.031488

H -13.719896 2.255957 0.269589

H -11.669277 -0.690224 9.031488

H -15.810752 1.335855 8.103888

H -16.826788 2.798788 3.742324

xxxviii



Table F.7: Output coordinates for structure Cz2BP from the DFT

calculation in COSMO solvation model. Coordinates are in atomic

units.

Atom X Y Z

C 4.48575 10.571718 -0.559983

C 6.174775 12.417613 -1.381715

C 5.329571 14.714139 -2.418274

C 2.756645 15.205362 -2.668411

C 1.019122 13.382219 -1.857204

C -1.699395 13.251955 -1.873379

C -3.596917 14.929754 -2.640281

C -6.115114 14.227164 -2.343243

C -6.748806 11.881037 -1.267665

C -4.898334 10.177202 -0.487314

C -2.373081 10.878382 -0.821639

N -0.170435 9.585933 -0.175441

C 1.904514 11.086758 -0.789212

C -0.072744 7.187209 0.989945

C 1.205922 6.881118 3.291594

C -1.285166 5.119082 -0.13059

C -1.213721 2.76536 1.038988

C 0.05086 2.439714 3.347995

C 1.24642 4.532124 4.458706

C 0 0 4.762811

C -0.05086 -2.439714 3.347995

O 0 0 7.090973

C -1.205922 -6.881118 3.291594

C -1.24642 -4.532124 4.458706

C 1.213721 -2.76536 1.038988

C 1.285166 -5.119082 -0.13059

C 0.072744 -7.187209 0.989945

N 0.170435 -9.585933 -0.175441

C -1.904514 -11.086758 -0.789212

C -1.019122 -13.382219 -1.857204

C 1.699395 -13.251955 -1.873379

C 2.373081 -10.878382 -0.821639

C -4.48575 -10.571718 -0.559983

C -6.174775 -12.417613 -1.381715

C -5.329571 -14.714139 -2.418274

C -2.756645 -15.205362 -2.668411

C 6.115114 -14.227164 -2.343243

C 6.748806 -11.881037 -1.267665

C 4.898334 -10.177202 -0.487314

C 3.596917 -14.929754 -2.640281

H 5.158937 8.789464 0.229959

H 8.202033 12.061634 -1.21756

H 6.708931 16.118834 -3.038366

H 2.088664 16.977141 -3.492346

H -3.094916 16.761927 -3.449677

H -7.616747 15.513262 -2.936069

H -8.736724 11.376226 -1.028936

H -5.404211 8.36748 0.361984

H 2.125328 8.504475 4.172078

H -2.273021 5.364499 -1.924794

H -2.183215 1.173518 0.15396

H 2.191922 4.295579 6.277737

H -2.125328 -8.504475 4.172078

H -2.191922 -4.295579 6.277737

H 2.183215 -1.173518 0.15396

H 2.273021 -5.364499 -1.924794

H -5.158937 -8.789464 0.229959

H -8.202033 -12.061634 -1.21756

H -6.708931 -16.118834 -3.038366

H -2.088664 -16.977141 -3.492346

H 7.616747 -15.513262 -2.936069

H 8.736724 -11.376226 -1.028936

H 5.404211 -8.36748 0.361984

H 3.094916 -16.761927 -3.459677

xxxix



Table F.8: Output coordinates for structure SPXZPO from the DFT

calculation in COSMO solvation model. Coordinates are in atomic

units.

Atom X Y Z

C 2.716328 7.074329 0.459772

C 1.993844 8.344205 2.668411

C 3.832036 9.246156 4.333369

C 6.391851 8.897558 3.79978

C 7.118765 7.649539 1.588274

C 5.292448 6.743577 -0.080501

P 0.447624 5.799874 -1.81394

O 1.070717 6.436869 -4.547362

C -2.666324 6.940624 -0.846483

C -4.034027 5.857499 1.148094

C -6.384669 6.844767 1.82116

C -7.382629 8.906169 0.506811

C -6.031516 9.975131 -1.492411

C -3.678607 8.99776 -2.17264

C 0.414149 2.39129 -1.207779

C -0.286379 0.794976 -3.201501

C -0.381636 -1.809929 -2.838363

C 0.216195 -2.825552 -0.474787

C 0.928141 -1.248932 1.519478

C 1.036919 1.357346 1.149465

N 0.114018 -5.4924 -0.107841

C 2.26218 -6.969432 -0.549174

C 4.603882 -5.93278 -1.217007

C 6.700555 -7.487986 -1.630847

C 6.490084 -10.099544 -1.395019

C 4.158296 -11.159925 -0.734665

C 2.07836 -9.616596 -0.317357

O -0.158029 -10.794615 0.324396

C -2.248675 -9.305057 0.77988

C -4.465931 -10.539933 1.444035

C -6.667645 -9.154727 1.924785

C -6.609158 -6.531191 1.740753

C -4.375078 -5.285495 1.073802

C -2.162087 -6.649828 0.576359

H -0.005426 8.633938 3.093717

H 3.255477 10.236346 6.052192

H 7.826509 9.607569 5.105472

H 9.121379 7.383941 1.156876

H 5.867259 5.77765 -1.813803

H -3.270164 4.236971 2.174679

H -7.445581 5.993236 3.375639

H -9.226477 9.673605 1.034661

H -6.815226 11.576441 -2.535449

H -2.625057 9.815775 -3.749628

H -0.737118 1.600833 -5.048992

H -0.916646 -3.075393 -4.378546

H 1.404627 -2.081987 3.346779

H 1.618419 2.585799 2.704009

H 4.779005 -3.888331 -1.415494

H 8.502536 -6.623372 -2.145678

H 8.118542 -11.325114 -1.715769

H 3.913781 -13.199409 -0.532554

H -4.433028 -12.599868 1.569557

H -8.406096 -10.140369 2.438014

H -8.307865 -5.417932 2.107863

H -4.343129 -3.229512 0.916097

xl



Table F.9: Output coordinates for structure TCzTrz from the DFT

calculation in COSMO solvation model. Coordinates are in atomic

units.

Atom X Y Z

C 0.856333 4.488878 11.034203

C 1.185178 6.774004 9.720314

C 1.613381 9.012028 11.036322

C 1.724161 9.001253 13.674928

C 1.407627 6.735147 14.993841

C 0.974819 4.492243 13.687607

C 0.394319 2.112318 9.641807

N 0.397043 2.21114 7.103649

C 0 0 5.933267

N -0.397043 -2.21114 7.103649

C -0.394319 -2.112318 9.641807

N 0 0 10.991363

C -0.856333 -4.488878 11.034203

C -0.974819 -4.492243 13.687607

C -1.407627 -6.735147 14.993841

C -1.724161 -9.001253 13.674928

C -1.613381 -9.012028 11.036322

C -1.185178 -6.774004 9.720314

C 0 0 3.138428

C 0.358143 2.25193 1.800519

C 0.35298 2.272283 -0.831062

C 0 0 -2.199131

C -0.35298 -2.272283 -0.831062

C -0.358143 -2.25193 1.800519

N -0.711404 -4.585549 -2.107826

C 0.919823 -6.650316 -1.959826

C 3.077362 -6.981918 -0.476031

C 4.425236 -9.225711 -0.771693

C 3.651028 -11.092479 -2.496969

C 1.499253 -10.745997 -3.972815

C 0.112528 -8.507742 -3.715488

C -2.117272 -7.530299 -4.936779

C -3.762708 -8.491936 -6.772868

C -5.833755 -7.045657 -7.510045

C -6.297549 -4.675855 -6.401641

C -4.695627 -3.682714 -4.564734

C -2.585827 -5.111063 -3.883977

N 0 0 -4.852951

C -1.693363 1.317202 -6.391306

C -3.778969 2.780466 -5.716216

C -5.225576 3.813133 -7.658282

C -4.622521 3.387458 -10.209629

C -2.561221 1.889157 -10.869104

C -1.078325 0.832058 -8.950682

C 1.078325 -0.832058 -8.950682

C 2.561221 -1.889157 -10.869104

C 4.622521 -3.387458 -10.209629

C 5.225576 -3.813133 -7.658282

C 3.778969 -2.780466 -5.716216

C 1.693363 -1.317202 -6.391306

N 0.711404 4.585549 -2.107826

C -0.919823 6.650316 -1.959826

C -3.077362 6.981918 -0.476031

C -4.425236 9.225711 -0.771693

C -3.651028 11.092479 -2.496969

C -1.499253 10.745997 -3.972815

C -0.112528 8.507742 -3.715488

C 2.117272 7.530299 -4.936779

C 3.762708 8.491936 -6.772868

C 5.833755 7.045657 -7.510045

C 6.297549 4.675855 -6.401641

C 4.695627 3.682714 -4.564734

C 2.585827 5.111063 -3.883977

H 1.098313 6.771243 7.66058

H 1.859748 10.778719 9.996887

H 2.058198 10.760724 14.703569

H 1.499051 6.71668 17.056487

H 0.73071 2.716835 14.706512

H -0.73071 -2.716835 14.706512

H -1.499051 -6.71668 17.056487

H -2.058198 -10.760724 14.703569

H -1.859748 -10.778719 9.996887

H -1.098313 -6.771243 7.66058

H 0.676532 4.015651 2.815362

H -0.676532 -4.015651 2.815362

H 3.694029 -5.535864 0.85898

H 6.118275 -9.533901 0.369246

H 4.752513 -12.828598 -2.678366

H 0.89908 -12.184978 -5.32679

H -3.420485 -10.351006 -7.603509

H -7.127614 -7.764752 -8.948617

H -7.94777 -3.581009 -6.984861

H -5.082977 -1.859828 -3.688812

H -4.285052 3.088679 -3.744081

H -6.858276 4.980827 -7.175249

H -5.793741 4.229408 -11.68612

H -2.109055 1.522296 -12.850125

H 2.109055 -1.522296 -12.850125

H 5.793741 -4.229408 -11.68612

H 6.858276 -4.980827 -7.175249

H 4.285052 -3.088679 -3.744081

H -3.694029 5.535864 0.85898

H -6.118275 9.533901 0.369246

H -4.752513 12.828598 -2.678366

H -0.89908 12.184978 -5.32679

H 3.420485 10.351006 -7.603509

H 7.127614 7.764752 -8.948617

H 7.94777 3.581009 -6.984861

H 5.082977 1.859828 -3.698812
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Table F.10: Output coordinates for structure TMCPOB from the DFT

calculation in COSMO solvation model. Coordinates are in atomic

units.

Atom X Y Z

C 3.898942 -7.12229 -2.814511

C 5.686999 -8.984907 -3.373686

C 5.657163 -11.45742 -2.368425

C 3.721803 -12.115344 -0.711768

C 1.886476 -10.316984 -0.073624

C 1.971116 -7.849167 -1.115903

C -3.653284 -7.500515 2.910649

C -1.461488 -8.022548 1.478813

C -0.279837 -10.426355 1.561922

C -1.26275 -12.361282 3.078742

C -3.419669 -11.910434 4.516405

C -4.54873 -9.494608 4.39473

N -0.091951 -6.492563 -0.179716

C 4.091628 -4.562476 -4.022274

C -5.012902 -5.011502 2.901947

C -4.548823 -13.917781 6.173542

C 7.681162 -13.306018 -3.101252

C -0.420785 -3.83728 -0.448084

C -0.992214 1.425045 -0.974881

C 0.506073 0.380085 0.972328

C 0.800827 -2.203208 1.252386

C -1.922172 -2.905913 -2.384299

C -2.190903 -0.284558 -2.628123

C -3.069303 4.943321 -3.633945

B -1.351425 4.278044 -1.392297

O -3.685759 0.469044 -4.590933

C -4.109814 2.970857 -5.093121

C -5.188635 7.936009 -6.448609

C -3.661975 7.440552 -4.376875

C -5.659503 3.431908 -7.191944

C -6.181906 5.914836 -7.856786

C -0.008593 6.293528 0.324805

C 3.63964 8.914927 1.266657

C 2.510661 9.794487 3.492892

C 0.102103 8.8955 4.101392

C -1.171002 7.16355 2.555928

C 2.42046 7.186827 -0.318067

C -3.781753 6.210862 3.282503

C -3.711691 4.620785 5.69263

C -5.709669 8.353292 3.453588

C 3.715561 6.239607 -2.702137

C 5.99575 4.577134 -2.083462

C 4.394385 8.388254 -4.506379

C 3.854796 11.666176 5.196249

C 6.290185 10.557957 6.288044

C 4.34129 14.17651 3.84998

H 7.203306 -8.483535 -4.688347

H 3.633989 -14.014067 0.097983

H -0.334304 -14.206187 3.126517

H -6.243522 -9.150113 5.529461

H 4.288492 -3.041108 -2.618326

H 2.402197 -4.114288 -5.147834

H 5.73963 -4.487343 -5.282106

H -5.673406 -4.502302 0.997491

H -3.796452 -3.451659 3.542915

H -6.665147 -5.09217 4.155831

H -3.451114 -15.678488 6.088173

H -4.620442 -13.306275 8.162462

H -6.503675 -14.356927 5.605988

H 7.731345 -13.597679 -5.162182

H 9.566887 -12.623256 -2.540955

H 7.382263 -15.155075 -2.204294

H 1.451413 1.674148 2.27524

H 1.9652 -3.005232 2.754865

H -2.864331 -4.184537 -3.698545

H -5.619532 9.880569 -6.992833

H -2.869388 8.994065 -3.26732

H -6.420728 1.839517 -8.261503

H -7.38484 6.289686 -9.493603

H 5.522205 9.596922 0.752133

H -0.800889 9.573533 5.834477

H -4.417567 4.949769 1.743905

H -5.597677 3.853303 6.126323

H -3.098696 5.753799 7.328702

H -2.39479 3.021641 5.497869

H -7.608522 7.605973 3.863341

H -5.217542 9.694799 4.96756

H -5.80559 9.416102 1.667369

H 2.33953 5.029289 -3.702876

H 6.855234 3.82237 -3.823075

H 7.459275 5.652954 -1.064747

H 5.443909 2.964799 -0.888926

H 5.205626 7.640233 -6.271053

H 5.795127 9.676644 -3.662552

H 2.711992 9.510374 -4.996448

H 2.57109 12.050502 6.794517

H 7.180807 11.893275 7.613604

H 7.67347 10.144989 4.787437

H 5.91758 8.785049 7.31062

H 5.205708 15.556312 5.14712

H 5.637873 13.932188 2.238963

H 2.572383 14.993945 3.111692

xlii
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