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Abstract

Finding operation and maintenance (O&M) strategies that increase the profitability of an off-
shore wind farm is essential in order to be competitive with other sources of renewable energy.
An O&M strategy is characterized by a set of decision variables, such as vessel fleet and the
number of available technicians. The presence of uncertain variables that influence the prof-
itability of an O&M strategy, such as varying weather conditions, makes the search for good
strategies difficult. Information about the uncertain variables will help to find good strategies,
but such knowledge often comes with a price. It is therefore of great interest to find out whether
buying information is a worthwhile investment.

By utilizing a simulation tool, the profitability of different O&M strategies can be inves-
tigated. The set of possible strategies are, however, large so that only a small subset may be
explored. Bayesian optimization with a Gaussian process surrogate model is therefore used to
find favorable O&M strategies in a high dimensional input space. After obtaining these strate-
gies, the value of information for an interrelated uncertain variable was estimated. The search
for favorable O&M strategies and estimation of the value of information for the failure rate
for a wind turbine component category is demonstrated in a relevant case from the offshore
wind industry. The strategies identified from the Bayesian optimization appear reasonable and
the estimated value of information suggests that information gathering could be worthwhile,
depending on the price of the information.
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Sammendrag

For at offshore vindenergi skal være et konkurransedyktig alternativ til andre kilder til forny-
bar energi, er det viktig å finne drift- og vedlikeholdstrategier som øker lønnsomheten. En
strategi kjennetegnes av et sett av beslutningsvariabler som fartøysflåte eller antall tilgjengelige
teknikere. Usikre variabler som påvirker lønnsomheten til en strategi, for eksempel varierende
værforhold, gjør det vanskelig å søke etter gode strategier. Informasjon om de usikre variablene
vil bidra til å finne gode strategier, men slik kunnskap kommer ofte med en pris. Vi er derfor
interessert i finne ut om kjøp av informasjon kan være en god investering.

Ved å bruke et simuleringsverktøy kan lønnsomheten til forskjellige strategier undersøkes.
Det er imidlertid mange mulig strategier, slik at bare en liten del av mulighetsrommet kan
utforskes. Bayesiansk optimering med en Gaussisk prosess surrogatmodell brukes til å finne
gunstige strategier i et høy-dimensjonalt variabelrom. Etter å ha funnet disse strategiene ble
verdien av informasjon for en relatert usikker variabel estimert. Søket etter gunstige strategier
og estimering av verdien av informasjonen for en feilrate for en komponentkategori i en vin-
dturbin er demonstrert i et relevant eksempel fra offshore vindindustri. Strategiene funnet fra
Bayesiansk optimering synes å være rimelige, og den estimerte verdien av informasjon tyder på
at innsamling av informasjon kan være profitabelt, avhengig av prisen på informasjonen.
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Chapter 1
Introduction

1.1 Background and Motivation

The costs related to operation and maintenance (O&M) tasks constitute a major part of the
overall expenses of an offshore wind farm. According to Welte et al. (2018), the O&M cost of
an offshore wind turbine lies between 12-32% of the total income it provides. The electricity
generated by offshore wind turbines is estimated to be 2.6 times more expensive than electricity
generated by onshore wind turbines (Shafiee, 2015). Therefore, if we want offshore wind power
to be competitive with other sources of renewable energy such as onshore wind, the costs related
to O&M tasks must be reduced.

A strategy for O&M consists of several decisions, such as

• Location of the harbor, e.g distance to the wind farm

• Vessel fleet mix

• Number of technicians

In addition to the decision problems, we must also consider the vast amount of uncertainty
involved. Some of the uncertainties are

• Wave height

• Wind speed

• Component failure rates.

From the mentioned examples of uncertainties and O&M strategy decisions, it is clear that they
are interrelated. A good strategy for a location with rough weather might consist of robust ves-
sels that can handle high waves and wind speeds, but travels at lower speeds. Locations with
calm weather might favor travel speed above robustness. Typically a location will experience
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Chapter 1. Introduction

both rough and calm weather, so a good O&M strategy must find a balance between the dif-
ferent weather conditions. Similarly, a wind farm where turbines are frequently breaking down
requires a good amount of technicians and vessels, while a wind farm with few failures can
perform O&M tasks with fewer technicians and vessels. Again, a good strategy must find a
balance that works well on average.

Because of the mentioned interrelations, it is of interest to know as much as possible about
the uncertain variables before choosing an O&M strategy. For instance, in the planning phase
of a wind farm, it would be of interest to locate and orientate the wind farm so that the power
production is maximized. A key uncertainty here is the wind direction. It might be possible to
retrieve some information about historical wind directions so that the turbines are oriented the
way that gives the highest expected revenue.

Another important uncertainty that we will focus on in this thesis is the component failure
rates. Failures of different severity will occur from time to time, and they require both techni-
cians and a vessel. The frequency of these failures is therefore of great interest when the number
of technicians and vessels shall be decided. The manufacturer of a particular component might
provide an estimate of the failure rate, but trusting this estimate might be a bit naive. The master
thesis by Haraldsdottir and Sandstrom (2016) concludes that the lifetime of the main bearing
depends heavily on the wind speed. The lifetime is shortest at the rated wind speed, which is the
lowest wind speed at which the turbine reaches the highest possible power output. For higher
and lower wind speeds the component lifetime is higher. Assuming that other components have
failure rates that depend on the operating conditions, e.g. temperature or humidity therefore
seems reasonable.

The search for favorable O&M strategies requires an understanding of the relationship be-
tween input, e.g O&M strategies, and output, e.g profit of wind farm. This understanding can be
acquired by performing experiments. Physical experiments are intractable since it will require
a lot of trial and error before a good, and probably sub-optimal O&M strategy is found. This
motivates the use of simulation models, that mimic these physical experiments and provide the
desired understanding. Several simulation tools for offshore wind farms have been developed,
see for instance Hofmann (2011) for an overview. We will use NOWIcob (Norwegian offshore
wind power life cycle cost and benefit model) simulation tool in this thesis.

Much work has been done in the context of finding good O&M strategies for offshore wind
farms using NOWIcob. For instance, in Sperstad et al. (2016) three decision problems with the
aim to optimize the O&M strategies are investigated. In the master thesis by Gallala (2016), ar-
tificial neural networks are used as a surrogate model in order to find favorable O&M strategies.
These contributions focus only on finding optimal O&M strategies. They do not look at the
possibility of gathering information about uncertain variables that could improve the suggested
optimal O&M strategy. The lack of such studies motivates this thesis.
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1.2 Optimization and Surrogate Models

1.2 Optimization and Surrogate Models

By performing several experiments, or simulations, with different inputs we can relate O&M
strategies and the profit. However, the simulations in NOWIcob are time-consuming, so we
can only explore a subset of possible input combinations. If we, for instance, want to find the
strategy that maximizes the profit, without excessive evaluations, we can use Bayesian opti-
mization. In this approach, a statistical model is used to approximate the relation between input
and output to search for the global optima. The statistical model is fast to evaluate, which means
that a search for the approximate global optima can be done efficiently. Bayesian optimization
has a wide range of applications, for instance recommendation systems and speech recognition
(Shahriari et al., 2016).

In this thesis, we will approximate the relationship between O&M strategies and the profit
with a Gaussian process (GP). GPs are a popular tool for approximating unknown functions
because of advantages such as the flexibility to input variables, ease of interpretation and the
model provides uncertainty estimates. Other choices for surrogate model exists, for instance,
artificial neural networks (Gallala, 2016). Artificial neural networks are more flexible to the
input variables than GPs, but are more difficult to interpret and do not provide uncertainty
estimates.

For efficient optimization of the approximation, we choose points for evaluation that are
more promising based on the GP. We will discuss two methods for choosing new points here,
probability of improvement and expected improvement. Optimizing the statistical approxima-
tion is done by sequentially evaluating new points, then fit a GP to the observations, use this GP
to select new points for evaluation, and so on.

1.3 Value of Information

When an approximate relation is established for all alternatives and failure rates, we can com-
pare strategies with and without the knowledge about the failure rate. We can then calculate an
estimate of what we expect the profit to be when we know the failure rate and the profit aver-
aged over different failure rates when the failure rate is unknown. The difference in these two
estimates is the value of information (VOI), which is the main focus of this thesis. If we know
the failure rate, we are likely to find a more optimal O&M strategy than without this knowledge.
However, we will only gather this information if its price is less than our estimate of its value.

A thorough introduction to VOI and its application to the earth sciences can be found in Ei-
dsvik et al. (2015). Other contexts where VOI analysis have been shown useful is the petroleum
industry (Bratvold et al., 2009) and hydropower production (Ødegård et al., 2017). VOI analysis
has not yet received much attention in the context of offshore wind farms. Seyr and Muskulus
(2016) estimates the value of knowing the repair times for wind turbines, which can be used to
improve the scheduling of maintenance. This was a high-level study only considering a small
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Chapter 1. Introduction

subset of possible vessel fleet mix and number of technicians.

1.4 Contribution and Outline of Thesis

The main focus in this thesis is the estimation of the VOI for a component failure rate in off-
shore wind farms. Knowledge about the failure rate will help us finding more optimal O&M
strategies which will make offshore wind power more competitive. Earlier work focuses on
finding favorable O&M strategies, where it is assumed that the failure rate is fixed. It is rea-
sonable to assume that the failure rate is unknown and that information about this quantity is
available.

The rest of this thesis is outlined as follows: In Chapter 2 Bayesian optimization is dis-
cussed. GPs are introduced in Section 2.2, with focus on how we can approximate an unknown
function. Methods for selection of new points for efficient optimization of the unknown function
is provided in Section 2.3. In Chapter 3 decision theory is briefly introduced and the concept of
VOI in a decision situation is discussed. Analytic expressions for VOI are developed in Section
3.2, and estimation of VOI is discussed in Section 3.3. In Section 4 NOWIcob is introduced and
in Section 4.2 we formulate the O&M decision problem, and how the VOI can be estimated in
this case. Results from this case study are presented in Chapter 5. In Chapter 6 the key findings
in this thesis are presented and some suggestions to further work are provided.
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Chapter 2
Bayesian Optimization

2.1 Introduction

Function optimization is of interest in many technical and scientific applications, and is a widely
studied field in mathematics. We consider an objective function f : X → R, that we want to
maximize on a domain Ω ⊂ X . That is, we want to find

x∗ = argmax
x∈Ω

f(x), (2.1)

where boldface is used to emphasize that x is a vector. If the function and the gradient of the
function are known, we can use one of many existing algorithms for maximizing f , for instance
gradient descent or BFGS (Snyman, 2005). If the gradient is unknown, there are also existing
algorithms, such as grid search or random search. In some cases, there exists no analytical
expression for the function, and evaluations of f are typically time-consuming. Such functions
are often referred to as ”black-box functions”, and optimization of these are more complicated.
Bayesian optimization is a strategy for optimizing a black-box function in a sequential way.

The idea with Bayesian optimization is to use a surrogate model for f , that is a statistical
approximation, and try to optimize this instead of f . There are many options for the surro-
gate model in the context of Bayesian optimization, for instance polynomial regression models
(Queipo et al., 2005), artificial neural networks (Snoek et al., 2015) and Gaussian processes
(Snoek et al., 2012). Gaussian processes (GPs) are perhaps the most popular choice for surro-
gate model and is what we will use in this thesis. The second part of Bayesian optimization is
to use acquisition functions to determine where to evaluate the function next so that the number
of evaluations is kept to a minimum. Since a function evaluation is expensive, we want a mech-
anism that helps us explore the areas where f is expected to be high. This exploration is done
with respect to the fitted surrogate model.

GPs will be introduced in Section 2.2 and in Section 2.3, two acquisition functions will be
derived and their weaknesses and strengths will be discussed. To get a better understanding of
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Chapter 2. Bayesian Optimization

Figure 2.1: Plot of the function in (2.2). Global and local maximums are indicated.

the presented topics a running example will be used and is presented in the following.

2.1.1 Running Example

We will consider a function f : Ω→ R given by

f(x) =
1

2
cos(2x) +

1

2
sin(3x) +

1

4
cos(2.5x), 0 ≤ x ≤ 2π. (2.2)

A plot of (2.2) is shown in Figure 2.1. We observe that the function has one global optimum
and three local optimas, so it is not a straight forward function to optimize.

In Section 2.2 we will treat f(x) as an unknown function and try to fit a GP model when
we have some observations/evaluations from this function. In Section 2.3 we will see how
new samples should be drawn in order to find the point that maximizes this assumed unknown
function.

2.2 Gaussian Processes

In this section, we will introduce Gaussian processes, and see how they may be used to create a
statistical approximation to an unknown function f given some training data/evaluations. First,
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2.2 Gaussian Processes

we will look at a basic GP with a simple mean and covariance function and see how we can use
this model to generate a random function. Next, we will see how evaluations of the unknown
function can be used to fit a GP. From there we move on to introducing hyperparameters in
Section 2.2.1 that makes the model more adaptive to different types of functions, input data,
covariance structures and noise. Finally, in Section 2.2.2, some more advanced aspects of GPs
will be briefly discussed.

A GP is defined as a stochastic process, where every finite subset of elements has a multi-
variate normal distribution (Rasmussen, 2004). A GP is fully specified by its mean function,
µ(x), and covariance function, Σ(x,x′) for all x,x′ ∈ Ω, and will be denoted here as

Y ∼ GP(µ,Σ). (2.3)

This can be seen as a generalization of a Gaussian distribution where the mean is a vector and
the covariance is a matrix (Rasmussen, 2004). A GP can be thought of as a distribution over
functions, while a Gaussian distribution is over vectors. GPs are therefore suitable to perform
regression on unknown functions.

A key ingredient in the specification of a GP is the covariance structure, often given by
the covariance function depending on the distance between points. The choice of covariance
function encodes our prior knowledge about the unknown function, f , in particular the spatial
dependency between variables. It will also, to some extent, determine the shape of the estimated
function, as we will see later in an example in Section 2.2.2. A covariance function is a function
of two p-dimensional variables, x,x′ ∈ Ω, that gives us the covariance between the function
value at these two points in space. One widely used class of covariance function is the stationary
covariance functions, which are a function of the Euclidean distance d = ‖x − x′‖ between
two points. Consider the following covariance function,

Cov(Y (x), Y (x′)) = Σ(x,x′) = exp
{
−‖x− x′‖2

}
, (2.4)

known as the squared exponential. This means that the covariance between Y (x) and Y (x′)

decays as x and x′ becomes farther apart in space. Note that Σ(x,x) = 1 and that Σ(x,x′) < 1

for x 6= x′. The covariance function in (2.4) is a special case of the more advanced covariance
functions we will look at in Section 2.2.1, where we allow Σ(x,x′) > 1. The covariance
function may take many different forms, but the function must produce a positive definite matrix
to be a valid covariance matrix in a multivariate normal distribution.

To see how a GP can be used to perform regression, we will first see how they can be used
to generate random data that follows a smooth functional relationship. Suppose we have

• A set of x-values, (x1, ..., xn), where xi is a scalar, not vector.

• A mean function, µ(xi) = 0 for i = 1, ..., n

• A covariance matrix Σ, where each entry Σij = Σ(xi, xj) is given by (2.4)

7



Chapter 2. Bayesian Optimization

Figure 2.2: One realization of a GP with zero mean and covariance structure given in (2.4). The red
lines indicate the 2.5% and 97.5% quantile of the N(0, 1) distribution.

Then we can draw an n-variate realization from a multivariate normal distribution, Y ∼ Nn(0,Σn),
and plot the result for visualization. The realization can be seen in Figure 2.2. We observe that
the function is smooth over the whole domain, and that Y lies between the horizontal red lines
for most x-values. This is because the scale of the covariance is 1, so a 95% confidence interval
for Y is then [−1.96, 1.96]. The smoothness is because of the choice of covariance function,
making points close to each other highly correlated. Points far apart are essentially uncorrelated.

We are now able to generate samples from a random function, Y (x) ∼ GP(µ,Σ). Assume
next that we have evaluations of a function via observation pairs, Dn = {Xn, Yn)}. Here, Xn is
a n× p matrix, where n is the number of observations and p is the number of variables. Yn is a
n× 1 vector with function values. We are then interested in knowing the random function that
could explain those values and predict future values. That is, we are interested in the conditional
distribution Y (x) | Dn. If Y (x) ∼ GP(µ,Σ) is the prior, then Y (x) | Dn is the posterior. We
recall from the definition of a GP that every finite subset of observations has a multivariate
normal distribution specified by the mean and covariance function. Therefore, Y (x) and Dn
have a joint multivariate normal distribution. The posterior, Y (x) | Dn, is thus also multivariate
normal. The conditional mean and covariance for a multivariate normal distribution are well
known, but we will include it here for the sake of completeness. If we have a random vector x,
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2.2 Gaussian Processes

and we partition it as

x =

(
x1

x2

)
, (2.5)

with mean and covariance matrix

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, (2.6)

then the conditional distribution x1 | x2 is multivariate normal with mean and covariance,

µ̄ = µ1 + Σ12Σ−1
22 (x2 − µ2),

Σ̄ = Σ11 − Σ12Σ−1
22 Σ21.

(2.7)

We can use this to derive the posterior mean and covariance for Y (x) | Dn. Let Ω denote the set
of feasible x-locations, and Xn is the locations that are already evaluated with corresponding
values Yn. We can then state the conditional distribution as

Y (Ω) | Dn ∼ Nm (µ(Ω),Σ(Ω)) , (2.8)

where

µ(Ω) = Σ(Ω, Xn)Σ(Xn, Xn)−1Yn,

Σ(Ω) = Σ(Ω,Ω)− Σ(Ω, Xn)Σ(Xn, Xn)−1Σ(Xn,Ω).
(2.9)

Here, Σ(Ω,Ω) is the m ×m covariance matrix for the unobserved locations in Ω, where m is
the number of feasible unobserved points, Σ(Xn, Xn) is the n × n covariance matrix for the
locations Xn that are observed, and Σ(Xn,Ω) = Σ(Ω, Xn)T is the covariance matrix for the
unobserved and observed locations. We now have the posterior GP

Y (Ω) | Dn ∼ GP(µ(Ω),Σ(Ω)). (2.10)

Consider again the running example defined in (2.2). We will use a GP prior and use n = 6

observations to find the posterior GP. We will use prior mean µ = 0 and the covariance function
in (2.4). By using the equations in (2.9) we find the posterior mean and covariance for x ∈ Ω,
which is the grid from x = 0 to x = 2π with step size 2π

100
. The posterior mean with a 95%

confidence interval and the true function is plotted in Figure 2.3. We see that the posterior mean
interpolates the observed points of the true function, and to some extent captures the shape of
f(x). We expect f(x) to be within the confidence interval in 95% of the domain, which it also
is with a good margin. We observe that the uncertainty gets larger far from observations.

In Figure 2.4, we see the same as in Figure 2.3, but we have extended the set of feasible
points a bit. The observations are the same as before. We see that the mean goes to zero, which
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Chapter 2. Bayesian Optimization

Figure 2.3: Posterior mean, 95% confidence interval and the true function, f . The observed values of f
is plotted as black points.

is the prior value, when the distance to the nearest observation increases. This is because we are
in an area where we know very little about the unknown function since we have no observations,
and our best guess about it is the prior. Also, the upper and lower confidence bound converges
toward a limit, namely the 2.5% and 97.5% quantiles. We should, therefore, be careful to trust
predictions far outside the range of our observations.

2.2.1 Gaussian Process Hyperparameters

Thus far we have only considered somewhat simple GPs, and we have not estimated a sin-
gle parameter yet. Introducing parameters may provide a better fit for our GP to the observed
examples, but will also make the fitting process more complicated. We will in the following
sections introduce three types of hyperparameters - scale, nugget and length scale. The scale
parameter handles process variability, allowing the covariance to be larger than one. The nugget
parameter is a way of handling noisy observations, as is often the case. The length scale param-
eter is an extension to the covariance function so that it takes variables having different spatial
dependence into account.

10



2.2 Gaussian Processes

Figure 2.4: Posterior mean and 95% confidence interval for an extended grid. Both the posterior mean
and the confidence interval flat out when the distance to the nearest observation increases.

Scale

The covariance function introduced in the previous section had one drawback - the covariance
was bounded to be lower than or equal to 1. In practice, we need a way to scale the variability
in the process. As a motivation, consider the following modification of the running example.
Assume that the true function is scaled by a factor of ten, that is

f(x) = 10 ·
(

1

2
cos(2x) +

1

2
sin(3x) +

1

4
cos(2.5x)

)
. (2.11)

If we now obtain some evaluations from this function and use the formulas for the posterior
mean and covariances that are given in (2.9) and plot the result, we get the plot in Figure 2.5.
We see that the mean is still interpolating the observed values, but there is something wrong
with the uncertainty. The true function lies mostly outside the 95% confidence interval, which it
should not. The uncertainty is clearly underestimated. The reason for this is that the covariance
function we use is not adequate for this function. The prior covariance matrix does only have
entries that are smaller than, or equal to 1. From the equations in (2.9) we see that the posterior
covariance is always smaller than the prior covariance. Therefore, since the prior covariance is
bounded to be smaller than one, so is the posterior covariance.

The solution is therefore to introduce a way of scaling the covariance matrix. This can be
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Chapter 2. Bayesian Optimization

Figure 2.5: Posterior mean and 95% confidence intervals for the fitted GP to the scaled running example.

done by introducing a scale parameter τ 2 and define the covariance matrix Σn = τ 2Cn. Here,
Cn is a correlation matrix with C(x, x′) < 1 for x 6= x′, C(x, x) = 1 and positive definite. The
GP can then be written as

Y ∼ GP(0, τ 2Cn). (2.12)

Now we have an unknown parameter that we must estimate. This can be done in several ways,
for instance maximum likelihood, Bayesian inference, e.g MCMC or manual tuning. In this the-
sis, we will focus on maximum likelihood estimation. See for instance Gramacy and Lee (2008)
for an approach where parameters are estimated using Markov Chain Monte Carlo(MCMC).
Manual tuning may give reasonable results, but the process of finding good estimates manually
could be tedious.

We use that Y is normally distributed and set up the expression for the likelihood,

L = L(τ 2) =
(
2πτ 2

)−n
2 |Cn|−

1
2 exp

{
− 1

2τ 2
Y T
n C

−1
n Yn

}
(2.13)

taking the log yields

l(τ 2) = logL(τ 2) = −n
2

log(2π)− n

2
log(τ 2)− 1

2
log (|Cn|)−

1

2τ 2
Y T
n C

−1
n Yn (2.14)
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2.2 Gaussian Processes

Figure 2.6: Posterior mean and 95% confidence intervals for the fitted GP to the scaled running example.

In order to maximize the likelihood, we differentiate with respect to τ 2, equate to zero and solve,

∂l

∂τ 2
= l′ = − n

2τ 2
+

1

2(τ 2)2
Y T
n C

−1
n Yn = 0

τ̂ 2 =
Y T
n C

−1
n Yn
n

.

(2.15)

We can now plug the estimated scale parameter into the posterior equations in (2.9).

µ(Ω) = C(Ω, Xn)C(Xn, Xn)−1Yn

Σ(Ω) = τ̂ 2
(
C(Ω,Ω)− C(Ω, Xn)C(Xn, Xn)−1C(Xn,Ω)

)
.

(2.16)

When comparing (2.16) and (2.9), we see that the posterior mean do not change, as τ̂ 2 cancels
out by C and C−1. In the covariance however, τ̂ 2 is just multiplied by the covariance in (2.9).
An important note here is that by using τ̂ 2, we are turning Y (Ω) |Dn from a multivariate normal
into a multivariate student-t distribution with n degrees of freedom Gramacy (2017). However,
with a sufficiently large n, it will be approximately multivariate normal, so we will assume that
for now.

If we return to our adjusted running example in (2.11), we can see how the use of a scale
parameter changes the model. In Figure 2.5 we saw that the posterior covariance was underes-
timated and something was clearly not right. In Figure 2.6 we see that with the scale parameter,
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Chapter 2. Bayesian Optimization

things look much better. The estimate of the scale parameter is in this case τ̂ 2 = 65.96. The
shape of the confidence intervals looks much like what we can see in Figure 2.3, and the true
function lies, as expected, mostly within this interval.

Noise

We can see, in both Figure 2.3 and Figure 2.6, that the estimated posterior mean interpolates
the observed points. It is not always desirable that the fitted GP goes through the data points.
One reason for that is that the observations are, in many cases, noisy. If we force our GP
to interpolate all points, it could easily become non-smooth. For example, assume we have
observations from an unknown function at two identical positions in the input space. If these
observations have a different value, then it makes no sense to force the GP to interpolate both
these points since the resulting GP would become non-smooth. Instead, we should allow the GP
to go somewhere in between these two points so that our fitted GP remains smooth. In addition,
there could be problems with inverting the covariance matrix since the matrix will no longer
have full rank. The solution is to introduce a new parameter which is added to the diagonal in
the covariance matrix. We write this as

K(xi,xj) = C(xi,xj) + gδi,j, (2.17)

where g > 0 is the nugget parameter and δi,j is the Kronecker delta function, defined by

δi,j =

{
1 if i = j

0 if i 6= j.
(2.18)

Note that the nugget is only added when the indices of x are the same, not necessarily for equal
x. The temporally change of notation is to emphasize that. The GP can then be written as

Y ∼ GP(0, τ 2Kn), (2.19)

where the entries in the covariance matrix are given by (2.17) multiplied by τ 2. In matrix form
we have

τ 2Kn = τ 2(Cn + gIn), (2.20)

where In is the n× n identity matrix. The next step is then to estimate g, which we also will do
by maximum likelihood. Recall the expression for the MLE for τ 2 in (2.15). The MLE for τ 2

given g is then

τ̂ 2 =
Y T
n K

−1
n Yn
n

=
Y T
n (Cn + gIn)−1Yn

n
. (2.21)
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2.2 Gaussian Processes

By inserting this expression for τ 2 in (2.14) we get the profile likelihood with only one unknown
parameter, g,

l(g) = −n
2

log(2π)− n

2
log(τ̂ 2)− 1

2
log(Kn)− 1

τ̂ 2
Y T
n K

−1
n Yn

= −n
2

(log(2π) + 1− log(n))− n

2
log(Y T

n K
−1
n Yn)− 1

2
log(|Kn|)

= c− n

2
log(Y T

n (Cn + gIn)−1Yn)− 1

2
log(|Cn + gIn|).

(2.22)

Maximizing l(g) requires numerical methods since there are no closed form solution of l′(g) =

0. Fortunately, optimizing l(g) can be done quite efficiently with gradient based methods since
we can compute the gradient of l(g). In order to obtain an expression for the gradient, the
following formulas are useful (Petersen et al., 2008)

∂K−1
n

∂φ
= −K−1

n

∂Kn

∂φ
K−1
n

∂ log|Kn|
∂φ

= tr
{
K−1
n

∂Kn

∂φ

}
.

(2.23)

The differentiation is done with respect to a parameter φ that are involved in the entries of Kn.
tr denotes the trace of a matrix, that is the sum of the diagonal entries. The derivative of a matrix
Kn with respect to a scalar φ equals the matrix where each element is differentiated with respect
to φ. Applying the formulas from (2.23) to the profile likelihood in (2.22) we get

l′(g) = −n
2

1

Y T
n K

−1
n Yn

∂

∂g

(
Y T
n K

−1
n Yn

)
− 1

2

∂ log|Kn|
∂g

= −n
2

Y T
n
∂K−1

n

∂g
Yn

Y T
n K

−1
n Yn

− 1

2

∂ log|Kn|
∂g

=
n

2

Y T
n K

−1
n

∂Kn

∂g
K−1
n Yn

Y T
n K

−1
n Yn

− 1

2
tr
{
K−1
n

∂Kn

∂g

}
.

(2.24)

From (2.17) we see that g is only involved in the diagonal elements ofKn, the entries are simply
1 + g. The off diagonal elements of kn are constants in terms of g. Hence, ∂Kn

∂g
is simply the

n× n identity matrix. The final expression of l′(g) is then

l′(g) =
n

2

Y T
n (K−1

n )
2
Yn

Y T
n K

−1
n Yn

− 1

2
tr
{
K−1
n

}
. (2.25)

See for instance Snyman (2005) for efficient gradient based algorithms for optimization. The
MLE estimate of the nugget parameter, ĝ, can now be inserted in the expression for τ̂ 2 which
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yields the posterior equations

µ(Ω) = K̂(Ω, Xn)K̂(Xn, Xn)−1Yn

Σ(Ω) = τ̂ 2
(
K̂(Ω,Ω)− K̂(Ω, Xn)K̂(Xn, Xn)−1K̂(Xn,Ω)

)
,

(2.26)

where the notation K̂ is used to emphasize that the covariance matrix K is a function of an
estimated quantity, ĝ.

To see how the nugget can be used in practice, we return to our running example. Again, we
choose n = 6 points to evaluate the function, but now we make two observations at each point
so we get in total 12 observations. In addition, we add some noise to the observations so that
our observed value, yi is the true function plus some normally distributed noise,

yi = f(xi) + εi, εi ∼ N(0, 0.22) for i = 1, .., 12. (2.27)

By using the posterior equations in (2.26) we can compute the posterior mean and covariance,
and plot the result. This can be seen in Figure 2.7. We observe a few differences from before.
The posterior mean do no longer interpolate the observations, but go somewhere in between as
we would expect. The confidence intervals looks a bit more irregular, and now is the uncertainty
no longer zero at the points where we have observations. The true function is still mostly within
the 95% confidence interval.

Length Scale

The third hyperparameter we will consider is a parameter related to the covariance function. The
covariance function in (2.4) has one major drawback - it does not take into account that variables
might have different spatial dependency. It is reasonable to learn this dependency through a
parameter. A generalization of (2.4) that take this into account is the isotropic Gaussian, given
by

Cθ(x,x
′) = exp

{
−‖x− x

′‖2

θ

}
, (2.28)

where θ is called the length scale parameter. Again we will use maximum likelihood to estimate
the parameters. The procedure for estimating θ is no different from earlier, except that we have
one more variable in the likelihood. The MLE estimate for τ 2 is now

τ̂ 2 =
Y T
n (Cθ + gIn)−1Yn

n
=
Y T
n K

−1
θ Yn
n

. (2.29)

Inserting this expression into (2.14), we get an almost identical expression for the likelihood as
in (2.22), but now the log likelihood is a function of two variables,

l(g, θ) = c− n

2
log(Y T

n K
−1
θ Yn)− 1

2
log|Kθ|. (2.30)
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2.2 Gaussian Processes

Figure 2.7: Posterior mean and 95% confidence intervals for a GP with noisy observations.

Also here, we need to use numerical methods to maximize the likelihood. The gradient of
l(g, θ) is not hard to derive, and thus may gradient based method be used. The derivative with
respect to g is given in (2.24), and the derivative with respect to θ is derived in the following.
The diagonal entries of Kθ is still 1 + g since Cθ(x, x) = 1. The derivative of the diagonal
entries with respect to θ is therefore zero. The derivative of the off diagonal entries is given by

∂Kθ(xi,xj)

∂θ
=

∂

∂θ

(
exp

{
−‖xi − xj‖

2

θ

})
= Kθ(xi,xj)

‖xi − xj‖2

θ2
, i 6= j.

(2.31)

Therefore, we have that

K̇θ =
∂Kθ

∂θ
=
Kθ ·Dn

θ2
, (2.32)

where D is a n× n matrix with Euclidean distances. The dot(·) in (2.32) denotes a component-
wise product, not ordinary matrix multiplication. Since the diagonal entries of Dn is zero, the
derivative of Kθ will also have zeros on the diagonal. For the off diagonal elements, we get the
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same as in (2.31). The derivative of l(g, θ) with respect to θ is then

∂l(g, θ)

∂θ
= −n

2

1

Y T
n K

−1
θ Yn

∂

∂θ

(
Y T
n K

−1
θ Yn

)
− 1

2

∂

∂θ
log|Kθ|

=
n

2

Y T
n K

−1
θ K̇θK

−1
θ Yn

Y T
n K

−1
θ Yn

− 1

2
tr
{
K−1
θ K̇θ

}
.

(2.33)

Again, gradient based methods may be used to maximize the log likelihood in order to obtain
the maximum likelihood estimates of the hyperparameters.

An additional improvement of the covariance structure, which is a further generalization of
the isotropic Gaussian, is the separable (anisotropic) Gaussian covariance function,

Cθ(x,x
′) = exp

{
−

p∑
k=1

(xk − x′k)2

θk

}

= exp

{
−(x1 − x′1)2

θ1

}
· . . . · exp

{
−

(xp − x′p)2

θp

}
.

(2.34)

Thus, we allow the covariance decay at different rates for different input variables. The estima-
tion of θ1, ..., θp is done in a similar way as before, but now the profile log likelihood has p+ 1

variables. The expression for the log likelihood is almost identical as before, we just replace
Kθ with Kθ. As before, the diagonal elements of Kθ does not involve θ, so the derivative with
respect to θk is still zero. The derivative of the off diagonal elements in Kθ with respect to θk is
given by

∂Kθ(xi,xj)

∂θk
= Kθ(xi,xj)

(xik − xjk)2

θ2
k

, i 6= j. (2.35)

and in matrix form,

K̇θk =
∂Kθ
∂θk

=
Kθ ·Dk

θ2
k

, (2.36)

where Dk is a n × n matrix with square distances between the k − th elements of the input
variables. The derivative of the profile log likelihood with respect to θk is then

∂l(g,θ)

∂θk
=
n

2

Y T
n K

−1
θ K̇θkK

−1
θ Yn

Y T
n K

−1
θ Yn

− 1

2
tr
{
K−1
θ K̇θk

}
. (2.37)

The hyperparameters can now be numerically optimized with a gradient based algorithm. The
expressions for the posterior mean and covariance is almost identical to what have in (2.26), but
now K̂ is now a function of ĝ and θ̂.

Note that the inverse of the covariance matrix, Kθ, must be computed in order to compute
the gradient. This means that in each iteration of the optimization algorithm, a n × n matrix
must be inverted. When optimizing the log likelihood with respect to many variables, many
iterations are typically required in order to obtain a global maximum. If n is large, this will be
very time-consuming.
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2.2 Gaussian Processes

2.2.2 More Advanced Gaussian Processes

Covariance Structure

The covariance structures introduced in the previous section is only a small selection of what
one may use when fitting a GP. The choice of covariance structure depends on what kind of
function or physical process the model is meant for. The function in our running example is
very smooth and infinitely differentiable, so the isotropic Gaussian is an adequate choice in
that case. If one wants to model something less smooth, for instance a stock price, another
covariance function should be used to capture the noisy behavior. One class of covariance
functions that allows less smooth processes is the Matern class of covariance functions given
by

k(d) =
21−ν

Γ(ν)

(√
2νd

l

)ν

Kν

(√
2νd

l

)
, (2.38)

where Kν is the modified Bessel function (Abramowitz and Stegun, 1964), d is the Euclidean
distance, l is the length scale parameter discussed in section 2.2.1 and ν is a positive, real valued
parameter. It can be shown that if ν → ∞, the covariance function simplifies to the squared
exponential defined in (2.4) (Rasmussen, 2004).

In Figure 2.8 are k(d) plotted for three different values of ν. We see that k(d) are decreasing
monotonically towards zero for all values of ν, but in different ways. For ν = 0.5, points that
are close to each other will be less correlated, which will give a less smooth GP compared to
GPs with ν = 2 and ν →∞.

In Figure 2.9, three samples from a GP with zero mean and Matern covariance are plotted.
The differences in smoothness are evident. For ν = 0.5, the process is very noisy and non-
smooth and resembles a somewhat volatile stock price. For ν →∞ the process is very smooth,
just as the GP sample in Figure 2.2.

Non-Stationary Gaussian Processes

Until now, we have only considered the case where we fit one GP to the entire input space. The
underlying assumption is that we have the same mean and covariance structure over the whole
domain, i.e stationary. This assumption might be too strong in some cases, as some modeling
problems require more flexibility than what a stationary GP provides. Gramacy and Lee (2008)
argue for this and discusses a method for fitting non-stationary GPs by treed partitioning. This
is done by partitioning the input space into distinct subsets and fit a stationary GP in each subset.
The treed partitioning is done by a reversible jump MCMC and parameter estimation is done
by Metropolis-Hastings draws. Gramacy et al. (2007) provides practical examples of treed GPs
and a thorough review of the R package tgp.
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Figure 2.8: Matern covariance function as a function of the distance for three different values of the
parameter ν and l = 1.

Figure 2.9: Three samples from a GP with Matern covariance structure with l = 1.

20



2.2 Gaussian Processes

Categorical variables

We have, thus far, only considered variables that are real-valued. There are two good reasons
for that - it is the easiest to handle and it is the most common type of variable. There is one
major problem with categorical variables when it comes to the covariance functions that we
have discussed here: how do we define a distance between two such variables in space? One
obvious solution is to use a covariance function that does not depend on the distance between
two points in space. Still, an appropriate choice is hard and depends heavily on the data and
underlying model.

Roustant et al. (2018) address covariance functions for categorical data that yields a positive
definite covariance matrix based on a nested Bayesian linear model. Gramacy et al. (2010) solve
the problem with categorical data by partitioning the data set by these variables and exclude
them in the GP regression. Platt et al. (2002) uses a binary covariance function in the context
of using a GP to generate music playlists. We will not go further in depth on this topic, and let
the interested reader consult with the proposed literature.

Handling Large Data Sets

We briefly mentioned in the introduction that one weakness of GPs is the problems when the
number of data points and the number of variables is large. These problems arise in the esti-
mation of the hyperparameters. Assuming that we have p variables and are including a scale
parameter, nugget and use the separable Gaussian covariance matrix, we will have p+ 2 param-
eters to estimate. The profile log likelihood in (2.30) that need to be maximized with numerical
methods will now have p+ 1 variables. In each iteration of the optimization algorithm, a n× n
matrix must be inverted, where n is the number of observations. The time complexity of invert-
ing a matrix is O(n3), so a large n gives high computation time.

Different solutions to the scaling problem of GPs are proposed in the literature. Liu et al.
(2014) discuss how a GP surrogate model with many variables may be assisted by evolution-
ary algorithms to reduce the dimension of the input space to achieve lower computation times.
Smola and Bartlett (2001) suggest a sparse greedy technique to approximate the posterior mean
and covariance, with a time complexity of O(np2), where n is the sample size and p is the
number of variables. Vecchia approximations is an approximation of a GP that leads to a sparse
Cholesky factor of the inverse covariance matrix. A more thorough discussion of Vecchia ap-
proximations can be found in Katzfuss and Guinness (2017). Bayesian committee machine is a
method where the observed data is divided into m distinct subsets and a model is fitted in each
subset. When making predictions, one combines the posterior mean and covariance from all
the m models to make an approximation of the posterior mean and covariance. See for instance
Xiuliang et al. (2009) for an application of Bayesian committee machine to GPs.
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2.3 Acquisition Functions

Bayesian optimization is a sequential optimization procedure where we in each step must decide
where to evaluate the unknown function next. We can either choose one point in each iteration
or a batch of B points. We will focus on the case with only one point, and then briefly discuss
how B points can be selected jointly.

An acquisition function, α(x), is a cheap way of finding where we should evaluate our
unknown function f next. When we are in the context of maximization, we choose new points
for evaluation by solving

xnew = argmax
x∈Ω

α(x). (2.39)

When designing an acquisition function one must keep in mind that

1. f is typically an expensive function to evaluate so we want to minimize the number of
evaluations.

2. One can easily be stuck in local optimums, so a mechanism for exploring globally is
desirable.

The acquisition function we choose should, therefore, find a balance between exploring and
exploiting the unknown objective function. The acquisition functions we will consider here
may be interpreted as evaluating the expected utility associated with evaluating f at a new point
x. We will derive and discuss probability of improvement (PI) and expected improvement (EI).
Both will be illustrated by applying them to our running example.

2.3.1 Probability of Improvement

Let y∗ denote the optimal value thus far, that is

y∗ = maxYn, (2.40)

where Yn is the vector of evaluated points from the unknown function f . Probability of im-
provement (PI) evaluates f at the point which is most likely to improve on y∗. Let Y = Y (x)

be a random variable that denotes the value of f at x. Recall that Y is a normally distributed
variable, since it is a finite subset of the GP, with mean µ and variance σ2. Next, define the
utility function associated with evaluating f on a point x by

u(Y ) =

{
0 if y ≤ y∗

1 if y > y∗.
(2.41)

If the a new evaluating turns out to be better than our current maximum, we receive a unit
reward. Otherwise, no reward are received. Note that the reward is independent of the size of
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y. The acquisition function is the expected value of this utility function with respect to Y ,

αPI(x) = PI = E [u(Y )] =

y∗∫
−∞

0 · p(y)dy +

∞∫
y∗

1 · p(y)dy. (2.42)

The notation aPI(x) is used to emphasize that PI is a function of the input variable x. In the
following we will only use the notation PI. The first term in (2.42) is zero, and the second term
is an integral over the probability density function p(y),

PI =

∞∫
y∗

p(y)dy = P (Y > y∗) = 1− Φ

(
y∗ − µ
σ

)
= 1− Φ (z) , (2.43)

where Φ(·) is the cumulative distribution function for the standard normal distribution and z =
y∗−µ
σ

. We see from the expression that a low z yields a high PI. Thus, points where µ is high
and σ is low will give a high probability of improvement.

Assume that we want to maximize the function f(x) in our running example and the next
point for evaluation shall be chosen based on PI. We have n = 6 initial samples, and have
computed the posterior mean and covariance using the posterior equations in (2.9). Thus, for
each xi ∈ Ω we have a posterior mean, µi and posterior standard deviation σi =

√
Σ(xi, xi).

By inserting these values into the expression in (2.43), we obtain the PI for all input values, xi.

In Figure 2.10 the PI for our running example is plotted. We observe that there are three
areas with high probability of improvement, which corresponds well with the interpretation and
Figure 2.3. For x close to 0 and 6, we see in Figure 2.3 that the mean is high, but so is the
uncertainty. The probability of improvement should therefore be high. The other peak in PI is
for x ≈ 3, and this is where the probability of improvement is highest. We can see in Figure 2.3
that the mean is high here, and that the uncertainty is at least smaller than for x close to 0 or 6.

Even though the resulting probability of improvement in our running example seems reason-
able, there is something odd about the utility function. The utility of improving on the current
maximum does not depend on the actual improvement. This might cause that optimization algo-
rithm gets stuck in a local maximum. A more reasonable utility function takes the improvement
into account, and that is what the expected improvement acquisition function does.

2.3.2 Expected Improvement

Again, let y∗ denote the optimal value thus far. Expected improvement (EI) considers the
following utility function,

u(Y ) = max {0, Y − y∗} , (2.44)
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Figure 2.10: Probability of improvement for running example.

meaning that an improvement in the function value gives a reward of this improvement. The EI

is defined as the expected value of the utility function,

αEI(x) = EI = E[u(Y )] =

∞∫
−∞

max {0, y − y∗} p(y)dy

=

y∗∫
−∞

0 · p(y)dy +

∞∫
y∗

(y − y∗)p(y)dy.

(2.45)

The first term is obviously zero. By splitting the second term, EI can be written as

EI =

∞∫
y∗

y · p(y)dy − y∗
∞∫
y∗

p(y)dy. (2.46)

The second term is a constant, y∗, multiplied by PI given by (2.43). This inserted in (2.46)
yields

EI =

∞∫
y∗

y · p(y)dy − y∗
(

1− Φ

(
y∗ − µ
σ

))
. (2.47)
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For computing the first term in (2.47), we will use the fact that Y is normally distributed with
mean µ and variance σ2 so that

p(y) =
1√

2πσ2
exp

{
− 1

2σ2
(y − µ)2

}
. (2.48)

We will also use a change of variable Z = Y−µ
σ

. Inserting this in the first term in (2.47) yields

∞∫
y∗

y · p(y)dy =
1√

2πσ2

∞∫
y∗

y exp

{
− 1

2σ2
(y − µ)2

}
dy

=
1√

2πσ2

∞∫
z

(σz + µ) exp

{
−z

2

2

}
σdz

=
σ√
2π

∞∫
z

z exp

{
−z

2

2

}
dz +

µ√
2π

∞∫
z

exp

{
−z

2

2

}
dz,

(2.49)

where z = y∗−µ
σ

. The integral in the first term can easily be computed by using the substitution
u = z2

2
. We recognize the second term as the PI for a standard normal distributed variable,

multiplied by µ. Hence,

∞∫
y∗

y · p(y)dy = σ · φ(z) + µ · (1− Φ(z)). (2.50)

Combining the results from (2.47) and (2.50) yields

EI = σ · φ(z) + µ · (1− Φ(z))− y∗ (1− Φ (z))

= σ · φ(z) + (µ− y∗) · (1− Φ(z)).
(2.51)

The expression for expected improvement in (2.51) has two components. The first term involves
the predictive standard deviation, σ. Higher values of σ gives a higher expected improvement,
which encourages exploration. The second term has a factor (µ − y∗), which increases with
µ and then yield a higher EI. Thus, both areas with high mean values and areas with high
uncertainty are subjects for further exploration.

Returning to our running example, we can also compute the EI in a similar way we did for
PI. For each xi ∈ Ω we can insert µi and σi into (2.51) and plot EI against the input values. This
can be seen in Figure 2.11. We observe that our interpretation of EI is clearly illustrated here.
From Figure 2.3 we see that the posterior mean is highest around x = 3, where the uncertainty
is also low. For points nearby, the mean is a bit lower, but the uncertainty is higher which gives
a larger EI. There are also a significant EI for x close to 0 and 6, just as for PI.

When choosing the next point for evaluating, the point with the highest value of the acqui-
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Figure 2.11: Expected improvement for running example.

sition function, a(x), is chosen. If the function evaluation is done in batches of size B, what
points should then be chosen? The B points with the largest value of the acquisition function
are no good strategy for obvious reasons. The areas where a(x) is high, the points nearby are
also high. In our running example, if one should run a batch of 3 function evaluations, and
choose the 3 largest values, all values would be around x = 3 when using EI. This gives us
unwanted exploitation. An additional mechanism for avoiding exploitation is therefore needed
when function evaluations are done in batches.

One simple and intuitive solution is to force the distance between two potential points for
evaluation to be larger than some predefined value, that is

‖xi − xj‖ ≥ δ. (2.52)

The choice of δ depends on the problem under consideration. Then, if B new points shall be
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chosen, we can do selection in a sequential way,

xn+1 = argmax
x∈Ω

α(x)

xn+2 = argmax
x∈Ω

α(x) where ‖x− xn+i‖ ≥ δ for i = 1

...

xn+B = argmax
x∈Ω

α(x) where ‖x− xn+i‖ ≥ δ for i = 1, ..., B.

(2.53)

With this scheme, new points will always be in a given distance away from the other points in
space, which will give a broader exploration of the input space. This strategy will be used in
the case study in Chapter 4.

The proposed scheme in (2.53) for selection of several new points is not necessarily optimal.
The choice of points to evaluate can be seen as a joint optimization problem of B variables,
given by {

xn+1, ...,xn+B
}

= argmaxα(xn+1, ...,xn+B)

where‖xi − xj‖ ≥ δ ∀xi 6= xj, i, j = 1, ..., B.
(2.54)

We have not considered acquisition functions with several input variables, and will not go fur-
ther in depth here. An analytically expression for the function may not be available, and numer-
ical optimization of the function might be time consuming. We let the interested reader consult
with existing literature on the subject, for instance Schonlau et al. (1998) where the extension of
acquisition functions to several variables was defined. Ginsbourger et al. (2008) provides a more
in depth study of multi point selection with the expected improvement acquisition function.

2.4 Algorithm for Bayesian Optimization

We have now discussed the two major parts in Bayesian optimization - a surrogate model and
acquisition functions. We will now combine these to construct an algorithm for maximizing a
function f(x). This is summarized in Algorithm 1.

The algorithm starts by specifying the GP that will be used as a surrogate model. This
includes specification of mean and covariance structure. The initial sample consist of n0 points
at some specified or random locations in the input space. After initialization continues the
search for the global optimizer until the most promising point suggested by the acquisition
function falls below a lower limit ε. For each iteration is the set of observations,Dn, augmented
by new observations. The algorithm returns Dn so that is may be further analyzed.

We return to our running example to demonstrate how Bayesian optimization works in prac-
tice, in particular how new points are selected based on EI and PI. The selected points in each
iteration for EI and PI are visualized in Figure 2.12. Both EI and PI suggests points around
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Algorithm 1 Bayesian optimization with GP prior

1. Specify prior GP

2. Obtain initial sample, Dn = {xi, f(xi)}n0
i=1

3. Specify minimum improvement, ε

4. repeat

5. Fit the surrogate model, GP | Dn
6. Find xnew = argmax

x∈Ω
α(x)

7. evaluate ynew = f(xnew)

8. Augment Dn = {Dn, (xnew, ynew)}

9. until α(xnew) < ε

10. return Dn

2.7 in the first iteration, which is where the optimal solution lies. After this, the two acquisi-
tion functions suggests different points for evaluation. PI exploits the area where the optimal
solution lies, while EI explores a different area. In the third iteration, EI suggests again a
point around 2.7, and the algorithm terminates after this because all points have an EI less
than εEI = 0.01. PI suggest to evaluate 10 points in total before all points have a PI less than
εPI = 0.01, and the algorithm terminates.

We note that when we use PI, we explore the input space more than when we use EI. This
is because the minimum PI that is needed for evaluating a point, εPI, is less restrictive than the
minimum EI, εEI. The values for εEI and εPI are set to arbitrary values here to illustrate how the
acquisition functions work. Both acquisition functions suggested points that eventually lead to
a solution close to, or equal the optimal solution.
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(a)

(b)

Figure 2.12: PI and EI in each iteration of Bayesian optimization of the function in (2.2)
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Chapter 3
Value of Information

3.1 Introduction

Information has been and will remain a highly relevant topic in our society. More information
than ever is available due to the digital evolution we have seen in the last years. Many mechan-
ical components are now equipped with sensors, which provide useful information about the
state of the component. Such information may, for instance, be used to make decisions about
the scheduling of maintenance (Jardine et al., 2006). This raises the questions: What is this
information worth? Under what circumstances should this information be gathered at all?

We will address these questions in the following, where we will see how value of informa-
tion (VOI) in a decision situation can be estimated. First, we will introduce decision theory and
the associated notation that we will use. We will also use a running example that is given in
Section 3.1.2. In Section 3.2 will the concept of VOI be introduced and expressions for prior-
and posterior value that are needed to compute VOI will be derived. Methods for estimating
VOI are discussed in Section 3.3.

3.1.1 Decision Theory

Decisions of varying importance are made by everyone, every day. Some decisions are trivial
and do not require much thought, while other decisions might be more complex and have a
meaningful impact on the society. Often will decisions involve uncertainty which makes the
process of making the best decision more complicated. Decision analysis is about studying a
decision situation and provide guidance to make better decisions.

A decision situation involves two types of variables - decisions and uncertainties. A decision
is denoted by a ∈ A, where A is the set of alternatives available for the decision maker. A
decision situation may involve several decisions, so for generality we will use vector notation
a = (a1, ..., ad) where ai ∈ Ai, i = 1, ..., d. Decisions are variables the decision maker may
control, but the outcome of a decision remains uncertain if uncertain variables influencing the
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outcome are present.
Uncertainties, or random variables, are what the decision maker can not control, and are

denoted by λ ∈ L. We will use vector notation to emphasize that there are several uncertain
variables involved. Each element in λ may be continuous, discrete or categorical.

Once the uncertainties and the possible decisions are identified, the decision maker can
consider the different scenarios. A scenario is a set consisting of a possible combination of a
decision and outcome of the random variable. Each scenario is associated with a value that
represents how happy we are with this particular outcome. We will denote this value by the
value function, v(λ,a). Note that since λ is a random variable, v(λ,a) is also a random
variable. We typically want to choose the alternative that maximizes the value function.

A decision situation with a simple value function is introduced next, and is an example that
we will use throughout this chapter to illustrate the presented topics.

3.1.2 Running Example

Consider a decision situation with the following simple value function,

v(λ, a) =

{
10− 3λ if a = a1

8− λ if a = a2,
(3.1)

where λ is assumed to come from a discretized truncated normal distribution defined on a reg-
ular grid between 0 and 3 with step size 0.1. The probability mass function is given by

P (Λ = λ) = P (λ− 0.05 ≤ X̄ ≤ λ+ 0.05), λ = 0, 0.1, ..., 3, (3.2)

where X̄ is distributed according to a truncated normal distribution. The set of actions consists
of a1 and a2. The value function is visualized in Figure 3.1. We see that for λ < 1, a = a1

is the alternative that yields the highest value function, while a = a2 is the best alternative for
λ > 1. In the point of intersection, λ = 1, we are indifferent between choosing a1 or a2. If we
knew what value λ will take, the decision would be easy. However, if such information where
available, it would most likely come with a price. VOI analysis provides a tool for finding a fair
price for this information.

3.2 Value of Information

When facing a decision situation, the decision maker is also faced with an auxiliary decision
pertained to the underlying decision - information gathering. It might be possible to acquire
information about the uncertain variables that are involved in the decision situation so that a
more informed decision can be made. For the simple decision situation defined in (3.1), it
would be very useful to know the value of λ before a decision is made. We are then certain to
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Figure 3.1: Example of a value function with two possible alternatives, a1 and a2.

make a better decision that yields a scenario with a higher value attached. The information about
λ will come with a price, and it might be so high that the information is not worth gathering.

VOI analysis is useful in many applications. Bratvold et al. (2009) addresses how VOI anal-
ysis have been used in the petroleum industry, and highlight decision situations where the use
of this analysis was successful. An application of VOI in hydropower production is discussed in
Ødegård et al. (2017). The decision under consideration is the scheduling of power production
where the inflow of water to the reservoir is uncertain. Measurements of the snow in nearby
areas provide information about the inflow, and the value of this information is estimated. Seyr
and Muskulus (2016) estimates the value of information for repair times for offshore wind tur-
bines. This can be used to improve the O&M strategy for an offshore wind farm.

Eidsvik et al. (2015) define the value of information (VOI) for an uncertain variable λ
and decision a as the price at which the decision maker is indifferent between purchasing the
information and not. By indifferent, we mean that the decision maker would be indifferent
between making the decision with or without the information. The price of indifference is thus
the maximum amount that the decision maker is willing to pay for the information. In order to
find the VOI, we must quantify the value of making a decision without the information and the
value without the information. We will refer to these values as prior value(PV) and posterior
value(PoV). We can then express the value of information as

VOI = PoV−PV . (3.3)
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Analytic expressions for PV and PoV will be derived in the following. For simplicity, we will
derive the expressions for PV and PoV for a risk-neutral decision maker. See for instance
Kahneman and Tversky (2013) for decision theory under risk.

3.2.1 Prior Value

The PV is the value associated with making the optimal decision without acquiring any addi-
tional information. We will assume that the uncertain variables λ has a known prior distribution,
p(λ), that captures the decision makers prior beliefs about λ. The value that follows from an
action a and random variable λ is denoted by v(λ,a). By using the assumption that the deci-
sion maker is risk neutral, the optimal decision is the one that maximizes the expected value of
v(λ,a), given by

PV = max
a∈A
{E(v(λ,a)} = max

a∈A


∫
λ∈L

v(λ,a)p(λ)dλ

 . (3.4)

We return to the running example to illustrate how the prior value can be computed in practice.
The expected value of λ is known,

E(Λ) =
3∑

λ=0

λ · P (Λ = λ) = 1.5, (3.5)

and hence the expected value,

E(v(λ, a1)) = 10− 3 · E(λ) = 10− 3 · 3

2
= 5.5

E(v(λ, a2)) = 8− E(λ) = 8− 3

2
= 6.5.

(3.6)

The prior value is then

PV = max
a
{E (v(λ, a))} = max{5.5, 6.5} = 6.5. (3.7)

Thus, the alternative that gives the highest expected value is a2, with a value of 6.5. This is the
optimal decision when no additional information about λ is available.

3.2.2 Posterior Value

We are now in the setting where we have some additional information that is in some way
related to the uncertain quantity λ. We distinguish between perfect and imperfect information,
where the former means that we observe the quantity λ itself without any form of noise or
measurement error. With imperfect information, we observe a quantity y that are for instance λ
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plus some noise. The probabilistic dependence between λ and y is represented through p(λ|y).
The posterior value for both types of information will be derived in the following.

Perfect Information

Perfect information means that we observe the uncertain quantity directly, without any mea-
surement noise or such. Assuming that λ has a prior distribution p(λ) which is known, we start
from the expression for PV in (3.4) and condition on λ to get

PV | λ = max
a∈A
{E(v(λ,a) | λ} = max

a∈A
{v(λ,a)} . (3.8)

The expectation may be removed since we are conditioning on all the random variables present,
so that v(λ,a) is no longer stochastic. Since we do not know what λ are before we actually
observes it, we must consider the expected value with respect to λ to obtain the posterior value,

PoV(λ) = E

(
max
a∈A
{v(λ,a)}

)
=

∫
λ

max
a∈A
{v(λ,a)} p(λ)dλ. (3.9)

Inserting (3.4) and (3.9) into (3.3) yields the VOI for perfect information. Note that the posterior
value is a function of the information we observe.

Returning to the running example, we can compute the posterior value, using (3.9),

PoV()λ = E

(
max
a∈A
{v(λ,a)}

)
=

1∑
λ=0

(10− 3λ)P (Λ = λ) +
3∑

λ=1.1

(8− λ)P (Λ = λ)

≈ 6.5808.

(3.10)

Thus, the value of making a decision after acquiring additional information is 6.5808. The VOI

in this case is then
VOI = 6.5808− 6.5 = 0.0808, (3.11)

which means that we are willing to pay 0.0808 monetary units for the perfect information about
λ.

Imperfect Information

Suppose that we are not able to observe λ directly, but through another random variable, y.
Again, we start with the expression for the prior value. Now, we condition on the observed
variable, y, with corresponding density p(y),

p(y) =
∑
λ

p(y | λ)p(λ). (3.12)
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The value conditioned on y is given by

max
a∈A
{E(v(λ,a) | y} = max

a∈A

{∫
v(λ,a)p(λ | y)dλ

}
. (3.13)

Since we do not know y before we actually have observed it, we must take expectation with
respect to y, as before, yielding

PoV(y) = E

(
max
a∈A
{E(v(λ,a) | y}

)
=

∫
y

max
a∈A
{E(v(λ,a) | y} p(y)dy

=

∫
y

max
a∈A


∫
λ

v(λ,a)p(λ | y)dλ


 p(y)dy.

(3.14)

Inserting (3.4) and (3.14) into (3.3) yields the VOI for imperfect information.

Again we return to the running example to illustrate how we can compute the posterior
value of imperfect information. We will now assume that we observe y that have the following
relation to λ,

y = λ+ ∆, (3.15)

where ∆ is a random variable defined on the grid ∆ ∈ [−0.1, 0, 0.1]. We will assume that λ and
∆ are independent. The conditional distribution P (Y = y | Λ = λ) is given by

P (Y = y | λ) =


p for y = λ− 0.1

q for y = λ

p for y = λ+ 0.1

P (Y = y | λ = 0) =

{
p+ q for y = λ

p for y = λ+ 0.1

P (Y = y | λ = 3) =

{
p for y = λ− 0.1

p+ q for y = λ

(3.16)

p and q are set so that 2p + q = 1. The first step in computing the posterior value is to find the
conditional expectation E(v(λ, a) | y). To to that, we must compute the conditional expectation
E(λ | y), which is found by,

E(λ | y) =
∑
λ

λ · P (Λ = λ | Y = y) =
∑
λ

λ · P (Y = y | Λ = λ)P (Λ = λ)

P (Y = y)
, (3.17)

where the marginal distribution of y is found by

P (Y = y) =
∑
λ

P (Y = y | Λ = λ)P (Λ = λ). (3.18)
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Table 3.1: PoV and VOI for some values of p and q.

p q PoV VOI

1

20

9

10
6.5804 0.0804

1

6

2

3
6.5795 0.0795

1

3

1

3
6.5782 0.0782

Let µ(y) denote the conditional expectation of λ given y. The posterior value is then given by

PoV = E

(
max
a∈A
{E(v(λ,a) | y}

)
=
∑
y

max {10− 3µ(y), 8− µ(y)}P (Y = y).
(3.19)

The posterior value for some values of p and q are computed and listed in Table 3.1. We
note that when p increases and q decreases, the PoV also decreases. This is because a larger
p gives higher uncertainty in y which again makes the information less accurate. The value of
imperfect information is smaller than the value of perfect information, which is as we would
expect. When q → 1, the PoV for imperfect information will approach the PoV for perfect
information.

Histograms showing the distribution of λ and λ | y = 2 is displayed in Figure 3.2. We see
that when q is close to 1, in Figure 3.2a, it is very likely that λ = 2 when we observe y = 2.
In Figure 3.2b we see that when q decreases, the probability of λ = 2 when we observe y = 2

decreases as well. This means that the uncertainty in the observed quantity y increases and
hence the value of knowing y will decrease.

When developing the expressions for the PoV above, we assumed that we had information
about the uncertain quantity λ in its entirety. In some cases, we are only able to observe parts
of λ, that is we observe a subset λK ⊂ λ. This is referred to as partial information. Analytic
expressions and algorithms for estimating these quantities can be found in Eidsvik et al. (2015).

3.3 Estimation of Value of Information

Analytic expressions for prior- and posterior values are in most cases unavailable. We will
restrict to the case when λ is discrete, which is what we will be considering in our case study in
Chapter 4. Algorithms for estimating prior- and posterior value for continuous λ can be found
in Eidsvik et al. (2015). We also assume that the set of alternatives, A, is a finite set. The
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(a) p = 1
20 and q = 9

10 (b) p = 1
6 and q = 2

3

Figure 3.2: Histograms showing p(λ) and p(λ | y = 2) for two set of values for p and q.

value function will be unknown in our case study, so we introduce the notation v̂ for the value
function to emphasize that it is estimated. The estimation of prior- and posterior value will be
treated separately, in the following.

3.3.1 Prior Value Estimation

When estimating the prior value, defined in (3.4), we first consider an estimate of the expected
function. By the definition of expected value for a discrete random variable we have,

̂E(v(λ,a)) =
∑
λ∈L

v̂(λ,a)p(λ). (3.20)

The prior value estimator can then be expressed as

P̂V = max
a∈A

{∑
λ∈L

v̂(λ,a)p(λ)

}
. (3.21)

Note that ifA is unbounded, the maximization must be done with some numerical optimization
method.

3.3.2 Posterior Value Estimation

The estimate of the posterior value will depend on the type of information we have. We will,
therefore, provide formulas for both perfect and imperfect information.
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Substituting the integral with a sum in (3.9) yields

P̂oV =
∑
λ∈L

max
a∈A
{v̂(λ,a)} p(λ). (3.22)

for perfect information. For imperfect information we have

P̂oV =
∑
y

max
a∈A
{E (v̂(λ,a) | y)} p(y). (3.23)

The VOI estimator is then simply

V̂OI = P̂oV − P̂V. (3.24)

When we have a finite set of alternatives, and the value function, the computation of V̂OI is
straightforward. However, when the value function is unknown and must be estimated, the
computation of V̂OI is more complicated and time-consuming. In our case study in Chapter 4,
the value function will be unknown so we will use Bayesian optimization with a GP surrogate
model to maximize the value function and to compute V̂OI.

When using Bayesian optimization, we are treating the value function as stochastic which
means that there will be uncertainty in the estimate of VOI. We will, therefore, in the following
briefly discuss how to access the accuracy and the uncertainty of the VOI estimate.

3.3.3 Accuracy of the VOI Estimate

When estimating VOI it is of interest to know how accurate this estimate is. Typically, we would
consider the variance of the estimator, but the analytic expression for the variance of VOI is not
available. Instead, we can look at how the VOI estimate evolves when we are optimizing the
value function. Recall that in Bayesian optimization we are sequentially choosing points to
evaluate based on the fitted surrogate model. Thus, in each iteration, we have an estimate of
the value function that can be used to compute V̂OI. The evolution of V̂OI should converge,
and stabilize around the final estimate of VOI when the number of evaluations grows. We
believe that this is a useful diagnostic in our situation, as it monitors the convergence of the
VOI estimate over evaluations.

In addition to a point estimate of the VOI, it is of interest to quantify the uncertainty of the
estimate. Since we have a GP representation of the value function, one can generate samples of
the value function to explore the variability of the VOI estimate. We will next discuss a method
to access this variability using the samples from the GP. This is not directly connected to the
conditional mean uncertainty, however, which is really required in the V̂OI calculation.

Recall that when we use a GP to fit the value function, every finite subset of observations is
normally distributed. Let v̂ the value function obtained through Bayesian optimization, where
µ and Σ are the posterior mean and covariance in the fitted GP, respectively. The realizations vb
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is drawn by
vb = µ+ L ·Nn(0, In), b = 1, ..., B, (3.25)

where L is the Cholesky decomposition of Σ, so that LLT = Σ. Note that the generated value,
vb, will be a sample and not the conditional mean. For each sample, we can go through the PV

and PoV calculation. An estimate of the VOI based on V̂OIb for b = 1, ..., B is then

VOI =
1

B

B∑
b=1

V̂OIb, (3.26)

and an estimate of the standard deviation is

SD(V̂OI) =

(
1

B − 1

B∑
b=1

(
V̂OIb − VOI

)2
) 1

2

. (3.27)

In general, we have that V̂OI 6= VOI because the VOI is a non-linear function, and the expected
value of the functional is different from the functional of the mean. The definition of PoV state
that PoV should be computed using the conditional expectation, E(v̂(λ,a)|y), and not sampled
values. The estimate of the standard deviation could still give us an indication of the magnitude
of the uncertainty.
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Chapter 4
Case Study - NOWIcob Simulation Model

In this chapter we will use the theory from Chapter 2 and 3 to show how one can estimate the
VOI in a complex decision situation. The decision problem under consideration is the selection
of optimal O&M strategy in order to maximize the profits from an offshore wind farm. The
optimal strategy depends on several uncertain variables so it is of interest to estimate the value
knowing a subset of these uncertainties. We focus on the failure rate for a medium repair failure
here. We will use the simulation tool NOWIcob to evaluate different vessel fleet combinations
so that we can estimate VOI. An introduction to NOWIcob and the decision problem is given
in Section 4.1, and the estimation of VOI in such a decision situation is described in Section
4.2. The final algorithm and some case specific details for the estimation of VOI are discussed
in Section 4.3.

4.1 Introduction

NOWIcob (Norwegian offshore wind power life cycle cost and benefit model ) is a simulation
tool developed by SINTEF, designed to mimic the daily operation of a offshore wind farm. The
primary use of NOWIcob is for simulation and optimization of different aspects of an offshore
wind farm (Hofmann et al., 2017a). The simulation is used to estimate performance parameters
such as profits and operation costs by simulating maintenance activities and related logistics of a
wind farm. It can also be used as a decision support tool for decision problems such as choosing
the vessel fleet or the location of the maintenance bases. We will focus on the decision support
application of NOWIcob.

The model has several input variables, and we can divide all variables into two distinctions
- decision variables and uncontrollable/uncertain variables. Decision variables are what the
user of the simulation tool may control, for instance the vessel fleet mix or the location of
maintenance bases. The choice of these variables makes up the strategy for operation and
maintenance of the wind farm. We will restrict us to three decision variables here - the number
of Crew Transfer Vessels (CTV), the number of Surface Effect Ships(SES) and the number
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Figure 4.1: Decision variables and uncertain/uncontrollable variables in NOWIcob. The figure is taken
from Hofmann et al. (2017a).

of maintenance personnel. Vessels are defined by properties such as travel speed, passenger
capacity and what weather it may operate in, e.g wind speed and wave height. Both CTV and
SES can transfer up to 12 people from the harbor to the wind farm. CTV has a top speed of 20
knots and can access the wind farm with wave heights up to 1.5 meters. SES has a top speed
of 35 knots and tolerates waves up to 2 meters high. A more detailed description of CTV and
SES can be found in the appendix and Hofmann et al. (2017b), where also other vessels are
described in detail.

Uncertain variables include weather, e.g wave heights and wind speed, and much more.
These variables are the basis for the uncertain future in the model. Uncontrollable variables
may be the price for a particular boat or the annual salary of an employee. These variables
are fixed and are not subject for change in any part of the simulation. Figure 4.1 depicts the
distinction between the different types of input variables in NOWIcob in a simple flowchart.
The next step after the input variables are specified and processed is an event-based simulation
with Monte Carlo (MC) where the operation of the wind farm is mimicked over time.

Since there are several uncertain variables involved in the simulation, the output will vary
between simulations with the same input. By running several MC iterations, the uncertainty
will be captured. Each MC iteration provides several performance parameters, for instance, the
availability and the profit of the wind farm. Here we are most interested in the profit, which we
will denote by v(λ,a). That is, the profit, or value, depends on a set of uncertain variables, λ,
and decision variables a. The profit is measured in GBP in NOWIcob.

NOWIcob distinguishes between two types of maintenance tasks - preventive and corrective.
The former is maintenance tasks that are scheduled to predetermined time steps, for instance
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annual services that occur once a year for each turbine. The latter is maintenance tasks related to
failures that occur randomly. These failures are divided into categories based on their severity.
Failures within each category are assumed to follow a homogeneous Poisson process with an
average yearly rate. This rate might differ between years, and can for instance have a bathtub
shape so that the rate is higher the first few and last few years. The assumption of a homoge-
neous Poisson process means that the time t until next failure is exponentially distributed,

t | λ ∼ exp(λ), (4.1)

where λ is the failure rate. We condition on λ in (4.1) to emphasize that the failure rate itself
might be unknown, which is a reasonable assumption for several reasons. Firstly, obtaining an
estimate of the failure rate for one particular category requires a comprehensive data collection.
This collection of data is done over several years since some components might have an ex-
pected lifetime of up to 20 years (Faulstich et al., 2011). Such a long period of data collection
raises another problem - the components in the wind turbines will be further developed and
probably improved over the years. Thus, the estimates based on the data collection may not be
accurate for future, improved components.

Comprehensive data collections have been done, but the resulting data sets are confidential
for the public. Faulstich et al. (2011) analyze the results from a large monitoring survey for on-
shore wind turbines conducted by Fraunhofer IWES. This survey collected 64 000 maintenance
and repair reports from 1500 wind turbines. The result from the analysis of this concludes that
the annual failure rate for minor repairs is 1.8 and 0.6 for major repairs. Here, minor repairs are
defined as failures with downtimes less than a day, while a major repair is defined as a failure
with downtimes that exceeds one day.

Carroll et al. (2016) has conducted an analysis of a data set based on ∼ 350 offshore wind
turbines, where all turbines are between 3 and 10 years old from between 5 and 10 wind farms
in Europe. Exact numbers of turbines, the age of the turbines and number of wind farms are not
provided in the paper for confidentiality reasons. Specifications of the types of wind turbines
are not provided either. Here, a minor repair is defined as a repair due to a failure that costs
less than 1000 euros. A major repair has a cost between 1000 and 10000 euros, and repair costs
above this are defined as a major replacement. These costs are based on material costs only.
The paper concludes that the annual failure rate for minor repairs is 6.81, 1.17 for major repair
and 0.29 for major replacement.

Dinwoodie et al. (2015) presents a reference case for simulation of O&M tasks for offshore
wind farms. Five different failure categories are used here - manual reset, minor repair, medium
repair, major repair and major replacement. The proposed values for the annual failure rates are
7.5 for manual reset, 3.0 for minor repair, 0.275 for medium repair, 0.04 for major repair and
0.08 for major replacement.

The large variation of estimates of failure rates makes it difficult to draw any conclusion of
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what the true values are. The estimates from the proposed literature use different categorizations
of failure rates and are based on different data that are collected on different premises, e.g
onshore vs. offshore. This motivates the idea of treating the error rate λ as a random variable
with some distribution p(λ). We will consider four different distributions of λ, mainly inspired
by Dinwoodie et al. (2015), which we will address in Section 4.3.2.

4.2 Estimation of Value of Information in O&M Strategy De-
cision Problem

We will use NOWIcob as a decision tool for the selection of vessel fleet and number of mainte-
nance personnel for an offshore wind farm. In this context, we are interested in estimating the
value of knowing the failure rate for a failure in the medium repair category. In this section, we
will set up the problem, using the notation introduced in Chapter 3.

4.2.1 Variables

We will denote the uncertain variables by λ as before. All uncertain variables such as weather,
electricity prices, etc. are included inλ. We not will dive deep into the impact of every uncertain
variable, except the failure rate for a failure in the medium repair failure category. We will
denote this variable by λ ∈ λ in the following. A discretized state space is used for this failure
rate. In reality, will λ be continuous, but we must consider a finite set of feasible values to limit
the number of evaluations in NOWIcob. We will assume that λ ∈ Ωλ = {0.1, 0.2, ..., 1.5},
|Ωλ| = M = 15 and that λ has a known probability mass function p(λ).

The decision variables we will consider here are

• ap ∈ Ap = {10, 11, ..., 50}, |Ap| = 41

• aCTV ∈ ACTV = {0, 1, ..., 4}, |ACTV | = 5

• aSES ∈ ASES = {0, 1, ..., 4}, |ASES| = 5

Here, ap denotes the number of personnel available on each shift, aCTV denotes the number of
CTV and aSES denotes the number of SES. We will denote the set of all possible combinations
of ap, aCTV and aSES by A.

4.2.2 Value Function

The quantity of interest is the profit of the offshore wind farm. We will denote the value function
by v, and assume that it is a function of the variables discussed in Section 4.2.1,

v = v(a, λ), a = (ap, aCTV , aSES). (4.2)
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v will depend on many other variables, such as the location of the wind farm, but we will treat
these variables as constant in this case study. A major part of estimating the value of information
is the optimization of the value function. An evaluation of the value function is time consuming,
and we have an input space of size |Ap| · |ACTV | · |ASES| · |Ωλ| = 15375. One can evaluate
all points, which will yield the optimal solution, but that will take a lot of time because each
evaluation could take several minutes. A smarter approach is to use Bayesian optimization that
will be more effective because fewer points need to be evaluated. This is also a more scalable
approach if one wants to include even more decision variables.

We will use Bayesian optimization with a GP as a surrogate model to maximize v. To do
so, we must make some assumption about v and the variables. Firstly, we must specify the
covariance structure. We will assume that v is a smooth function so that a separable Gaussian
covariance structure is applicable. Then we also assume that the variables have a different
spatial dependency, which seems like a reasonable assumption. Two points where aCTV differ
by one should have a different covariance than two points where ap differ by one. The distance
in space is the same, but while a difference of one person does not matter much, will a difference
of one vessel have a large impact on the profit.

Since there are many uncertain variables involved in the simulation tool, we must have a
way to include uncertainty in our model. The uncertainty is obtained by running several MC
iterations in NOWIcob. Because of randomly occurring failures will the profit vary between
simulations. By including a nugget in the GP, as discussed in Section 2.2.1, we include this
uncertainty in the estimate of the value function.

The optimization of the value function is done sequentially, as described in Algorithm 1.
First, an initial batch of points is obtained and used to fit a GP. Next, we use an acquisition
function to suggests the next points for evaluation, and then we add these points to the set of
observations. These two steps are repeated until we reach a stopping criterion.

4.3 Algorithm for Estimating Value of Information

In the following, we will go through the algorithm for estimating the VOI in our case study.
First, in Section 4.3.1, will the case-specific acquisition function will be formulated. In Section
4.3.3 will the algorithm used to estimate VOI be presented.

4.3.1 Acquisition Function

The choice of acquisition function must be done based on the problem under consideration, in
particular on the data that are involved. We are not only interested in maximizing the function,
but we want to find the maximum value for each value of λ. This makes standard acquisition
functions inadequate since areas where λ is large will not be explored at all because the profit
will be lower in these areas. We must, therefore, add a mechanism that forces the exploration
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of promising points for all rates.
LetMk be the optimal value thus far for each rate λk, that is

Mk = max
a∈A
{v(a, λk)}, k = 1, ...,M. (4.3)

Note thatMk corresponds to y∗ when we derived the acquisition functions in Section 2.3. The
EI can then be expressed as

EI (a, λk) = E (max{v(a, λk)−Mk, 0}) . (4.4)

The numerical value for EI can be computed by using (2.51). The EI in each point will now be
set relative to the current maximum for each rate, and not the overall maximum. The algorithm
for finding the expected improvement for all feasible points is summarized in Algorithm 2.

Algorithm 2 Expected improvement for case study

1. ComputeMk for k = 1, 2, ...,M

2. for k = 1, 2, ...,M

3. for all a ∈ A

4. Compute EI(a, λk) = E (max{v(a, λk)−Mk, 0})

5. end for

6. end for

7. return EI

Since we must explore areas for all values of the rate, it is reasonable to force the selec-
tion of one point for each value of rates. Thus, each time we select new points for evalu-
ation, M points are chosen - one for each value of λ. In addition to force the selection of
points for all values of failure rates, we also want a mechanism that ensures the selected points
to have some distance between each other. For instance, we do not want to evaluate both
(ap, aCTV , aSES, λ) = (22, 1, 1, 0.3) and (ap, aCTV , aSES, λ) = (22, 1, 1, 0.4) since these points
are likely to have very similar value. We will therefore use the scheme in (2.53) to select new
points for evaluations, forcing the new points to be a certain distance from each other.

The final algorithm for selecting new points for evaluation is summarized in Algorithm 3. In
line 5 is a new point proposed based on the expected improvement. If this point has no nearby
points that are already accepted candidates for new evaluation and has an expected improvement
larger than ε, the point is added to the set of candidates. Otherwise, the point is removed as a
candidate for evaluation. We will define distance, ‖xcand − x‖, as

‖xcand − x‖ = |apcand − a
p|+ |aCTVcand − aCTV |+ |aSEScand − aSES|+ 10 · |λcand − λ|, (4.5)
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where x = (a, λ) is used to ease the notation. We will use δ = 15 as a minimum distance
between new points for evaluation. The algorithm proceeds until M = 15 new points are
selected, or until there are no more candidates with an EI higher than ε.

Algorithm 3 New point selection for case study

1. Compute EI for all feasible points

2. Initialize Xcand = {}

3. for k = 1, 2, ...,M

4. repeat

5. Propose xcand = argmax
a

EI(a, λk)

6. if ‖xcand − x‖ > δ ∀x ∈ Xcand and EI(xcand) > ε

7. Xcand = {Xcand,xcand}

8. else

9. Remove EI(xcand) from EI

10. until xcand ∈ Xcand or no more candidates available

11. end for

12. return Xcand

4.3.2 Distribution of Failure Rate

We argued in Section 4.1 that it is reasonable to treat the failure rate as stochastic, but the
distribution remains unknown. We will therefore consider four different distributions, which
are reasonable guesses on what might actually be the truth. These distributions are

1. p1(λ) = Gamma(k = 0.903, β = 0.316)

2. p2(λ) = Gamma(k = 0.226, β = 1.263)

3. p3(λ) = N(0.285, 0.32)

4. p4(λ) = N(0.285, 0.62)

where k is the shape parameter and β is the scale parameter in the gamma distribution. The
distributions is truncated on the interval [0.1, 3] and discretized into the feasible values for λ.
The distributions is plotted in Figure 4.2. The mean in all four distributions is 0.285, which is
the failure rate for a medium type repair suggested by Dinwoodie et al. (2015). The standard
deviation in p1 and p3 is 0.3, and 0.6 for p2 and p4.
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Figure 4.2: Plot of the three suggested distributions of the failure rate, λ.

4.3.3 Algorithm

The resulting algorithm for estimating the VOI is summarized in Algorithm 4. The initial
points x1, ...,xn0 are selected by using a Latin Hypercube sampling procedure. See for instance
Santner et al. (2013) for a thorough review of Latin Hypercube sampling and other space filling
sampling procedures. To ease the notation in the algorithm will x = (a, λ) denote all the
variables used to fit the GP.

The first step in each iteration is to fit a GP to the observations in Dn. The necessary
theory for this was discussed in Section 2.2. The library laGP (Gramacy and Sun, 2017) in
R provides an efficient way of fitting a GP, including the estimation of the hyperparameters
discussed in Section 2.2.1. Next, new points for evaluations are chosen, using Algorithm 3. The
new points are then evaluated in NOWIcob, which is our ”black-box function”. NOWIcob is
written in MATLAB, which is called from R. Finally are all new observations added to the set
of observations, Dn.

The search of a the optimal configuration for each failure rate continues until there are no
more candidates, Xcand, that have an expected improvement above the lower limit, ε. Then may
the V̂OI be computed using the suggested distribution for λ discussed in 4.3.2.

We will consider both perfect and imperfect information about the failure rate. For the
computation of V̂OI with perfect information, we can plug the estimated value function and
distribution for λ into (3.22). For imperfect information, we will assume the same relation
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Algorithm 4 Estimation of VOI for case study

1. Define

- Feasible values for decision variables, ap, aCTV, aSES

- M feasible values for uncertain variable, λ

2. Specify

- Acquisition function α(x)

- Distribution of failure rate, p(λ)

3. Obtain initial sample

- Set initial sample size, n0

- Sample initial points x1, ...,xn0

- Evaluate yi = f(xi) for i = 1, ..., n0

- Dn = {(xi, yi)}n0

i=1

4. repeat

5. Fit the surrogate model, GP | Dn
6. Find Xcand = argmax

x∈Ω
α(x)

7. Evaluate yi = f(xi) ∀xi ∈ Xcand

8. Augment Dn with new observations

9. until Xcand = ∅

10. Compute V̂OI = P̂oV − P̂V

11. return V̂OI

49



Chapter 4. Case Study - NOWIcob Simulation Model

between what we observe, y, and the failure rate as what we used in the example in Section
3.2.2, that is

y = λ+ ∆, ∆ ∈ {−0.1, 0, 0.1}. (4.6)

The conditional distribution P (Y = y | Λ = λ) is given in (3.16). The posterior value for
imperfect information can then be estimated by

P̂oV = E

(
max
a∈A
{E (v̂(a, λ) | y)}

)
=
∑
y

max
a∈A

{∑
λ

v̂(a, λ)
P (Y = y | Λ = λ)P (Λ = λ)

P (Y = y)

}
P (Y = y).

(4.7)

P (Λ = λ) is given by the proposed distributions in Section 4.3.2 and P (Y = y) is easily
computed by using (3.18).
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Chapter 5
Experimental Results

In this chapter, we will present the results from the estimation of the value of knowing the
failure rate for a medium repair type of failure. We will first present some results from the
optimization of the value function in Section 5.1. Next, we will present the estimated VOI for
different distributions of the failure rate for both perfect- and imperfect information in Section
5.2. In Section 5.2.3 we will look at the accuracy in the VOI estimate and briefly discuss the
uncertainty in the estimate.

5.1 Optimization of the Value Function

The verification of the proposed optimal values is not straightforward since the value function is
unknown. We will get a better understanding of the optimization process by looking at the EI at
different stages. Since the value function has four input variables, it can not be visualized in its
entirety. We will, therefore, consider subsets of the input space, where the vessel alternatives,
aCTV and aSES are fixed.

Figure 5.1 shows contour plots of the relative EI for the points with (aCTV , aSES) = (0, 1)

plotted at different stages in the optimization process. The relative EI is the ratio between the
EI and the current best observation thus far. In the upper left corner, we see that there are many
points that are candidates for being the maximum. Most of these points are for low values of
λ. Points with high ap at this stage are assumed to be promising points, but in the following
iterations are these points discarded. We see that the most promising points moves toward lower
values of ap, as we can see in Figure 5.1b, 5.1c and 5.1d.

Contour plots of the relative EI for the points with (aCTV , aSES) = (0, 2) are shown in
Figure 5.2. After the initial batch the situation is much alike what we saw for (aCTV , aSES) =

(0, 1) as can be seen in Figure 5.2a. In the following iterations are many points discarded as
candidates for being the maximum, and the area of high EI gathers around ap = 20 and λ > 0.4.

We see in Figure 5.1 and 5.2 that we discard many more points than we evaluate since just
15 points are evaluated in each iteration. This is just what we wanted - minimize the number of
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evaluations in NOWIcob, and still find good solutions.
When the relative EI is lower than 0.001 for all feasible points, we choose to terminate

the algorithm and we have obtained the estimate of v. In total was 50 iterations and 499 eval-
uations in NOWIcob required. This is a large reduction from the number of feasible points,
15375. Figure 5.3a and 5.3b depict the estimated posterior mean and uncertainty, respectively,
for (aCTV , aSES = (0, 2). The estimated value function is smooth and the shape is what we
would expect - monotonically decreasing when λ increases. For ap > 24, the profit decays
monotonically which is what we expect since all values of personnel larger than 24 are only an
additional expense.

The posterior standard deviation is shown in Figure 5.3b. The uncertainty should be lower
in the areas that are well explored, and higher elsewhere. By comparing with Figure 5.1 we
see that the areas that had a significant relative EI are the same that have low uncertainty. The
uncertainty is high in the same areas as the points that were discarded as candidates for being
the maximum. Thus, promising areas are well explored and less promising areas are not.

In Table 5.1 the optimal configurations are shown, as suggested by the fitted GP, for all
feasible values of the failure rate, λ. The value function, v̂, decays as the failure rate increases
just as expected. There are two different vessel configurations, (aCTV , aSES) = (0, 1) and
(aCTV , aSES) = (0, 2). For low values of λ is one vessel enough, while for higher rates there
are more failures so an additional vessel is required to avoid too much down time. We see that
the optimal configuration are in the areas that had a high relative EI in Figure 5.1 and 5.2.

We used a separable Gaussian covariance function, defined in (2.34), when estimating the
value function with a GP. Then we assumed that the variables had a different spatial dependency.
In the resulting GP, the length scale parameters, θ = (θp, θCTV , θSES, θλ), was estimated to be

• θp = 2915

• θCTV = 11.9

• θSES = 3.4

• θλ = 37

This means that our assumption that the variables have different spatial dependency was correct.
Two points that differ by one in ap are more correlated than two points that differ by one vessel
or rate. A small change in the number of personnel should not affect the overall profit much.
Changing the number of vessels might lead to large losses either because there are too few
vessels available to transport personnel to the wind farm, or because there are too many vessels
so that it becomes an unnecessary additional expense.

5.1.1 Check of the Normality Assumption

When we are estimating the value function fitted with a GP, we are assuming that each point is
Gaussian distributed with some mean and variance. We briefly mentioned in Section 2.2.1 that
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(a) Relative expected improvement after initial batch of
samples.

(b) Relative expected improvement after 5 iterations of
adaptive sampling.

(c) Relative expected improvement after 10 iterations of
adaptive sampling.

(d) Relative expected improvement after 20 iterations of
adaptive sampling.

Figure 5.1: Relative expected improvement at different stages of the optimization process for
(aCTV , aSES) = (0, 1).
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(a) Relative expected improvement after initial batch of
samples.

(b) Relative expected improvement after 5 iterations of
adaptive sampling.

(c) Relative expected improvement after 10 iterations of
adaptive sampling.

(d) Relative expected improvement after 20 iterations of
adaptive sampling.

Figure 5.2: Relative expected improvement at different stages of the optimization process for
(aCTV , aSES) = (0, 2).
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(a) Estimated value function.

(b) Estimated uncertainty.

Figure 5.3: Estimated value function v̂(λ, ap, aCTV = 0, aSES = 2) and corresponding uncertainty.
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Table 5.1: The estimated optimal configuration for each feasible value of the failure rate, λ. v̂ is the
estimated posterior mean and σ(v̂) is the estimated posterior standard deviation in the GP.

aCTV aSES ap λ v̂ σ(v̂)
0 1 12 0.1 87026026 896420
0 1 12 0.2 86726854 893357
0 1 12 0.3 86345384 892446
0 1 12 0.4 85881964 892720
0 1 12 0.5 85337141 893575
0 2 22 0.6 84728132 891470
0 2 22 0.7 84411937 891025
0 2 22 0.8 84087095 890875
0 2 22 0.9 83754600 890833
0 2 22 1.0 83415403 890804
0 2 23 1.1 83076993 890734
0 2 23 1.2 82734091 890733
0 2 23 1.3 82387465 890909
0 2 24 1.4 82039205 891500
0 2 24 1.5 81694414 893044

when we are estimating the scale parameter, τ 2, each point is turned from a normal to a student-t
distribution with n degrees of freedom. We have assumed that we have a sufficiently large n so
that we may assume that the points are still normally distributed. Since we are making these
assumptions, we should check whether they are valid or not. There are several ways of checking
for normality. We will do it by looking at how new observations match the proposed model.

Denote a new observation by Y , with cumulative distribution function (cdf) FY (y). In our
case Y is normally distributed. Define Z = FY (Y ) and note that Z will take values in the
interval [0, 1]. The cdf of Z is given by

FZ(z) = P (Z ≤ z) = P (FY (Y ) ≤ z)

= P (Y ≤ F−1
Y (z)) = FY

(
F−1
Y (z)

)
= z.

(5.1)

We recognize FZ(z) as the cdf of a uniform distribution on [0, 1]. Thus, if we collect m new
observations, Y1, ..., Ym, we expect Z1, ..., Zm to be uniformly distributed on [0, 1].

A histogram showing the distribution of Z1, ..., Zm is shown in Figure 5.4. This is computed
by evaluating m new points in NOWIcob, and computing Zm = FYm(Ym), where FYm is given
from the fitted GP. We see that there are some spikes for z close to zero and one, and a slightly
overweight of observations where z > 0.5. These spikes indicate that there are some extreme
observations that are either a lot smaller or a lot larger than what the estimated model predicts.
This might be observations in areas where we have few observations and thus poor estimates of
the mean and variance.

By closer inspection, we observe that the points with z < 0.05 are characterized by few
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vessels and a high failure rates. In particular, points with (aCTV , aSES) = (0, 0) had z close to
zero in all cases as the profit where dramatically overestimated. This is because the GP never
learned that zero vessels mean that no repairs will be done if a failure occurs which again is
caused by the lack of observations. The lack of observations is because the GP learned that
(aCTV , aSES) = (0, 0) is an area of low profits. This is just as we want, in terms of efficiency in
the optimization process, but it gives poor predictions in this part of the input space. The points
where z > 0.95 are characterized by many vessels and personnel and a low failure rate, which
is also caused by the lack of observations.

In addition to assuming normality, we also assumed that we would have the same covariance
structure over the whole feasible domain. The extreme observations we saw in Figure 5.4 might
indicate that this assumption was inadequate. For instance, points with a high failure rate, and
few vessels and technicians might be subject to a higher variation in the output. Once a failure
occurs, it could take a long time before it gets repaired and failures might pile up so that a lot of
income might be lost. The time in which these failures occurs will vary between simulations,
and with limited maintenance resources will this yield a high variation in the output. The points
with (aCTV , aSES) = (0, 0) illustrates this well. If a failure occurs during the first time step of
the simulation, this wind turbine will not contribute to the overall profit. If this failure occurs
at the very end of the simulation, the wind turbine will have produced a lot of energy and
then contributed a lot to the overall profit. The difference in profit between simulations could
therefore be large, which leads to a higher uncertainty in this part of the input space.

Because of these differences in the covariance structures, it could be of interest to partition
the input space so that we have the same covariance structure in each partition. This was briefly
discussed in Section 2.2.2. We note this as a possible improvement of our approach.

5.2 Estimation of Value of Information

The optimal O&M strategies without information about the failure rates for the distributions
for λ under consideration are listed in Table 5.2. The PV and strategies are found by using
(3.21). Note that v̂ in (3.21) corresponds to the posterior mean in the GP. We see that the distri-
butions with the highest variance yield the lowest PV and the distributions with lowest variance
yields the highest PV. The optimal configurations suggested by the distributions with low vari-
ance agrees well with Table 5.1 and Figure 4.3.2. For λ ≤ 0.5 is the optimal configuration
(ap, aCTV , aSES) = (12, 0, 1). Most of the probability mass for these two distributions are for
λ ≤ 0.5, so that even though the configurations are sub-optimal for λ > 0.5, they are not given
much weight.

The optimal configurations suggested for the distributions with high variances have both
two vessels, since a high λ is now more likely. Again we see that the suggested configurations
agree well with Table 5.1 and Figure 4.3.2.
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Figure 5.4: Distribution of z1, ..., z1000 when computing the cumulative probability for new observa-
tions.

Table 5.2: Summary of optimal O&M strategy without additional knowledge about the failure rate for
the four distributions under consideration.

Distribution ap aCTV aSES PV

Gamma(k = 0.903, β = 0.316) 12 0 1 85876527
Gamma(k = 0.226, β = 1.263) 21 0 2 85153821
Normal(0.285, 0.32) 12 0 1 85832979
Normal(0.285, 0.62) 22 0 2 84742937

5.2.1 Perfect Information

The PoV for perfect information is computed by using (3.22). For all λ, are max
a∈A
{v̂(λ,a}

listed in Table 5.1 and the prior values are listed in Table 5.2. The PoV and VOI for the four
distributions under consideration are summarized in Table 5.3. As expected are the VOI largest
for the distributions with highest variance, where the gamma distribution yields the overall
highest VOI. The estimated VOI is, for all distributions of λ, a good amount of money. It is,
therefore, reasonable to assume that information gathering is worthwhile.
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Table 5.3: Estimated PoV and VOI for the four distributions of the failure rate under consideration.

Distribution PoV VOI

Gamma(k = 0.903, β = 0.316) 86082262 205735
Gamma(k = 0.226, β = 1.263) 85679872 526050
Normal(0.285, 0.32) 85933890 100910
Normal(0.285, 0.62) 85099062 356125

5.2.2 Imperfect Information

The PoV for imperfect information is computed by using (4.7) and the four proposed distribu-
tions for λ. Just as we did in the running example in Chapter 3, we will compute the VOI for
three sets of values for p and q. The result in summarized in Table 5.4. For p = 1

20
and p = 9

10

are the differences in VOI for imperfect and perfect information small. The differences gets
larger when q decreases and p increases, but they are still relatively small. The estimates for
VOI are still so high that information gathering is likely to be worthwhile, depending on the
price of the information.

Table 5.4: Estimated PoV and VOI for the four distributions of the failure rate under consideration.

p q Distribution PoV VOI

1

20

9

10

Gamma(k = 0.903, β = 0.316) 86081259 204732
Gamma(k = 0.226, β = 1.263) 85678795 524973
Normal(0.285, 0.32) 85932296 99317
Normal(0.285, 0.62) 85097466 354528

1

6

2

3

Gamma(k = 0.903, β = 0.316) 86078994 202467
Gamma(k = 0.226, β = 1.263) 85676361 522539
Normal(0.285, 0.32) 85928972 95992
Normal(0.285, 0.62) 85093740 350802

1

3

1

3

Gamma(k = 0.903, β = 0.316) 86076561 200034
Gamma(k = 0.226, β = 1.263) 85672885 519063
Normal(0.285, 0.32) 85925486 92506
Normal(0.285, 0.62) 85088417 345480

5.2.3 Accuracy of the VOI Estimate

We will in the following investigate the accuracy and uncertainty of the VOI estimate for one
distribution of λ, p(λ) = Gamma(k = 0.226, β = 1.263). The evolution of V̂OI is shown in
Figure 5.5. We observe that the VOI estimate changes a lot early in the optimization process
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Figure 5.5: The estimated VOI as a function of the number of evaluated points, n.

and stabilizes as the number of evaluated points, n, grows. When n is close to 500, there are
very small changes in V̂OI which suggest that our estimate for VOI is accurate.

When estimating VOI, we searched after the configuration that resulted in the highest profit
for each value of λ. For an efficient search, we designed the acquisition function so that config-
urations that were expected to yield a high profit were chosen to be evaluated. If the target was
to obtain an accurate estimate of VOI, we could instead have designed the acquisition function
with this objective in mind. Then the algorithm would proceed until V̂OI stabilizes according
to some defined measure. The adequacy and development of such an acquisition function are
considered as a possible improvement.

We have used (3.25) to draw B realizations from the estimated value function to study
sample variation in the process over the conditional mean estimation. For each realization are
P̂V, P̂oV and V̂OI computed. The estimated mean and standard deviation is found to be

VOI = 1339959

SD(V̂OI) = 218291,
(5.2)

by using (3.26) and (3.27), respectively. We note that the mean is much higher than what we
estimated. This is because of the bias that we briefly mentioned in Section 3.3.3. Intuitively,
it makes sense that VOI > V̂OI. There are many points that can get a higher sampled value
than what we estimated, and thus become the optimal point for a given rate. For instance, the
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5.2 Estimation of Value of Information

point (ap, aCTV , aSES, λ) = (24, 1, 2, 1.5) have mean µ = 80852277 and standard deviation
σ = 914127. This point have a PI = 0.054. Thus, when sampling the profit at this point, it is
a fair chance that the sample is larger than the optimal configuration in Table 5.1. Since we are
drawing in total 15350 points, 1025 points for each rate, we will in most cases get samples that
give a larger PoV than what we estimated. This will lead to an overestimation of VOI.

The uncertainty estimate is worth taking into consideration, but it remains only an indication
of what the true standard deviation is. Nevertheless, for a decision maker, it will be relevant
information when one is to decide whether to buy information or not.
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Chapter 6
Closing Remarks

In this thesis, we have used Bayesian optimization with a Gaussian process (GP) surrogate
model to estimate the value of information (VOI) in a complex decision situation. The deci-
sion situation under consideration was the operation and maintenance (O&M) strategy for an
offshore wind farm, and the failure rate for a medium repair failure was the uncertain variable
that we want to estimate the value of knowing. By defining the value function as the profit for
a given O&M strategy, we can search for favorable strategies by optimizing this function. The
results indicated that Bayesian optimization was able to find favorable O&M strategies. The es-
timated VOI seemed reasonable for the four cases of distributions for the failure rate that were
proposed.

6.1 Key Findings

When optimizing the value function, we only provided input-output relations and the feasible
range of the variables. Based on this, we were able to find favorable regions in the input space.
This suggests that a GP was a suitable surrogate model and that the modified expected im-
provement acquisition function we used was adequate. Only 499 evaluations in NOWIcob was
required before the algorithm terminated. The number of evaluations was reduced by a factor
of over 30 compared to the number of feasible points, 15375.

The key results from the estimation of VOI are

• The distributions for λ with the lowest variance resulted in the highest VOI.

• VOI for perfect information was greater than VOI for imperfect information.

• The estimates of VOI suggests that information gathering about the failure rate might be
worthwhile, depending on the price of the information.

• The estimate of VOI converged nicely over the number of evaluations.
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6.2 Possible Improvements

The proposed distributions for the failure rate was based on literature regarding failure rates for
offshore wind turbines. These distributions may be inadequate, so a more appropriate distribu-
tion for the failure rate might improve the estimate of VOI.

There are several other uncertain variables involved in the O&M decision problem where
the value of information could be estimated. For instance, information about the wave height is
valuable since the vessels have an upper limit for wave height that prevents them from operating.
One can also include other failure rates, for instance, minor repair failures and look at the VOI

for this quantity alone or jointly with the failure rate for medium repair failure.
Some of the assumptions we made when specifying the GP, for instance assuming the same

covariance structure over the whole feasible domain, might not be appropriate. By partition the
input space into disjoint regions, one might achieve more accurate estimates of the uncertainty.

For a more efficient optimization of the value function, we could let the minimum relative
EI, ε, be a function of the failure rate. Then we can let points with rates that are unlikely, based
on the probability distribution of the failure rate, be subject for less exploration. This will yield
a less accurate estimate of the value function for some values of the rate, but it will not affect
the overall estimation of VOI significantly.

We only considered a subset of possible decision variables that make up the O&M strategy.
A natural extension of this study is therefore to include more decision variables.
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Appendix

The simulation tool used in this thesis have many input and output parameters that might lead
to confusion. Explanation and specification of the most important parameters are therefore
provided here. Explanation of the parameters related to failures, wind farm specification, sim-
ulation setup, vessels and workforce are given in the tables 6.1, 6.2, 6.3, 6.4, 6.5, respectively.
The values of these parameters are specified in the tables 6.6, 6.7, 6.8, 6.9, 6.10, respectively.
The descriptions are based on whats provided by Hofmann et al. (2017b). Note that there are
two types of crew transfer vessels (CTV), type 1 and 2. We only consider type 1 CTV, but to
ease the notation it is simply denoted by CTV.
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Table 6.1: Description of some input parameters related to component failures.

Input parameter Description

Failure type
The different types of failures are categorized based on their severity.
We distinguish between manual reset, minor repair, medium repair and
annual service.

Annual rate Each type of failure occur randomly with an annual failure rate.

Costs spare parts
Some failures requires replacement of spare parts, which has an
associated cost.

Personnel needed
The number of personnel needed to perform the maintenance task
required for a failure.

Active
maintenance time

The number of hours required to perform the maintenance task.

Stop at failure
Does the wind turbine stop the energy production because of the
failure that occurred?

Stop during
repair

Is it required to stop the energy production during the repair?

Table 6.2: Description of some input parameters related to the wind farm.

Input parameter Description

Turbine type
Each turbine is defined by some properties, such as physical
dimensions and cut-in/cut-out wind speeds. Wind speeds outside the
cut-in and cut-out interval gives zero power production.

Number of wind
turbines

The number of wind turbines in the wind farm under consideration. We
will assume that all the wind turbines in the farm are of the same type.

Distance to
harbour

The shortest distance, in kilometers, from a wind turbine to the
harbour.

Electricity price
The electricity price, measured in GBP per MWh, assumed to be
constant throughout the whole simulation period.
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Table 6.3: Description of some input parameters related to the simulation setup.

Input parameter Description

Weather
Time series for wind speed, wind direction, wave height and wave
direction. The time series are based on historical data from the wind
farm location.

Simulation
period

Length of simulation period in years.

Number of MC
iterations

The number of Monte Carlo simulations used. For each MC iteration,
new weather time series are generated.

Wind speed
resolution

The resolution of the wind speed.

Wave height
resolution

The resolution of the wave height, in meters.

Table 6.4: Description of some input parameters related to the vessels.

Input parameter Description

Day rate
Fixed cost per day per vessel in GBP including cost for maintenance of
vessel.

Travel speed
The maximum speed, in knots, for the vessels when traveling to/from
the wind farm.

Fuel
consumption
travelling

The amount of fuel, measured in litres per hour, consumed by a vessel.

Personnel space The maximum number of passengers on a vessel.
Offshore wind
speed limit

The upper limit of wind speed, measured in meters per second, so that
the vessel still can operate.

Offshore wave
height limit

The upper limit of wave height in meters so that the vessel still can
operate.
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Table 6.5: Description of some input parameters related to the workforce.

Input parameter Value
Number hours
per shift

Scheduled length of a shift.

Number of daily
shifts

How many shifts per day.

Shifts start What time of the day does the shift starts.
Minimum
working hours

Minimum length of a shift

Annual salary
technicians

The fixed, yearly expense for one technician, in GBP.

Table 6.6: Specification of some input parameters related to component failures. The annual rate for
medium repair failures are assumed unknown in this thesis and is therefore denoted by λ in this table.

Failure type Manual reset Minor repair Medium repair Annual service
Annual rate 7.5 3.6 λ 1
Costs spare parts[GBP] 0 1000 18500 18500
Personnel needed 2 2 3 3
Active maintenance time[hours] 3 7.5 22 60
Stop at failure Yes Yes Yes No
Stop during repair Yes Yes Yes Yes

Table 6.7: Specification of some input parameters related to the wind farm.

Input parameter Value
Turbine type Vestas V90 3 MW turbine
Number of wind turbines 80
Distance to harbour [km] 50
Electricity price [GBP/MWh] 90
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Table 6.8: Specification of some input parameters related to the simulation setup.

Input parameter Value
Weather FINO data
Simulation period [years] 1
Number of MC iterations 5
Wind speed resolution [m/s] 1.0
Wave height resolution [m] 0.1

Table 6.9: Specification of some input parameters related to the vessels.

Input parameter CTV SES
Day rate [GBP] 1750 5000
Travel speed [knots] 20 35
Fuel consumption travelling [l/hour] 400 700
Personnel space 12 12
Offshore wind speed limit [m/s] 30 30
Offshore wave height limit [m] 1.5 2

Table 6.10: Specification of some input parameters related to the workforce.

Input parameter Value
Number hours per shift 12
Number of daily shifts 1
Shifts start 06:00
Minimum working hours 1
Annual salary technicians [GBP] 80000
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