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Abstract

The theory of time-frequency analysis is introduced, and basic results on
modulation spaces are proved. We describe Gabor frames and prove results
which are relevant to application in wireless communication. We outline a
technique for transmitting data through a time-domain signal using time-
frequency shifts, and show how pseudodifferential operators can be used to
model a communication channel. The abstract structures of Hilbert C∗-
modules are described and used to explain central aspects of Gabor theory,
and we use a link to noncommutative geometry to prove the Balian-Low
theorem.
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Sammendrag

Teorien om tidsfrekvensanalyse blir introdusert, og grunnleggende resultater
om modulasjonsrommene bevises. Vi beskriver Gabor-rammer og gir bevis
for resultater som er nyttige innen utvikling av tr̊adløs kommunikasjon. Vi
skisserer en prosedyre for overføring av data via et signal i tidsdomenet, og
viser hvordan pseudodifferensielle operatorer kan brukes til å modellere en
kommunikasjonskanal. Videre beskrives den abstrakte strukturen Hilbert
C∗-modul, og den brukes til å forklare sentrale aspekt ved Gabor-teori. Vi
bruker i tillegg en kobling til ikke-kommutativ geometri til å gi ytterligere
innsikt i tidsfrekvensanalysen og bevise Balian-Low-teoremet.
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Introduction

In mobile wireless communication, the goal is representing data as analogue
signals, and retrieving these data upon reception. A common method is
called orthogonal frequency-division multiplexing (OFDM), and is used in
a range of different systems, including Digital Audio Broadcasting (DAB
radio), Wireless Local Area Networks (WLAN), and underwater acoustic
communications.[18] In OFDM, discrete data is represented as a superposi-
tion of shifts in time and frequency, of a given function, or window, g. Now,
this could be done by finding a basis among the time-frequency shifts of g,
and hence a unique representation for every signal f . However, both theory
and practice has shown this is not the most effective approach. In the prac-
tical context, a unique representation is vulnerable to noise and incomplete
transmissions, since information contained in the signal can only be trans-
mitted by one unique shift of the window. In theory, we shall see that by the
Balian-Low theorem, for well-behaving windows g, it is in fact impossible to
make such a system an orthonormal basis. By allowing for some redundancy
of information in the representation, however, practitioners within the field
have arrived at the concept of a frame. Instead of requiring unique represen-
tations, this generalisation of a basis allows for linearly dependent elements.

In his 1946 paper [6], Dennis Gabor introduced the idea to use time-frequency
shifts of the Gaussian to represent a signal. In the 80’s, his name was given
to the Gabor frames of the form G(g,Λ) = {MωTxg}(x,ω)∈Λ, where Λ is some
discrete subset, usually a lattice, in R2. This has a natural connection to
the OFDM of wireless signals. The signal construction and data retrieval
- the synthesis and analysis - are neatly described by the so-called Gabor
frame operator. Gabor theory consists of describing these systems, and their
many properties and unsolved questions, as well as manipulating the frame
operator to make such a transmission system more effective.

The Gabor frame operator leads us into the field of operator algebras, where,
among the C∗-algebras [14, 11], we find the noncommutative tori, developed
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broadly by Alain Connes [1] and Marc Rieffel [20]. These can be seen as
generalisations of the commutative algebra of continuous functions on the
2-torus, where the two generating unitary elements are subject to a different
commutation relation. The noncommutative tori can be realised in B(L2(R)
both as a twisted group C*-algebra and as a crossed product. Together with
the abstract structure of a Hilbert C∗-module, these two different realisations
give insight into the mathematical mechanics behind some mysterious prop-
erties of the Gabor frames, and in particular, representations of the Gabor
frame operator.

The Serre-Swan Theorem, due to Jean-Pierre Serre and Richard Swan [22],
states that there is an equivalence of categories between finitely generated,
projective modules over an algebra, and vector bundles, via the concept
of sections. With the geometrical structure of vector bundles, the Hilbert
C∗-modules allow us to describe elements from Gabor analysis further. In
particular, the Balian-Low theorem can be proved as a consequence of the
differential structure added to smooth vector bundles over smooth manifolds.

In this thesis, chapter 1 introduces important concepts of time-frequency
analysis, such as the time-frequency shift, the short-time Fourier transform,
and the modulation spaces. Chapter 2 gives an introduction to general frame
theory, before using time-frequency shifts to define the very central concept
of Gabor frames. These are thoroughly discussed, and we consider represen-
tations of the operator, duality with the adjoint lattice, and multi-window
Gabor frames. Chapter 3 introduces some insight to the appliance of repre-
sentation of data through time-frequency shifts, and the pseudodifferential
operators used to model communication channels are being discussed. In
chapter 4, we introduce some abstract mathematics in the noncommutative
tori, and we look at two ways to realise them as sets of operators on L2(R).
Chapter 5 uses the concept of Morita equivalence between the C∗-modules of
the previous chapter to show links to Gabor analysis. In particular, associa-
tivity of the inner products on two realisations of an equivalence bimodule
between noncommutative tori with indices θ and 1/θ is shown to be equiva-
lent to the Walnut and Janssen representations, respectively. Finally, chapter
6 gives a geometrical aspect to the modules by introducing vector bundles,
and through the concept of connections, we are able to give a proof of the
Balian-Low theorem.



Chapter 1

Modulation Spaces

In this chapter, we introduce central concepts to the field of time-frequency
analysis. In particular, we define and establish the properties of the mod-
ulation spaces, which will be important classes of functions throughout the
thesis.

1.1 The Short-Time Fourier Transform

Central to time-frequency analysis are the two operators Tx and Mω, where
x, ω ∈ R, acting on L2(R) as

Txf(t) = f(t− x),

Mωf(t) = e2πiωtf(t).

These are called the translation and modulation operators, respectively. Some
basic properties are given in the following lemma.

Lemma 1.1.1.

i) MωTx = e2πixωTxMω.

ii) T ∗x = T−x and M∗
ω = M−ω.

iii) (MωTx)(Mω′Tx′) = e2πi(ωx′−ω′x)(Mω′Tx′)(MωTx)

Proof.

i) MωTxf(t) = e2πitωf(t− x) = e2πixωe2πi(t−x)ωf(t− x) = e2πixωTxMωf(t).
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ii)

〈Txf, g〉 =

∫
R
f(t− x)g(t)dt =

∫
R
f(u)g(u+ x)du = 〈f, T−xg〉.

Similarly,

〈Mωf, g〉 =

∫
R
e2πiωtf(t)g(t)dt =

∫
R
f(t)e−2πiωtg(t)dt = 〈f,M−ωg〉.

iii)

(MωTx)(Mω′Tx′)f(t) = e2πiωte2πiω′(t−x)f(t− x′ − x)

= e2πi(ω′t+ωt−ωx′)f(t− x′ − x)

= e2πi(ωx′−ω′x)e2πi(ω′t+ωt−ωx′)f(t− x′ − x)

= e2πi(ωx′−ω′x)(Mω′Tx′)(MωTx)

Note that ii implies that MωTx is a unitary operator, since clearly M−1
ω =

M−ω and T−1
x = T−x. We will often use both operators together, making

it convenient to write π(λ) = MωTx for λ = (x, ω) ∈ R2. We shall call the
operator π(λ) a time-frequency shift. The time-frequency shift is used on
a so-called window function g ∈ L2(R), usually a well-concentrated pulse,
which can be manipulated by π(λ) to carry information as a signal. Now, we
define the Fourier transform of a function f ∈ L2(R) by

F(f)(ω) = f̂(ω) =

∫
R
f(t)e−2πiωt.

Definition 1.1.1. Fix a window function g ∈ L2(R). The short-time Fourier
transform (STFT) of a function f ∈ L2(R) with respect to g is the function
Vgf : R2 → C given by

Vgf(x, ω) = 〈f, π(x, ω)g〉 =

∫
R
f(t)g(t− x)e−2πiωtdt = F(fTxg(ω)).

It can be shown that for f ∈ L2(R), we have Vgf ∈ L2(R2). The STFT can
be thought of as a way to describe a signal f with regards to both time and
frequency. As a function of time, f(t) only tells us the amplitude at time
t, and nothing about the frequencies. Similarly, as a function of frequency,
the Fourier transform f̂(ω) only tells us the amplitude of a component with
frequency ω, and nothing about the time at which this frequency occurs. The
STFT yields information about both time and frequency in one function, and
is therefore often useful for describing e.g. music, for which both time and
frequency information is vital.
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Proposition 1.1.2 (Moyal’s Identity). Let g, γ, f and φ be functions in
L2(R). Then

〈Vgf, Vγφ〉 = 〈f, φ〉〈g, γ〉.

The proof of this can be found in [7].
We shall investigate how the STFT behaves under a switch of the roles of f
and g. For λ = (x, ω) ∈ R2, using lemma (1.1.1), we get

Vgf(λ) = 〈f, π(λ)g〉
= 〈π(x, ω)g, f〉 = 〈MωTxg, f〉
= 〈g, T−xM−ωf〉 = 〈g, π(−λ)f〉e−2πiωx

= Vfg(−λ)e2πiωx.

Lemma 1.1.3. The adjoint V ∗g : L2(R2)→ L2(R) of the STFT is given by

V ∗g F (t) =

∫
R2

F (λ)π(λ)g(t)dλ.

Proof.

〈Vgf, F 〉L2(R2) =

∫
R

∫
R
Vgf(x, ω)F (x, ω)dxdω

=

∫
R

∫
R

∫
R
f(t)g(t− x)e−2πitωdtF (x, ω)dxdω

=

∫
R
f(t)

∫
R

∫
R
F (x, ω)g(t− x)e−2πitωdxdωdt

= 〈f, V ∗g F 〉L2(R).

Using the adjoint we can describe inversion of the STFT:

Lemma 1.1.4. Given functions f, g, γ ∈ L2(R),

V ∗γ Vgf = 〈γ, g〉f.

Proof. Take any function φ ∈ L2(R). Then

〈V ∗γ Vgf, φ〉 = 〈Vgf, Vγφ〉 = 〈f, φ〉〈g, γ〉 = 〈〈γ, g〉f, φ〉,

using Moyal’s Identity in the second equality. Since this holds for any φ ∈
L2(R), we must have V ∗γ Vgf = 〈γ, g〉f .
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1.2 Definition of the Modulation Spaces

A weight function – a non-negative, continuous function v : R2 → R – is said
to be submultiplicative if

v(z + w) ≤ v(z)v(w)

for all z, w ∈ R2. A weight function m : R2 → R is v-moderate if

m(z + w) ≤ Cv(z)m(w)

for all z, w ∈ R2.

Definition 1.2.1. For p, q ∈ [1,∞], g ∈ L2(R) and a v-moderate weight m,
the modulation spaces are defined as follows:

Mp,q
m (R) = {f ∈ L2(R) : ||f ||Mp,q

m
:= ||(Vgf)||Lp,qm (R2) <∞},

where Lp,qm (R2) is the mixed-norm space of all functions F : R2 → C such
that

||F ||Lp,qm (R2) :=

∫
R

(∫
R
|F (x, ω)|pm(x, ω)pdx)q/pdω

)1/q

<∞.

Perhaps surprisingly, the definition of the modulation spaces does in fact not
depend on the choice of the atom g, as long as we set some restrictions on the
choice. Recall that the Schwartz space is the subspace of C∞(R) of infinitely
differentiable functions whose derivatives are decaying fast:

S(R) =

{
f ∈ C∞(R) | sup

t∈R

∣∣(2πit)mf (n)(t)
∣∣ <∞ ∀m,n ∈ N

}
.

Proposition 1.2.1. For different choices of g ∈ S(R), the norms on Mp,q
m (R)

are equivalent. Consequently, the definition of Mp,q
m (R) is independent on the

choice of window function g ∈ S(R).

In order to prove this result, we need a somewhat technical lemma concerning
the norm of convolutions in Lp,qm (R2):

Lemma 1.2.2. Let m be a v-moderate weight function, and take F ∈ L1
v(R2)

and G ∈ Lp,qm (R2). Then

||F ∗G||Lp,qm ≤ C||F ||L1
v
||G||Lp,qm .
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Proof. Let H be a function in Lp
′,q′

1/m(R2), where 1
p

+ 1
p′

= 1 and 1
q

+ 1
q′

= 1.
Then

|〈F ∗G,H〉| =
∣∣∣∣∫

R2

∫
R2

F (w)G(z − w)H(z)dwdz

∣∣∣∣
≤
∫
R2

|F (w)|
(∫

R2

|TwG(z)| |H(z)|dz
)
dw

≤
∫
R2

|F (w)| ||TwG||Lp,qm ||H||Lp′,q′
1/m

dw (by Hölder’s Inequality)

≤ C

∫
R2

|F (w)|v(w)dw||G||Lp,qm ||H||Lp′,q′
1/m

.

Thus,

||F ∗G||Lp,qm = sup

{
|〈F ∗G,H〉| : ||H||

Lp
′,q′

1/m

≤ 1

}
≤ C||F ||L∞v ||G||Lp,qm .

We are now ready to prove the equivalence of norms on Mp,q
m (R), by using

the results above for the STFT:

Proof of proposition 1.2.1. Take F ∈ Lp,qm (R2). With λ = (x, ω), we have

VgV
∗
g F (λ) = 〈V ∗g F, π(λ)g〉

=

∫∫
R2

F (u, η)Vg[π(λ)g](u, η) du dη

=

∫∫
R2

F (u, η)Vgg(x− u, ω − η)e−2πix(ω−η) du dη.

Thus we have the pointwise norm estimate

|VgV ∗g F (λ)| ≤ (|F | ∗ |Vgg|)(λ).

Thus, by lemma 1.2.2, we have

||Vg(V ∗g F )||Lp,qm ≤ C||F ||Lp,qm ||Vgg||L1
v
. (1.1)

With ||g||2 = 1, and using the Gaussian g0 for comparison, (1.1) finally gives

||Vg0f ||Lp,qm = ||Vg0(V ∗g Vgf)||Lp,qm ≤ C||Vg0g||L1
v
||Vgf ||Lp,qm = C ′||Vgf ||Lp,qm
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and

||Vgf ||Lp,qm = ||Vg(V ∗g0Vg0f)||Lp,qm ≤ c||Vgg0||L1
v
||Vg0f ||Lp,qm = c′||Vg0f ||Lp,qm .

This shows that for any g ∈ S(R),the norms ||Vgf ||Lp,qm and ||Vg0f ||Lp,qm are
equivalent on Mp,q

m (R). Consequently, for any g ∈ S(R), ||Vgf ||Lp,qm < ∞ if
and only if ||Vg0f ||Lp,qm < ∞, so the definition of the modulation spaces is
independent of the window function g ∈ S(R).

1.3 Particular Examples

We shall concentrate on the modulation space M1,1
1 (R), i.e. the case where

p = q = 1, and m = 1, which we shall denote S0(R) = M1,1
1 (R). The space

is also called Feichtinger’s algebra, first introduced by Hans G. Feichtinger
in [3].
We also write M1

s (R) := M1,1
vs (R), where vs is the weight function defined by

vs(x, ω) = (1 + |x|2 + |ω|2)s/2.

Proposition 1.3.1. M1
s (R) is invariant under Fourier transform.

Proof. Let f ∈M1
s (R). Since the modulation spaces are independent on the

choice of g ∈ S, it is sufficient to consider the Gaussian g = g0. Then

||f̂ ||M1
s (R) = ||Vg0 f̂ ||L1

s(R2)

=

∫∫
R2

|〈f̂ , π(λ)g0〉|vs(λ) dλ

=

∫∫
R2

|〈f, π̂(λ)g0〉|vs(λ) dλ (by Parseval’s formula) (1.2)

The Fourier transform of a time-frequency shift by λ = (x, ω) ∈ R2 is given
by

̂π(x, ω)g(η) =

∫
R
e2πiωtg(t− x)e−2πiηt dt

=

∫
R
g(t)e2πi(t+x)(ω−η) dt

=

∫
R
g(t)e2πit(ω−η) dt e2πix(ω−η)

= ĝ(η − ω)e−2πix(η−ω)

= TωM−xĝ(η).
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Inserted into (1.2), and using that ĝ0 = g0, we finally obtain

||f̂ ||M1
s (R) =

∫∫
R2

|〈f, TωM−xg0〉|vs(λ) dλ

=

∫∫
R2

|Vg0f(ω,−x)|vs(λ) dλ

≤ C||Vg0f ||L1
s(R2)

= C||f ||M1
s (R).

Now, when looking at the intersection of all the spaces M1
s (R), it turns out

that this is in fact the Schwartz space:

S(R) =
⋂
s≥0

M1
s (R). (1.3)

A proof of this can be found in [23].





Chapter 2

Gabor Frames

When transmitting discrete data through an analogue signal f , we need a
well-defined procedure for constructing such a signal - the synthesis - as well
as a one for breaking it down to study its components - the analysis. One way
of transmitting data through a signal is to express a signal f as a discrete sum
of translated and modulated versions of some simple, well-located window
function g. By indexing our data by the time-frequency shifts, this method
allows us to transmit the data through the analogue signal, and retrieve the
data upon reception.
In this chapter we shall introduce the abstract concept of frames for a Hilbert
space as a generalisation of, and alternative to, orthonormal bases. Then
we will look at the concrete case of Gabor frames for L2(R), for which we
establish important properties and well-known results. In particular, we will
look closely at the Gabor frame operator, which describes the synthesis and
analysis procedures of a data transmission.

2.1 Frames in Hilbert Spaces

Let H be a Hilbert space. A frame for H is a sequence {ej}j∈J such that
there are A,B > 0 satisfying the so-called frame inequality,

A||x||2 ≤
∑
j∈J

|〈x, ej〉|2 ≤ B||x||2, (2.1)

for all x ∈ H. Note that a frame is always a Bessel sequence, that is, it
satisfies ∑

j∈J

|〈x, ej〉|2 <∞
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for all x ∈ H. Therefore, the upper bound B is often called the Bessel bound
of a frame. If (2.1) holds with A = B, {ej}j∈J is said to be tight, and if
additionally A = B = 1 satisfies the equation, the frame is called a Parseval
frame. Parseval frames are particularly useful, as they admit an expansion

x =
∑
j∈J

〈x, ej〉ej

for all x ∈ H. Note that the coefficients 〈x, ej〉 need not be unique. Although
a frame is in many ways like a basis, this property distinguishes the two
concepts: a frame allows linearly dependent elements, and thus supporting
a notion of redundancy - overlapping of information.

Definition 2.1.1. For a frame {ej}j∈J for a Hilbert space H, a dual frame
is any frame {e′j}j∈J satisfying

x =
∑
j∈J

〈x, e′j〉ej ∀x ∈ H.

Note that the concept of duality is symmetric, i.e. any frame is a dual frame
for its own dual: suppose {e′j}j∈J is a dual frame for {ej}j∈J , i.e. that (2.1.1)
holds. Then consider the inner product of any two elements x, y ∈ H:

〈x, y〉 =

〈∑
j∈J

〈x, e′j〉ej, y

〉
=
∑
j∈J

〈x, e′j〉〈ej, y〉 = 〈x,
∑
j∈J

〈y, ej〉e′j〉

must hold for all x, y ∈ H. This implies y =
∑

j∈J〈y, ej〉e′j for all y ∈ H,
meaning {ej}j∈J is a dual frame for {e′j}j∈J . Thus we may talk about pairs
of dual frames without concern.
Note also that we may have more than one dual frame associated to a par-
ticular frame - again, we see a certain freedom in working with frames.

Definition 2.1.2. For a frame {ej}j∈J for a Hilbert space H, the associated
analysis operator is defined by

C : H → l2(J)

x 7→ {〈x, ej〉}j∈J .

The associated synthesis operator is defined by

D : l2(J)→ H

{cj}j∈J 7→
∑
j∈J

cjej.
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The analysis and synthesis operators can be shown to be adjoints of each
other, and their composition make up the so-called frame operator associated
to the frame {ej}:

S := DC = C∗C = DD∗ :H → H

x 7→
∑
j∈J

〈x, ej〉ej.

The following lemma lists a few basic properties of the frame operator.

Lemma 2.1.1. Let {ej} be a frame with corresponding frame operator S.
Then S is a bounded, invertible, positive, self-adjoint operator.

Proof.

〈Sx, x〉 =

〈∑
j∈J

〈x, ej〉ej, x

〉
=
∑
j∈J

〈x, ej〉〈ej, x〉 =
∑
j∈J

|〈x, ej〉|2 ≤ B||x||2,

proving the boundedness of S. In fact, this shows that being a Bessel se-
quence is sufficient. The frame inequality (2.1) implies A||x||2 ≤ 〈Sx, x〉 ≤
B||x||2, proving positivity, and hence invertibility. Self-adjointness follows
from C and D being adjoints.

The frame operator guarantees a dual frame whenever we have a frame
{ej}j∈J : by considering the sequence {S−1ej}j∈J , we see that∑

j∈J

〈x, S−1ej〉ej = S−1
∑
j∈J

〈x, ej〉ej = S−1Sx = x ∀x ∈ H,

showing that {S−1ej}j∈J is always a dual frame for {ej}j∈J . We call this the
canonical dual frame for {ej}j∈J . S also guarantees a canonical tight frame:
for a given frame {ej}j∈J , since S is a positive operator, we can consider the
sequence {S−1/2ej}j∈J :∑

j∈J

〈x, S−1/2ej〉S−1/2ej = S−1
∑
j∈J

〈x, ej〉ej = S−1Sx = x ∀x ∈ H,

so {S−1/2ej}j∈J is a tight frame whenever {ej}j∈J is a frame.
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2.2 Gabor Frames in L2(R)

We shall look at a particular type of frame for the Hilbert space H = L2(R).
Recall the time-frequency shift π(x, ω) = MωTx of functions in L2(R), defined
in section 1.1. Fix a function g ∈ L2(R) and let λ = (x, ω) run through a
lattice Λ = QZ2, where Q is an invertible 2 × 2 matrix. The resulting set
G(g,Λ) := {π(λ)g | λ ∈ Λ} of time-frequency shifts of g is called a Gabor
system with atom g. If the set also satisfies the requirement for being a frame
for L2(R), i.e. if there exist A,B > 0 such that

A||f ||2 ≤
∑
λ∈Λ

|〈f, π(λ)g〉|2 ≤ B||f ||2 ∀f ∈ L2(R),

the system is called a Gabor Frame. We define the volume of the lattice Λ
to be the determinant of the matrix Q, and denote it vol(Λ).

Given a Gabor frame G(g,Λ), a function γ ∈ L2(R) is called a dual atom or
dual window of g if G(γ,Λ) is a dual frame for G(g,Λ), i.e. if

f =
∑
λ∈Λ

〈f, π(λ)g〉π(λ)γ =
∑
λ∈Λ

〈f, π(λ)γ〉π(λ)g ∀f ∈ L2(R).

The Gabor frame operator is given by

Sg,g,Λ :L2(R)→ L2(R)

f 7→
∑
λ∈Λ

〈f, π(λ)g〉π(λ)g.

We use this notation to allow the slightly more general version of the Gabor
frame operator which we shall use more frequently. This is defined by

Sg,γ,Λ :L2(R)→ L2(R)

f 7→
∑
λ∈Λ

〈f, π(λ)g〉π(λ)γ.

From the definition of dual frames, we see that Sg,γ,Λ is the identity operator
exactly when g and γ are dual atoms. In this case a function f can be
decomposed into a linear combination of elements of the frame, i.e. time-
frequency shifts of any of the window functions g and γ.

Lemma 2.2.1. Sg,γ,Λ commutes with all time-frequency shifts π(λ) for λ ∈ Λ.
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Proof. Let µ = (u, η) ∈ Λ and f ∈ L2(R). Then, using the adjoint and
commutation properties of time-frequency shifts from lemma 1.1.1,

π(µ)∗Sg,γ,Λπ(µ)f = π(µ)∗
∑
λ∈Λ

〈π(µ)f, π(λ)g〉π(λ)γ

=
∑
λ∈Λ

〈f, π(µ)∗π(λ)g〉π(µ)∗π(λ)γ

=
∑
λ∈Λ

〈f, e2πiη(x−u)π(λ− µ)g〉e2πiη(x−u)π(λ− µ)γ

=
∑
λ∈Λ

〈f, π(λ− µ)g〉π(λ− µ)γ

=
∑
λ∈Λ

〈f, π(λ)g〉π(λ)γ

= Sg,γ,Λf,

using the re-indexing λ− µ 7→ λ in the last equality. Due to the unitarity of
the time-frequency shift, this implies that Sg,γ,Λπ(µ)f = π(µ)Sg,γ,Λf for all
f ∈ L2(R).

For Gabor frames, the canonical dual frame {S−1π(λ)g}λ∈Λ is a much more
manageable set than in the case of general frames: since the frame operator
commutes with time-frequency shifts, this is in fact the frame {π(λ)S−1g}λ∈Λ.
This means only the lattice point λ of the time-frequency shift varies, so only
the computation of the canonical dual atom S−1g is needed. This constitutes
a significant advantage in computational efficiency.

2.3 The Fundamental Identity of

Gabor Analysis

Let Λ be any lattice. Then we define the adjoint lattice Λ◦ by the following
commutation criterion:

Λ◦ =
{
λ◦ ∈ R2 | π(λ)π(λ◦) = π(λ◦)π(λ) ∀λ ∈ Λ

}
.

It is easily shown that for a lattice Λ = AZ2, the adjoint lattice is given by

Λ◦ =

(
0 −1
1 0

)
(AT )−1Z2,

and that, in particular, the adjoint of a separable lattice αZ× βZ is
β−1Z× α−1Z.
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We shall see that the concept of an adjoint lattice yields several important
results regarding the Gabor frames we have discussed. To lay the foundations
for the connection between a frame-generating lattice Λ and its adjoint Λ◦,
we will use a version of the Poisson summation formula in which the sum is
being taken over a lattice in R2. In this we shall see a connection between
the duality of a lattice to its adjoint lattice, and the duality of a function
and its symplectic Fourier transform, as observed in [5].

Definition 2.3.1. The symplectic Fourier transform of a function F ∈
L2(R2) at the point λ = (x, ω) is defined by

F̂ s(λ) =

∫∫
R2

e2πi(uω−xη)F (u, η) du dη.

An important result in the following is a version of the Poisson summation
formula where sum is being taken over a lattice in R2:

Proposition 2.3.1 (Poisson Summation Formula over a lattice in R2). Let
F be a function in M1

s (R2) and Λ be a lattice in R2. Then∑
λ∈Λ

F (λ) = vol(Λ)−1
∑
λ◦∈Λ◦

F̂ s(λ◦), (2.2)

where both sums converge absolutely.

Proof. Let λ = (x, ω), µ = (u, η) ∈ Λ, and let Φ(µ) =
∑

λ∈Λ F (µ+ λ). Since
the left-hand side of (2.2), Φ(0), is Λ-periodic, we get the following euclidean
Fourier expansion over the dual lattice Λ⊥:

Φ(µ) =
∑

λ⊥∈Λ⊥

Φ̂λ⊥e
2πi(λ⊥·µ),

where the Fourier coefficients are

Φ̂k,n = vol(Λ)−1

∫∫
V

∑
λ∈Λ

F (µ+ λ)e−2πi(λ⊥·µ)) du dη

= vol(Λ)−1

∫∫
R2

F (µ)e−2πi(λ⊥·µ)) du dη

= vol(Λ)−1F̂ (λ⊥).

with F̂ meaning the euclidean Fourier transform on R2. Thus,∑
λ∈Λ

F (µ+ λ) = vol(Λ)−1
∑

λ⊥∈Λ⊥

F̂ (λ⊥)e2πi(λ⊥·µ).
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Now, from definition 2.3.1 of the symplectic Fourier transform, we see that
F̂ (µ) = F̂ s(J(µ)), where J(u, η) = (−η, u) is a rotation in the time-frequency
plane. By rotating the lattice similarly, we get the lattice JΛ⊥ = Λ◦, so∑

λ∈Λ

F (µ+ λ) = vol(Λ)−1
∑
λ◦∈Λ◦

F̂ s(λ◦)e2πi(x◦η−uω◦))

for λ◦ = (x◦, ω◦) ∈ Λ◦. Evaluating at µ = (u, η) = 0, we obtain the desired
result.

We include a statement of the Poisson summation formula for functions in
L2(R). This is a simpler version of the result 2.3.1 proved above, and follows
a simpler, yet similar proof as the one just given.

Lemma 2.3.2 (Poisson Summation Formula). Let φ be a function in M1
s (R).

Then ∑
n∈Z

φ(t+ nT ) =
1

T

∑
n∈Z

φ̂
(n
T

)
e2πint/T .

The powerful connection between a lattice and its adjoint through the use
of the symplectic Fourier transform leads us directly to the following central
theorem: [21, 13, 2, 4]

Theorem 2.3.3 (Fundamental Identity of Gabor Analysis). Let f and γ be
functions in L2(R), φ and g functions in M1(R) and Λ a lattice in R2. Then∑

λ∈Λ

〈f, π(λ)g〉〈φ, π(λ)γ〉 = vol(Λ)−1
∑
λ◦∈Λ◦

〈γ, π(λ◦)g〉〈φ, π(λ◦)f〉, (2.3)

where both sums converge absolutely.

Proof. Let F (λ) = 〈f, π(λ)g〉〈π(λ)γ, φ〉. Then by referring to [5], we have
that F ∈M1(R2). Now, with λ = (x, ω) and λ◦ = (u, η) in R2, the symplectic
Fourier transform of F is

F̂ s(λ◦) =

∫∫
R2

e2πi(xη−uω)〈f, π(λ)g〉〈π(λ)γ, φ〉 dλ

=

∫∫
R2

〈π(λ◦)f, e−2πi(xη−uω)π(λ◦)π(λ)g〉〈π(λ)γ, φ〉 dλ

=

∫∫
R2

〈π(λ◦)f, π(λ)π(λ◦)g〉〈π(λ)γ, φ〉 dλ

=

∫∫
R2

Vπ(λ◦)g[π(λ◦)f ](λ)Vγφ dλ

= 〈Vπ(λ◦)g[π(λ◦)f ], Vγφ〉
= 〈π(λ◦)f, φ〉〈π(λ◦), γ〉.
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By using the Poisson summation formula (proposition 2.3.1), we arrive at
(2.3).

2.4 Representations of the Gabor

Frame Operator

Two very useful representations of a Gabor frame operator Sg,h,Λ are the
Walnut and the Janssen representations. We shall first derive the Walnut
representation for separable lattices Λ = αZ× βZ, where α, β ∈ R, and then
show how it leads to the Janssen representation. Then we generalise the
Janssen representation to general lattices in R2, and show how the Walnut
representation is obtained from this.
We start looking at the Gabor frame operator. For λ ∈ αZ × βZ, it can be
written

Sg,γ,Λf(t) =
∑
k,n∈Z

〈f, π(αk, βn)g〉π(αk, βn)γ(t)

=
∑
k,n∈Z

(∫
R
f(τ)e−2πiβnτg(τ − αk)dτ

)
e−2πiβntγ(t− αk)

=
∑
k,n∈Z

F
[
f(τ)g(τ − αk)](βn)e−2πiβntγ(t− αk)

=
∑
k∈Z

γ(t− αk)

[∑
n∈Z

F
[
f(τ)g(τ − αk)

]
(βn)e−2πiβnt

]

Now, using the Poisson summation formula, lemma 2.3.2, on the bracket
with φ(τ) = f(τ)g(τ − αk) and T = 1/β, we get

Sg,γ,Λf(t) = β−1
∑
k∈Z

γ(t− αk)
∑
n∈Z

f(t+ β−1n)g(t+ β−1n− αk)

= β−1
∑
n∈Z

[∑
k∈Z

γ(t− αk)g(t+ β−1n− αk)

]
f(t+ β−1n)

Letting

Gn(t) =
∑
k∈Z

γ(t− αk)g(t+ β−1n− αk),
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we see that Sg,γ,Λf can be expressed in terms of time-shifts of f :

Sg,γ,Λf(t) = β−1
∑
n∈Z

Gn(t)f(t− β−1n)

This is the Walnut representation, which was first described by David Walnut
[24]. Note that the function Gn is not dependent on f , only on the dual atoms
g and γ. Thus, the Walnut representation allows us to write Sf as a linear
combination of time shifts of f only. Note also that Gn is periodic with
period α. Consequently, the Fourier series representation is

Gn(t) =
∑
l∈Z

Ĝn(l)e2πilt/α,

with Fourier coefficients

Ĝn(l) = α−1

∫ α

0

Gn(t)e−2πilt/αdt

= α−1

∫ ∞
−∞

g(t− β−1n)γ(t)e−2πilt/αdt

= α−1〈γ, π(β−1n, α−1l)g〉.

This leads us to the Janssen representation for separable lattices:

Sg,γ,Λf = (αβ)−1
∑
n,l∈Z

〈γ, π(β−1n, α−1l)g〉π(β−1n, α−1l)f, (2.4)

The Janssen representation was discovered by both Janssen and Daubechies,
Landau and Landau [13, 2]. Here a frame operator associated to a frame
with lattice αZ × βZ is represented by a similar operator associated to a
frame with lattice β−1Z×α−1Z. The Janssen representation is a very useful
tool in Gabor analysis. Without it, one would have to compute the inner
product of every signal function f , but this representation allows us to write
the frame operator as a linear combination of time-frequency shifts of the
signal function.
Having introduced the adjoint lattice, we see from the Janssen representation
(2.4) for separable lattices that this is simply the adjoint of the separable
lattice. In fact, we can generalise (2.4) to hold for all lattices and their
adjoints:

Proposition 2.4.1 (Janssen Representation). Let g and γ be functions in
M1

v . Then for any f ∈ L2(R),

Sg,γ,Λf = vol(Λ)−1
∑
λ◦∈Λ◦

〈γ, π(λ◦)g〉π(λ◦)f. (2.5)
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Proof. Take φ ∈ L2(R). By the Fundamental Identity of Gabor Analysis, we
get

Sg,γ,Λf =

〈∑
λ∈Λ

〈f, π(λ)g〉π(λ)γ, φ

〉
=
∑
λ∈Λ

〈f, π(λ)g〉〈φ, π(λ)γ〉

= vol(Λ)−1
∑
λ◦∈Λ◦

〈γ, π(λ◦)g〉〈π(λ◦)f, φ〉

=

〈
vol(Λ)−1

∑
λ◦∈Λ◦

〈γ, π(λ◦)g〉π(λ◦)f, φ

〉
.

Since this holds for all φ ∈ L2(R), the first components of the respective
inner product must be equal, and so we obtain the desired conclusion.

We will now show the transition back into the Walnut representation. Let
Λ = αZ× βZ be a separable lattice, so that Λ◦ = β−1Z×α−1Z is its adjoint
lattice. For f ∈ L2(R), the Janssen representation gives:

Sg,γ,Λf(t) = (αβ)−1
∑
n,l∈Z

〈γ, π(β−1n, α−1l)g〉e2πilt/αf(t− β−1n)

= β−1
∑
n∈Z

[
α−1

∑
l∈Z

〈γ, π(β−1n, α−1l)g〉e2πilt/α

]
f(t− β−1n),

where we recognise the bracket as Gn(t) =
∑

l∈Z Ĝn(l)e2πilt/α, as defined
earlier. This shows that the Walnut representation is in essence a way of
writing the more general Janssen representation in the separable case.

2.5 The Wexler-Raz Biorthogonality

Condition

The connection of a lattice with its adjoint lattice can also be used to char-
acterise dual atoms for a given lattice Λ. The following result describes this
relationship.

Proposition 2.5.1 (Wexler-Raz). Let Λ be a lattice in R2 with adjoint lattice
Λ◦, and g and γ be functions in L2(R) generating Gabor frames G(g,Λ) and
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G(γ,Λ). Then these are dual frames frames, i.e. g and γ are dual atoms, if
and only if

〈γ, π(λ◦)g〉 =

{
vol(Λ) if λ◦ = 0

0 otherwise
. (2.6)

Proof. We first prove that (2.6) implies duality of g and γ. Take any functions
f and φ in L2(R). Then

〈Sγ,gf, φ〉 =

〈∑
λ∈Λ

〈f, π(λ)g〉π(λ)γ, φ

〉
=
∑
λ∈Λ

〈f, π(λ)g〉〈φ, π(λ)γ〉

= vol(Λ)−1
∑
λ◦∈Λ◦

〈γ, π(λ◦)g〉〈φ, π(λ◦)f〉 (by the FIGA)

= 〈φ, f〉 = 〈f, φ〉,

where the last line comes from the assumption of equation (2.6). Thus,
Sγ,gf = f for all f ∈ L2(R), so g and γ are dual atoms.

Conversely, suppose g and γ are dual atoms, so that Sγ,gf = f for all f ∈
L2(R). Take functions f and φ in L2(R). Then, similar to the above, we get

〈f, φ〉 = 〈Sγ,gf, φ〉

= vol(Λ)−1
∑
λ◦∈Λ◦

〈γ, π(λ◦)g〉〈φ, π(λ◦)f〉

= vol(Λ)−1

〈∑
λ◦∈Λ◦

〈γ, π(λ◦)g〉π(λ◦)f, φ

〉
.

Since this holds for all φ ∈ L2(R), we get∑
λ◦∈Λ◦

〈γ, π(λ◦)g〉π(λ◦)f = vol(Λ)f ∀f ∈ L2(R).

Writing in operator form, and using that π(0) = I, we get∑
λ◦∈Λ◦, λ◦ 6=0

〈γ, π(λ◦)g〉π(λ◦) + 〈γ, g〉 − vol(Λ) = 0.
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Now, π being a faithful representation, all the terms in the left sum must
equal zero, so

〈γ, π(λ◦)g〉 =

{
vol(Λ) if λ◦ = 0

0 otherwise
.

2.6 Frame-Generating Atoms and Lattices

We have introduced and described properties of Gabor frames, but we do
not yet know anything about which Gabor systems G(g,Λ) = {π(λ)g}λ∈Λ

are indeed frames, if any at all. More precisely, a description of which atoms
g and lattices Λ can produce Gabor frames, is needed. This has proved,
however, a difficult task, and contemporary research is being done on such
characterisations.[10] Here, we will give a few relevant concepts and results
related to the matter.

Theorem 2.6.1 (Balian-Low). Let g be a function in L2(R) such that both
tg(t) and ωĝ(ω) are also in L2(R). Then G(g,Λ) cannot be an orthonormal
basis for L2(R).

This theorem describes a limit as to how ”well-behaved” functions we can
use as a Gabor frame atom if we wish to have the often-wanted property of
being an orthonormal basis. It tells us that we cannot use functions which
are well-concentrated in both time and in frequency.

One way of systematising a characterisation of Gabor frames is, given an
atom g, to ask which lattices Λ ⊂ R2 would make G(g,Λ) a frame. We
therefore define the frame set for a function g as follows:

F(g) =
{

Λ ⊂ R2 lattice | G(g,Λ) is a Gabor frame
}
.

The following result gives a necessary condition for a lattice to be in F(g)
for a function g ∈ L2(R).

Proposition 2.6.2. Let g be a function in L2(R). If G(g,Λ) is a frame, then
vol(Λ) ≤ 1.

A natural example to consider is the Gaussian g0(t) = e−t
2
, for which we

have F(g0) = {Λ ⊂ R2 lattice | vol(Λ) < 1}, for which the proof g0 can be
found in [17].
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2.7 Multi-Window Gabor Frames

Given a window g ∈ L2(R) and a lattice Λ ⊂ R2, we have seen that the
corresponding Gabor system {π(λ)g,Λ} is sometimes a Gabor frame, and
sometimes not. In some of the latter cases, however, all we need to do to
obtain a frame is to add time-frequency shifts of some additional windows to
the system.[25] We therefore introduce the following generalisation of Gabor
frames.

Definition 2.7.1. A multi-window Gabor frame is a frame

{π(λ)gj | λ ∈ Λ, 1 ≤ j ≤ n}

for L2(R) consisting of time-frequency shifts of a finite number of windows
g1, · · · gn ∈ L2(R) over a lattice Λ in R2.

The explicit frame condition for such a set is

A||f ||2 ≤
n∑
j=1

∑
λ∈Λ

|〈f, π(λ)gj〉|2 ≤ B||f ||2 ∀f ∈ L2(R)

for some A,B > 0, and the (general) Gabor frame operator for such a frame
is given by

S{gj},{γj},Λf =
n∑
j=1

∑
λ∈Λ

〈f, π(λ)gj〉π(λ)γj,

where γ1, · · · , γn ∈ L2(R) and f ∈ L2(R). The concept of allowing more
than one window to make a Gabor frame will show its importance later.





Chapter 3

Orthogonal Frequency-Division
Multiplexing

Orthogonal frequency-division multiplexing (OFDM) is a method for the
process of transmitting data through a time-domain signal. Examples of
appliance of this technique are wi-fi and 4G signals. The key principle in
general frequency-division multiplexing is dividing the frequency spectrum
into usually non-overlapping divisions, and letting each division carry a part
of the signal. Among the advantages is a reduced risk of losing an entire
signal, since the data is spread into several subcarriers, or subchannels. When
using OFDM, we let the subcarriers be orthogonal to each other. This allows
them to transmit on overlapping parts of the frequency spectrum without
interference.
In this chapter we describe how a transmitted signal is perturbed by the
channel through which it propagates, and introduce some terms used by
engineers when constructing a signal, transmitting it, and retrieving data.

3.1 Multipath Propagation and Doppler

Spread

In mobile wireless communication applications, suppose a signal x(t) is trans-
mitted via a channel, modelled as an operator H, and is received as the per-
turbed signal y(t) = (Hx)(t). Typically, there are two major ways in which
such a signal is perturbed by this channel.
First, nearby reflectors causes there to be several paths for the signal. This
so-called multipath propagation leads to time dispersion; the signal pulses ar-
rive several times, spread out in time. Since the data symbols are separated
by their placement in time, this may cause intersymbol interference, or ISI.
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Second, any relative motion between transmitter, receiver and reflectors leads
to Doppler spread, a spread of modulated versions of the transmitted signal.
Because different subchannels are separated by frequency and confined to
different frequency intervals, the Doppler spread may result in interchannel
interference, or ICI. In general, the input-output relation of a wireless signal
can be represented as

y(t) = (Hx)(t) =

∫ ∞
−∞

ht(s)x(t− s) ds,

where, in contrast to a time-invariant channel, the impulse response ht(s) =
h(t, s) is dependent on time and can be considered a function of two variables.
By rearranging the variables, we can write

(Hx)(t) =

∫ ∞
−∞

h(t, t− s)x(s) ds. (3.1)

By letting

σ(t, ω) = F2h(t, ω) :=

∫ ∞
−∞

h(t, s)e−2πiωs ds

be the regular Fourier transform of h in the second variable, and using the
convolution theorem for Fourier transforms, we can rewrite (3.1) as

(Hx)(t) =

∫ ∞
−∞

σ(t, ω)x̂(ω)e2πiωt dω. (3.2)

Since H depends on the so-called Kohn-Nirenberg symbol σ, we write H =
Hσ, and we name the mapping σ 7→ Hσ the Kohn-Nirenberg correspondence.
To emphasise the time-frequency aspect of the operator, we use (3.2) and
rewrite the operator in the following way:

Hσx(t) =

∫∫
R2

σ(t, ω)e2πi(t−y)ωx(y) dω dy

=

∫∫
R2

σ̂(η, y − t)e2πiηtx(y) dy dη

=

∫∫
R2

σ̂(η, u)e2πiηtx(t+ u) dy dη

=

∫∫
R2

σ̂(η, u)MηT−ux(t) du dη. (3.3)

In this representation, it becomes clear how the channel acts on the signal
as a continuous superposition of time-frequency shifts. The function σ̂ is
called the spreading function of the channel, and describes how the shift of
the signal is weighted.
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Definition 3.1.1. A channel operator Hσ is said to be underspread if its
spreading function σ̂ is compactly supported in [−τmax, τmax]× [−ωmax, ωmax]
with τmax · ωmax < 1.

Often, though σ̂ is not truly compactly supported in u, one may assume ap-
proximate compact support due to its rapid decay.

To study the channel operator, we need to establish some properties of the
spreading function σ̂. In particular, it would be useful to identify boundaries
with respect to both variables. We therefore look at the properties of a
realistic modelling of a mobile wireless signal.
The energy loss of a signal is more severe in a realistic environment than the
theoretically achievable |h(t, s)| ∝ 1/s2. In fact, a common way to model it
is by an exponential decay, i.e.

|h(t, s)| ≤ ce−a|s|

for some positive constants a and c. Since σ̂ = F1Ih, where F1 is the regular
Fourier transform in the first variable and If(x, y) = f(−x, y), the above
implies |σ̂(η, u)| ≤ ce−a|u|.
The Doppler shift ωd is given by

ωd =
v

λ
cosφ,

where v is the relative velocity of the object, φ is the angle between the
direction of movement of the object and the direction of the signal wave, and
λ is the wavelength of the signal. This implies that σ̂ is compactly supported
in [−ωmax, ωmax] with respect to its first variable, where ωmax = v/λ.
As a conclusion, the symbol σ of a mobile wireless channel operator Hσ must
satisfy

σ̂(η, u) = 0 for |η| > ωmax and |σ̂(η, u)| ≤ ce−a|u| (3.4)

for some c, a > 0.

3.2 Multicarrier Communication Systems

When constructing the transmit signal x(t) in multicarrier communication
systems, one divides the information to be transmitted into several signals
gl, l = 1 · · ·N , or subchannels, of which the transmitted signal is a superpo-
sition. Commonly, as in frequency-division multiplexing, the different sub-
channels are separated by frequency: each has its frequency interval, where
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the other channels will hopefully not interfere. A typical set of subchannels is
{gl(t) = g(t)e2πilbt, l = 1...N}, where g ∈ L2(R) is a fixed pulse and 0 < b ∈ R
is called the carrier separation of the signal construction.
The data {cn}n∈Z which is to be transmitted is rearranged and divided into
data blocks (indexed by k ∈ Z), which are being transmitted subsequently
with a time delay, or symbol period of 0 < a ∈ R. Each data block is
transmitted as a superposition of the already mentioned frequency-divided
subchannel signals gl(t). We shall therefore write the data as {ck,l}, and the
resulting transmit signal is built in the following way:

x(t) =
∑
k∈Z

N∑
l=1

ck,lg(t− ka)e2πilbt =
∑
k∈Z

N∑
l=1

ck,lMlbTkag(t).

We recognise the discrete superposition of time-frequency shifts from Gabor
theory. When using OFDM, the time-frequency shifted versions of the basic
pulse g, denoted by gk,l, are mutually orthogonal, and we will assume them
to be mutually orthonormal. The received signal y(t) = Hσx(t) needs to
be analysed to recover the original data. The following discrete data set is
received:

dk,l = 〈Hσx, gk,l〉 =
∑
k′,l′

ck,l〈Hσgk′,l′ , gk,l〉.

Write c = {ck,l}k,l∈Z, d = {dk,l}k,l∈Z, and let R = R(σ, g) be the matrix with
entries 〈Hσgk′,l′ , gk,l〉 for k, l, k′, l′ ∈ Z. This is called the channel matrix of a
communication channel, and depends on the symbol σ of the channel operator
and the fixed pulse g. The task of recovering the original information c is
now reduced to solving the linear system

Rc = d.

Consequently, the structure of R is highly relevant for the recovery of the
data; a ”nice” matrix would allow us to solve the linear system more effi-
ciently. In particular, we would like the matrix to be diagonal (or ”almost
diagonal”, which will soon be specified). Since the channel is modelled by
time-frequency shifts of the original transmit signal, it is natural to use time-
frequency shifts of a simple pulse to make a basis for our purpose. Indeed,
the following important theorem shows that Gabor frames plays a role in
regards to the channel matrix. It is due to Gröchenig, and a proof can be
found in [8].

Theorem 3.2.1 (Almost diagonalisation). Let Λ be a lattice in R2 and let
g ∈ M1

v (R) such that G(g,Λ) is a Gabor frame. Let j denote the rotation
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j(u, η) = (η, u) in the time-frequency plane. Then σ ∈ M∞,1
v◦j−1 if and only if

there exists h ∈ `1
v(Λ) such that

|R(σ, g)λ,µ| ≤ h(λ− µ) (3.5)

for all λ, µ ∈ Λ. Furthermore, inf||h||`1v taken over all h ∈ `1
v(Λ) satisfying

(3.5) is an equivalent norm on M∞,1
v◦j−1.

This theorem states that although R(σ, g) is not truly a diagonal matrix, the
decay away from the diagonal is significant, allowing us to increase compu-
tational efficiency by approximating the channel matrix by only considering
the super- and subdiagonals.

3.3 Pseudodifferential Operators

The operator Hσ is an example of a pseudodifferential operator. In general,
given a symbol σ, a pseudodifferential operator is an operator acting on L2(R)
as

Hσf(t) =

∫
R
σ(t, ω)f̂(ω)e2πitωdω.

As seen in (3.3), the operator can be rewritten using the translation operator
Tx and the modulation operator Mω:

Hσf(t) =

∫∫
σ̂(η, u)MηT−ux(t) du dη.

Due to the time-frequency shifts arising in the channel operator, we shall use
Gabor analysis, and introduce the notion of a Gabor multiplier, as done in
[9], to consider the operator further. Assume that we have g ∈ L2(R) and a
lattice Λ ⊂ R2 such that G(g,Λ) is a Parseval frame. Recall that Parseval
frames admit expansions to elements of the Hilbert space. We shall expand
both f and Hσf with respect to this Gabor frame. This gives

f =
∑
µ∈Λ

〈f, π(µ)g〉π(µ)g



30 3. Orthogonal Frequency-Division Multiplexing

and

Hσf =
∑
λ∈Λ

〈Hσf, π(λ)g〉π(λ)g

=
∑
λ∈Λ

〈
Hσ

∑
µ∈Λ

〈f, π(µ)g〉π(µ)g, π(λ)g

〉
π(λ)g

=
∑
λ∈Λ

∑
µ∈Λ

〈Hσπ(µ)g, π(λ)g〉〈f, π(µ)g〉π(λ)g

=
∑
ν∈Λ

∑
µ∈Λ

〈Hσπ(µ)g, π(µ+ ν)g〉〈f, π(µ)g〉π(µ+ ν)g (via λ = µ+ ν)

=
∑
ν∈Λ

π(ν)

(∑
µ∈Λ

〈Hσπ(µ)g, π(µ+ ν)g〉e2πiν1µ2〈f, π(µ)g〉π(µ)g

)
,

where µ = (µ1, µ2) and ν = (ν1, ν2). By defining the sequence of symbols
a(ν, µ) = 〈Hσπ(µ)g, π(µ + ν)g〉e2πiν1µ2 for ν, µ ∈ Λ, the parenthesis can be
written

Ma =
∑
µ∈Λ

a(ν, µ)〈f, π(µ)g〉π(µ)g.

This is what is called a Gabor multiplier with symbol a. We see that the pseu-
dodifferential operator can be written as a sum of shifted Gabor multipliers:

Hσ =
∑
ν∈Λ

π(ν)Ma. (3.6)

Lemma 3.3.1. Assume G(g,Λ) is a Parseval frame and g ∈ M1
v (R). If the

sequence of symbols a satisfies∑
ν∈Λ

||a(ν, ·)||∞v(ν) =
∑
ν∈Λ

sup
µ∈Λ
|a(ν, µ)|v(ν) <∞,

then the sum (3.6) of shifted Gabor multipliers converges in the operator norm
on Mp,q

m for every 1 ≤ p, q ≤ ∞ and every v-moderate weight m.

Having established that Hσ can be represented through infinitely many Ga-
bor multipliers, it is natural to ask whether, and how well, it can be approx-
imated by truncating the sum (3.6). To do this, we first need a result on
what Hσ looks like, assuming the well-behavedness argued for in the previous
section.
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Theorem 3.3.2. Let Hσ be a channel operator satisfying (3.4). Then σ ∈
M∞,1

w (R2), where w(t, ω) = e|(t,ω)|α with α < 1.

Now, for such an operator, we have the following approximation result, due
to Gröchenig [9]:

Theorem 3.3.3. If g ∈M1
v and σ ∈M∞,1

v , then

EN ≤ C||σ||M∞,1v
sup
|ν|>N

v(ν)−1,

where EN is the truncation error when truncating at N ∈ N, given by

EN := ||Hσ −
∑
|ν|≤N

π(ν)Ma||Mp,q→Mp,q .





Chapter 4

Noncommutative Tori

We have seen that a channel operator can be modelled by a continuous
superposition of time-frequency shifts. In this chapter, we shall focus on a
countable superpositions of such shifts. It links more abstract mathematics
to some of the applied mathematics we have seen in the preceding ones, and
will provide a basis for the important chapter 5 by considering the structure
of some sets of operators recognisable from Gabor analysis.

4.1 Twisted Group C∗-algebras

Recall the translation and modulation operators on L2(R), given by

Txf(t) = f(t− x),

Mωf(t) = e2πiωtf(t),

respectively, and the way we write them together as π(λ) = MωTx for λ =
(x, ω) ∈ Λ for a lattice Λ ⊂ R2. Here we shall take Λ to be a separable lattice
Λ = αZ× βZ, where α, β ∈ R.

Definition 4.1.1. For θ = αβ = vol(Λ), define the set

A1
θ :=

{
a =

∑
λ∈Λ

aλπ(λ), (aλ) ∈ `1(Λ)

}
⊂ B(L2(R)).

Define the norm

||a||A1
θ

:= ||a||`1(Λ) =
∑
λ∈Λ

|aλ|.
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Let multiplication be given by(∑
λ∈Λ

aλπ(λ)

)(∑
λ∈Λ

bλπ(λ)

)
=
∑
λ∈Λ

(a\b)λπ(λ),

where the sequence (a\b)λ is the twisted convolution of the sequences (aλ)
and (bλ), defined by

(a\b)λ :=
∑
µ∈Λ

aµbλ−µe
−2πiθ(x−u)η, (4.1)

for λ = (x, ω) and µ = (u, η) are in Λ, and involution as in B(L2(R)).

Lemma 4.1.1. If
∑

λ∈Λ aλπ(λ) = 0, then aλ = 0 for all λ ∈ Λ.

Proof. Let g, γ ∈ S0(R) and µ = (u, η) ∈ R2. Then π(µ)g, π(µ)γ ∈ S0(R), so
by assumption, we have∑

λ∈Λ

aλ〈π(λ)π(µ)g, π(µ)γ〉 = 0

Now, π(µ)∗π(λ)π(µ) = e2πi(uω−xη)π(λ), so∑
λ∈Λ

aλ〈π(λ)g, γ〉e2πi(uω−xη) = 0

for all g, γ ∈ S0(R), µ ∈ R2. We recognise this series as an absolutely con-
vergent Fourier series on R2/Λ. By uniqueness of Fourier series, we must
have

aλ〈π(λ)g, γ〉 = 0

for all λ ∈ Λ, so aλ = 0 for all λ.

A1
θ is an involutive Banach algebra, and is isomorphic to the twisted group

algebra `1(αZ× βZ, c) of `1-sequences over the lattice Λ, equipped with the
twisted convolution (4.1) with associated 2-cocycle c((x, ω), (u, η)) = e2πixη.

Definition 4.1.2. The enveloping C∗-algebra of an involutive Banach alge-
bra B is the completion of B in the norm

||b|| = sup
ρ
||ρ(b)||,

where the supremum is taken over all involutive representations ρ of B - i.e.
all ∗-homomorphisms from B to B(Hρ) for some Hilbert space Hρ.
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The enveloping C∗-algebra of A1
θ is Aθ, a C∗-algebra generated by the two

unitaries Mβ and Tα in B(L2(R)). We shall call this the twisted group C∗-
algebra. We shall see that the structure of Aθ is known by a different name
in the abstract setting of C∗-algebras:

Definition 4.1.3. For θ ∈ R, the noncommutative torus Aθ with parameter
θ is the universal algebra generated by two unitaries U and V such that

UV = e2πiθV U.

Proposition 4.1.2. The twisted group C∗-algebra Aθ is isomorphic to the
noncommutative torus Aθ for θ = αβ.

Proof. Consider the homomorphism κ : Aθ → Aθ defined by U 7→ Mβ, V 7→
Tα. From lemma 1.1.1 we have that

κ(U)κ(V ) = MβTα = e2πiαβTαMβ = e2πiθκ(V )κ(U),

so the commutation relation is preserved. Since Aθ is generated by Mβ and
Tα, it follows that κ is surjective. Now, suppose a =

∑
m,n∈N am,nU

nV m and

b =
∑

k,l∈N bk,lU
lV k are elements in Aθ such that

κ (a) = κ (b) .

Then∑
m,n∈N

(am,n − bm,n)π(αm, βn) =
∑
m,n∈N

(am,n − bm,n)κ(U)nκ(V )m = 0.

By lemma 4.1.1, am,n = bm,n for all m,n ∈ Z, so a = b. Thus, κ is injective,
and hence an isomorphism between Aθ and Aθ.

Note that this isomorphism shows that Aθ is fully determined by the volume
θ of the underlying lattice Λ, as all twisted group C∗-algebras of lattices with
volume θ are isomorphic to the same universal C∗-algebra.
The name ”noncommutative torus” is often used about the representation
Aθ in B(L2(R)) as well as the abstract, universal algebra.

Proposition 4.1.3. Any noncommutative torus is isomorphic to a noncom-
mutative torus with parameter θ ∈ [0, 1/2].

Proof. Take n ∈ Z. Then Aθ+n is the universal C∗-algebra generated by two
unitaries U and V such that UV = e2πi(θn)V U = e2πiθV U . This coincides
with the definition of θ ∈ R, so we have that Aθ ∼= Aθ+n for all integers n.
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Furthermore, A−θ is the universal C∗-algebra generated by two unitaries U
and V such that UV = e−2πiθV U . By considering the map U 7→ V, V 7→ U ,
we see that this is an isomorphism into the universal C∗-algebra generated
by two unitaries such that V U = e−2πiθUV , and we recognise the definition
of Aθ.
Thus, all noncommutative tori are isomorphic to some noncommutative torus
with parameter θ ∈ [0, 1/2].

It is also interesting to consider other versions of A1
θ, by modifying the criteria

for the sequence (aλ)λ∈Λ of coefficients. For s ≥ 0, define

A1,s
θ :=

{
a =

∑
λ∈Λ

aλπ(λ), (aλ) ∈ `1
s(Λ)

}
,

where `1
s(Λ) is a weighted `1 space, in this case the space of sequences a =

(aλ)λ∈Λ satisfying

||a||s :=
∑
λ∈Λ

aλ(1 + |λ|2)s/2 <∞.

By taking the intersection of the sequence spaces, we get only the collection
of sequences which are bounded by every polynomial, so⋂

s≥0

`1
s(Λ) = S(Λ).

where S(Λ) denotes the Schwartz space on Λ. Thus, the similar intersection
of algebras becomes

⋂
s≥0

A1,s
θ = A∞θ :=

{
a =

∑
λ∈Λ

aλπ(λ), (aλ) ∈ S(Λ)

}
. (4.2)

This is also an involutive algebra, albeit not a Banach algebra in general.

4.2 Crossed Products

Another useful representation of the noncommutative torus is a so-called
crossed product. In this section, we shall introduce the term, and show
isomorphism between one particular crossed product and Aθ.

Definition 4.2.1. An action of a discrete group G on a C∗-algebra A is
a group homomorphism α : G → Aut(A). The triple (A,G, α) is called a
C∗-dynamical system.
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We write the automorphism α(g) on A as αg. For a given system (A,G, α),
there are several associated involutive algebras. One is the algebra AG of
formal sums

∑
g∈G agδg, where the ag are elements of A, and δg can be thought

of as the Dirac delta function at the group element g. This algebra comes
equipped with algebra operations convolution, given by(∑

g∈G

agδg

)
∗

(∑
h∈G

bhδh

)
:=
∑
g∈G

∑
h∈G

agαg(bg−1h)δh,

and involution, given by

(aδg)
∗ := αg−1(a∗)δg−1 .

We also realise that ∣∣∣∣∣
∣∣∣∣∣∑
G

agδg

∣∣∣∣∣
∣∣∣∣∣
1

:=
∑
G

||ag||A

defines a norm on AG. This is an involutive Banach algebra, but in general
not a C∗-algebra. Given a C∗-dynamical system (A,G, α), the enveloping
C∗-algebra of AG is called the crossed product of A by the action α of G,
denoted by A oα G. Having established the meaning of a crossed product,
we shall now look at one particular choice of A and G, and thus arrive at the
following central example.

Definition 4.2.2. Let θ be a real number, and define the automorphism
(αθf)(t) = f(t+ θ). The rotation algebra is the crossed product

C(T) oθ Z.

We refer to [20] for a proof of the following proposition.

Proposition 4.2.1. The rotation algebra C(T) oθ Z is isomorphic to the
noncommutative torus A2

θ.

We shall consider a representation δk 7→ Tαk of C(T) oθ Z into B(L2(R)),
where the elements are sums of the form∑

k∈Z

ak(t)Tαk,

where the functions ak ∈ C(T) are of the form

ak(t) =
∑
l∈Z

ak,le
2πiβlt.
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Consequently, convolution is given by

(ak(t)Tαk)
∗ = αθ(a

∗
k(t))T−αk = ak(t− θ)T−αk,

and multiplication is given by(∑
k∈Z

ak(t)Tαk

)
∗

(∑
m∈Z

bm(t)Tαm

)
=
∑
k,m∈Z

ak(t)αθ(bm−k(t))Tαm

=
∑
k,m∈Z

ak(t)bm−k(t− θ)Tαm.

We shall see that the two realisations of the noncommutative torus will be
very useful to describe different properties of the Gabor frame operator.



Chapter 5

Hilbert C∗-modules

In chapter 4 we looked at C∗-algebras of operators acting on functions in
L2(R). In this chapter we let these algebras act on our previously defined
function spaces by introducing the abstract structure of a Hilbert C∗-module.
We define so-called Morita equivalence for C∗-algebras, and we shall see that
the added structure allows us to draw links to important aspects of Gabor
Analysis.

5.1 Hilbert C∗-modules and

Morita Equivalence

Definition 5.1.1. For a unital C∗-algebra A, a left inner product A-module
is a left A-module E with an A-valued inner product 〈·, ·〉 such that the
following hold for all x, y, z ∈ E and a, b,∈ A:

1. 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉

2. 〈x, y〉∗ = 〈y, x〉

3. 〈x, x〉 ≥ 0, with equality if and only if x = 0.

A right inner product A-module is defined likewise, with the exception of
being linear in the second argument instead of the first.
A Hilbert C∗-module over A or a Hilbert A-module is an inner product A-
module which is complete with respect to the norm

||x||E := ||〈x, x〉||1/2A .

Definition 5.1.2. A Hilbert C∗-module E is said to be full if span{〈x, y〉 | x, y ∈
E} = A.
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Definition 5.1.3. For C∗-algebras A and B, an equivalence A-B-bimodule
is an A-B-module E satisfying the following:

1. E is a full left Hilbert A-module with respect to an inner product •〈·, ·〉
and a full right Hilbert B-module with respect to an inner product
〈·, ·〉•.

2. For x, y ∈ E , a ∈ A and b ∈ B,

〈ax, y〉• = 〈x, a∗y〉•

and

•〈xb, y〉 = •〈x, yb∗〉.

3. For x, y, z ∈ E ,

•〈x, y〉z = x〈y, z〉•. (5.1)

If such an equivalence A-B-bimodule exists for C∗-algebras A and B, then
A and B are said to be Morita equivalent.

We shall denote by •E and E• the left and right modules, respectively, when
there is risk of confusion. The associativity condition (5.1) linking the two
inner products will play a major role in the following, as it enables us to draw
parallels to Gabor frames. Before we get into a concrete example, however,
we give this simple lemma arising from the associativity.

Lemma 5.1.1. Let x and y be elements of an equivalence A-B-module E,
and 〈·, ·〉 be any inner product on E. Then the following identities hold:

i) 〈x, x〈y, y〉•〉 = 〈y〈x, x〉•, y〉

ii) 〈 •〈y, y〉x, x〉 = 〈y, •〈x, x〉y〉

iii) 〈x〈y, y〉•, x〉 = 〈y, y〈x, x〉•〉

iv) 〈x, •〈y, y〉x〉 = 〈 •〈x, x〉y, y〉

Proof. We only show the first case, as the other ones are very similar. By
using the associativity and involution rules of the inner products, we have

〈x, x〈y, y〉•〉 = 〈x, •〈x, y〉y〉
= 〈 •〈y, x〉x, y〉
= 〈y〈x, x〉•, y〉.
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5.2 Feichtinger’s Algebra as an Equivalence

Bimodule

In light of these definitions, we wish to consider the Banach algebras A1
θ

and A1
1/θ acting on Feichtinger’s algebra S0, following Luef [14]. First, take

g ∈ S0(R), a ∈ A1
θ and b ∈ A1

1/θ. Let Λ be a lattice in R2, and let Λ◦ be its

adjoint lattice. Define a left action by A1
θ on S0(R) by

ag :=
∑
λ∈Λ

aλπ(λ)g, (5.2)

and a right action by A1
−1/θ on S0(R) by

gb :=
∑
λ◦∈Λ◦

bλ◦π(λ◦)∗g. (5.3)

Now, define the following algebra-valued inner products on S0(R):

•〈f, g〉 :=
∑
λ∈Λ

〈f, π(λ)g〉π(λ)

and

〈f, g〉• := vol(Λ)−1
∑
λ◦∈Λ◦

〈g, π(λ◦)∗f〉π(λ◦)∗.

Lemma 5.2.1.

i) S0(R) is a left inner product A1
θ-module with respect to the left action of

A1
θ and the A1

θ-valued inner product defined above.

ii) S0(R) is a right inner product A1
1/θ-module with respect to the right action

of A1
1/θ and the A1

1/θ-valued inner product defined above.

Proof. We will only prove that S0(R) is a left inner product A1
θ-module, as

the second proof is analogous. Since π(λ)g ∈ S0(R) for all λ ∈ R2, we have
that ag ∈ S0(R). Linearity of the inner product goes as follows, where the
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indexes of the lattice are λ = (x, ω) and µ = (u, η):

•〈af, g〉 =
∑
λ∈Λ

〈af, π(λ)g〉π(λ)

=
∑
λ∈Λ

〈∑
µ∈Λ

aµπ(µ)f, π(λ)g

〉
π(λ)

=
∑
λ∈Λ

∑
µ∈Λ

aµ 〈π(µ)f, π(λ)g〉 π(λ)

=
∑
λ∈Λ

∑
µ∈Λ

aµ 〈f, π(µ)∗π(λ)g〉π(λ)

=
∑
λ∈Λ

∑
µ∈Λ

aµ
〈
f, e2πiθ(x−u)ηπ(λ− µ)g

〉
π(λ)

=
∑
λ∈Λ

∑
µ∈Λ

aµ〈f, π(λ− µ)g〉e−2πiθ(x−u)ηπ(λ)

=
∑
λ∈Λ

(a\ •〈f, g〉)λπ(λ)

= a •〈f, g〉,

where we recognise the twisted convolution of the operators a and •〈f, g〉.
For conjugate-symmetry, we use that π(λ)∗ = e−2πixωπ(−λ), and get that

•〈f, g〉∗ =
∑
λ∈Λ

〈f, π(λ)g〉π(λ)∗

=
∑
λ∈Λ

〈π(λ)g, f〉π(λ)∗

=
∑
λ∈Λ

〈g, π(λ)∗f〉π(λ)∗

=
∑
λ∈Λ

〈g, e−2πixωπ(−λ)f〉e−2πixωπ(−λ)

=
∑
λ∈Λ

〈g, π(λ)f〉π(λ) (via λ 7→ −λ)

= •〈g, f〉.

For positive-definiteness, •〈f, f〉 is a positive operator if and only if the L2(R)
inner product 〈 •〈f, f〉g, g〉L2(R) is positive for all g ∈ S0(R).
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For any g ∈ S0(R), we have

〈 •〈f, f〉g, g〉L2(R) = 〈
∑
λ∈Λ

〈f, π(λ)f〉π(λ)g, g〉L2(R)

=
∑
λ∈Λ

〈f, π(λ)f〉〈π(λ)g, g〉

= vol(Λ)−1
∑
λ◦∈Λ◦

〈g, π(λ◦)f〉〈π(λ◦)f, g〉 (by the FIGA)

=
∑
λ∈Λ

|〈g, π(λ◦)f〉|2 ≥ 0,

where we use the Fundamental Identity of Gabor Analysis (theorem 2.3.3)
in line three. This completes the proof.

Considering the inner products on S0(R), Gabor analysis provides useful
insight into the abstract algebras. Let g ∈ S0(R) be a function such that
G(g,Λ) is a Parseval frame for some lattice Λ ⊂ R2. Take f ∈ S0(R). By
the frame expansion and associativity of the inner products on S0(R), we get
that

f =
∑
λ∈Λ

〈f, π(λ)g〉π(λ)g = •〈f, g〉g = f〈g, g〉•.

This implies that 〈g, g〉• ∈ A1
1/θ is the identity. Under the same assumptions,

•〈g, g〉 turns out to be a projection in A1
θ:

•〈g, g〉2 = •〈 •〈g, g〉g, g〉 = •〈g〈g, g〉•, g〉 = •〈g, g〉.

This is the so-called Rieffel projection in Aθ, and thus abstractly in the C∗-
algebra Aθ. The awareness that the two problems finding a projection in the
noncommutative torus and constructing a Parseval frame for L2(R) are in
fact connected, was first discussed by Franz Luef [15]. We summarise this as
a proposition:

Proposition 5.2.2. Suppose g ∈ S0(R). Then the following are equivalent:

i) G(g,Λ) is a Parseval frame.

ii) 〈g, g〉• is the identity operator on S0(R).

iii) •〈g, g〉 is a projection on S0(R).
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Definition 5.2.1. The left module norm on S0(R) is given by

||g||Λ := || •〈g, g〉||1/2Aθ
and the right module norm on S0(R) is given by

||g||Λ◦ := ||〈g, g〉•||1/2A1/θ
.

The norm properties of these are inherited from the inner products from
which they are defined. The following lemma from Rieffel’s 1988 paper [21]
is slightly technical, and necessary for a later, important result.

Lemma 5.2.3. For a ∈ A1
θ, b ∈ A1

1/θ and g ∈ S0(R), we have

〈ag, ag〉• ≤ ||a||2〈g, g〉•
and

•〈gb, gb〉 ≤ ||b||2 •〈g, g〉.

Proof. We only show the first case, as the other one is shown in a very similar
fashion. For f ∈ S0(R) and using the standard inner product 〈·, ·〉 of L2(R),
we have

〈f〈ag, ag〉•, f〉 = 〈ag, ag〈f, f〉•〉
= 〈a(g〈f, f〉1/2• ), a(g〈f, f〉1/2• )〉
≤ ||a||2〈g〈f, f〉1/2• , g〈f, f〉1/2• 〉
= ||a||2〈g, g〈f, f〉•〉
= ||a||2〈f〈g, g〉•, f〉,

using the identities from lemma 5.1.1 in the first and the last equality. Since
this holds for all f ∈ S0(R), we arrive at the desired conclusion.

We are now able to show the following significant result:

Proposition 5.2.4. The two module norms coincide on S0(R).

Proof. We follow the proof given in [19]. Take g ∈ S0(R). We use the C∗

property of the operator algebras, the associativity and linearity of the inner
products and the Cauchy-Schwartz inequality to get

||〈g, g〉•||2 = ||〈g, g〉•〈g, g〉•||
= ||〈g, g〈g, g〉•〉•||
= ||〈g, •〈g, g〉g〉•||
≤ ||〈g, g〉•||1/2||〈 •〈g, g〉g, •〈g, g〉g〉•||1/2

≤ ||〈g, g〉•||1/2|| •〈g, g〉|| ||〈g, g〉•||1/2,
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where we used lemma 5.2.3 in the last inequality. By dividing by ||〈g, g〉•||,
we get ||〈g, g〉•|| ≤ || •〈g, g〉||. An analogous computation gives || •〈g, g〉|| ≤
||〈g, g〉•||. Thus, we conclude that ||g||Λ = ||g||Λ◦ .

The equality of the module norms leads to a very interesting result on the
two underlying Gabor systems:[12]

Proposition 5.2.5. The following are equivalent:

i) ||g||Λ is finite.

ii) ||g||Λ◦ is finite.

iii) {π(λ)g}λ∈Λ is a Bessel system with Bessel bound ||g||Λ◦.

iv) {π(λ◦)g}λ◦∈Λ◦ is a Bessel system with Bessel bound vol(Λ)||g||Λ.

Proof. The equivalence of i) and ii) follows directly from proposition 5.2.4.
To show the equivalence of i) and iv), note that the module norm of g in
S0(R) is the operator norm

||g||Λ = sup
γ 6=0

{
〈 •〈g, g〉γ, γ〉
||γ||2L2(R)

}
.

By the Fundamental Identity of Gabor Analysis,

〈 •〈g, g〉γ, γ〉 =

〈∑
λ∈Λ

〈g, π(λ)g〉π(λ)γ, γ

〉
=
∑
λ∈Λ

〈g, π(λ)g〉〈π(λ)γ, γ〉

= vol(Λ)−1
∑
λ◦∈Λ◦

〈γ, π(λ◦)g〉〈π(λ◦)g, γ〉

= vol(Λ)−1
∑
λ◦∈Λ◦

|〈γ, π(λ◦)g〉|2,

so
∑

λ◦∈Λ◦ |〈γ, π(λ◦)g〉|2 ≤ vol(Λ)||g||Λ. A similar computation shows that∑
λ∈Λ |〈γ, π(λ)g〉|2 ≤ ||g||Λ◦ , which shows the equivalence of ii) and iii).

The following result is central to this section, and constitutes the reason for
our introduction of Hilbert C∗-modules and its links to Gabor analysis.

Proposition 5.2.6. The completion E of S0(R) with respect to the module
norm is an equivalence Aθ-A1/θ-bimodule.
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Proof. The proof consists of showing that S0(R) fulfils the requirements of
definition 5.1.3 both as a left A1

θ-module and as a right A1
1/θ-module, except

completeness. It then follows that the completion E is an equivalence Aθ-
A1/θ-bimodule. We will not show fullness om the module here, but refer to
theorem 3.4 of [14] for a proof. Now, take f, g ∈ S0(R) and a ∈ Aθ. Then
we have

〈af, g〉• = vol(Λ)−1
∑
λ◦∈Λ◦

〈af, π(λ◦)g〉π(λ◦)

= vol(Λ)−1
∑
λ◦∈Λ◦

〈∑
λ∈Λ

aλπ(λ)f, π(λ◦)g

〉
π(λ◦)

= vol(Λ)−1
∑
λ◦∈Λ◦

〈
f,
∑
λ∈Λ

aλπ(λ)∗π(λ◦)g

〉
π(λ◦)

= vol(Λ)−1
∑
λ◦∈Λ◦

〈
f, π(λ◦)

∑
λ∈Λ

aλπ(λ)∗g

〉
π(λ◦)

= vol(Λ)−1
∑
λ◦∈Λ◦

〈f, π(λ◦)a∗g〉 π(λ◦)

= 〈f, a∗g〉•.

Here we take advantage of the fact that Λ and Λ◦ are adjoint lattices. A
similar computation shows that •〈fb, g〉 = •〈f, gb∗〉 for b ∈ A1/θ.
For the last requirement, we need only point out the connection between the
inner products in S0(R) and the Gabor frame operator introduced in section
2:

Sg,γ,Λf =
∑
λ∈Λ

〈f, π(λ)g〉π(λ)γ = •〈f, g〉γ

and

Sg,f,Λ◦γ =
∑
λ◦∈Λ◦

〈γ, π(λ◦)g〉π(λ◦)f = vol(Λ) f〈g, γ〉•.

The requirement now follows by the Janssen representation of the Gabor
frame operator (proposition 2.5), namely Sg,γ,Λf = vol(Λ)−1Sg,f,Λ◦γ.

The proof of the last requirement shows that the associativity condition of the
equivalence Aθ-A1/θ-bimodule is indeed equivalent to the Janssen represen-
tation (2.5). This shows how the abstract structure of the Hilbert C∗-module
has parallels to the applied ones in Gabor analysis.
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5.3 An Equivalence Bimodule Over the

Crossed Product

We have seen how the completion E of Feichtinger’s algebra can be seen as an
equivalence bimodule between the noncommutative tori Aθ and A1/θ realised
as the operator algebras A1

θ and A1
1/θ, respectively. However, as discussed in

section 4, the noncommutative torus can also be considered as a crossed
product. We shall consider a module over C(T) oθ Z and C(T) o1/θ Z, and
show how these and the modules over the twisted group C∗-algebras link
to the two previously discussed representations of the Gabor frame operator
from Gabor theory. Let a =

∑
k∈Z ak(t)Tαk be an element of the crossed

product C(T) oθ Z, and g ∈ S0(R). Then we define the left action

ag(t) :=
∑
k∈Z

ak(t)Tαkg(t) =
∑
k∈Z

ak(t)g(t− αk), (5.4)

where the function ak is periodic and has the form

ak(t) =
∑
l∈Z

ak,le
2πiβlt,

with (ak,l) ∈ `1(Z2). Similarly, the right action from the crossed product
C(T) o1/θ Z is defined by

gb(t) :=
∑
k∈Z

bk(t)Tβ−1kg(t) =
∑
k∈Z

bk(t)g(t− β−1k), (5.5)

where bk has the form

bk(t) =
∑
l∈Z

bk,le
2πiα−1lt,

with (bk,l) ∈ `1(Z). The algebra-valued inner products •〈·, ·〉 and 〈·, ·〉• on
S0(R) are defined by the following sequences of coefficients in the Fourier
expansions of the continuous, periodic functions:

(•〈f, g〉)k,l = α〈f, π(αk, βl)g〉

and

(〈f, g〉•)k,l = β−1〈g, π(β−1k, α−1l)f〉.

When considering E as a module over the twisted group C∗-algebras A1
θ and

A∞θ , we saw that it was an equivalence bimodule for the two algebras, making
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them Morita equivalent. We wish to do the same when E is considered a
module over the crossed products, and see that it is indeed an equivalence
bimodule for C(T)oθZ and C(T)o1/θZ. Instead of showing the equivalence
bimodule properties explicitly, however, we show the strong link between the
twisted group C∗-algebra and the crossed product.

We first make the observation that the crossed product algebra actions on
S0(R) only differ from the twisted group C∗-algebra actions by a partial
Fourier transform; the coefficients ak,l and bk,l from (5.2) and (5.3), respec-
tively, are correspond to the periodic, continuous functions ak(t) and bk(t)
from (5.4) and (5.5), respectively. By writing out the Fourier expansion of
ak(t), the left case is easily shown:

ag(t) =
∑
k∈Z

ak(t)Tαkg(t) =
∑
k∈Z

∑
l∈Z

ak,le
2πiβlg(t− αk) =

∑
k,l∈Z

ak,lπ(αk, βl)g(t).

The right case is analogous. Also, the two sets of algebra-valued inner prod-
ucts on S0(R) are strongly linked:

•〈f, g〉 =
∑
k∈Z

(•〈f, g〉)k,lTαk

= α
∑
k∈Z

∑
l∈Z

〈f, π(αk, βl)g〉e2πiβltTαk

= α
∑
k,l∈Z

〈f, π(αk, βl)〉π(αk, βl),

again with the right case being analogous. Similarly as for the inner product
A1
θ-module, we can define norms on the crossed product module from the

inner products and show them to coincide, hence allowing us to simply write
|| · ||. From the above, it then follows that the completion E of S0(R) with
respect to the module norm || · || satisfies the requirements of definition 5.1.3,
and is hence an equivalence (C(T) oθ Z)-(C(T) o1/θ Z)-bimodule.
Clearly, the two ways of making E an equivalence bimodule are very similar.
However, the difference between them does shed light onto a certain part
of Gabor analysis. We saw in section 5.2 that the associativity of the inner
product was equivalent to the Janssen representation, proposition 2.5. Here
we shall see that the associativity of the crossed-product-valued inner product
is equivalent to the Walnut representation. Letting f, g, γ ∈ S0(R), we start
with the assumption of associativity of the inner products on the crossed
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product module. Since

•〈f, g〉γ(t) =
∑
k∈Z

(•〈f, g〉)k(t)Tαkγ(t)

=
∑
k∈Z

∑
l∈Z

(•〈f, g〉)k,le2πiβltγ(t− αk)

= α
∑
k,l∈Z

〈f, π(αk, βl)g〉π(αk, βl)γ(t)

= αSg,γ,αZ×βZf(t),

associativity of the inner products is equivalent to

Sg,γ,αZ×βZf(t) = α−1f〈g, γ〉•(t)

= (αβ)−1
∑
k∈Z

∑
l∈Z

〈γ, π(β−1k, α−1l)g〉e2πiα−1ltTβ−1kf(t)

= β−1
∑
k∈Z

Gk(t)f(t− β−1k),

where Gk are given by

Gk(t) = α−1
∑
l∈Z

〈γ, π(β−1k, α−1l)g〉e2πiα−1lt.

We recognise this as the Walnut representation of the Gabor frame operator
for a separable lattice, as presented in section 2.4. In the previous section
we saw the equivalence between inner product associativity in the twisted
group C∗-algebra module and the Janssen representation. This shows that
we have an analogous equivalence between inner product associativity in
the crossed product module. Thus, each of these two representations of the
Gabor frame operator has its realisation of the abstract structure of the
noncommutative torus. As we have seen, the way to convert the twisted
group C∗-algebra module into the crossed product module, is restriction of
our lattice to the separable case Λ = αZ × βZ, and the partial Fourier
transform. Analogously, the Janssen representation was shown in section
2.4 to convert to the Walnut representation by restriction to separable lat-
tices and use of the Fundamental identity of Gabor analysis (theorem 2.3.3),
which in turn is based on a Fourier transform. We summarise these findings
in the following diagram, where pFt refers to the partial Fourier transform:
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Aθ-A1/θ-bimodule Associativity Janssen rep.

Sep. lattice, pFt Sep. lattice, pFt

C(T) oθ Z-C(T) o1/θ Z-bimodule Associativity Walnut rep.

5.4 Finitely Generated, Projective Modules

We shall look at a particular class of modules. The finitely generated, projec-
tive modules are of special interest to us, as they have a peculiar connection
to geometry, through the concept of vector bundles. Also, we shall see that
all the modules that we have seen until now fall within this category.

Definition 5.4.1. Given a ring R and an R-module E , we say E is finitely
generated if there exist finitely many elements e1, ..., en ∈ E such that for
every e ∈ E ,

e =
n∑
j=1

rjej

for some rj ∈ R. We say that E is projective if there exists an R-module
F such that the direct product E ⊕ F is a free R-module, i.e. an R-module
with a basis.

Definition 5.4.2. Given a C∗-algebra A, a left inner product A-module E
and elements x, y ∈ E , a rank-one operator on E is an operator Θ : E → E of
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the form

Θx,yz = 〈z, x〉y

for z ∈ E .

Rank-one operators can be shown to be bounded and module-linear, and to
be adjointable, i.e. have an adjoint operator Θ∗ such that 〈Θx, y〉 = 〈x,Θ∗y〉.
We call finite linear combinations of rank-one operators finite-rank operators
on E , and define the compact operators on E to be the set

K(E) := span{Θx,y | x, y ∈ E}.

The compact operators make a closed ideal in the C∗-algebra of all bounded,
linear operators on E . Also, the set of finite-rank operators is an ideal in the
set of compact operators. The following lemma, for which we refer to [21]
for a proof, connects the equivalence bimodules to the compact operators:

Lemma 5.4.1. If E is an equivalence A-B-bimodule for C∗-algebras A and
B, then A ∼= K( E•) and B ∼= K( •E).

With this result we are able to show an important result on the equivalence
Aθ-A1/θ-bimodule E :

Proposition 5.4.2. E is a finitely generated, projective left module over Aθ,
and a finitely generated, projective right module over A1/θ.

Proof. We show only the left case of •E as an left Aθ-module. The right case
is analogous. Aθ is a unital C∗-algebra. Hence by lemma 5.4.1, the identity
operator is in K( E•), so there are rank-one operators Θ1, · · · ,Θn on E• such
that Θ1 + · · · + Θn = I. By fullness of E , there must then exist a finite set
of window functions g1, · · · , gn, γ1, · · · , γn ∈ E such that for any f ∈ E ,

f〈γ1, g1〉• + · · ·+ f〈γn, gn〉• = f.

By the associativity of the inner products 〈·, ·〉• and •〈·, ·〉, we have that

•〈f, γ1〉g1 + · · · •〈f, γn〉gn = f.

Thus, •E is a finitely generated module over Aθ, with generators g1, · · · , gn.
Now, since g1, · · · , gn generate E , the matrix P = [〈gj, gj〉]1≤j≤n is a projec-
tion in Mn(Aθ), and E ∼= PAnθ , where Anθ is a free Aθ-module, so we get that
E is projective.
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We want to prove the same result for the module S0(R), but for this we need
a particular property of the Banach subalgebras A1

θ and A1
1/θ. We say that

a subalgebra A0 ⊂ A is inverse-closed in A if a ∈ A0 implies a−1 ∈ A0. The
following theorem is a major result, e.g. for proving that S0(R) is finitely
generated, and is due to Gröchenig and Leinert. We refer to their paper [11]
for a proof.

Theorem 5.4.3. A1
θ and A1

1/θ are inverse-closed in Aθ.

Proposition 5.4.4 (Luef). S0(R) is a finitely generated, projective left mod-
ule over A1

θ, and a finitely generated, projective right module over A1
1/θ.

Proof. We follow the proof of proposition 3.7 from Rieffel’s 1988 paper [21],
and show only the case for S0(R) as a left A1

θ-module. The case as a right
A1

1/θ-module is similar. E• is finitely generated and projective, so 1A1/θ
=∑n

j=1〈fj, gj〉• for some f1, · · · , fn, gn, · · · , gn ∈ E . S0(R) is dense in E , so we
can approximate an invertible element in E by a finite sum of right inner
products of elements in S0(R). This is an element of A1

1/θ, so by lemma

5.4.3, its inverse is in A1
1/θ. By multiplying the two, we get that 1A1/θ

can be

expressed by a finite sum of inner products of elements in S0(R). So there
exist some γ1, · · · , γn, g1, · · · , gn ∈ S0(R) such that

〈γ1, g1〉• + · · ·+ 〈γn, gn〉• = 1Aθ .

Thus, for any f ∈ S0(R), by associativity of the inner products,

f =
n∑
j=1

f〈γj, gj〉• =
n∑
j=1

•〈f, γj〉gj,

so S0(R) is finitely generated as a left A1
θ-module. By the same argument as

in proposition 5.4.2, we get that S0(R) is also projective.

This result is significant to the field of Gabor analysis. Since S0(R) is finitely
generated, then for any lattice Λ, there is always a pair of dual multi-window
frames G(g1, · · · , gn,Λ) and G(γ1, · · · , γn,Λ) of finitely many atoms, so any
f can be written as

f =
n∑
k=1

•〈f, gj〉γj =
n∑
k=1

∑
λ∈Λ

〈f, π(λ)gj〉π(λ)γj.

Indeed, by doing the ”S−1/2 trick” mentioned in section 2.1, we get that for
any lattice Λ, there is a corresponding tight frame, so that any f can be
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written as

f =
n∑
j=1

∑
λ∈Λ

〈f, π(λ)φj〉π(λ)φj.

where φj = S
−1/2
{gj},{γj},Λgj.

As we have seen, M1
1 (R) = S0(R) is a finitely generated, projective mod-

ule over the Banach algebras A1
θ and A1

1/θ. As we saw in (1.3), the Schwartz

space S(R) is the intersection of the weighted modulation spaces M1
s (R) for

s ≥ 0. Also, in (4.2), the involutive algebra A∞θ was defined as the intersec-
tion of all the weighted algebras Asθ for s ≥ 0. It can be proved that for all
s ≥ 0, M1

s (R) is finitely generated and projective as a left module over Asθ
and as a right module over As1/θ, with a proof analogous to the one given for

proposition 5.4.4. It follows that the intersection S(R) is finitely generated
and projective as a left module over S∞θ and as a right module over A∞1/θ.





Chapter 6

Vector Bundles

We have seen how adding structure to the discussion of Gabor frames through
the concept of Hilbert C∗-modules has provided new insights. In this chapter,
we shall introduce the concept of vector bundles, which, roughly speaking,
can be considered as the assignment of a vector space for every point in
a topological space. By the well-known result of the Serre-Swan theorem,
linking vector bundles to finitely generated, projective modules, we shall see
that the modules of chapter 5 get a geometrical aspect to them, and see
how this useful, additional structure can benefit our understanding of Gabor
analysis.

6.1 Definition of Vector Bundles

Definition 6.1.1. For a topological space X (called the base space), a com-
plex vector bundle over X is a topological space E (called the total space)
equipped with a surjective, continuous map π : E → X (called the bundle
projection) such that the following hold:

1. There exists an open covering U of X, and for every U ∈ U there exists
a finite-dimensional complex vector space VU and a homeomorphism
hU : π−1(U)→ U × VU such that p1 ◦ hU = π on π−1(U) for some map
p1.

2. For every x ∈ X, the set EX := π−1({x}) (called a fibre) is a finite-
dimensional complex vector space, and hU restricts to an isomorphism
of vector spaces π−1({x})→ {x} × VU ∼= VU .

We often refer to E as the vector bundle, when the base space and bundle
projection is clear from the context. If all the vector spaces VU have the
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same dimension r, we say the vector bundle has rank r. A vector bundle of
rank 1 is often called a line bundle. Given a base space X, a morphism from
one vector bundle E with bundle projection π to another vector bundle F
with bundle projection ρ, both over X, is a continuous map f : E → F such
that ρ ◦ f = π, and the restrictions f : π−1(x) → ρ−1(x) are linear maps of
vector spaces for all x ∈ X. If X = M is a smooth manifold, E is a smooth
manifold, π is a smooth map of manifolds and the homeomorphisms hU are
all diffeomorphisms, then we say that E →M is a smooth vector bundle.
One example of a vector bundle over a smooth manifold M is the tangent
bundle π : TM → M , with fibres TpM given by the tangent spaces at the
points p ∈ M . From this, we can construct another example: the cotangent
bundle π : T ∗M →M has fibres T ∗PM given by the cotangent spaces, i.e. the
dual spaces of the tangent spaces, at the points p ∈M .

6.2 Sections and the Serre-Swan Theorem

Having introduced the abstract concept of a vector bundle, we shall give it
some context by providing an important link to the useful modules discussed
in chapter 5. In particular, we will give the classical result that finitely gen-
erated, projective modules can be considered as vector bundles over certain
topological spaces.

Definition 6.2.1. A section of a vector bundle E is a map σ : X → E such
that π ◦ σ = idX . Furthermore, we define sections to be continuous if they
are continuous maps in the topological sense, and to be smooth if they are
smooth maps of smooth manifolds.

We denote by ΓX(E) the set of continuous sections of a vector bundle E over
X, and by Γ∞M(E) the set of smooth sections of a smooth vector bundle E
over a smooth manifold M .
We shall consider how the ring C(X) of continuous functions f : X → C act
on the continuous sections. By invoking the rule

(fξ)(x) = f(x)ξ(x) (6.1)

for ξ ∈ ΓX(E), we find that ΓX(E) has the structure of a left C(X)-module.
By the same rule for f ∈ C∞(M) and ξ ∈ Γ∞M(E), we find that Γ∞M(E) is a left
C∞(M)-module. Thus, ΓX and Γ∞M can be viewed as functors between the
category of vector bundles and the category of modules, and it can be shown
to preserve operations on vector bundles into the corresponding modules.
In fact, we have the following important result about Γ in the following
proposition, due to Jean-Pierre Serre and Richard Swan [22]:



6.3. Connections 57

Proposition 6.2.1 (Serre-Swan). For a compact, Hausdorff topological space
X, the functor ΓX between the category of vector bundles over X and the
category of finitely generated, projective left modules over C(X) is an equiv-
alence of categories. Furthermore, for a smooth manifold M , the functor Γ∞M
between the category of smooth vector bundles over M and the category of
finitely generated, projective left modules over C∞(M) is an equivalence of
categories.

Due to this result, we may use the terms of vector bundles and finitely
generated, projective modules interchangeably. This equivalence between
the categories allows us to make use of some geometrical concepts on our
modules, which will be important in the following section.

6.3 Connections

In this section we will explore the vector bundles further, while keeping in
mind how they can be counted as finitely generated, projective modules. In
particular, we consider a way of, roughly speaking, moving between fibres
within a smooth vector bundle, by introducing the concept of a connection.
First, however, we need some definitions.

Definition 6.3.1. Let M be a smooth manifold. A derivation on M is a
C-linear map

∂ : C∞(M)→ R

satisfying the Leibniz rule

∂(fg) = (∂f)g + f(∂g)

for all f, g ∈ C∞(M).

Definition 6.3.2. Let E → M be a smooth vector bundle over a smooth
manifold M . Let E ⊗ T ∗M denote the tensor product of E and T ∗M , with
fibres (E⊗T ∗M)x = Ex⊗(T ∗M)x as vector spaces. Suppose ∂ is a derivation
on M . A connection on E is a C-linear map

∇ : Γ∞M(E)→ Γ∞M(E ⊗ T ∗M),

satisfying the Leibniz rule

∇(fσ) = f(∇σ) + (∂f)σ.

for all f ∈ C∞(M), σ ∈ Γ∞M(E).
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Connections can be seen as parallel transport between the fibres over the
smooth manifold. We shall look at one particular connection on a vector
bundle over a smooth manifold. Keeping the link to finitely generated, pro-
jective modules in mind, we wish to define an inner product on the module
Γ∞M(E). For a given Borel measure µ on M , we define the inner product by

〈σ, τ〉 =

∫
M

〈σ(x), τ(x)〉dµ(x).

Definition 6.3.3. Let E → M be a smooth vector bundle over a smooth
manifold M , equipped with a derivation ∂. A covariant derivative on E is a
connection ∇ on E satisfying so-called compatibility with the inner product
of Γ∞M(E), i.e.

∂( 〈σ, τ〉) = 〈∇σ, τ〉+ 〈σ,∇τ〉.

for all σ, τ ∈ Γ∞M(E). We say that ∇ lifts ∂ to Γ∞M(E).

Definition 6.3.4. For two covariant derivatives ∇1 and ∇2 with commuting
derivations ∂1 and ∂2, the curvature is defined to be F1,2 = ∇1∇2 − ∇2∇1.
We say that two covariant derivatives have a constant curvature, and that
F1,2 is a constant curvature connection, whenever the curvature is a multiple
of the identity.

Recall from the discussion preceding proposition 6.2.1 that Γ∞M(E) could be
considered a module over the ∗-algebra C∞(M) by defining scalar multipli-
cation as in (6.1). By proposition 6.2.1, any finitely generated, projective
module E0 over a ring A0 is isomorphic to the module Γ∞M(E) of smooth
sections on a smooth vector bundle E → M , over the ring C∞(M). Thus
definition 6.3.2 can translate to the following for a left finitely generated,
projective module E0 over a ring A0: a connection on E0 is a C-linear map
∇ : E0 → E0 such that

∇(ax) = (∂a)x+ a(∇x)

for all x ∈ E0, a ∈ A0. Similarly, we can define the covariant derivatives as
connections satisfying the compatibility condition with the inner product on
the module.
We shall look at concrete examples of connections defined on a finitely gener-
ated, projective module. Let E0 = S(R), let A0 = A∞θ , and let Λ = αZ× βZ
with θ = αβ. Let ∂1 and ∂2 be derivations on A∞θ , given by

∂1

(∑
k,l∈Z

ak,lπ(αk, βl)

)
= 2πi

∑
k,l∈Z

kak,lπ(αk, βl)
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and

∂2

(∑
k,l∈Z

ak,lπ(αk, βl)

)
= 2πi

∑
k,l∈Z

lak,lπ(αk, βl).

Then let ∇1 and ∇2 be two operators on C∞(R) defined by

(∇1g)(t) =
2πit

α
g(t) and (∇2g)(t) =

1

β
g′(t).

Lemma 6.3.1. ∇1 and ∇2 are covariant derivatives lifting ∂1 and ∂2, re-
spectively.

Proof. They satisfy the Leibniz rule:

(∇1(ag))(t) =
2πit

α
(ag)(t)

=
2πit

α

∑
k,l∈Z

ak,lπ(αk, βl)g(t)

=
2πit

α

∑
k,l∈Z

ak,le
2πiβltg(t− αk)

= 2πi

(∑
k,l∈Z

ak,l(
t

α
− k + k)e2πiβltg(t− αk)

)
= 2πi

∑
k,l∈Z

αkak,le
2πiβltg(t− αk)

+
∑
k,l∈Z

kak,le
2πiβlt(2πi(t− αk)g(t− αk))

= 2πi
∑
k,l∈Z

αkak,lπ(αk, βl)g(t) +
∑
k,l∈Z

kak,lπ(αk, βl)(2πitg(t))

= (∂1a)g(t) + a(∇1g)(t)
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and

(∇2(ag))(t) =
1

β
(ag)′(t)

=
1

β

∑
k,l∈Z

(ak,lπ(αk, βl)g)′ (t)

=
1

β

∑
k,l∈Z

(
2πiβlak,le

2πiβltg(t− αk) + ak,le
2πiβltg′(t− αk)

)
= 2πi

∑
k,l∈Z

lak,lπ(αk, βl)g(t) +
∑
k,l∈Z

ak,lπ(αk, βl)(
1

β
g′(t))

= (∂2a)g(t) + a(∇2g)(t).

They are also compatible with the inner product:

∂1( •〈f, g〉) = ∂1

(∑
k,l∈Z

〈f, π(αk, βl)g〉π(αk, βl)

)
= 2πi

∑
k,l∈Z

k〈f, π(αk, βl)g〉 π(αk, βl)

=
2πi

α

∑
k,l∈Z

αk

∫
R
f(t)e−2πiβltg(t− αk) dt π(αk, βl)

=
2πi

α

∑
k,l∈Z

∫
R
(t− (t− αk))f(t)e−2πiβltg(t− αk) dt π(αk, βl)

=
2πi

α

∑
k,l∈Z

(∫
R
tf(t)e−2πiβltg(t− αk) dt

−
∫
R
f(t)e−2πiβlt(t− αk)g(t− αk) dt

)
π(αk, βl)

=
2πi

α

∑
k,l∈Z

(〈tf, π(αk, βl)g〉 − 〈f, π(αk, βl)(tg)〉) π(αk, βl)

= •〈
2πit

α
f(t), g(t)〉+ •〈f(t),

2πit

α
g(t)〉

= •〈∇1f, g〉+ •〈f,∇1g〉,
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and, by writing out the inner products and integrating by parts,

•〈∇2f, g〉+ •〈f,∇2g〉

=
1

β

∑
k,l∈Z

〈f ′, π(αk, βl)g〉π(αk, βl) +
∑
k,l∈Z

〈f, π(αk, βl)g′〉π(αk, βl)

=
1

β

∑
k,l∈Z

(∫
R
f ′(t)e−2πiβltg(t− αk) dt

+

∫
R
f(t)e−2πiβltg′(t− αk) dt

)
π(αk, βl)

=
1

β

∑
k,l∈Z

([
f(t)e−2πiβltg(t− αk)

]∞
−∞

−
∫
R
f(t)

(
−2πiβle−2πiβltg(t− αk) + e−2πiβltg′(t− αk)

)
dt

+

∫
R
f(t)e−2πiβltg′(t− αk) dt

)
π(αk, βl)

=
∑
k,l∈Z

(∫
R
f(t)2πile−2πiβltg(t− αk) dt

)
π(αk, βl)

= 2πi
∑
k,l∈Z

l〈f, π(αk, βl)g〉π(αk, βl)

= ∂2( •〈f, g〉).

Furthermore, ∇1 and ∇2 have a constant curvature:

F1,2 = ∇1∇2 −∇2∇1g(t) = 2πi(tg′(t)− g(t)− tg′(t)) = 2πig(t),

so F1,2 = −2πi I. We shall see how the fact that S0(R) has a constant
curvature connection play a major role, as we will revisit the Balian-Low
theorem from section 2. We will give a proof of the theorem, showing a link
between Gabor theory and noncommutative geometry. First we give a lemma
linking the Fourier transformation with the covariant derivatives.

Lemma 6.3.2. For g ∈ L2(R), the following identities hold:

i) ∇1ĝ = β
α
∇̂2g.
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ii) ∇2ĝ = −α
β
∇̂1g.

Proof.

i)

∇1ĝ(ω) =
2πi

α
ωĝ(ω)

=
2πi

α
ω

∫
R
g(t)e−2πiωt dt

=
2πi

α
ω

([
e−2πiωt

−2πiω
g(t)

]∞
−∞
−
∫
R
g′(t)

e−2πiωt

−2πiω
dt

)
=

1

α

∫
R
g′(t)e−2πiωt dt

=
β

α
∇̂2g(ω).

ii)

∇2ĝ(ω) =
1

β
(ĝ)′(ω)

=
1

β

d

dω

∫
R
g(t)e−2πiωt dt

=
1

β

∫
R

∂

∂ω
g(t)e−2πiωt dt

= −2πi

β

∫
R
tg(t)e−2πiωt dt

= −2πi

β
[̂tg(t)](ω)

= −α
β
∇̂1g(ω).

We will now prove the Balian-Low theorem on the foundations of the geomet-
ric concepts provided by the vector bundle connections. Recall the Balian-
Low theorem (theorem 2.6.1), here stated with the updated notation:

Theorem 6.3.3 (Balian-Low). Let g be a function in L2(R) such that both
∇1g and ∇1ĝ are in L2(R). Then G(g,Λ) cannot be an orthonormal basis
for L2(R).
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The idea that the restrictions on well-behavedness of Gabor-frame generating
functions originate from the geometric structure provided by vector bundles
was one of Franz Luef’s. The following proof follows the lines of the one in
his paper [16].

Proof of the Balian-Low theorem. Assume that G(g,Λ) is an orthonormal ba-
sis for S0(R), and at the same time that both ∇1g and ∇1ĝ are functions in

L2(R). By lemma 6.3.2, we have ∇1ĝ = β
α
∇̂2g, so this implies ∇2g ∈ L2(R).

We also have ∇∗1 = −∇1 and ∇∗2 = −∇2. Using the orthogonal expansions
of ∇1g and ∇2g in the frame, we get

〈∇1g,∇2g〉 =

〈∑
k,l∈Z

〈∇1g, π(αk, βl)g〉π(λ)g,∇2g

〉
=
∑
k,l∈Z

〈∇1g, π(αk, βl)g〉〈π(λ)g,∇2g〉

=
∑
k,l∈Z

〈π(−αk,−βl)g,∇1g〉〈∇2g, π(−αk,−βl)g〉

= 〈∇2g,
∑
k,l∈Z

〈∇1g, π(αk, βl)g〉π(αk, βl)g〉

= 〈∇2g,∇1g〉.

This shows that

〈F1,2g, g〉 = 〈(∇1∇2 −∇2∇1)g, g〉 = 0.

However, since F1,2 is a constant curvature connection, we would expect
〈F1,2g, g〉 = −2πi〈g, g〉 6= 0 for a necessarily non-zero window g. This con-
tradiction shows our assumptions to be false. Hence, G(g,Λ) cannot be an
orthonormal basis if both tĝ(t) and ωĝ(ω) are in L2(R).
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