
Efficient Verification with Portable
Stimulus

Karianne Krokan Kragseth

Master of Science in Electronics

Supervisor: Kjetil Svarstad, IES
Co-supervisor: Isael Dias, Nordic Semiconductor

Department of Electronic Systems

Submission date: June 2018

Norwegian University of Science and Technology

Abstract

Portable Stimulus is an upcoming technique for increasing productivity and quality of verifica-
tion of digital designs. A single test description shall be used to generate tests between multiple
abstraction levels and platforms. Questa inFact is a tool that supports a subset of an upcoming
standard from Accellera.

The thesis consisted of analyzing the current status and future development of Portable Stimu-
lus. This included conducting a proof of concept through inFact. Generated code from a single
description was proven to be used in simulation at IP-, sub-system- and SoC-level in UVM test-
benches, as well as with C code running on a CPU. Only the stimulus was portable, meaning
frameworks for driving the stimulus had to be created.

The current implementation of inFact is limited when compared to the Portable Stimulus spec-
ification, as a lot is not yet supported. It was possible to reuse the same test description, and
through coverage driven simulation becomes verification more productive and the quality is in-
creased. This is because of the shortened simulation time and the focus on what to test, rather
than how. Thus, Portable Stimulus is heading in the right direction, but it still has a long way to
go.

i

Sammendrag

Portable Stimulus er en kommende teknikk for å øke produktiviteten og kvaliteten på veri-
fikasjon av digitale design. En eneste testbeskrivelse skal brukes til å generere tester mellom
flere abstraksjonsnivåer og plattformer. Questa inFact er et verktøy som støtter deler av en
kommende standard fra Accellera.

Prosjektet besto av å analysere nåværende status og fremtidig utvikling av Portable Stimu-
lus. Dette inkluderte et gjennomførbarhetsbevis (proof of concept) ved å benytte inFact. Kode
generert fra en eneste beskrivelse har blitt bevist å kunne brukes ved simulering av IP-, sub-
system- og SoC-nivå i UVM testbenker, i tillegg til ved kjøring av C kode i en CPU. Kun
stimulansen er transporterbar, som betyr at rammeverk for å operere stimulansen også måtte
skapes.

Den nåværende implementasjonen av inFact er begrenset sammenlignet med Portable Stimulus
spesifikasjonen, da mye enda ikke er støttet. Det var mulig å gjenbruke den samme testbeskriv-
elsen, og gjennom ”coverage” drevet simulering blir verifikasjonen mer produktivt og kvaliteten
økes. Dette er på grunn av senket simuleringstiden og fokuset på hva som skal testes, fremfor
hvordan. Dermed er Portable Stimulus på vei i riktig retning, men har fremdeles en lang vei å
gå.

ii

Acknowledgements

I would like to thank my supervisors Isael Diaz and Vinodh Ravinath at Nordic Semiconductor
and Kjetil Svarstad at NTNU for their guidance through weekly meetings. Their advice and
feedback have been valuable. I would also like to thank Nordic Semiconductor by providing
me with a place to work as well as tools and simulation frameworks required for conducting
this thesis.

I also extend my gratitude to Staffan Berg at Mentor for demonstrating and teaching their tool
Questa inFact, in addition to fast response when answering questions about inFact.

iii

iv

Table of Contents

Abstract i

Sammendrag ii

Acknowledgements iii

Abbreviations viii

1 Introduction 1
1.1 Problem Description . 1
1.2 Layout of the report . 2

2 Theory and Background 3
2.1 Universal Verification Methodology (UVM) 3

2.1.1 UVM Testbench . 3
2.2 What is Portable Stimulus, and Why? . 5

2.2.1 Verification on Different Platforms . 6
2.2.2 What One Wants to Test . 7
2.2.3 UVM vs. Portable Stimulus . 7

2.3 Portable Stimulus Specification Working Group 7
2.4 Portable Stimulus Specification . 8

2.4.1 Fundamentals . 8
2.4.2 Language . 9

2.5 Portable Test and Stimulus Standard . 10
2.5.1 Execution Semantic Concepts . 10
2.5.2 Components . 10
2.5.3 Actions . 11
2.5.4 Activities . 11
2.5.5 Flow Objects . 12
2.5.6 Resource Objects . 12
2.5.7 Pools . 12
2.5.8 Randomization Specification Constructs 13

v

2.5.9 Coverage Specification Constructs . 13
2.5.10 Type Extension . 13
2.5.11 Packages . 13
2.5.12 Test Realization . 13
2.5.13 Hardware/Software Interface . 14
2.5.14 A Simple PSS Example . 14

2.6 Reuse Opportunities . 16
2.6.1 Translating Existing Declarative Descriptions 16
2.6.2 Existing Test Realization Code . 18
2.6.3 Existing Modeling Code . 19

2.7 PSS Tools . 21

3 Portable Stimulus Tool Questa inFact 23
3.1 Choosing a PSS Tool . 23
3.2 Introduction to Questa inFact . 23

3.2.1 Rules File and Graph . 24
3.2.2 Action Functions . 24
3.2.3 Coverage Strategy . 25
3.2.4 Test Components . 25
3.2.5 Integration Process . 25

3.3 Defining a Rules File . 25
3.3.1 Example: Defining Rules . 26

3.4 Viewing the Graph . 27
3.5 Specifying Coverage . 28
3.6 Simulation of inFact . 29
3.7 inFact versus PSS Specification . 29

4 Portable Stimulus Verification Infrastructure 31
4.1 UART Description . 31
4.2 UVM Framework . 32

4.2.1 UVM at UART IP Level . 33
4.2.1.1 UART UVM Environment 35
4.2.1.2 PAR UVM Environment . 39

4.2.2 UVM at UART Sub-System Level . 40
4.2.2.1 PeripheralSubSystem UVM Environment 43

4.2.3 UVM at UART SoC Level . 44
4.2.3.1 UART top UVM Environment 45

4.3 C Code Framework . 45
4.3.1 UART C Code . 46
4.3.2 Testbench Calling FW . 51

4.4 Portable Stimulus Code . 52
4.4.1 Using Testbench Import . 52

4.4.1.1 Generated Rules file . 52
4.4.1.2 Generated Graph . 54
4.4.1.3 Defining Coverage Strategy 56

4.4.2 Creating from Scratch . 56
4.4.2.1 Modifying to C Code . 58

vi

4.4.2.2 Generated Graph . 58
4.4.2.3 Creating a Coverage Strategy 59

4.5 UVM Simulation with Generated Code . 60
4.5.1 UVM testbench Modifications . 61
4.5.2 Simulation Results . 62

4.6 C Simulation with Generated Code . 62
4.6.1 C Code Modifications . 63
4.6.2 Simulation Results . 63

5 Discussion 65
5.1 Portable Stimulus . 65
5.2 Portable Stimulus and inFact . 66
5.3 Usability of inFact . 67
5.4 Future of inFact . 68
5.5 The Proof of Concept . 69

6 Conclusion 71
6.1 Future Work . 72

Bibliography 73

A Source Files 77

vii

Abbreviations

API = Application Programming Interface
DMA = Direct Memory Access
DSL = Domain-Specific language
EDA = Electronic Design Automation
HSI = Hardware/Software Interface
IDE = Interactive Development Environment
LSB = Least Significant Bit
PI = Procedural Interface
PPI = Programmable Peripheral Interface
PSS = Portable Stimulus language Specification
QoS = Quality of Service
RAM = Random Access Memory
RTL = Register Transfer Level
RX = Receive
SDV = Software Driven Verification
SLN = System Level Notation
SoC = System on Chip
SUT = System Under Test
TLM = Transaction-Level Modeling
TX = Transmit
UART = Universal Asynchronous Reciver/Transmitter
UVM = Universal Verification Methodology
VIP = Verification IP
WG = Working Group

viii

CHAPTER 1

Introduction

Development of techniques, such as constrained randomization, functional coverage and the
UVM, for block level, have provided improvements in the productivity and quality of design
verification. However, at the sub-system and SoC level’s verification, challenges continue to
grow. The complexity of SoC projects are increasing, making this even more challenging.
Also, a lot of effort is put into writing the same kind of tests at different abstraction levels, IP-,
sub-system and SoC-level, and at multiple platforms, simulation, emulation and silicon.

As a result, a new approach ”Portable Stimulus” is being addressed. The goal is to have a single
description of test intent that can generate stimulus for IP-, sub-system- and SoC-level. Portable
Stimulus wants to increase verification productivity, and make reuse between abstraction levels
as well as between different projects easier. Also, Portable Stimulus wants to increase the
quality of design by making bug detection easier and more efficient.

During this thesis, a Portable Stimulus standard was being developed by Accellera, but an early
adopter release was present. The first version is supposed to be released during the summer
of 2018. A tool by Mentor, called ”Questa inFact”, is a contributor to this standard, and a
subset of Portable Stimulus was supported. This thesis is about analyzing Portable stimulus,
and conduct a proof of concept through inFact. It contains an explanation on how Portable
Stimulus is achieved at the different abstraction levels, and between different platforms. This
includes RTL simulation with UVM testbenches and C code running on an CPU. UVM is used
because Portable Stimulus is specified to generated UVM sequences at RTL level. Nordic
Semiconductor, an integrated circuits provider, has requested this thesis.

1.1 Problem Description
The problem description states to do a investigation of existing proposal for universal stimulus,
and compare them. However, only one proposal has been examined in this thesis, Portable
Stimulus, as this is in the process of becoming a standard. Thus, most effort will be put towards
this proposal, making it unnecessary to investigate other proposals. In addition, this standard
is a collection on multiple proposals. A proof of concept, with a limited implementation of

1

Chapter 1. Introduction

Portable Stimulus, has been conducted as the problem description states. The methodology
followed in this thesis is evaluation of a suggested standard. This through analyzing what it is
good for and use it in a realistic example which, hopefully, exposes both strong and weak sides
of language/notation/tool.

The work in this thesis include:
• Investigating Portable Stimulus, and supporting tools

• Proof of concept:

– Choosing a scenario: receive and transmit with UART

– Creating UVM frameworks, from scratch, for three different abstraction layers (IP,
sub-system and SoC)

– Creating a C code framework

– Creating Portable Stimulus code by importing UVM transactions and sequences in
inFact

– Creating Portable Stimulus code from scratch in inFact

– Integrating generated code from inFact into UVM frameworks and running it

– Integrating generated code from inFact into C code framework and running it

1.2 Layout of the report
Chapter 2 contains an explanation of UVM and Portable Stimulus, and what the idea behind
Portable stimulus is and how it should work. Chapter 3 presents the tool, Questa inFact. The
process on writing the UVM and the C code frameworks are explained in Chapter 4. The UVM
frameworks consist of a separate testbench at IP-, sub-system and SoC-level. How the PSS
code is created, both through an import function and from scratch, are also presented. Last,
the frameworks and the PSS generated code are connected and simulated. Chapter 5 further
discusses and analyses this.

2

CHAPTER 2

Theory and Background

2.1 Universal Verification Methodology (UVM)

Universal Verification Methodology (UVM) is a result from the UVM working group formed by
Accellera, which involves standardization of verification[1]. UVM is a methodology for func-
tional verification improving verification complexity and interoperability between verification
components and environments[2]. UVM is also designed for reusability.

2.1.1 UVM Testbench

Figure 2.1 shows a typical UVM based testbench architecture. This include components with
defined intent, such as generating stimulus, driving stimulus to the DUT, monitoring the out-
puts of the DUT, and comparing the inputs and outputs. Testbench top in this example is top,
instantiating UVM framework[3].

Figure 2.1: Typical UVM testbench [4].

3

Chapter 2. Theory and Background

Transactions

UVM components are transaction based through transaction-level communication interfaces
and channels[3]. A transaction in UVM is a class object that includes whatever information
needed to model a unit of communication between two components. These objects usually
include variables and constraints. They contain a model of inputs and outputs that are used for
generating stimulus to the DUT and monitoring the DUT. A call to a transaction will randomize
the input values, which can be limited through constraints. A transaction is defined by declaring
a class that extends UVM sequence item.

UVM Test

The top-level UVM component is the UVM Test[3]. Here is the environment instantiated,
configured (through factory overrides or the configuration database), and stimulus is applied
through the environment to the DUT by invoking UVM Sequences. A UVM Test is defined by
declaring a class that extends UVM test.

UVM Environment

The UVM Environment is a hierarchical component that groups together the UVM Scoreboard
and UVM Agent, and sometimes other UVM Environments[3]. The top-level UVM Environ-
ment encapsulates all the verification components targeting the DUT. A UVM Environment is
defined by declaring a class that extends UVM environment.

UVM Scoreboard

The UVM Scoreboard is used for checking the behavior of the DUT[3]. It receives transactions
from the UVM Monitor analysis ports. The inputs of the transactions are run through a reference
model, called predictor, which produces expected outputs, and compares this with the outputs
in the received transactions. A UVM Scoreboard is defined by declaring a class that extends
UVM scoreboard.

UVM Agent

The UVM Agent is also a hierarchical component that groups together the verification com-
ponents that interact with the DUT interface[3]. These components typically include a UVM
Sequencer managing stimulus flow, a UVM Driver applying stimulus to DUT, and a UVM
Monitor monitoring the DUT interface. Examples of other components that can be included are
coverage collectors, protocol checkers and a Transaction-Level Modeling (TLM) model. There
are two different operation modes for a UVM Agent, active mode where it can generate stimu-
lus, and passive mode where it can only monitor the interface and not control it. A UVM Agent
is defined by declaring a class that extends UVM agent.

UVM Sequencer

The UVM Sequencer works as an arbiter for controlling transaction flow of UVM Sequence
Items transactions generated by one or more UVM Sequence. A UVM Sequencer is defined by
declaring a class that extends UVM sequencer.

4

2.2 What is Portable Stimulus, and Why?

UVM Sequence

A UVM Sequence is used for generating stimulus, and is not a part of the component
hierarchy[3]. They can be transient or persistent, and come into existence for a single
transaction, drive stimulus for the whole stimulation, or anywhere in-between. It is possible to
create a hierarchy of UVM Sequences, starting with one sequence called a parent sequence,
invoking one or more sequences called child sequences. All UVM Sequences needs to be bound
to a UVM Sequencer to operate. Multiple UVM Sequences can be bound to a single UVM
Sequencer. A UVM Sequence is defined by declaring a class that extends UVM sequence.

UVM Driver

The UVM Driver applies stimulus to the DUT interface based on received UVM Sequence Item
transactions from the UVM Sequencer[3]. I.e. it converts transaction-level stimulus into pin-
level stimulus. Transactions are received through a TLM port. A UVM Driver is defined by
declaring a class that extends UVM driver.

UVM Monitor

The UVM Monitor monitors the DUT interface, and collects the inputs and outputs into transac-
tions that is set to rest of the UVM Testbench for further analysis, for example a scoreboard[3].
A typical monitor would covert a certain interface pin wiggles to transactions. The transactions
are sent through a TLM analysis port. A UVM Monitor is defined by declaring a class that
extends UVM monitor.

2.2 What is Portable Stimulus, and Why?

The complexity of SoC projects are increasing and verification productivity is not scaling with
it[5]. A significant challenge is test intent reuse across vertical platforms - different phases of
RTL design such as IPs, sub-systems, integration, chip and so on. To overcome reuse poten-
tial, an initiative is Portable Stimulus (PS), which try to address mainstream and methodical
automation of test content reuse. The concept of PS is to only describe test intent and behavior
once, and then target it for multiple abstraction layers, such as IP, sub-system and SoC[6]. This
includes the verification platforms simulation, emulation and silicon. These platforms have
separate requirements and use different languages, as well as different approaches when testing
aspects of the system[7].

There are multiple types of engineers across the platforms, such as architects, verification and
software engineers[8]. Therefore, it is not easy to reuse tests across platforms nor different
engineers with today’s approaches and technology. In addition, it is difficult to work on a
project and easily reuse this on the next project. It is challenging for one person to completely
understand a complex system and test intent infrastructure, and with PS it will be easier to
specify complex tests based on design intent, and let the tools take care of the implementation
that is difficult to do manually. The purpose of PS is increasing productivity and quality of
designers. However, it’s not meant to force everyone to use the same level of abstraction, and it
will not replace all testing activities.

5

Chapter 2. Theory and Background

2.2.1 Verification on Different Platforms
The roles in verification have differences in what they care about and points of view[5]. The
architects typically care about throughput, latency and QoS. They want to write tests from
the system point of view. The IP designers care about micro-architecture, performance and
functionality. They want to write tests that are IP centric. System designers care about correct
connectivity, system robustness and use cases. They also want to write tests from system point
of view. Evaluation engineers cares about silicon performance and these engineers (ideally)
do not want to write tests at all. Today’s languages are not expressive enough, and runtime
frameworks are not portable.

With RTL, the abstraction level is raised from gate-level through synthesis tools[5]. The ab-
straction level can be raised further to transactions by using UVM. On top of this are scenarios,
and this is where PS comes in. PS wants to solve the reuse problem between platforms by
providing a mechanism for specifying intent, in an abstract way, that can be mapped into the
different platforms[7]. The abstract approach to creating tests will move the problem solving
from think about how it will be done to what is the intent. This will make it into a single spec-
ification for what should be tested, making the differences in platforms irrelevant because of
the raised abstraction. The specification should be specific enough for a PS tool to be able to
analyze it and create the actual implementation for whichever desired platform. Figure 2.2 is a
visual representation of the goal of PS as described.

Figure 2.2: The goal of PS, specify test intent once and retarget it to multiple platforms [9].

6

2.3 Portable Stimulus Specification Working Group

2.2.2 What One Wants to Test

PS is more about what it means to test and what is intended to be tested rather than how to do
it[7]. The PS model will be developed from system specification, containing a description of
supported behavior of a device and its requirements. This means it is necessary to understand the
operations an element can support and what the requirements are for these operations. When
this is clear, individual scenarios can be specified to what one wants to test. For example,
verifying that one can receive data and store it into memory. This represents the meaning of test
intent, a high-level specification of what one wants, where one can add more details gradually.

2.2.3 UVM vs. Portable Stimulus

Reusable tests are a large part of PS, and it is also a main idea behind UVM[10]. UVM is advan-
tageous as it provides a common language/framework for verification engineers[5]. However,
SystemVerilog and UVM are a challenge outside conventional hardware verification environ-
ments because non-verification engineers are not familiar with them. In addition, it is overly
complicated and hard to debug, and one needs to be an expert to create a simple directed test.
Even though UVM is excellent for block/IP level verification, it does not scale to system level
verification. This is because verification at block level is typical in in SystemVerilog, while
system level would typically require C code. As a result, it is difficult to reuse the stimulus at
system level.

2.3 Portable Stimulus Specification Working Group

Accellera Portable Stimulus Specification Working Group (PSWG) is creating a standard for
PS[11]. Members are leading semiconductor companies such as Intel and also EDA vendors
such as Mentor, Cadence and Breker. The goal of this group is to ”create a standard for verifi-
cation stimulus captured in such a manner that enables stimulus generation automation, and the
same specification to be reused in multiple verification languages and contexts”.

In block and sub-system verification are SystemVerilog mostly used, while SoC and system
level uses embedded software[11]. Mechanisms for reuse of code and described behavior is
important, and will be provided for these and other languages[6]. However, it should be noted
that PS is not meant to be a replacement for existing languages, such as SystemVerilog and
C/C++.

The working group was created by initiative of Mentor, and the work started in 2014[7]. They
started by identifying requirements and completing a feasibility study. From gathering of re-
quirements and looking at existing technology, they found that Breker, Cadence and Mentor had
solutions in this area. Therefore, it was reasoned, given the requirements and existing tools, PS
would be feasible solution with additional input. In addition, by having Intel (a SoC provider)
as a user, it would be possible to generate a standard. After this, the actual working group was
formed.

7

Chapter 2. Theory and Background

2.4 Portable Stimulus Specification

On the 15th of June 2017 the PSWG released an early adopter specification for its Portable Stim-
ulus Specification (PSS), followed by version 2 on 28th of February 2018 [12]. This includes a
comprehensive explanation for a standard of PS consisting of two languages, a Domain-Specific
language (DSL) and a C++ class library. These two languages support PS by making it pos-
sible to express a single intent, and then assemble them into test suites. The test suites can be
used by many engineers, from hardware designers through to embedded software engineers,
and deployed in many different environments across different levels of integration[10].

The specification came after preliminary work of the submitted proposals[7]. The result was a
combination of the proposal from Cadence and Mentor. Both had their own declarative language
solutions that were merged together to create the DSL. Breker had a similar solution to Mentor,
but with C++. The DSL was used to define the semantics, and the same semantics were created
for C++. This means Accellera is responsible for defining the standard, but the technology
comes from vendors.

2.4.1 Fundamentals

Raising the level of abstraction is one of the fundamentals of Portable Stimulus, in addition to
enabling automation of tests for complex scenarios emerging in sub-system and SoC level[6].
The fundamental of the PSWG development is built upon constrained-based and transaction-
level verification, which is already widely adopted within industry. As a result, their PSS sup-
ports random and non-random data fields and structures that are familiar to SystemVerilog.
From object-oriented programming they support familiar inheritance patterns. Figure 2.3 shows
a representation of the anatomy of PSS, how one goes from a PS description to executable code.

Figure 2.3: The anatomy of PSS[13].

8

2.4 Portable Stimulus Specification

How the engineers will use PSS will vary[7]. The architects figure out what the elements of the
design should do and how they relate, in addition to elements like performance characteristics.
These can be layered into PSS, especially the performance, once one knows the operations the
design should be able to perform.

Verification engineers verify the block level and sub-system level on RTL implementations[7].
They specify test intent that will interact with the RTL. PSS will generate UVM sequences,
which shall be used as the test stimulus. A UVM environment is needed for how the traffic
interacts with the design, through agents, drivers and monitors. It will not be possible to syn-
thesize a complete testbench from DSL. One will still need the infrastructure that currently is
required for whatever platform, but one gets to reuse the test intent. Thus, the RTL verifica-
tion engineers can reuse the operations the architect has specified, and map it into the UVM
environment. This also means that verification engineers need to think on a higher level of ab-
straction. An analogy to using PSS for creating tests is when one synthesizes the RTL. Only a
high-level code needs to be written, while the tools actually does the gate-level implementation.
Thus, one thinks in a more abstract way, and the tools automates the implementation. Similar
things are happening with PSS, instead of writing pieces for each type of target platform, the
tool automates this.

A software engineer, at system level, will generate C code that is going to run on a processor
on an emulator or FPGA prototype[7]. They still have to write the driver, but they can use PSS
to create scenarios to test the functions of the driver. Today’s manual implementation of system
level test are of high complexity, which makes them expensive, incomplete and error-prone[14].

Infrastructure pieces still needs to be made at each level, but the intent is reusable[7]. When-
ever one writes a specification of intent, multiple scenarios can be created. The output can be
generated in multiple ways in the system, which the tool will pick from when generating data.
This allows for reuse by generating multiple tests in the infrastructure one has, in addition to
reuse of that intent for scenarios on other platforms. A lot of pieces of existing testbenches can
be leveraged in PSS, such as UVM coverage components, scoreboards, and so on. With PSS
one can say that the thinking is revolutionary, it is something new, but the implementation is
evolutionary because what one already knows is not thrown away.

2.4.2 Language

PSS is a declarative language designed for abstract behavioral description[15]. It is intended
for modeling scenario spaces of systems, generating test stimulus, and analyzing test runs. This
is by creating use cases, including data and control flows. These use cases are used to produce
a wide range of possible and legal scenarios for multiple execution platforms by capturing the
intent of the test.

A PSS model, a representation of a view of a system’s behavior, is made up of elements of be-
havior called actions, and passive entities called objects[16]. The objects are used by actions.
Activities specify the behavior of the actions. Actions and objects can form reusable model
pieces when encapsulated in components, which also can be encapsulated in a package for ad-
ditional reuse and customization. An instantiation of a PSS model, called scenarios, consists

9

Chapter 2. Theory and Background

of a set actions and data object instances, scheduling constraints and rules defining relation-
ships between them. By describing the inputs and outputs of an action, what resources in the
system they require and how they relate to each other, one get a thorough understanding of the
capabilities of the system[7].

The language is specifiable for all engineers, in the range from verification of IP block with
transactional UVM testbenches to preoperative tests on the silicon, because of the two different
input formats[7]. These two languages are equivalent in semantics and are completely inter-
changeable. DSL is more like SystemVerilog, as engineers in the earlier phases are familiar
with, while the C++ syntax are for those in the later phases. An example of how DSL and
SystemVerilog is alike is that the transaction-level of PSS overlaps with the SystemVerilog con-
straint subset so that SystemVerilog constraints can be converted and reused to some extent in
PSS[6]. DSL is its own declarative language as it allows users to specify all test intent and how
they relate, and then have the tool analyze it to figure out what is necessary for a given platform.

The C++ part consists of a limited library used to create the same model as the DSL specification
does. Then, that model is used to generate the target implementation. The reason for having
the C++ syntax is to allow engineers already familiar with it to learn PSS faster without having
to learn a new language. The C++ library is directly mapped to the DSL constructs. It is more
or less a one-to-one mapping, i.e. a line in DSL has a line in the C++ library that is equivalent.
Because they are equivalent, only different in input format, one can combine them into a single
model. For example, if two engineers have written two pieces representing the system, where
one is in C++ and the other in DSL, a third engineer can put them together to create a single
coherent output for a target platform.

2.5 Portable Test and Stimulus Standard
This sub-section explains the content of the PSS specification, in addition to an example.

2.5.1 Execution Semantic Concepts
A PSS test scenario is identified by a PSS model and an action type designated as the root
action[16]. Execution of the scenario consists of execution of a set of actions defined in the
model. For atomic actions, the execution is decided by the mapped behavior of exec body.
While execution of compound actions are decided by the behavior specified by their activity
statements. Execution of actions observed in a run correspond to either being explicitly called
by activities or being implicitly introduced to achieve correct flow according to model rules.
Execution order of actions are dictated by the activities, starting from root action.

2.5.2 Components
A mechanism for encapsulating and reusing elements of functionality is components[16]. A
PSS model is broken down during execution into parts based on roles of the different actors. The
mechanism of components are aligning with structural elements of the system and execution
environments. Examples are hardware engines, software packages, or testbench agents.

10

2.5 Portable Test and Stimulus Standard

Components are structural entities instantiated under other components, and constitute a hi-
erarchy in a tree structure[16]. The tree structure begins with a top/root component, called
pss top. They have unique identities, corresponding to their hierarchical path, and can contain
imported functions and imported class instances. Components have no data attributes or con-
straints of their own. Components are type namespace for actions and struct types defined
under them. They are responsible for reusable grouping of actions, pools (object resources),
and configuration parameters[5].

2.5.3 Actions
Actions are modular, which means they are reusable, and they can interact with other actions,
have inputs and outputs that define dataflow requirements, and can claim system resources[5].
Actions are simple if they map directly to target implementation, atomic if specified via an exec
block, and compound if they contain an activity that instantiates and schedules other actions.
Assembling simple actions into multiple compound actions are a way of reusing actions many
times[10].

Actions are a response to limitations in SystemVerilog, in terms of reuse and customization
without changing the original code when constrained random generation are mixed with pro-
cedural code[6]. Behavior is specified within an action, where complex actions can contain
specification of sequential and parallel execution of sub-actions and repetitions of sub-actions.
This allows for a high degree of automation and static analysis. The behavioral description in
actions can be reused, and contains a flexible mechanism to map to different targets[5]. Actions
represent functionality, where the first step is to identify target design behavior to be exercised.
Then one needs to figure out what data these behaviors require or produce. The next step is to
answer where these behaviors are executed, in the DUT or VIP. Lastly, one needs to figure out
what system resources are required to accomplish these behaviors.

Actions interact with each other by flow objects, through inputs and outputs, and resource
objects, by claiming resources[16]. Scheduling of actions relative to each other is done by the
use of activity graphs[10]. In order for the tools to create complex legal scenarios automatically
from actions, rules or constraints can be written[6]. These describe legal scenarios involving
dedicated constructs for modeling the resource requirements and data exchanges. Through
constraints, test generation tools can create realistic scenarios and use cases. Constraining these
actions is done through flow objects and resources.

2.5.4 Activities
Behavior of actions, if they contain multiple operations, is described using activities[16]. One
can think of action instances as nodes in an activity graph[5]. There can only be one activity
in an action. Because of this and that they are explicitly a part of an action, they do not have a
separate name. An activity specifies the temporal control and/or data flow between nodes. The
relationship between them are described via rules. A symbol, declared to represent a subset
of an activity functionality, is used for reuse and simplifying the specification of repetitive
behaviors in an activity. The symbol can be used as a node in the activity.

Activities define top-level scenarios, while compound actions define high-level intent, and
graphs define scheduling of actions[5]. Resource and flow objects define additional scheduling

11

Chapter 2. Theory and Background

constrains, by for example locking them prevents other actions from using them. Stream objects
require another action to execute in parallel, while buffer objects execute them sequentially. By
default, action statements in an activity arescheduled sequentially[16]. A parallel statement is
used to schedule them in parallel. A select statement is used to schedule them to be executed in
whichever order. When using the repeat statement in an activity, will execution be repeated,
either for a specific number of timer or in a while when waiting for an expression to become
true. foreach is used to iterate across elements in an array when scheduling them. It is also
possible to use an if-else block when scheduling.

2.5.5 Flow Objects
A flow object is used as input and output of actions, which represent data/control flow, or a pre-
condition or a post-condition[16]. Flow objects include buffer objects, stream objects and state
objects. Buffer objects define sequential data/control flow[5]. They are pre- or post-conditions
for action execution. They have persistent storage, and can be read after being written. An
action that inputs a buffer object must be bound to an action that outputs a buffer object of the
same type. A buffer object output can be connected to 0:N input actions, if they are of the same
type. The producing action must complete before execution of consuming action may begin.

Stream objects are used between action during concurrent activity, for example over a bus or
network or across interfaces, by representing transient data or control exchanged[16]. They
represent data item flow or message/notification exchange. An action that inputs a stream
object must be bound to an action that outputs a stream object of the same type. State objects
represent the state of some entity in the execution environment at a given time. State object
writes must be sequential, but reads can be concurrent.

2.5.6 Resource Objects
Resource objects represent computational resources available in the execution environment,
which are user defined and created in a type struct[16][10]. They can be assigned to actions
during their execution, allowing them to lock resources from other actions or share them. While
sharing, no action can lock that resource until all actions are finished. Both resources and
constraints can be inherited from a base action.

2.5.7 Pools
The mechanism of pools are representing collections of resources, state variables, and connec-
tivity for data-flow purposes[16]. Pools are structural entities instantiated under components.
Their task is to determine the accessibility to flow and resource objects for actions. Thus, they
shape the legal test scenarios when determining possible assignments of objects to actions. To
achieve this, the object-reference fields of action types need to be bound to pools of the re-
spective object type. The associated bind directives in the component scope are: Resource
references with a specific resource pool, state references with a specific state pool, and buffer-
/stream object references with a specific data-object pool. Because they determine possible
assignment of objects to actions, they shape the legal test scenarios. Flow exchange in a pool
are transported, one action outputs an object while another inputs it. When an action locks or
shares a resource, it is within a pool.

12

2.5 Portable Test and Stimulus Standard

2.5.8 Randomization Specification Constructs
Scenario properties are expressed as algebraic constraints over attributes of scenario
entities[16]. These exist for several categories of struct and action fields. The constraints
shape every aspect of the scenario space, such as determining the legal value space for attribute
fields of actions. Another examples is that they can affect the legal assignment of resources to
actions and scheduling of them, and they can restrict binding of input and outputs of actions.
Constrained randomization is the process of selecting values for scenario variables. The
order of execution, as specified in activities, decides when the randomized values of variables
becomes available.

Two types of constraint blocks for action/struct members are supported in PSS: Static con-
straints that always hold, and dynamic constraints that only hold when they are traversed in
the activity[16]. Randomization of plain data models associated with scenario elements, and
randomization of different relations between scenario elements, such as scheduling, resource
allocation, and data flow, are supported in PSS.

2.5.9 Coverage Specification Constructs
PSS have a coverspec construct, that is used to specify coverage target[16]. They identify
key value ranges and value combinations that must occur to exercise key functionality. Exam-
ples of coverage targets are action, scenario, datapath, value and resource coverage.

2.5.10 Type Extension
Type extensions are added in PSS for enabling the decomposition of model code, such that
reuse, and portability is maximized[16]. Model entities, such as actions, objects, components,
and data types, can have a number of properties or aspects that are logically independent. How-
ever, distinct concerns for a specific entity will often need to be developed independently. An
example of concern is implementing actions and objects for a specific target platform/language.
Another concern is with model configuration of generic definitions for a specific DUT that af-
fects components/data types declared elsewhere. Defining a functional element of a system
that introduce new properties to common objects is also a concern. What is extensible in PSS
is composite and enumerated types. Compound type extensions include struct, action and
component.

2.5.11 Packages
To group, encapsulate, and identify sets of related definitions, type declarations and type ex-
tensions, one can use packages[16]. Packages are useful for allowing extensions to the same
types that are inconsistent with one another to coexist and be managed more easily. Examples
are when introducing contradicting constraints or specifying different mappings to the target
platform. Packages work as a namespace for the types declared in their scope.

2.5.12 Test Realization
An exec block is used for mapping of a PSS entry to its foreign-language implementation[16].
A PSS model interacts with external foreign-language code for help to compute stimulus values

13

Chapter 2. Theory and Background

or expected results during stimulus generation. Another reason is that code corresponds to the
behavior represented by leaf-level actions, for example APIs of the SUT or utility libraries. For
this can the procedural interface (PI) be used. An exec block is a mechanism for specifying
functionality associated with a component or action.

2.5.13 Hardware/Software Interface
Hardware/Software Interface (HSI) is an abstraction responsible for device management
[5][16]. The purpose is to generate hardware dependent software (drivers) from a single
specification in different environments and languages. HSI is used to ensure portability of
scenarios across environments and devices/SoCs. The HSI specifies device initialization,
interrupt management and other operations such as configure, transmit/receive, and registration
of device capabilities.

HSI is a set of constructs for capturing the hardware aspects required to implement the abstrac-
tion [5][16]. I.e. it captures the programmer’s view of a peripheral device in a manner that is
unknown to the underlying verification environment and platform. A provided C++ API is used
to capture HSI specification, such as software programmable registers, virtual registers, DMA
descriptors and interrupt properties. The API captures test intent as the users can use it to spec-
ify the programming sequence for different operations that can be performed on a peripheral
device.

This enables an implementation, on a given language and verification platform, to be derived for
the abstract representation of the HSI[16]. HSI enhances PS by abstracting away the stimulus
model from the verification platform specific implementation of HSI, and can be ported to a
different verification platform. An example is simulation to emulation. It is also enhanced by
basing the HSI specification on a standard interface/API contract for a given device, so that the
stimulus model can easily be ported to a different device.

2.5.14 A Simple PSS Example
This PSS example involves a UART receiving/transmitting data packets via a data port, as seen
in Figure 2.4[5]. Packets are moved to/from memory (MEM) through a DMA (direct memory
access). The command port accesses registers to configure UART and DMA, and reading and
writing MEM. The example is simplified and does not include the whole code. The purpose of
this example is to give an overview of how the described elements in PSS looks in the code, and
not give an exact representation.

Figure 2.4: Block diagram of a UART together with a DMA controller and memory[5].

14

2.5 Portable Test and Stimulus Standard

In Listing 2.1, two objects are created, a buffer object operating sequentially, and a stream
object operating in parallel. These will be used between the UART and DMA. Listing 2.2 and
2.3 demonstrates the components for the UART and DMA when using the data port. The UART
component specifies two actions for receiving and transmitting, using the stream object. They
also lock the UART resource. The DMA component specifies two actions transferring data
between the memory and UART. The data from/to the UART are of the stream type, while the
data from/to memory are of the buffer type. They lock the DMA channel when operating.

1 stream data_stream_s { rand int size; }
2 buffer data_buff_b { rand int size; }

Listing 2.1: Flow objects: Buffer and stream[5].

1 component uart_c {
2 resource uart_r { };
3 pool [1] uart_r uart_p;
4 bind uart_p {*};
5
6 action read_in_a {
7 output data_stream_s data;
8 lock uart_r myuart;
9 constraint c1 {

10 data.size % 4 == 0;}
11 };
12
13 action write_out_a {
14 input data_stream_s data;
15 lock uart_r myuart;
16 };
17 }

Listing 2.2: PSS component for UART[5].

1 component dmac_c {
2 pool dma_channel_r chan_p;
3 bind chan_p {*};
4
5 action q2m_xfer_a {
6 input data_stream_s in;
7 output data_buff_b out;
8 lock dma_channel_r chan;
9 }

10
11 action m2q_xfer_a {
12 input data_buff_b in;
13 output data_stream_s out;
14 lock dma_channel_r chan;
15 }
16
17 action m2m_xfer_a {...}
18 }

Listing 2.3: PSS component for DMA[5].

The top component is created as seen in Listing 2.4.

1 component pss_top {
2 uart_c uart0;
3 dmac_c dma0;
4
5 pool data_stream_s stream_p;
6 bind stream_p {*};
7
8 pool data_buff_b buff_p;
9 bind buff_p {*};

10 }

Listing 2.4: Top component instantiating the UART and DMA component[5].

15

Chapter 2. Theory and Background

A test is created in Listing 2.5. Here the actions of the UART and DMA components are bound
together. The activity states that receiving and writing to memory should happen in parallel, and
then that transmitting and reading from memory should happen in parallel. The names are not
correct according to previous definitions in this example, and not all objects have been defined.

1 action loopback_test {
2 bind rd_i.data q2m.src;
3 bind wr_o.data m2q.dst;
4 bind q2m.dst m2q.src;
5
6 activity {
7 parallel {
8 rd_i;
9 q2m;

10 }
11 parallel {
12 wr_o;
13 m2q;
14 }
15 }
16 }

Listing 2.5: PSS test case[5].

2.6 Reuse Opportunities
There are opportunities for reuse between PSS and the user code shown in Figure 2.3 from sub-
section 2.4.1[13]. This includes, during the solve process, and during the execution. In the solve
process there are reuse opportunities when creating expected results and managing procedural
heavy processes, for example memory management. In execution can existing procedural code
be used to carry out test intent by PSS.

2.6.1 Translating Existing Declarative Descriptions
In SystemVerilog there are declarative descriptions, such as random variables and constraints in
its classes[13]. This can be reused in PSS, as PSS constraint constructs are created in a way for
easy reuse. The flow of SystemVerilog class reuse for PSS is demonstrated in Figure 2.5. The
PSS language is generated by a processing tool reading the SystemVerilog code and identifies
classes and/or covergroups, and translates it to the corresponding PSS constructs.

16

2.6 Reuse Opportunities

Figure 2.5: Reuse flow for SystemVerilog Declarative Description[13].

Figure 2.6 demonstrates how similar SystemVerilog classes is to PSS, where the only difference
is that PSS uses a struct instead[13]. PSS uses struct because the data structures is pure data
structures, and does not include methods as in SystemVerilog.

Figure 2.6: SystemVerilog Translation to Portable Stimulus Specification[13].

17

Chapter 2. Theory and Background

2.6.2 Existing Test Realization Code
Reuse of test realization code might be the biggest opportunity of reuse for PSS[13]. This is
because it is code that carries out test intent. Examples of test realization code are UVM se-
quences carrying out lower level operations, SystemVerilog utility tasks, and C/C++ driver/stub
code for programming an IP. PSS provides a procedural interface enabling external functions to
be referred from it for implementation of test behavior.

An example of a configuration of a device using a C utility API is shown in Figure 2.7[13].
How this API can be used in PSS is shown in figure 2.8. Here is the behavior and data for
configuring the device encapsulated in the action. Function prototypes are specified for the
external methods, and for extraction of these methods can PSS tools get them from C/C++
header files. The realization of behavior of the action is specified in the exec block of type
body. First, a random mode is selected, and then two calls to set coeff, before calling init.

Figure 2.7: Device programming API in C code[13].

Figure 2.8: Calling Test Realization Code in PSS[13].

18

2.6 Reuse Opportunities

The same PSS description can be used for the UVM sequence for programming the device,
shown in Figure 2.9[13]. Here are the external functions implemented as SystemVerilog tasks,
which uses a UVM sequence to program registers within the device. These two examples show
that by the use of external test realization code will allow the PSS description be more abstract.
Benefits are that the description is more easily portable, reuse of existing code is encouraged,
and it helps to avoid bugs.

Figure 2.9: Reusing UVM Sequences[13].

2.6.3 Existing Modeling Code
In addition to test realization code, related to triggering of behavior, modeling of the data when
triggering test behavior is also important[13]. Modeling code can also be reused, and a common
example is memory allocation. Figure 2.10 shows an example where one wants to control and
contain the size of a memory buffer being written. It will be easier to reuse an existing memory
allocation implementation in PSS than to create one.

19

Chapter 2. Theory and Background

Figure 2.10: Reusing UVM Sequences[13].

PSS provides a mechanism that enables interaction between existing behavioral code and the
solver within the processing code, where the PSS description is evaluated[13]. Exec blocks
specify the behavior between PSS and external code. Used in a pre-solver will they be evaluated
before the solver selects values for random variables. The external code can initialize non-
random values, later being used by the solver. Post-solver is also possible, where they are
evaluated after the solver has selected specific values for random variables. Then, the external
code can compute values for non-random variables that are based on the random ones generated
form the solver.

The alloc function is external, and can be used by calling it from a pre-solver exec block[13].
This way will a random size be selected before calling the alloc function, allowing the external
code to use the value.

20

2.7 PSS Tools

2.7 PSS Tools
At the early adopter release about 80 % of the requirements are met in the PSS specification[14].
Here, the vendors cooperate on standards, but compete on tools. How one goes from having
specified a PSS model to getting an executable code is demonstrated in Figure 2.11. The PSS
tool, also called the ”secret sauce”, is provided by the vendors[17]. The purpose of the tool is
to map the specified intent and behavior of the PSS model into different platforms, and create
stimulus, the implementation, for them. APIs are for specifying content of the target platform,
for example it has four processors and two DMAs.

Figure 2.11: From PSS model to executable code.

Mentor has expanded its portable test and stimulus technology across its full Enterprise Verifi-
cation Platform[18]. This is offered through Questa inFact[19]. This tool supports UVM and
standard languages such as SystemVerilog, SystemC, C/C++, and C tests for embedded pro-
cessors. Mentor does also offer PSS courses and seminars through their verification academy.

Breker have a C++ language representation of PS, and are contributing this to the PSS C++
syntax[20]. This is available in the TrekSoC. As the Portable Stimulus standard moves toward
ratification, Breker will continue to implement the domain-specific language (DSL) into Trek-
SoC portfolio to be fully compliant with the standard.

Cadence has a tool called Perspec System Verifier[21]. This tool was originally created for a
self-defined system level notation (SLN) language used to model SoC and SW. After joining
the Accellera PSWG, a lot of SLN are donated to the new PSS languages. They are planing to
support PSS shortly after the standard is officially ratified, but in the meantime, they support
SLN. Perspec is able to generate test in SystemVerilog and C code.

21

Chapter 2. Theory and Background

22

CHAPTER 3

Portable Stimulus Tool Questa inFact

This chapter will cover the chosen PSS tool Questa inFact. Understanding how inFact works is
a crucial step before writing PS code. This will be further explained in this chapter.

3.1 Choosing a PSS Tool
Among the three available tools for PS code, as presented in sub-section 2.7, Questa inFact was
selected. inFact already supports a lot of the PSS specification, in addition to being contin-
uously developed alongside the specification. The new DSL language is supported by inFact,
which is preferred because of the similarities to the already known SystemVerilog. Also, Nordic
Semiconductor uses Questa SIM as a simulation tool for their digital designs, making it easier
to utilize the result from the created PS code in inFact.

There are some expectations and desired requirements for inFact. The generated codes from
the PS code would hopefully cover most of the total verification, allowing PSS to be the main
focus instead of a supplement. The UVM framework and a driver for the software are expected
to be in place before PSS results can be utilized, but integrating the results shall be easy and
require as little effort as possible. In addition, the effort of creating PS code shall be less than
the effort of writing all the codes at the different abstraction levels. This is not tool specific, but
PSS specific. Thus, this is indifferent of Questa inFact.

3.2 Introduction to Questa inFact
The tool Questa inFact is a graph-based verification tool intended for generating and direct-
ing stimulus for a testbench[22]. It is non-intrusive to the testbench, and implemented by in-
stantiating pieces called test components within the testbench. Simulation of inFact is run in
conjunction with the simulator, and inFact can replace or be combined with existing stimu-
lus generators. It can control stimulus generation as shown in Figure 3.1. It should be noted
that inFact can also control an existing testbench configuration, or a combination of both, but
controlling stimulus generation is the focus of this thesis.

23

Chapter 3. Portable Stimulus Tool Questa inFact

Figure 3.1: Stimulus Generation Control through Questa inFact[22].

An Interactive Development Environment (IDE) is accompanied with inFact[22]. This consists
of wizards to set up project files and directory structures, view them and their associated at-
tributes, as well as an editor to create and modify inFact-specific files. Projects can be created
through this IDE, but also through the command line. This is possible as a makefile is generated
together with the inFact projects, allowing it to be regenerated. The IDE is based on the Eclipse
editor.

3.2.1 Rules File and Graph

Defined in the rules file is the stimulus we want to generated[22]. It is used by inFact when
translating verification intent for the DUT into a set of hierarchical rules. The specified rules
within the rules file reflect DUT behavior in the context of verification scenarios/stimulus se-
quences. The rules are written in a higher abstraction level than for example SystemVerilog
code[23]. However, it does not force a single level of abstraction, as they can be as detailed as
desired. SystemVerilog classes can be imported into inFact to automate the creation of a rules
file.

From the rules file a graph, involving a compiled binary representation of the rules, is
generated[22]. This graph represents the stimulus defined in the rules file in an abstract way,
where each action in the rules translates to an action node in the graph. During simulation
runtime, this graph is traversed to determine which values to generate.

3.2.2 Action Functions

The action methods (tasks/functions) created in the runtime graph for each graph node performs
different operations[22]. They map to a specific task or function in the testbench. This typically
consists of processing TLM transactions, generating firmware instructions, interacting with the
testbench, and driving a signal. Stimulus is created from these actions during runtime by setting
values in a transaction, driving stimulus directly through testbench components or interfaces,
and calling existing embedded code.

24

3.3 Defining a Rules File

3.2.3 Coverage Strategy
In inFact, stimulus is driven by a coverage strategy[24]. This makes coverage an active com-
ponent during simulation that is opposite to coverage in SystemVerilog, where it is passive and
only monitors the design. By default, random test sequences from the test component are gen-
erated by inFact[22]. The coverage strategy can be used to direct the stimulus to meet a specific
coverage target. Upon meeting the target, the simulation is ended. Termination of the simula-
tion can also be set after a number of iterations. This allows the test stimulus to be completely
random or directed, or a combination of the two.

3.2.4 Test Components
In order to employ the graph, a methodology-specific container called test component is
used[22]. This provides the necessary wrapper to instantiate the graph inside the testbench.
This is achieved by a style-specific file facilitating the interface between the testbench and the
graph. Test components are configurable and can be enabled/disabled by testbench code, and
can be reactive to other graphs and testbench objects (transactions or function/method calls).
The test components can be generated in two ways, either by importing a testbench source, or
manually from a template. They are language and method specific, meaning UVM, SV class
and C code uses a separate test component.

3.2.5 Integration Process
The test component integrates inFact into a testbench[22]. It can be created for an existing
testbench or while developing a new. The integration process consists of creating the test com-
ponent and instantiating it in the testbench. When the rules file, graph, coverage strategy, and
test engine are created in the test component, it is ready to be instantiated. It is possible to use
multiple test components within a testbench. The test component can be referenced wherever
needed.

3.3 Defining a Rules File
From each test component type a rules file template is provided as a starting point[22]. If the
test component is created from importing a testbench, rule segments are automatically gener-
ated. Inside the rules file are rules written involving what stimulus to create, where constraints
can be used to remove illegal values. All rule keywords can be found in the inFact reference
manual[25].

The rules are written in a rule graph, which is used when the graph is generated[22]. Inside
can rules be directly written or be imported from a rule segment. A rule segment can contain
the same rules as in a rule graph. Thus, the benefit of rule segments are reuse in multiple
rule graphs.

Actions within a rule graph declare action functions and becomes leaf nodes of the graph[22].
The actions init and infact checkcov are standard in the rule graph, where the latter checks
progress toward coverage goals[22]. They are run by referencing them in a rule sequence.
A rule sequence defines the rules of stimulus activity, i.e. what and when to run stimulus.

25

Chapter 3. Portable Stimulus Tool Questa inFact

In addition are struct instances called here. A struct declares a hierarchical data structure,
combining data, local constraints, and graph structure information into reusable and extendable
objects. This can be compared to a class in SystemVerilog[24]. In UVM will a struct represent
a transaction. Once a struct is declared, one or more instances of it can be created.

Inside the struct can meta actions, constraints, symbols and coverage attributes be
declared[22]. Meta actions are variables[24]. A value, from the valid domain, will be selected
by the inFact algorithms when traversing a meta action in the graph. It is possible to use
meta action import to import a value from the testbench, where the value will be set by the
testbench and not by inFact. Constraints limit the values of the meta actions, and work in the
same way as in SystemVerilog. They can also be applied to the whole rule graph or coverage
strategy objects. Dynamic constraints can be created to be valid for a certain branch. Symbols
introduce hierarchy to the rule graph, and forms sub-rules.

To be able to use the struct in the testbench an interface is needed[22]. This is not the
same as an interface in SystemVerilog, but provides synchronization between the graph and
the testbench[24]. Once an interface is declared for a specific struct, it can be run through a
call in the rule segment. By default, the meta actions will be traversed in the order they are
specified, but this can be branched by referencing the struct inside itself. This can be done for
example by adding OR or adding if-statements.

Attributes can be used to modify what is being generated[24]. This is useful when moving from
different abstraction level, for example when the set of variables are not the same. These rules
described in these sub-sections are the most basic[22]. Rules that are present are dependent
upon application. Also, additional complex rules exist allowing more customization of the
structure and actions of the graph.

3.3.1 Example: Defining Rules
Listing 3.1 demonstrates an example on how rules are defined. It begins with the rule graph
declaration, later being used to define the rule sequence at Line 25. Init is an action leaf node in
this example that initializes the graph interface.

1 rule_graph comp_eng {
2 action init;
3
4 struct trans {
5 meta_action addr [unsigned 7:0];
6 meta_action data [unsigned 15:0];
7 meta_action size [1,2,4,8,16];
8 meta_action dir [enum READ, WRITE];
9

10 constraint mem_reg_c {
11 if (addr inside[0x10..0x1F]) {size <=8};
12 if (addr inside[0x40..0x5F]) {size inside[2,4]};
13 }
14

26

3.4 Viewing the Graph

15 symbol mem_fields = size data;
16
17 trans = ((addr[0..7] dir[READ]) | (addr[8..255] dir))

mem_fields;
18 }
19
20 trans tr1, tr2;
21
22 interface do_tr(trans);
23 constraint diff_addrs_c {tr1.addr != tr2.addr}
24
25 comp_eng = init repeat {
26 do_tr(tr1)
27 do_tr(tr2)
28 };
29 }

Listing 3.1: Rule constructs example[22].

The struct trans declares the four variables addr, data, size and dir. The size is constrained
based on the addr in Line 10. At Line 15 is a symbol declared, grouping the meta actions size
and data. The rule at Line 17 declares the top-level rule, where the value of addr determines
whether size and data are of read or write type.

The struct is declared twice at Line 20, and connected with the graph and testbench with the
interface at Line 22. A constraint makes sure that the two structs cannot have the same
address. Inside the rule sequence the init is called first, followed by a repetition of sending the
first and second struct to the testbench.

3.4 Viewing the Graph
The IDE provides a visualization of the graph. The graph can either be generated by the IDE or
compiled through commands[22]. The display shows the symbols as solid boxes that can be ex-
panded to show their graphical definition in-line or in a separate viewer tab. The meta actions
are shown as circles, including the number of possible values. If the meta action is of the im-
port type it will be marked with a green arrow. An example is shown in Figure 3.2, representing
the graph of the first struct from the example in sub-section 3.3.1.

27

Chapter 3. Portable Stimulus Tool Questa inFact

Figure 3.2: Example of graph from Example: Defining Rules in sub-section 3.3.1[22].

3.5 Specifying Coverage
As mentioned, stimulus is driven by coverage in inFact[22]. Except when specifying an explicit
set of iterations. There are two types of coverage strategies, action coverage and path coverage.
The first targets one or more individual node in the graph. This is done by creating a coverage
object for a selected node in the graph. The default is to create a bin for each of the possible val-
ues, but this can be overridden by specifying its bins. A bins is specified by declaring it where
the action/meta action is specified, in the same way as in SystemVerilog: bins bins target
bins name bins definition;[25]. Bins can be imported from an existing testbench as well.

Path coverage target cross-coverage goals, and is created by specifying a start node and an end
node[22]. Nodes in between can be defined as ”don’t care”. Path coverage can also be associ-
ated with bins, usually in a bin scheme that is a collection of multiple bins. With both action
and path coverage will each bin be hit once, unless else specified. This eliminates redundancy
when it comes to simulating the same test case multiple times[24]. It is also possible to see how
many tests each coverage goal will generate. This gives an idea about simulation time.

28

3.6 Simulation of inFact

3.6 Simulation of inFact
Simulation can begin after the graph sequence has been integrated into the testbench[24]. The
sequence file must be included in a package through a include-statement. If the inFact sequence
replaces an old sequence, it can be overridden through uvm set type override. Else, it can be
directly instantiated by name in the testbench. Also, a path to the .ini file created by the inFact
workspace is needed as a simulation argument. Next, the compilation and simulation of the
testbench can begin in a ”normal” way (through vlog and vsim in Questa SIM).

3.7 inFact versus PSS Specification
The rule language used in inFact forms a basis for the PSS DSL language[23]. Further DSL
constructs will be added to inFact during the year, and when the PSS 1.0 is released, inFact
will support a true subset of the DSL. The C++ part of PSS will also be supported. Today,
some inFact terminology may change as they have the same semantics under a different name
in the PSS specification. Examples are meta actions that are the same as flow objects, and
attributes that are the same as exec blocks. Resources and Pools are not supported by inFact
at the moment. This means that the entire system cannot be yet modelled in inFact, as described
in the Theory and Background chapter.

29

Chapter 3. Portable Stimulus Tool Questa inFact

30

CHAPTER 4

Portable Stimulus Verification Infrastructure

A universal asynchronous receiver/transmitter (UART) was chosen for creating scenarios in
PSS. The reason for choosing the UART is because it is possible to create complex scenarios
by using direct memory access (DMA), as well as simpler scenarios. It was desired to test
all the levels, including IP- and sub-system level at simulation, and the whole SoC, with both
simulation and emulation. This chapter presents how this is achieved through creating a UVM
framework, a framework for running C code, creating PS code, and finally using the generated
results from the PS code in the frameworks. All code is located online in a digital appendix, see
Appendix A for information. The DUTs and compilation and simulation frameworks used in
this thesis are from existing Nordic Semiconductor material.

4.1 UART Description
The UART is used to receive (RX) and transmit (TX) a byte of information. The frame format
consists of a start bit, 8 random bits (payload), an optional parity bit, and one or two stop
bits. The LSB of the payload is received/transmitted first. This is configured in a register.
Reading and writing of the registers are done through a PAR interface, that consist of the signals:
Address, Write data, Read data, Write enable, and Read enable.

Figure 4.1 represents a waveform of the UART receiving a frame. This is done by changing
the serial input rxd from ’1’ (idle state) to ’0’, creating the start bit. The following 8 bits are
stored in a register rxData, that can be read by the external environment. A ’1’ signals the stop
bit. Data on rxData is ready when the rxDataReady signal is set, and the external environment
signals that the data is read by sending a pulse on rxDataReq.

The UART transmits data on the serial output txd, as shown in the waveform in Figure 4.2. First,
the payload needs to be written to txData. This is done by an external environment that sets the
txDataReady signal when the UART can read the payload. The UART signals that the data is
read by sending a pulse on txDataRead. After this,the UART will transmit a frame containing
the written payload.

31

Chapter 4. Portable Stimulus Verification Infrastructure

Figure 4.1: Waveform of receiving a payload to UART.

Figure 4.2: Waveform of transmitting a payload from UART.

4.2 UVM Framework
The first step is to have UVM framework in place. This is because the generated code in
SystemVerilog from PS code is UVM sequences. Thus, the other parts of a UVM framework are
essential for stimulus execution. Nordic Semiconductor does not use UVM for their verification.
Therefore, UVM frameworks had to be created from scratch, in addition to learing UVM. First,
a UVM framework was created at IP level. In addition, to test the framework, a set of simple
sequences were created.

At the sub-system level, the UVM monitor can be reused for monitoring the UART inside the
sub-system. The same transaction, sequences and sequencer were reused. However, the rest of
the UVM framework had to be created, as there are different stimulus signals driven at IP level
and sub-system level. The same sequences were used to test it.

The UVM framework at SoC level (top-level) could copy/reuse most parts of the previous UVM
frameworks. The transaction, sequences and sequencer were reused, and the environment and
agent were copied as they only had to be renamed. Most of the structure from the testbench at
sub-system level was adapted. This UVM framework was also tested with the same sequences.
In addition, the UVM monitors at IP level and sub-system level were reused for monitoring the
UART and sub-system. This demonstrated greatly the benefits of reuse in UVM, as previous
work at IP level and sub-system level verified SoC behavior.

32

4.2 UVM Framework

4.2.1 UVM at UART IP Level
A UVM testbench at UART IP level is created as seen in Figure 4.3. Simple verification has
been done, including reading and writing of registers, and simple receive and transmit. Only
valid frames with one frame format were tested, without parity and with one stop bit. The test-
bench follows the UVM structure as described in sub-section 2.1.1, starting with a top module,
top uart, where the UART is instantiated and run test is called. Also, the interfaces are instan-
tiated and connected here, and registered with the UVM factory as seen in Listing 4.1. The
structure, apart from the UVM components, comes from existing setup from Nordic Semicon-
ductor.

Figure 4.3: Block diagram of the UVM testbench for UART at IP level.

1 uvm_config_db#(virtual in_uart)::set(uvm_root::get(),"*","
uin_uart",uin_uart);

2 uvm_config_db#(virtual in_ParBus)::set(uvm_root::get(),"*","
uin_ParBus",uin_ParBus);

Listing 4.1: Registering interfaces with the UVM factory.

The first part of the UVM framework is test uart, where the top UVM environment is instan-
tiated together with different tasks, starting UVM sequences. The tasks consist of a write-read
task, triggering sequences for in ParBus, and a receive- and transmit task triggering sequences
for in uart. Listing 4.2 demonstrates how the receive sequence is triggered, but it is the same
method for all of them.

1 uart_sequence_receive uart_rec_seq;
2 uart_rec_seq = new();
3 uart_rec_seq.start(env.uart0.agent.sequencer);

Listing 4.2: Calling the receive sequence from test uart.

33

Chapter 4. Portable Stimulus Verification Infrastructure

Inside the top environment, are separate environments for UART and PAR instantiated together
with a top scoreboard. Listing 4.3 shows these instances, and how they are built in the build
phase. The UART and PAR monitors are connected to the scoreboard in the connect phase.
The UART and PAR environments builds their respective agents in a build phase with the same
method as the UVM components in the top environment.

1 uart_env uart0;
2 par_env par0;
3 top_scoreboard scoreboard;
4
5 function void build_phase(uvm_phase phase);
6 super.build_phase(phase);
7 uart0 = uart_env::type_id::create(.name("uart0"), .parent(

this));
8 par0 = par_env::type_id::create(.name("par0"), .parent(this)

);
9 scoreboard = top_scoreboard::type_id::create(.name("

scoreboard"), .parent(this));
10 endfunction
11
12 function void connect_phase(uvm_phase phase);
13 super.connect_phase(phase);
14 uart0.agent.monitor.item_collected_port.connect(scoreboard.

item_collected_export_uart);
15 par0.agent.monitor.item_collected_port.connect(scoreboard.

item_collected_export_par);
16 endfunction

Listing 4.3: Creating and connecting UART and PAR environments with scoreboard in top environment.

The UART and PAR environments use different transactions and compare functions, but both
use the same scoreboard. Usually, a monitor and a scoreboard are connected through an analysis
port. A write-function, with the sent transaction as an input, will be called in the scoreboard
when the analysis port is written. This is demonstrated in Listing 4.4. The scoreboard used
in the IP level testbench have been modified to handle two different analysis ports as seen in
Listing 4.5. The ‘uvm analysis imp decl macro creates a new uvm analysis imp and a write-
function, where they get extended names based on the input to the macro. Thus, allowing
multiple uvm analysis imp and write-functions to be declared.

1 uvm_analysis_imp#(transaction_name, scoreboard_name) item_name;
2
3 virtual function void write(transaction_name pkt);
4 compare_function(pkt);
5 endfunction

Listing 4.4: Analysis port and write-function in scoreboards.

34

4.2 UVM Framework

1 ‘uvm_analysis_imp_decl (_uart)
2 ‘uvm_analysis_imp_decl (_par)
3
4 class top_scoreboard extends uvm_scoreboard;
5 uvm_analysis_imp_uart#(uart_transaction, top_scoreboard)

item_collected_export_uart;
6 uvm_analysis_imp_par#(par_transaction, top_scoreboard)

item_collected_export_par;
7
8 virtual function void write_uart(uart_transaction pkt);
9 uart_trans(pkt);

10 endfunction
11 virtual function void write_par(par_transaction pkt);
12 par_trans(pkt);
13 endfunction

Listing 4.5: Modified analysis ports and write-functions in scoreboard for IP level testbench.

4.2.1.1 UART UVM Environment

The UART agent builds the UART sequencer, driver and monitor in the build phase as seen in
Listing 4.6. It also connects the driver and the sequencer in the connect phase. The driver and
sequencer are only built and connected if the UVM agent is active, meaning it should be used
for driving stimulus.

1 function void build_phase(uvm_phase phase);
2 super.build_phase(phase);
3 monitor = uart_monitor::type_id::create("monitor", this);
4 if(get_is_active() == UVM_ACTIVE) begin
5 driver = uart_driver::type_id::create("driver",this);
6 sequencer = uart_sequencer::type_id::create("sequencer",

this);
7 end
8 endfunction
9

10 function void connect_phase(uvm_phase phase);
11 if(get_is_active() == UVM_ACTIVE)begin
12 driver.seq_item_port.connect(sequencer.seq_item_export);
13 end
14 endfunction

Listing 4.6: UART agent creating the sequencer, driver and monitor.

A transaction is specified for the UART, shown in Listing 4.7. This consist of a random variable
payload, used for receiving and transmitting a random byte. Other variables are also created,
such as data received, and data transmitted, where each is a byte wide. It also has an enumerator
consisting of RECEIVE and TRANSMIT to separate the two modes. An enumerator for choosing
between one and two stop bits is also present, but this is constrained to one bit as the testbench

35

Chapter 4. Portable Stimulus Verification Infrastructure

is not created to support two bits. A delay variable is made so that frames are sent with different
time in between.

1 typedef enum{RECEIVE, TRANSMIT} kind_e;
2 typedef enum{TWO_STOP_BITS, ONE_STOP_BIT} stop_e;
3
4 class uart_transaction extends uvm_sequence_item;
5 // Data and control fields
6 rand bit[7:0] payload; //rxd or txData
7 rand bit start_bit;
8 rand bit[1:0] stop_bits;
9 // Receive

10 bit rxDataReady;
11 bit[7:0] rxData;
12 // Transmit
13 bit[7:0] txd;
14 bit txDataRead;
15 // Control
16 rand kind_e kind;
17 rand stop_e stop_type;
18 rand int delay;
19 int uart_id;
20 // Constraints
21 constraint c_delay { delay >= 1; delay < 20; }
22 constraint c_start_bit { start_bit == 1 b 0 ; }
23 constraint c_stop_bits { stop_bits == 2 b 1 1 ; }
24 constraint c_stop_bits_t { stop_type == ONE_STOP_BIT; }

Listing 4.7: The UART transaction.

Two sequences have been created, one for receiving and one for transmitting. Because these
sequences were going to be imported to Questa inFact, inline constraints could not be used.
This means that the transaction is requested and randomized with an input specifying a variable.
For example, ”req.randomize() with {req.kind == RECEIVE;}”. As a result, two transactions.
extending the uart transaction, were created. These two transactions include a constraint for
the kind variable, constraining it based on desired test case. Thus, the two sequences call a
different transaction. This can be seen in Listing 4.8. The body task contains a repeat to request
the transaction 5 times, to test more than one value. A sequencer is created to send transactions
to the driver. This is connected with the base transaction, uart transaction, but does also work
with all extensions of it.

36

4.2 UVM Framework

1 // Receive sequence
2 class uart_sequence_receive extends uvm_sequence#(

uart_receive_transaction);
3 ‘uvm_object_utils(uart_sequence_receive)
4 function new(string name = "uart_sequence_receive");
5 super.new(name);
6 endfunction
7
8 task body();
9 repeat(5) begin

10 uart_receive_transaction rec_req =
uart_receive_transaction::type_id::create("rec_req");

11 start_item(rec_req);
12 assert(rec_req.randomize());
13 finish_item(rec_req);
14 end
15 endtask
16 endclass
17
18 // Transmit sequence
19 class uart_sequence_transmit extends uvm_sequence#(

uart_transmit_transaction);
20 ‘uvm_object_utils(uart_sequence_transmit)
21 function new(string name = "uart_sequence_transmit");
22 super.new(name);
23 endfunction
24
25 task body();
26 repeat(5) begin
27 uart_transmit_transaction trans_req =

uart_transmit_transaction::type_id::create("trans_req"
);

28 start_item(trans_req);
29 assert(trans_req.randomize());
30 finish_item(trans_req);
31 end
32 endtask
33 endclass

Listing 4.8: Receive and transmit UART sequences.

The driver requests a transaction from a sequence in the run phase. A receive- or transmit task
is called based on the enumerator in the transaction, as seen in Listing 4.9. The in uart interface
is used to generate stimulus to the UART. The stimulus is applied to the UART as described in
sub-section 4.1. During receive, the payload is written to the RX serial input, rxd, one bit at a
time, and for TX, the payload is written to the transmit data byte input, txData.

37

Chapter 4. Portable Stimulus Verification Infrastructure

1 task run_phase(uvm_phase phase);
2 forever begin
3 seq_item_port.get_next_item(req);
4 case(req.kind)
5 RECEIVE: receive();
6 TRANSMIT: transmit();
7 endcase
8 seq_item_port.item_done();
9 end

10 endtask

Listing 4.9: Run phase of the UART driver.

The monitor monitors the in uart interface. These signals are assigned to a transaction, and then
sent to the scoreboard, as demonstrated in Listing 4.10. When receiving, the RX serial input bits
are gathered into a payload, and RX data is set from the byte output. During transmission, the
TX byte input is set as the payload, and the TX serial output bits are gathered into TX data. The
scoreboard compares the random payload with the received/transmitted data as seen in Listing
4.11.

1 //Instantiate analysis port and uart transaction
2 uvm_analysis_port#(uart_transaction) item_collected_port;
3 uart_transaction trans_collected;
4 ...
5 //Send transaction to scoreboard through analysis port
6 item_collected_port.write(trans_collected);

Listing 4.10: Sending a transaction though a analysis port in the UART monitor.

1 if(uart_pkt.kind == RECEIVE) begin
2 // Check if bit stream input equals output RX data
3 if(uart_pkt.payload == uart_pkt.rxData)
4 ‘uvm_info(get_type_name(),$sformatf("- :: RECEIVEMatch :: -

"),UVM_LOW)
5 else
6 ‘uvm_error(get_type_name(),"- ::RECEIVE MisMatch:: -")
7 end
8 else if(uart_pkt.kind == TRANSMIT) begin
9 // Check if input TX data equals bit stream output

10 if(uart_pkt.payload == uart_pkt.txd)
11 ‘uvm_info(get_type_name(),$sformatf("- :: TRANSMITMatch ::

-"),UVM_LOW)
12 else
13 ‘uvm_error(get_type_name(),"-::TRANSMIT MisMatch::-")
14 end

Listing 4.11: Comparison of expected received/transmitted data with actual received/transmitted data.

38

4.2 UVM Framework

4.2.1.2 PAR UVM Environment

The elements of the UVM environment for PAR was created with the same methods as the
UART UVM environment. Listing 4.12 shows the transaction, consisting of random variables
for address, write data, write enable and read enable. An output variable for read data is also
present. An enumerator, consisting of READ and WRITE, is used to separate reading and writ-
ing. Constraints are added for stopping read enable and write enable from being set at the same
time.

1 typedef enum{READ, WRITE} inst_t;
2
3 class par_transaction extends uvm_sequence_item;
4 rand inst_t inst;
5 rand bit[31:0] parDo;
6 rand bit[11:0] parAddr;
7 rand bit[3:0] parWe;
8 rand bit parRe;
9 bit[31:0] parDi;

10 // Constraints
11 constraint C_read { inst==READ -> parRe; inst==READ -> parWe

==4’h0; };
12 constraint C_write { inst==WRITE -> parWe==4’hF; inst==WRITE

-> parRe=1’b0; };

Listing 4.12: The PAR transaction.

There are two different sequences, one read, and one write sequence. The read sequence con-
strains the enumerator to READ and has an address input for constraining the address to a
specific value. The same applies to the write sequence, but with WRITE instead, in addition to
a data input constraining data to be written. Listing 4.13 shows a sequence calling the write
sequence, followed by the read sequence, together with the inputs. This is the sequence used
by the test program. The address and data inputs are added in order to write and read specific
registers.

1 class par_sequence_write_read extends uvm_sequence#(
par_transaction);

2 ‘uvm_object_utils(par_sequence_write_read)
3 rand bit[11:0] addr;
4 rand bit[31:0] data;
5
6 function new(stringname = "",bit[11:0] addr = 0 ,bit[31:0]

data = 0);
7 super.new(name);
8 this.addr = addr;
9 this.data = data;

10 endfunction
11
12 par_sequence_write write_seq;

39

Chapter 4. Portable Stimulus Verification Infrastructure

13 par_sequence_read read_seq;
14 task body();
15 ‘uvm_do_with(write_seq, {write_seq.addr==addr;write_seq.data

==data;})
16 ‘uvm_do_with(read_seq, {read_seq.addr==addr;})
17 endtask
18 endclass

Listing 4.13: First write then read PAR sequence.

The driver requests a transaction in the run phase, likewise in the UART driver. The in ParBus
interface is set according to the values in the transaction. During a read operation, the address
is set together with the read enable signal. When writing, the address is set, and data is written
together with write enable.

The interface is monitored by the monitor, where values from in ParBus are collected into a PAR
transaction and sent to the scoreboard. During a read, the read data is stored in the transaction
together with the address, and during a write, the written data is stored in the transaction with
the address. The scoreboard stores the written value in an array corresponding to the address
and compares this value with the read value. This is demonstrated in listing 4.14.

1 if(par_pkt.inst == WRITE)
2 sc_mem[par_pkt.parAddr] = par_pkt.parDo;
3 else if(par_pkt.inst == READ) begin
4 if(sc_mem[par_pkt.parAddr] == par_pkt.parDi)
5 ‘uvm_info(get_type_name(),$sformatf("- :: READ DATAMatch ::

-"),UVM_LOW)
6 else
7 ‘uvm_error(get_type_name(),"- :: READ DATA MisMatch:: -")
8 end

Listing 4.14: Comparison of written of read value with the PAR transaction.

4.2.2 UVM at UART Sub-System Level
The UVM testbench for the UART at sub-system level can be seen in Figure 4.4. The sub-
system is called PeripheralSubSystem and gathers all the peripheral IPs, connecting them
together and allowing them to be used by an external environment. The UART is located inside
a smaller sub-system, SerIOBox. The same structure of the UVM testbench, like at the IP
level, has been used as well as the same simple receive and transmit sequences. The UART
monitor from the IP level testbench is reused for monitoring the UART. The structure, apart
from the UVM components, comes from existing setup from Nordic Semiconductor.

40

4.2 UVM Framework

Figure 4.4: Block diagram of the UVM testbench for UART at sub-system level.

The top module, top PeripheralSubSystem, instantiates the PeripheralSubSystem
together with an instance mimicking the RAM, and calls run test. Inside test PeripheralSub-
System, is the top environment instantiated, and registers are written before sequences for
the interface in PeripheralSub-System are called. The RAM model, and tasks for writing
registers, are previously created by Nordic Semiconductor. The PeripheralSubSystem
environment and the UART environment are created inside the top environment together with
the scoreboard, like the top environment at IP level. The UART agent only builds the monitor
by using uvm config db to set the UART environment as passive, i.e. not generating stimulus,
as seen in listing 4.15.

1 uart0=uart_env::type_id::create(.name("uart0"), .parent(this));
2 uvm_config_db#(int)::set(this, "uart0", "is_active", 0);

Listing 4.15: Creating UART environment and setting it passive.

A new scoreboard has been created that collects transactions from the two monitors. The com-
pare function for the UART monitor is the same as used at the IP level scoreboard. The compare
function for the PeripheralSubSystem is a copy of the UART compare function. The rea-
son for having two separate compare functions, that are equal, is because it is easier to debug
when one can see which monitor that fails. Two different analysis ports and write-functions are
achieved in the same way as with the scoreboard at the IP level testbench.

The sub-system contains four different UARTs. Therefore, the testbench has been extended to
cover testing for all of them through the same UVM testbench. This involved adding a variable
for the number of UARTs to be tested. The variable is instantiated in the environment, and
can be configured in the top module through uvm config db, as shown in Listing 4.16. Inside
the environment, this variable is used to create multiple PeripheralSubSystem agents. In
addition, to keep track of which UART is being verified, an identifier variable was created inside

41

Chapter 4. Portable Stimulus Verification Infrastructure

the driver and monitor. This is demonstrated in Listing 4.17, where each agent is given the same
name, with a number suffix, and the identifier variable inside the monitor, and driver, is set to
this number. The in PeripheralSubSystem interface was extended with separate signals for each
UART. Thus, only one interface is needed.

1 parameter NUM_SERIOBOX = 4;
2 uvm_config_db#(int)::set(null,"*",$sformatf("num_serIOBox"),

NUM_SERIOBOX);

Listing 4.16: Setting the number of UARTs/SerIOBoxes.

1 PeripheralSubSystem_agent agent[];
2 function void build_phase(uvm_phase phase);
3 ...
4 agent = new[num_serIOBox];
5 for(int i = 0; i < num_serIOBox; i++) begin
6 $sformat(inst_name, "agent[%0d]", i);
7 agent[i] = PeripheralSubSystem_agent::type_id::create(

inst_name, this);
8 void‘(uvm_config_db#(int)::set(this,{inst_name,".monitor"},

"PeripheralSS_id", i));
9 void‘(uvm_config_db#(int)::set(this,{inst_name,".driver"},

"PeripheralSS_id", i));
10 end
11 endfunction

Listing 4.17: Creating multiple PeripheralSubSystem agents.

As a result, a test, where two PeripheralSubSystem drivers are active at the same time
during a receive, was added. However, in theory, it is possible to test all the UARTs at the
same time. To achieve a more complex test, this test was created to receive exactly at the
same time and with synchronous baud rate clocks (internal clock used when sampling received
bits). This way, both UARTs write to the RAM simultaneously. Thus, it is possible to extend
the testbench to cover different RAM priorities. However, the testbench only test with default
priority setting, the lower the UART number, the higher the priority. As a result, the new test
required a new sequence, where the delay is fixed. The new sequence was created likewise the
two other sequences, in addition to a new transaction where kind is constrained to RECEIVE
and delay to 1.

These two variables also had to be created in the UART UVM framework, which required mod-
ifications of the IP level testbench. The number of UARTs are set in the IP top environment
equal to the number in PeripheralSubSystems top environment, and the agents are cre-
ated with the same method. Inside the top module, the UART interface had to be replicated equal
to the number of UARTs, where the signals in each interface are assigned to the correct UART.
This is done through a generate loop as shown in listing 4.18. Also, all the interfaces had to be
registered with the UVM factory, where the method by adding a number suffix to the name was
followed. Inside the monitor, each UART is monitored using the interface with the correspond-
ing number suffix. All the created monitors could use the same port to the scoreboard. Thus,
the same compare method could be used for all of them.

42

4.2 UVM Framework

1 generate
2 for(genvar i = 0; i < NUM_SERIOBOX; i++) begin
3 // Uart interface
4 in_uart uin_uart();
5
6 assign uin_uart.rxd = u_PeripheralSubSystem.la_SerIOBox[i].

u_SerIOBox.u_Uart.rxd;
7
8 initial begin
9 uvm_config_db#(virtualin_uart)::set(uvm_root::get(),"*",

$sformatf("uin_uart%0d",i), uin_uart);
10 end
11 end
12 endgenerate

Listing 4.18: Creating multiple UART interfaces. (Only one assignment of many are shown)

Before the sequencer is started, the DMA size and address registers are set for both RX and TX.
Then, the UART is enabled, before either starting RX and the receive sequence, or starting TX
and the transmit sequence. This will enable the UART to receive bits or start transmission of
RAM content through DMA.

4.2.2.1 PeripheralSubSystem UVM Environment

The PeripheralSubSystem agent, built inside the environment, builds the UART se-
quencer, PeripheralSubSystem driver and monitor. Thus, the UVM environment is
created to support the same transaction and sequences as the UART environment. This is done
in the same manner as with the UART agent.

Upon a sequence request in the driver, are either a receive- or transmit task called, in the same
way as for the UART driver. The receive task controls a smaller pad bus interface, located inside
in PeripheralSubSystem, mimicking GPIO connections. The pad bus is signalled according to
the payload and according to which UART is being tested. The transmit task only writes the
payload to the RAM. When all calls to the transmit sequences are done, will the content of the
RAM be transmitted by starting transmission.

RX is monitored through the written data on the pad bus. After a frame has been sent, data
on the bus going to the RAM, written through DMA, are monitored. The data written to RAM
is stored as RX data inside the transaction, while the pad bus values are stored as the payload.
Then is the transaction sent to the scoreboard in the same way as at IP level. For TX, the pad
bus is monitored, and its values are stored as the TX data. The value read through DMA, on the
RAM bus, is monitored and set as payload. This is then sent to the scoreboard.

43

Chapter 4. Portable Stimulus Verification Infrastructure

4.2.3 UVM at UART SoC Level
Figure 4.5 demonstrates the UVM testbench at SoC-level. It should be noted that the
PeripheralSubSystem lies several layers down in the hierarchy than what is shown in
the figure. This testbench used a previously created framework by Nordic Semiconductor to
create the DUT and the environment around it. This includes instantiating the SoC, and a
helper-framework around this with access to different interfaces and different tasks to interact
with the SoC. The UVM framework replaces the test program, while the rest is made up of the
previously existing framework. The same method with configurable number of UARTs, as in
the sub-system level, was followed. The monitors from IP and sub-system level were reused
for monitoring UART and sub-system behavior.

Figure 4.5: Block diagram of the UVM testbench for UART at SoC level.

Inside the top module top uartTop, the SoC is instantiated together with a top-level interface.
The same method for multiple UART interfaces in the sub-system testbench is followed. The
PeripheralSubSystem interface is also instantiated here. run test is called from this
module. test uartTop instantiates the top environment, and calls a receive- and transmit task,
in addition to the task with two UARTs receiving simultaneous. Inside the top environment,
the UART PeripheralSubSystem and the SoC environment are created. The UART and
PeripheralSubSystem environments only consists of a monitor, while the SoC environ-
ment does not have a monitor. The top scoreboard is reused from sub-system level.

Each task in test uartTop begins with configuring the SerIOBox/UART through writing of
registers. This involves configuring which GPIOs to be used and enabling the UARTwith DMA.
This is followed by calling a task for RX or TX depending on what to test. These tasks are
created in the same way as at sub-system level.The testbench runs the receive- and transmit task
for all the different UARTs. This is achieved through an input parameter to change between
them. A separate receive task where two UARTs are driven at the same time is then called.

44

4.3 C Code Framework

4.2.3.1 UART top UVM Environment

The SoC UVM environment for the UART consists of a UVM agent that contains a driver and
the UART sequencer. Thus, there is no monitor. This is reasoned as the goal is to verify the
UART, which is being achieved through the UART and PeripheralSubSystem monitors.

This UVM environment is also built around the UART transaction. The driver works in the same
way as in the sub-system level, but instead of using a pad bus mimicking the GPIOs, the actual
GPIOs are used. Separate GPIOs are set for each of the UARTs, and the identifier variable
selects which GPIO to be toggled. For the transmission, the actual RAM in the SoC is written
with the payload.

4.3 C Code Framework

The C code generated from inFact only generates the stimulus (what is being tested), but not
how to test it on the SoC. Therefore, a C code framework, where the stimulus is applied to the
SoC, is necessary. A method for connecting generating C code, and the framework, is to have
the generated code call a function in the framework with the stimulus as inputs. This is similar
to a UVM sequence being sent to a driver, where the driver handles the received transaction.
Thus, the C code framework needs a function where it either calls a receive- or transmit function
based on the kind enumeration, just as in the UVM driver.

The C code is run in a co-simulation environment by loading the FW into a SystemVerilog
testbench. This means that the C code is run on the CPU with an RTL description of the SoC.
The created C code consists of equivalent receive- and transmit tests as the UVM testbenches.
Keil, a software development environment made for arm processors, is used for compiling the
C code. This is because it generates a .axf.vhx.32 file, which will be used in the testbench.

All scenarios testing the UART in the UVM testbenches do not entirely make sense in C code.
This is because one has greater control over the hardware with RTL simulation, as well as
writing hardware specific tests. For example, one can drive simulation by monitoring edges
of relevant signals, such as clocks. While with software, this is not the case. Software relies
on using the CPU or GPIO pins to communicate with the SoC and does not have any internal
access.

The way transmission is tested in the SoC UVM testbench is equivalent to how one would do it
in C code, as the RAM is written by the CPU, and transmission is self-driven after being stated.
This is not the case with the receiving test. First, the receive test does not make sense in C code.
Who writes a software program triggering GPIO pins to receive information from itself, instead
of just using the CPU to write it? In the UVM testbench, the test relies on applying a new bit at
each clock tick. This is not easily done in C code. The receiving should be done by transmission
from another SoC. However, the intention of this thesis is to do a proof of concept. Thus, the C
code is created to imitate the UVM testbench at SoC as much as possible. This way, the exact
same PS code in inFact could be used.

45

Chapter 4. Portable Stimulus Verification Infrastructure

4.3.1 UART C Code
The C code framework consists of a main-function as seen in Listing 4.19. The UART is here
configured in two initialize functions, UartRxInit() and UartTxInit(). All functions are included
from the uart RxTx.h header file. Next, a timer is initialized. The timer is used to notify the
FW at each clock tick in order to know when to apply a new bit when receiving. This is a
workaround for the unusual coding styles to receive from itself. After initialization, the is
UART enabled and RX is started. Now, the UART can receive information, and the RAM will
be written before transmission. This will be performed through a call to the inFact code. Last,
the transmission will begin, and when finished, the UART will be disabled, and the test is done.
The while-loop is added to prevent the FW from restarting when finished, as otherwise happens
when run in the SystemVerilog testbench.

1 int main(void){
2 //Initialize UART and TIMER
3 UartRxInit();
4 UartTxInit();
5 TimerInit();
6
7 //Enable UART and start RX
8 StartRx();
9

10 //Start Tx and disable UART when finished
11 SendTx();
12
13 //Forever loop to prevent C code from restarting in TB
14 while(true){}
15 }

Listing 4.19: main-function of the C code framework.

Listing 4.20 demonstrates the implementation of the UART initialize-functions. UartRxInit()
configures GPIO pins, GPIO RXD and GPIO CTS, as well as RAM location and size of receive
buffer. The GPIO number for these macros are defined in the header file. An additional GPIO
pin is configured. This will be used by the FW when applying bits to be received. The receive
pin used by the UART is assigned to this pin in the SystemVerilog testbench. The reason for this
is that the pin used for receiving by the UART, cannot be configured to be directly set by the
FW. This is because the FW relies on CPU writes to toggle the GPIO pins.

1 void UartRxInit(void){
2 //Pin select
3 NRF_UARTE0->PSEL.RXD = (GPIO_RXD << UARTE_PSEL_RXD_PIN_Pos) |

(UARTE_PSEL_RXD_CONNECT_Connected <<
UARTE_PSEL_RXD_CONNECT_Pos);

4 NRF_UARTE0->PSEL.CTS = (GPIO_CTS << UARTE_PSEL_CTS_PIN_Pos) |
(UARTE_PSEL_CTS_CONNECT_Connected <<
UARTE_PSEL_CTS_CONNECT_Pos);

5

46

4.3 C Code Framework

6 //Set DMA pointer and buffer size
7 NRF_UARTE0->RXD.PTR = (0x20038000 << UARTE_RXD_PTR_PTR_Pos);
8 NRF_UARTE0->RXD.MAXCNT= (0xF << UARTE_RXD_MAXCNT_MAXCNT_Pos);
9

10 //Set up GPIO for setting RX
11 NRF_GPIO->PIN_CNF[GPIO_RX] = (GPIO_PIN_CNF_DIR_Output <<

GPIO_PIN_CNF_DIR_Pos) | (GPIO_PIN_CNF_INPUT_Connect <<
GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_PULL_Disabled <<
GPIO_PIN_CNF_PULL_Pos) | (GPIO_PIN_CNF_DRIVE_S0S1 <<
GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_SENSE_Disabled <<
GPIO_PIN_CNF_SENSE_Pos);

12 NRF_GPIO->OUT = (0x1 << GPIO_RX);
13 }
14
15 void UartTxInit(void){
16 //Pin select
17 NRF_UARTE0->PSEL.TXD = (GPIO_TXD << UARTE_PSEL_TXD_PIN_Pos) |

(UARTE_PSEL_TXD_CONNECT_Connected <<
UARTE_PSEL_TXD_CONNECT_Pos);

18 NRF_UARTE0->PSEL.RTS = (GPIO_RTS << UARTE_PSEL_RTS_PIN_Pos) |
(UARTE_PSEL_RTS_CONNECT_Connected <<
UARTE_PSEL_RTS_CONNECT_Pos);

19
20 //Set DMA pointer and buffer size
21 NRF_UARTE0->TXD.PTR = (0x20038100 << UARTE_RXD_PTR_PTR_Pos);
22 NRF_UARTE0->TXD.MAXCNT= (0xA << UARTE_RXD_MAXCNT_MAXCNT_Pos);
23
24 //Set up ENDTX event to trigger GPIO through PPI
25 NRF_UARTE0->PUBLISH_ENDTX = (UARTE_PUBLISH_ENDTX_EN_Enabled

<< UARTE_PUBLISH_ENDTX_EN_Pos) | (0x1 <<
UARTE_PUBLISH_ENDTX_CHIDX_Pos);

26 NRF_GPIO->PIN_CNF[GPIO_ENDTX] = (GPIO_PIN_CNF_DIR_Output <<
GPIO_PIN_CNF_DIR_Pos) | (GPIO_PIN_CNF_INPUT_Connect <<
GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_PULL_Disabled <<
GPIO_PIN_CNF_PULL_Pos) | (GPIO_PIN_CNF_DRIVE_S0S1 <<
GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_SENSE_Disabled <<
GPIO_PIN_CNF_SENSE_Pos);

27 NRF_GPIOTE->CONFIG[1] = (GPIOTE_CONFIG_OUTINIT_Low <<
GPIOTE_CONFIG_OUTINIT_Pos) | (
GPIOTE_CONFIG_POLARITY_LoToHi <<
GPIOTE_CONFIG_POLARITY_Pos) | (GPIO_ENDTX <<
GPIOTE_CONFIG_PSEL_Pos) | (GPIOTE_CONFIG_MODE_Task <<
GPIOTE_CONFIG_MODE_Pos);

28 NRF_GPIOTE->SUBSCRIBE_OUT[1] = (
GPIOTE_SUBSCRIBE_OUT_EN_Enabled <<
GPIOTE_SUBSCRIBE_OUT_EN_Pos) | (0x1 <<
GPIOTE_SUBSCRIBE_OUT_CHIDX_Pos);

47

Chapter 4. Portable Stimulus Verification Infrastructure

29 NRF_DPPIC->CHENSET = (DPPIC_CHENSET_CH1_Set <<
DPPIC_CHENSET_CH1_Pos);

30 }

Listing 4.20: RX and TX initialize functions.

UartTxInit() configures GPIO pins, GPIO TXD and GPIO RTS, as well as RAM location and
size of transmit buffer. Here is also an additional GPIO pin configured. This is connected
through a Programmable Peripheral Interface (PPI) channel. A PPI allows peripherals to com-
municate without the CPU. The ENDTX event, generated when the TX buffer has been trans-
mitted, is sent to a task on the GPIO, which will trigger the configured GPIO. This is achieved
by publishing the ENDTX event and having the GPIO tasks and events controller (GPIOTE)
subscribe to this. They are configured to use PPI channel one and GPIOTE channel one, that
will trigger GPIO GPIO ENDTX.

In TimerInit, the timer is configured with a 4 us clock, which has the same rate as the clock used
by the UART, and it is configured to generate an event after one clock tick. This can be seen
in Listing 4.21. This is also achieved through the PPI. When the TIMER has counted to one,
a compare event (CC) will publish on PPI channel zero, which the GPIOTE is subscribing to.
Then will GPIO TM be set. This is followed by starting the timer.

1 void TimerInit(void){
2 //Configure and setup TIMER0 to generate event each 4us (brg

clock-rate)
3 NRF_TIMER0->PRESCALER=(0x6 << TIMER_PRESCALER_PRESCALER_Pos);
4 NRF_TIMER0->CC[0] = 0x1;
5 NRF_TIMER0->PUBLISH_COMPARE[0] = (

TIMER_PUBLISH_COMPARE_EN_Enabled <<
TIMER_PUBLISH_COMPARE_EN_Pos) | (0x0 <<
TIMER_PUBLISH_COMPARE_CHIDX_Pos);

6 NRF_GPIO->PIN_CNF[GPIO_TIM] = (GPIO_PIN_CNF_DIR_Output <<
GPIO_PIN_CNF_DIR_Pos) | (GPIO_PIN_CNF_INPUT_Connect <<
GPIO_PIN_CNF_INPUT_Pos) | (GPIO_PIN_CNF_PULL_Disabled <<
GPIO_PIN_CNF_PULL_Pos) | (GPIO_PIN_CNF_DRIVE_S0S1 <<
GPIO_PIN_CNF_DRIVE_Pos) | (GPIO_PIN_CNF_SENSE_Disabled <<
GPIO_PIN_CNF_SENSE_Pos);

7 NRF_GPIOTE->CONFIG[0] = (GPIOTE_CONFIG_OUTINIT_Low <<
GPIOTE_CONFIG_OUTINIT_Pos) | (
GPIOTE_CONFIG_POLARITY_LoToHi <<
GPIOTE_CONFIG_POLARITY_Pos) | (GPIO_TIM <<
GPIOTE_CONFIG_PSEL_Pos) | (GPIOTE_CONFIG_MODE_Task <<
GPIOTE_CONFIG_MODE_Pos);

8 NRF_GPIOTE->SUBSCRIBE_OUT[0] = (
GPIOTE_SUBSCRIBE_OUT_EN_Enabled <<
GPIOTE_SUBSCRIBE_OUT_EN_Pos) | (0x0 <<
GPIOTE_SUBSCRIBE_OUT_CHIDX_Pos);

9 NRF_DPPIC->CHENSET = (DPPIC_CHENSET_CH0_Set <<
DPPIC_CHENSET_CH0_Pos);

48

4.3 C Code Framework

10 NRF_TIMER0->TASKS_START = 0x1;
11 }

Listing 4.21: Initialize timer to generate event each clock tick.

Listing 4.22 demonstrates the functions used for the RX part. StartRx() enables the UART, and
start the RX. Restarting of the timer is done in waitForTimer(). Here, the FW waits for the timer
GPIO to be set, and when this happens, the timer and the GPIO will be cleared. This function
is utilized in the receive function SetRx(). Receiving is performed by waiting for the timer and
then apply information, first the start bit, then the payload and last the stop bit. Equivalent as in
the SoC UVM testbench.

1 void StartRx(void){
2 //Enable UARTE0 with DMA
3 NRF_UARTE0->ENABLE = (UARTE_ENABLE_ENABLE_Enabled <<

UARTE_ENABLE_ENABLE_Pos);
4
5 //Start RX
6 NRF_UARTE0->TASKS_STARTRX = 0x1;
7 }
8
9 void waitForTimer(void){

10 while(NRF_GPIO->PIN[GPIO_TIM].IN == 0x0){}
11 NRF_TIMER0->TASKS_CLEAR = 0x1;
12 NRF_GPIOTE->TASKS_CLR[0] = 0x1;
13 }
14
15 void SetRx(uint32_t payload, uint32_t delay){
16 char RxBit;
17 waitForTimer();
18
19 //Start bit
20 waitForTimer();
21 NRF_GPIO->OUT = (0x0 << GPIO_RX);
22
23 //Payload
24 for(uint32_t i = 0; i < 8; i++){
25 waitForTimer();
26 RxBit = (payload >> i);
27 NRF_GPIO->OUT = (RxBit << GPIO_RX);
28 }
29
30 //Stop bit
31 waitForTimer();
32 NRF_GPIO->OUT = (0x1 << GPIO_RX);
33
34 //Delay

49

Chapter 4. Portable Stimulus Verification Infrastructure

35 for(uint32_t j = 0; j < delay; j++){
36 waitForTimer();
37 }
38 }

Listing 4.22: Functions for RX.

Transmission is carried out by writing a payload to the RAM location specified in the initialize
function, as shown in function SendTx() in Listing 4.23. After each write, an offset variable
is incremented, so that the next write will happen at the next RAM location. SendTx() starts
transmission of the written RAM content, and wait for it to finish before disabling the UART.

1 void WriteTx(uint32_t payload){
2 //Write to RAM
3 *(volatile int *) (0x20038100 + offset) = payload;
4
5 offset++;
6 }
7
8 void SendTx(void){
9 //Start TX

10 NRF_UARTE0->TASKS_STARTTX = 0x1;
11
12 //Wait for completion
13 while(NRF_GPIO->PIN[GPIO_ENDTX].IN == 0x0){}
14
15 //Disable UART
16 NRF_UARTE0->ENABLE = (UARTE_ENABLE_ENABLE_Disabled <<

UARTE_ENABLE_ENABLE_Pos);
17 }

Listing 4.23: Function for TX.

The do RxTx function is what the generated C code from inFact will call. Here, either the
receive- or transmit function will be called, based on the kind enumerator. Just as in the UVM
testbenches.

1 void do_RxTx(uint32_t payload, enum kind_e kind, uint32_t delay
){

2 if(kind == RECEIVE){
3 SetRx(payload, delay);
4 }
5 else if(kind == TRANSMIT){
6 WriteTx(payload);
7 }
8 }

Listing 4.24: Function called in PSS generated C code.

50

4.3 C Code Framework

4.3.2 Testbench Calling FW

The SystemVerilog testbench created to run the FW can be seen in Listing 4.25. The first lines
assign the FW-controlled GPIO to the GPIO used for receiving. This testbench consists of one
task, which loads the FW, resets the device to load it into the CPU model, and waits for it to
finish.

1 //GPIO used by RXD in UART, assigned to GPIO in FW applying
receive information

2 initial begin
3 uin_DevA.GPIO[0].ctrl.en_control = 1’b1;
4 end
5 assign uin_Tb.uin_DevA.GPIO[0].ctrl.in = uin_Tb.uin_DevA.GPIO

[5].ctrl.out;
6
7 task ta_TransferRxTxDataWithDma();
8 // Load firmware
9 uin_DevA.uin_Tasks.APPMCU.uin_AppFlashMem_Tasks.ta_LoadROM(.

filename(fwuart));
10
11 // Reset device to load FW
12 #10ns;
13 begin
14 -> uin_DevA.uin_Ctrl.reset;
15 #0;
16 wait(uin_DevA.uin_Ctrl.resetDone);
17 end
18
19 fork : la_Timeout
20 begin
21 wait(‘DevA.‘AppPer_SS.la_SerIOBox[0].u_SerIOBox.u_Uart.

uartEnable);
22 wait(!(‘DevA.‘AppPer_SS.la_SerIOBox[0].u_SerIOBox.u_Uart.

uartEnable));
23 end
24 begin
25 #3000us;
26 $error("Test timed out");
27 end
28 join_any
29 disable la_Timeout;
30 endtask

Listing 4.25: SystemVerilog testbench starting the FW.

51

Chapter 4. Portable Stimulus Verification Infrastructure

4.4 Portable Stimulus Code
The rule language in inFact, which will be referred to as PS code, is not familiar from before.
The first task was to get familiar with the tool. This was done by reading and understanding
the inFact documentation. Also, a workshop with Mentor on behalf of Nordic Semiconductor
was conducted. The workshop consisted of a presentation and explanation of inFact, as well as
learning the tool from three labs/tasks. Afterwards, the PS code could be created.

inFact supports importing of a testbench, so that the content in the rules file will be automatically
created. The rules file content is created through existing transactions (uvm sequence item)
and sequences. Since the UVM frameworks were tested with sequences already made, these
sequences could be used. These were imported through the inFact IDE.

A part of this thesis is to get an idea on how much effort it requires to create a PS code. There-
fore, a PS code was created from scratch. It was created as a single sequence, mixing receiving
and transmission. This resulted in a modification to the UVM testbench. Afterwards, the im-
ported sequences were tested with the UVM testbenches. Then followed by testing the code
generated from the PS code written from scratch with the sub-system and SoC UVM test-
benches, and with the C code.

4.4.1 Using Testbench Import
A new workspace in inFact was created and opened in the IDE. In the IDE the testbench is im-
ported through a work-directory (compiled testbench), followed by picking the package where
the transaction and sequences are included. The transaction to be imported should then be de-
fined. An inFact UVM sequence will be created from this by specifying a base sequence. These
steps were followed for all the three different transactions and sequences. As a result, three test
components were made with a separate rules file and inFact sequence.

4.4.1.1 Generated Rules file

The rule segment created from the UART transaction is presented in Listing 4.26, and is used
as a base by all of the sequences. Here, the rand logic/int variables have been translated into
meta action. The constraints are the same.

1 rule_segment{
2 import"paTest_uart.rseg";
3 struct uart_transaction {
4 meta_action payload[unsigned 7:0];
5 meta_action start_bit[unsigned 0:0];
6 meta_action stop_bits[unsigned 1:0];
7 meta_action kind<paTest_uart::kind_e>[kind_e];
8 meta_action stop_type<paTest_uart::stop_e>[stop_e];
9 meta_action delay[signed 31:0];

10
11 constraint c_delay {delay < 20; delay >= 1;};
12 constraint c_start_bit {start_bit == 1’b0;};
13 constraint c_stop_bits {stop_bits == 2’h3;};

52

4.4 Portable Stimulus Code

14 constraint c_stop_bits_t {stop_type == ONE_STOP_BIT;};
15 }
16 }

Listing 4.26: Rule segement created from the UART transaction.

A second rule segment, extending the base rule segment of the UART transaction, is created
based on the receive transaction. This involves adding a constraint specifying it to receive,
just as in the receive transaction. Listing 4.27 demonstrates this. The generated rule segment
from the imported receive, with fixed delay transaction, are identical, but with an added con-
straint, setting delay equal one. For the imported transmit transaction, this constraint is set to
TRANSMIT.

1 rule_segment{
2 import"uart_transaction.rseg";
3 struct uart_receive_transaction extends uart_transaction{
4 constraint c_receive {kind == RECEIVE;};
5 }
6 }

Listing 4.27: Rule segement created from the UART receive transaction.

The generated sequence, based on the imported transaction- and receive sequence, will be used
by the UVM frameworks. The sequence is called infact uart receive transaction gen. This se-
quence overrides the body-function of the imported receive sequence. A set of tasks are created,
containing behavior for assigning variables, starting and ending a transaction and checking cov-
erage. For example, each of the meta action variables are set through an action task as seen in
Listing 4.28. This input value is set by inFact during simulation.

1 virtual task action_uart_receive_transaction_inst__delay(
longint meta_val);

2 m_uart_receive_transaction_inst.delay = meta_val;
3 endtask

Listing 4.28: inFact receive sequence created from the UART receive sequence.

The complete rule graph is shown in Listing 4.29. Here, the receive rule segment is imported
and declared, together with using attributes to override inFact sequence variables. The at-
tributes are set to default. The actions init and infact checkcov are declared and called in the
rule sequence. They are default actions generated by inFact. The inFact receive sequence that
is instantiated and connected through an interface, before being called in the rule sequence.

53

Chapter 4. Portable Stimulus Verification Infrastructure

1 rule_graph infact_uart_receive_transaction_gen {
2 attributes infact_uart_receive_transaction_gen {
3 call_pre_post_randomize =true;
4 unroll_array_max = 256;
5 unroll_dynamic_arrays =false;
6 }
7 import "uart_receive_transaction.rseg";
8 attributes infact_uart_receive_transaction_gen {
9 base_class="paTest_uart::uart_sequence_receive";

10 }
11 interface do_item(uart_receive_transaction);
12 uart_receive_transaction uart_receive_transaction_inst;
13 action init;
14 action infact_checkcov;
15 infact_uart_receive_transaction_gen =
16 init
17 repeat{
18 do_item(uart_receive_transaction_inst)
19 infact_checkcov
20 };
21 }

Listing 4.29: rule graph created from the UART receive sequence.

4.4.1.2 Generated Graph

From the rule graph for the receive sequence, the graph is generated as seen in Figure 4.6. The
graph looks the same for the other sequences. Here, the receive transaction is represented, where
each meta action has become a node. First, the init is traversed, followed by the transaction,
though the do item() call. This involves randomizing values for all the meta actions. After, the
coverage goal is checked, and if the goal is not met will the transaction be traversed again.

54

4.4 Portable Stimulus Code

Figure 4.6: Graph generated from receive sequence.

55

Chapter 4. Portable Stimulus Verification Infrastructure

4.4.1.3 Defining Coverage Strategy

The coverage strategy is the same for all the three sequences. Of all the meta action variables,
only the payload is of interest regarding coverage. The others are constrained to a certain value,
while the value of delay is not important as it is not UART specific. Thus, there is no necessity
to create a path coverage (cross coverage).

An action coverage is specified for the payload through the IDE. This is done by opening a
coverage strategy window of the graph, and right-clicking on the payload node and selecting
action coverage. This automatically creates a bin for each possible value, which is 256. It
is not necessary to simulate all possible values, so a bins for the payload is specified in the
rule segment for each of the test components.

The payload bins is defined to contain the three lowest and highest values possible, in addition
to splitting the values in between into four bins. This is done by adding the bins statement ”bins
payload [0] [1] [2] [3..252]/4 [253] [254] [255]”. Thus, a total of ten bins will be created that
can be seen in the graph for the payload node in Figure 4.6. The simulation will be terminated
after each bin is hit once, i.e. calling the sequence ten times. The bin is defined this way because
it covers corner cases, the lowest and highest values, in addition to ”normal” values.

4.4.2 Creating from Scratch

Listing 4.30 shows the contents of a rule graph that is automatically generated when creating
a new test component. The names are based on the name given to the test component, which is
here ”infac RxTx seq”. This means that the only part that needs to be filled out is the content
of the struct. This involves adding meta actions, constraints and bins. It should be noted that
inFact only generates sequences, so a transaction and sequencer need to be created in the UVM
framework.

1 rule_graph infact_RxTx_seq {
2 action init, infact_checkcov;
3
4 struct infact_RxTx_seq_item_c {
5 // TODO: Declare meta-actions
6 }
7
8 infact_RxTx_seq_item_c infact_RxTx_seq_item_c_inst;
9

10 interface do_item(infact_RxTx_seq_item_c);
11
12 infact_RxTx_seq = init repeat{
13 do_item(infact_RxTx_seq_item_c_inst)
14 infact_checkcov
15 };
16 }

Listing 4.30: rule graph automatically generated when creating a new test component.

56

4.4 Portable Stimulus Code

Because a transaction is already specified, the relevant fields can be copied manually. The rand
variables becomes meta actions and the constraints can be copied. The variables used for
storing outputs are ignored as inFact only cares about generating (input) stimulus. The result
can be seen in Listing 4.31. The struct is renamed to the same name as the transaction used in
the UVM testbenches and can be used directly in them. However, from experimenting, it does
not seem like this rename is necessary. The kind variable is not constrained, as this sequence
should be a mix of receive and transmit. For some reason, the enumerators cannot be directly
specified in the struct, as this is not compatible with the existing testbenches. Therefore, set
is used to determine the enumerators. The generated code contains the same functions as the
generated code from the imported sequences.

1 rule_graph infact_RxTx_seq {
2 action init, infact_checkcov;
3
4 set stop_e[signed enum TWO_STOP_BITS, ONE_STOP_BIT];
5 set kind_e[signed enum RECEIVE, TRANSMIT];
6 struct uart_transaction {
7 meta_action payload [unsigned 7:0];
8 meta_action start_bit [unsigned 0:0];
9 meta_action stop_bits [unsigned 1:0];

10 meta_action delay [signed 31:0];
11 meta_action kind <kind_e>[kind_e];
12 meta_action stop_type <stop_e>[stop_e];
13
14 constraint c_delay{delay < 20; delay >= 1;}
15 constraint c_start_bit{start_bit == 1’b0;}
16 constraint c_stop_bit{stop_bits == 2’h3;}
17 constraint c_stop_bits_t{stop_type == ONE_STOP_BIT;}
18
19 bins payload [0] [1] [2] [3..252]/4 [253] [254] [255];
20 }
21
22 uart_transaction uart_transaction_inst;
23 interface do_item(uart_transaction);
24
25 infact_RxTx_seq = init repeat {
26 do_item(uart_transaction_inst)
27 infact_checkcov
28 };
29 }

Listing 4.31: rule segment created based on the transaction used in the UVM frameworks.

57

Chapter 4. Portable Stimulus Verification Infrastructure

4.4.2.1 Modifying to C Code

The same rules file can be used for the C code, but not the same test component. A new test
component of the type ”SDV OVM/UVM Sequence” is created, where SDV stands for Software
Driven Verification. This test component is intended for simultaneous verification of hardware
and software in embedded software applications. However, it can also be used to create regular
C code without using the hardware part.

The rules file from Listing 4.31 is copied to this test component. However, the start bit- and
stop bit meta actions, as well as the stop bit enumerator, are removed. This is because they
are specified to a specific value in inFact and might as well be hard-coded in the C code. As
a result, the code is less cluttered. An action and attributes are specified in the rule graph
as seen in Listing 4.32. This is required by inFact in order to communicate with the C code
framework. The action creates a new node in the graph, which generates a function call. Inside
this function, the do RxTx() function is called, as specified by the attributes. The function is
called with input values set by inFact. An attributes is specified for the rule graph, which
states to include the header file, where do RxTx() is declared. The generated code contains the
same set of functions for setting values and checking coverage as the UVM generated code, in
addition to create and run functions.

1 struct uart_transaction {
2 ...
3 action do_RxTx;
4 attributes do_RxTx {
5 sw_action_stmt = "do_RxTx(fields->

infact_uart_RxTx_item_c_inst.payload, fields->
infact_uart_RxTx_item_c_inst.kind, fields->
infact_uart_RxTx_item_c_inst.delay);";

6 }
7 }
8
9 attributes infact_uart_RxTx{

10 include += "#include \"uart_RxTx.h\"";
11 }

Listing 4.32: Modifications to rules file when used for C code.

4.4.2.2 Generated Graph

The generated graph, by the PS code for UVM, is equal to the graph generated from the im-
ported sequences. However, the graph generated by the PS code for the C code, is different as
some meta actions are removed, and an action is added. This is demonstrated in Figure 4.7.
After init will the strcut be traversed, where values for the meta actions will be set followed
by a call to the do RxTx action, which will call the function with the selected meta actions
values.

58

4.4 Portable Stimulus Code

Figure 4.7: Graph generated from C code rule graph.

4.4.2.3 Creating a Coverage Strategy

The bin for the payload is reused from the imported test components. However, this time, cross
coverage is of more interest. This is because we want the payload values to be matched with
both RECEIVE and TRANSMIT. This is done by specifying a coverage strategy and selecting
cross coverage from the payload node, and setting the kind node as stop node. Because only
these two values are of interest, the other nodes in between are set as ”don’t care”. Thus,
excluded. This is done for both test components, and the graph for the C code test component,
containing the cross coverage, can be seen in Figure 4.8. As a result, the graph will be traversed
20 times, 10 times for each kind.

59

Chapter 4. Portable Stimulus Verification Infrastructure

Figure 4.8: Graph generated from C code rule graph.

4.5 UVM Simulation with Generated Code
There are two methods for using a inFact sequence in a simulation. One method is to
instantiate and call it directly in a testbench. Another method is to override an existing
sequence with the inFact sequence by adding this line to a compilation/simulation file:
+uvm set type override=original sequence name, infact sequence name. Also, the compo-
nent files, including the sequence, needs to be included in a package, and the path to the compo-
nent files should be specified in the compilation file through +incdir+path to test component.
The inFact project consists of a .ini-file, that is used to specify settings for inFact to use during
the simulation session. This file needs to be passed to inFact at runtime via the simulator,
which is done by adding +infact=path to ini file to the simulation file. The component files
are included in the UART package as seen in Listing 4.33. Their paths are specified in the
compilation file. The .ini-file is added in the simulation file.

60

4.5 UVM Simulation with Generated Code

1 //Added to package
2 ‘include "infact_uart_receive_transaction_gen.svh"
3 ‘include "infact_uart_transmit_transaction_gen.svh"
4 ‘include "infact_uart_receive_delay_transaction_gen.svh"
5
6 //Added to compialtion file
7 +incdir+${VC_WORKSPACE}/ip/Uart/uvm/infact_uart/uart_infact/

infact_uart_receive_transaction_gen
8 +incdir+${VC_WORKSPACE}/ip/Uart/uvm/infact_uart/uart_infact/

infact_uart_transmit_transaction_gen
9 +incdir+${VC_WORKSPACE}/ip/Uart/uvm/infact_uart/uart_infact/

infact_uart_receive_delay_transaction_gen
10
11 //Added to simulation file
12 +infact=${VC_WORKSPACE}/ip/Uart/uvm/infact_uart/uart_infact/

uart_infact.ini

Listing 4.33: Modifications for inFact in UVM testbench, and compilation and simulation files

4.5.1 UVM testbench Modifications
The UVM testbenches are expanded to run three different sets of sequences, ”normal” se-
quences, the imported sequences from inFact, and the inFact sequence created from scratch.
The selection is based on defines, where default is the normal sequences, INFACT IMPORT for
the inFact imported sequences, and INFACT RXTX for the inFact sequence from scratch. The
first two use the same sequence names and the same tasks, only which sequence is different.
The last use a separate sequence definition and name, and calls a separate task. Listing 4.34
demonstrates this for the sub-system, but the same method is used in all three testbenches. The
IP level testbench does not call the inFact sequence from scratch. A RUN ALL script is modified
to run all three scenarios by adding the defines.

1 ‘ifdef INFACT_IMPORT
2 infact_uart_receive_transaction_gen PeripheralSS_rec_seq;
3 infact_uart_transmit_transaction_gen PeripheralSS_trans_seq;
4 infact_uart_receive_delay_transaction_gen

PeripheralSS_rec_delay_seq0;
5 infact_uart_receive_delay_transaction_gen

PeripheralSS_rec_delay_seq1;
6 ‘else
7 uart_sequence_receive PeripheralSS_rec_seq;
8 uart_sequence_transmit PeripheralSS_trans_seq;
9 uart_sequence_receive_fixed_delay PeripheralSS_rec_delay_seq0

;
10 uart_sequence_receive_fixed_delay PeripheralSS_rec_delay_seq1

;
11 ‘endif
12 // Mixed Rx and Tx sequence

61

Chapter 4. Portable Stimulus Verification Infrastructure

13 infact_RxTx_seq PeripheralSubSystem_RxTx_seq;
14
15 task run_phase(uvm_phase phase);
16 ...
17 ‘ifdef INFACT_RXTX
18 ta_ReceiveAndTransmit();
19 ‘else
20 ta_Receive();
21 #10us;
22 ta_Transmit();
23 #10us;
24 ta_ReceiveDmaPriority();
25 ‘endif

Listing 4.34: Modification done to sub-system UVM testbench to switch between sequences.
(Equvivalent modifications is done to the other two testbenches)

4.5.2 Simulation Results
During a simulation, a coverage report is printed by inFact each time a sequence is called,
stating the number of times being called out of total goal. An example is shown in Listing 4.35.
This also states which sequence is being called, and through which sequencer. All the three
testbenches were completed with success with all the different defines. And of course, all the
coverage bins are hit with the inFact simulation, and only once.

1 --
2 - infact_uart_transmit_transaction_gen_cov Coverage Report: "

uvm_test_top.env.uart0.agent.sequencer._item."
3 --
4 Path Coverage uvm_test_top.env.uart0.agent.sequencer._item.

cov_payload_trans: 1/10 paths covered

Listing 4.35: Goal status printed by inFact during simualtion.

4.6 C Simulation with Generated Code
The inFact generated C code can be integrated in two ways, either as a dynamic test or as a
static test. In a dynamic test the inFact sequence communicates with software running on the
processor via shared memory, to execute software functions during simulation. In a static test,
a static code has specified the order the processor executes the software functions during simu-
lation. The latter is desired for this C code, as it is not wanted to use inFact during simulation.
The static test contains selected values for the meta actions, meaning the C code framework,
together with the inFact code, can be compiled together, and simulated without using inFact.
Static testing is fairly new, so it is not yet supported by the inFact IDE. Therefore, the static
C code is generated through a bash command, in this case ”infact cmd sdv static gen -data
workspace -max iterations 30 \infact uart RxTx/infact uart RxTx.tmd”. This specifies a static
test to be generated for the infact uart RxTx test component, with a maximum iteration of 30,

62

4.6 C Simulation with Generated Code

which means stop at 30 iterations, or when coverage goal is met. The static code contains
functions for selecting values and sending them to the other C generated code. Only the inFact
sequence created from scratch is tested with C code.

4.6.1 C Code Modifications
The inFact generated C code from the rule graph, and the static C code, can be integrated to
the C code framework by including their header files. Next, they can be linked in the main
function as seen in Listing 4.36. An inFact test-engine manager is instantiated and created, and
the inFact sequence is instantiated and created with the test-engine manger. This way the static
C code will provide meta action values to the inFact sequence. The generated C code is run by
adding ”infact uart RxTx run(seq)” between starting RX and starting TX functions. Also, the
inFact SDV library are linked in the compile statement.

1 //Instantiate test engine manager and inFact sequence
2 infact_sdv_te_mgr te_mgr;
3 infact_uart_RxTx_t *seq;
4
5 //Create test engine manager with static C code
6 infact_uart_RxTx_static_init(&te_mgr);
7 //Create inFact C code sequence
8 seq = infact_uart_RxTx_create(&te_mgr, "seq");
9

10 ...
11
12 //Run inFact sequence
13 infact_uart_RxTx_run(seq);

Listing 4.36: Modification to C code ti run inFact sequence.

4.6.2 Simulation Results
The compiled .axf.vhx.32 file is loaded as the FW in the SystemVerilog testbench. The simu-
lation completes without errors. The behavior is not monitored by the testbench, nor the FW
in any way, but the waveform is examined, and shows correct behavior. Usually when writing
C code, it is not normal to add any monitor functions. In addition, this is to check if stimu-
lus is portable, and not to check correctness of SoC. Thus, it was reasoned to not include any
monitoring.

63

Chapter 4. Portable Stimulus Verification Infrastructure

64

CHAPTER 5

Discussion

5.1 Portable Stimulus
Portable Stimulus brings a new way of thinking, with a new high-level representation of a sys-
tem, expressed with a new language, thus, leading to a change in verification. PSS describe
the system in an abstract way with a high-level language. This might be unfamiliar to a veri-
fication engineer working with hardware, as they usually work at a low-level. With PSS, they
must alter their way of thinking. Change is not always easy, thus getting used to PSS can be
challenging. On the other hand, architects and software engineers are more used to working on
a higher level of abstraction, so they will more easily adjust to PSS. Nevertheless, PSS might be
more beneficial for hardware engineers as this is where most of the verification is done, as they
deal with a lot of different levels. Also, the language is recognizable for them as it reminds of
SystemVerilog.

One of the main ideas of PS is to move the verification from thinking of how to test it, to what to
test. This involves specifying what stimulus should be tested and how they relate to each other.
As a result, the engineers are forced to think about which values and combinations should be
tested. It is possible to forget test scenarios when the focus lies on how to do it. For example,
when writing a test verifying an operation, a corner case may be forgotten. Or, when using
random generation, maybe not all ranges get tested. Regardless, this might only concern a few
cases as it is also important today to check that everything is tested. However, another benefit is
that it is easier to get an overview of what is tested because it is all in one place. As a result, it
is easier to see what is missing, and check that everything is covered. Shifting of this focus will
require changes in verification, which might take time and become difficult in the beginning.
Nevertheless, the end-result will provide these benefits, which can be in favour of PS.

There does not exist any other standardized method for making stimulus portable between plat-
forms, mainly from SystemVerilog to C code in this thesis. However, the usability of this is
doubtful. The verification target is different, as SystemVerilog simulation is probes based look-
ing for specific signal behavior, while C code looks at black boxed functional checks using
instructions. On the other hand, they have similarities as well, because both at SoC want to

65

Chapter 5. Discussion

verify that everything has been integrated the correct way. For example, the transmission is
equivalent in the SoC UVM testbench and the C code. The RAM is written, and transmission is
started. Nevertheless, the scenarios for the UART were created with regard to a IP point of view.
The first part was to make sure the received bits and the receive buffer is equivalent, and that the
transmit buffer and the transmitted bits are equivalent. Then, focus was shifted to comparing
these bits with RAM values for the sub-system and SoC. This shifts the view from looking at
one block to multiple blocks communicating correctly. How this is achieved in SystemVerilog
and in software is different because of change in focus between specific signals and instruc-
tions. This creates a gap in which scenarios can be applied. Regardless, there are scenarios that
is relevant for both targets. Selecting the correct scenarios on the different abstraction levels are
the key to creating test intent for both worlds.

An example where the portability between UVM and software verification is restricted is the
receive-test. It is desired to verify that the SoC can function correctly, both in UVM and soft-
ware. However, in software, it is strange to program a device to receive using pin loop back.
In the real world information received would come from an external device. Thus, this should
have been the intended test stimulus and test harness. At the SoC level in RTL, it makes sense
to test receiving without an external device because the testbench harness provide necessary
external hook up or behavioral model when applying the receive information. Therefore, the
same scenario as at IP and sub-system level also applies here. Regardless, the workaround used
in this thesis to get the software to receive by a pin loop back does fulfill the receive verifica-
tion. It achieves the desired goal and proves the point of portable stimulus, even though it is in
a strange way, but as the saying goes, ”if it looks stupid, but works, it ain’t stupid”.

5.2 Portable Stimulus and inFact
The name ”Portable Stimulus” states that the stimulus is portable. It does not state ”Portable
Tests”, that test cases should be portable. In that sense, inFact does what it promises. The stim-
ulus is reused at the different abstraction levels, IP, sub-system and SoC with UVM testbenches,
as well as with C code. The portability requires little effort, as the same PS code can be used
between the UVM testbenches, while the PS code for the C code requires small adjustments.
Even though only the inFact PS code, that were written from scratch, was used between two
different platforms, the imported code could just as well have been adjusted for C code. How-
ever, this was not necessary as the point was a proof of concept. Portability between different
abstraction layers as well as different platforms were proven by working examples.

It is difficult to say which of the three available tools supports most of the PS standard. However,
based on reading their descriptions, they support various parts, but it looks like inFact supports
the most. In addition, inFact has been around the longest. Nevertheless, at this stage, PS from
inFact can to some extent be seen as an extended sequence generator. In a sense, what it does
is to select values for a list of specified variables and send it to a testbench. On the other hand,
the documentation on PSS states that it creates UVM sequences, like inFact does now. PS does
create UVM sequences, but then again, it is not difficult to create a sequence manually, and then
reuse it on different abstraction levels. This thesis demonstrates this.

66

5.3 Usability of inFact

The benefit of PSS from inFact is a bit questionable, ”why bother when it can more easily be
done manually?”. However, there are some counter arguments. inFact is created for efficient
verification. Even though the efficiency gained from porting the stimulus, rather than doing it
manually, is limited, the value selection for the stimulus is beneficial. Especially the simulation
time can be more efficient than ”normal” random verification. inFact provides coverage driven
stimulus. This means that every coverage bin, unless otherwise specified, will be hit once,
i.e. you can be sure everything is tested, and time is not spent covering it multiple times.
Comparing this with a huge test, where either a lot of iteration is performed, or passive coverage
driven stimulus is used (waiting for all bins to be randomly hit), inFact is a lot more efficient. In
addition, you can easily make sure this is the case on all the abstraction levels with its portability.
The generated stimulus will cover all the verification goals. As a result, inFact can be considered
a method for efficient verification, which is one of the main goals of PSS. This also helps
bug detection when everything is exercised. As mentioned, writing a UVM sequence is easy.
However, writing a UVM sequence with coverage goals is more difficult. Based on this, the
PS code from inFact provides verification value. Another benefit is that the coverage driven
verification by specifying bins and action and path coverage applies the new thinking in PSS of
what to test.

5.3 Usability of inFact
Writing rules files in inFact is fairly easy. Most of the rules files are automatically generated.
What is left is to know which inputs the DUT has, and create them as meta actions. Then, they
can be constrained to dismiss illegal values or select specific values. After this, it is ready to go,
and integrating the test component is simple. It is also easy to reuse a rules file between different
test components, only small adjustments are necessary. Also, as mentioned in the Theory and
Background chapter, PSS and SystemVerilog have a lot of reuse possibilities. This is greatly
supported by inFact and its import tool. Only a transaction is required, importing a sequence is
optional. The transaction has to be written anyway, as this have to be registered with the rest of
the testbench. Thus, it requires almost no effort to import the transaction and create sequences
from it. This supports the argument that it is worth the trouble to use inFact to create UVM
sequences.

The C code on the other hand was a bit difficult. A reason for this is that inFact does not include
a functionality to directly generate ”clean” C code. There are multiple options to create C code,
either through a SystemC test component or an SDV UVM sequence test component. The first
was tried out, but the generated code are in C++ and classes are a huge part of it. Therefore,
a copy of the C code was created in C++. However, it was impossible to use as the Keil Arm
compiler did not support pthreads. This is required as the generated code are SystemC code
that must be adopted into C++ code. Also, it was not easy to understand how this would be
connected to the C++ code. It seems like a component need to be instantiated and invoke a
fill function which returns all the meta actions, which then must be distributed to the correct
corresponding values in the C++ code. Therefore, the SystemC solution was discarded, and the
SDV solution preferred.

67

Chapter 5. Discussion

The SDV test component is not perfect. For this use case, the dynamic test was not used as this
required inFact to be run during simulation, in addition to having no need for a shared memory.
On the other hand. the static test works well in the C code. The test component produced C
code, including the static test, which could be used without inFact during simulation. Only an
SDV library was required from inFact when compiling. In addition, the method by having the
generated code call a function in the C code is better than the SystemC solution as it is simpler
and does not clutter up the code. All the information on how to integrate the generated code
is documented. Nevertheless, it is a bit scattered and could have been better explained as it is
not easy to understand each step when doing it the first time. It would have been nice to have
a more thorough explanation on how to do it, but also why the steps are necessary. With that
being said, after having done this one time, it will be no problem to do it again.

Creating and using an action to call the C code was easy. There were some problems in un-
derstanding how this worked in the beginning, but it was not difficult to expand the rules file
using such. However, there were some trouble with using attributes. It worked when using it
to specify the C function the action should point to, but using to add a include statement with
the header file containing the implementation did not work. Having tried different methods, but
the +include inside the attribute for the rule graph would not work. Even though it was done
exactly as the documentation specifies. However, the reason might have been that the header
file was not located inside the test component workspace, but I do not see how this should be
necessary as it is about adding a line of information. Regardless, this was no big deal as the
include statement was easy to add manually. Of course, this disappeared when regenerating the
test component, but it required little effort to put it back.

5.4 Future of inFact
inFact focuses only on inputs, while the PSS specification cares about both. For example, the
PSS specification states to specify flow objects, which are inputs and outputs to actions. This
demonstrates how infact is only a subset of PSS. If the outputs were to be specified too, the
potential for generated code will grow. When both inputs and outputs are specified, there is
nothing that separates the transaction in UVM and the struct in inFact. As a result, both the
transactions and sequences can be generated. Also, the sequencer might as well be generated.
The sequencer usually has a basic structure containing a constructor. Nevertheless, if someone
needs a more complex sequencer it could either be by more configuration in inFact, or it can be
extended with complex behavior in the UVM testbench.

As mentioned, inFact is limited when it comes to the PSS description. Regardless, inFact is a
large contributor to the upcoming PSS, and may in the future support everything. The largest
difference lies in not specifying the entire system. When analyzing the PSS description, it seems
like the idea is to specify how each block communicates. Especially resources and pools are a
large contributor to this, as well as specifying inputs and outputs in flow objects. Compared to
this, the current PSS version in inFact is effortless to use. But then again, the generated code
from inFact is limited. With the complete PSS, it would be expected that the generated code is
greater. Maybe, not only is the stimulus generated, but also how to apply it in some way. If PSS
becomes better, the productivity and quality will increase. This is in the form of more through
explanation on what to test and getting better generated code, but also through faster simulation.

68

5.5 The Proof of Concept

Nordic Semiconductor should adopt UVM to utilize inFact. PSS is established with regards to
UVM, which has become a industry standard. As inFact begins to support more and more of
PSS, the development towards UVM will increase and will have the highest yield. An alterna-
tive would be to move the input stimulus to classes in order to benefit from inFact. However,
this would only allow for coverage driven simulation, and not the same level of benefit from
reuse.

5.5 The Proof of Concept
The thesis goal was making a proof of concept to see what is possible with PSS. However,
the tests created are not advanced. No more than the basic operations of the UART is tested,
even though more functionality is supported. For example, all the frame formats as well as
error frames could have been tested. Regardless, this would have taken a lot more time. Also,
the goal was to use PSS at all different stages, therefore a more complex verification scenarios
for completeness were sacrificed. However, a benefit from having created a more complex
test intent would be that it will more extensively showcase what inFact can do. The graph for
example is directed, while more complex structures are possible such as branches.

The PAR environment at IP level is unnecessary. It is never used any other place, and not used
with inFact. The other levels use a different task for IO access, which uses the existing Nordic
Semiconductor framework utilities. However, the reason for having the PAR environment was
that it was a part of learning UVM. Also, there is no reason to remove it when it is already there.

69

Chapter 5. Discussion

70

CHAPTER 6

Conclusion

Portable Stimulus has a lot of potential, describe test intent once, and reuse this within multi-
ple abstraction levels and platforms, thus increase both quality and productivity in verification
efforts. However, the question is how much of a complete test will PSS generate. It is called
Portable Stimulus, which might suggest only the stimulus is generated. Nevertheless, based on
the PSS specification, presentations and interviews by the working group, it sounds like PSS
also should generate how to apply it to some degree. This can be argued based on the possibility
to describe the entire system. When the PSS specification is completed and fully supported by
tools, we will know for sure.

Not everything of PSS is supported by inFact during this thesis, only a subset. This involves
stimulus that is portable. Applying the generated stimulus needs to be done manually. The
coverage driven model is a huge asset to employ PSS by making the verification engineer think
about what to test. This is already a part of verification today, but with PSS it will have a
larger role. In inFact one thinks about what to test when writing coverage bins and specifying
action and path coverage. As a result, it might become easier to get an overview of what is
verified and what is missing when making sure everything is covered. Also, the simulation time
will decrease with inFact’s choice of stimulus values, as nothing gets verified more than once,
making the verification more efficient.

The created UVM and C code frameworks are proven to work with inFact’s PSS. Based on a
single specification, the same stimulus is applied to three different abstraction layers, IP-, sub-
system and SoC-level, as well as between different platforms with the UVM simulation and the
C code. It is not difficult to write the rules files, as they are mostly automatically generated, and
the information needed already lies in the transaction. The import functionality is an asset, as
you can create the complete rules file automatically though a transaction that must be created
anyway. However, the C code generation is a bit tricky, but after having learned how to do it, it
will not be a problem.

71

Chapter 6. Conclusion

Based on the results, it can be said that PSS is heading in the right direction, but it still has a long
way to go. A goal with PSS is to increase productivity and quality of verification, which inFact
does achieve. This is achieved through lowering the simulation time and having to describe
what we want to test. If Nordic Semiconductor wants to utilize the benefits from inFact and
PSS, they should adopt UVM. UVM is the standard methodology adopted within industry, in
addition to PSS creating UVM. However, there are methods for generating stimulus for regular
classes as well, but then they must alter their verification to get stimulus from classes.

6.1 Future Work
When the PSS specification is complete and inFact supports everything, a new proof of concept
should be conducted. The frameworks are in place, making it easier to examine and analyze
the benefits of PSS. However, they may have to be altered and become more complex, but this
thesis provides a starting point.

72

Bibliography

[1] Universal verification methodology (uvm) working group. http://accellera.
org/activities/working-groups/uvm/.

[2] UVM Working Group. Universal Verification Methodology (UVM) 1.2 Class Refer-
ence. Accellera, June 2014. http://accellera.org/images/downloads/
standards/uvm/UVM_Class_Reference_Manual_1.2.pdf.

[3] UVM Working Group. Universal Verification Methodology (UVM) 1.2 Users Guide. Ac-
cellera, October 2015. http://www.accellera.org/images//downloads/
standards/uvm/uvm_users_guide_1.2.pdf.

[4] Defining the verification environment. https://colorlesscube.com/uvm-
guide-for-beginners/chapter-2-defining-the-verification-
environment/. Accessed: 11.03.18.

[5] Accellera PSWG. Pss dvcon us tutorial. In DVCon US, 2017.

[6] Matthew Ballance. Automating test from ip to soc levels with portable stimu-
lus. http://www.techdesignforums.com/practice/technique/
automating-test-from-ip-to-soc-levels-with-portable-
stimulus/. Accessed: 22.01.18.

[7] Gabe Moretti. Portable stimulus: The making of a standard. Accellera,
2017. http://www.accellera.org/resources/articles/portable-
stimulus-the-making-of-a-standard.

[8] Gabe Moretti. Developing the portable stimulus standard. Chip Design,
2017. http://eecatalog.com/chipdesign/2017/10/17/developing-
the-portable-stimulus-standard/.

[9] Automating tests with portable stimulus from ip to soc level. https://www.mentor.
com/products/fv/resources/overview/automating-tests-with-
portable-stimulus-from-ip-to-soc-level-79635dab-61df-47c3-
99fd-0411e11c934b. Accessed: 29.01.18.

73

http://accellera.org/activities/working-groups/uvm/
http://accellera.org/activities/working-groups/uvm/
http://accellera.org/images/downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf
http://accellera.org/images/downloads/standards/uvm/UVM_Class_Reference_Manual_1.2.pdf
http://www.accellera.org/images//downloads/standards/uvm/uvm_users_guide_1.2.pdf
http://www.accellera.org/images//downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://colorlesscube.com/uvm-guide-for-beginners/chapter-2-defining-the-verification-environment/
https://colorlesscube.com/uvm-guide-for-beginners/chapter-2-defining-the-verification-environment/
https://colorlesscube.com/uvm-guide-for-beginners/chapter-2-defining-the-verification-environment/
http://www.techdesignforums.com/practice/technique/automating-test-from-ip-to-soc-levels-with-portable-stimulus/
http://www.techdesignforums.com/practice/technique/automating-test-from-ip-to-soc-levels-with-portable-stimulus/
http://www.techdesignforums.com/practice/technique/automating-test-from-ip-to-soc-levels-with-portable-stimulus/
http://www.accellera.org/resources/articles/portable-stimulus-the-making-of-a-standard
http://www.accellera.org/resources/articles/portable-stimulus-the-making-of-a-standard
http://eecatalog.com/chipdesign/2017/10/17/developing-the-portable-stimulus-standard/
http://eecatalog.com/chipdesign/2017/10/17/developing-the-portable-stimulus-standard/
https://www.mentor.com/products/fv/resources/overview/automating-tests-with-portable-stimulus-from-ip-to-soc-level-79635dab-61df-47c3-99fd-0411e11c934b
https://www.mentor.com/products/fv/resources/overview/automating-tests-with-portable-stimulus-from-ip-to-soc-level-79635dab-61df-47c3-99fd-0411e11c934b
https://www.mentor.com/products/fv/resources/overview/automating-tests-with-portable-stimulus-from-ip-to-soc-level-79635dab-61df-47c3-99fd-0411e11c934b
https://www.mentor.com/products/fv/resources/overview/automating-tests-with-portable-stimulus-from-ip-to-soc-level-79635dab-61df-47c3-99fd-0411e11c934b

[10] Portable stimulus. http://www.techdesignforums.com/practice/
guides/portable-stimulus/. Accessed: 22.01.18.

[11] Portable stimulus specification working group. http://accellera.org/
activities/working-groups/portable-stimulus.

[12] Press releases. http://accellera.org/news/press-releases/244-
accellera-portable-stimulus-early-adopter-specification-
now-available-for-public-review.

[13] Matthew Ballance. Making Legacy Portable with the Portable Stimulus Specification.
Mentor Graphics Corp., 2017.

[14] Brian Bailey. Portable stimulus status report. SEMICONDUCTOR ENGINEERING, 2017.
https://semiengineering.com/portable-stimulus-status/.

[15] Portable Stimulus Specification Working Group. PSS Early Adopter (EA) Portable Test
and Stimulus Standard. Accellera, July 2017. http://www.accellera.org/
images/downloads/drafts-review/PSS_Early_Adopter_Release.
pdf.

[16] Portable Stimulus Specification Working Group. PSS Early Adopter II (PSS
EA II) Portable Test and Stimulus Standard. Accellera, February 2018.
http://www.accellera.org/images/downloads/drafts-review/
PSS_EAII_Feb_28_2018_Public_Review.pdf.

[17] Boosting test creation productivity with portable stimulus. https://www.mentor.
com/products/fv/resources/overview/boosting-test-creation-
productivity-with-portable-stimulus-2305bbf4-81cb-493f-
95ba-93a2726e26fa.

[18] Mentor verification is first to deliver portable stimulus technology across the full enterprise
verification platform. https://www.mentor.com/company/news/siemens-
mentor-verification-first-to-deliver-portable-stimulus-
tech-across-full-enterprise-verification-platform.

[19] Questa infact, intelligent testbench automation. https://www.mentor.com/
products/fv/infact/.

[20] Breker verification systems to demonstrate implementation compliant with accellera
portable stimulus draft standard during dac. http://www.marketwired.com/
press-release/breker-verification-systems-demonstrate-
implementation-compliant-with-accellera-portable-2222164.
htm.

[21] Perspec system verifier is #1 in portable stimulus in 2017 user survey. https://
community.cadence.com/cadence_blogs_8/b/sd/posts/perspec-
system-verifier-is-1-in-portable-stimulus-in-2017-user-
survey?utm_source=feedburner&utm_medium=feed&utm_campaign=
Feed%3A+cadence%2Fcommunity%2Fblogs%2Fsd+%28Cadence+System+
Design+and+Verification+Blogs%29. Accessed: 04.02.18.

74

http://www.techdesignforums.com/practice/guides/portable-stimulus/
http://www.techdesignforums.com/practice/guides/portable-stimulus/
http://accellera.org/activities/working-groups/portable-stimulus
http://accellera.org/activities/working-groups/portable-stimulus
http://accellera.org/news/press-releases/244-accellera-portable-stimulus-early-adopter-specification-now-available-for-public-review
http://accellera.org/news/press-releases/244-accellera-portable-stimulus-early-adopter-specification-now-available-for-public-review
http://accellera.org/news/press-releases/244-accellera-portable-stimulus-early-adopter-specification-now-available-for-public-review
https://semiengineering.com/portable-stimulus-status/
http://www.accellera.org/images/downloads/drafts-review/PSS_Early_Adopter_Release.pdf
http://www.accellera.org/images/downloads/drafts-review/PSS_Early_Adopter_Release.pdf
http://www.accellera.org/images/downloads/drafts-review/PSS_Early_Adopter_Release.pdf
http://www.accellera.org/images/downloads/drafts-review/PSS_EAII_Feb_28_2018_Public_Review.pdf
http://www.accellera.org/images/downloads/drafts-review/PSS_EAII_Feb_28_2018_Public_Review.pdf
https://www.mentor.com/products/fv/resources/overview/boosting-test-creation-productivity-with-portable-stimulus-2305bbf4-81cb-493f-95ba-93a2726e26fa
https://www.mentor.com/products/fv/resources/overview/boosting-test-creation-productivity-with-portable-stimulus-2305bbf4-81cb-493f-95ba-93a2726e26fa
https://www.mentor.com/products/fv/resources/overview/boosting-test-creation-productivity-with-portable-stimulus-2305bbf4-81cb-493f-95ba-93a2726e26fa
https://www.mentor.com/products/fv/resources/overview/boosting-test-creation-productivity-with-portable-stimulus-2305bbf4-81cb-493f-95ba-93a2726e26fa
https://www.mentor.com/company/news/siemens-mentor-verification-first-to-deliver-portable-stimulus-tech-across-full-enterprise-verification-platform
https://www.mentor.com/company/news/siemens-mentor-verification-first-to-deliver-portable-stimulus-tech-across-full-enterprise-verification-platform
https://www.mentor.com/company/news/siemens-mentor-verification-first-to-deliver-portable-stimulus-tech-across-full-enterprise-verification-platform
https://www.mentor.com/products/fv/infact/
https://www.mentor.com/products/fv/infact/
http://www.marketwired.com/press-release/breker-verification-systems-demonstrate-implementation-compliant-with-accellera-portable-2222164.htm
http://www.marketwired.com/press-release/breker-verification-systems-demonstrate-implementation-compliant-with-accellera-portable-2222164.htm
http://www.marketwired.com/press-release/breker-verification-systems-demonstrate-implementation-compliant-with-accellera-portable-2222164.htm
http://www.marketwired.com/press-release/breker-verification-systems-demonstrate-implementation-compliant-with-accellera-portable-2222164.htm
https://community.cadence.com/cadence_blogs_8/b/sd/posts/perspec-system-verifier-is-1-in-portable-stimulus-in-2017-user-survey?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+cadence%2Fcommunity%2Fblogs%2Fsd+%28Cadence+System+Design+and+Verification+Blogs%29
https://community.cadence.com/cadence_blogs_8/b/sd/posts/perspec-system-verifier-is-1-in-portable-stimulus-in-2017-user-survey?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+cadence%2Fcommunity%2Fblogs%2Fsd+%28Cadence+System+Design+and+Verification+Blogs%29
https://community.cadence.com/cadence_blogs_8/b/sd/posts/perspec-system-verifier-is-1-in-portable-stimulus-in-2017-user-survey?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+cadence%2Fcommunity%2Fblogs%2Fsd+%28Cadence+System+Design+and+Verification+Blogs%29
https://community.cadence.com/cadence_blogs_8/b/sd/posts/perspec-system-verifier-is-1-in-portable-stimulus-in-2017-user-survey?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+cadence%2Fcommunity%2Fblogs%2Fsd+%28Cadence+System+Design+and+Verification+Blogs%29
https://community.cadence.com/cadence_blogs_8/b/sd/posts/perspec-system-verifier-is-1-in-portable-stimulus-in-2017-user-survey?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+cadence%2Fcommunity%2Fblogs%2Fsd+%28Cadence+System+Design+and+Verification+Blogs%29
https://community.cadence.com/cadence_blogs_8/b/sd/posts/perspec-system-verifier-is-1-in-portable-stimulus-in-2017-user-survey?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+cadence%2Fcommunity%2Fblogs%2Fsd+%28Cadence+System+Design+and+Verification+Blogs%29

[22] Mentor Graphics Corporation. Questa inFact User’s Manual, 10.7a edition, 2013-2018.

[23] Mentor Graphics Corp. Portable Stimulus Specification and inFact, Presentation. Staffan
Berg, 2018.

[24] Mentor Graphics Corp. Questa inFact Fundamentals, Presentation. Staffan Berg, 2018.

[25] Mentor Graphics Corporation. Questa inFact Reference Manual, 10.7a edition, 2018.

75

76

APPENDIX A

Source Files

The Appendix is online and can be located here: https://github.com/kariannekk/
Portable-Stimulus

The folders in this appendix include the following content:
• UVM Uart - All the testbench files for the IP level UVM testbench

• UVM PeripheralSS - All the testbench files for the sub-system level UVM testbench

• UVM UartTop - All the testbench files for the SoC level UVM testbench

• FW Uart - The C code and SystemVerilog testbench running it

• Infact code - The rules files for all 5 test components

77

https://github.com/kariannekk/Portable-Stimulus
https://github.com/kariannekk/Portable-Stimulus

	Abstract
	Sammendrag
	Acknowledgements
	Abbreviations
	Introduction
	Problem Description
	Layout of the report

	Theory and Background
	Universal Verification Methodology (UVM)
	UVM Testbench

	What is Portable Stimulus, and Why?
	Verification on Different Platforms
	What One Wants to Test
	UVM vs. Portable Stimulus

	Portable Stimulus Specification Working Group
	Portable Stimulus Specification
	Fundamentals
	Language

	Portable Test and Stimulus Standard
	Execution Semantic Concepts
	Components
	Actions
	Activities
	Flow Objects
	Resource Objects
	Pools
	Randomization Specification Constructs
	Coverage Specification Constructs
	Type Extension
	Packages
	Test Realization
	Hardware/Software Interface
	A Simple PSS Example

	Reuse Opportunities
	Translating Existing Declarative Descriptions
	Existing Test Realization Code
	Existing Modeling Code

	PSS Tools

	Portable Stimulus Tool Questa inFact
	Choosing a PSS Tool
	Introduction to Questa inFact
	Rules File and Graph
	Action Functions
	Coverage Strategy
	Test Components
	Integration Process

	Defining a Rules File
	Example: Defining Rules

	Viewing the Graph
	Specifying Coverage
	Simulation of inFact
	inFact versus PSS Specification

	Portable Stimulus Verification Infrastructure
	UART Description
	UVM Framework
	UVM at UART IP Level
	UART UVM Environment
	PAR UVM Environment

	UVM at UART Sub-System Level
	PeripheralSubSystem UVM Environment

	UVM at UART SoC Level
	UART top UVM Environment

	C Code Framework
	UART C Code
	Testbench Calling FW

	Portable Stimulus Code
	Using Testbench Import
	Generated Rules file
	Generated Graph
	Defining Coverage Strategy

	Creating from Scratch
	Modifying to C Code
	Generated Graph
	Creating a Coverage Strategy

	UVM Simulation with Generated Code
	UVM testbench Modifications
	Simulation Results

	C Simulation with Generated Code
	C Code Modifications
	Simulation Results

	Discussion
	Portable Stimulus
	Portable Stimulus and inFact
	Usability of inFact
	Future of inFact
	The Proof of Concept

	Conclusion
	Future Work

	Bibliography
	Source Files

