
[SmallSat] Onboard Data Processing
Pipeline and Software/Hardware
Implementation of Extended
Multiplicative Signal Correction

Espen Moen

Master of Science in Electronics

Supervisor: Kjetil Svarstad, IES
Co-supervisor: Milica Orlandic, IES

Department of Electronic Systems

Submission date: June 2018

Norwegian University of Science and Technology

1 Abstract

This thesis concerns the data processing pipeline from an CMV2000v3 Image
Sensor to memory in a Hyper-spectral imaging Application. A Low Voltage Dif-
ferential Signal (LVDS) Receiver was implemented, consisting of a Deserializer
Module and a Pixel Order Alignment Module to receive and organize the pixel
data from the Image Sensor to the rest of the pipeline. Further a Binning Mod-
ule was implemented to make simple binning operations on the pixel data to
reduce minor observation errors as well as reducing the data size. Additionally
the thesis presents an algorithm called Extended Multiplicative Signal Correc-
tion [8], and a proposal to how this can be implemented in a Software/Hardware
Co-design executing on the Zynq-7000 platform. A pure software implementa-
tion was made to map which parts of the algorithm would benefit the most
from being executed in hardware based on time consumption. Then a SW/HW
co-design was implemented with the chosen parts accelerated in hardware. A
speedup of 4.36 was achieved by the combined SW/HW implementation to the
pure software version.

Denne masteroppgaven omhandler en pipeline for dataflyten fra en CMV2000v3
bildesensor til bildedataen lagres i minnet i en hyperspektral bilde applikasjon.
Dette innebærer en implementasjon av en LVDS mottaker best̊aende av to mod-
uler, en Deserializer og en Pixel Order Alignment Module. Førstnevnte er en
modul for å motta og parallellisere data over LVDS og sistnevnte er en modul
for organisere denne dataen i riktig rekkefølge før den sendes videre. Videre
ble en Binning Module implementert for å redusere sm̊a unøyaktigheter og
datastørrelse. I tillegg til dette presenterer denne masteroppgaven en algoritme
som heter Extended Multiplicative Signal Correction [8], og et forslag til hvordan
denne kan implementeres i et Software/Hardware Co-design som skal kjøres p̊a
en Zynq-7000 platform. En ren software versjon ble først implementert for å
strukturer hvilke deler av algorithmen som ville tjene mest p̊a å bli akselerert
i maskinvare for å senke kjøretiden. Basert p̊a dette ble en Software/Hardware
implementasjon designet som utførte algoritmen opptil 4.36 ganger raskere enn
software versjonen.

1

2 Preface

I would like to thank my supervisor Milica Orlandic for her ability to motivate,
as well as giving good advices. Additionally, i would like to thank my co-
students in this project, Johan, Lars, Aysel and Martin for good cooperation
through this year.

2

Contents

1 Abstract 1

2 Preface 2

3 Introduction 10
3.1 NTNU SMALLSAT . 10
3.2 Hyperspectral Imaging . 10
3.3 Main contributions . 12

4 Data Processing Pipeline 13
4.1 Prototype . 13
4.2 Carrier Board . 14
4.3 PicoZed . 14
4.4 Image Sensor . 14

4.4.1 Image Sensor Architecture 15
4.4.2 Interfacing the Image Sensor 16
4.4.3 SPI . 18
4.4.4 Requesting Frames . 19
4.4.5 Reading data from the sensor 20

4.5 LVDS receiver . 23
4.5.1 Design Criterias . 23
4.5.2 Simple Deserialiser . 23
4.5.3 IDELAYE2 . 26
4.5.4 ISERDESE2 . 26
4.5.5 Existing LVDS receiver designs 28

4.5.5.1 Design 1 . 28
4.5.5.2 Design 2 . 29

4.6 AXI protocols . 30
4.7 Cube DMA . 31

4.7.1 Pixel Order Alignement Module 32
4.8 Binning . 33

5 Extended Multiplicative Signal Correction 34
5.1 Mathematical Model . 34

6 Method 36
6.1 Exploring the prototype . 36
6.2 LVDS Receiver . 36

6.2.1 Simple Deserialiser . 36
6.2.2 LVDS Deserialiser with Xilinx Primitives 37
6.2.3 Pixel Order Alignment . 38
6.2.4 Connecting the parts . 41

6.3 Binning . 44

3

6.4 Extended Multiplicative Signal Correction 44
6.4.1 MATLAB script . 44
6.4.2 Software implementation in C++ 46

6.4.2.1 Profiling the C++ Implementation 49
6.4.3 Hardware implementation 49

6.4.3.1 Block Ram Module 50
6.4.3.2 Dot Product Module 52
6.4.3.3 Output Module 55
6.4.3.4 Sequential EMSC HW design 56
6.4.3.5 Parallel EMSC HW design 56
6.4.3.6 Design Choices 57

6.4.4 Combining Hardware and Software 60
6.4.4.1 Software implementation 60
6.4.4.2 Testing the implementations 64

7 Results 65
7.1 Image sensor pipeline . 65

7.1.1 LVDS Deserialiser . 65
7.1.2 Pixel Order Alignement Module 66
7.1.3 Binning Module . 67

7.2 EMSC . 70
7.2.1 Software Implementation 70

7.2.1.1 MATLAB analysis of software implementation
results . 70

7.2.1.2 Profiling . 74
7.2.2 Hardware Implementation 75
7.2.3 HW/SW Implementation 77

7.2.3.1 Sequential Design 77
7.2.3.2 Profiling . 79
7.2.3.3 Parallel implementation 81
7.2.3.4 Profiling . 83
7.2.3.5 MATLAB analysis of HW/SW Implementation . 83

8 Discussion 86
8.1 Image Sensor Pipeline . 86
8.2 EMSC . 87

9 Conclusion 89

10 Future Work 89

A EMSC Software Implementation 91

4

B Tutorials 94
B.1 EMSC software implementation on Zedboard 94

B.1.1 Building the Hardware in Vivado 94
B.1.2 Setting up the SDK Environment 94
B.1.3 Launching EMSC . 95

B.2 EMSC Software/Hardware co-design on Zedboard 96
B.2.1 Building the Hardware in Vivado 96
B.2.2 Setting up debug cores . 97
B.2.3 Setting up the Xilinx SDK 98
B.2.4 Uploading data to memory 98
B.2.5 Executing the EMSC code 98

C CMV2000 Register Overview 100

D Cube DMA register map 103

E AXI Dependencies 105
E.1 Read transaction dependencies 105
E.2 Write transaction dependencies 105

F LVDS Receiver Interface 106
F.1 Deserializer . 106

F.1.1 Design File . 106
F.1.2 Test Bench . 112

F.2 Pixel Order Alignment Module 113
F.2.1 Design File . 113
F.2.2 Testbench . 116

F.3 Binning . 117
F.3.1 Design file . 117
F.3.2 Test Bench . 119

F.4 Control Interface . 120

G EMSC HW/SW implementation 120
G.1 Sequential Implementation . 120

G.1.1 Software . 120
G.1.2 Top module design file . 125
G.1.3 Top module testbench . 128
G.1.4 Block ram bank design file 131
G.1.5 Block ram bank testbench 133
G.1.6 Block ram design file . 135
G.1.7 Dot product module design file 136
G.1.8 Dot product core design file 137
G.1.9 Output Module design file 137
G.1.10 AXI-register interface design file 139

G.2 Parallel Implementation . 143
G.2.1 Software . 143

5

G.2.2 Top module design file . 148
G.2.3 Top module testbench . 153
G.2.4 FIFO module design file 156
G.2.5 FIFO module testbench 158
G.2.6 Block ram bank design file 159
G.2.7 Block ram design file . 161
G.2.8 Dot product module design file 161
G.2.9 Dot product core design file 161
G.2.10 Output Module design file 162
G.2.11 AXI-register interface design file 163

6

List of Figures

1 Illustration of Hyperspectral Image capture. [13] 10
2 Cube representation of hyperspectral image data. 11
3 Data processing pipeline . 13
4 3D Render of the prototype. [15] 13
5 PicoZed Overview . 14
6 Relation between image sensor and hyperspectral image 15
7 Block diagram of the architecture of CMV2000. [4] 16
8 Start-up sequence. [4] . 17
9 Reset sequence. [4] . 18
10 Example of SPI write operation. [4] 18
11 Example of SPI read operation. [4] 18
12 Default frame request. [4] . 19
13 A frame request which produce 2 frames. [4] 19
14 Frame request with external exposure. [4] 20
15 LVDS data channel with 12-bit image data. [4] 20
16 Timing in 10-bit mode utilising 16-channels. [4] 20
17 Timing in 12-bit mode utilising 4-channels. [4] 21
18 Overview of channel outputs. [4] 21
19 Sample order for 4-channel mode output. [4] 21
20 Scheme for capturing LVDS. [9] 23
21 Waveform of LVDS capture. 24
22 OPPOSITE EDGE mode [17] . 24
23 SAME EDGE mode [17] . 24
24 SAME EDGE PIPELINED mode [17] 25
25 Data eye sample diagram. [7] . 25
26 Block diagram IDELAYE2. [17] 26
27 Block diagram ISERDESE2. [17] 27
28 Example when bitslip are needed. 28
29 Block diagram of LVDS receiver. [3] 29
30 Block diagram of LVDS receiver. 30
31 AXI read/write operations . 31
32 Operation required on the output of LVDS receiver. 32
33 Overview of the implemented design. 36
34 LVDS implementation . 37
35 Block diagram of implementation of LVDS receiver. 38
36 Block diagram of pipeline from LVDS receiver 39
37 Block diagram of implementation 39
38 Difference between 4 and 5 sample transfer. 40
39 Block diagram of all parts connected together 43
40 Binning module. 44
41 Cube transformed to raw. 45
42 MATLAB function of EMSC . 46
43 Function prototype . 47

7

44 Declarations. 47
45 Constructing the M matrix. 48
46 Calculating the pseudo-inverse. 48
47 Calculate the corrected spectra. 49
48 Overview of the implemented EMSC accelerator. 50
49 Block Ram Module Architecture 51
50 Dot product operation, initial step. 52
51 Dot product operation, step 1. 53
52 Dot product operation, step 2. 53
53 Dot product operation, step 3. 54
54 Dot product operation, step 4. 54
55 Dot product operation, last step 55
56 Output module overview . 55
57 Overview of parallel version . 56
58 Pixels stored in memory. p is pixel number and C is component

number. 57
59 Overview of a DSP48E1. [21] . 58
60 Overview of the first EMSC implementation 60
61 Function Prototype. 61
62 Initialising the Block Ram Module. 61
63 Initialising the Cube DMA. 62
64 Calculate corrected spectra. 63
65 Waveform of training state of receiver 65
66 Waveform of transfer state of receiver 66
67 Waveform from simulation of Pixel Order Alignement Module. . 67
68 Waveform from simulation Binning Module with Binning Factor

equal to 4. 68
69 Waveform from simulation Binning Module with Binning Factor

equal to 8. 68
70 Waveform from simulation Binning Module with Binning Factor

equal to 16. 69
71 Plot of the raw data for the large cube (500x500x52) 71
72 Plot of the corrected spectra for the cube produced with MATLAB 71
73 Plot of the corrected spectra for the large cube produced by soft-

ware implementation on Zynq. 72
74 Plot of the difference between corrected spectra produced in MAT-

LAB and in Zynq for the large cube (500x500x52) 72
75 Plot of the difference between p produced in MATLAB and in

Zynq for the large cube (500x500x52) 73
76 Plot of the difference between G produced in MATLAB and in

Zynq. 74
77 Waveform from simulating the Block ram module. 76
78 Waveform from simulating the Dot Product Module. 76
79 Waveform from simulating the Output Module. 76
80 Block diagram of design from vivado. 77
81 Utilization by increasing bit width of G 78

8

82 Utilization by increasing size of reference spectra 79
83 Utilization by increasing bit width of p 79
84 Utilization by increasing bit width of G 81
85 Utilization by increasing size of reference spectra 82
86 Utilization by increasing bit width of P 82
87 Lines replaced in MATLAB script to calculate corrected spectra 83
88 Calculated results for factor 218 84
89 Measured results for factor 218 84
90 Calculated results for factor 225 85
91 Measured results for factor 225 85
92 HW platform Vivado . 94
93 Adding math library . 95
94 Overview of hardware in Vivado. 97
95 Waveform of Debug Core . 99
96 Register overview [4] . 100
97 Register overview [4] . 101
98 Register overview [4] . 102

List of Tables

1 External inputs/outputs to Image Sensor 17
2 Bits of the LVDS control channel [4] 22
3 Elements contained in FIFOs. 41
4 Description of variables and abbreviations 46
5 Block Ram register map. 52
6 Description of different used letters and abbreviations 59
7 Memory Mapping EMSC software 64
8 Utilization report Deserialiser . 66
9 Utilization report Pixel Order Alignement Module 67
10 Utilization report Binning Module 69
11 Results profiling of C++ implementation of small cube 75
12 Results profiling of C++ implementation of large cube 75
13 Synthesis results . 78
14 Results profiling of sequential SW/HW implementation of large

cube . 80
15 Results profiling of the sequential SW/HW implementation of

small cube . 80
16 Synthesis results . 81
17 Results profiling of the parallel SW/HW implementation of large

cube . 83
18 Results profiling of the parallel SW/HW implementation of small

cube . 83
19 Cube DMA register map MM2S. [6] 103
20 Cube DMA register map S2MM. [6] 104

9

3 Introduction

3.1 NTNU SMALLSAT

The design problem for this thesis was issued by SmallSat - MASSIVE, a project
collaboration between Department of Technical Cybernetics(ITK) and Depart-
ment of Electronic Systems at the Norwegian University of Science and Tech-
nology. This project concerns development of a small satellite equipped with
a hyperspectral camera. The information captured by this camera are planned
to be used for supporting oceanographic applications. This could for example
mean that the satellite captures images around a salmon farm, analyses these
images to find indicators of water pollution, algae bloom and other metrics that
may inflict the well being and quality of the salmons.

3.2 Hyperspectral Imaging

Hyperspectral imaging are a technique where you capture, for each pixel, hun-
dreds or thousands of components spread across the electromagnetic spectrum.
Different materials gives unique fingerprints in different spectrums which can be
used to analyse and identify the materials captured in the image. This technique
where you capture the frequency spectra using a camera is called spectrogra-
phy [16]. Figure 1 illustrates how these images are captured. As the satellite
moves over the scene it starts capturing rows of pixels where each pixel con-
tains multiple components across the electromagnetic spectrum, referenced as
Spectral dimension in the figure (figure 1). This will form a cube consisting of
the number of pixels in one row, times the number of spectral components in
one pixel, times the number of rows in the satellite motion dimension. This is
illustrated in figure 2. As one probably would understand, this results in large
amount of data which will be discussed further in this section.

Figure 1: Illustration of Hyperspectral Image capture. [13]

10

As mentioned above the satellite that is constructed in the SmallSat project
contains a hyperspectral camera able to capture hyperspectral images. In reg-
ular photography meant for the human eye, each pixel consists of pixel com-
ponents in the visible light spectrum, usually long wavelengths (red), medium
wavelengths (green) and short wavelengths (blue). This means that if you cap-
ture a picture with all channels (RGB), with a resolution of 1920x1080 you will
have 2,073,600 pixels, each with 3 components, giving a total of 6,220,800 com-
ponents. Each component is represented with a given number of bits called bit
depth, giving the resolution of how many possible values for each component.
For example, using a bit depth of 12 bits gives 212 − 1 = 4095 different repre-
sentations, giving the example above a size of 6,220,800 components x 12 bit,
or around 9.3 MB.

Figure 2: Cube representation of hyperspectral image data.

The example above demonstrates how large a digital image from regular
photography becomes based on different choices or settings that are used. Even
using only 3 components for each pixel, one get large amount of data if you
increase the resolution and bit depths. For a Hyperspectral image this impacts
the size even more due to hundreds or thousands of components per pixel.
Adapting the RGB example above for a hyperspectral image containing 1000
components we get. 1920x1080x1000 = 2,073,600,000 components across all
spectras, further giving 2,073,600,000 x 12 bit = 24,883,200,000 bits, or around

11

3.1 GB. For a modern computer where one usually have several TB of storage
and powerful CPUs and GPUs available, this amount of data would be handled
with minimal effort. However, for a small satellite where the data is to be
sent back to earth through radio links, a energy expensive operation, it should
be as minimal as possible to save both time and energy. Therefore a lot of
data processing will have to be executed on-board the satellite. This thesis
will look at this on-board data processing pipeline from the capture of image
data from the image sensor and storing this data directly to memory or via
compression algorithms or other data processing algorithms. In addition, this
thesis will present a data processing algorithm called Extended Multiplicative
Signal Correction, and how this algorithm may be implemented in hardware.

3.3 Main contributions

The main contributions of this thesis are achieved in communication between
different parts of the hyperspectral payload, in particular building communica-
tion modules establishing data streaming between image sensor and memory.
This consists of a a hardware implementation of a LVDS receiver consisting of a
Deserializer and a Pixel Order Alignment Module, the former a serial-to-parallel
converter for the LVDS data from the image sensor and the latter a module to
organise the order of this data before it is processed or stored in memory. Fur-
ther a Binning Module that merges either 4, 8 or 16 data samples into one
sample with an average value of the merged samples. Additionally the thesis
presents an algorithm, Extended Multiplicative Signal Correction and propos-
als to how this may be implemented to execute on a Zynq-7000 platform. This
includes a pure software implementation, and a SW/HW co-design implementa-
tion. The pure software implementation was analysed to find what parts would
benefit the most being accelerated in hardware, which resulted in the SW/HW
co-design. The thesis presents the process of transforming a software into a
software/hardware co-design which may be perceived as a complicated process.
Further the SW/HW co-design was analysed and compared to the software ver-
sion both in terms of speed and precision. Both implementations was analysed
and compared to a MATLAB script which was considered the solution of a cor-
rect EMSC operation. Additionally a proposal to increase parallelism of the
SW/HW co-design was implemented which in theory would increase speedup
by four times. Tutorials of how to use both the software and software/hard-
ware co-design was created and can be found in the Appendix together with
all design files and testbenches used in the project. To be able to achieve these
implementations knowledge had to be built around the design tools, Vivado and
Xilinx SDK together with the AXI-protocol, Cube DMA and the Image Sensor
which is used in these implementations.

12

4 Data Processing Pipeline

Figure 3 shows the main parts of the data processing pipeline mentioned in
the previous section. The goal is to implement a Low Voltage Differential Sig-
nal (LVDS) receiver capable of capturing the data transmitted from the image
sensor. On the output of the LVDS reciever there will be a stream of pixel com-
ponents that either can be stored directly to a SD-card or sent further through
a pipeline consisting of Binning, some On-the-fly Application and then stored
on the on-chip memory by a Direct-Memory Access (DMA). Binning is a pre-
processing technique and will be introduced later in this section (section 4.8).
On-the-fly Applications simply means different algorithms that is necessary for
the application. An example of this is Extended Multiplicative Signal Correction
(EMSC) which will be presented further on in this paper (section 5).

Figure 3: Data processing pipeline

4.1 Prototype

The prototype produced for this project contains 3 major parts. A carrier board,
a PicoZed and an image sensor with associated optics. Shown in figure 4 is a
rendering from a 3D model of the prototype. The green board on the left side is
the PicoZed, the microscope looking part on the right side is the optics mounted
on top of image sensor and the black bottom layer board which is connected to
both the optics and the PicoZed is the carrier board.

Figure 4: 3D Render of the prototype. [15]

13

4.2 Carrier Board

The carrier boards main task, is to connect the image sensor to the correct pins
of the PicoZed, distribute the main power input into different voltage levels
required by the different parts of the system, as well as providing a JTAG,
USB-UART and SD card interface. The carrier board is powered through a
2.1mm/5.5mm barrel jack connector and this input is rated at 5-14.5V at 6A,
meaning that any AC/DC adapter which fulfils these requirements may be used.
The board contains 5 regulators, 1x 5V SMPS(switching mode power supply), 2x
1500mA LDO(Low-dropout) regulator and 2x 500mA LDO regulator providing
the required voltages.

4.3 PicoZed

The PicoZed from AVNET is a so called SOM (System-On-Module) based
around the Xilinx Zynq-7000 All Programmable (AP) SoC. Figures 5 a-b show
the PicoZed and a block diagram of the architecture within. As can be seen from
the Processing System (PS) of the block diagram there are multiple versions of
the PicoZed containing different versions of the Xilinx Zynq. The PicoZed used
in this prototype is equipped with the Xilinx Zynq-7030 containing a Dual-core
Arm Cortex-A9, and a Programmable logic (PL) with 125 K programmable
logic cells and 78,600 LUTs for briefly mentioning some of the specs.

(a) PicoZed. [2] (b) PicoZed Block Diagram. [2]

Figure 5: PicoZed Overview

4.4 Image Sensor

The image sensor used is the CMV2000v3 from CMOSIS. A CMOS image sensor
with a resolution of 2048x1088 , global shutter and a maximum frame rate of
340fps at a bit width of 10 bits. The image sensor is aimed for applications such
as 3D-imaging, Machine Vision, Bar and 2D code, Motion capture and more,
and should also be applicable for Hyperspectral Imaging given the necessary
camera lens. The sensor is soldered directly on the carrier board and will be
connected to the PicoZed through a LVDS interface for reading out data from

14

the image sensor, and a Serial Peripheral Interface (SPI) for programming the
control registers of the image sensor. Figure 6 shows how the image sensor
corresponds to the hyperspectral application. Each row of the image sensor
correspond to one pixel and each column a spectral component. Using the
numbers from the resolution gives, for each frame, a max of 1088 pixels, each
with 2048 spectral components or samples.

Figure 6: Relation between image sensor and hyperspectral image

4.4.1 Image Sensor Architecture

The architecture of the Image Sensor is illustrated in the block diagram shown
in Figure 7. In the upper right corner of the figure we see the Active Pixel
Area, this is a square consisting of 1088 rows and 2048 columns. In the hy-
perspectral application each row correspond to a pixel and each column to a
spectral component. For clarification, the term sample is used with the same
meaning as a pixel component. The image sensor has a global shutter mean-
ing that all of the samples are exposed at once. When the samples have been
exposed the specific amount of time defined by the exposure time, the analog
values collected are written out row by row to the Analog front end shown in
the figure. This block amplifies the sample values with a user defined gain and
converts this amplified analog signal to a digital value, either 10-bit or 12-bit.
Further on this digital representation of the samples is sent to the LVDS block.
In this block the samples are converted into standard LVDS, defined by the
TIA/EIA-644A [10], which can be transferred out of the image sensor using
a LVDS interface, consisting of 18 LVDS channels; 1 clock channel, 1 control
channel and 16 data channels. On the upper left side of the figure is the Se-
quencer. This block generates the required control signals to operate the sensor,
based on the external input signals and the values programmed in its registers.

15

The SPI is used to read/write the registers in the Sequencer and to read the
values from the Temperature sensor (Temp sensor).

Figure 7: Block diagram of the architecture of CMV2000. [4]

4.4.2 Interfacing the Image Sensor

The Image sensor contains 10 external I/O pins which are used to control and
configure the sensor from an external source. The I/O pins are as shown in
table 1. CLK IN is the master clock input with a frequency equal to 10 or 12
times lower than the rate of the output data, depending on the bit width that
is chosen. As the maximum output data rate is 480 Mbps the CLK IN may at
a maximum be 48MHz at 10-bit and 40MHz at 12-bit. The minimum frequency
is 5 MHz and all frequencies in between may be used. LVDS CLK IN N/P
is a LVDS input clock that can be used to define the output rate of the LVDS
interface of the image sensor. This signal is optional as the image sensor contains
an internal PLL (Phase Locked Loop) which is able to generate this clock signal
internally. The PLL is set to generate this clock signal by default, also the PLL
has to be disabled to use the external LVDS input clock signal. SYS RES N
is the system reset and is active low. This resets the sequencer and must be
active during start-up. The FRAME REQ initiates the capture of a frame and
can be considered the trigger if we compare the sensor to a handheld camera.

16

SPI IN and SPI OUT is the data input/output pins for the SPI and is used
to program and read values from the image sensors internal registers. SPI EN
and SPI CLK is the enable pin and clock pin respectively for the SPI. T EXP1
and T EXP2 are pins used in external exposure mode which will be described
later in this section.

Signal name Description
CLK IN Master input clock 5-48MHz
LVDS CLK N/P LVDS clock, 50-480MHz.
SYS RES N System reset, active low
FRAME REQ Frame request
SPI IN SPI data input
SPI OUT SPI data output
SPI EN SPI enable
SPI CLK SPI clock
T EXP1 External exposure
T EXP2 External exposure in HDR

Table 1: External inputs/outputs to Image Sensor

The datasheet for the image sensor describes some sequences in the signal
flow which are recommended to prevent incorrect behaviour. These sequences
are associated with the start-up of the sensor or when performing a reset. Fig-
ure 8 shows the start-up sequence. The master clock CLK IN should be started
after the input supply is stable. After 1µs the SYS RES N is set high, forcing
the system out of reset state. As start-up may be a suited point to configure
the image sensor, the SPI uploads should take place 1µs after the system exits
the reset state. The system then requires some settling time before any frames
may be requested. The duration of this settling time varies and according to
the datasheet the main factor for this is changes to the ADC gain. For example
changing the ADC gain from default value to the maximum value, which is the
worst case scenario, may increase the settling time to 20ms.

Figure 8: Start-up sequence. [4]

The reset sequence is similar to the start-up sequence except the power
supply is stable and that the clock is already running. Figure 9 illustrates this

17

situation. The SYS RES N is sampled at rising edge of the CLK IN and should
therefore be at least one clock period to make sure of detection.

Figure 9: Reset sequence. [4]

4.4.3 SPI

As mentioned in the architecture of the image sensor, SPI is used to read and
write the registers of the sequencer as well as the temperature sensor. A brief
overview of what registers can be programmed and a description of these can
be found in Appendix C. Writing to a register in the image sensor over SPI is
shown in figure 10.

Figure 10: Example of SPI write operation. [4]

To initiate a write, the SPI EN is set high, half a period before sampling the
first data bit on SPI IN, and stays high until one clock period after sampling
the last data bit as shown in the figure. The 16 bits forming the write consists of
one control bit, which is the first bit in the sequence. It tells if it is a write (’1’)
or a read (’0’). Then there is 7 bits forming the register address. The last 8 bits
contains the data that is to be written to this register. For a read, a sequence
of 8 bits has to be transferred. The control bit indicating a read (’0’) and 7 bits
forming the address of the register to read. Then, the clock cycle after the last
address bit is sampled, the data contained in this register is outputted on the
SPI OUT. The read operation is shown in Figure 11.

Figure 11: Example of SPI read operation. [4]

In case of multiple registers required to be written or read, this can be done

18

in burst transfers, meaning that after the last data bit of a read or write has
been sampled, a new operation may start right away. Some of the registers may
not be updated, unless the camera is currently in IDLE time, meaning when the
sensor is not capturing or reading out frames. Changing values in the register
while a frame is captured may create unwanted effects on the image, so this
should be avoided.

4.4.4 Requesting Frames

Requesting frames can be initiated by sending a pulse at FRAME REQ. By
default the image sensor runs through the process of exposing the samples and
read out 1 frame, this is illustrated in figure 12. The exposure process consist of
the exposure time where the samples are exposed followed by a frame overhead
time (FOT). When the FOT is completed the sensor is ready to initiate the next
frame request. This means that 1 pulse on FRAME REQ produces 1 frame.

Figure 12: Default frame request. [4]

However, this process may be configured in several ways. Firstly, the user
can program the number of frames the image sensor should produce when
FRAME REG is pulsed. This is done by programming the Number frames
(Figure 97) register using the SPI interface. Figure 13 shows an example of how
this works when the image sensor is programmed to produce 2 frames when
receiving a request.

Figure 13: A frame request which produce 2 frames. [4]

It should be noticed that the read-out of the previous frame is executed in
parallel with the exposure of the current frame. This means that as long as the
read-out time is less than the exposure time the total time to produce a frame,
which directly influences the frame rate is only affected by the exposure time.

Both of the examples presented above utilise the internal exposure mode
of the image sensor. This simply means that the duration of the exposure
time is programmed as a value by the user within the image sensor. However,
the image sensor also contains another exposure mode called external exposure
which lets the user externally program the exposure time, changing the role of
the FRAME REQ. In this exposure mode a new pin is introduced, T EXP1.
This pin is used to start the exposure time of the frame, and FRAME REQ is

19

now used to end the exposure of the frame and start the read-out of the frame.
This is illustrated in figure 14.

Figure 14: Frame request with external exposure. [4]

4.4.5 Reading data from the sensor

Transfer of the image data from the sensor is done through the 16 data channels
of the LVDS. In addition to these channels the LVDS got a control channel and
a clock channel. The clock channel outputs a clock which are synchronous to
the data outputted on the data channels. The clock is DDR (double data rate),
meaning that sampling of data needs to be done on both rising and falling edge
of the clock. An example of this is shown in Figure 15 where a 12-bit image
data is sent over one of the LVDS data channels. The least significant bit (LSB)
is sent first.

Figure 15: LVDS data channel with 12-bit image data. [4]

Data is read out from the sensor in bursts of 128 samples per channel. Be-
tween these bursts there are an overhead period that equals one period of the
master input clock. If 16 of the data channels are utilised, one row will be read
out for each burst. (16 channels x 128 samples = 2048). This correspond to one
pixel in terms of the hyperspectral image. This is the maximum output rate
and results in a frame rate of 340 fps. Figure 16 shows this behaviour for one
channel. Here one can see the overhead (OH) between bursts and that one row
is transferred each burst.

Figure 16: Timing in 10-bit mode utilising 16-channels. [4]

Only the 10-bit mode is compatible with transferring across 16 channels. If
12-bit mode is desired, a maximum of 4 channels may be used, giving a frame

20

rate of 70 fps. This is due to a restriction from the ADC, because the conversion
takes 4 times longer to complete. This means that in 12-bit mode, 4 bursts is
required to output a whole row (pixel). (4 channels x 128 samples x 4 burst =
2048). This behaviour is shown in figure 17, 4 burst is required to transfer one
row.

Figure 17: Timing in 12-bit mode utilising 4-channels. [4]

Figure 18 shows how the outputs behave depending on the chosen number
of channels. In 16 channel mode, each output represent one specific channel.
However, if less than 16 channels are utilised the outputs are multiplexed and
the same channel is represented over multiple outputs as illustrated in the figure
(Figure 18). Operating in the 4 channel mode, it can be seen that all 16 channels
is divided in four groups, where each group outputs the same channel. As
multiple outputs for the same channel may be excessive and active outputs
are power consuming, the image sensor contains a feature where the user may
disable outputs that are not used. The datasheet for the image sensor states
that disabling unused channels is the main source for power saving in the image
sensor. Reducing from 16 to 4 outputs, may save up to 33% of the power, or
216mW. Each output consumes approximately 18 mW when enabled.

Figure 18: Overview of channel outputs. [4]

Figure 19 shows the ordering of the samples at the output when utilising 4
channels. It can be seen that one pixel, consisting of 2048 samples are divided
in 4 sub-rows, the first sub row is outputted at channel 1 through 4 bursts, the
second sub row on channel 2 and so on.

Figure 19: Sample order for 4-channel mode output. [4]

As mentioned the LVDS has a control channel. This channel is mainly used
to achieve timing and synchronisation at the receiver side. Table 2 shows an

21

description of the 12 bits forming the control word transferred on this channel.
Only the three first signals are required to know when the data is valid, the rest
of the signal is pure informational. The DVAL signal is always high during a
burst of valid data and low between bursts. The LVAL is high during the read-
out of a whole row, meaning that it is only low between bursts that separates
the read-out of a row. Finally the FVAL is high during the read-out of a whole
frame and is set low between bursts that separates frames. This means that
DVAL can be used to identify when there is a valid burst of pixel data on the
output. The LVAL is used to identify when a row has completed read-out and
a new row is initiated and the FVAL the same for frames.

Bit Function Description
[0] DVAL Indicates valid pixel data on the outputs
[1] LVAL Indicates validity of the read-out of a row
[2] FVAL Indicates validity of the read-out of a frame
[3] SLOT Indicates overhead period before 128-sample burst
[4] ROW Indicates overhead period before the read-out of a row
[5] FOT Indicates when the sensor in in FOT
[6] INTE1 Indicates when samples of integration block 1 are integrating
[7] INTE2 Indicates when samples of integration block 2 are integrating
[8] ’0’ Constant zero
[9] ’1’ Constant one
[10] ’0’ Constant zero
[11] ’0’ Constant zero

Table 2: Bits of the LVDS control channel [4]

22

4.5 LVDS receiver

4.5.1 Design Criterias

According to the requirements from the NTNU Smallsat the Image Sensor is
desired to be used in 12-bit mode utilising 4 of the LVDS data channels. There-
fore the focus will be on this mode of operation when presenting the existing
solution in this section, but also when presenting the implementations that was
done in this thesis in the Method section.

4.5.2 Simple Deserialiser

In the paper Understanding Serial LVDS Capture in High-Speed ADCs [9] a
scheme for capturing a LVDS signal on a receiver is presented. It is shown in
figure 20 and consists of a double data rate (DDR) flip flop which is fed into a
shift register.

Figure 20: Scheme for capturing LVDS. [9]

At the Q Rising and Q Falling in Figure 20, the values captured on the
rising and falling edge of LVDS clock (Bit Clock) is outputted. Because both
the registers connected to the Q Rising and Q Falling are connected to the same
clock source CLKOUT they are updated at the same time. This means that
the output Q Falling is changing half a clock period before it is captured into
the register. This re-latches the falling edge values and synchronises the values
captured at rising and falling edge. Figure 21 illustrates the mechanism of this
design in a waveform. The LVDS signal is sampled at rising and falling edge of
the DDR Clock. The inputs to the registers reg rising and reg falling samples
the Q Rising and Q Falling at the same rising edge, making these two inputs
synchronised.

In Xilinx user guide7 Series FPGAs SelectIO Resources [17] a DDR register
called Input DDR (IDDR) was found to be available on all 7 series FPGAs.
According to the user guide this register has three modes of operation. OP-
POSITE EDGE, SAME EDGE and SAME EDGE PIPELINED. The OPPO-
SITE EDGE mode outputs the values of Q1 and Q2 as they are sampled. This

23

Figure 21: Waveform of LVDS capture.

means that Q1 is set at rising edge and Q2 at falling edge. This is illustrated
in figure 22.

Figure 22: OPPOSITE EDGE mode [17]

SAME EDGE sets Q1 and Q2 at rising edge starting from the first rising
edge. However because the first falling edge has not yet been sampled at the first
rising edge the values of the rising edge and falling edge will not be synchronised.
This means that the value of the first falling edge will not be outputted on Q2
before the second rising edge. This behaviour is shown in Figure 23.

Figure 23: SAME EDGE mode [17]

The last operation mode, SAME EDGE PIPELINED, was chosen for this
implementation. In this mode the output of the first rising and falling edge is
set at the next rising edge. In this case the outputs will be synchronised as pairs
and this makes the rest of the design easy to implement. Figure 24 shows how
this mode operates.

However, as LVDS signals are operating at a high speed, they are vulnerable
to latencies. In Serial LVDS high-speed ADC interface [5] the author explains

24

¨

Figure 24: SAME EDGE PIPELINED mode [17]

why this is a problem and why the simple scheme for capturing LVDS shown
in Figure 20 in many cases is not sufficient enough. As both the LVDS data
and clock are sent over independent LVDS channels it is important that these
arrive synchronised enough at the receiver side. This is important so the receiver
does not sample the data during a transition. However, as the data and clock
channels typically experience different amount of delays this is not as simple as
one should hope. In an ideal world the data transitions on the LVDS would
occur instantly and the risk of sampling the data during a transitions is not
present. However, in the real world this is not the case and Figure 25 illustrates
this. The moment when data is stable on the channel and can be read is called
the Data Eye, and is the desired place to sample the data, as shown with red
dotted lines in the figure. If sampling is done inside a bit transition the result
is unpredictable and may cause a corrupt sample.

Figure 25: Data eye sample diagram. [7]

Figure 25 shows why the LVDS capturing method shown in figure 20 may
not work. It is not able to synchronise the data and clock channels if they
arrive with a skew. Another approach utilising primitives IDELAYE2 and IS-
ERDESE2 from Xilinx is found. Starting with a closer look at these primitives,

25

this approach will now be presented.

4.5.3 IDELAYE2

Figure 26 shows the block diagram of the IDELAYE2 primitive which is a
programmable delay block. It has 4 different operation modes, FIXED, VARI-
ABLE, VAR LOAD and VAR LOAD PIPE. Modes FIXED and VARIABLE
will be used and therefore these operations will be presented.

Figure 26: Block diagram IDELAYE2. [17]

In the FIXED mode the block is simply programmed with a fixed delay.
This passes the input to the output with a delay corresponding to this fixed
value. In the VARIABLE mode the delay can be varied. By assigning a ’1’ or
’0’ on the INC input together with a ’1’ on the CE (enable) the delay will be
increased or decreased respectively. This increase or decrease has a unit called
taps. There are in total 31 taps, and the resolution of these are decided by
another module IDELAYCTRL. This is a independent module but has to be
present in the same clock region as the IDELAYE2 to calibrate the taps. This
module has two inputs REFCLK, RST and one output RDY. The frequency of
the clock signal inputted on the REFCLK decides the tap precision. Frequency
of 200 MHz gives a tap precision of ∼ 75ps.

4.5.4 ISERDESE2

Figure 27 shows a block diagram of the other Xilinx primitive, ISERDESE2.
This is a serial-to-parallel converter which is suited to serialise the LVDS chan-
nels from the image sensor. The serial stream are inputted at either D or DDLY
depending on if the stream comes from a FPGA IOB resource or an IDELAYE2.

26

In this case it will be connected to the delay module, DDLY will be used. The
parallel data will be outputted at the Q1-Q8 outputs, with Q1 MSB.

Figure 27: Block diagram ISERDESE2. [17]

This primitive can be operated in SDR and DDR mode and each module
are able to deserialise up to 8 bits. However, two modules can be chained into
outputting 10 or 14 bits. As the image sensor is capable of outputting 12 bits
this it is not compatible with the way these primitives are meant to be used
according to the Xilinx documentation [17], but a workaround was found in
Serial LVDS High-Speed ADC Interface [5]. In this paper two ISERDESE2
modules are used in SDR mode. One for capturing the rising edge values and
one for capturing the falling edge values of the DDR clock. Two designs, one
using the primitives according to the Xilinx documentation and the other one
using the workaround mentioned above will be presented later in this section.
It should also be mentioned that the ISERDESE2 primitive has a feature to
align the bits captured. As it can be hard to synchronise the sampling of the

27

data words initially, ISERDESE2 has a input called BITSLIP which helps with
this. Lets assume that we have a training pattern of 2770 (b”1010 1101 0010”)
that are inputted to the primitive as shown in figure 28. However, the receiver
may have captured another order of the bits than is expected. By using the
BITSLIP the receiver slips bits to achieve the correct order. In SDR mode this
is done by shifting the order to left by one, in DDR it is alternating between
shift right by one and shift left by three.

Figure 28: Example when bitslip are needed.

4.5.5 Existing LVDS receiver designs

Two different designs utilising the described primitives suitable for the applica-
tion in this paper were found.

4.5.5.1 Design 1 First in ”16-Channel, DDR LVDS Interface with Per-
Channel Alignment” [3] an implementation for a 16 channel DDR LVDS receiver
is presented. This implementation is designed for data words of 8-bit but could
be adapted to a 10 bit version to be applicable with the image sensor. However,
this design is not directly compatible if the image sensor is operating in the
12 bit mode. Figure 29 shows a block diagram of this implementation. The
LVDS signals are inputted on the right side, through the DATA RX and the
clock through the CLOCK RX. All LVDS inputs are converted to a single ended
signal and fed into a IODELAY primitive.

The clock signal delay has a fixed value and the data signal delays are vari-
able and are configured by the Bit Align Machine to make sure the sampling
occurs within the data eye of the signals. From the delay modules the signals
are converted from serial to parallel data in the ISERDES primitive. As the
ISERDES blocks used in this design is restricted to 6-bit, two of this primitives
has to be connected in a Master-Slave chain to be able to process 8 bits. The
ISERDESE2 available in the Zynq-7000 series, can process 8-bit data before a
chain of two modules are needed. The Bit Align Machine monitor the outputs
of the ISERDES modules to configure the delay blocks as well as bit ordering
by using the BITSLIP functionality mentioned before. To avoid implementing
a Bit Align Machine for every channel, a Resource Sharing Control block is

28

Figure 29: Block diagram of LVDS receiver. [3]

distributing access to the Bit Align Machine. At the top of the figure there
is an independent IDELAYCTRL primitve which is used to calibrate the taps
for all of the IODELAY modules. It should also be mentioned that the clock
from the LVDS clock channel is divided into two clocks. One with the same
frequency as the LVDS clock (RXCLK), and one with the same period as the
bit width, which in this case is the LVDS clock divided with 4 (RXCLKDIV).
RXCLKDIV is used by the ISERDES to output the parallel data as well as to
sample the BITSLIP input.

4.5.5.2 Design 2 The next design is taken from Serial LVDS High-Speed
ADC Interface [5] combined with the knowledge of users on Xilinxs own forum.
This design was created as a workaround to achieve a 12-bit LVDS receiver as
this is not supported by the primitives according to Xilinx documentations [17].
The interesting part of this design is how the ISERDESE2 primitive is used.
Figure 30 illustrates this for one LVDS data and clock channel.

The idea with this design is to have both ISERDESE2 primitives in SDR
and to use one for sampling rising edge values and one for sampling the falling

29

Figure 30: Block diagram of LVDS receiver.

edge values. It can be seen in the figure that instead of converting the signal
into a single ended signal, it keeps the differential form where the p and n side
are inputted directly to two different IDELAYE2 primitives. From here they
are sampled in the ISERDESE2 blocks, the p side on rising edge and the n side
on falling edge of the clock. It should be mentioned that the lower ISERDESE2
block in the figure requires an inverted clock input. This way of sampling the
data will produce an inverted result from the ISERDESE2 on the n-side and it
is therefore required to invert the output. In the end the even and odd bits of
the words will have to be correctly ordered to form the pixel word on the output.
Also the part calibrating the IDELAYE2 to make sure sampling happens inside
the data eye has been omitted but this is done in a similar way as the previous
design. It can be seen that the clock divider in the figure, divides the clock by
6, this is an example for a 12-bit implementation and should be changed to 5
for an 10 bit version. Because this version is adaptable to both 10 and 12 bits
it is suited to use in an implementation with the image sensor.

4.6 AXI protocols

A bus protocol that will be used in the implementations of this thesis is the
Advanced eXstensible Interface (AXI) developed by ARM. This protocol defines
a set of rules of how transactions of data between parts of a design should be
executed.

This is a burst-based master-slave protocol and consists of five independent
channels. Read address, Read data, Write address, Write data, Write
response. During a read or a write the master provides the read or write
address to the slave through the corresponding channels. The Read data and
Write data channels are then used to transfer the data to read or write. After a
write the Write response channel is used by the slave to inform the master about
the status of this operation. Figure 31 show the mechanics of AXI read/write
operations.

30

(a) AXI read operation. [1] (b) AXI write operation. [1]

Figure 31: AXI read/write operations

The AXI protocol also use a simple but concise handshaking process. Using
two signals, VALID and READY. The READY signal is asserted when the
receiving part is ready to receive data and the VALID is asserted by the sender
to indicate that valid data is present on the channel. When both signals are
asserted it is called a handshake and the transfer is performed. In addition there
are some rules for asserting the VALID and READY, these can be found in
Appendix E.

There is three different AXI bus interfaces available, AXI, AXI-Lite and
AXI-stream. These fulfil different use cases but consist of the same fundamen-
tals. AXI is suited for memory mapped communication with high performance
requirements. AXI-Lite is a simpler version of AXI where high performance
is not crucial. It is fitted for low-throughput memory-mapped communication.
AXI-stream is a interface for high speed streaming of data. It has been released
multiple versions of AXI where the newest version is called AXI4 released in
2010. This is the version that will be used in this thesis.

4.7 Cube DMA

An important module for distributing data between the memory and different
hardware designs is the Direct Memory Access (DMA). This module is com-
manded by the CPU to initiate data transfers from and to the memory, while
the CPU executes something else. This is an important mechanism as the hy-
perspectral cube consists of large amount of data that will be transferred around
to different hardware accelerators. These transfers will occupy the CPU if no
DMA is present.

This concludes that a DMA will be necessary in the hyperspectral imaging
application. However, there are some requirements that the DMA must be
able to fulfil. In the paper Direct Memory Access for Hyperspectral Imaging
Applications [6] the author looks into different DMA solutions for hyperspectral
imaging applications. He starts by exploring the available solutions on the Zynq-
7000 platform. He finds that the existing DMA solutions, AXI DMA, AXI DMA

31

in 2D mode and Video DMA are not suited for this application and designs a
custom DMA he calls Cube DMA. He emphasises that the DMA should be able
to access the cube sequential, block-wise and plane-wise, a requirement none of
the existing DMA solutions was able to meet. The Cube DMA is able to provide
all of these transfers and will therefore be the preferred DMA solution in light of
hyperspectral imaging. The Cube DMA transfer uses two independent channels
to tranfer data over AXI stream, mm2s(memory to stream) and s2mm(stream to
memory). Tables 19-20 in Appendix D shows the register map for the registers
that was used in this thesis for both mm2s and s2mm channels.

4.7.1 Pixel Order Alignement Module

To store the LVDS data in memory it has to be passed to the Cube DMA through
an AXI4-stream interface. Also the samples of the pixel will need to be organised
in such a way that the Cube DMA is able to store them in the desired order in
memory. The desired order is that the pixels are stored sequentially, meaning
that all components from first pixel are stored first and then all components
from the next pixel and so on. This means that the pixels will have to be
passed to the Cube DMA in this order. From the previous figure 19 it can be
seen that the LVDS data is not transferred in the correct order and therefore a
mechanism to reorder and pass data through an AXI-stream interface will have
to be implemented. Figure 32 shows the principle of the operation required from
this module. In this figure, 16 samples from the LVDS Deserializer arrives. One
sample from each LVDS channel arrive each clock cycle, meaning that 1, 5, 9
and 13 arrives in the first cycle. The right side of the arrow shows the desired
ordering on the output. It is clear that to be able to output these samples in
the correct order, one first has to wait 4 cycles to output all samples from lvds 1
before starting on lvds 2 and so on. This means that samples has to be buffered
until the sample before has been outputted.

Figure 32: Operation required on the output of LVDS receiver.

32

4.8 Binning

A technique that is interesting in terms of hyperspectral imaging is binning.
This is a technique where one try to reduce minor observation errors as well
as reducing the amount of data without loosing too much information. The
principle of binning is that multiple samples in a data set are merged together
and given a new value based on the values of the individual samples. This
value could be calculated as the summation, mean, median or other measures of
the original values depending on the application. For the hyperspectral imaging
application binning of the components of the pixels is useful, by merging multiple
pixel components into a average of these samples. This because the lens that is
used captures wavelengths in the interval 400-900 nm and 2048 components are
not required to cover this. Therefore, by binning spectral components together
reaching a point where there is enough components to represent the interesting
data would be reasonable. The number of pixel components that will be merged
together will be called the Binning Factor.

33

5 Extended Multiplicative Signal Correction

The Extended Multiplicative Signal Correction (EMSC) is a model-based pre-
processing technique derived from the Multiplicative Signal Correction (MSC),
and is used to reduce the impact of other phenomenons than the components
that are of interest when capturing a spectra using spectroscopy. This could
be phenomenons such as noise in form of light scattering or errors due to the
instruments that are used. In the SmallSat Project the hyperspectral images
are captured by a hyperspectral camera on a satellite. As the camera is captur-
ing images of the earth from the space, light scattering may impact the images
as the light captured travels through the clouds or other materials. Also the
camera itself may contain sources inflicting the captured image in a erroneous
way. This means that EMSC may be highly relevant for this application.

In the papers Light Scattering and Light Absorbance Separated by Extended
Multiplicative Signal Correction. Application to Near-Infrared Transmission
Analysis of Powder Mixtures [8] and Extended multiplicative signal correction in
vibrational spectroscopy, a tutorial [11] the authors demonstrate the potential
of EMSC in the Near Infrared Transmission spectra. In the former the authors
explains that by using EMSC they are able to analyse different powder mixtures
by separating the physical light scattering by the the chemical light absorption.
In other words, when doing vibrational spectroscopy, each chemical bond in the
material analysed emits unique vibrational energy levels, which is sampled and
can be used as a fingerprint for this specific chemical bond [12]. However, in
addition to these fingerprints, phenomenons as those mentioned above usually
disrupts the information in these samples. It is here EMSC comes in, separating
these fingerprints with light scattering and other sources of noise that are also
captured.

5.1 Mathematical Model

In the paper Light Scattering and Light Absorbance Separated by Extended Mul-
tiplicative Signal Correction. Application to Near-Infrared Transmission Analy-
sis of Powder Mixtures [8] the authors presents a way of calculating the EMSC
for a given data set. Using Beer-Lambert’s law as a starting point the authors
states that the theoretical chemical absorbance spectrum of a sample can be
considered as a sum of all contributions to this spectrum by all the constituents
contained in the sample. This can be shown with equation 1, where zi,chem
is the chemical absorbance spectrum for the sample i, c is the concentration
and k the vector representing the absorptivity spectrum of the j’th constituent
contained in the sample.

zi,chem = ci,ik
′
1 + ...+ ci,jk

′
j + ...+ ci,Jk′J (1)

The idea with the EMSC is to correct the measured absorbance spectrum by
removing light scattering, path length and other wavelength dependent spectral

34

effects, giving a result containing only the chemical absorbance information.
The EMSC model is shown in equation 2 which is used to approximate the
physical effects related to light scatter variations. The zi is the measured ab-
sorbance spectra of sample i. ai and bi are coefficients representing baseline
offset and path length relative to the baseline offset and path length in a refer-
ence spectrum. λ is the wavelength. Because light-scattering effects depends on
the wavelength, both a linear and quadratic term of the wavelength is taken into
the account together with coefficients d and e allowing for wavelength dependent
spectral variations from sample to sample.

zi ≈ ai + bizi,chem + d1λ+ e1λ
2 (2)

Then by estimating the coefficients in equation 2 this can be used to find
the EMSC correction necessary to subtract all except the chemical absorbance
information from the test data. This is shown in equation 3.

zi,corrected = (zi − ai − d1λ− e1λ2)/bi (3)

Even though the calculations are straight forward as shown in the equations
above. The estimations of the coefficients are not. The authors presents a
versatile solution for calculating the coefficients and applying the correction on
the measured absorbance spectra. The solution starts by constructing a matrix
M as follows:

M = [1;m; k′;λ;λ2] (4)

The first row consists of ones and is according to the authors, introduced
because of matrix formalities. Then M contains the mean of the reference
spectra m and the reference spectra itself k’, the wavelength λ and wavelength
squared λ2. Now the EMSC coefficients can be estimated using least squares
regression as shown:

zi = piM + εi (5)

where pi is a vector containing the coefficients that we estimates as follows:

pi = zjVM′(MVM’)−1 (6)

This is weighted least squares estimator where V is weights that can be
defined by the user based on different criteria. This finally gives the solution
that is an approximation spectra containing only the chemical absorbance in-
formation. Rearranging the terms in equation 5 gives equation 7 where ε is the
EMSC corrected spectra

εi = zj − piM (7)

35

6 Method

6.1 Exploring the prototype

Some testing of the prototype has been done. Starting with setting up the
hardware in Vivado and mapping different peripherals such as SPI, UART, USB
according to the schematics [14]. However, it was discovered that the clock signal
from the image sensor is mounted to a pin on the high performance bank on
the Zynq-7030 only able to operate at 1.8V. According to the datasheet for the
Image Sensor [4] the digital I/O minimum voltage on the image sensor is 3V,
which makes them incompatible to each other. Therefore a decision was made
to make everything work on a ZedBoard. This is a development board that are
similar to the PicoZed, containing a Zynq-7020 FPGA. The only disadvantage
with this is that it wont be possible to get actual LVDS data from the Image
Sensor, but as this is already incompatible in its current mapping to the Picozed
on the Prototype this makes no difference.

6.2 LVDS Receiver

Figure 33 shows an overview of the pipeline for the implemented design. The
LVDS receiver contsist of a Deserialiser and a Pixel Order Alignment Mod-
ule. Then the output of the Pixel Order Alignment Module is connected to the
Binning Module if binning is desired, if not the Pixel Order Alignment Module
should be connected directly to the Cube DMA. The Cube DMA then stores the
values in memory.

Figure 33: Overview of the implemented design.

6.2.1 Simple Deserialiser

A simple LVDS Deserialiser is implemented according to the design shown in
Figure 34 to receive and convert the single bits received from the image sensor
to 12 bit words that are sent further through the pipeline. This module was im-
plemented according to the theory presented in the background section showed
in Figure 20.

The sampled data from the DDR register will be fed into two shift registers,
one for the rising edge data (Q1) and one for the falling edge (Q2). When the
registers has been filled with all the bits corresponding to one data word from

36

Figure 34: LVDS implementation

the image sensor, the bit word will be outputted from this sensor. There will
be control logic in addition to what is shown on the figure. This is necessary
to synchronise when to output the content of the shift registers, as well as
handling the control bits on the LVDS control channel which dictates if the
LVDS channels should be sampled. Also as the image sensor may output both
12 or 10 bit data this module should be able to handle this.

As was mentioned in the background section, this simple LVDS receiver
might not be suited because of the nature of the LVDS signals. Adding a delay
module such as the IDELAYE2 at the clock and data inputs should give the
opportunity to synchronise these channels, however it will not be able to handle
the situation where the bit order is wrong.

6.2.2 LVDS Deserialiser with Xilinx Primitives

Figure 35 shows the LVDS deserialiser implementation able to handle some of
the more tricky problems that are related with LVDS, such as bits out of order
and to sample in the data eye. It is based on the Design 2 from the background
section with some additional logic to handle the control channel that the image
sensor offers. It can be seen on the Figure (35) that it is only DVAL from the
control signals of the image sensor that are required in this module, however,
the necessary logic to read out all of the signals are available. Also a signal
valid out is added on the output to indicate to the receiver of this data if it is
valid or not.

To make sure the design outputs the bits in the correct order, a state machine
that trains the design prior to transferring data was implemented. This is
done by applying a known pattern called training patters across all the LVDS
channels. Then the state machine works on each channel one by one, by applying
a bitslip until the known pattern is captured. When the parallel data output of
all channels equals the training pattern one knows that the design outputs the
correct bit order. There is not a dynamic implementation to make sure that
sampling is done inside the date eye. This may however not be a problem, if it
turns out to be, the user could measure where sampling takes place and then set
the IDELAYE2 in FIXED mode and manually add delay to move the sampling

37

Figure 35: Block diagram of implementation of LVDS receiver.

inside the data eye.

6.2.3 Pixel Order Alignment

Because the sensor is going to be used in the 12-bit mode a Pixel Order Align-
ment module for 12-bit was implemented. The reasons why a 10-bit mode
version was not implemented, and proposed solutions to how it can be done will
be reflected upon in the discussion section.

As was shown in Figure 33 the output of the Pixel Order Alignment Module
may be directly connected to the Cube DMA or through the Binning Module.
This led to a choice that the Pixel Order Alignment Module will be designed to
fulfil the Cube DMA requirements and then the Binning Module is adapted to
work with the resulting Pixel Order Alignment Module. As shown in the back-
ground section in figure 19 the samples are transferred across multiple LVDS
channels. This means that a row of pixel components are divided in a number of
sections equal to the number of LVDS channels that are utilised. To reconstruct
the pixel at the receiving side, the pixel components arriving across the channels
has to be aligned. As was shown in figure 32, the first sample to arrive on the
second channel has to be passed to the output after the last sample received
on the first channel and so on. This is what the Pixel Order Alignment module
will handle. This module will require the ability to buffer sample values until
the sampels prior in the correct order has been outputted. The module will

38

also require an AXI-Stream interface to communicate with the Cube DMA di-
rectly. Another challenge is that the LVDS deserialiser side and the Cube DMA
side operate on different clock frequencies meaning that they will have to be
synchronised. Figure 36 shows a block diagram of the connection between the
Deserialiser and the Pixel Order Alignment modules.

Figure 36: Block diagram of pipeline from LVDS receiver

The Image sensor outputs 12-bit data with a LVDS DDR clock of 240 MHz.
This means that the parallel data (pixel word n) from the Deserialiser will have
an output frequency of 240MHz

12bit/2 = 40MHz. Signal clkdiv is a clock synchronised

with these outputs, which is used as a sampling clock in the Pixel Order Align-
ment module. The Cube DMA operates at 100MHz. This was synchronised
by using asynchronous FIFOs. FIFOs will also satisfy the buffer requirement.
Figure 37 shows a block diagram of the proposed implementation.

Figure 37: Block diagram of implementation

On the left side the inputs from the LVDS deserialiser are connected. On the

39

right side is the AXI-stream interface. The FIFOs that are used is a premade
Asynchronous FIFO from Xilinx [20]. The control block consists of a state
machine to correctly output the pixel components in the correct order. The
procedure of this state machine is as following. First, all of the FIFOs are
filled with a number of elements equal to one pixel, which is fixed at 2048
elements from the image sensor. This means 512 elements in each FIFO. When
all FIFOs are filled, the elements are passed to the AXI interface in the correct
order, which is all elements in FIFO 1 then all elements in FIFO 2 and so on
until FIFO 4. One crucial requirement for this to work is the size of the FIFOs.
Because it will be added new samples to the FIFOs while they pass values to
the output it will be necessary that they can store these values. The receiving
side operates at 100MHz and the Cube DMA has the capacity to transfer 64
bits each cycle, which equals 5 1

3 samples. For simplicity it will be configured
to transfer 4 samples, or 48 bits, each cycle because this adds up with the total
number of samples that are stored in the FIFOs. Figure 38 illustrates transfer
of 4 and 5 samples each cycle. It can be seen that in the lower case the transfers
do not add up resulting in having to transfer 3 samples from the next FIFO. To
avoid the extra logic of this operation transfers of 4 samples was found suited.

Figure 38: Difference between 4 and 5 sample transfer.

To estimate the required FIFO sizes of this module the data rates of input
and output were used. The input to the Pixel Order Alignment Module is
connected to the Deserializer and 12-bit samples arrive across all 4 channels
with a frequency of 40 MHz. The output is connected to the Cube DMA which
operates at 100 MHz and is configured to transfer 4 samples each cycle. This
results in a input data rate of 12bit × 4channels × 40MHz = 1920Mbps and
a output data rate of 4samples × 12bit × 100MHz = 4800Mbps. This means
that the output data rate is 2.5 times higher than the input data rate. Using

40

this it was calculated that during the 128 cycles the Cube DMA uses to transfer
all elements from one FIFO, approximately 52 new samples are fed into the
FIFOs. Table 3 shows an estimation of the number of elements contained in the
FIFOs. Cycle 0 is when all FIFOs are filled with 512 components and the Cube
DMA starts transferring. After 128 cycles the Cube DMA has transferred 512
components from the first FIFO (FIFO 1), however 52 components has been
inputted during this time. Then at cycle 256 the Cube DMA has transferred
512 components from the second FIFO (FIFO 2) and a new 52 components has
been added. Repeating this operation until the 512 components from all FIFOs
has been transferred, it can be seen that FIFO 4 contained 668 elements at
most in cycle 384. This means that the FIFOs should be at least larger than
668. The premade Xilinx FIFO that is used is restricted to a size that is the
power of 2. This gives 1024 as the nearest size larger than 668. Even though
this is a considerable amount over the requirement it is reasonable to have some
margin as the CubeDMA has some cycles where it is not able to transfer data.

Cycle 0 128 256 384 512
FIFO 1 512 52 104 156 208
FIFO 2 512 564 104 156 208
FIFO 3 512 564 616 156 208
FIFO 4 512 564 616 668 208

Table 3: Elements contained in FIFOs.

6.2.4 Connecting the parts

As mentioned, it is not possible at this point to execute the Image Sensor due to
incompatible mapping to the Zynq-7030 FPGA on the prototype and therefore
the LVDS receiver will not be executed on hardware. However, if this was to
be done the Figure 39 shows a possible solution to how this circuit should be
connected together. Starting on the left side, it can be seen that the LVDS
control (ctrl p n), data (data p n) and clock (clk p n) channels are made exter-
nal. These will have to be mapped on the corresponding pins on the FPGA.
Then we have the Control Interface 0 block. This is a simple block to map the
AXI GPIO signals to the different signals in the design, giving the possibility
to control the hardware from software. The VHDL code for this block is found
in the Appendix E.4. The next block is the processing system7 0, this is the
proscessing system of the Zynq. It has two clock outputs, one at 100MHz for the
Cube DMA side of the design and one for the reference clock used by the IDE-
LAYCTRL inside the Deserializer. Further the block has some AXI interfaces
and some interrupt inputs. The lvds deserializer block is the Deserializer which
is controlled by the Control Interface. Next the pixel alignment 0 block which
is the Pixel Order Alignment Module are connected between the output of the
Deserializer and the input of the Binning Module. Following this module is the
Cube DMA which will store this result in memory. If binning was not desired,

41

this module should be removed and the Pixel Alignment Moduel should be con-
nected directly to the Cube DMA. The axi gpio 0 is a AXI GPIO block which
can be controlled from software and interface the design through the Control In-
terface. xlconcat 0 is a block to concatenate the interrupts from the Cube DMA
to the interrupt input at the Zynq processing system. The rst ps7 0 100M and
ps7 0 axi periph is auto generated by the design tool to fulfil the functionality.
On the right side it can be seen that fram req and FCLK CLK2 0 is external
signals. The frame req 0 would be mapped to the FRAME REQ signal of the
image sensor and the FCLK CLK2 0 would be connected to the master clock
input of the image sensor.

42

Figure 39: Block diagram of all parts connected together

43

6.3 Binning

An implementation for binning the data from the LVDS receiver with a binning
factor of 4, 8 and 16 was implemented. Figure 40 shows the logic behind it.
Because the Pixel Order Alignment Module is designed for the Cube DMA and
outputs 4 samples each cycle the Binning Module has to adapt to this. These 4
samples are first added together through the 3 adders. Then a register samples
this value. The last adder and register accumulates the result according to the
binning factor. For a binning factor of 4 the accumulator is skipped and the
register in the middle is directly connected to the output. For a binning factor
of 8 and 16 the module accumulates 2 and 4 values respectively. At the output
the result is shifted to divide the result corresponding to the binning factor that
is used. For 4, 8 and 16 the required shifts are 2,3 and 4 respectively. Lastly
the counter in the figure is a control block consisting of a counter that decides
when the output is valid for the receiving side to know when to sample the
value. The Cube DMA only has to transfer 1 sample for each transfer because
this module merges multiple samples into 1. The Binning Module will contain a
AXI-stream interface on both input and output to fit between the Pixel Order
Alignment Module and the Cube DMA. This interface is not shown in the figure.
The Binning Factor has to be 4,8 or 16 for this module to function.

Figure 40: Binning module.

6.4 Extended Multiplicative Signal Correction

One of the tasks given in this thesis was to implement the Extended Multiplica-
tive Signal Correction (EMSC), described in the background section, for the
Zynq-7000 series. A software implementation was made in C++, this code was
profiled to see what parts would benefit from being accelerated in hardware.
Using these results, a hardware design to accelerate this operation was imple-
mented. This design was then further developed to utilise even more parallelism
hoping to accelerate the operation even more.

6.4.1 MATLAB script

A MATLAB function of the EMSC from the paper Light Scattering and Light
Absorbance Separated by Extended Multiplicative Signal Correction. Application

44

to Near-Infrared Transmission Analysis of Powder Mixtures [8] was used as a
starting point in the implementation process. The function is shown in figure 42.

The MATLAB function takes two input arguments, raw and ref spectra.
Argument raw is a two dimensional representation of the cube organised such
that each pixel is contained in each row. For example, a 500x500x52 cube,
would be represented as a 250000x52 matrix. This transformation is illustrated
in figure 41. Arguments m and n are the pixels and components the spectral
components in each pixel.

Figure 41: Cube transformed to raw.

The ref spectra is the reference spectra used in the calculation. The reference
spectra consists of spectral signatures defined by the user. The function starts
by calculating K by subtracting the first row from every row in the reference
spectra. This is an operation done by the user based on the application of this
function. For the implementation that is to be designed, this operation will
be kept outside the function, such that K is directly assigned to ref spectra.
Further on, the mean of the ref spectra is calculated and stored in mean vector
m. Lines 6-9 consist of declaring variables necessary to construct the M matrix
described in the background section. Arguments nVars and nObs represent the
number of wavelengths for each pixel and the total number of pixels respectively.
Argument wlens is the wavelengths represented as a row vector of N linearly
distributed numbers between 0 and 1, where N is the same as the number of
wavelengths (nVars). wlensSQ is wlens squared. On line 11 the M matrix
is constructed and one can proceed calculating the corrected spectra. In line
19 the p vector containing the coefficients needed for the EMSC correction is
estimated using the procedure described in the background section equation 6.
Then finally in line 20 the corrected spectra is calculated by subtracting the
coefficients estimated from the raw input. Table 4 shows a description of the
different variables and abbreviations that are used.

45

1 function [corrected] = emsc(raw , ref_spectra)

2 %EMSC_JF Summary of this function goes here

3 % Detailed explanation goes here

4 K = bsxfun(@minus ,ref_spectra (2:end ,:),ref_spectra (1,:));

5 m = mean(ref_spectra);

6 nVars = size(raw , 2);

7 nObs = size(raw , 1);

8 wlens = linspace (0,1,nVars);

9 wlensSQ = wlens .^2;

10
11 M = [ones(1, nVars);

12 m;

13 K;

14 wlens;

15 wlensSQ];

16
17 corrected = raw;

18 for idx = 1:nObs

19 p = raw(idx ,:)*M'*pinv(M*M');
20 corrected(idx ,:) = (raw(idx ,:) - p(1) - p(4)*wlens - p(5)*wlensSQ) / p(2);

21 end

22 end

Figure 42: MATLAB function of EMSC

Element Description
raw Two dimensional representation of cube data
ref spectra Reference spectra
m Mean of reference spectra
K Reference spectra
nVars Number of components in each pixel
nObs Number of pixels. (n×m in figure 41
wlens Wavenumber, 0 to 1 in intervals of 1/nVars
corrected Corrected spectra containing the raw data with coefficients subtracted.
G Containts M’*pinv(M*M’)
P/p Dot product of each pixel and G. (raw*M’pinv(M*M’))
M Matrix constructed of ones, m, K, wlens and wlensSQ.
test Constant zero

Table 4: Description of variables and abbreviations

6.4.2 Software implementation in C++

A software implementation of the EMSC is made in C++. The complete code
can be found in appendix A but the main parts showing the EMSC calculation
will be presented here in smaller parts with an explanation. This implemen-
tation utilizes an external library called Eigen for performing different matrix
operations, including a built-in function for calculating the pseudo-inverse of
a matrix. Also another approach using the Eigen library to calculate the in-
verse matrix computation was implemented for comparisons. The result of the
pseudo-inverse and inverse matrix computation is identical if the matrix is in-
vertible. This was also confirmed using MATLAB. The reason for using the
inverse is because the pseudo inverse utilises complete orthogonal decomposi-
tion which is a powerful but demanding calculation. Therefore, the inverse could
be a more effective solution for this application where the pseudo inverse is not

46

needed. Figure 43 shows the function prototype for the function EMSC.

1 void EMSC(double ** raw ,

2 double ** ref_spectra ,

3 double* mean_spectra ,

4 double ** corrected ,

5 int nVars , int nObs ,

6 int refOrder)

Figure 43: Function prototype

The function takes 7 arguments. Arguments raw, ref spectra and corrected
can be recognised from the MATLAB script and is inputted as double pointers.
Argument raw is the cube data in two dimensional representation. ref spectra is
the reference spectra and corrected is where the corrected spectra will be stored.
mean spectra is the mean of the reference spectra and is passed as an input
instead of calculated inside the function as in the MATLAB script. This gives
the user the ability to manipulate this data outside of the function if desired.
Arguments nVars and nObs represent the same as in the MATLAB script, the
number of wavelengths and total number of pixels. Arguments refOrder is the
order of the reference matrix. Dependent on how many spectral signatures the
user defines in the reference spectra, the size of the ref spectra will vary and
refOrder is used to represent this.

Figure 44 shows some of the declarations made inside the function to see
how the different matrices used are declared. MatrixXF is a type declaration
from the library Eigen and creates a matrix of floats with size according to the
parameters inside the parenthesis, to use doubles change the Xf to Xd. M is
the M matrix and G is a matrix for storing the pseudo-inverse matrix. p is the
vector containing the coefficients for calculating the EMSC corrected spectra.
initialize is a function for allocating memory to double pointers and can be seen
in Appendix A.

1 //---------------------DECLARATIONS ---------------------

2 MatrixXf M(refOrder + 4, nVars);

3 double ** G = initialize(nVars , refOrder +4);

4 double* p = (double *) malloc ((refOrder + 4) * sizeof(double));

5 double num = 0;

6 //--

Figure 44: Declarations.

In figure 45 the for-loop constructs the M matrix. As one can see, the indexes
of Eigen matrices are different than pointers as you use parenthesis instead of
brackets. As the comments in the figure describes, ones are added in the first
row. The second row contains nVars of equally spaced numbers between 0 and
1 representing the wavelengths. The third row is the same as the second row
squared. Then the reference spectra is added from row 3 to row (3 + refOrder).
In the last row the mean of the reference spectra is added and this forms the
M matrix.

47

1 for (int i = 0; i < nVars; i++) {

2 //Add 1 in first row

3 M(0,i) = 1;

4
5 //Add linspace and linspace squared

6 M(1,i) = num;

7 M(2,i) = pow(num , 2);

8 num += (1.0 / (nVars - 1));

9
10 //Add the Reference spectra

11 for (int y = 0; y < refOrder; y++) {

12 M(y + 3,i) = ref_spectra[y][i];

13 }

14
15 //Add mean in last row

16 M(refOrder+3,i) = mean_spectra[i];

17 }

Figure 45: Constructing the M matrix.

In Figure 46 the pseudo-inverse is calculated and stored in p inv. First the
transpose of M×M is calculated and stored in M M. Then the transpose of M
multiplied with the pseudo-inverse of M M is calculated and stored in p inv. It
works by calculating the complete orthogonal decomposition of M and uses this
to calculate the pseudo-inverse. It was discovered that read and write operations
of the Eigen matrix type was slower than for two dimensional pointers and
increased the execution time by 2-3 times because of many read operations in
the Calculating Corrected Spectra part of the code. It was, therefore, beneficial
to store the result from p inv in G, a two dimensional pointer as shown in the
code. To calculate the inverse instead of the pseudo-inverse one simple change
line 2 to MatrixXd p inv = M.transpose() * M M.inverse().

1 MatrixXd M_M = M*M.transpose ();

2 MatrixXd p_inv = M.transpose () * M_M.completeOrthogonalDecomposition ().pseudoInverse ();

3 for(int i = 0; i<nVars; i++){

4 for(int y = 0; y<refOrder +4; y++){

5 G[i][y] =(double) p_inv(i,y);

6 }

7 }

Figure 46: Calculating the pseudo-inverse.

Lastly the result from the pseudo-inverse may be used to calculate the cor-
rected spectra. Figure 47 shows how this is done. First a for-loop calculates the
p which then is used to calculate the corrected spectra in a similar fashion as
the MATLAB script.

A tutorial of how to use the EMSC implementation on the Zedboard is added
in Appendix B.

48

1 sum = 0;

2 for (int idx = 0; idx < nObs; idx ++) {

3 for (int i = 0; i < refOrder + 4; i++) {

4 for (int y = 0; y <nVars; y++) {

5 sum += raw[idx][y] * G(y,i);

6 }

7 p[i] = sum;

8
9 sum = 0;

10 }

11 for (int t = 0; t < nVars; t++) {

12 corrected[idx][t] = (raw[idx][t] - p[0] - p[1] * M(1,t) - p[2] * M(2,t)) / p[refOrder + 3];

13 }

14 }

Figure 47: Calculate the corrected spectra.

6.4.2.1 Profiling the C++ Implementation As the implementation was
tested and confirmed working, profiling of the code was executed. This was
done by adding a AXI Timer to the hardware design. This is a module which
outputs the number of clock cycles that have elapsed between two points in
time. The timer was used to measure the execution time of the whole code as a
reference. The different parts of the code was then timed and compared to this
reference time. This was meant to give a good indicator of what parts of the
implementation would benefit the most being executed in hardware. The result
from this profiling is shown in the result section. However, as the next section is
based on this result it should be mentioned that the Calculate corrected spectra
from last section was the best candidate to accelerate in hardware.

6.4.3 Hardware implementation

Based on the results collected by the profiling it is shown that the part of the
algorithm calculating the corrected spectra shown in Figure 47 was the best
candidate for implementation in hardware. This means that the software prior
to this part in the code will execute as before, but when it reaches the Calculate
corrected spectra, parts of this is executed in hardware before software fetches
these results and proceeds. In other words, this will be a Hardware/Software
co-design. The Calculate Corrected Spectra consists of two main steps, first
calculating p, a dot product between the components in a pixel (raw) and the
matrix G, containing the result from the M ′ × pinv(M ×M ′). This shown in
equation 8.

p = raw ·G (8)

Then a step of arithmetic operations using p to get the corrected spectra
shown in equation 9.

corrected =
(raw − p(1)− p(4)× wlens− p(5)× wlensSQ)

p(2)
(9)

Because multiplications are slow the main focus of the accelerator will be in
accelerating the dot product calculation in the first step, which consists of the

49

same amount of multiplications as components across all pixels. Then the arith-
metic step is executed in software with p received from hardware.

Figure 48 shows a brief overview of the architecture of the hardware part
implemented for the EMSC accelerator. The signal names raw, G and p can
be recognised from the equation 8 presented above. The modules Block Ram,
Dot Product Module and Output Module will be briefly introduced here and
explained in details separately later in this section. The Block Ram Module
stores the values of G, which are calculated in software and written directly from
the CPU to the block rams contained in this module. These values are further
used calculating the dot product between raw and G (equation 8). This dot
product calculation is done in the Dot Product Module. In the Output Module
the results from the Dot Product Module are organised and synchronised for the
output AXI-stream.

Figure 48: Overview of the implemented EMSC accelerator.

6.4.3.1 Block Ram Module As mentioned, a Block Ram Module was im-
plemented. As can be seen from the MATLAB script (Figure 42) line 19, p is
calculated from the dot product of all components in a pixel (raw) and G. To
avoid having to stream this G repeatedly it was decided to store these values in
block rams inside the accelerator. This means that the Block Ram Module has
to be initialised with values before enabling the accelerator and calculating p.
Figure 49 illustrates how this was implemented.

It consists of an AXI Register Interface, a Block Ram Bank and some control
logic. The Block Ram Bank is simply a module consisting of block rams able to
store G. It has the same amount of block rams as there is columns in G which
again is decided by the dimensions of the reference spectra. The AXI Register
Interface is a module containing registers that can be interfaced through soft-
ware. This will be used to write the values of G to the block rams as well as
to write control signals to the accelerator. This is done through the AXI4-Lite
protocol as shown in the figure (49). The AXI Register Interface is seen by
the processor as memory addresses, and is therefore interfaced by write/read
operations to memory. For writing G this is combined with something called
keyhole type burst meaning that the CPU writes repeatedly to one specific reg-

50

Figure 49: Block Ram Module Architecture

ister in the AXI Register Interface to store values in the block ram. This works
because the AXI Register Interface has internal logic that can detect and com-
municate to the Block Ram Bank when there is a new valid input ready for
storing. However, an important requirement for this to work is that the values
from the processor may not arrive at a higher frequency than the operating fre-
quency of the FPGA at 100MHz. This should however not become a problem
as the processor runs up to 1 GHz, but will spend more than 10 cycles between
each of the value to be stored is calculated and written to the AXI Register
Interface. The input signal read enable is used read the block ram. This data
is outputted at the output signal data out. At the rising edge of the clock, a
high on the read enable will output the next data stored in the block ram and
when it reaches the end it will start over. This works because the data is stored
in the same order as it is used. The output signals enable and v len is control
signals written by the processor to the control logic. The enable signal enables
the accelerator and the v len is the number of components in each pixel. The
init flag communicates to the rest of the accelerator if the block ram has been
initialised with values.

Table 5 shows the register map for the block ram. The control register is
at the base address of the block ram (0x00). G size is the number of elements
each block ram in the Block Ram Module are storing. G size is the same value
as the number of components in each pixel. Start, enables the accelerator if the
Block Ram Module has been Initalized. Also, the Cube DMA should not start
streaming values to the accelerator before this Start is set to 1. Init is set high
to program the values to store in the Block Ram Module. If the CPU writes
to the Input G when Init is low, the value written will be ignored. On offset
0x04 from the base address of the Block Ram Module there is a Input/Status
register. During Init is high, inputs are written to this register. When the Block
Ram Module has completed initialization the Initalized bit will be set high. As
there is no reason to be able to see the last G value written to the Block Ram
Module this is overwritten by the Initialized bit. This also reuses the register,
avoiding using an extra register for one status bit. At the offset (0x08) there is

51

a Count Register. This is used to know how many pixels to process and when
to signal the Cube DMA that the last pixel component has been sent. Ignoring
this register is possible. But this requires to reset the Cube DMA after each run
and is not recommended.

Field Description Bits
Control register (0x00)
G size Length of each pixel 11-0
Start Enables the block ram module 12
Init Sets the hardware in init state 13
Ref Order Number of reference spectra 18:14
Input register/Status register (0x04)
Input G Writes to this register stores it in block ram 31:0
Initialized status bit to show if block ram is intialized 0
Count register (0x08)
length Number of pixels to process 31-0

Table 5: Block Ram register map.

6.4.3.2 Dot Product Module The dot product module is the core of the
accelerator and is where the calculation of p occurs. Figures 50-55 show the
intended operation of this module.

Figure 50: Dot product operation, initial step.

Figure 50 shows the initial point. A pixel with 3 components shown in
the Raw table will be streamed through the raw stream. The values in the
G table illustrates the values that have been stored in the block ram during
the initialisation phase prior to enabling the accelerator. Just to clarify, in the
example the values in the G table are removed when used, this is however not
happening inside the Block ram. Because the G values are used multiple times,

52

they are stored in the Block ram until the user decides to overwrite them with
new values.

In the first step (figure 51) the first pixel component (5) and the first row
of G is outputted to the multipliers. The product of these multiplications are
then stored in a register.

Figure 51: Dot product operation, step 1.

In the second step (figure 52 the first product is outputted to the accumulator
which is initialised to 0. At the same time as the next pixel component and row
from G is multiplied.

Figure 52: Dot product operation, step 2.

53

Figure 53 shows the third step where the first and second product is added
together in the accumulator while the last multiplication is executed in the first
stage.

Figure 53: Dot product operation, step 3.

The last product is added to the sum of the two first products in the fourth
step (figure 54). This concludes the dot products and the circuit is now ready
to output the results.

Figure 54: Dot product operation, step 4.

The values are streamed out of the P stream in the last step of the dot
product calculation (figure 55. These values are streamed out in a serial fashion,
meaning that for this example it would require 5 clock cycles to output the 5 p
values.

54

Figure 55: Dot product operation, last step

Even though this example is small compared to the real application which
could contain hundreds of pixel components, it shows the principle of the dot
product module and demonstrates how it works.

6.4.3.3 Output Module Figure 56 shows a simple block diagram of the
Output Module. Each time a dot product is calculated, a signal called p rdy
will trigger the Output module. When such a trigger occurs, all elements of the
p will be sampled into a register inside the Output module. These values will
be shifted out on the axis data signal at the same time as the Control Logic
block organises the AXI control signals, axis ready, axis valid and axis last.
Additional to outputting the results from the dot product module, the output
module is responsible to stall the pipeline if the Cube DMA that is connected to
the AXI output is not able to receive data. This is because if the pipeline runs
while the DMA is stalling one may risk that the p values stored in the register
is overwritten by new results before they are fetched by the DMA and stored in
memory.

Figure 56: Output module overview

55

6.4.3.4 Sequential EMSC HW design The building blocks described
above was connected together as shown in figure 48 forming what from now
on will be called the Sequential EMSC HW design. This was found a suiting
name as it only fetches and processes one pixel component sequentially. This
design was further developed into a new design being able to fetch and pro-
cess multiple pixel components in parallel. This design is therefore named the
Parallel EMSC HW design and will be presented now.

6.4.3.5 Parallel EMSC HW design The parallel version of the EMSC
hardware part uses the same building blocks as described above but has some
additional logic to control and synchronise the dataflow. Figure 57 shows an
overview of this version.

Figure 57: Overview of parallel version

It was desired to implement a solution which utilises the building blocks that
already are implemented above. However, because the pixels from the cube will
be stored in memory after each other as shown in figure 58, some additional
logic had to be used to be able to use the Dot Product module for this.

The design functionality will be explained by using an example. The test
data that was available consisted of a 500x500x52 cube. This means that there
was 250000 pixels with 52 spectral components in the cube. Each pixel com-
ponent is 16 bit making the Cube DMA able to transfer 4 pixel components
each cycle. When the accelerator starts, each of the FIFOs are filled with one
whole pixel. Starting with the upper FIFO, it will use 13 cycles to fill all the 52
components. When it is filled it starts outputting data to the corresponding Dot
Product Module at the same time as the next FIFO is getting filled. This way,

56

Figure 58: Pixels stored in memory. p is pixel number and C is component number.

all Dot Product Modules will start with an offset of 13 cycles. The Block ram
is duplicated from the other version. The only change is some delay registers
that synchronises the G with the output of the FIFOs. Because one cycle is
needed to read the FIFO, there is one delay register from the Block Ram to the
first Dot Product Module, 14 cycles delay from the second one, 27 cycles delay
from the third one and so on. When the Dot Product Modules has calculated a
result, it passes this to the AXI Output Module which streams the result on the
output. The dimension of the ref spectra decides how many numbers each Dot
Product Module produces. An important requirement which can be illustrated
for this specific example, is that if the number of elements in p is larger than 13,
the whole module will have to be stalled to be able to output all of the results.
This happens because the module will produces more than 13 values to output
each 13th cycle. Each of these 13 values need one cycle to be outputted to AXI-
stream. However, as the application will probably contain more components in
each pixel, this also increases the number of cycles between the outputs.

This example is based on some specific test data with given dimensions. This
means that the circuit might need additional logic if other data is used, however
the core will remain. If the number of spectral components had been 53. It
would take 13 cycles to transfer 52 of them. Then the next cycle, there would
be 1 component from the last pixel and three components from the next pixel.
These components would need to be separated.

As this design execute 4 calculations in parallel it would theoretically give a
speedup of 4 compared to the sequential version.

6.4.3.6 Design Choices Different choices had to be made concerning the
hardware implementation. These choices includes bit widths, rounding pre-
cision, using floating point or integer and more. This part was found to be

57

complicated and many hours was spent in considering all the factors that has
to be taken into account.

The first important decision that had to be made was to find a reasonable
bit width of G, the values that are going to be stored in the Block Ram Module
and used in the multiplication in the Dot Product Module. A good solution for
implementing the Dot Product Module was to utilise Digital Signal Processing
(DSP) slices. These are in simple terms, optimised building blocks that per-
forms different hardware implemented algorithms. Figure 59 taken from Xilinx
datasheet 7 Series DSP48E1 Slice [21] shows an overview of the DSP48E1.

Figure 59: Overview of a DSP48E1. [21]

It can be seen that it contains with other things, a 25x18 bit multiplier and a
48-Bit accumulator which is the functionality that is needed for the Dot Product
Module. A multiplier to multiply each element with same index of both vectors
and an accumulator to sum up these multiplications. Additional to having the
required functionality, the DSP slice is able to execute the multiplication in one
clock cycle, which is efficient. Another reason for using DSP is that it is efficient
in terms of not spending time on implementing a multiplier from scratch. As
the multiplier is made for 25x18 bits, 25 bits was chosen as a starting point bit
width for G and the 18 bits is sufficient for the pixel components, which may
be outputted as 10 and 12 bit from the image sensor. As will be shown, the 25
bit width might not be sufficient for the desired precision.

Another decision to make was to implement the hardware to directly handle
floating point numbers or integers. Handling floating point numbers in hardware
is complicated but as Xilinx provide a floating point core in their IP catalog [19]
which provides all the required operations this could be possible. However, this
core has a high cost in resources and requires multiple clock cycles to perform
single multiplications and additions. Also, as will be seen below, using integers
and carefully choosing the bit width, gives a high precision and the benefit from
using the floating point core disappears. Therefore a solution using integers
was chosen. When G is calculated, it consists of numbers with decimals. These
numbers will then be scaled with a factor that is chosen by the user and rounded
to the closest integer. Choosing this factor and how it impacts the result is what
is going to be presented now.

58

Finding a reasonable factor was calculated using MATLAB and mimicking
the behaviour from the implemented SW/HW design to calculate an estimate
for the error.This behaviour is as following. First the software calculates G, as
this elements are transferred to the block ram they are multiplied by a factor
and rounded down to the nearest integer. Then the Hardware implementation
is executed and the software may fetch the calculated p from memory. As this p
is read, the value is now scaled down by dividing by the same factor. The larger
the factor used the smaller the error due to the rounding will be. Table 6 shows
the result obtained from MATLAB. The results show that the factor should be
larger than 219 because at this point the error is decreasing by increasing the
number of bits. It can be seen that a bit width of 49 is required to achieve a
error below 1. The Bits Required are calculated by multiplying the data input
with the factor and then estimating how many bits are required to represent
the maximum and minimum values.

Multiplication factor Bits Required Largest Error
217 23 1.5775e+04
218 24 2.9872e+04
219 25 1.5549e+03
220 26 663
221 27 259
222 28 144.69
243 49 0.8035

Table 6: Description of different used letters and abbreviations

When a set of EMSC coefficients (p) has been calculated by the accelerator
and is ready to be outputted there are different ways of doing this. The chosen
implementation was to use the Cube DMA to fetch results from the design and
store this in memory. To fully utilise parallelism it was desired to make the CPU
start processing data stored in the memory before the accelerator has completed
execution. The solution that was implemented for this was that the accelerator
interrupts the CPU when a result has been transferred to memory. A drawback
by this solution is that it might lead to huge amount of interrupts, resulting in
the CPU being blocked in such a degree that the total execution time either gets
a small speedup, no speed up at all or even are slower than the software version.
An alternative to this implementation was to use the same keyhole burst transfer
used to store G in the block ram. This resulting in the CPU directly fetching
results from the accelerator through an AXI Register Interface. However as the
Cube DMA has two channels, one for fetching from memory and one for storing
data in memory which runs in parallel it was desired to use utilise both these
capabilities. Also the accelerator stalls if the receiving part is not able to fetch
data immediately, this would put a higher stress on the CPU in the role of the
receiving part.

59

6.4.4 Combining Hardware and Software

Figure 60 shows the architecture of the hardware/software codesign for the
EMSC algorithm. The algorithm starts on the left side with the green inputs to
the Construct Matrix M block, where the M matrix is constructed. Then G is
calculated from M and the values are loaded into the block ram in the hardware
part. Then the Cube DMA is initialised to fetch pixel data from memory and
stream it through the accelerator. The results are then fetched by the Cube
DMA and stored a different place in memory where the software may take over
and calculate the corrected spectra using these values. This overview holds for
both the sequential implementation and the parallel EMSC version, which will
be presented later in the section. The only difference would be the number of
bits transferred from memory to the Calculate P block.

Figure 60: Overview of the first EMSC implementation

6.4.4.1 Software implementation The software implemented for the SW/HW
implementation has many similarities with the pure software implementation
that was implemented in the earlier stages. The entire code is available in
Appendix G.1 but the most important parts will be presented in this section.
Figure 61 shows the prototype of the EMSC function. It can be seen that it
is identical to the pure software version except that the raw input is removed.
Instead of passing this as a input from main it is read directly from memory
inside the function.

Because the construction of the M Matrix is similar as in figure 45 from
the software implmentation this will not be repeated here. Figure 62 shows
the initializing of the Block Ram Module. It can be seen on line 4 and 6 that
pointers to the control and input/status register are declared. In line 9 the
control register are set to 0x2034 which corresponds to setting G size = 52 and
asserting the Init bit. Then the pseudo-inverse is calculated on line 13. To

60

1 void EMSC(double ** ref_spectra ,

2 double * mean_spectra ,

3 double ** corrected ,

4 int nVars , int nObs ,

5 int refOrder)

Figure 61: Function Prototype.

instead perform a inverse line 13 is switched with the commented line 14. The
for-loops at lines 17-21 multiplies the values in G by a factor called multiplier,
rounds this result using floor and writes this directly in to the Block Ram
Module. In line 23 the Init is set to ’0’ and line 25 enables the accelerator.

1 // Initiate Block Ram

2 //--

3 // Create pointer to Block Ram base address

4 u32 * init = (u32*)0x43c10000;

5 // Creates a pointer to the address to write G

6 u32 * in_G = (u32*)0x43c10004;

7
8 // G_size = 52, init = '1'.
9 *init = 0x2034;

10
11 // Execute pseudo -inverse of M

12 MatrixXd M_M = M*M.transpose ();

13 MatrixXd p_inv = M.transpose () * M_M.completeOrthogonalDecomposition ().pseudoInverse ();

14 // MatrixXd p_inv = M.transpose () * M_M.inverse ();

15 xil_printf ("Pseudo -Inverse Completed !\n");

16
17 for(int y = 0; y<refOrder +4; y++){

18 for(int i = 0; i<nVars; i++){

19 *in_G =(int) floor(p_inv(i,y)* multiplier);

20 }

21 }

22 //init set to '0', keeps G_size value.

23 *init = 0x34;

24 // enable set to '1', keeps G_size valueTh.

25 *init = 0x1034;

26 //--

Figure 62: Initialising the Block Ram Module.

The next part is to initalize the Cube DMA. The code is shown in figure 63.
Line 3 and 4 creates pointers to the Cube DMA mm2s (memory map to stream)
channel and s2mm (stream to memory map) channel control registers. Line 7
makes sure that the s2mm channel is not enabled. The memory address for
storing the results from the accelerator is written to the corresponding register
in line 8. Line 9 sets the Completion IRQ enable bit and the Start bit in the
s2mm control register. The next step is to program the mm2s channel. First,
line 12 makes sure the channel is disabled. The memory address to fetch the
cube data is written to the corresponding register in line 13. The DMA wants to
know the dimensions of the data to transfer, this is programmed in lines 17-18
for the large cube (500x500x52). line 17-18 is switched with lines 15-16 for the
small cube (100x100x52). Then the Completion IRQ enable bit and enable bit
for mm2s is set in line 20. At this point the Cube DMA will start transferring
cube data to the accelerator. Line 21 is a while loop that will block the program
until the flags s2mm complete and mm2s complete are assigned. These flags are
assigned inside an interrupt handler executed when the Cube DMA triggers

61

interrupts for completion on both channels.

1 // Initiate and enable Cube DMA

2 //--

3 u32* mm2s = (u32*)0x43c00000;

4 u32* s2mm = (u32*)0x43c00020;

5
6 // Program S2MM DMA

7 s2mm [0] = 0x0;

8 s2mm [2] = 0x0F0BDBF0;

9 s2mm [0] = (1 << 5) | 1;

10
11 // Program MM2S DMA

12 mm2s [0] = 0;

13 mm2s [2] = 0x100010E0;

14
15 //mm2s [3] = 0x1001001; //Small cube

16 //mm2s [5] = 520000; //Small cube

17 mm2s [3] = 0x341F41F4; // Large cube

18 mm2s [5] = 0x6590 ;// Large cube

19
20 mm2s [0] = (1 << 5) | 1;

21 while (! s2mm_complete || !mm2s_complete);

22 //--

Figure 63: Initialising the Cube DMA.

When both Cube DMA completion flags are triggered the result from the
accelerator has been saved in memory and the software may start calculating
the corrected spectra. Figure 64 version 1 show how this was done. First two
pointers are declared, one to the location of p and another to the location
of cube data (raw). The while loop on lines 10-18 are making sure that the
calculations are executed until all pixels has been processed. The for loop
starting at line 11 is fetching all components in one row of the p and dividing
this by the multiplication factor that was used when values was inputted to
the accelerator. The second for loop at line 14, fetches a pixel component and
calculates the corrected spectra in the same way as the MATLAB script.

62

1 // Calculate the corrected spectra

2 //--

3 int64_t * P_ptr = (int64_t *)0x0F0BDBF0;

4 u16 * raw_ptr = (u16*)0x100010E0;

5 double p_st [8];

6 u16 pixel_component;

7 int counter = 0;

8 //--

9 // Version 1

10 while(counter < nObs){

11 for(int i = 0; i < 8; i++){

12 p_st[i] = P_ptr[i+counter *8]/ multiplier;

13 }

14 for(int cols = 0; cols < nVars; cols ++){

15 pixel_component = raw_ptr[counter *52+ cols];

16 corrected[counter][cols] = (pixel_component - (p_st [0] + p_st [1]* corr_M [0][cols] + p_st [2]*

corr_M [1][cols]))/p_st[refOrder + 3];

17 }

18 counter ++;}

19 //---

20 // Version 2

21 while(counter < nObs){

22 if((int_counter - counter > 10) || (nObs - int_counter < 10)){

23 for(int i = 0; i < 8; i++){

24 p_st[i] = P_ptr[i+counter *8]/ multiplier;

25 }

26 for(int cols = 0; cols < nVars; cols ++){

27 ah = raw_ptr[counter *52+ cols];

28 corrected[counter][cols] = (pixel_component - (p_st [0] + p_st [1]* corr_M [0][cols] + p_st [2]*

corr_M [1][cols]))/p_st[refOrder + 3];

29 }

30 counter ++;}}

Figure 64: Calculate corrected spectra.

Because this method blocks the processor while the accelerator is running a
non blocking method was implemented. Figure 64 version 2 shows the code for
this implementation. In addition to using this code the line 21 in figure 63 was
removed so the processor does not wait for the DMA. Instead the accelerator
has it own interrupt that triggers each time a new row of p is calculated. Using
this the processor can start process the p’s that are stored in memory before
the accelerator has completed. However, it is important that the processor does
not access memory where it not yet has been stored any values of p, because
this would corrupt the results. Also, when the accelerator triggers the interrupt
that a result is ready, the Cube DMA will still use some clock cycles before this
result is stored in memory so this has to be handled. In the figure (64 at line
22 this is handled. This if makes sure that int counter is larger than counter.
int counter counts how many results has been reported ready to process and
counter counts how many results have been processed. In the figure, 10 is used as
an example, but this value could be changed if the result seems to be corrupted.
Also another condition is required to make sure that the last 10 results also
get processed. This implementation as mentioned before will trigger the same
amount of interrupts as there is pixels, this might give a performance reduction
compared to the blocking version.

63

Memory mapping Table 7 shows the memory mapping that was used for
the difference elements. The DDR memory on the Zynq is restricted to 512 MB
so if very large cubes are to be used this could exceed this. A solution could
be to either utilise a SD card directly or to process sub-cubes of the large cube
multiple times.

Memory Address Range Data
0x00100000-0x0C800000 Software Memory
0x0C800000-0x0F0BDBF0 Free
0x0F0BDBF0-0x10000000 P
0x10000000-0x10001000 Reference spectra
0x10001000-0x100010E0 Mean
0x100010E0-0x19CD1534 Raw
0x19CD1534-0x1FFFFFFF Corrected Spectra

Table 7: Memory Mapping EMSC software

6.4.4.2 Testing the implementations A testing procedure was used to
collect results from the different designs that was implemented. As mentioned
above, profiling was executed to measure the execution times of the different
parts of the design. Additionally to this, MATLAB was used to analyse the
results to measure the precision.

64

7 Results

7.1 Image sensor pipeline

As mentioned the clock input to the Image Sensor was mapped to a pin from
the HP bank of the Zynq. This is not able to provide the necessary voltage
level therefore the image sensor has not yet been able to test. The result in this
section will therefore be based on the information gathered from the design tool
Vivado. This includes simulations showing the correct behaviour and utilisation
reports from synthesis. The source files and testbenches for all of this modules
can be found in the Appendix.

7.1.1 LVDS Deserialiser

The results from simulation and synthesis of the design presented in section
LVDS Receiver with Xilinx Primitives is presented in this section.

Simulation Figure 65 shows a waveform of the initial phase of the receiver
when training is done. The training pattern that was applied on all channels
was ”1010 1101 0010” which is 2770 in decimal representation. It can be seen
that the receiver captures the correct bits ”1101 0010 1010” (3370) but that
these are not captured in the correct order. However, after 4 bitslip operations
the correct training pattern is captured. It can be seen that the state machine
does the synchronisation operation on every channel sequentially and that this
requires the training pattern to be applied until all channels are synchronised
which is indicated with the in sync signal.

Figure 65: Waveform of training state of receiver

After the training phase has completed the testbench transfers 100 pixel
components in incrementing order from 0, where 12 of these have been high-
lighted in the waveform shown in figure 66. It can be seen that all channels
captures the correct values.

65

Figure 66: Waveform of transfer state of receiver

Synthesis The utilisation results from the synthesis are shown in table 8.

Pixel Bit Width NUM LVDS PAIRS LUTS Registers IDELAYE2 ISERDESE2
12 4 152 49 11 10
10 16 251 75 35 34

Table 8: Utilization report Deserialiser

7.1.2 Pixel Order Alignement Module

Simulation Figure 67 shows the waveform from simulating the Pixel Order
Alignement Module. The module starts when valid in are set high. The input
channels are not visible in the waveform as a selection of important signals
was included. m axis tdata shows the output to the CubeDMA. m axis tvalid,
m axis tready and m axis tlast are the associated AXI-stream interface signals.
wr cnt is a counter that counts the number of elements written to the FIFOs.
data out 1 to data out 4 are the outputs from the FIFOs that are distributed
to the m axis tdata with a MUX. rd en is the read enable signals to the FIFOs.
Here it can be seen that all FIFOs are read once initially. state shows the current
state of the state machine inside the Control Logic block showed in figure 37.
The fifo signal is the signal deciding which FIFO the mux should pass to the
m axis tdata. component cnt, row cnt and frame cnt are counters that monitor
the progress of the module. These are programmed by the user depending on
the number of and size of the frames to know when to signal the Cube DMA
that last value has been passed.

66

Figure 67: Waveform from simulation of Pixel Order Alignement Module.

It can be seen that the transfers to the CubeDMA happens in bursts. This is
controlled by the wr cnt. When the number of elements written to the module
reaches the number set by the user the state machine starts outputting data.
The wr cnt is reset to 0 at this point starting to count written elements of the
next row. The yellow marker in the figure is placed at the end of the first cycle
of reading all the FIFOs and it can be seen in this example, with a row size of
512, that wr cnt has reached 205 elements at this point which was calculated in
the Method section in table 3 (51.2 ∗ 4 = 204.8).

Synthesis The synthesis values for the relevant configuration are presented
in table 9.

Pixel Bit Width NUM LVDS PAIRS PIXEL ROW SIZE LUTS Registers Block Rams
12 4 512 995 1187 4

Table 9: Utilization report Pixel Order Alignement Module

7.1.3 Binning Module

The results from simulation and synthesis of the binning module is presented
below.

Simulation Figure 68 shows a waveform from simulation of the Binning
Module with a Binning Factor of 4. s axis tvalid, s axis tready, s axis tlast and
s axis tdata is the signals for the input AXI-stream interface to the Binning
Module. m axis tvalid, m axis tready, m axis tlast and m axis tdata is the out-
put AXI-stream interface.

67

Figure 68: Waveform from simulation Binning Module with Binning Factor equal to
4.

reg accumulator is the register storing the additions between the four inputs.
add1, add2 and add3 is the resulting addition between input 1 and 2 (add1),
input 2 and 3 (add2) and these results added together (add3). It can be seen that
the values on the m axis tdata equals the value in the reg accumulator divided
by four, resulting in the average value of the four input pixel components. Also
a bubble from the Cube DMA is added in the simulation meaning that there is
a cycle where it needs a break. The module will in these situation, stop the
output from the Pixel Order Alignment Module and stall until the Cube DMA
is ready again.

Figure 69 shows a simulation of the same module with a Binning Factor
of 8. In this case it can be seen that the reg accumulator stores the result
from the additions twice resulting in the sum of 8 pixel components. Then the
m axis tdata outputs this result divided by 8.

Figure 69: Waveform from simulation Binning Module with Binning Factor equal to
8.

Lastly is the configuration of Binning Factor of 16 showed in figure 70.
Here it can be seen that the reg accumulator accumulates the results from the
additions 4 times, resulting in the sum of 16 pixel components. This is then
divided by 16 and outputted at m axis tdata.

68

Figure 70: Waveform from simulation Binning Module with Binning Factor equal to
16.

Synthesis The synthesis values for the relevant configurations are pre-
sented in table 10.

Pixel Bit Width NUM LVDS PAIRS BINNING FACTOR LUTS Registers
12 4 4 43 16
12 4 8 97 66
12 4 16 101 68

Table 10: Utilization report Binning Module

69

7.2 EMSC

In parallel with this thesis, a team was working on how data should be prepro-
cessed and how the EMSC could be applied to hyperspectral imaging. There-
fore the results from the EMSC implementations will not be analysed in the
perspective of hyperspectral imaging but to how well the results matches what
is calculated with the MATLAB script. This means that it is unknown how
precise the results need to be compared to the MATLAB script but keeping the
design as generic as possible lets the end user customize this to his use.

7.2.1 Software Implementation

Testing of the EMSC implementation was done concerning both the precision of
the result and the time consumed executing the algorithm. A cube of 500x500
pixels containing 52 spectral components was used as test data. For profiling
the cube size was also interesting so a subcube with 100x100 pixels was also
used. This resulted in raw matrices 10000x52 and 250000x52. The test was
executed by creating the raw matrix from a cube in MATLAB and writing this
as floats to a binary file. This binary file was uploaded to the DDR memory of
the Zynq on a Zedboard using the XSDB tool in the Vivado TCL shell. The
EMSC software was executed. And the result was written as floats to a binary
file, downloaded from the Zynq and analyzed in MATLAB.

7.2.1.1 MATLAB analysis of software implementation results MAT-
LAB has been an important tool in analysis of the result. Both the available
algorithms and the possibility to create visual representations have been helpful.
The analysis will follow the same steps as they where done during this work. As
there was a parallel development of the EMSC algorithm by the organisation
whom handed out this task, there was not yet been decided what preprocessing
was necessary on the cube data to give a correct result in term of a good way
of representing the results in terms of the hyper spectral image that this data
represents. In other words, there was not yet found a way to see if the EMSC
produced a result only containing the chemical absorbance spectra. Therefore
the quality of the results produced in this thesis was measured by comparing
the results produced by the MATLAB script to the results produced from the
implementations executed on the Zynq.

First off, both the Cubes (100x100x52 and 500x500x52) was streamed through
the software implementation and the calculated corrected spectra was down-
loaded and inputted to MATLAB. Then it was compared to the result achieved
with the MATLAB script. As the smallest cube is a subcube of the larger one,
it was only interesting to analyse the large cube in terms of correctness as this
would include the smaller cube.

Figure 71 show the inputted cube data. The x-axis shows the wavelengths
from 1 to 52 and the y-axis represent the cube data values (raw).

70

Figure 71: Plot of the raw data for the large cube (500x500x52)

Figure 72 shows the corrected spectra that was generated with the MATLAB
script. This is interesting for comparison with the output from the implemented
design.

Figure 72: Plot of the corrected spectra for the cube produced with MATLAB

The corrected spectra produced by the software implementation executed
on the Zynq is showed in figure 73. It is hard to visually observe any differences
from these results compared to the ones generated with the MATLAB script.

By using MATLAB to compare the different corrected spectras it was easy
to see the difference. This result is shown in the figure 74. First there are
one pixel around the middle which has a mismatch of 150 and a few pixels
at the rightmost side with a difference of around 25. The mean of differences
across all pixels are -7.21e-04 showing that the majority of the result is pretty
accurate to the result produced with the MATLAB script. As a reference to the

71

Figure 73: Plot of the corrected spectra for the large cube produced by software
implementation on Zynq.

differences that was found above, the corrected spectra contains values in the
range -1.036e+03 to 7.166e+03.

Figure 74: Plot of the difference between corrected spectra produced in MATLAB and
in Zynq for the large cube (500x500x52)

Even though the analysis of the result collected from the cube data showed
that the mean error was low a further analysis was initiated to investigate why
there was some extreme values in some of the pixels. The procedure for this was
to look at the p produced in the Zynq which is used to calculate the corrected
spectra. Looking at this may reveal a bug or some other reason producing
these pixel errors. Figure 75 shows the results from this. With the pixels
along the x-axis and Pmatlab − PZynq on the y-axis. It can be seen that there
is small differences accross the pixels but that the magnitude of this is below

72

3e-06. This should indicate that the calculation of p is correct, however as
there is some conversions between float and double as the files are transferred
between MATLAB and Zynq, this could be the result of this. Also floating point
calculations could have some differences across architectures. Argument G was
also analysed to look for sources that contributes to the error in calculation of
the corrected spectra.

Figure 75: Plot of the difference between p produced in MATLAB and in Zynq for
the large cube (500x500x52)

To recall, G is calculated by equation 10 and to achieve the pseudo inverse
operation an external library called Eigen is used.

G = M ′pinv(M ∗M ′) (10)

Figure 76 shows the difference between the MATLAB and Zynq generated
G. It can be seen that there are some differences but with a small magnitude.
The largest difference has a magnitude of around -1.5e-04. The impact of these
difference will have to be further analyzed with MATLAB.

As analysis of these results did not give a clear answer of what is causing
this error. The results from the Zynq was tried reconstructed in MATLAB. This
was done by using the p calculated on the Zynq in MATLAB to calculate the
corrected spectra. Doing this gave the same error in the result and a conclusion
could be done. By finding the specific pixel that had this large difference in
figure 74 and looking at the corresponding p values leading to this values showed
the problem. In the formula of calculating the corrected spectra repeated below
(equation 11) it can be seen that the whole result is divided by the coefficient
bi. This is found in the last column of p. Comparing these values in the p
generated in MATLAB and on the Zynq revealed the source of the problem.
The MATLAB generated p had a value of 2.5548e-05 and the Zynq generated
a value of 2.4786e-05. The difference between these values has a magnitude

73

Figure 76: Plot of the difference between G produced in MATLAB and in Zynq.

of 7.63e-07 which is really small, however if you divide these values by 1, one
gets a large difference of 1.205e+03 which leads to the inaccurate results in the
corrected spectra.

zi,corrected = (zi − ai − d1λ− e1λ2)/bi (11)

This could indicate that the small differences when comparing the calculation
of G in MATLAB and on the Zynq has a great impact on the final results and
that a the problem seems to be in calculating the pseudo inverse on the Zynq.
Calculating the inverse instead of the pseudo-inverse produced the same result
as presented above.

7.2.1.2 Profiling The results from the profiling of the C++ implementa-
tion of the EMSC algorithm is shown in tables 11 and 12, for the small and
large cube respectively. The Inverse and Pseudo-Inverse measurements from
two different executions utilising these functions. The results shows that the
Inverse calculation uses about 0.67 the time of the Pseudo-Inverse calculation.
It can be seen that calculating the corrected spectra is the part that is running
definitely slowest and would gain the most benefit from being implemented in
hardware. The profiling was measured on the same cubes as mentioned earlier
in the section. It can be seen that the percentages on the different code parts
are not adding up to a 100%. This happens because the measurements was done
over different runs. However, the results is precise enough to draw a conclusion
of what parts dominates the execution time.

74

Code part Clock Cycles Time Percentage
Entire EMSC function 31393157 0.314s 100%
Constructing M-Matrix 30448 0.304ms ≈0.1%
Inverse 319606 3.196ms ≈1.02%
Pseudo-Inverse 471393 4.714ms ≈1.5%
Calculating Corrected Spectra 31009146 0.310s ≈98.78%

Table 11: Results profiling of C++ implementation of small cube

Code part Clock Cycles Time Percentage
Entire EMSC function 776305256 7.76s 100%
Constructing M-Matrix 30463 0.304ms <0.01%
Inverse 319299 3.192ms <0.1%
Pseudo-Inverse 472023 4.720ms <0.1%
Calculating Corrected Spectra 775561033 7.75s ≈99.87%

Table 12: Results profiling of C++ implementation of large cube

7.2.2 Hardware Implementation

The hardware implementation was simulated block by block and all blocks con-
nected together. It was experienced that if the simulation showed the correct
result the implementation would execute correctly on the Zynq. The test bench
that was used can be found in the appendix. It is written in verilog and utilises
the ability to read and write to files. MATLAB was used to write the inputs to
binary files which then could be read using the test bench. The results from the
test bench then could be written to a binary file and MATLAB could be used
to confirm a correct result. Figures 77-79 is examples of how the waveforms
would look when simulating the Block Ram Module, Dot Product Module and
the Output Module. In figure 77 the Block Ram Module is simulated. At the
bottom it can be seen that the v len and R order has been written to through
the AXI4-lite interface. The v len is number of components in a pixel and is
set to 52 and R order is the number of rows in the Reference spectra and is set
to 8. When init is set high the block rams are written to one by one and when
8 block rams is filled the Initialized signal is set high, indicating that the Block
Ram Module is initialized. It can be seen that there is 16 block rams available
but because the R order is set to 8 only 8 of them is written to.

75

Figure 77: Waveform from simulating the Block ram module.

Figure 78 shows a simulation of the Dot Product Module. The waveform
shows the calculation of the dot product between two pixels and the 4 first
rows in the G matrix. The different colors separates the 4 different dot product
calculations. When the p rdy signal is set high the value in the accumulator, in
this waveform the values in p, are outputted to the Output Module.

Figure 78: Waveform from simulating the Dot Product Module.

Figure 79 shows the simulation of the Output Module. m axis tdata, m axis tvalid,
m axis tready and m axis tlast forms the AXI-stream interface for outputting
the data.

Figure 79: Waveform from simulating the Output Module.

When p rdy is asserted the output module starts outputting the values to
the Cube DMA. It can be seen that bubbles is simulated from the Cube DMA
when it is not able to receive data. The Output Module however is designed to
handle this. When a set of p has completed transfer the p irq is asserted to
signal the CPU that values are stored in memory.

76

7.2.3 HW/SW Implementation

The SW/HW implementation was tested in a similar way as the SW implemen-
tation. The same cubes, small and large, was streamed through the design and
the result was analysed using MATLAB. Figure 80 shows the resulting design
illustrated as a block diagram generated in Vivado. On the right side is the
processing system of the Zynq 7000. In the middle we have cubedma top v1 0
which is the Cube DMA and top 0 which is the EMSC hardware accelerator
design. The axi timer 0 is the timer which was used to measure the time for
different part of the design. Concat is a block which concatenates the four inter-
rupt signals into one 4 bit vector. The two blocks on the left AXI Interconnect
and Processor System Reset is blocks which automatically is generated when
the other blocks mentioned is connected to the Zynq 7000, which handles the
AXI connections to the Zynq and the reset of the system. This design looks
identical for both the Sequential and Parallel version. The only difference is
how the Cube DMA is configured, depending on how many pixel component to
transfer each cycle.

Figure 80: Block diagram of design from vivado.

7.2.3.1 Sequential Design

Synthesis To be able to run the hardware accelerator on the Zynq the
design has to proceed through synthesis, implementation and a bitstream gen-
erator. The former produces the data that is uploaded to the Zynq and programs
the FPGA. During synthesis and implementation, utilisation reports are gener-
ated which shows the resources spent to fulfil the design. Table 13 shows the
default values chosen for this module. The synthesis was then done on multiple
versions where the different parameters was changed. The generics in the table
can be recognised in the VHDL implementation code in Appendig G.1.2.

77

Generic Description Default Value
B RAM SIZE Max number of elements in Block ram 400
NUM B RAM Max number of columns in G. 16
RAW BIT WIDTH Bit width of raw components 16
G BIT WIDTH Max bit width of G components 32
P BIT WIDTH Bit width of accumulator in Dot Product Module 48

Table 13: Synthesis results

Figures 81-83 shows plots of the utilisation reports from the synthesis of
the sequential design with different parameters. The results presented some
interesting points which was not considered. It can be seen in figure 81 that
increasing the bit width of G to 32 bits the synthesis tool divides the multi-
plication into two DSPs reducing the number of LUTS and registers. Timing
reports showed that maximum clock frequency was 119MHz between 25-29 bits
and 132 MHz between 30-32 bits meaning that increasing the bit width of G
into using two DSPs in chain would still meet timing requirements of 100MHz.

25 26 27 28 29 30 31 32
0

5

10

15

20

25

30

35

40

bit width

LUTS · 10−2

Registers · 10−2

DSP
BRAM

Figure 81: Utilization by increasing bit width of G

78

2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

Species

LUTS · 10−2

Registers · 10−2

DSP
BRAM

Figure 82: Utilization by increasing size of reference spectra

48 50 52 54 56 58 60 62 64
0

5

10

15

20

25

30

35

40

bit width

LUTS · 10−2

Registers · 10−2

DSP
BRAM

Figure 83: Utilization by increasing bit width of p

7.2.3.2 Profiling The same profiling was done for the SW/HW implemen-
tation and the results is shown below in table 14. Elements in the table with
the subscripts illustrates where the blocking(1) and non-blocking(2) version of
the Calculating Corrected Spectra was used. In the non-blocing version the exe-
cution of the Cube DMA is parallel with the Calculating Corrected Spectra and
therefore the part Initiate and executeCube DMA only applies for the blocking
version.

79

Code part Clock Cycles Time Percentage
Entire EMSC function1 189563713 1.896s 100%
Entire EMSC function2 181243972 1.812s 100%
Constructing M-Matrix 30142 0.301ms <0.1%
Initiate Block Ram 654965 6.550ms <1%
Inverse 319299 3.193ms <1%
Pseudo-Inverse 472023 4.720ms <1%
Initiate and execute Cube DMA1 13000390 0.130s 6.9%
Calculating Corrected Spectra1 176753247 1.768s ≈93.2%
Calculating Corrected Spectra2 180741807 1.807s ≈99.7%

Table 14: Results profiling of sequential SW/HW implementation of large cube

Code part Clock Cycles Time Percentage
Entire EMSC function1 14516844 0.145s 100%
Entire EMSC function2 13889585 0.139s 100%
Constructing M-Matrix 30142 0.301ms <0.3%
Initiate Block Ram 654965 6.550ms 4.5%1-4.72%2

Inverse 319299 3.193ms 2.2%1-2.3%2

Pseudo-Inverse 472023 4.720ms 3.3%1-3.4%2

Initiate and execute Cube DMA1 520210 5.2ms 3.1%
Calculating Corrected Spectra1 12639504 0.126s ≈87.1%
Calculating Corrected Spectra2 13436007 0.134s ≈96.7%

Table 15: Results profiling of the sequential SW/HW implementation of small
cube

80

7.2.3.3 Parallel implementation Also for the synthesis results of the par-
allel implementation some default values was chosen. These values are shown
in table 16. The result found in the sequential version by increasing bit width
of G also applied here. Timing however showed a bit lower max frequencies,
110MHz for bit widths between 25-29 bits and 119MHz for bit widths between
30-32 bits. This still meets timing requirement of 100 MHz. The results from
the utilisation reports are reflected in the plots showed in figures 84-86.

Generic Description Default Value
B RAM SIZE Max number of elements in Block ram 400
NUM B RAM Max number of columns in G. 16
RAW BIT WIDTH Bit width of raw components 64
G BIT WIDTH Max bit width of G components 32
P BIT WIDTH Bit width of accumulator in Dot Product Module 48
FIFO DEPTH Max number of elements in FIFO 512

Table 16: Synthesis results

25 26 27 28 29 30 31 32
0

20
40
60
80

100
120
140
160
180

bit width

LUTS · 10−2

Registers · 10−2

DSP
BRAM

Figure 84: Utilization by increasing bit width of G

81

2 4 6 8 10 12 14 16
0

20

40

60

80

100

120

140

Species

LUTS · 10−2

Registers · 10−2

DSP
BRAM

Figure 85: Utilization by increasing size of reference spectra

48 50 52 54 56 58 60 62 64
0

20

40

60

80

100

120

140

bit width

LUTS · 10−2

Registers · 10−2

DSP
BRAM

Figure 86: Utilization by increasing bit width of P

82

7.2.3.4 Profiling Tables 17 and 18 shows the result from profiling the par-
allel implementation. As the only different values from earlier results is the
Cube DMA execution time and the Calculating Corrected Spectra part all other
parts has been omitted. It was not possible to produce results by using the non-
blocking version on this design as the results was buggy and incorrect. This may
be due to the heavier load of interrupts occuring.

Code part Clock Cycles Time Percentage
Entire EMSC function 177980981 1.78s 100%
Initiate and execute Cube DMA 3251579 32.5ms ≈1.8%
Calculating Corrected Spectra 174247591 1.742s ≈97.9%

Table 17: Results profiling of the parallel SW/HW implementation of large cube

Code part Clock Cycles Time Percentage
Entire EMSC function 10745513 0.107s 100%
Initiate and execute Cube DMA 131025 1.3ms ≈1.2%
Calculating Corrected Spectra 10520111 0.105s ≈97.9%

Table 18: Results profiling of the parallel SW/HW implementation of small
cube

7.2.3.5 MATLAB analysis of HW/SW Implementation MATLAB
was used to both estimate the results and to compare this with actual results.
The estimations was based on recreating the same operations executed on the
Zynq in MATLAB. As the sequential and parallel version uses the same Dot
Product Module the result was identical for both of them. The estimated cal-
culated spectra was found by changing the lines 20-24 in the MATLAB script
(figure 42 with the lines below (figure 87).

1 G = M'*pinv(M*M');
2 G = floor(G*mult);

3 P = zeros(nObs ,size(M,1));

4 corrected = raw;

5 for idx = 1:nObs

6 p = raw(idx ,:)*G;

7 P(idx ,:) = p/mult;

8 corrected(idx ,:) = (raw(idx ,:) - P(idx ,1: mOrder +1) *M(1: mOrder +1,:)) / P(idx ,end);

9 end

Figure 87: Lines replaced in MATLAB script to calculate corrected spectra

It is seen that the G is multiplied with a factor called mult and rounded,
then P is divided with the same factor to calculate the corrected spectra. P
was not declared in the original MATLAB script, but it was found practical to
be able to output this from the function.

83

This method showed to be efficient as the calculated results was very close
to the measured result from the data received from the Zynq. Starting with a
multiplication factor of 218 gave the calculated result showed in 88 and measured
result showed in figure 89. Looking at the results however shows that using the
218 gives multiple errors with an magnitude between 0-4000. En erroneous
result using multiplication factor 218 was predetermined in the Design Choices
in the Method section. This means that the multiplication factor needs to be
increased. However, this factor cannot be chosen randomly due to the risk of
overflow in the accelerator.

Figure 88: Calculated results for factor 218

Figure 89: Measured results for factor 218

A way of calculating this is to take the absolute value of all elements in
G and find the largest value. This can be used to calculate how many bits is
needed to represent this value, which at this point cannot exceed 32 bits. Using

84

equation (12) the range that can be represented with n-bits is calculated.

[−2n−1 to 2n+1 − 1] (12)

Using this equation, it was found that 222 was the highest factor that could
be used and this gave the calculated and measured results as shown in figures 90-
91.

Figure 90: Calculated results for factor 225

Figure 91: Measured results for factor 225

It can now be seen that the error is reduced below 150 which is a great
improvement and shows that increasing the bit width increases the precision.

85

8 Discussion

The discussion section will be divided in two parts, one covering the Image
Sensor Pipeline and one for the EMSC implementation.

8.1 Image Sensor Pipeline

The LVDS Receiver, consisting of the Deserialiser and the Pixel Order Align-
ment Module was a challenging design to implement. Starting with the Simple
Design it was early in the process revealed from other designers experiences,
that this design most likely where to naive and simple to fulfil the requirements
of capturing data from LVDS transfers. However, as the Zynq 7000 platform
already had primitives designed for this application as well as good documen-
tation, both from Xilinx it self and other contributors on how to use these
building blocks, the design developed to something more robust against the
nature of the LVDS signals. The results from simulating the different blocks
showed that they worked as intended. However, as was experienced during the
EMSC development, is that the requirements are much stricter when the de-
signs are to be executed on actual hardware. There was no opportunity to test
the LVDS implementation with the Image Sensor which would have revealed
the present flaws and bugs of the design, which there usually is before this have
been done. Running the designs on hardware would also showed how the effects
from different latencies accross the LVDS data channels and clock channel would
have impacted the result. Synthesis results of the Deserialiser showed that it
spends only a small amount of LUTS and registers because it utilises the Xilinx
primitives available, which is good as long as these primitives are not needed for
something else. For the Pixel Order Alignment Module the challenging part was
the clock domain crossing from the 40 MHz on the LVDS side to the 100 MHz
to the Cube DMA side. The asynchronous FIFOs that was found made this
task feasible and the results from simulation satisfied the requirements. Also
this module would have benefited from been executed on hardware to see if the
assumptions that was made would hold. For example, the FIFO sizes which
depends on the Cube DMA being able to transfer without a lot of bubbles to
avoid full FIFOs resulting in loss of values.

Only 12 bit version of the Pixel Order Alignment Module was implemented.
The main reason for this was that 12 bit was the desired operation mode for the
Image Sensor. Another reason was that because the Cube DMA has a maximum
data rate to memory of 64bits× 100MHz = 6400Mbit

s and the 10 bit operation
mode over 16 LVDS channels has a data rate of 10bits × 16ch × 48MHz =
7680Mbit

s . This means that the Cube DMA would not have been able to receive
an output data rate equal to the input data rate. A solution to this could be
to use two Cube DMAs, however this would be complicated as they would need
to be synchronised and know when and where the other Cube DMA wrote in
memory. Or it could be sufficient with one Cube DMA if the Binning Module is
used to reduce the input data rate.

86

Further down the pipeline we have the Binning Module. As this module is
connected to the Pixel Order Alignment Module it was found reasonable to only
implement this one for 12-bit as well. Simulations shows that this module works
as intended. This is a simple module because the Binning operation is simple.
However, this module might get more complicated in the future if it is found
that a more sophisticated binning operation is desired.

8.2 EMSC

Looking at the results from the EMSC algorithm that was implemented it shows
that the process from the pure software version to the hardware/software co-
design version resulted in speedup. From the tables presented in the profiling
section of the results, it can be seen that the sequential version resulted in a
speedup of 2.17 and 2.26 for the blocking and non-blocking version respectively
on the small cube (100x100x52). Speedup of 2.93 on the small cube with the
parallel version. For the large cube (500x500x52) it resulted in a speedup of
4.1 and 4.28 for the blocking and non-blocking sequential versions and 4.36 for
the parallel version. The differences in speedup between the different cube sizes
might be explained by the overhead time for initiating the accelerator which is
fixed for both cube sizes. This will then impact the speedup more the smaller the
data size is. It should be mentioned that the pure software version used around
1.7s and 22s for the small and large size in its first version. This was due to read
and write operations directly on the Eigen type matrices inside the Calculating
Corrected Spectra. By first copying these matrices into a standard C++ pointer
the computing time was reduced to what was presented in the result section.
The accelerator that was implemented was focused around producing the dot
product that was needed to calculate the correct result in software. When the
parallel version was implemented the dot product calculation reached a point
where the arithmetic operations in software was the main contributor to the
execution time. This resulted in that the parallel implementation did not im-
prove the speedup as much as expected. However, if a version including the
arithmetic operations in the accelerator was implemented this could show the
true potential of the parallel implementation.

Concerning the precision it was helpful to find that the results could be pre-
dicted by using MATLAB, and that by using the largest bit width of G possible
in this version, the precision was almost as good as the software version. There
was a few pixels with a significant incorrect result but across all pixels the mean
error was low. The prediction however indicated that by increasing the bit width
of G even more this error was further lowered. This would however required
some changes to this design. The AXI register interface that was used in the
implementation which among other things transfer data to the block rams in
the initialisation phase was set to transfer data of 32-bits. If the bit width of
G was to be increased this could either be solved by increasing the data size in
this AXI register to for example 64 bits. Or a 64 bit number could have been

87

transferred using two 32 bit register. This is something that is interesting for
future work to see what precision could be achieved. It was also gathered results
in the synthesis that was not considered at the start of the design process. That
multiple DSPs was chained to support larger bit widths could have changed the
initial design choices where it first was thought that G had to be restricted to
25 bits to fit the DSP. If the implementation initially was designed for this, the
resulting implementation may have been designed for larger bit widths through
the process. However, this is also something that will be addressed in the future
work section.

It was also shown in figure 83 and 86 that increasing the bit width of p
did not effect the resource usage considerable and that a bit width of 64 bits
actually had a smaller resource usage than the default value of 48 bits. There-
fore the value of this bit width should be set to 64 bits as default. The reason
this was set to a default of 48 bits is that the size of the accumulator in the
DSP has a bit width of 48 bits. It seems that the synthesis tool do not use the
accumulator in the DSP to sum the products of the multiplications in the Dot
Product Module as first assumed but instead implements different logic to do
this operation. This is also something that will be mentioned in future work as
a version where the accumulator inside the DSP is used when the bit width of
p is less than or equal to 48 bits to reduce surrounding logic.

Lastly, the importance of verification and testing should be mentioned. It
was early discovered in this process that spending time on testbenches was
really important to be able to make this design execute on the hardware. Many
hours was spent debugging and trying to understand why the designs would
not work when they executed on the FPGA. The debugging cores contained in
Vivado was a really helpful tool as well as trying to cover all possible sources
to error in the testbenches that was made. For example, the Cube DMA had
some cycles where it was not able to receive data, earlier referred to as bubbles.
These was really hard to detect with the debugging core as they might occur
in the 15 transaction or the 13000000 transaction. When this was included into
the testbench and the design was modified to handle these, it suddenly worked
when executed on the FPGA. This are just an example of many illustrating the
importance of the simulation and the requirements of the testbench.

88

9 Conclusion

As was mentioned in the discussion part, the initial stages of the design process
is important and being able to map and organise the requirements for the design
in such a way that good choices are made through the whole loop. For the LVDS
receiver interface it was revealed that the first simple design was in many cases
not sufficient to fulfil requirements because of the nature of LVDS signals. This
was considered and resulted in a more robust solution, utilising primitives from
Xilinx own ip catalogue, building blocks tailored for this application. It must
however be stressed, after the HW/SW co-design process of EMSC, the path
from having a module working seamlessly in simulation to have it working on
the FPGA may be long. By adapting this experience for the LVDS receiver
interface, one would probably reveal bugs and improve this design if it was
executed and tested on actual hardware. The EMSC implementation showed
that the process of making hardware and software working together in a so called
Hardware/Software co-design is a challenging process consuming many hours of
testing and failing. However, when the designs finally worked, the results both
showed promising points as well as potential improvements of the designs.

10 Future Work

As there are multiple potential improvements to the designs there a few thing
that should be done in the future. First of all the LVDS receiver interface should
be tested with the image sensor to capture data. Also as was mentioned in the
discussion section, increase the maximum bit width of G from 32 to 64 bits to
see if improvements in precision is achievable. Also a better framework for the
software implementations that are done could be improved, as changes in the
code will need to be done multiple places if different data sizes of raw is used.
Another thing mentioned in the Result section was that a improvement that
make sure the accumulator inside the DSP is used when the bit width of p is
less than or equal to 48 bits which will increase the efficiency of the design. This
could alternatively be a parameter that lets the user configure this as desired.
Lastly Pixel Alignment Module and Binning Module could be implemented to
support 10-bit as the LVDS Deserializer supports this. As this is not currently
a requirement because the Image Sensor is to be used in 12-bit mode it should
not be a priority, however for the future if this LVDS design is to be used on
different devices it could be nice to have.

References

[1] ARM. Amba® axi™ and ace™ protocol specification, 2003.

[2] AVNET. Picozed.

89

[3] Greg Burton. Xilinx: 16-channel, ddr lvds interface with per-channel align-
ment, 2006.

[4] CMOSIS. Cmv2000-datasheet-v3.8, 2015.

[5] Marc Defossez. Xilinx: Serial lvds high-speed adc interface, 2006.

[6] Johan Fjeldtvedt. Direct Memory Access for Hyperspectral Imaging Appli-
cations. NTNU, 2017.

[7] Thomas Grob. Implementation of a fpga-based interface to a high speed
image sensor, 2010.

[8] Jesper Pram Nielsen Harald Martens and Søren Balling Engelsen. Light
Scattering and Light Absorbance Separated by Extended Multiplicative Sig-
nal Correction. Application to Near-Infrared Transmission Analysis of
Powder Mixtures. 2003.

[9] TEXAS INSTRUMENTS. Understanding Serial LVDS Capture in High-
Speed ADCs. July 2013.

[10] John Goldie National Semiconductor: Syed B. Huq. An overview of lvds
technology, 1998.

[11] A. Kohler Nils.K Afseth. Extended multiplicative signal correction in vibra-
tional spectroscopy, a tutorial. ELSEVIER, 2012.

[12] The University of Sydney. What is vibrational spectroscopy?

[13] Accessed 12.03.18 R. Mark Elowitz. What is imaging spectroscopy (hyper-
spectral imaging)?

[14] Julian Veisdal. Hardware hsi design/elecronics design.

[15] Julian Veisdal. Ntnu small satellite lab wiki/mechanical design, 2018.

[16] Wikipedia. Spectrograph, 2018.

[17] Xilinx. 7 series fpgas selectio resources.

[18] Xilinx. Logicore ip axi4-lite ipif v2.0, 2013.

[19] Xilinx. Logicore ip floating-point operator v7.0, 2014.

[20] Xilinx. Vivado design suite 7 series fpga and zynq-7000 all programmable
soc libraries guide, 2016.

[21] Xilinx. 7 series dsp48e1 slice, 2018.

90

A EMSC Software Implementation

Listing 1: C++ code using listings

#include <stdio.h>

#include "xil_printf.h" // Printf for Uart

#include "Eigen/dense" //Eigen

#include <stdlib.h> //atof

#include <math.h> //Pow , sqrt

#include <float.h>

#include "xparameters.h" // Board specific parameters

#include "xuartps.h" //Uart

#include <string.h>

#include "xtmrctr.h" //Axi Timer

//Eigen

using Eigen:: MatrixXd;

//Axi timer

#define TMRCTR_DEVICE_ID XPAR_TMRCTR_0_DEVICE_ID

#define TIMER_COUNTER_0 0

XTmrCtr TimerCounter;

//Uart

#define UART_DEVICE_ID XPAR_PS7_UART_1_DEVICE_ID

XUartPs Uart_Ps;

/* Function Prototypes ***************************** */

void mean(double ** ref_spectra , double* mean , int nVars , int refOrder);

void EMSC(double ** raw , double ** ref_spectra , int nVars ,

int nObs , int refOrder);

double ** initialize(int rows , int columns);

int init_timer(u16 DeviceId , u8 TmrCtrNumber);

u32 start_timer(u8 TmrCtrNumber);

u32 stop_timer(u8 TmrCtrNumber);

/* ** */

double ** initialize(int rows , int columns) {

double **temp;

temp = (double **) malloc(rows * sizeof(double *));

for (int row = 0; row < rows; row ++) {

temp[row] = (double *) malloc(columns * sizeof(double));

}

return temp;}

void EMSC(double ** raw , double ** ref_spectra , double * mean_spectra ,

int nVars , int nObs , int refOrder){

// DECLARATIONS ---------------------

MatrixXd M(refOrder + 4, nVars);

double ** G = initialize(nVars , refOrder +4);

double ** corr_M = initialize (2, nVars);

double* p = (double *) malloc ((refOrder + 4) * sizeof(double));

double num = 0;

// ----------------------------------

//Start timer

u32 value1 , value2;

init_timer(TMRCTR_DEVICE_ID , TIMER_COUNTER_0);

value1 = start_timer(TIMER_COUNTER_0);

xil_printf("Constructing M!\n");

for (int i = 0; i < nVars; i++) {

//Add 1 in first row

M(0,i) = 1;

//Add linspace and linspace squared

M(1,i) = num;

corr_M [0][i] = num;

M(2,i) = pow(num , 2);

corr_M [1][i] = pow(num ,2);

num += (1.0 / (nVars - 1));

//Add reference spectra

for (int y = 0; y < refOrder; y++) {

M(y + 3,i) = ref_spectra[y][i];

}

91

//Add mean in last row

M(refOrder+3,i) = mean_spectra[i];

}

//Stop timer and output results

value2 = stop_timer(TIMER_COUNTER_0);

xil_printf(" Construct M Timer: %d\n", value2 -value1);

//float * mem_ptr = (float*)0x13197508;

//int index = 0;

//float * mem_ptr = (float*)0x13197508;

//int index = 0;

//Start timer

init_timer(TMRCTR_DEVICE_ID , TIMER_COUNTER_0);

value1 = start_timer(TIMER_COUNTER_0);

// Execute pseudo -inverse of M

MatrixXd M_M = M*M.transpose ();

MatrixXd p_inv = M.transpose () * M_M.completeOrthogonalDecomposition ().pseudoInverse ();

// MatrixXd p_inv = M.transpose () * M_M.inverse ();

xil_printf("Pseudo -Inverse Completed !\n");

for(int i = 0; i<nVars; i++){

for(int y = 0; y<refOrder +4; y++){

G[i][y] =(double) p_inv(i,y);

}

}

//Stop timer and output results

value2 = stop_timer(TIMER_COUNTER_0);

xil_printf(" p_Inverse Timer: %d\n", value2 -value1);

float * mem_ptr = (float *)0x19CD1534;

int index = 0;

//Start timer

init_timer(TMRCTR_DEVICE_ID , TIMER_COUNTER_0);

value1 = start_timer(TIMER_COUNTER_0);

// Calculate the corrected spectra

xil_printf("Calculating Corrected Starting !\n");

double sum = 0;

for (int idx = 0; idx < nObs; idx ++) {

for (int i = 0; i < refOrder + 4; i++) {

for (int y = 0; y <nVars; y++) {

sum += raw[idx][y] * G[y][i];

}

p[i] = sum;

sum = 0;

}

for (int t = 0; t < nVars; t++) {

mem_ptr[index ++] = (raw[idx][t] - p[0] - p[1] * corr_M [0][t] - p[2] * corr_M [1][t]) / p[refOrder

+ 3];

}

}

//Stop timer and output results

value2 = stop_timer(TIMER_COUNTER_0);

xil_printf(" Calculating corrected Timer: %d\n", value2 -value1);

}

//Axi -Timer

// --

int init_timer(u16 DeviceId , u8 TmrCtrNumber){

int Status;

XTmrCtr *TmrCtrInstancePtr = &TimerCounter;

/*

* Initialize the timer counter so that it's ready to use ,

* specify the device ID that is generated in xparameters.h

*/

Status = XTmrCtr_Initialize(TmrCtrInstancePtr , DeviceId);

if (Status != XST_SUCCESS) {

return XST_FAILURE;

}

/*

* Perform a self -test to ensure that the hardware was built

* correctly , use the 1st timer in the device (0)

*/

Status = XTmrCtr_SelfTest(TmrCtrInstancePtr , TmrCtrNumber);

if (Status != XST_SUCCESS) {

return XST_FAILURE;

}

/*

* Enable the Autoreload mode of the timer counters.

*/

return XST_SUCCESS ;}

u32 start_timer(u8 TmrCtrNumber){

92

XTmrCtr *TmrCtrInstancePtr = &TimerCounter;

XTmrCtr_SetOptions(TmrCtrInstancePtr , TmrCtrNumber ,

XTC_AUTO_RELOAD_OPTION);

u32 val = XTmrCtr_GetValue(TmrCtrInstancePtr , TmrCtrNumber);

XTmrCtr_Start(TmrCtrInstancePtr , TmrCtrNumber);

return val;}

u32 stop_timer(u8 TmrCtrNumber){

XTmrCtr *TmrCtrInstancePtr = &TimerCounter;

u32 val = XTmrCtr_GetValue(TmrCtrInstancePtr , TmrCtrNumber);

XTmrCtr_SetOptions(TmrCtrInstancePtr , TmrCtrNumber , 0);

return val;

}

// --

int main(){

// Adding pointer to location of stored cube.

float * mem_ptr = (float *)0x10000000;

int nVars = 52; // number of wavelenghts

int nObs = 250000; //total number of pixels

int refOrder = 4; // numbers of species in spectra

double ** raw = initialize(nObs ,nVars);

double ** ref_spectra = initialize(refOrder , nVars);

// double ** corrected = initialize(nObs , nVars);

double * mean_v = (double *) malloc(nVars * sizeof(double));

//Fill raw matrix1

int index = 0;

mem_ptr = (float*)0x100010E0;

for(int rows = 0; rows < nObs; rows ++){

for(int cols = 0; cols < nVars; cols ++){

raw[rows][cols] = (double)mem_ptr[index ++];

}

}

// Construct some reference spectra

//Just using some spectras from raw in this case

//as an example.

index = 0;

mem_ptr = (float*)0x10000000;

for(int rows = 0; rows <refOrder; rows ++){

for(int cols = 0; cols < nVars; cols ++){

ref_spectra[rows][cols] = mem_ptr[index ++];

}

}

mem_ptr = (float*)0x10001000;

for(int i = 0; i<nVars; i++){

mean_v[i] = mem_ptr[i];

}

// calculate mean of ref_spectra

//Start the EMSC

xil_printf("ESMC Starting !\n");

EMSC(raw , ref_spectra , mean_v , nVars , nObs , refOrder);

xil_printf("Done");

return 0;

}

93

B Tutorials

B.1 EMSC software implementation on Zedboard

This tutorial shows how to run the C++ software implementation of the EMSC
algorithm presented in this paper. First a look on how to implement the required
hardware platform in Vivado.

B.1.1 Building the Hardware in Vivado

Create a new project and a block diagram in Vivado. Figure 92 shows what
hardware platform was used to run the EMSC. First, add the ZYNQ7 Processing
System and run the block automation. Then add the AXI-Timer and connect
it as shown in the figure. The FCLK CLK1 0 can be ignored as this was used
for another application.

Figure 92: HW platform Vivado

When the clock diagram are completed, run synthesis, implementation and
generate bitstream. When this is completed, open the implemented design and
export the hardware. This is done by first pressing the File in the upper left
corner, then: Export −→ Export Hardware. Include Bitstream!. Then press
Launch SDK from the same menu (File).

B.1.2 Setting up the SDK Environment

Inside the SDK we first need to create a new Board Support Package and Ap-
plication Project. Press File −→ New −→ Board Support Package. Just keep
the defaults and press Finish. Now press File −→ New −→ Application Project.
Choose an appropriate name, make sure C++ is checked, and under Board
Support Package Use existing and choose the one just created. Press Next −→
Empty Application −→ Finish.

94

Now an application project should be visible in the Project Explorer. Open
this folder and right click src, (new) −→ Source File. Name this main.cpp and
press Finish.

Copy the EMSC source code inside main.cpp. Before this can compile some
libraries has to be included. This is math and the Eigen library. Right click
the top folder for the application project that was created before and press the
C/C++ Build Settings. Under ”ARM v7 g++ linker” −→ Libraries, add m as
shown in figure 93.

Figure 93: Adding math library

Under ”ARM v7 g++ compiler” −→ Directories add the include path for the
top folder where the Eigen library is located. This library has to be down-
loaded, and can be found here: http://eigen.tuxfamily.org/index.php?

title=Main_Page#Download. Also before the code can be launched the heap
and stack sizes in the linker script will have to be updated. Right click the
application project and press Generate Linker Script. Here change the heap to
255MB and stack to 64KB, this is a know working setting. Having to low values
will give strange or no behaviour. Now the code should compile and be ready
to execute.

B.1.3 Launching EMSC

This algorithm needs data to be able to produce some sensible result. This is
done by laying the raw matrix in memory. There are multiple ways of doing
this but in this tutorial it will be presented by using the TCL tool that comes

95

http://eigen.tuxfamily.org/index.php?title=Main_Page#Download
http://eigen.tuxfamily.org/index.php?title=Main_Page#Download

with Vivado. First of all, program the FPGA and execute an empty main(Just
comment everyting inside main). This will setup the board and make it possi-
ble reading and writing to the memory through TCL. Use the MATLAB script
Generate Cube Data with the Hico Canary Volcano cube and go through the
sections of the script. When an image shows, one has to choose 4 pixels. The
first pixel should be from dark water and the second from the snow in the im-
age. The last two pixels can be arbitrary. Continue through the sections until
you get to the one called Subset. Because the entire cube is time consuming to
load in and out of the memory of the Zynq, use the small data version called
x small. Then run the section Write cube to file. Now the raw matrix has been
written to a binary file saved in the same directory as the MATLAB Script.
Now open the TCL window and write xsdb. Followed by connect and targets 2.
Navigate inside the TCL window so you are in the same directory as the saved
binary file. Then write mwr -force -bin -file cube test.bin 0x10000000 520000.
This means will transfer the binary file into location 0x10000000 of the Zynq
DDR memory and across the next 520000 addresses. When this is done, the
EMSC algorithm can be launched. After this has completed (This can be seen
from messages over UART if this has been configured) the corrected spectra
can be read out. As can be seen from the code, the corrected spectra is saved
at memory location 0x13197508. Using the TCL and writing mrd -force -bin
-file zynq final.bin 0x13197508 520000. This will read out the values from the
memory and store them in a binary file zynq final.bin in the same directory as
the MATLAB script. Use the MATLAB script to read the data from Zynq and
compare it with the corrected file that is calculated using MATLAB (produce
this corrected by running the section Calculate Corrected).

B.2 EMSC Software/Hardware co-design on Zedboard

This tutorial will show ho to execute the Software/Hardware Co-design imple-
mentation on a Zedboard. First we will start with building the Hardware in
Vivado.

B.2.1 Building the Hardware in Vivado

Figure 94 shows an overview of how the hardware should be build in Vivado
Block Diagram. Together with this the Cube DMA and the EMSC Accelera-
tor has to be configured. Double click the cubedma top 0 and make sure the
configurations for you application is correct.

For this tutorial the following settings are used.

1. C Mm2s Axis Width = 16

2. C Mm2s Comp Width = 16

3. C Mm2s Num Comp = 1

4. C S2mm Axis Width = 64

96

Figure 94: Overview of hardware in Vivado.

5. C S2mm Comp Width = 64

6. V S2mm Num Comp = 1

Double click the top 0 and configure this as well. For this tutorial the
following settings are used.

1. B Ram Size = 400

2. C S Axi Addr Width = 32

3. C S Axi Data Width = 32

4. G Bit Width = 32

5. Num B Ram = 16

6. P Bit Width = 64

7. Raw Bit Width = 16

When all modules are connected as shown above and the configurations are
correct. Press the Tools −→ Validate Design to make sure the design contains
no errors. Then save the block diagram and run synthesis.

B.2.2 Setting up debug cores

When the synthesis is completed we can setup debug cores which are handy
when executing the design to see that it works as it should. Press the Open
Synthesized Design in the SYNTHESIS menu on the left side in Vivado and
press the Schematic option. This will open a schematic of the synthesized de-
sign. Press the darker blue square in the top left corner of the design to expand
its contents. Find the Cube DMA and mark following signals for debug by right
clicking and pressing Mark Debug. m axis mm2s tready, m axis mm2s tdata,
m axis mm2s tlast, m axis mm2s tvalid, mm2s irq, s2mm irq, s axis s2mm tdata,

97

s axis s2mm tlast, s axis s2mm tvalid and s axis s2mm tready. Find the accel-
erator and mark p irq for debug. Press ctrl+s and save the debug constraints
with a suiting name, for example, debug. Press the Set Up Debug in the SYN-
THESIS menu and follow the wizard. If any of the signals does not have a clock
domain choose one. The rest can be let to the defaults. When it completes, run
synthesis, implementation and generate bit stream.

B.2.3 Setting up the Xilinx SDK

When bitstream has been generated, open the implemented design. Then press
File −→ Export −→ Export Hardware and make sure Include Bitstream is enabled.
Press File −→ Launch SDK and the Xilinx SDK will open. Inside the SDK, press
New −→ Board Support Package and add this. Then New −→ Application Project.
Find a suiting name, choose C++ and press Use existing for the Board Support
Package. Navigate to main.cc and add the code. Then comment everything in
main and execute the code, this initialises the board. This requires the Zedboard
to be connected. Go back to Vivado and open the Hardware Manager. Press the
Open Target and then Program Device. This will open the debug core interface.
Drag the signals m axis mm2s TREADY and m axix mm2s TVALID down to
the trigger setup and set their value to 1. This is what decides when the debug
core should trigger. Then press the play button to set the trigger. Now we switch
back to the SDK. Right click on the Application Project and press C/C++ Build
Settings. Under Arm v7 g++ linker select Libraries. Press the add button and
write m and press OK. This will make the math library available in the project.
Then under ARM v7 g++ compiler select Directories and add the path of the
folder where the Eigen library is located. Press Apply and OK. Right click the
application project again and select Generate Linker Script. For this tutorial
add 200 MB (209715200) in the Heap Size and 100KB (102400) in the Stack
Size and press Generate.

B.2.4 Uploading data to memory

The data to execute the EMSC on has to be uploaded to the memory of the Zynq.
Open Vivado TCL and write xsdb in the command line. Then write connect and
targets 2. Navigate to where the binary file of the raw is contained and write the
following command mwr -force -bin -file raw.bin 0x100010E0 size. Size is the
number of elements to transfer. For a 500x500x52 cube stored as int32 in the
binary file has a size of 13000000. Navigate to the reference spectra and write
the following command mwr -force -bin -file reference spectra.bin 0x10000000
size. Navigate to the mean you want to input and write mwr -force -bin -file
mean.bin 0x10001000 size. Now the required data is stored in memory and the
code is ready to be executed.

B.2.5 Executing the EMSC code

When the code is executed the debug core should trigger. Figure 95 shows the
waveform from this Debug Core. It can be seen that the first component fetched

98

from the Cube DMA has a value of 839 which is correct. It can also be seen that
the Cube DMA has a bubble right before 600 and that the accelerator handles
this by holdin the output until the Cube DMA is ready. Also it can be seen that
the output from the accelerator is happening in bursts. When the execution
has completed the results can be downloaded as binary files from memory using
the TCL. P is stored in address 0x0F0BDBF0 and corrected spectra is stored
in address 0x19CD1534. Reading can be done with the following command mrd
-force -bin -file name of file to store.bin size.

Figure 95: Waveform of Debug Core

99

C CMV2000 Register Overview

This section shows an overview over some of the relevant registers that can be
changed by the user. (For an full overview [4])

Figure 96: Register overview [4]

100

Figure 97: Register overview [4]

101

Figure 98: Register overview [4]

102

D Cube DMA register map

Field Description Bits
Control register (0x00)
Start Initiates the transfer 0
Blockwise mode Cube is read in blocks 2
Planewise mode Cube is read in planes 3
Error IRQ enable IRQ trigger on error 4
Completion IRQ enable IRQ trigger on completion 5
Status register (0x04)
Transfer done Indicates transfer completed 0
Error code Indicate error conditions 3:1
Error IRQ flag IRQ trigger due to error 4
Completion IRQ flag IRQ trigger due to completion 5
Base address register (0x08)
Base Address Address of first component in HSI cube 31:0
Cube dimension register (0x0C)
Width Widht of HSI cube 11:0
Height Height of HSI cube 23:12
Depth Depth of HSI cube 31:24
Row size register (0x14)
Row size Total components in one row of the cube 19:0

Table 19: Cube DMA register map MM2S. [6]

103

Field Description Bits
Control register (0x20)
Start Initiates the transfer 0
Error IRQ enable IRQ trigger on error 4
Completion IRQ enable IRQ trigger on completion 5
Status register (0x24)
Transfer done Indicates transfer completed 0
Error code Indicate error conditions 3:1
Error IRQ flag IRQ trigger due to error 4
Completion IRQ flag IRQ trigger due to completion 5
Base address register (0x28)
Base Address Address of first component in HSI cube 31:0

Table 20: Cube DMA register map S2MM. [6]

104

E AXI Dependencies

E.1 Read transaction dependencies

1. Master may assert ARVALID before slave asserts ARREADY.

2. Slave may wait for master to assert ARVALID before asserting ARREADY.

3. Slave is allowed to assert ARREADY before master asserts ARVALID

4. Slave cannot assert RVALID before both ARVALID and ARREADY has
been asserted.

5. Slave can assert RVALID before master asserts RREADY.

6. Master can wait for slave to assert RVALID before asserting RREADY.

7. Master is allowed to assert RREADY before RVALID has been asserted.

E.2 Write transaction dependencies

1. Master is allowed to assert AWVALID or WVALID before slave asserts
AWREADY or WREADY.

2. Slave may wait for master to assert AWVALID or WVALID, or both before
it asserts AWREADY.

3. Slave is allowed to assert AWREADY before AWVALID or WVALID is
asserted.

4. Slave may wait for AWVALID or WVALID before asserting WREADY.

5. Slave is allowed to assert WREADY before AWVALID or WVALID, or
both is asserted.

6. Slave is not allowed to assert BVALID before both WVALID and WREADY
is asserted by the master.

7. Slave may assert BVALID before master asserts BREADY.

8. Master can wait for slave to assert BVALID before asserting BREADY.

9. Master may assert BREADY before slave assert BVALID.

105

F LVDS Receiver Interface

F.1 Deserializer

F.1.1 Design File

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 use IEEE.NUMERIC_STD.ALL;

4 library UNISIM;

5 use UNISIM.VComponents.all;

6
7 entity lvds_deserializer is

8 Generic(

9 PIXEL_BIT_WIDTH : positive := 10;

10 NUM_LVDS_PAIRS : positive := 16;

11 BIT_CLK_DELAY_TAP_VALUE : integer := 0

12);

13 Port (

14 refclk : in std_logic;

15 rst : in std_logic;

16 enable : in std_logic;

17 clk_p_n : in std_logic_vector (1 downto 0);

18 data_p_n : in std_logic_vector(NUM_LVDS_PAIRS *2-1 downto 0);

19 ctrl_p_n : in std_logic_vector (1 downto 0);

20 training_data : in std_logic_vector (11 downto 0);

21 sensor_idle : in std_logic;

22 valid_out : out std_logic;

23 in_sync : out std_logic;

24
25 --IDELAYE2

26 CE : in std_logic_vector(NUM_LVDS_PAIRS *2+1 downto 0);

27 INC : in std_logic_vector(NUM_LVDS_PAIRS *2+1 downto 0);

28
29 --ISERDESE2

30 Q_out : out std_logic_vector(PIXEL_BIT_WIDTH*NUM_LVDS_PAIRS -1 downto 0);

31 CLKDIV_PROBE : out std_logic

32);

33 end lvds_deserializer;

34
35 architecture Behavioral of lvds_deserializer is

36 --IDELAYE Signals

37 signal d_e_o , dly_e_o : std_logic_vector(NUM_LVDS_PAIRS *2+1 downto 0);

38 signal clk , dly_clk : std_logic;

39
40 --ISERDESE Signals

41 signal BITSLIP : std_logic_vector(NUM_LVDS_PAIRS *2+1 downto 0) := (others => '0');
42 signal Q_inv : std_logic_vector(NUM_LVDS_PAIRS *(PIXEL_BIT_WIDTH /2)+PIXEL_BIT_WIDTH /2 - 1 downto 0);

43 signal Q : std_logic_vector (0 to PIXEL_BIT_WIDTH+PIXEL_BIT_WIDTH*NUM_LVDS_PAIRS -1);

44 signal RXCLK ,ISE_CE : std_logic;

45 signal CLK_even , CLKB_even , CLK_odd , CLKB_odd , CLKDIV , RDY: std_logic;

46
47 --Control Channel

48 signal control_word : std_logic_vector(PIXEL_BIT_WIDTH -1 downto 0);

49 signal ctrl_e_o , ctrl_dly_e_o : std_logic_vector (1 downto 0);

50 signal DVAL , LVAL , FVAL , SLOT , ROW , FOT , INTE1 , INTE2 : std_logic;

51
52
53 --State machine

54 TYPE State_type IS (idle ,training_ctrl_ch ,training , transfer); -- Define the states

55 SIGNAL state : State_Type; -- Create a signal that uses

56 signal trained : std_logic;

57 signal data_ctrl_p_n : std_logic_vector (2+ NUM_LVDS_PAIRS *2-1 downto 0);

58
59 begin

60 data_ctrl_p_n(NUM_LVDS_PAIRS *2-1 downto 0) <= data_p_n; -- assigning first NUM_LVDS_PAIRS *2-1 downto 0 bits

to data channels

61 data_ctrl_p_n (2+ NUM_LVDS_PAIRS *2-1 downto 2+ NUM_LVDS_PAIRS *2-2) <= ctrl_p_n; --assigning last two bits to

ctrl channel

62 control_word <= Q(PIXEL_BIT_WIDTH*NUM_LVDS_PAIRS to PIXEL_BIT_WIDTH*NUM_LVDS_PAIRS+PIXEL_BIT_WIDTH -1); --

Fetching control bits from result.

63 Q_out <= Q(0 to PIXEL_BIT_WIDTH*NUM_LVDS_PAIRS -1); --Setting data bits on Q_out

64 ISE_CE <= '1' when rst = '0' else '0'; --enable iserdes at once rst = '0'
65 CLKDIV_PROBE <= CLKDIV; --Output a version of CLKDIV

66
67
68 --Control Channel

69 DVAL <= control_word (0);

70 LVAL <= control_word (1);

71 FVAL <= control_word (2);

72 SLOT <= control_word (3);

73 ROW <= control_word (4);

74 FOT <= control_word (5);

75 INTE1 <= control_word (6);

76 INTE2 <= control_word (7);

106

77
78 --Synchronise data channels

79 process(CLKDIV , rst)

80 variable counter : integer := 0;

81 variable flag : std_logic;

82 variable lvds_channel : integer range 0 to 16 := 0;

83 begin

84 if(rst = '1') then

85 counter := 0;

86 flag := '0';
87 in_sync <= '0';
88 state <= idle;

89 lvds_channel := 0;

90 elsif(rising_edge(CLKDIV)) then

91 case state is

92 when idle =>

93 if(enable = '1') then

94 state <= training_ctrl_ch;

95 end if;

96 when training_ctrl_ch => --train control channel

97 --check if ctr_channel outputs training data.

98 if(to_integer(unsigned(control_word)) = to_integer(unsigned(training_data))) then

99 state <= training; --training completed

100 else

101 -- wrong output , do a bitslip.

102 if(counter = 2) then

103 BITSLIP (2* NUM_LVDS_PAIRS) <= '0';
104 BITSLIP (2* NUM_LVDS_PAIRS +1) <= '0';
105 end if;

106 if(counter = 4) then

107 if(flag = '0') then

108 BITSLIP (2* NUM_LVDS_PAIRS) <= '1';
109 counter := 0;

110 flag := '1';
111 elsif(flag = '1') then

112 BITSLIP (2* NUM_LVDS_PAIRS +1) <= '1';
113 counter := 0;

114 flag := '0';
115 end if;

116 end if;

117 counter := counter + 1;

118 end if;

119 --train data channels.

120 when training =>

121 --reset bitslip bits

122 if(counter = 2) then

123 BITSLIP (2* lvds_channel) <= '0';
124 BITSLIP (2* lvds_channel +1) <= '0';
125 end if;

126 --check if output is correct for this channel

127 if(to_integer(unsigned(Q(PIXEL_BIT_WIDTH*lvds_channel to PIXEL_BIT_WIDTH*lvds_channel +

PIXEL_BIT_WIDTH -1))) = to_integer(unsigned(training_data))) then

128 lvds_channel := lvds_channel + 1; --output correct , procees with next channel

129 if(lvds_channel = NUM_LVDS_PAIRS) then

130 state <= transfer;

131 counter := 0;

132 lvds_channel := 0;

133 in_sync <= '1';
134 end if;

135 else

136 if(counter = 4) then

137 if(flag = '0') then

138 BITSLIP (2* lvds_channel) <= '1';
139 counter := 0;

140 flag := '1';
141 elsif(flag = '1') then

142 BITSLIP (2* lvds_channel +1) <= '1';
143 counter := 0;

144 flag := '0';
145 end if;

146 end if;

147 counter := counter + 1;

148 end if;

149 when transfer =>

150 --if DVAL is high , the module produces valid output

151 if(DVAL = '1') then

152 valid_out <= '1';
153 elsif(DVAL = '0') then

154 valid_out <= '0';
155 end if;

156 end case;

157 end if;

158 end process;

159
160
161 --Declaration of buffers

162 BUFR_inst : BUFR

163 generic map (

164 BUFR_DIVIDE => integer 'image(PIXEL_BIT_WIDTH /2), -- Values: "BYPASS , 1, 2, 3, 4, 5, 6, 7, 8"

165 SIM_DEVICE => "7SERIES" -- Must be set to "7 SERIES"

166)

107

167 port map (

168 O => CLKDIV , -- 1-bit output: Clock output port

169 CE => '1', -- 1-bit input: Active high , clock enable (Divided modes only)

170 CLR => '0', -- 1-bit input: Active high , asynchronous clear (Divided modes only)

171 I => dly_clk -- 1-bit input: Clock buffer input driven by an IBUF , MMCM or local interconnect

172);

173
174 BUFIO_inst : BUFIO

175 port map (

176 O => RXCLK , -- 1-bit output: Clock output (connect to I/O clock loads).

177 I => dly_clk -- 1-bit input: Clock input (connect to an IBUF or BUFMR).

178);

179
180 IBUFDS_inst : IBUFDS

181 generic map (

182 DIFF_TERM => FALSE , -- Differential Termination

183 IBUF_LOW_PWR => TRUE , -- Low power (TRUE) vs. performance (FALSE) setting for referenced I/O standards

184 IOSTANDARD => "LVDS_25")

185 port map (

186 O => clk , -- Buffer output

187 I => clk_p_n (0), -- Diff_p buffer input (connect directly to top -level port)

188 IB => clk_p_n (1) -- Diff_n buffer input (connect directly to top -level port)

189);

190
191 IBUFDS_DIFF_gen: for i in 0 to NUM_LVDS_PAIRS generate

192 IBUFDS_DIFF_OUT_inst : IBUFDS_DIFF_OUT

193 generic map (

194 DIFF_TERM => FALSE , -- Differential Termination

195 IBUF_LOW_PWR => TRUE , -- Low power (TRUE) vs. performance (FALSE) setting for referenced I/O

standards

196 IOSTANDARD => "LVDS_25") -- Specify the input I/O standard

197 port map (

198 O => d_e_o (2*i), -- Buffer diff_p output

199 OB => d_e_o (2*i+1), -- Buffer diff_n output

200 I => data_ctrl_p_n (2*i), -- Diff_p buffer input (connect directly to top -level port)

201 IB => data_ctrl_p_n (2*i+1) -- Diff_n buffer input (connect directly to top -level port)

202);

203 end generate IBUFDS_DIFF_gen;

204
205
206 --Instantiation of IDELAYCTRL and IDELAYE primitives

207 IDELAYCTRL_inst : IDELAYCTRL

208 port map (

209 RDY => RDY , -- 1-bit output: Ready output

210 REFCLK => refclk , -- 1-bit input: Reference clock input

211 RST => RST -- 1-bit input: Active high reset input

212);

213
214
215 delay_gen : for i in 0 to 2* NUM_LVDS_PAIRS +1 generate

216 -- IDELAYE2: Input Fixed or Variable Delay Element

217 -- Virtex -7

218 -- Xilinx HDL Language Template , version 2017.4

219 IDELAYE2_inst : IDELAYE2

220 generic map (

221 CINVCTRL_SEL => "FALSE", -- Enable dynamic clock inversion (FALSE , TRUE)

222 DELAY_SRC => "IDATAIN", -- Delay input (IDATAIN , DATAIN)

223 HIGH_PERFORMANCE_MODE => "FALSE", -- Reduced jitter ("TRUE"), Reduced power ("FALSE")

224 IDELAY_TYPE => "VARIABLE", -- FIXED , VARIABLE , VAR_LOAD , VAR_LOAD_PIPE

225 IDELAY_VALUE => 0, -- Input delay tap setting (0-31)

226 PIPE_SEL => "FALSE", -- Select pipelined mode , FALSE , TRUE

227 REFCLK_FREQUENCY => 200.0 , -- IDELAYCTRL clock input frequency in MHz (190.0 -210.0 ,

290.0 -310.0).

228 SIGNAL_PATTERN => "DATA" -- DATA , CLOCK input signal

229)

230 port map (

231 CNTVALUEOUT => open , -- 5-bit output: Counter value output

232 DATAOUT => dly_e_o(i), -- 1-bit output: Delayed data output

233 C => RXCLK , -- 1-bit input: Clock input

234 CE => CE(i), -- 1-bit input: Active high enable increment/decrement input

235 CINVCTRL => '0', -- 1-bit input: Dynamic clock inversion input

236 CNTVALUEIN => b"00000", -- 5-bit input: Counter value input

237 DATAIN => '0', -- 1-bit input: Internal delay data input

238 IDATAIN => d_e_o(i), -- 1-bit input: Data input from the I/O

239 INC => INC(i), -- 1-bit input: Increment / Decrement tap delay input

240 LD => '0', -- 1-bit input: Load IDELAY_VALUE input

241 LDPIPEEN => '0', -- 1-bit input: Enable PIPELINE register to load data input

242 REGRST => RST -- 1-bit input: Active -high reset tap -delay input

243);

244 -- End of IDELAYE2_inst instantiation

245 end generate delay_gen;

246
247 clock_delay_inst : IDELAYE2

248 generic map (

249 CINVCTRL_SEL => "FALSE", -- Enable dynamic clock inversion (FALSE , TRUE)

250 DELAY_SRC => "IDATAIN", -- Delay input (IDATAIN , DATAIN)

251 HIGH_PERFORMANCE_MODE => "FALSE", -- Reduced jitter ("TRUE"), Reduced power ("FALSE")

252 IDELAY_TYPE => "FIXED", -- FIXED , VARIABLE , VAR_LOAD , VAR_LOAD_PIPE

253 IDELAY_VALUE => BIT_CLK_DELAY_TAP_VALUE , -- Input delay tap setting (0-31)

254 PIPE_SEL => "FALSE", -- Select pipelined mode , FALSE , TRUE

108

255 REFCLK_FREQUENCY => 200.0 , -- IDELAYCTRL clock input frequency in MHz (190.0 -210.0 ,

290.0 -310.0).

256 SIGNAL_PATTERN => "CLOCK" -- DATA , CLOCK input signal

257)

258 port map (

259 CNTVALUEOUT => open , -- 5-bit output: Counter value output

260 DATAOUT => dly_clk , -- 1-bit output: Delayed data output

261 C => '0', -- 1-bit input: Clock input

262 CE => '0', -- 1-bit input: Active high enable increment/decrement input

263 CINVCTRL => '0', -- 1-bit input: Dynamic clock inversion input

264 CNTVALUEIN => B"00000", -- 5-bit input: Counter value input

265 DATAIN => '0', -- 1-bit input: Internal delay data input

266 IDATAIN => clk , -- 1-bit input: Data input from the I/O

267 INC => '0', -- 1-bit input: Increment / Decrement tap delay input

268 LD => '0', -- 1-bit input: Load IDELAY_VALUE input

269 LDPIPEEN => '0', -- 1-bit input: Enable PIPELINE register to load data input

270 REGRST => '0' -- 1-bit input: Active -high reset tap -delay input

271);

272
273
274 --Map the ISERDESE2 clocks

275 CLK_even <= RXCLK;

276 CLKB_odd <= RXCLK;

277 CLK_odd <= not RXCLK;

278 CLKB_even <= not RXCLK;

279
280 --Instantiation of the ISERDESE primitives

281 ISERDES_gen: for i in 0 to NUM_LVDS_PAIRS generate

282 twelve_gen: if(PIXEL_BIT_WIDTH = 12) generate --12-bit

283 ISERDESE2_even : ISERDESE2 --even bits

284 generic map (

285 DATA_RATE => "SDR", -- DDR , SDR

286 DATA_WIDTH => PIXEL_BIT_WIDTH /2, -- Parallel data width (2-8,10,14)

287 DYN_CLKDIV_INV_EN => "FALSE", -- Enable DYNCLKDIVINVSEL inversion (FALSE , TRUE)

288 DYN_CLK_INV_EN => "FALSE", -- Enable DYNCLKINVSEL inversion (FALSE , TRUE)

289 -- INIT_Q1 - INIT_Q4: Initial value on the Q outputs (0/1)

290 INIT_Q1 => '0',
291 INIT_Q2 => '0',
292 INIT_Q3 => '0',
293 INIT_Q4 => '0',
294 INTERFACE_TYPE => "NETWORKING", -- MEMORY , MEMORY_DDR3 , MEMORY_QDR , NETWORKING , OVERSAMPLE

295 IOBDELAY => "BOTH", -- NONE , BOTH , IBUF , IFD

296 NUM_CE => 1, -- Number of clock enables (1,2)

297 OFB_USED => "FALSE", -- Select OFB path (FALSE , TRUE)

298 SERDES_MODE => "MASTER", -- MASTER , SLAVE

299 -- SRVAL_Q1 - SRVAL_Q4: Q output values when SR is used (0/1)

300 SRVAL_Q1 => '0',
301 SRVAL_Q2 => '0',
302 SRVAL_Q3 => '0',
303 SRVAL_Q4 => '0'
304)

305 port map (

306 O => open , -- 1-bit output: Combinatorial output

307 -- Q1 - Q8: 1-bit (each) output: Registered data outputs

308 Q1 => Q(PIXEL_BIT_WIDTH*i),

309 Q2 => Q(PIXEL_BIT_WIDTH*i +2),

310 Q3 => Q(PIXEL_BIT_WIDTH*i +4),

311 Q4 => Q(PIXEL_BIT_WIDTH*i +6),

312 Q5 => Q(PIXEL_BIT_WIDTH*i +8),

313 Q6 => Q(PIXEL_BIT_WIDTH*i +10),

314 Q7 => open ,

315 Q8 => open ,

316 -- SHIFTOUT1 , SHIFTOUT2: 1-bit (each) output: Data width expansion output ports

317 SHIFTOUT1 => open ,

318 SHIFTOUT2 => open ,

319 BITSLIP => BITSLIP (2*i), -- 1-bit input: The BITSLIP pin performs a Bitslip operation

synchronous to

320 -- CLKDIV when asserted (active High). Subsequently , the data seen

on the

321 -- Q1 to Q8 output ports will shift , as in a barrel -shifter

operation , one

322 -- position every time Bitslip is invoked (DDR operation is

different from

323 -- SDR).

324 -- CE1 , CE2: 1-bit (each) input: Data register clock enable inputs

325 CE1 => ISE_CE ,

326 CE2 => ISE_CE ,

327 CLKDIVP => '0', -- 1-bit input: TBD

328 -- Clocks: 1-bit (each) input: ISERDESE2 clock input ports

329 CLK => CLK_even , -- 1-bit input: High -speed clock

330 CLKB => CLKB_even , -- 1-bit input: High -speed secondary clock

331 CLKDIV => CLKDIV , -- 1-bit input: Divided clock

332 OCLK => '0', -- 1-bit input: High speed output clock used when INTERFACE_TYPE ="

MEMORY"

333 -- Dynamic Clock Inversions: 1-bit (each) input: Dynamic clock inversion pins to switch clock

polarity

334 DYNCLKDIVSEL => '0', -- 1-bit input: Dynamic CLKDIV inversion

335 DYNCLKSEL => '0', -- 1-bit input: Dynamic CLK/CLKB inversion

336 -- Input Data: 1-bit (each) input: ISERDESE2 data input ports

337 D => '0', -- 1-bit input: Data input

338 DDLY => dly_e_o (2*i), -- 1-bit input: Serial data from IDELAYE2

109

339 OFB => '0', -- 1-bit input: Data feedback from OSERDESE2

340 OCLKB => '0', -- 1-bit input: High speed negative edge output clock

341 RST => RST , -- 1-bit input: Active high asynchronous reset

342 -- SHIFTIN1 , SHIFTIN2: 1-bit (each) input: Data width expansion input ports

343 SHIFTIN1 => '0',
344 SHIFTIN2 => '0'
345);

346
347 ISERDESE2_odd : ISERDESE2 --odd bits

348 generic map (

349 DATA_RATE => "SDR", -- DDR , SDR

350 DATA_WIDTH => PIXEL_BIT_WIDTH /2, -- Parallel data width (2-8,10,14)

351 DYN_CLKDIV_INV_EN => "FALSE", -- Enable DYNCLKDIVINVSEL inversion (FALSE , TRUE)

352 DYN_CLK_INV_EN => "FALSE", -- Enable DYNCLKINVSEL inversion (FALSE , TRUE)

353 -- INIT_Q1 - INIT_Q4: Initial value on the Q outputs (0/1)

354 INIT_Q1 => '0',
355 INIT_Q2 => '0',
356 INIT_Q3 => '0',
357 INIT_Q4 => '0',
358 INTERFACE_TYPE => "NETWORKING", -- MEMORY , MEMORY_DDR3 , MEMORY_QDR , NETWORKING , OVERSAMPLE

359 IOBDELAY => "BOTH", -- NONE , BOTH , IBUF , IFD

360 NUM_CE => 1, -- Number of clock enables (1,2)

361 OFB_USED => "FALSE", -- Select OFB path (FALSE , TRUE)

362 SERDES_MODE => "MASTER", -- MASTER , SLAVE

363 -- SRVAL_Q1 - SRVAL_Q4: Q output values when SR is used (0/1)

364 SRVAL_Q1 => '0',
365 SRVAL_Q2 => '0',
366 SRVAL_Q3 => '0',
367 SRVAL_Q4 => '0'
368)

369 port map (

370 O => open , -- 1-bit output: Combinatorial output

371 -- Q1 - Q8: 1-bit (each) output: Registered data outputs

372 Q1 => Q_inv(i*(PIXEL_BIT_WIDTH /2)),

373 Q2 => Q_inv(i*(PIXEL_BIT_WIDTH /2) +1),

374 Q3 => Q_inv(i*(PIXEL_BIT_WIDTH /2) +2),

375 Q4 => Q_inv(i*(PIXEL_BIT_WIDTH /2) +3),

376 Q5 => Q_inv(i*(PIXEL_BIT_WIDTH /2) +4),

377 Q6 => Q_inv(i*(PIXEL_BIT_WIDTH /2) +5),

378 Q7 => open ,

379 Q8 => open ,

380 -- SHIFTOUT1 , SHIFTOUT2: 1-bit (each) output: Data width expansion output ports

381 SHIFTOUT1 => open ,

382 SHIFTOUT2 => open ,

383 BITSLIP => BITSLIP (2*i+1), -- 1-bit input: The BITSLIP pin performs a Bitslip

operation synchronous to

384 -- CLKDIV when asserted (active High). Subsequently , the data

seen on the

385 -- Q1 to Q8 output ports will shift , as in a barrel -shifter

operation , one

386 -- position every time Bitslip is invoked (DDR operation is

different from

387 -- SDR).

388
389 -- CE1 , CE2: 1-bit (each) input: Data register clock enable inputs

390 CE1 => ISE_CE ,

391 CE2 => ISE_CE ,

392 CLKDIVP => '0', -- 1-bit input: TBD

393 -- Clocks: 1-bit (each) input: ISERDESE2 clock input ports

394 CLK => CLK_odd , -- 1-bit input: High -speed clock

395 CLKB => CLKB_odd , -- 1-bit input: High -speed secondary clock

396 CLKDIV => CLKDIV , -- 1-bit input: Divided clock

397 OCLK => '0', -- 1-bit input: High speed output clock used when INTERFACE_TYPE

=" MEMORY"

398 -- Dynamic Clock Inversions: 1-bit (each) input: Dynamic clock inversion pins to switch clock

polarity

399 DYNCLKDIVSEL => '0', -- 1-bit input: Dynamic CLKDIV inversion

400 DYNCLKSEL => '0', -- 1-bit input: Dynamic CLK/CLKB inversion

401 -- Input Data: 1-bit (each) input: ISERDESE2 data input ports

402 D => '0', -- 1-bit input: Data input

403 DDLY => dly_e_o (2*i+1), -- 1-bit input: Serial data from IDELAYE2

404 OFB => '0', -- 1-bit input: Data feedback from OSERDESE2

405 OCLKB => '0', -- 1-bit input: High speed negative edge output clock

406 RST => RST , -- 1-bit input: Active high asynchronous reset

407 -- SHIFTIN1 , SHIFTIN2: 1-bit (each) input: Data width expansion input ports

408 SHIFTIN1 => '0',
409 SHIFTIN2 => '0'
410);

411 end generate twelve_gen;

412
413 ten_gen: if(PIXEL_BIT_WIDTH = 10) generate --10-bit

414 ISERDESE2_even : ISERDESE2 -- even bits

415 generic map (

416 DATA_RATE => "SDR", -- DDR , SDR

417 DATA_WIDTH => PIXEL_BIT_WIDTH /2, -- Parallel data width (2-8,10,14)

418 DYN_CLKDIV_INV_EN => "FALSE", -- Enable DYNCLKDIVINVSEL inversion (FALSE , TRUE)

419 DYN_CLK_INV_EN => "FALSE", -- Enable DYNCLKINVSEL inversion (FALSE , TRUE)

420 -- INIT_Q1 - INIT_Q4: Initial value on the Q outputs (0/1)

421 INIT_Q1 => '0',
422 INIT_Q2 => '0',
423 INIT_Q3 => '0',

110

424 INIT_Q4 => '0',
425 INTERFACE_TYPE => "NETWORKING", -- MEMORY , MEMORY_DDR3 , MEMORY_QDR , NETWORKING , OVERSAMPLE

426 IOBDELAY => "BOTH", -- NONE , BOTH , IBUF , IFD

427 NUM_CE => 1, -- Number of clock enables (1,2)

428 OFB_USED => "FALSE", -- Select OFB path (FALSE , TRUE)

429 SERDES_MODE => "MASTER", -- MASTER , SLAVE

430 -- SRVAL_Q1 - SRVAL_Q4: Q output values when SR is used (0/1)

431 SRVAL_Q1 => '0',
432 SRVAL_Q2 => '0',
433 SRVAL_Q3 => '0',
434 SRVAL_Q4 => '0'
435)

436 port map (

437 O => open , -- 1-bit output: Combinatorial output

438 -- Q1 - Q8: 1-bit (each) output: Registered data outputs

439 Q1 => Q(PIXEL_BIT_WIDTH*i),

440 Q2 => Q(PIXEL_BIT_WIDTH*i +2),

441 Q3 => Q(PIXEL_BIT_WIDTH*i +4),

442 Q4 => Q(PIXEL_BIT_WIDTH*i +6),

443 Q5 => Q(PIXEL_BIT_WIDTH*i +8),

444 Q6 => open ,

445 Q7 => open ,

446 Q8 => open ,

447 -- SHIFTOUT1 , SHIFTOUT2: 1-bit (each) output: Data width expansion output ports

448 SHIFTOUT1 => open ,

449 SHIFTOUT2 => open ,

450 BITSLIP => BITSLIP (2*i), -- 1-bit input: The BITSLIP pin performs a Bitslip operation

synchronous to

451 -- CLKDIV when asserted (active High). Subsequently , the data

seen on the

452 -- Q1 to Q8 output ports will shift , as in a barrel -shifter

operation , one

453 -- position every time Bitslip is invoked (DDR operation is

different from

454 -- SDR).

455 -- CE1 , CE2: 1-bit (each) input: Data register clock enable

inputs

456 CE1 => ISE_CE ,

457 CE2 => ISE_CE ,

458 CLKDIVP => '0', -- 1-bit input: TBD

459 -- Clocks: 1-bit (each) input: ISERDESE2 clock input ports

460 CLK => CLK_even , -- 1-bit input: High -speed clock

461 CLKB => CLKB_even , -- 1-bit input: High -speed secondary clock

462 CLKDIV => CLKDIV , -- 1-bit input: Divided clock

463 OCLK => '0', -- 1-bit input: High speed output clock used when INTERFACE_TYPE

=" MEMORY"

464 -- Dynamic Clock Inversions: 1-bit (each) input: Dynamic clock inversion pins to switch clock

polarity

465 DYNCLKDIVSEL => '0', -- 1-bit input: Dynamic CLKDIV inversion

466 DYNCLKSEL => '0', -- 1-bit input: Dynamic CLK/CLKB inversion

467 -- Input Data: 1-bit (each) input: ISERDESE2 data input ports

468 D => '0', -- 1-bit input: Data input

469 DDLY => dly_e_o (2*i), -- 1-bit input: Serial data from IDELAYE2

470 OFB => '0', -- 1-bit input: Data feedback from OSERDESE2

471 OCLKB => '0', -- 1-bit input: High speed negative edge output clock

472 RST => RST , -- 1-bit input: Active high asynchronous reset

473 -- SHIFTIN1 , SHIFTIN2: 1-bit (each) input: Data width expansion input ports

474 SHIFTIN1 => '0',
475 SHIFTIN2 => '0'
476);

477
478 ISERDESE2_odd : ISERDESE2 --odd bits

479 generic map (

480 DATA_RATE => "SDR", -- DDR , SDR

481 DATA_WIDTH => PIXEL_BIT_WIDTH /2, -- Parallel data width (2-8,10,14)

482 DYN_CLKDIV_INV_EN => "FALSE", -- Enable DYNCLKDIVINVSEL inversion (FALSE , TRUE)

483 DYN_CLK_INV_EN => "FALSE", -- Enable DYNCLKINVSEL inversion (FALSE , TRUE)

484 -- INIT_Q1 - INIT_Q4: Initial value on the Q outputs (0/1)

485 INIT_Q1 => '0',
486 INIT_Q2 => '0',
487 INIT_Q3 => '0',
488 INIT_Q4 => '0',
489 INTERFACE_TYPE => "NETWORKING", -- MEMORY , MEMORY_DDR3 , MEMORY_QDR , NETWORKING ,

OVERSAMPLE

490 IOBDELAY => "BOTH", -- NONE , BOTH , IBUF , IFD

491 NUM_CE => 1, -- Number of clock enables (1,2)

492 OFB_USED => "FALSE", -- Select OFB path (FALSE , TRUE)

493 SERDES_MODE => "MASTER", -- MASTER , SLAVE

494 -- SRVAL_Q1 - SRVAL_Q4: Q output values when SR is used (0/1)

495 SRVAL_Q1 => '0',
496 SRVAL_Q2 => '0',
497 SRVAL_Q3 => '0',
498 SRVAL_Q4 => '0'
499)

500 port map (

501 O => open , -- 1-bit output: Combinatorial output

502 -- Q1 - Q8: 1-bit (each) output: Registered data outputs

503 Q1 => Q_inv(i*(PIXEL_BIT_WIDTH /2)),

504 Q2 => Q_inv(i*(PIXEL_BIT_WIDTH /2) +1),

505 Q3 => Q_inv(i*(PIXEL_BIT_WIDTH /2) +2),

506 Q4 => Q_inv(i*(PIXEL_BIT_WIDTH /2) +3),

111

507 Q5 => Q_inv(i*(PIXEL_BIT_WIDTH /2) +4),

508 Q6 => open ,

509 Q7 => open ,

510 Q8 => open ,

511 -- SHIFTOUT1 , SHIFTOUT2: 1-bit (each) output: Data width expansion output ports

512 SHIFTOUT1 => open ,

513 SHIFTOUT2 => open ,

514 BITSLIP => BITSLIP (2*i+1), -- 1-bit input: The BITSLIP pin performs a Bitslip

operation synchronous to

515 -- CLKDIV when asserted (active High). Subsequently , the

data seen on the

516 -- Q1 to Q8 output ports will shift , as in a barrel -shifter

operation , one

517 -- position every time Bitslip is invoked (DDR operation is

different from

518 -- SDR).

519
520 -- CE1 , CE2: 1-bit (each) input: Data register clock enable inputs

521 CE1 => ISE_CE ,

522 CE2 => ISE_CE ,

523 CLKDIVP => '0', -- 1-bit input: TBD

524 -- Clocks: 1-bit (each) input: ISERDESE2 clock input ports

525 CLK => CLK_odd , -- 1-bit input: High -speed clock

526 CLKB => CLKB_odd , -- 1-bit input: High -speed secondary clock

527 CLKDIV => CLKDIV , -- 1-bit input: Divided clock

528 OCLK => '0', -- 1-bit input: High speed output clock used when

INTERFACE_TYPE =" MEMORY"

529 -- Dynamic Clock Inversions: 1-bit (each) input: Dynamic clock inversion pins to switch

clock polarity

530 DYNCLKDIVSEL => '0', -- 1-bit input: Dynamic CLKDIV inversion

531 DYNCLKSEL => '0', -- 1-bit input: Dynamic CLK/CLKB inversion

532 -- Input Data: 1-bit (each) input: ISERDESE2 data input ports

533 D => '0', -- 1-bit input: Data input

534 DDLY => dly_e_o (2*i+1), -- 1-bit input: Serial data from IDELAYE2

535 OFB => '0', -- 1-bit input: Data feedback from OSERDESE2

536 OCLKB => '0', -- 1-bit input: High speed negative edge output clock

537 RST => RST , -- 1-bit input: Active high asynchronous reset

538 -- SHIFTIN1 , SHIFTIN2: 1-bit (each) input: Data width expansion input ports

539 SHIFTIN1 => '0',
540 SHIFTIN2 => '0'
541);

542 end generate ten_gen;

543 end generate ISERDES_gen;

544
545 -- Invert output from odd -bits ISERDESE2

546 inv_gen: for i in 0 to (NUM_LVDS_PAIRS *(PIXEL_BIT_WIDTH /2)+(PIXEL_BIT_WIDTH /2) -1) generate

547 Q(i*2+1) <= not Q_inv(i);

548 end generate inv_gen;

549 end Behavioral;

F.1.2 Test Bench

1 `timescale 1ns / 1ps

2
3 module lvds_tb;

4 parameter PIXEL_BIT_WIDTH = 12;

5 parameter NUM_LVDS_PAIRS = 4;

6 parameter BIT_CLK_DELAY_TAP_VALUE = 0;

7 parameter PERIOD = 5;

8 reg [NUM_LVDS_PAIRS *2+1:0] CE;

9 reg refclk;

10 reg rst;

11 reg enable;

12 reg [1:0] clk_p_n;

13 reg [NUM_LVDS_PAIRS *2 -1:0] data_p_n;

14 reg [1:0] ctrl_p_n;

15 wire [2* PIXEL_BIT_WIDTH -1:0] pixel_word;

16 reg[PIXEL_BIT_WIDTH -1:0] training_data;

17 reg[PIXEL_BIT_WIDTH -1:0] pixel_data;

18 reg sensor_idle;

19 wire in_sync;

20
21 // IDELAYE2

22 reg[NUM_LVDS_PAIRS *2 -1:0] INC;

23 wire [NUM_LVDS_PAIRS *2 -1:0] data_out;

24 wire dly_clk_probe;

25
26 // ISERDESE2

27 wire[PIXEL_BIT_WIDTH*NUM_LVDS_PAIRS -1:0] Q_out;

28 wire CLKDIV_PROBE;

29
30 lvds_deserializer

31 #(. PIXEL_BIT_WIDTH(PIXEL_BIT_WIDTH),

32 .NUM_LVDS_PAIRS(NUM_LVDS_PAIRS),

33 .BIT_CLK_DELAY_TAP_VALUE(BIT_CLK_DELAY_TAP_VALUE))

112

34 DUT

35 (. refclk(refclk),

36 .rst(rst),

37 .enable(enable),

38 .clk_p_n(clk_p_n),

39 .data_p_n(data_p_n),

40 .ctrl_p_n(ctrl_p_n),

41 .training_data(training_data),

42 .sensor_idle(sensor_idle),

43 .in_sync(in_sync),

44 .CE(CE),

45 .INC(INC),

46 .Q_out(Q_out),

47 .CLKDIV_PROBE(CLKDIV_PROBE));

48
49
50 integer iter , i, times;

51 reg [PIXEL_BIT_WIDTH -1:0] ctrl_chn_training;

52
53
54 always #(2.5) refclk = ~refclk;

55
56 always #(PERIOD /2) begin

57 clk_p_n [0] = ~clk_p_n [0];

58 clk_p_n [1] = ~clk_p_n [0];

59 end

60
61 initial begin

62 clk_p_n [0] = 1'b0;
63 refclk = 1'b0;
64 data_p_n = 0;

65 enable = 1'b0;
66 CE <= 0;

67 INC <= 1'b0;
68 sensor_idle = 1'b0;
69 rst = 1'b1;
70 ctrl_chn_training = 10' b1011010010; //722

71 repeat (5) @(posedge clk_p_n [0]);

72 rst = 1'b0;
73 training_data = 722;

74 pixel_data = 0;

75 repeat (6) @(posedge clk_p_n [0]);

76 enable = 1'b1;
77 while(in_sync == 1'b0) begin

78 if(enable == 1'b1) begin

79 write_data(training_data);

80 end

81 end

82 for (times =0; times < 150; times = times + 1) begin

83 write_data(pixel_data);

84 pixel_data = pixel_data + 1;

85 end

86 end

87
88
89 task write_data;

90 input [PIXEL_BIT_WIDTH -1:0] pattern;

91 begin

92 for (iter = 0; iter < PIXEL_BIT_WIDTH; iter = iter + 1) begin

93 for(i = 0; i < NUM_LVDS_PAIRS; i = i + 1) begin

94 data_p_n[i*2] = pattern[iter];

95 data_p_n[i*2+1] = ~data_p_n[i*2];

96 end

97 ctrl_p_n [0] = ctrl_chn_training[iter];

98 ctrl_p_n [1] = ~ctrl_p_n [0];

99 @(posedge clk_p_n [0] or negedge clk_p_n [0]);

100 end

101 end

102 endtask

103
104 endmodule

F.2 Pixel Order Alignment Module

F.2.1 Design File

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 use IEEE.NUMERIC_STD.ALL;

4 library UNISIM;

5 use UNISIM.VComponents.all;

6 Library xpm;

7 use xpm.vcomponents.all;

8

113

9 entity pixel_alignment is

10 Generic(

11 PIXEL_BIT_WIDTH : positive := 12;

12 NUM_LVDS_PAIRS : positive := 4;

13 PIXEL_ROW_SIZE : positive := 32;

14 NUM_ROWS : positive := 600;

15 NUM_FRAMES : positive := 8400

16);

17 Port (

18 wr_clk : in std_logic;

19 rd_clk : in std_logic;

20 rd_rst : in std_logic;

21 rst : in std_logic;

22 valid_in : in std_logic;

23 pixel_words : in std_logic_vector(PIXEL_BIT_WIDTH*NUM_LVDS_PAIRS -1 downto 0);

24
25 m_axis_tdata : out std_logic_vector (47 downto 0);

26 --Tell DMA data is valid.

27 m_axis_tvalid : out std_logic;

28 --DMA is ready to receive data

29 m_axis_tready : in std_logic;

30 --Tell DMA this is last data

31 m_axis_tlast : out std_logic

32
33);

34 end pixel_alignment;

35
36 architecture Behavioral of pixel_alignment is

37
38 constant num_out : integer := PIXEL_ROW_SIZE /4;

39
40 signal full , rd_en , empty : std_logic_vector(NUM_LVDS_PAIRS -1 downto 0);

41 signal rd_data_count : std_logic_vector (8*4-1 downto 0);

42 signal wr_data_count : std_logic_vector (10*4 -1 downto 0);

43 signal data_out : std_logic_vector(NUM_LVDS_PAIRS *48-1 downto 0);

44 signal out_valid , out_handshake : std_logic;

45
46 signal wr_in_all : std_logic_vector (10*4 -1 downto 0);

47 signal fifo : integer;

48
49 signal component_cnt : integer := 0;

50 signal row_cnt : integer := 0;

51 signal frame_cnt : integer := 0;

52
53 TYPE State_type IS (idle , output); -- Define the states

54 SIGNAL state : State_Type;

55 begin

56
57 m_axis_tvalid <= out_valid;

58
59 --Process for write clock domain

60 process(wr_clk ,rst)

61 begin

62 if(rst = '1') then

63 wr_in_all <= (others => '0');
64 elsif(rising_edge(wr_clk))then

65 --Count number of written elements in all FIFOs

66 if(valid_in = '1') then

67 wr_in_all (9 downto 0) <= std_logic_vector(unsigned(wr_in_all (9 downto 0)) + 1);

68 wr_in_all (19 downto 10) <= std_logic_vector(unsigned(wr_in_all (19 downto 10)) + 1);

69 wr_in_all (29 downto 20) <= std_logic_vector(unsigned(wr_in_all (29 downto 20)) + 1);

70 wr_in_all (39 downto 30) <= std_logic_vector(unsigned(wr_in_all (39 downto 30)) + 1);

71 end if;

72 --Reset counters when row is reached.

73 if(to_integer(unsigned(wr_in_all (9 downto 0))) = PIXEL_ROW_SIZE) then

74 wr_in_all (9 downto 0) <= "0000000001";

75 wr_in_all (19 downto 10) <= "0000000001";

76 wr_in_all (29 downto 20) <= "0000000001";

77 wr_in_all (39 downto 30) <= "0000000001";

78 end if;

79 end if;

80 end process;

81
82 --Process for read clock domain

83 process(rd_clk ,rd_rst)

84 variable value_cnt : integer := 0;

85 variable last_flag : std_logic;

86 variable fwft_flag : std_logic := '0';
87 begin

88 if(rd_rst = '1') then

89 fifo <= 0;

90 state <= idle;

91 rd_en <= (others => '0');
92 out_valid <= '0';
93 fwft_flag := '0';
94 component_cnt <= 0;

95 row_cnt <= 0;

96 frame_cnt <= 0;

97 m_axis_tlast <= '0';
98 last_flag := '0';
99 elsif(rising_edge(rd_clk))then

114

100 case state is

101 when idle =>

102 m_axis_tlast <= '0';
103 out_valid <= '0';
104 --Wait to all FIFOs are filled

105 if(to_integer(unsigned(wr_in_all (9 downto 0))) >= PIXEL_ROW_SIZE) then

106 state <= output;

107 if(fwft_flag = '0') then -- If first time , read out first value of FIFOs

108 rd_en <= (others => '1');
109 fwft_flag := '1';
110 end if;

111 end if;

112 when output =>

113 if(m_axis_tready = '1' and (valid_in = '1' or row_cnt = NUM_ROWS -1)) then

--Make sure CubeDMA is ready to receive

114 out_valid <= '1'; -- valid data on AXI -s

115 rd_en <= (others => '0'); -- Stop inital readout

116 rd_en(fifo) <= '1'; -- Start selected fifo readout

117 value_cnt := value_cnt + 1;

118 component_cnt <= component_cnt + 1;

119 if(value_cnt = num_out +1) then

120 rd_en(fifo) <= '0';
121 --state <= ch_2;

122 if(fifo = 3) then -- Row is completed

123 state <= idle; -- Return to idle

124 out_valid <= '0'; -- Disable AXI -valid

125 fifo <= 0; -- Make sure fifo cannot reach 4 to avoid error

126 value_cnt := 0;

127 else -- SubRow is completed , increment selected fifo

128 rd_en(fifo +1) <= '1';
129 fifo <= fifo + 1;

130 value_cnt := 1;

131 end if;

132 end if;

133 if(component_cnt = PIXEL_ROW_SIZE -1 and row_cnt = NUM_ROWS -1 and last_flag =

'1') then --Readout is completed

134 m_axis_tlast <= '1';
135 state <= idle;

136 component_cnt <= 0;

137 row_cnt <= 0;

138 frame_cnt <= 0;

139 rd_en <= (others => '0');
140 end if;

141 else -- If CubeDMA is not ready to receive , disable fifo readout and AXI valid

142 rd_en(fifo) <= '0';
143 out_valid <= '0';
144 end if;

145 -- Counters to monitor progress

146 if(component_cnt = PIXEL_ROW_SIZE) then

147 row_cnt <= row_cnt + 1;

148 component_cnt <= 0;

149 end if;

150 if(row_cnt = NUM_ROWS) then

151 frame_cnt <= frame_cnt + 1;

152 row_cnt <= 0;

153 end if;

154 if(frame_cnt = NUM_FRAMES -1) then

155 last_flag := '1';
156 end if;

157 end case;

158 end if;

159 end process;

160
161 -- Control Mux for m_axis_tdata

162 m_axis_tdata <= data_out (47 downto 0) when fifo = 0 else

163 data_out (95 downto 48) when fifo = 1 else

164 data_out (143 downto 96) when fifo = 2 else

165 data_out (191 downto 144) when fifo = 3 else

166 (others => '0');
167
168
169
170 -- xpm_fifo_async: Asynchronous FIFO

171 -- Xilinx Parameterized Macro , Version 2017.4

172
173 fifo_gen: for i in 0 to NUM_LVDS_PAIRS -1 generate

174 xpm_fifo_async_inst : xpm_fifo_async

175 generic map (

176
177 FIFO_MEMORY_TYPE => "auto", --string; "auto", "block", or "distributed ";

178 ECC_MODE => "no_ecc", --string; "no_ecc" or "en_ecc ";

179 RELATED_CLOCKS => 0, --positive integer; 0 or 1

180 FIFO_WRITE_DEPTH => 1024, --positive integer

181 WRITE_DATA_WIDTH => PIXEL_BIT_WIDTH , --positive integer

182 WR_DATA_COUNT_WIDTH => 10, --positive integer

183 PROG_FULL_THRESH => 13, --positive integer

184 FULL_RESET_VALUE => 0, --positive integer; 0 or 1;

185 USE_ADV_FEATURES => "0707", --string; "0000" to "1F1F";

186 READ_MODE => "std", --string; "std" or "fwft";

187 FIFO_READ_LATENCY => 1, --positive integer;

188 READ_DATA_WIDTH => 48, --positive integer

115

189 RD_DATA_COUNT_WIDTH => 8, --positive integer

190 PROG_EMPTY_THRESH => 3, --positive integer

191 DOUT_RESET_VALUE => "0", --string

192 CDC_SYNC_STAGES => 2, --positive integer

193 WAKEUP_TIME => 0 --positive integer; 0 or 2;

194)

195 port map (

196
197 sleep => '0',
198 rst => rst ,

199 wr_clk => wr_clk ,

200 wr_en => valid_in ,

201 din => pixel_words(PIXEL_BIT_WIDTH*i + PIXEL_BIT_WIDTH -1 downto PIXEL_BIT_WIDTH*i),

202 full => full(i),

203 overflow => open ,

204 wr_rst_busy => open ,

205 prog_full => open ,

206 wr_data_count => wr_data_count (10*i + 9 downto 10*i),

207 almost_full => open ,

208 wr_ack => open ,

209 rd_clk => rd_clk ,

210 rd_en => rd_en(i),

211 dout => data_out(i*48 + 48-1 downto i*48),

212 empty => empty(i),

213 underflow => open ,

214 rd_rst_busy => open ,

215 prog_empty => open ,

216 rd_data_count => rd_data_count (8*i + 7 downto i*8),

217 almost_empty => open ,

218 data_valid => open ,

219 injectsbiterr => '0',
220 injectdbiterr => '0',
221 sbiterr => open ,

222 dbiterr => open

223);

224 end generate fifo_gen;

225 end Behavioral;

F.2.2 Testbench

1 `timescale 1ns / 1ps

2
3 module pixel_alignment_tb;

4 parameter NUM_LVDS_PAIRS = 4;

5 parameter PIXEL_BIT_WIDTH = 12;

6 parameter PIXEL_ROW_SIZE = 512;

7 parameter PERIOD = 10;

8
9 reg wr_clk , rd_clk , rd_rst , rst , valid_in , m_axis_tready , binning_enabled;

10 reg[PIXEL_BIT_WIDTH*NUM_LVDS_PAIRS -1:0] pixel_words;

11 reg [7:0] binning_factor;

12 wire [47:0] m_axis_tdata;

13 wire m_axis_tvalid ,m_axis_tlast;

14
15 pixel_alignment

16 #(. NUM_LVDS_PAIRS(NUM_LVDS_PAIRS),

17 .PIXEL_BIT_WIDTH(PIXEL_BIT_WIDTH),

18 .PIXEL_ROW_SIZE(PIXEL_ROW_SIZE))

19 DUT

20 (. wr_clk(wr_clk),

21 .rd_clk(rd_clk),

22 .rd_rst(rd_rst),

23 .rst(rst),

24 .valid_in(valid_in),

25 .m_axis_tready(m_axis_tready),

26 .pixel_words(pixel_words),

27 .m_axis_tdata(m_axis_tdata),

28 .m_axis_tvalid(m_axis_tvalid),

29 .m_axis_tlast(m_axis_tlast));

30
31
32
33 always #(PERIOD *1.25) begin

34 wr_clk = ~wr_clk;

35 end

36
37 always #(PERIOD /2) begin

38 rd_clk = ~rd_clk;

39 end

40
41
42 integer i, iter;

43
44 initial begin

45 wr_clk = 1'b0;

116

46 rd_clk = 1'b0;
47 rst = 1'b1;
48 valid_in = 1'b0;
49 rd_rst = 1'b1;
50 m_axis_tready = 1'b0;
51 repeat (5) @(posedge wr_clk);

52 rd_rst = 1'b0;
53 rst = 1'b0;
54 m_axis_tready = 1'b1;
55 repeat (5) @(posedge wr_clk);

56 valid_in = 1'b1;
57 for(i = 0; i < 2560; i = i + 1) begin

58 for(iter = 0; iter < 4; iter = iter + 1) begin

59 pixel_words[PIXEL_BIT_WIDTH*iter +: PIXEL_BIT_WIDTH] = i;// $urandom % 4095;

60 end

61 repeat (1) @(posedge wr_clk);

62 end

63 valid_in = 1'b0;
64 end

65
66 endmodule

F.3 Binning

F.3.1 Design file

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 use IEEE.MATH_REAL.ALL;

4 use IEEE.NUMERIC_STD.ALL;

5 library UNISIM;

6 use UNISIM.VComponents.all;

7
8 entity binning_par is

9 Generic(

10 NUM_LVDS_PAIRS : positive := 4;

11 PIXEL_BIT_WIDTH : positive := 12;

12 ACCUMULATOR_BIT_WIDTH : positive := 16;

13 BINNING_FACTOR : real := 16.0

14);

15 Port (

16 clk : in std_logic;

17 rst : in std_logic;

18
19 s_axis_tvalid : in std_logic;

20 s_axis_tready : out std_logic;

21 s_axis_tlast : in std_logic;

22 s_axis_tdata : in std_logic_vector(NUM_LVDS_PAIRS*PIXEL_BIT_WIDTH -1 downto 0);

23
24 m_axis_tdata : out std_logic_vector(PIXEL_BIT_WIDTH -1 downto 0);

25 m_axis_tvalid : out std_logic;

26 m_axis_tready : in std_logic;

27 m_axis_tlast : out std_logic

28);

29 end binning_par;

30
31 architecture Behavioral of binning_par is

32
33 constant shifts : real := LOG2(BINNING_FACTOR);

34 constant use_shift : integer := integer(shifts);

35
36
37 signal input_reg : std_logic_vector(ACCUMULATOR_BIT_WIDTH -1 downto 0);

38 signal reg_accumulator : std_logic_vector(ACCUMULATOR_BIT_WIDTH -1 downto 0);

39
40 signal add1 , add2 , add3 : std_logic_vector(ACCUMULATOR_BIT_WIDTH -1 downto 0);

41 signal valid_in_reg : std_logic;

42 signal data_out : std_logic_vector(PIXEL_BIT_WIDTH -1 downto 0);

43 signal data_in : std_logic_vector(NUM_LVDS_PAIRS*PIXEL_BIT_WIDTH -1 downto 0);

44 signal counter : integer;

45
46 signal valid_out : std_logic;

47 signal valid_in : std_logic;

48
49 signal in_handshake : std_logic;

50 signal out_handshake : std_logic;

51 signal in_last : std_logic;

52 signal in_rdy : std_logic;

53 begin

54
55 data_out <= reg_accumulator (15-(4- integer(shifts))downto integer(shifts)) when rst = '0' else (others =>

'0');
56 data_in <= s_axis_tdata;

57

117

58 add1 <= std_logic_vector(resize(unsigned("00"&data_in (11 downto 0)) + unsigned("00"&data_in (23 downto 12)),

add1 'length));
59 add2 <= std_logic_vector(resize(unsigned("00"&data_in (47 downto 36)) + unsigned("00"&data_in (35 downto 24)),

add2 'length));
60 add3 <= std_logic_vector(resize(unsigned(add1) + unsigned(add2), add3 'length));
61
62 in_rdy <= m_axis_tready;

63 s_axis_tready <= in_rdy;

64 m_axis_tvalid <= valid_out;

65 valid_in <= '1' when in_rdy='1' and s_axis_tvalid = '1' else '0';
66 m_axis_tdata <= data_out;

67
68
69 bin_4: if(use_shift = 2) generate

70 process(clk , rst)

71 variable init_flag : std_logic := '0';
72 begin

73 if(rst = '1') then

74 valid_out <= '0';
75 reg_accumulator <= (others => '0');
76 m_axis_tlast <= '0';
77 in_last <= '0';
78 elsif(rising_edge(clk)) then

79 valid_out <= '0';
80 in_last <= s_axis_tlast;

81 m_axis_tlast <= in_last;

82 if(valid_in = '1' and init_flag = '1') then

83 reg_accumulator <= add3;

84 valid_out <= '1';
85 else

86 init_flag := '1';
87 end if;

88 end if;

89 end process;

90 end generate bin_4;

91
92 bin_8: if(use_shift = 3) generate

93 process(clk , rst)

94
95 variable last_flag : std_logic_vector (2 downto 0);

96 begin

97 if(rst = '1') then

98 valid_out <= '0';
99 reg_accumulator <= (others => '0');

100 valid_in_reg <= '0';
101 input_reg <= (others => '0');
102 counter <= 0;

103 m_axis_tlast <= '0';
104 last_flag := "000";

105 elsif(rising_edge(clk)) then

106 input_reg <= add3;

107 last_flag := last_flag (1 downto 0) & s_axis_tlast;

108 m_axis_tlast <= last_flag (2);

109 valid_in_reg <= valid_in;

110 valid_out <= '0';
111 if(valid_in_reg = '1') then

112 if(counter = 0) then

113 reg_accumulator <= input_reg;

114 counter <= counter + 1;

115 else

116 reg_accumulator <= std_logic_vector(resize(unsigned(input_reg) + unsigned(

reg_accumulator),reg_accumulator 'length));
117 if(counter = use_shift -2) then

118 counter <= 0;

119 valid_out <= '1';
120 else

121 counter <= counter + 1;

122 end if;

123 end if;

124
125 end if;

126 end if;

127 end process;

128 end generate bin_8;

129
130 bin_16: if(use_shift = 4) generate

131 process(clk , rst)

132 --variable counter : integer := 0;

133 variable last_flag : std_logic_vector (2 downto 0);

134 begin

135 if(rst = '1') then

136 valid_out <= '0';
137 reg_accumulator <= (others => '0');
138 valid_in_reg <= '0';
139 input_reg <= (others => '0');
140 counter <= 0;

141 m_axis_tlast <= '0';
142 last_flag := "000";

143 elsif(rising_edge(clk)) then

144 input_reg <= add3;

145 last_flag := last_flag (1 downto 0) & s_axis_tlast;

118

146 m_axis_tlast <= last_flag (2);

147 valid_in_reg <= valid_in;

148 valid_out <= '0';
149 if(valid_in_reg = '1') then

150 if(counter = 0) then

151 reg_accumulator <= input_reg;

152 counter <= counter + 1;

153 else

154 reg_accumulator <= std_logic_vector(resize(unsigned(input_reg) + unsigned(

reg_accumulator),reg_accumulator 'length));
155 if(counter = use_shift -1) then

156 counter <= 0;

157 valid_out <= '1';
158 else

159 counter <= counter + 1;

160 end if;

161 end if;

162
163 end if;

164 end if;

165 end process;

166 end generate bin_16;

167
168 end Behavioral;

F.3.2 Test Bench

1 `timescale 1ns / 1ps

2
3 module binning_tb;

4
5
6 parameter NUM_LVDS_PAIRS = 4;

7 parameter PIXEL_BIT_WIDTH = 12;

8 parameter ACCUMULATOR_BIT_WIDTH = 16;

9 parameter BINNING_FACTOR = 4;

10 parameter PERIOD = 10;

11
12 reg clk;

13 reg rst;

14 reg[NUM_LVDS_PAIRS*PIXEL_BIT_WIDTH -1:0] pixel_data;

15 wire[NUM_LVDS_PAIRS*PIXEL_BIT_WIDTH -1:0] data_out;

16 wire valid_out;

17 reg valid_in;

18
19 binning

20 #(. NUM_LVDS_PAIRS(NUM_LVDS_PAIRS),

21 .PIXEL_BIT_WIDTH(PIXEL_BIT_WIDTH),

22 .ACCUMULATOR_BIT_WIDTH(ACCUMULATOR_BIT_WIDTH),

23 .BINNING_FACTOR(BINNING_FACTOR))

24 DUT

25 (.clk(clk),

26 .rst(rst),

27 .pixel_data(pixel_data),

28 .data_out(data_out),

29 .valid_in(valid_in),

30 .valid_out(valid_out));

31
32 integer i,iter;

33
34
35 always #(PERIOD /2) begin

36 clk = ~clk;

37 end

38
39
40 initial begin

41 clk = 1'b0;
42 rst = 1'b1;
43 pixel_data = 0;

44 valid_in = 1'b0;
45 repeat (6) @(posedge clk);

46 rst = 1'b0;
47 repeat (6) @(posedge clk);

48 valid_in = 1'b1;
49 for(iter = 0; iter < 12; iter = iter + 1) begin

50 for (i = 0; i < NUM_LVDS_PAIRS; i = i + 1) begin

51 pixel_data[PIXEL_BIT_WIDTH*i +: PIXEL_BIT_WIDTH] = $urandom % 4095;

52 end

53 repeat (1) @(posedge clk);

54 end

55 end

56
57
58

119

59 endmodule

F.4 Control Interface

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 use IEEE.NUMERIC_STD.ALL;

4 library UNISIM;

5 use UNISIM.VComponents.all;

6
7 entity Control_Interface is

8 Port (

9 rst : in std_logic;

10 gpio_in_1 : in std_logic_vector (31 downto 0);

11 gpio_in_2 : in std_logic_vector (31 downto 0);

12 gpio_out_1 : out std_logic_vector (31 downto 0);

13 enable : out std_logic;

14 training_pattern : out std_logic_vector (11 downto 0);

15 sensor_idle : out std_logic;

16 INC : out std_logic_vector (9 downto 0);

17 CE : out std_logic_vector (9 downto 0);

18 in_synq : in std_logic;

19 frame_req : out std_logic

20);

21 end Control_Interface;

22
23 architecture Behavioral of Control_Interface is

24
25
26 begin

27 process(rst)

28 begin

29 if(rst = '1') then

30 enable <= gpio_in_1 (0);

31 training_pattern <= gpio_in_1 (31 downto 22) ;

32 sensor_idle <= gpio_in_1 (1);

33 INC <= gpio_in_1 (11 downto 2);

34 CE <= gpio_in_1 (21 downto 12);

35 frame_req <= gpio_in_2 (0);

36 gpio_out_1 (0) <= in_synq;

37 elsif(rst = '0') then

38 enable <= '0';
39 training_pattern <=(others => '0');
40 sensor_idle <= '0';
41 INC <= (others => '0');
42 CE <= (others => '0');
43 frame_req <= '0';
44 gpio_out_1 (0) <= '0';
45 end if;

46 end process;

47 end Behavioral;

G EMSC HW/SW implementation

G.1 Sequential Implementation

G.1.1 Software

Listing 2: C++ code using listings

#include <stdio.h>

#include "xil_printf.h" // Printf for Uart

#include "Eigen/dense" //Eigen

#include <stdlib.h> //atof

#include <math.h> //Pow , sqrt

#include <float.h>

#include "xparameters.h" // Board specific parameters

#include "xuartps.h" //Uart

#include <string.h>

#include "xtmrctr.h" //Axi Timer

// Interrupt

#include "xscugic.h"

#include "xil_exception.h"

120

//Eigen

using Eigen:: MatrixXd;

//Axi timer

#define TMRCTR_DEVICE_ID XPAR_TMRCTR_0_DEVICE_ID

#define TIMER_COUNTER_0 0

XTmrCtr TimerCounter;

//Uart

#define UART_DEVICE_ID XPAR_PS7_UART_1_DEVICE_ID

XUartPs Uart_Ps;

// Interrupt

bool mm2s_complete = false;

bool s2mm_complete = false;

int int_counter = 0;

const u32 MM2S_INT = 61U;

const u32 S2MM_INT = 62U;

const u32 P_INT = 63U;

XScuGic_Config* scugic_config;

XScuGic scugic_inst;

u32* dma_regs = (u32*)0x43C00000;

/* Function Prototypes ***************************** */

void mean(double ** ref_spectra , double* mean , int nVars , int refOrder);

void EMSC(double ** ref_spectra ,

double ** corrected , int nVars ,

int nObs , int refOrder);

double ** initialize(int rows , int columns);

int init_timer(u16 DeviceId , u8 TmrCtrNumber);

u32 start_timer(u8 TmrCtrNumber);

u32 stop_timer(u8 TmrCtrNumber);

static void p_int_irq_handler(void* ref);

static void dma_irq_handler(void* ref);

/* ** */

double ** initialize(int rows , int columns) {

double **temp;

temp = (double **) malloc(rows * sizeof(double *));

for (int row = 0; row < rows; row ++) {

temp[row] = (double *) malloc(columns * sizeof(double));

}

return temp;}

static void p_int_irq_handler(void* ref){

int_counter += 1;

}

static void dma_irq_handler(void* ref) {

int instance = (int)ref;

int status_reg;

u32 mask = 0;

if (instance == 0) {

status_reg = 1;

mm2s_complete = true;

}

else{

status_reg = 9;

s2mm_complete = true;

}

//else{

// int_counter = int_counter + 1;

//}

mask = dma_regs[status_reg];

dma_regs[status_reg] = (1 << 5);

}

int init_interrupt_system (){

// Initialize Interrupt system

// --

int ret;

scugic_config = XScuGic_LookupConfig(XPAR_PS7_SCUGIC_0_DEVICE_ID);

if(NULL == scugic_config){

return XST_FAILURE;

}

ret = XScuGic_CfgInitialize (& scugic_inst , scugic_config , scugic_config ->CpuBaseAddress);

if (ret != XST_SUCCESS) {

print("Failed to initialize GIC\n");

return ret;

121

}

u32 id_full = XScuGic_CPUReadReg (& scugic_inst , XSCUGIC_INT_ACK_OFFSET);

XScuGic_CPUWriteReg (& scugic_inst , XSCUGIC_EOI_OFFSET , id_full);

ret = XScuGic_SelfTest (& scugic_inst);

if (ret != XST_SUCCESS) {

return XST_FAILURE;

}

ret = XScuGic_Connect (& scugic_inst , MM2S_INT , (Xil_InterruptHandler)dma_irq_handler , (void*)0);

if (ret != XST_SUCCESS)

return ret;

ret = XScuGic_Connect (& scugic_inst , S2MM_INT , (Xil_InterruptHandler)dma_irq_handler , (void*)1);

if (ret != XST_SUCCESS)

return ret;

//ret = XScuGic_Connect (& scugic_inst , P_INT , (Xil_InterruptHandler)p_int_irq_handler , (void*)2);

if (ret != XST_SUCCESS){

print("Failed to initialize GIC 3\n");

return ret;

}

XScuGic_SetPriorityTriggerType (& scugic_inst , MM2S_INT , 0xA0 , 0x3);

XScuGic_SetPriorityTriggerType (& scugic_inst , S2MM_INT , 0xA0 , 0x3);

// XScuGic_SetPriorityTriggerType (& scugic_inst , P_INT , 0xA0 , 0x3);

XScuGic_Enable (& scugic_inst , MM2S_INT);

XScuGic_Enable (& scugic_inst , S2MM_INT);

// XScuGic_Enable (& scugic_inst , P_INT);

Xil_ExceptionInit ();

Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT ,

(Xil_ExceptionHandler)XScuGic_InterruptHandler ,

&scugic_inst);

Xil_ExceptionEnable ();

// --

return XST_SUCCESS;

}

void EMSC(double ** ref_spectra , double * mean_spectra , double ** corrected ,

int nVars , int nObs , int refOrder){

// DECLARATIONS ---------------------

MatrixXd M(refOrder + 4, nVars);

// double ** G = initialize(nVars , refOrder +4);

double ** corr_M = initialize (2, nVars);

double num = 0;

double multiplier = pow(2.0, 25.0);

// ----------------------------------

for (int i = 0; i < nVars; i++) {

//Add 1 in first row

M(0,i) = 1;

//Add linspace and linspace squared

M(1,i) = num;

corr_M [0][i] = num;

M(2,i) = pow(num , 2);

corr_M [1][i] = pow(num ,2);

num += (1.0 / (nVars - 1));

//Add reference spectra

for (int y = 0; y < refOrder; y++) {

M(y + 3,i) = ref_spectra[y][i];

}

//Add mean in last row

M(refOrder+3,i) = mean_spectra[i];

}

// Initiate Block Ram

// --

// Create pointer to Block Ram base address

u32 * init = (u32*)0x43c10000;

// Creates a pointer to the address to write G

u32 * in_G = (u32*)0x43c10004;

122

u32 * num_pixels = (u32*)0x43c10008;

//

*init = 0x22034;

*num_pixels = 0x3D090;

// Execute pseudo -inverse of M

MatrixXd M_M = M*M.transpose ();

MatrixXd p_inv = M.transpose () * M_M.completeOrthogonalDecomposition ().pseudoInverse ();

for(int y = 0; y<refOrder +4; y++){

for(int i = 0; i<nVars; i++){

in_G =(int) floor(p_inv(i,y) multiplier);

// save_G[index ++] = floor(p_inv(i,y)* multiplier);

}

}

*init = 0x20034;

*init = 0x21034;

// --

// Initiate and enable Cube DMA

// --

u32* mm2s = (u32*)0x43c00000;

u32* s2mm = (u32*)0x43c00020;

// Program S2MM DMA

s2mm [0] = 0x0;

s2mm [2] = 0x0F0BDBF0;

s2mm [0] = (1 << 5) | 1;

// Program MM2S DMA

mm2s [0] = 0;

mm2s [2] = 0x100010E0;

//mm2s [3] = 0x1001001; //liten kube

//mm2s [5] = 520000; //liten kube

mm2s [3] = 0x341F41F4; //stor kube |52|500|500

mm2s [5] = 0x6590;//stor kube |26000| 52*500

mm2s [0] = (1 << 8) | (1 << 5) | 1;

while (! s2mm_complete || !mm2s_complete); // comment this if non -blocking is used

//while ((mm2s [1] != 0x1) || (s2mm [1] != 0x3D090001));

// --

// Calculate the corrected spectra

// --

int64_t * test_ptr = (int64_t *)0x0F0BDBF0;

u16 * raw_ptr = (u16*)0x100010E0;

double p_st [8];

u16 ah;

int counter = 0;

// --

while(counter < nObs){

//if((int_counter - counter > 10) || (nObs - int_counter < 10)){ // Uncomment for non -blocking

for(int i = 0; i < 8; i++){

p_st[i] = test_ptr[i+counter *8]/ multiplier;

}

for(int cols = 0; cols < nVars; cols ++){

ah = raw_ptr[counter *52+ cols];

corrected[counter][cols] = (ah - (p_st [0] + p_st [1]* corr_M [0][cols] + p_st [2]* corr_M [1][cols

]))/p_st [7];

}

counter ++;

//} // Uncomment for non -blocking

}

return;

}

//Axi -Timer

// --

int init_timer(u16 DeviceId , u8 TmrCtrNumber){

int Status;

XTmrCtr *TmrCtrInstancePtr = &TimerCounter;

/*

* Initialize the timer counter so that it's ready to use ,

123

* specify the device ID that is generated in xparameters.h

*/

Status = XTmrCtr_Initialize(TmrCtrInstancePtr , DeviceId);

if (Status != XST_SUCCESS) {

return XST_FAILURE;

}

/*

* Perform a self -test to ensure that the hardware was built

* correctly , use the 1st timer in the device (0)

*/

Status = XTmrCtr_SelfTest(TmrCtrInstancePtr , TmrCtrNumber);

if (Status != XST_SUCCESS) {

return XST_FAILURE;

}

/*

* Enable the Autoreload mode of the timer counters.

*/

return XST_SUCCESS ;}

u32 start_timer(u8 TmrCtrNumber){

XTmrCtr *TmrCtrInstancePtr = &TimerCounter;

XTmrCtr_SetOptions(TmrCtrInstancePtr , TmrCtrNumber ,

XTC_AUTO_RELOAD_OPTION);

u32 val = XTmrCtr_GetValue(TmrCtrInstancePtr , TmrCtrNumber);

XTmrCtr_Start(TmrCtrInstancePtr , TmrCtrNumber);

return val;}

u32 stop_timer(u8 TmrCtrNumber){

XTmrCtr *TmrCtrInstancePtr = &TimerCounter;

u32 val = XTmrCtr_GetValue(TmrCtrInstancePtr , TmrCtrNumber);

XTmrCtr_SetOptions(TmrCtrInstancePtr , TmrCtrNumber , 0);

return val;

}

// --

int main(){

//RAW: 0x100010E0;

// REF_SPECTRA: 0x10000000;

//MEAN: 0x10001000;

// CORRECTED: 0x19CD1534;

// Initialize interrupts

init_interrupt_system ();

// Adding pointer to location of stored cube.

float * mem_ptr = (float *)0x10000000;

int cubeDepth = 52;

int cubeHeigth = 500;

int cubeWidth = 500;

int nObs = cubeHeigth*cubeWidth; // total number of pixels

int nVars = cubeDepth;

int refOrder = 4; // numbers of species in spectra

double ** ref_spectra = initialize(refOrder , nVars);

double ** corrected = initialize(nObs , nVars);

double * mean_v = (double *) malloc(nVars * sizeof(double));

//Fill raw matrix1

int index = 0;

//Fetch ref_spectra from memory

index = 0;

mem_ptr = (float*)0x10000000;

for(int rows = 0; rows <refOrder; rows ++){

for(int cols = 0; cols < nVars; cols ++){

ref_spectra[rows][cols] = mem_ptr[index ++];

}

}

//Fetch mean from memory

mem_ptr = (float*)0x10001000;

for(int i = 0; i<nVars; i++){

mean_v[i] = mem_ptr[i];

}

//Start the EMSC

xil_printf("ESMC Starting !\n");

//Set timer

u32 value1 , value2;

init_timer(TMRCTR_DEVICE_ID , TIMER_COUNTER_0);

value1 = start_timer(TIMER_COUNTER_0);

EMSC(ref_spectra , mean_v , corrected , nVars , nObs , refOrder);

//Stop timer

value2 = stop_timer(TIMER_COUNTER_0);

xil_printf("Timer: %d\n", value2 -value1);

xil_printf("Counter: %d\n", int_counter);

//Store result in memory

124

mem_ptr = (float*)0x19CD1534;

index = 0;

for(int i = 0; i<nObs; i++){

for(int y = 0; y<nVars; y++){

mem_ptr[index ++] = (float)corrected[i][y];

}

}

xil_printf("Done");

XScuGic_Disable (& scugic_inst , MM2S_INT);

XScuGic_Disable (& scugic_inst , S2MM_INT);

// XScuGic_Disable (& scugic_inst , P_INT);

XScuGic_Disconnect (& scugic_inst , MM2S_INT);

XScuGic_Disconnect (& scugic_inst , S2MM_INT);

// XScuGic_Disconnect (& scugic_inst , P_INT);

return 0;

}

G.1.2 Top module design file

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 use IEEE.NUMERIC_STD.ALL;

4
5 entity top is

6 Generic(

7 B_RAM_SIZE : integer := 400;

8 NUM_B_RAM : integer := 16;

9 RAW_BIT_WIDTH : positive := 16;

10 G_BIT_WIDTH : positive := 32;

11 P_BIT_WIDTH : positive := 64;

12 C_S_AXI_DATA_WIDTH : integer := 32;

13 C_S_AXI_ADDR_WIDTH : integer := 6

14);

15 Port (

16 clk : in std_logic;

17 aresetn : in std_logic;

18 p_irq : out std_logic;

19
20 --AXI in-stream

21 s_axis_tdata : in std_logic_vector(RAW_BIT_WIDTH -1 downto 0);

22 --DMA is ready to send data

23 s_axis_tvalid : in std_logic;

24 --EMSC is ready to receive data

25 s_axis_tready : out std_logic;

26 --DMA say this is last data

27 s_axis_tlast : in std_logic;

28
29 --AXI out -stream

30 m_axis_tdata : out std_logic_vector (63 downto 0);

31 --EMSC is ready to send to DMA.

32 m_axis_tvalid : out std_logic;

33 --DMA is ready to receive data

34 m_axis_tready : in std_logic;

35 --Tell DMA this is last data

36 m_axis_tlast : out std_logic;

37
38
39 -- Register interface

40 s_axi_ctrl_status_awaddr : in std_logic_vector (5 downto 0);

41 s_axi_ctrl_status_awprot : in std_logic_vector (2 downto 0);

42 s_axi_ctrl_status_awvalid : in std_logic;

43 s_axi_ctrl_status_awready : out std_logic;

44 s_axi_ctrl_status_wdata : in std_logic_vector (31 downto 0);

45 s_axi_ctrl_status_wstrb : in std_logic_vector (3 downto 0);

46 s_axi_ctrl_status_wvalid : in std_logic;

47 s_axi_ctrl_status_wready : out std_logic;

48 s_axi_ctrl_status_bresp : out std_logic_vector (1 downto 0);

49 s_axi_ctrl_status_bvalid : out std_logic;

50 s_axi_ctrl_status_bready : in std_logic;

51 s_axi_ctrl_status_araddr : in std_logic_vector (5 downto 0);

52 s_axi_ctrl_status_arprot : in std_logic_vector (2 downto 0);

53 s_axi_ctrl_status_arvalid : in std_logic;

54 s_axi_ctrl_status_arready : out std_logic;

55 s_axi_ctrl_status_rdata : out std_logic_vector (31 downto 0);

56 s_axi_ctrl_status_rresp : out std_logic_vector (1 downto 0);

57 s_axi_ctrl_status_rvalid : out std_logic;

58 s_axi_ctrl_status_rready : in std_logic

59);

60 end top;

61

125

62 architecture Behavioral of top is

63
64 -- AXI in -stream signals

65 signal in_stream_data : std_logic_vector(RAW_BIT_WIDTH -1 downto 0);

66 signal in_stream_valid : std_logic;

67 signal in_stream_ready : std_logic;

68 signal in_stream_last : std_logic;

69 signal in_stream_handshake : std_logic;

70 signal in_stream_handshake_delay : std_logic;

71 signal in_raw_delay : std_logic_vector(RAW_BIT_WIDTH -1 downto 0);

72
73
74 -- AXI out -stream signals

75 signal out_stream_data : std_logic_vector (63 downto 0);

76 signal out_stream_valid : std_logic;

77 signal out_stream_ready : std_logic;

78 signal out_stream_last : std_logic;

79 signal out_stream_handshake : std_logic;

80
81 -- Signals from/to b_ram_bank

82 signal read_enable : std_logic;

83 signal b_ram_out : std_logic_vector(G_BIT_WIDTH*NUM_B_RAM -1 downto 0);

84 signal enable : std_logic;

85 signal v_len : std_logic_vector (11 downto 0);

86 signal Ref_order : std_logic_vector (5 downto 0);

87 signal num_pixels : std_logic_vector (31 downto 0);

88 signal initialized : std_logic;

89
90 -- Signals from/to dot_product_module

91 signal p_rdy_w : std_logic_vector(NUM_B_RAM -1 downto 0);

92 signal p_rdy : std_logic;

93 signal p_out : std_logic_vector(NUM_B_RAM*P_BIT_WIDTH -1 downto 0);

94 signal dp_extend_end : std_logic;

95 signal dp_enable : std_logic;

96
97
98 -- Signals from/to AXI gear box

99 signal last_p : std_logic;

100
101 begin

102 --Connections

103 in_stream_data <= s_axis_tdata;

104 in_stream_valid <= s_axis_tvalid;

105 s_axis_tready <= in_stream_ready;

106 in_stream_last <= s_axis_tlast;

107
108
109 --Helper signal

110 in_stream_handshake <= '1' when (in_stream_valid = '1' and in_stream_ready = '1') else '0';
111
112 --Output is ready

113 p_rdy <= '1' when p_rdy_w = (p_rdy_w 'range => '1') else '0';
114 --Dot product module ready

115 dp_enable <= '1' when (in_stream_handshake_delay = '1' and enable = '1' and initialized = '1') or

dp_extend_end = '1' else '0';
116 --B_ram bank read enable

117 read_enable <= '1' when (in_stream_valid = '1' and enable = '1') and initialized = '1' else '0';
118
119 process(clk , aresetn)

120 variable counter : integer := 0;

121 begin

122 if (aresetn = '0') then

123 in_stream_ready <= '0';
124 in_stream_handshake_delay <= '0';
125 last_p <= '0';
126 counter := 0;

127 in_raw_delay <= (others => '0');
128 elsif(rising_edge(clk)) then

129 last_p <= '0';
130 in_raw_delay <= in_stream_data;

131 in_stream_handshake_delay <= in_stream_handshake;

132 if(enable = '1' and initialized = '1') then

133 in_stream_ready <= '1';
134 end if;

135 if(in_stream_last = '1') then

136 dp_extend_end <= '1';
137 elsif(dp_extend_end = '1') then

138 counter := counter + 1;

139 if(counter = 3) then

140 last_p <= '1';
141 dp_extend_end <= '0';
142 counter := 0;

143 end if;

144 end if;

145 end if;

146 end process;

147
148
149
150 --B_ram bank declaration

151 b_ram: entity work.b_ram_bank

126

152 Generic map(

153 B_RAM_SIZE => B_RAM_SIZE ,

154 B_RAM_BIT_WIDTH => G_BIT_WIDTH ,

155 NUM_B_RAM => NUM_B_RAM ,

156 C_S_AXI_DATA_WIDTH => C_S_AXI_DATA_WIDTH ,

157 C_S_AXI_ADDR_WIDTH => C_S_AXI_ADDR_WIDTH

158)

159 Port map(

160 clk => clk ,

161 aresetn => aresetn ,

162
163 -- B_ram interface

164 read_enable => read_enable ,

165
166 data_out => b_ram_out ,

167 v_len => v_len ,

168 R_order => Ref_Order ,

169 num_pixels => num_pixels ,

170 init_flag => initialized ,

171
172
173 -- Register interface

174 enable => enable ,

175 s_axi_ctrl_status_awaddr => s_axi_ctrl_status_awaddr ,

176 s_axi_ctrl_status_awprot => s_axi_ctrl_status_awprot ,

177 s_axi_ctrl_status_awvalid => s_axi_ctrl_status_awvalid ,

178 s_axi_ctrl_status_awready => s_axi_ctrl_status_awready ,

179 s_axi_ctrl_status_wdata => s_axi_ctrl_status_wdata ,

180 s_axi_ctrl_status_wstrb => s_axi_ctrl_status_wstrb ,

181 s_axi_ctrl_status_wvalid => s_axi_ctrl_status_wvalid ,

182 s_axi_ctrl_status_wready => s_axi_ctrl_status_wready ,

183 s_axi_ctrl_status_bresp => s_axi_ctrl_status_bresp ,

184 s_axi_ctrl_status_bvalid => s_axi_ctrl_status_bvalid ,

185 s_axi_ctrl_status_bready => s_axi_ctrl_status_bready ,

186 s_axi_ctrl_status_araddr => s_axi_ctrl_status_araddr ,

187 s_axi_ctrl_status_arprot => s_axi_ctrl_status_arprot ,

188 s_axi_ctrl_status_arvalid => s_axi_ctrl_status_arvalid ,

189 s_axi_ctrl_status_arready => s_axi_ctrl_status_arready ,

190 s_axi_ctrl_status_rdata => s_axi_ctrl_status_rdata ,

191 s_axi_ctrl_status_rresp => s_axi_ctrl_status_rresp ,

192 s_axi_ctrl_status_rvalid => s_axi_ctrl_status_rvalid ,

193 s_axi_ctrl_status_rready => s_axi_ctrl_status_rready

194);

195
196
197 --Dot product module declaration

198 dp: entity work.dot_product_module

199 generic map(

200 RAW_BIT_WIDTH => RAW_BIT_WIDTH ,

201 G_BIT_WIDTH => G_BIT_WIDTH ,

202 NUM_B_RAM => NUM_B_RAM ,

203 P_BIT_WIDTH => P_BIT_WIDTH

204)

205 port map(

206 clk => clk ,

207 aresetn => aresetn ,

208 en => dp_enable ,

209 in_G => b_ram_out ,

210 in_raw => in_raw_delay ,

211 v_len => v_len ,

212 p_rdy => p_rdy_w ,

213 p_out => p_out

214);

215
216
217 --Output Module/Axi_gearbox declaration

218 gb: entity work.axi_gearbox

219 generic map(

220 B_RAM_SIZE => B_RAM_SIZE ,

221 B_RAM_BIT_WIDTH => G_BIT_WIDTH ,

222 NUM_B_RAM => NUM_B_RAM ,

223 RAW_BIT_WIDTH => RAW_BIT_WIDTH ,

224 G_BIT_WIDTH => G_BIT_WIDTH ,

225 P_BIT_WIDTH => P_BIT_WIDTH ,

226 C_S_AXI_DATA_WIDTH => C_S_AXI_DATA_WIDTH ,

227 C_S_AXI_ADDR_WIDTH => C_S_AXI_ADDR_WIDTH

228)

229 port map(

230 clk => clk ,

231 aresetn => aresetn ,

232 p_out => p_out ,

233 p_rdy => p_rdy ,

234 p_int => p_irq ,

235 Ref_Order => Ref_Order ,

236 enable => enable ,

237 last_p => last_p ,

238 num_pixels => num_pixels ,

239 m_axis_tdata => m_axis_tdata ,

240 m_axis_tvalid => m_axis_tvalid ,

241 m_axis_tready => m_axis_tready ,

242 m_axis_tlast => m_axis_tlast

127

243);

244
245 end Behavioral;

G.1.3 Top module testbench

1 `timescale 1ns / 1ps

2
3 module top_tb;

4 parameter C_S_AXI_DATA_WIDTH = 32;

5 parameter C_S_AXI_ADDR_WIDTH = 6;

6 parameter B_RAM_SIZE = 400;

7 parameter NUM_B_RAM = 16;

8 parameter RAW_BIT_WIDTH = 16;

9 parameter G_BIT_WIDTH = 32;

10 parameter P_BIT_WIDTH = 64;

11 parameter PERIOD = 10;

12
13 reg clk , aresetn;

14 reg [15:0] s_axis_tdata;

15 reg s_axis_tvalid , s_axis_tlast;

16 wire s_axis_tready , p_irq;

17
18 reg [32:0] counter;

19 wire [63:0] m_axis_tdata;

20 wire m_axis_tvalid , m_axis_tlast;

21 reg m_axis_tready;

22
23
24 reg [5:0] s_axi_ctrl_status_awaddr;

25 reg [2:0] s_axi_ctrl_status_awprot;

26 reg s_axi_ctrl_status_awvalid;

27 reg [31:0] s_axi_ctrl_status_wdata;

28 reg [3:0] s_axi_ctrl_status_wstrb;

29 reg s_axi_ctrl_status_wvalid;

30 reg s_axi_ctrl_status_bready;

31 reg [5:0] s_axi_ctrl_status_araddr;

32 reg [2:0] s_axi_ctrl_status_arprot;

33 reg s_axi_ctrl_status_arvalid;

34 reg s_axi_ctrl_status_rready;

35 wire s_axi_ctrl_status_awready;

36 wire s_axi_ctrl_status_wready;

37 wire [1:0] s_axi_ctrl_status_bresp;

38 wire s_axi_ctrl_status_bvalid;

39 wire s_axi_ctrl_status_arready;

40 wire [31:0] s_axi_ctrl_status_rdata;

41 wire [1:0] s_axi_ctrl_status_rresp;

42 wire s_axi_ctrl_status_rvalid;

43
44
45 top

46 #(. C_S_AXI_DATA_WIDTH(C_S_AXI_DATA_WIDTH),

47 .C_S_AXI_ADDR_WIDTH(C_S_AXI_ADDR_WIDTH),

48 .B_RAM_SIZE(B_RAM_SIZE),

49 .NUM_B_RAM(NUM_B_RAM),

50 .RAW_BIT_WIDTH(RAW_BIT_WIDTH),

51 .G_BIT_WIDTH(G_BIT_WIDTH),

52 .P_BIT_WIDTH(P_BIT_WIDTH))

53 DUT

54 (.clk(clk),

55 .aresetn(aresetn),

56 .p_irq(p_irq),

57 //IN-STREAM

58 .s_axis_tdata(s_axis_tdata),

59 .s_axis_tvalid(s_axis_tvalid),

60 .s_axis_tready(s_axis_tready),

61 .s_axis_tlast(s_axis_tlast),

62
63 //OUT -STREAM

64 .m_axis_tdata(m_axis_tdata),

65 .m_axis_tvalid(m_axis_tvalid),

66 .m_axis_tready(m_axis_tready),

67 .m_axis_tlast(m_axis_tlast),

68
69 //REGISTER -INTERFACE

70 .s_axi_ctrl_status_awaddr(s_axi_ctrl_status_awaddr),

71 .s_axi_ctrl_status_awprot(s_axi_ctrl_status_awprot),

72 .s_axi_ctrl_status_awvalid(s_axi_ctrl_status_awvalid),

73 .s_axi_ctrl_status_wdata(s_axi_ctrl_status_wdata),

74 .s_axi_ctrl_status_wstrb(s_axi_ctrl_status_wstrb),

75 .s_axi_ctrl_status_wvalid(s_axi_ctrl_status_wvalid),

76 .s_axi_ctrl_status_bready(s_axi_ctrl_status_bready),

77 .s_axi_ctrl_status_araddr(s_axi_ctrl_status_araddr),

78 .s_axi_ctrl_status_arprot(s_axi_ctrl_status_arprot),

79 .s_axi_ctrl_status_arvalid(s_axi_ctrl_status_arvalid),

128

80 .s_axi_ctrl_status_rready(s_axi_ctrl_status_rready),

81 .s_axi_ctrl_status_awready(s_axi_ctrl_status_awready),

82 .s_axi_ctrl_status_wready(s_axi_ctrl_status_wready),

83 .s_axi_ctrl_status_bresp(s_axi_ctrl_status_bresp),

84 .s_axi_ctrl_status_bvalid(s_axi_ctrl_status_bvalid),

85 .s_axi_ctrl_status_arready(s_axi_ctrl_status_arready),

86 .s_axi_ctrl_status_rdata(s_axi_ctrl_status_rdata),

87 .s_axi_ctrl_status_rresp(s_axi_ctrl_status_rresp),

88 .s_axi_ctrl_status_rvalid(s_axi_ctrl_status_rvalid)

89);

90
91 always #(PERIOD /2) clk = ~clk;

92
93 integer f_in_G , f_in_raw , f_out_P;

94 integer iter , i;

95 reg [31:0] in_G_temp;

96 reg [31:0] in_raw_temp;

97 reg [31:0] read_holder;

98 reg flagg;

99
100 initial begin

101 clk = 1'b0;
102 aresetn = 1'b0;
103 counter = 32'b0;
104 s_axis_tlast <= 1'b0;
105 s_axi_ctrl_status_awprot = 'b0;
106 s_axi_ctrl_status_bready = 1'b0;
107 s_axi_ctrl_status_wstrb = 4'hF;
108 s_axi_ctrl_status_arprot = 'b0;
109
110
111
112
113 f_in_G = $fopen("D:/ MasterOppgave/smallsat_prototype/EMSC/Test/Hardware/in_G.bin", "rb");

114
115 if (f_in_G == 0) begin

116 $display("Failed to open input file %s", "D:/ MasterOppgave/smallsat_prototype/EMSC/Test/Hardware

/in_G.bin");

117 $finish;
118 end

119
120 f_in_raw = $fopen("D:/ MasterOppgave/smallsat_prototype/EMSC/Test/Hardware/raw_large.bin", "rb");

121
122 if (f_in_raw == 0) begin

123 $display("Failed to open input file %s", "D:/ MasterOppgave/smallsat_prototype/EMSC/Test/Hardware

/raw_large.bin");

124 $finish;
125 end

126
127 f_out_P = $fopen("D:/ MasterOppgave/smallsat_prototype/EMSC/Test/P_out_tb.bin", "wb");

128
129 if (f_out_P == 0) begin

130 $display("Failed to open input file %s", "D:/ MasterOppgave/smallsat_prototype/EMSC/Test/P_out_tb

.bin");

131 $finish;
132 end

133
134 repeat (2) @(posedge clk);

135 aresetn = 1'b1;
136 write_to_reg (6'h8, 32'h2);
137 write_to_reg (6'h0, 32'h22034);
138 repeat (3) @(posedge clk);

139
140 for (iter = 0; iter < 416; iter = iter + 1) begin

//|

141 for(i = 0; i < 4; i = i + 1) begin

//|

142 in_G_temp[i*8 +: 8] = $fgetc(f_in_G);
//|

143 end

144 write_to_reg (6'h4 , in_G_temp);

//|

145 @(posedge clk);

//|

146 end

147
148 write_to_reg (6'h0, 32'h20034);
149 repeat (2) @(posedge clk);

150
151 write_to_reg (6'h0, 32'h21034);
152 repeat (10) @(posedge clk);

153
154
155 s_axis_tvalid <= 1'b1;
156
157 for (iter = 0; iter < 104; iter = iter + 1) begin

//|

158 for(i = 0; i < 2; i = i + 1) begin

//|

129

159 in_raw_temp[i*8 +: 8] = $fgetc(f_in_raw);
//|

160 end

161 s_axis_tdata <= in_raw_temp [15:0];

162 if(iter == 103) begin

163 s_axis_tlast <= 1'b1;
164 end

//|

165 @(posedge clk);

166 counter = counter + 1;

//|

167 end

168 s_axis_tlast <= 1'b0;
169 s_axis_tvalid <= 1'b0;
170
171
172
173 $fclose(f_in_G);
174 $fclose(f_in_raw);
175 repeat (100) @(posedge clk);

176 $fclose(f_out_P);
177 end

178
179
180 always @(posedge clk) begin

181 if($urandom % 3 == 0) begin

182 m_axis_tready <= 1'b0;
183 end

184 else

185 m_axis_tready <= 1'b1;
186 end

187
188 integer byte_idx , j;

189
190 always @(posedge clk) begin

191 if(m_axis_tready == 1'b1 && m_axis_tvalid == 1'b1) begin

192 for (byte_idx = 0; byte_idx < 8; byte_idx = byte_idx + 1) begin

193 $fwrite(f_out_P , "%c", m_axis_tdata[byte_idx *8+:8]);

194 end

195 end

196 end

197
198 task write_to_reg;

199 input [5:0] address;

200 input [31:0] data;

201 begin

202 @(posedge clk);

203 s_axi_ctrl_status_awaddr <= address;

204 s_axi_ctrl_status_awvalid <= 1'b1;
205 s_axi_ctrl_status_wvalid <= 1'b1;
206 s_axi_ctrl_status_wdata <= data;

207
208 while (!(s_axi_ctrl_status_awready == 1'b1 && s_axi_ctrl_status_wready == 1'b1)) begin

209 @(posedge clk);

210 end

211
212 s_axi_ctrl_status_awvalid <= 1'b0;
213 s_axi_ctrl_status_wvalid <= 1'b0;
214 end

215 endtask

216
217
218
219 task read_reg;

220 input [5:0] address;

221 output [31:0] data;

222 begin

223 @(posedge clk);

224 s_axi_ctrl_status_araddr = address;

225 s_axi_ctrl_status_arvalid = 1'b1;
226 s_axi_ctrl_status_rready = 1'b1;
227 while (!(s_axi_ctrl_status_rvalid == 1'b1)) begin

228 @(posedge clk);

229 end

230
231 s_axi_ctrl_status_rready <= 1'b0;
232 s_axi_ctrl_status_arvalid <= 1'b0;
233 data = s_axi_ctrl_status_rdata;

234
235
236 end

237 endtask

238
239 endmodule

130

G.1.4 Block ram bank design file

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 use ieee.numeric_std.all;

4
5
6 entity b_ram_bank is

7 Generic(

8 B_RAM_SIZE : integer := 100;

9 B_RAM_BIT_WIDTH : integer := 32;

10 NUM_B_RAM : integer := 16;

11 C_S_AXI_DATA_WIDTH : integer := 32;

12 C_S_AXI_ADDR_WIDTH : integer := 6

13);

14 Port (

15 clk : in std_logic;

16 aresetn : in std_logic;

17 read_enable : in std_logic;

18 enable : out std_logic;

19
20 v_len : out std_logic_vector (11 downto 0);

21 R_order : out std_logic_vector (5 downto 0);

22 init_flag : out std_logic;

23 data_out : out std_logic_vector(B_RAM_BIT_WIDTH*NUM_B_RAM -1 downto 0);

24 num_pixels : out std_logic_vector (31 downto 0);

25
26 -- Register interface

27 s_axi_ctrl_status_awaddr : in std_logic_vector(C_S_AXI_ADDR_WIDTH -1 downto 0);

28 s_axi_ctrl_status_awprot : in std_logic_vector (2 downto 0);

29 s_axi_ctrl_status_awvalid : in std_logic;

30 s_axi_ctrl_status_awready : out std_logic;

31 s_axi_ctrl_status_wdata : in std_logic_vector(C_S_AXI_DATA_WIDTH -1 downto 0);

32 s_axi_ctrl_status_wstrb : in std_logic_vector (3 downto 0);

33 s_axi_ctrl_status_wvalid : in std_logic;

34 s_axi_ctrl_status_wready : out std_logic;

35 s_axi_ctrl_status_bresp : out std_logic_vector (1 downto 0);

36 s_axi_ctrl_status_bvalid : out std_logic;

37 s_axi_ctrl_status_bready : in std_logic;

38 s_axi_ctrl_status_araddr : in std_logic_vector(C_S_AXI_ADDR_WIDTH -1 downto 0);

39 s_axi_ctrl_status_arprot : in std_logic_vector (2 downto 0);

40 s_axi_ctrl_status_arvalid : in std_logic;

41 s_axi_ctrl_status_arready : out std_logic;

42 s_axi_ctrl_status_rdata : out std_logic_vector(C_S_AXI_DATA_WIDTH -1 downto 0);

43 s_axi_ctrl_status_rresp : out std_logic_vector (1 downto 0);

44 s_axi_ctrl_status_rvalid : out std_logic;

45 s_axi_ctrl_status_rready : in std_logic

46);

47 end b_ram_bank;

48
49 architecture Behavioral of b_ram_bank is

50
51 --Control/status registers

52 signal emsc2cpu_register : std_logic_vector (31 downto 0);

53 signal cpu2emsc_register : std_logic_vector (31 downto 0);

54 signal in_G_register : std_logic_vector (31 downto 0);

55
56 --Control Signals

57 signal init , valid_input : std_logic;

58 signal G_size : std_logic_vector (11 downto 0);

59 signal Ref_Order : std_logic_vector (5 downto 0);

60 signal initialized : std_logic;

61
62 --Registers

63 signal data_in_w : std_logic_vector(B_RAM_BIT_WIDTH -1 downto 0);

64 signal read_address : integer range 0 to B_RAM_SIZE -1;

65 signal write_enable : std_logic_vector(NUM_B_RAM -1 downto 0);

66 signal b_ram_sel : std_logic_vector(NUM_B_RAM -1 downto 0);

67 signal data_in : std_logic_vector (31 downto 0);

68
69 TYPE state_type IS (idle , write , read);

70 SIGNAL state : state_type;

71
72 begin

73
74 data_in_w <= data_in(B_RAM_BIT_WIDTH -1 downto 0) when aresetn = '1' else (others => '0');
75
76 --Set outputs and read from AXI -register interface registers

77 init_flag <= initialized;

78 v_len <= G_size;

79 R_order <= Ref_Order;

80 G_size <= cpu2emsc_register (11 downto 0);

81 Ref_Order <= cpu2emsc_register (19 downto 14);

82 enable <= cpu2emsc_register (12) when initialized = '1' else '0';
83 init <= cpu2emsc_register (13);

84 emsc2cpu_register (0) <= initialized;

85 emsc2cpu_register (31 downto 1) <= (others => '0');
86
87

131

88 --AXI register interface declaration

89 register_interface: entity work.register_interface

90 generic map(

91 C_S_AXI_DATA_WIDTH => C_S_AXI_DATA_WIDTH ,

92 C_S_AXI_ADDR_WIDTH => C_S_AXI_ADDR_WIDTH ,

93 B_RAM_SIZE => B_RAM_SIZE ,

94 B_RAM_BIT_WIDTH => B_RAM_BIT_WIDTH ,

95 NUM_B_RAM => NUM_B_RAM

96)

97 port map(

98 s_axi_aclk => clk ,

99 s_axi_aresetn => aresetn ,

100
101 s_axi_awaddr => s_axi_ctrl_status_awaddr ,

102 s_axi_awprot => s_axi_ctrl_status_awprot ,

103 s_axi_awvalid => s_axi_ctrl_status_awvalid ,

104 s_axi_awready => s_axi_ctrl_status_awready ,

105
106 s_axi_wdata => s_axi_ctrl_status_wdata ,

107 s_axi_wstrb => s_axi_ctrl_status_wstrb ,

108 s_axi_wvalid => s_axi_ctrl_status_wvalid ,

109 s_axi_wready => s_axi_ctrl_status_wready ,

110
111 s_axi_bresp => s_axi_ctrl_status_bresp ,

112 s_axi_bvalid => s_axi_ctrl_status_bvalid ,

113 s_axi_bready => s_axi_ctrl_status_bready ,

114
115 s_axi_araddr => s_axi_ctrl_status_araddr ,

116 s_axi_arprot => s_axi_ctrl_status_arprot ,

117 s_axi_arvalid => s_axi_ctrl_status_arvalid ,

118 s_axi_arready => s_axi_ctrl_status_arready ,

119
120 s_axi_rdata => s_axi_ctrl_status_rdata ,

121 s_axi_rresp => s_axi_ctrl_status_rresp ,

122 s_axi_rvalid => s_axi_ctrl_status_rvalid ,

123 s_axi_rready => s_axi_ctrl_status_rready ,

124
125 --Register Outputs

126 emsc2cpu_register => emsc2cpu_register ,

127
128 --Register Inputs

129 cpu2emsc_register => cpu2emsc_register ,

130 in_G_register => data_in ,

131 num_pixels => num_pixels ,

132 valid_input => valid_input

133 --read_enable => read_enable_w

134);

135
136 --Block ram declaration

137 b_ram: for i in 0 to NUM_B_RAM -1 generate

138 DUT : entity work.block_ram

139 Generic map(

140 B_RAM_SIZE => B_RAM_SIZE ,

141 B_RAM_BIT_WIDTH => B_RAM_BIT_WIDTH

142)

143 port map(

144 clk => clk ,

145 aresetn => aresetn ,

146 data_in => data_in_w ,

147 write_enable => write_enable(i),

148 read_enable => read_enable ,

149 read_address => read_address ,

150 data_out => data_out(B_RAM_BIT_WIDTH*i + B_RAM_BIT_WIDTH -1 downto B_RAM_BIT_WIDTH*i)

151);

152 end generate b_ram;

153
154 --State machine to fill Block rams

155 process(clk , aresetn)

156 variable counter : integer range 0 to B_RAM_SIZE -1 := 0;

157 variable b_ram_written : integer range 0 to 32 := 0;

158 variable prev_b_ram_addr : std_logic_vector(NUM_B_RAM -1 downto 0);

159 variable valid_prev : std_logic;

160 begin

161 if(aresetn = '0') then

162 initialized <= '0';
163 b_ram_sel <= (others => '0');
164 b_ram_written := 0;

165 state <= idle;

166 elsif(rising_edge(clk)) then

167 case state is

168 --Stays in idle until either a init or read should be

169 --performed

170 when idle =>

171 counter := 0;

172 if(init = '1' and valid_input = '1') then

173 state <= write;

174 b_ram_sel <= (0 => '1', others => '0');
175 counter := counter + 1;

176 elsif(read_enable = '1' and initialized = '1') then

177 read_address <= read_address + 1;

178 state <= read;

132

179 end if;

180
181 --Stays in write until initialization is completed.

182 --Has to take care of bubbles in input data

183 when write =>

184 if(valid_input = '1') then

185 counter := counter + 1;

186 if(counter >= to_integer(unsigned(G_size))) then

187 if(write_enable(to_integer(unsigned(Ref_Order)) -1) = '1' or b_ram_written >=

to_integer(unsigned(Ref_Order)) -1) then

188 state <= idle;

189 initialized <= '1';
190 else

191 b_ram_sel <= b_ram_sel(NUM_B_RAM -2 downto 0) & '0';
192 b_ram_written := b_ram_written + 1;

193 counter := 0;

194 end if;

195 end if;

196 end if;

197
198 --The read state should simply read out 1 value from each B_ram

199 --each cycle.

200 when read =>

201 if(read_enable = '1') then

202 read_address <= read_address + 1;

203 if(read_address >= to_integer(unsigned(G_size)) -1) then

204 state <= idle;

205 read_address <= 0;

206 end if;

207 end if;

208 end case;

209 end if;

210 end process;

211
212
213 process(b_ram_sel , state , init , valid_input)

214 begin

215 if(state = write and valid_input = '1') then

216 write_enable <= b_ram_sel;

217 elsif(state = idle and init = '1' and valid_input = '1') then

218 write_enable <= (0 => '1', others =>'0');
219 else

220 write_enable <= (others => '0');
221 end if;

222 end process;

223
224 end Behavioral;

G.1.5 Block ram bank testbench

1 `timescale 1ns / 1ps

2
3 module b_ram_bank_tb;

4 parameter C_S_AXI_DATA_WIDTH = 32;

5 parameter C_S_AXI_ADDR_WIDTH = 6;

6 parameter B_RAM_SIZE = 100;

7 parameter B_RAM_BIT_WIDTH = 32;

8 parameter NUM_B_RAM = 8;

9 parameter PERIOD = 10;

10
11 reg [31:0] in_G_temp;

12 reg [31:0] read_holder;

13
14 reg clk , aresetn , read_enable;

15 wire enable;

16 wire[B_RAM_BIT_WIDTH*NUM_B_RAM -1:0] data_out;

17
18 reg [5:0] s_axi_ctrl_status_awaddr;

19 reg [2:0] s_axi_ctrl_status_awprot;

20 reg s_axi_ctrl_status_awvalid;

21 reg [31:0] s_axi_ctrl_status_wdata;

22 reg [3:0] s_axi_ctrl_status_wstrb;

23 reg s_axi_ctrl_status_wvalid;

24 reg s_axi_ctrl_status_bready;

25 reg [5:0] s_axi_ctrl_status_araddr;

26 reg [2:0] s_axi_ctrl_status_arprot;

27 reg s_axi_ctrl_status_arvalid;

28 reg s_axi_ctrl_status_rready;

29 wire s_axi_ctrl_status_awready;

30 wire s_axi_ctrl_status_wready;

31 wire [1:0] s_axi_ctrl_status_bresp;

32 wire s_axi_ctrl_status_bvalid;

33 wire s_axi_ctrl_status_arready;

34 wire [31:0] s_axi_ctrl_status_rdata;

35 wire [1:0] s_axi_ctrl_status_rresp;

133

36 wire s_axi_ctrl_status_rvalid;

37
38 b_ram_bank

39 #(. C_S_AXI_DATA_WIDTH(C_S_AXI_DATA_WIDTH),

40 .C_S_AXI_ADDR_WIDTH(C_S_AXI_ADDR_WIDTH),

41 .B_RAM_SIZE(B_RAM_SIZE),

42 .B_RAM_BIT_WIDTH(B_RAM_BIT_WIDTH),

43 .NUM_B_RAM(NUM_B_RAM))

44 DUT

45 (.clk(clk),

46 .aresetn(aresetn),

47 .read_enable(read_enable),

48 .enable(enable),

49 .data_out(data_out),

50 .s_axi_ctrl_status_awaddr(s_axi_ctrl_status_awaddr),

51 .s_axi_ctrl_status_awprot(s_axi_ctrl_status_awprot),

52 .s_axi_ctrl_status_awvalid(s_axi_ctrl_status_awvalid),

53 .s_axi_ctrl_status_wdata(s_axi_ctrl_status_wdata),

54 .s_axi_ctrl_status_wstrb(s_axi_ctrl_status_wstrb),

55 .s_axi_ctrl_status_wvalid(s_axi_ctrl_status_wvalid),

56 .s_axi_ctrl_status_bready(s_axi_ctrl_status_bready),

57 .s_axi_ctrl_status_araddr(s_axi_ctrl_status_araddr),

58 .s_axi_ctrl_status_arprot(s_axi_ctrl_status_arprot),

59 .s_axi_ctrl_status_arvalid(s_axi_ctrl_status_arvalid),

60 .s_axi_ctrl_status_rready(s_axi_ctrl_status_rready),

61 .s_axi_ctrl_status_awready(s_axi_ctrl_status_awready),

62 .s_axi_ctrl_status_wready(s_axi_ctrl_status_wready),

63 .s_axi_ctrl_status_bresp(s_axi_ctrl_status_bresp),

64 .s_axi_ctrl_status_bvalid(s_axi_ctrl_status_bvalid),

65 .s_axi_ctrl_status_arready(s_axi_ctrl_status_arready),

66 .s_axi_ctrl_status_rdata(s_axi_ctrl_status_rdata),

67 .s_axi_ctrl_status_rresp(s_axi_ctrl_status_rresp),

68 .s_axi_ctrl_status_rvalid(s_axi_ctrl_status_rvalid)

69);

70
71
72 integer f_in_G , f_in_raw;

73 integer iter , i;

74
75 always #(PERIOD /2) clk = ~clk;

76
77 initial begin

78 clk = 1'b0;
79 aresetn = 1'b0;
80 read_enable <= 1'b0;
81
82 s_axi_ctrl_status_awprot = 'b0;
83 s_axi_ctrl_status_bready = 1'b0;
84 s_axi_ctrl_status_wstrb = 4'hF;
85 s_axi_ctrl_status_arprot = 'b0;
86
87
88
89
90 f_in_G = $fopen("D:/ MasterOppgave/smallsat_prototype/EMSC/in_G.bin", "rb");

91
92 if (f_in_G == 0) begin

93 $display("Failed to open input file %s", "D:/ MasterOppgave/smallsat_prototype/EMSC/in_G.bin");

94 $finish;
95 end

96
97
98 repeat (2) @(posedge clk);

99 aresetn = 1'b1;
100 write_to_reg (6'h0, 32'h22034);
101
102 repeat (3) @(posedge clk);

103
104 for (iter = 0; iter < 416; iter = iter + 1) begin

//|

105 for(i = 0; i < 4; i = i + 1) begin

//|

106 in_G_temp[i*8 +: 8] = $fgetc(f_in_G);
//|

107 end

108 write_to_reg (6'h4 , in_G_temp);

//|

109 @(posedge clk);

//|

110 end

111
112 repeat (2)@(posedge clk);

113 read_reg(6'h8, read_holder);

114
115 repeat (2)@(posedge clk);

116 read_reg(6'h8, read_holder);

117
118 read_enable <= 1'b1;
119

134

120 repeat (3)@(posedge clk);

121
122 read_enable <= 1'b0;
123 end

124
125
126
127
128 task write_to_reg;

129 input [5:0] address;

130 input [31:0] data;

131 begin

132 @(posedge clk);

133 s_axi_ctrl_status_awaddr <= address;

134 s_axi_ctrl_status_awvalid <= 1'b1;
135 s_axi_ctrl_status_wvalid <= 1'b1;
136 s_axi_ctrl_status_wdata <= data;

137
138 while (!(s_axi_ctrl_status_awready == 1'b1 && s_axi_ctrl_status_wready == 1'b1)) begin

139 @(posedge clk);

140 end

141
142 s_axi_ctrl_status_awvalid <= 1'b0;
143 s_axi_ctrl_status_wvalid <= 1'b0;
144 end

145 endtask

146
147
148
149 task read_reg;

150 input [5:0] address;

151 output [31:0] data;

152 begin

153 @(posedge clk);

154 s_axi_ctrl_status_araddr = address;

155 s_axi_ctrl_status_arvalid = 1'b1;
156 s_axi_ctrl_status_rready = 1'b1;
157 while (!(s_axi_ctrl_status_rvalid == 1'b1)) begin

158 @(posedge clk);

159 end

160
161 s_axi_ctrl_status_rready <= 1'b0;
162 s_axi_ctrl_status_arvalid <= 1'b0;
163 data = s_axi_ctrl_status_rdata;

164
165
166 end

167 endtask

168
169
170
171
172 endmodule

G.1.6 Block ram design file

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3
4
5 entity block_ram is

6 Generic(

7 B_RAM_SIZE : integer := 100;

8 B_RAM_BIT_WIDTH : integer := 32

9);

10 Port (

11 clk : in std_logic;

12 aresetn : in std_logic;

13 data_in : in std_logic_vector(B_RAM_BIT_WIDTH -1 downto 0);

14 write_enable : in std_logic;

15 read_enable : in std_logic;

16 read_address : in integer range 0 to B_RAM_SIZE -1;

17 data_out : out std_logic_vector(B_RAM_BIT_WIDTH -1 downto 0)

18);

19 end block_ram;

20
21 architecture Behavioral of block_ram is

22
23 signal count_i : integer range 0 to B_RAM_SIZE -1;

24
25 type bus_array is array (0 to B_RAM_SIZE -1) of std_logic_vector(B_RAM_BIT_WIDTH -1 downto 0);

26 signal b_ram_data : bus_array;

27
28 begin

29 process(clk)

135

30 begin

31 if(rising_edge(clk)) then

32 if(write_enable = '1') then

33 b_ram_data(count_i) <= data_in;

34 end if;

35 end if;

36 end process;

37
38
39 process(clk)

40 begin

41 if(rising_edge(clk)) then

42 if(aresetn = '0') then

43 data_out <= (others => '0');
44 elsif(read_enable = '1') then

45 data_out <= b_ram_data(read_address);

46 end if;

47 end if;

48
49 end process;

50
51 process(clk)

52 begin

53 if(rising_edge(clk)) then

54 if(aresetn = '0') then

55 count_i <= 0;

56 elsif(write_enable = '1') then

57 count_i <= count_i + 1;

58 end if;

59 end if;

60 end process;

61 end Behavioral;

G.1.7 Dot product module design file

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 use IEEE.NUMERIC_STD.ALL;

4
5 entity dot_product_module is

6 Generic(

7 RAW_BIT_WIDTH : positive := 12;

8 G_BIT_WIDTH : positive := 32;

9 NUM_B_RAM : positive := 5;

10 P_BIT_WIDTH : positive := 48

11);

12 Port (

13 clk : in std_logic;

14 aresetn : in std_logic;

15 en : in std_logic;

16 in_G : in std_logic_vector(G_BIT_WIDTH*NUM_B_RAM -1 downto 0);

17 in_raw : in std_logic_vector(RAW_BIT_WIDTH -1 downto 0);

18 v_len : in std_logic_vector (11 downto 0);

19 p_rdy : out std_logic_vector(NUM_B_RAM -1 downto 0);

20 p_out : out std_logic_vector(NUM_B_RAM*P_BIT_WIDTH -1 downto 0)

21);

22 end dot_product_module;

23
24 architecture Behavioral of dot_product_module is

25
26 begin

27 --Declaration of dot product cores

28 dot_prod: for i in 0 to NUM_B_RAM -1 generate

29 dp: entity work.dot_product

30 generic map(

31 bit_depth_raw => RAW_BIT_WIDTH ,

32 bit_depth_G => G_BIT_WIDTH ,

33 P_BIT_WIDTH => P_BIT_WIDTH

34)

35 port map(

36 clk => clk ,

37 en => en,

38 reset_n => aresetn ,

39 in_raw => in_raw ,

40 in_G => in_G(G_BIT_WIDTH*i + G_BIT_WIDTH -1 downto G_BIT_WIDTH*i),

41 v_len => v_len ,

42 p_rdy => p_rdy(i),

43 p => p_out(P_BIT_WIDTH*i + P_BIT_WIDTH -1 downto P_BIT_WIDTH*i)

44);

45 end generate dot_prod;

46 end Behavioral;

136

G.1.8 Dot product core design file

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 use ieee.numeric_std.all;

4
5 entity dot_product is

6 generic(

7 bit_depth_raw : positive := 12;

8 bit_depth_G : positive := 32;

9 P_BIT_WIDTH : positive := 48

10);

11 Port (

12 clk : in std_logic;

13 en : in std_logic;

14 reset_n : in std_logic;

15 in_raw : in std_logic_vector(bit_depth_raw -1 downto 0);

16 in_G : in std_logic_vector(bit_depth_G -1 downto 0);

17 v_len : in std_logic_vector (11 downto 0);

18 p_rdy : out std_logic;

19 p : out std_logic_vector(P_bit_width -1 downto 0)

20);

21 end dot_product;

22
23 architecture Behavioral of dot_product is

24
25 signal mul_r : std_logic_vector ((bit_depth_raw + bit_depth_G - 1) downto 0);

26 signal add_r : std_logic_vector ((bit_depth_raw + bit_depth_G - 1) downto 0);

27 signal counter : integer range 0 to 400;

28 signal out_rdy : std_logic;

29
30 begin

31
32 out_rdy <= '1' when ((counter = to_integer(unsigned(v_len))+1) and en = '1') else '0';
33
34 p <= std_logic_vector(resize(signed(add_r),p'length));
35 p_rdy <= out_rdy;

36
37 process(clk , reset_n)

38 begin

39 if (rising_edge(clk))then

40 if(reset_n = '0') then

41 mul_r <= (others => '0');
42 add_r <= (others => '0');
43 counter <= 0;

44 elsif(en = '1') then

45 counter <= counter + 1;

46 --Calculate multiplication between RAW and G.

47 mul_r <= std_logic_vector(signed(in_raw)*signed(in_G));

48 if(counter = (to_integer(unsigned(v_len)) + 1)) then

49 --Initially sett accumulator reg to first multiplication

50 --between RAW and G

51 add_r <= std_logic_vector(signed(mul_r));

52 counter <= 2;

53 else

54 --Accumulutator reg set to current multiplication

55 --between RAW and G added with acummulated result

56 add_r <= std_logic_vector(resize(signed(mul_r)+signed(add_r),add_r 'length));
57 end if;

58 end if;

59 end if;

60 end process;

61 end Behavioral;

G.1.9 Output Module design file

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 use IEEE.NUMERIC_STD.ALL;

4
5 entity axi_gearbox is

6 Generic(

7 B_RAM_SIZE : integer := 100;

8 B_RAM_BIT_WIDTH : integer := 32;

9 NUM_B_RAM : integer := 8;

10 RAW_BIT_WIDTH : positive := 16;

11 G_BIT_WIDTH : positive := 32;

12 P_BIT_WIDTH : positive := 48;

13 C_S_AXI_DATA_WIDTH : integer := 32;

14 C_S_AXI_ADDR_WIDTH : integer := 6

15);

16 Port (

17 clk : in std_logic;

18 aresetn : in std_logic;

137

19 p_out : in std_logic_vector(P_BIT_WIDTH*NUM_B_RAM -1 downto 0);

20 p_rdy : in std_logic;

21 enable : in std_logic;

22 p_int : out std_logic;

23 last_p : in std_logic;

24 num_pixels : in std_logic_vector (31 downto 0);

25 Ref_order : in std_logic_vector (5 downto 0);

26
27 m_axis_tdata : out std_logic_vector (63 downto 0);

28 --EMSC is ready to send to DMA.

29 m_axis_tvalid : out std_logic;

30 --DMA is ready to receive data

31 m_axis_tready : in std_logic;

32 --Tell DMA this is last data

33 m_axis_tlast : out std_logic

34);

35 end axi_gearbox;

36
37 architecture Behavioral of axi_gearbox is

38 signal res_mem : std_logic_vector(P_BIT_WIDTH*NUM_B_RAM -1 downto 0);

39 signal start : std_logic;

40 signal t_valid_flag : std_logic;

41 signal out_handshake : std_logic;

42 signal last_t_valid : std_logic;

43 begin

44
45 --Process to handle AXI -stream output

46 process(clk ,aresetn)

47 variable counter : integer range 0 to 50 := 0;

48 begin

49 if(aresetn = '0') then

50 m_axis_tdata <= (others => '0');
51 m_axis_tvalid <= '0';
52 t_valid_flag <= '0';
53 counter := 0;

54 elsif(rising_edge(clk)) then

55 if(p_rdy = '1') then

56 res_mem <= p_out;

57 start <= '1';
58 elsif(start = '1') then

59 if(m_axis_tready = '1' and t_valid_flag = '1') then

60 counter := counter + 1;

61 end if;

62 if(counter >= to_integer(unsigned(Ref_order))) then

63 m_axis_tvalid <= '0';
64 t_valid_flag <= '0';
65 counter := 0;

66 start <= '0';
67 m_axis_tdata <= (others => '0');
68 else

69 m_axis_tdata <= std_logic_vector(resize(signed(res_mem ((P_BIT_WIDTH*counter + P_BIT_WIDTH -1)

downto (P_BIT_WIDTH*counter))),m_axis_tdata 'length));
70 m_axis_tvalid <= '1';
71 t_valid_flag <= '1';
72 end if;

73 else

74 counter := 0;

75 end if;

76
77 end if;

78 end process;

79
80 --Process to handle t_last signal

81 process(clk , aresetn)

82 variable counter : integer;

83 variable p_last_flag : std_logic;

84 begin

85 if(aresetn = '0') then

86 counter := 0;

87 m_axis_tlast <= '0';
88 p_last_flag := '0';
89 last_t_valid <= '0';
90 elsif(rising_edge(clk)) then

91 last_t_valid <= t_valid_flag;

92 if(p_last_flag = '0' and enable = '1') then

93 if(t_valid_flag = '1' and m_axis_tready = '1') then

94 m_axis_tlast <= '0';
95 end if;

96 if(counter >= to_integer(unsigned(num_pixels))) then

97 p_last_flag := '1';
98 counter := 0;

99 elsif(p_rdy = '1') then

100 counter := counter + 1;

101 end if;

102 elsif(p_last_flag = '1' and enable = '1') then

103 counter := counter + 1;

104 if(counter = to_integer(unsigned(Ref_order)) -1) then

105 m_axis_tlast <= '1';
106 counter := 0;

107 P_last_flag := '0';
108 end if;

138

109 end if;

110 end if;

111 end process;

112
113 p_int <= '1' when (last_t_valid = '1' and t_valid_flag = '0') else '0';
114 end Behavioral;

G.1.10 AXI-register interface design file

This is a module designed by Xilinx and found in LogiCORE IP AXI4-Lite IPIF
v2.0 [18]. Some changes was made to make it work with the EMSC application.

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 use ieee.numeric_std.all;

4
5 package B_RAM_BANK_pkg is

6 type bus_array is array(natural range <>) of std_logic_vector (31 downto 0);

7 end package B_RAM_BANK_pkg;

8
9 library IEEE;

10 use IEEE.STD_LOGIC_1164.ALL;

11 use ieee.numeric_std.all;

12 use work.B_RAM_BANK_pkg.all;

13
14 entity register_interface is

15 generic (

16 -- Users to add parameters here

17 B_RAM_SIZE : integer := 100;

18 B_RAM_BIT_WIDTH : integer := 32;

19 NUM_B_RAM : integer := 5;

20 -- User parameters ends

21 -- Do not modify the parameters beyond this line

22
23 -- Width of S_AXI data bus

24 C_S_AXI_DATA_WIDTH : integer := 32;

25 -- Width of S_AXI address bus

26 C_S_AXI_ADDR_WIDTH : integer := 6

27);

28 port (

29 -- Users to add ports here

30 emsc2cpu_register : in std_logic_vector (31 downto 0);

31 cpu2emsc_register : out std_logic_vector (31 downto 0);

32 num_pixels : out std_logic_vector (31 downto 0);

33 in_G_register : out std_logic_vector (31 downto 0);

34 valid_input : out std_logic;

35 -- read_enable : out std_logic;

36
37 -- User ports ends

38 -- Do not modify the ports beyond this line

39
40 -- Global Clock Signal

41 S_AXI_ACLK : in std_logic;

42 -- Global Reset Signal. This Signal is Active LOW

43 S_AXI_ARESETN : in std_logic;

44 -- Write address (issued by master , acceped by Slave)

45 S_AXI_AWADDR : in std_logic_vector(C_S_AXI_ADDR_WIDTH -1 downto 0);

46 -- Write channel Protection type. This signal indicates the

47 -- privilege and security level of the transaction , and whether

48 -- the transaction is a data access or an instruction access.

49 S_AXI_AWPROT : in std_logic_vector (2 downto 0);

50 -- Write address valid. This signal indicates that the master signaling

51 -- valid write address and control information.

52 S_AXI_AWVALID : in std_logic;

53 -- Write address ready. This signal indicates that the slave is ready

54 -- to accept an address and associated control signals.

55 S_AXI_AWREADY : out std_logic;

56 -- Write data (issued by master , acceped by Slave)

57 S_AXI_WDATA : in std_logic_vector(C_S_AXI_DATA_WIDTH -1 downto 0);

58 -- Write strobes. This signal indicates which byte lanes hold

59 -- valid data. There is one write strobe bit for each eight

60 -- bits of the write data bus.

61 S_AXI_WSTRB : in std_logic_vector ((C_S_AXI_DATA_WIDTH /8) -1 downto 0);

62 -- Write valid. This signal indicates that valid write

63 -- data and strobes are available.

64 S_AXI_WVALID : in std_logic;

65 -- Write ready. This signal indicates that the slave

66 -- can accept the write data.

67 S_AXI_WREADY : out std_logic;

68 -- Write response. This signal indicates the status

69 -- of the write transaction.

70 S_AXI_BRESP : out std_logic_vector (1 downto 0);

71 -- Write response valid. This signal indicates that the channel

72 -- is signaling a valid write response.

73 S_AXI_BVALID : out std_logic;

139

74 -- Response ready. This signal indicates that the master

75 -- can accept a write response.

76 S_AXI_BREADY : in std_logic;

77 -- Read address (issued by master , acceped by Slave)

78 S_AXI_ARADDR : in std_logic_vector(C_S_AXI_ADDR_WIDTH -1 downto 0);

79 -- Protection type. This signal indicates the privilege

80 -- and security level of the transaction , and whether the

81 -- transaction is a data access or an instruction access.

82 S_AXI_ARPROT : in std_logic_vector (2 downto 0);

83 -- Read address valid. This signal indicates that the channel

84 -- is signaling valid read address and control information.

85 S_AXI_ARVALID : in std_logic;

86 -- Read address ready. This signal indicates that the slave is

87 -- ready to accept an address and associated control signals.

88 S_AXI_ARREADY : out std_logic;

89 -- Read data (issued by slave)

90 S_AXI_RDATA : out std_logic_vector(C_S_AXI_DATA_WIDTH -1 downto 0);

91 -- Read response. This signal indicates the status of the

92 -- read transfer.

93 S_AXI_RRESP : out std_logic_vector (1 downto 0);

94 -- Read valid. This signal indicates that the channel is

95 -- signaling the required read data.

96 S_AXI_RVALID : out std_logic;

97 -- Read ready. This signal indicates that the master can

98 -- accept the read data and response information.

99 S_AXI_RREADY : in std_logic

100);

101 end register_interface;

102
103 architecture arch_imp of register_interface is

104
105 -- AXI4LITE signals

106 signal axi_awaddr : std_logic_vector(C_S_AXI_ADDR_WIDTH -1 downto 0);

107 signal axi_awready : std_logic;

108 signal axi_wready : std_logic;

109 signal axi_bresp : std_logic_vector (1 downto 0);

110 signal axi_bvalid : std_logic;

111 signal axi_araddr : std_logic_vector(C_S_AXI_ADDR_WIDTH -1 downto 0);

112 signal axi_arready : std_logic;

113 signal axi_rdata : std_logic_vector(C_S_AXI_DATA_WIDTH -1 downto 0);

114 signal axi_rresp : std_logic_vector (1 downto 0);

115 signal axi_rvalid : std_logic;

116
117 -- Example -specific design signals

118 -- local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH

119 -- ADDR_LSB is used for addressing 32/64 bit registers/memories

120 -- ADDR_LSB = 2 for 32 bits (n downto 2)

121 -- ADDR_LSB = 3 for 64 bits (n downto 3)

122 constant ADDR_LSB : integer := (C_S_AXI_DATA_WIDTH /32)+ 1;

123 constant OPT_MEM_ADDR_BITS : integer := 3;

124 constant C_NUM_REGS : integer := 16;

125 --

126 ---- Signals for user logic register space example

127 --

128 ---- Number of Slave Registers 16

129 type reg_arr_t is array (0 to C_NUM_REGS) of std_logic_vector(C_S_AXI_DATA_WIDTH -1 downto 0);

130 signal slv_regs : reg_arr_t;

131 signal read_data : reg_arr_t;

132
133 signal slv_reg_rden : std_logic;

134 signal slv_reg_wren : std_logic;

135 signal reg_data_out : std_logic_vector(C_S_AXI_DATA_WIDTH -1 downto 0);

136 signal byte_index : integer;

137 signal aw_en : std_logic;

138
139 begin

140 -- I/O Connections assignments

141
142 S_AXI_AWREADY <= axi_awready;

143 S_AXI_WREADY <= axi_wready;

144 S_AXI_BRESP <= axi_bresp;

145 S_AXI_BVALID <= axi_bvalid;

146 S_AXI_ARREADY <= axi_arready;

147 S_AXI_RDATA <= axi_rdata;

148 S_AXI_RRESP <= axi_rresp;

149 S_AXI_RVALID <= axi_rvalid;

150 -- Implement axi_awready generation

151 -- axi_awready is asserted for one S_AXI_ACLK clock cycle when both

152 -- S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is

153 -- de-asserted when reset is low.

154
155 process (S_AXI_ACLK)

156 begin

157 if rising_edge(S_AXI_ACLK) then

158 if S_AXI_ARESETN = '0' then

159 axi_awready <= '0';
160 aw_en <= '1';
161 else

162 if (axi_awready = '0' and S_AXI_AWVALID = '1' and S_AXI_WVALID = '1' and aw_en = '1') then

163 -- slave is ready to accept write address when

164 -- there is a valid write address and write data

140

165 -- on the write address and data bus. This design

166 -- expects no outstanding transactions.

167 axi_awready <= '1';
168 elsif (S_AXI_BREADY = '1' and axi_bvalid = '1') then

169 aw_en <= '1';
170 axi_awready <= '0';
171 else

172 axi_awready <= '0';
173 end if;

174 end if;

175 end if;

176 end process;

177
178 -- Implement axi_awaddr latching

179 -- This process is used to latch the address when both

180 -- S_AXI_AWVALID and S_AXI_WVALID are valid.

181
182 process (S_AXI_ACLK)

183 begin

184 if rising_edge(S_AXI_ACLK) then

185 if S_AXI_ARESETN = '0' then

186 axi_awaddr <= (others => '0');
187 else

188 if (axi_awready = '0' and S_AXI_AWVALID = '1' and S_AXI_WVALID = '1' and aw_en = '1') then

189 -- Write Address latching

190 axi_awaddr <= S_AXI_AWADDR;

191 end if;

192 end if;

193 end if;

194 end process;

195
196 -- Implement axi_wready generation

197 -- axi_wready is asserted for one S_AXI_ACLK clock cycle when both

198 -- S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is

199 -- de -asserted when reset is low.

200
201 process (S_AXI_ACLK)

202 begin

203 if rising_edge(S_AXI_ACLK) then

204 if S_AXI_ARESETN = '0' then

205 axi_wready <= '0';
206 else

207 if (axi_wready = '0' and S_AXI_WVALID = '1' and S_AXI_AWVALID = '1' and aw_en = '1') then

208 -- slave is ready to accept write data when

209 -- there is a valid write address and write data

210 -- on the write address and data bus. This design

211 -- expects no outstanding transactions.

212 axi_wready <= '1';
213 else

214 axi_wready <= '0';
215 end if;

216 end if;

217 end if;

218 end process;

219
220 -- Implement memory mapped register select and write logic generation

221 -- The write data is accepted and written to memory mapped registers when

222 -- axi_awready , S_AXI_WVALID , axi_wready and S_AXI_WVALID are asserted. Write strobes are used to

223 -- select byte enables of slave registers while writing.

224 -- These registers are cleared when reset (active low) is applied.

225 -- Slave register write enable is asserted when valid address and data are available

226 -- and the slave is ready to accept the write address and write data.

227 slv_reg_wren <= axi_wready and S_AXI_WVALID and axi_awready and S_AXI_AWVALID;

228
229 process (S_AXI_ACLK)

230 variable loc_addr : integer range 0 to 2**(OPT_MEM_ADDR_BITS +1) -1;

231 variable slv_regs_nxt : reg_arr_t;

232 begin

233 if rising_edge(S_AXI_ACLK) then

234 if S_AXI_ARESETN = '0' then

235 slv_regs <= (others => (others => '0'));
236 valid_input <= '0';
237 else

238 loc_addr := to_integer(unsigned(axi_awaddr(ADDR_LSB + OPT_MEM_ADDR_BITS downto ADDR_LSB)));

239 valid_input <= '0';
240 if (slv_reg_wren = '1') then

241 if(loc_addr = 1) then

242 valid_input <= '1';
243 end if;

244 if (loc_addr < C_NUM_REGS) then

245 for byte_index in 0 to (C_S_AXI_DATA_WIDTH /8-1) loop

246 if (S_AXI_WSTRB(byte_index) = '1') then

247 -- Respective byte enables are asserted as per write strobes

248 -- slave registor 0

249 slv_regs(loc_addr)(byte_index *8+7 downto byte_index *8) <= S_AXI_WDATA(byte_index *8+7 downto

byte_index *8);

250 end if;

251 end loop;

252 end if;

253 end if;

254 end if;

141

255 end if;

256 end process;

257
258 -- Implement write response logic generation

259 -- The write response and response valid signals are asserted by the slave

260 -- when axi_wready , S_AXI_WVALID , axi_wready and S_AXI_WVALID are asserted.

261 -- This marks the acceptance of address and indicates the status of

262 -- write transaction.

263
264 process (S_AXI_ACLK)

265 begin

266 if rising_edge(S_AXI_ACLK) then

267 if S_AXI_ARESETN = '0' then

268 axi_bvalid <= '0';
269 axi_bresp <= "00"; --need to work more on the responses

270 else

271 if (axi_awready = '1' and S_AXI_AWVALID = '1' and axi_wready = '1' and S_AXI_WVALID = '1' and

axi_bvalid = '0') then

272 axi_bvalid <= '1';
273 axi_bresp <= "00";

274 elsif (S_AXI_BREADY = '1' and axi_bvalid = '1') then --check if bready is asserted while bvalid is

high)

275 axi_bvalid <= '0'; -- (there is a possibility that bready is always asserted high)

276 end if;

277 end if;

278 end if;

279 end process;

280
281 -- Implement axi_arready generation

282 -- axi_arready is asserted for one S_AXI_ACLK clock cycle when

283 -- S_AXI_ARVALID is asserted. axi_awready is

284 -- de -asserted when reset (active low) is asserted.

285 -- The read address is also latched when S_AXI_ARVALID is

286 -- asserted. axi_araddr is reset to zero on reset assertion.

287
288 process (S_AXI_ACLK)

289 begin

290 if rising_edge(S_AXI_ACLK) then

291 if S_AXI_ARESETN = '0' then

292 axi_arready <= '0';
293 axi_araddr <= (others => '1');
294 else

295 if (axi_arready = '0' and S_AXI_ARVALID = '1') then

296 -- indicates that the slave has acceped the valid read address

297 axi_arready <= '1';
298 -- Read Address latching

299 axi_araddr <= S_AXI_ARADDR;

300 else

301 axi_arready <= '0';
302 end if;

303 end if;

304 end if;

305 end process;

306
307 -- Implement axi_arvalid generation

308 -- axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both

309 -- S_AXI_ARVALID and axi_arready are asserted. The slave registers

310 -- data are available on the axi_rdata bus at this instance. The

311 -- assertion of axi_rvalid marks the validity of read data on the

312 -- bus and axi_rresp indicates the status of read transaction.axi_rvalid

313 -- is deasserted on reset (active low). axi_rresp and axi_rdata are

314 -- cleared to zero on reset (active low).

315 process (S_AXI_ACLK)

316 begin

317 if rising_edge(S_AXI_ACLK) then

318 if S_AXI_ARESETN = '0' then

319 axi_rvalid <= '0';
320 axi_rresp <= "00";

321 -- read_enable <= '0';
322 else

323 if (axi_arready = '1' and S_AXI_ARVALID = '1' and axi_rvalid = '0') then

324 -- Valid read data is available at the read data bus

325 axi_rvalid <= '1';
326 axi_rresp <= "00"; -- 'OKAY ' response

327 elsif (axi_rvalid = '1' and S_AXI_RREADY = '1') then

328 -- Read data is accepted by the master

329 -- read_enable <= '1';
330 axi_rvalid <= '0';
331 -- else

332 -- read_enable <= '0';
333 end if;

334 end if;

335 end if;

336 end process;

337
338 -- Implement memory mapped register select and read logic generation

339 -- Slave register read enable is asserted when valid address is available

340 -- and the slave is ready to accept the read address.

341 slv_reg_rden <= axi_arready and S_AXI_ARVALID and (not axi_rvalid);

342
343 process (axi_araddr , read_data)

142

344 variable loc_addr : integer range 0 to 2**(OPT_MEM_ADDR_BITS +1) -1;

345 begin

346 -- Address decoding for reading registers

347 loc_addr := to_integer(unsigned(axi_araddr(ADDR_LSB + OPT_MEM_ADDR_BITS downto ADDR_LSB)));

348 -- read_enable <= '0';
349 -- if(loc_addr = 0) then

350 -- read_enable <= '1';
351 -- end if;

352 if (loc_addr < C_NUM_REGS) then

353 reg_data_out <= read_data(loc_addr);

354 else

355 reg_data_out <= (others => '0');
356 end if;

357 end process;

358
359 -- Output register or memory read data

360 process(S_AXI_ACLK) is

361 begin

362 if (rising_edge (S_AXI_ACLK)) then

363 if (S_AXI_ARESETN = '0') then

364 axi_rdata <= (others => '0');
365 else

366 if (slv_reg_rden = '1') then

367 -- When there is a valid read address (S_AXI_ARVALID) with

368 -- acceptance of read address by the slave (axi_arready),

369 -- output the read dada

370 -- Read address mux

371 axi_rdata <= reg_data_out; -- register read data

372 end if;

373 end if;

374 end if;

375 end process;

376
377 -- Add user logic here

378 cpu2emsc_register <= slv_regs (0);

379 in_G_register <= slv_regs (1);

380 num_pixels <= slv_regs (2);

381
382 -- Data returned when reading is the register values -- except for the cases

383 -- where we want reads to behave differently

384 process (slv_regs , emsc2cpu_register)

385 begin

386 for i in 0 to C_NUM_REGS -1 loop

387 read_data(i) <= slv_regs(i);

388 end loop;

389 read_data (1) <= emsc2cpu_register;

390 end process;

391 -- User logic ends

392
393 end arch_imp;

G.2 Parallel Implementation

G.2.1 Software

Listing 3: C++ code using listings

#include <stdio.h>

#include "xil_printf.h" // Printf for Uart

#include "Eigen/dense" //Eigen

#include <stdlib.h> //atof

#include <math.h> //Pow , sqrt

#include <float.h>

#include "xparameters.h" // Board specific parameters

#include "xuartps.h" //Uart

#include <string.h>

#include "xtmrctr.h" //Axi Timer

// Interrupt

#include "xscugic.h"

#include "xil_exception.h"

//Axi Timer

#include "xtmrctr.h"

#include <string.h>

using Eigen:: MatrixXd;

//Axi timer

143

#define TMRCTR_DEVICE_ID XPAR_TMRCTR_0_DEVICE_ID

#define TIMER_COUNTER_0 0

XTmrCtr TimerCounter;

//Uart

#define UART_DEVICE_ID XPAR_PS7_UART_1_DEVICE_ID

XUartPs Uart_Ps;

// Interrupt

bool mm2s_complete = false;

bool s2mm_complete = false;

const u32 MM2S_INT = 61U;

const u32 S2MM_INT = 62U;

const u32 P_INT = 63U;

XScuGic_Config* scugic_config;

XScuGic scugic_inst;

int int_counter = 0;

u32* dma_regs = (u32*)0x43C00000;

/* Function Prototypes ***************************** */

void EMSC(double ** ref_spectra ,

double ** corrected , int nVars ,

int nObs , int refOrder);

double ** initialize(int rows , int columns);

int init_timer(u16 DeviceId , u8 TmrCtrNumber);

u32 start_timer(u8 TmrCtrNumber);

u32 stop_timer(u8 TmrCtrNumber);

static void dma_irq_handler(void* ref);

static void p_int_irq_handler(void* ref);

/* ** */

double ** initialize(int rows , int columns) {

double **temp;

temp = (double **) malloc(rows * sizeof(double *));

for (int row = 0; row < rows; row ++) {

temp[row] = (double *) malloc(columns * sizeof(double));

}

return temp;

}

static void p_int_irq_handler(void* ref){

int_counter += 1;

}

static void dma_irq_handler(void* ref) {

int instance = (int)ref;

int status_reg;

u32 mask = 0;

if (instance == 0) {

status_reg = 1;

mm2s_complete = true;

}

else{

status_reg = 9;

s2mm_complete = true;

}

//else{

// int_counter = int_counter + 1;

//}

mask = dma_regs[status_reg];

dma_regs[status_reg] = (1 << 5);

}

int init_interrupt_system (){

// Initialize Interrupt system

// --

int ret;

scugic_config = XScuGic_LookupConfig(XPAR_PS7_SCUGIC_0_DEVICE_ID);

if(NULL == scugic_config){

return XST_FAILURE;

}

ret = XScuGic_CfgInitialize (& scugic_inst , scugic_config , scugic_config ->CpuBaseAddress);

if (ret != XST_SUCCESS) {

print("Failed to initialize GIC\n");

return ret;

}

u32 id_full = XScuGic_CPUReadReg (& scugic_inst , XSCUGIC_INT_ACK_OFFSET);

144

XScuGic_CPUWriteReg (& scugic_inst , XSCUGIC_EOI_OFFSET , id_full);

ret = XScuGic_SelfTest (& scugic_inst);

if (ret != XST_SUCCESS) {

return XST_FAILURE;

}

ret = XScuGic_Connect (& scugic_inst , MM2S_INT , (Xil_InterruptHandler)dma_irq_handler , (void*)0);

if (ret != XST_SUCCESS)

return ret;

ret = XScuGic_Connect (& scugic_inst , S2MM_INT , (Xil_InterruptHandler)dma_irq_handler , (void*)1);

if (ret != XST_SUCCESS)

return ret;

//ret = XScuGic_Connect (& scugic_inst , P_INT , (Xil_InterruptHandler)p_int_irq_handler , (void*)2);

if (ret != XST_SUCCESS){

print("Failed to initialize GIC 3\n");

return ret;

}

XScuGic_SetPriorityTriggerType (& scugic_inst , MM2S_INT , 0xA0 , 0x3);

XScuGic_SetPriorityTriggerType (& scugic_inst , S2MM_INT , 0xA0 , 0x3);

// XScuGic_SetPriorityTriggerType (& scugic_inst , P_INT , 0xA0 , 0x3);

XScuGic_Enable (& scugic_inst , MM2S_INT);

XScuGic_Enable (& scugic_inst , S2MM_INT);

// XScuGic_Enable (& scugic_inst , P_INT);

Xil_ExceptionInit ();

Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT ,

(Xil_ExceptionHandler)XScuGic_InterruptHandler ,

&scugic_inst);

Xil_ExceptionEnable ();

// --

return XST_SUCCESS;

}

void EMSC(double ** ref_spectra , double* mean_spectra , double ** corrected , int nVars , int nObs , int refOrder)

{

// DECLARATIONS ---------------------

MatrixXd M(refOrder + 4, nVars);

// double ** G = initialize(nVars , refOrder +4);

double ** corr_M = initialize (2, nVars);

double num = 0;

double multiplier = pow(2.0, 20.0);

// ----------------------------------

// --

xil_printf("Constructing M!\n");

for (int i = 0; i < nVars; i++) {

//Add 1 in first row

M(0,i) = 1;

//Add linspace and linspace squared

M(1,i) = num;

corr_M [0][i] = num;

M(2,i) = pow(num , 2);

corr_M [1][i] = pow(num ,2);

num += (1.0 / (nVars - 1));

//Add reference spectra

for (int y = 0; y < refOrder; y++) {

M(y + 3,i) = ref_spectra[y][i];

}

//Add mean in last row

M(refOrder+3,i) = mean_spectra[i];

}

// INITIALIZE BLOCK RAM

// - G is loaded into the b-ram

// -------------------------------

//u32 * mem_ptr = (u32*)0x10000000;

u32 * init = (u32*)0x43c10000;

u32 * in_G = (u32*)0x43c10004;

u32 * num_pixels = (u32*)0x43c10008;

//

145

*init = 0x22034;

*num_pixels = 0x3D090;

// Execute pseudo -inverse of M

MatrixXd M_M = M*M.transpose ();

MatrixXd p_inv = M.transpose () * M_M.completeOrthogonalDecomposition ().pseudoInverse ();

xil_printf("Pseudo -Inverse Completed !\n");

for(int y = 0; y<refOrder +4; y++){

for(int i = 0; i<nVars; i++){

in_G =(int) floor(p_inv(i,y) multiplier);

// save_G[index ++] = floor(p_inv(i,y)* multiplier);

}

}

// -------------------------------

*init = 0x20034;

*init = 0x21034;

// Initiate and enable Cube DMA

// --

u32* mm2s = (u32*)0x43c00000;

u32* s2mm = (u32*)0x43c00020;

// Program S2MM DMA

s2mm [0] = 0x0;

s2mm [2] = 0x0F0BDBF0;

s2mm [0] = (1 << 5) | 1;

// Program MM2S DMA

mm2s [0] = 0;

mm2s [2] = 0x100010E0;

//mm2s [3] = 0x1001001; //small cube

//mm2s [5] = 520000; //small cube

mm2s [3] = 0x341F41F4; // large cube |52|500|500

mm2s [5] = 0x6590;//large cube |26000| 52*500

u32 value1 , value2;

init_timer(TMRCTR_DEVICE_ID , TIMER_COUNTER_0);

value1 = start_timer(TIMER_COUNTER_0);

mm2s [0] = (1 << 8) | (1 << 5) | 1;

while (! s2mm_complete || !mm2s_complete);

//while ((mm2s [1] != 0x1) || (s2mm [1] != 0x3D090001));

//while ((mm2s [1] != 0x1) || (s2mm [1] != 0x3D081201));

// --

value2 = stop_timer(TIMER_COUNTER_0);

xil_printf("Timer: %d\n", value2 -value1);

xil_printf("Counter: %d\n", int_counter);

// Calculate the corrected spectra

// --

int64_t * test_ptr = (int64_t *)0x0F0BDBF0;

u16 * raw_ptr = (u16*)0x100010E0;

double p_st [8];

u16 ah;

int counter = 0;

float* mem_ptr = (float*)0x19CD1534;

int index = 0;

// --

while(counter < nObs){

for(int i = 0; i < 8; i++){

p_st[i] = test_ptr[i+counter *8]/ multiplier;

}

for(int cols = 0; cols < nVars; cols ++){

ah = raw_ptr[counter *52+ cols];

corrected[counter][cols] = (ah - (p_st [0] + p_st [1]* corr_M [0][cols] + p_st [2]* corr_M [1][cols

]))/p_st[refOrder +3];

}

counter ++;

}

xil_printf("Test!\n");

return;

}

int init_timer(u16 DeviceId , u8 TmrCtrNumber){

int Status;

XTmrCtr *TmrCtrInstancePtr = &TimerCounter;

/*

146

* Initialize the timer counter so that it's ready to use ,

* specify the device ID that is generated in xparameters.h

*/

Status = XTmrCtr_Initialize(TmrCtrInstancePtr , DeviceId);

if (Status != XST_SUCCESS) {

printf("Timer failed\n");

return XST_FAILURE;

}

/*

* Perform a self -test to ensure that the hardware was built

* correctly , use the 1st timer in the device (0)

*/

Status = XTmrCtr_SelfTest(TmrCtrInstancePtr , TmrCtrNumber);

if (Status != XST_SUCCESS) {

printf("Timer failed\n");

return XST_FAILURE;

}

/*

* Enable the Autoreload mode of the timer counters.

*/

return XST_SUCCESS ;}

u32 start_timer(u8 TmrCtrNumber){

XTmrCtr *TmrCtrInstancePtr = &TimerCounter;

XTmrCtr_SetOptions(TmrCtrInstancePtr , TmrCtrNumber ,

XTC_AUTO_RELOAD_OPTION);

u32 val = XTmrCtr_GetValue(TmrCtrInstancePtr , TmrCtrNumber);

XTmrCtr_Start(TmrCtrInstancePtr , TmrCtrNumber);

return val;}

u32 stop_timer(u8 TmrCtrNumber){

XTmrCtr *TmrCtrInstancePtr = &TimerCounter;

u32 val = XTmrCtr_GetValue(TmrCtrInstancePtr , TmrCtrNumber);

XTmrCtr_SetOptions(TmrCtrInstancePtr , TmrCtrNumber , 0);

return val;

}

int main(){

init_interrupt_system ();

// Adding pointer to location of stored cube.

float * mem_ptr = (float *)0x10010000;

int nVars = 52; // number of wavelenghts

int nObs = 250000; //total number of pixels

int refOrder = 4; // numbers of species in spectra

double ** ref_spectra = initialize(refOrder , nVars);

double ** corrected = initialize(nObs , nVars);

double * mean_v = (double *) malloc(nVars * sizeof(double));

//Fill raw matrix

int index = 0;

// Construct some reference spectra

//Just using some spectras from raw in this case

//as an example.

index = 0;

mem_ptr = (float*)0x10000000;

for(int rows = 0; rows <refOrder; rows ++){

for(int cols = 0; cols < nVars; cols ++){

ref_spectra[rows][cols] = mem_ptr[index ++];

}

}

mem_ptr = (float*)0x10001000;

for(int i = 0; i<nVars; i++){

mean_v[i] = mem_ptr[i];

}

// calculate mean of ref_spectra

//mean(ref_spectra , mean_v , nVars , refOrder);

xil_printf("ESMC Starting !\n");

//Start the EMSC

EMSC(ref_spectra , mean_v , corrected , nVars , nObs , refOrder);

//Stop timer

//Point to location for storing data

147

xil_printf("Done");

XScuGic_Disable (& scugic_inst , MM2S_INT);

XScuGic_Disable (& scugic_inst , S2MM_INT);

// XScuGic_Disable (& scugic_inst , P_INT);

XScuGic_Disconnect (& scugic_inst , MM2S_INT);

XScuGic_Disconnect (& scugic_inst , S2MM_INT);

// XScuGic_Disconnect (& scugic_inst , P_INT);

return 0;

}

G.2.2 Top module design file

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 use IEEE.NUMERIC_STD.ALL;

4
5
6
7
8 entity top is

9 Generic(

10 B_RAM_SIZE : integer := 400;

11 NUM_B_RAM : integer := 16;

12 RAW_BIT_WIDTH : positive := 64;

13 G_BIT_WIDTH : positive := 32;

14 P_BIT_WIDTH : positive := 64;

15 C_S_AXI_DATA_WIDTH : integer := 32;

16 C_S_AXI_ADDR_WIDTH : integer := 6;

17
18 FIFO_DEPTH : integer := 512;

19 FIFO_SIZE : integer := 64;

20 WRITE_DATA_WIDTH : integer := 64;

21 WR_DATA_COUNT_WIDTH : integer := 7;

22 FIFO_MARGIN : integer := 50;

23 RD_DATA_COUNT_WIDTH : integer := 7;

24 READ_DATA_WIDTH : integer := 16;

25 LATENCY_CYCLES : integer := 13

26);

27 Port (

28 clk : in std_logic;

29 aresetn : in std_logic;

30 p_irq : out std_logic;

31
32 --AXI in-stream

33 s_axis_tdata : in std_logic_vector(RAW_BIT_WIDTH -1 downto 0);

34 --DMA is ready to send data

35 s_axis_tvalid : in std_logic;

36 --EMSC is ready to receive data

37 s_axis_tready : out std_logic;

38 --DMA say this is last data

39 s_axis_tlast : in std_logic;

40
41 --AXI out -stream

42 m_axis_tdata : out std_logic_vector (63 downto 0);

43 --EMSC is ready to send to DMA.

44 m_axis_tvalid : out std_logic;

45 --DMA is ready to receive data

46 m_axis_tready : in std_logic;

47 --Tell DMA this is last data

48 m_axis_tlast : out std_logic;

49
50
51 -- Register interface

52 s_axi_ctrl_status_awaddr : in std_logic_vector (5 downto 0);

53 s_axi_ctrl_status_awprot : in std_logic_vector (2 downto 0);

54 s_axi_ctrl_status_awvalid : in std_logic;

55 s_axi_ctrl_status_awready : out std_logic;

56 s_axi_ctrl_status_wdata : in std_logic_vector (31 downto 0);

57 s_axi_ctrl_status_wstrb : in std_logic_vector (3 downto 0);

58 s_axi_ctrl_status_wvalid : in std_logic;

59 s_axi_ctrl_status_wready : out std_logic;

60 s_axi_ctrl_status_bresp : out std_logic_vector (1 downto 0);

61 s_axi_ctrl_status_bvalid : out std_logic;

62 s_axi_ctrl_status_bready : in std_logic;

63 s_axi_ctrl_status_araddr : in std_logic_vector (5 downto 0);

64 s_axi_ctrl_status_arprot : in std_logic_vector (2 downto 0);

65 s_axi_ctrl_status_arvalid : in std_logic;

66 s_axi_ctrl_status_arready : out std_logic;

67 s_axi_ctrl_status_rdata : out std_logic_vector (31 downto 0);

68 s_axi_ctrl_status_rresp : out std_logic_vector (1 downto 0);

148

69 s_axi_ctrl_status_rvalid : out std_logic;

70 s_axi_ctrl_status_rready : in std_logic

71);

72 end top;

73
74 architecture Behavioral of top is

75
76 -- AXI in -stream signals

77 signal in_stream_data : std_logic_vector(RAW_BIT_WIDTH -1 downto 0);

78 signal in_stream_valid : std_logic;

79 signal in_stream_ready : std_logic;

80 signal in_stream_last : std_logic;

81 signal in_stream_handshake : std_logic;

82 signal in_stream_valid_delay : std_logic;

83 signal in_stream_ready_delay : std_logic;

84 signal in_raw_delay : std_logic_vector(RAW_BIT_WIDTH -1 downto 0);

85
86
87 -- AXI out -stream signals

88 signal out_stream_data : std_logic_vector (63 downto 0);

89 signal out_stream_valid : std_logic;

90 signal out_stream_ready : std_logic;

91 signal out_stream_last : std_logic;

92 signal out_stream_handshake : std_logic;

93
94 -- Signals from/to b_ram_bank

95 signal read_enable : std_logic;

96 signal b_ram_out : std_logic_vector(G_BIT_WIDTH*NUM_B_RAM -1 downto 0);

97 signal enable : std_logic;

98 signal v_len : std_logic_vector (11 downto 0);

99 signal Ref_order : std_logic_vector (5 downto 0);

100 signal num_pixels : std_logic_vector (31 downto 0);

101 signal initialized : std_logic;

102
103 -- Signals from/to dot_product_module

104 signal p_rdy : std_logic_vector (3 downto 0);

105 signal p_out : std_logic_vector (4* NUM_B_RAM*P_BIT_WIDTH -1 downto 0);

106 signal dp_extend_end : std_logic;

107 signal dp_enable : std_logic_vector (3 downto 0);

108 signal dp_data_in : std_logic_vector(G_BIT_WIDTH*NUM_B_RAM *4-1 downto 0);

109 signal dp_enable_reg : std_logic_vector (3* LATENCY_CYCLES downto 0);

110 -- Signals from/to AXI gear box

111 signal last_p : std_logic;

112
113 --Signal for fifo

114 signal fifo_enable: std_logic;

115 signal fifo_read: std_logic_vector (3 downto 0);

116 signal fifo_in : std_logic_vector (63 downto 0);

117 signal fifo_out : std_logic_vector (16*4 -1 downto 0);

118 signal fifo_empty , fifo_full : std_logic_vector (3 downto 0);

119
120 --Signal FIFO delay Registers

121 signal fifo1_reg : std_logic_vector(NUM_B_RAM*G_BIT_WIDTH *(LATENCY_CYCLES)-1 downto 0);

122 signal fifo2_reg : std_logic_vector(NUM_B_RAM*G_BIT_WIDTH *((2* LATENCY_CYCLES) -1) -1 downto 0);

123 signal fifo3_reg : std_logic_vector(NUM_B_RAM*G_BIT_WIDTH *((3* LATENCY_CYCLES) -2) -1 downto 0);

124
125 signal last_flag : std_logic;

126 signal valid_in : std_logic;

127 signal p_irq_w : std_logic;

128
129
130 signal b_ram_register_timing_opt : std_logic_vector(G_BIT_WIDTH*NUM_B_RAM -1 downto 0);

131 signal fifo_register_timing_opt : std_logic_vector (16*4 -1 downto 0);

132
133 signal fifo_init : std_logic_vector (3 downto 0);

134 signal prev_fifo_init : std_logic_vector (3 downto 0);

135 signal dp_enable_delay : std_logic_vector (3 downto 0);

136 signal fifo_init_delay : std_logic_vector (3 downto 0);

137 signal in_stream_counter : integer range 0 to 20000000;

138 signal fifo_full_flag : std_logic;

139 signal last_p_delay : std_logic_vector (3 downto 0);

140
141 TYPE State_type IS (INITIAL , CONTINOUS); -- Define the states

142 SIGNAL state : State_Type;

143 begin

144
145 --Connections

146 in_stream_data <= s_axis_tdata;

147 in_stream_valid <= s_axis_tvalid;

148 s_axis_tready <= in_stream_ready;

149 in_stream_last <= s_axis_tlast;

150
151
152 --Helper signal

153 in_stream_handshake <= '1' when (in_stream_valid = '1' and in_stream_ready = '1') else '0';
154
155 valid_in <= '1' when (in_stream_handshake = '1' and m_axis_tready = '1' and enable = '1' and initialized =

'1') else '0';
156 fifo_enable <= '1' when (in_stream_valid_delay = '1' and in_stream_ready_delay = '1' and enable = '1' and

initialized = '1') or last_flag = '1' else '0';

149

157 fifo_full_flag <= '1' when (fifo_full (0) = '1' or fifo_full (1) = '1' or fifo_full (2) = '1' or fifo_full (3)

= '1') else '0';
158
159 p_irq <= p_irq_w;

160
161
162 --Process to control last value on

163 --AXI -stream

164 process(clk , aresetn)

165 variable p_count : integer := 0;

166 begin

167 if(aresetn = '0') then

168 b_ram_register_timing_opt <= (others => '0');
169 fifo_register_timing_opt <= (others => '0');
170 p_count := 0;

171 last_p <= '0';
172 last_p_delay <= "0000";

173 elsif(rising_edge(clk)) then

174 last_p_delay <= p_rdy;

175 b_ram_register_timing_opt <= b_ram_out;

176 fifo_register_timing_opt <= fifo_out;

177 if(last_p_delay (0) = '1' or last_p_delay (1) = '1' or last_p_delay (2) = '1' or last_p_delay (3) = '1')
then

178 p_count := p_count + 1;

179 end if;

180 if(p_count = (to_integer(unsigned(num_pixels)))+1) then

181 last_p <= '1';
182 p_count := 0;

183 end if;

184 end if;

185 end process;

186
187
188 read_enable <= '1' when fifo_init_delay (0) = '1' else '0';
189 fifo_read <= fifo_init_delay;

190
191 --Process to control enable signals for

192 --FIFO , Block ram and dot product

193 --modules

194 process(clk , aresetn)

195 variable counter : integer;

196 variable last_counter : integer;

197 variable fifo : integer;

198 variable invalid_flag : std_logic;

199 begin

200 if(aresetn = '0') then

201 counter := 0;

202 last_counter := 0;

203 fifo_init <= "0000";

204 prev_fifo_init <= "0000";

205 fifo := 0;

206 last_flag <= '0';
207 fifo_init_delay <= (others => '0');
208 dp_enable_delay <= (others => '0');
209 elsif(rising_edge(clk)) then

210 fifo_init_delay <= fifo_init;

211 dp_enable_delay <= fifo_init_delay;

212 dp_enable <= dp_enable_delay;

213 --last_p <= '0';
214 if(in_stream_last = '1') then

215 last_flag <= '1';
216 end if;

217 if(valid_in = '1' or fifo_full_flag = '1') then

218 if(invalid_flag = '1') then

219 fifo_init <= prev_fifo_init;

220 invalid_flag := '0';
221 end if;

222 counter := counter + 1;

223 if(counter = LATENCY_CYCLES -1) then

224 fifo_init(fifo) <= '1';
225 fifo := fifo + 1;

226 if(fifo > 3) then

227 fifo := 0;

228 end if;

229 counter := 0;

230 end if;

231 elsif(last_flag = '1') then

232 fifo_init <= "1111";

233 last_counter := last_counter + 1;

234 if(last_p = '1') then

235 last_flag <= '0';
236 last_counter := 0;

237 end if;

238 else

239 if(invalid_flag = '0') then

240 prev_fifo_init <= fifo_init;

241 end if;

242 invalid_flag := '1';
243 fifo_init <= (others => '0');
244 end if;

245 end if;

150

246 end process;

247
248 -- Controls delay register from block ram

249 dp_data_in(NUM_B_RAM*G_BIT_WIDTH -1 downto 0) <= b_ram_register_timing_opt;

250 dp_data_in (2* NUM_B_RAM*G_BIT_WIDTH -1 downto NUM_B_RAM*G_BIT_WIDTH) <= fifo1_reg(NUM_B_RAM*G_BIT_WIDTH *(

LATENCY_CYCLES)-G_BIT_WIDTH*NUM_B_RAM -1 downto NUM_B_RAM*G_BIT_WIDTH *(LATENCY_CYCLES)-G_BIT_WIDTH*

NUM_B_RAM -(NUM_B_RAM*G_BIT_WIDTH));

251 dp_data_in (3* NUM_B_RAM*G_BIT_WIDTH -1 downto 2* NUM_B_RAM*G_BIT_WIDTH) <= fifo2_reg(NUM_B_RAM*G_BIT_WIDTH *((2*

LATENCY_CYCLES) -1)-G_BIT_WIDTH*NUM_B_RAM -1 downto NUM_B_RAM*G_BIT_WIDTH *((2* LATENCY_CYCLES) -1)-

G_BIT_WIDTH*NUM_B_RAM -(NUM_B_RAM*G_BIT_WIDTH));

252 dp_data_in (4* NUM_B_RAM*G_BIT_WIDTH -1 downto 3* NUM_B_RAM*G_BIT_WIDTH) <= fifo3_reg(NUM_B_RAM*G_BIT_WIDTH *((3*

LATENCY_CYCLES) -2)-G_BIT_WIDTH*NUM_B_RAM -1 downto NUM_B_RAM*G_BIT_WIDTH *((3* LATENCY_CYCLES) -2)-

G_BIT_WIDTH*NUM_B_RAM -(NUM_B_RAM*G_BIT_WIDTH));

253 process(clk , aresetn)

254 begin

255 if(aresetn = '0') then

256 fifo1_reg <= (others => '0');
257 fifo2_reg <= (others => '0');
258 fifo3_reg <= (others => '0');
259 elsif(rising_edge(clk)) then

260 if (dp_enable (0) = '1') then

261 fifo1_reg <= fifo1_reg(NUM_B_RAM*G_BIT_WIDTH *(LATENCY_CYCLES)-G_BIT_WIDTH*NUM_B_RAM -1 downto 0)

& b_ram_register_timing_opt;

262 fifo2_reg <= fifo2_reg(NUM_B_RAM*G_BIT_WIDTH *((2* LATENCY_CYCLES) -1)-G_BIT_WIDTH*NUM_B_RAM -1

downto 0) & b_ram_register_timing_opt;

263 fifo3_reg <= fifo3_reg(NUM_B_RAM*G_BIT_WIDTH *((3* LATENCY_CYCLES) -2)-G_BIT_WIDTH*NUM_B_RAM -1

downto 0) & b_ram_register_timing_opt;

264 end if;

265 end if;

266 end process;

267
268 --Process for delaying raw stream and

269 --valid_in signal

270 process(clk , aresetn)

271 variable counter : integer := 0;

272 begin

273 if (aresetn = '0') then

274 in_stream_ready <= '0';
275 in_stream_ready_delay <= '0';
276 in_stream_valid_delay <= '0';
277 counter := 0;

278 in_raw_delay <= (others => '0');
279 elsif(rising_edge(clk)) then

280 in_raw_delay <= in_stream_data;

281 in_stream_valid_delay <= in_stream_valid;

282 in_stream_ready_delay <= in_stream_ready;

283 if(enable = '1' and initialized = '1' and m_axis_tready = '1' and fifo_full_flag = '0') then

284 in_stream_ready <= '1';
285 else

286 in_stream_ready <= '0';
287 end if;

288 end if;

289 end process;

290
291
292 --FIFO module declaration

293 fifo: entity work.fifo_module

294 generic map(

295 FIFO_DEPTH => FIFO_DEPTH ,

296 FIFO_SIZE => FIFO_SIZE ,

297 WRITE_DATA_WIDTH => WRITE_DATA_WIDTH ,

298 WR_DATA_COUNT_WIDTH => WR_DATA_COUNT_WIDTH ,

299 FIFO_MARGIN => FIFO_MARGIN ,

300 RD_DATA_COUNT_WIDTH => RD_DATA_COUNT_WIDTH ,

301 READ_DATA_WIDTH => READ_DATA_WIDTH ,

302 LATENCY_CYCLES => LATENCY_CYCLES

303)

304 port map(

305 clk => clk ,

306 aresetn => aresetn ,

307 enable => fifo_enable ,

308 fifo_read => fifo_read ,

309 fifo_in => in_stream_data ,

310 fifo_out => fifo_out ,

311 fifo_empty => fifo_empty ,

312 fifo_full => fifo_full

313);

314
315 --Block ram module declaration

316 b_ram: entity work.b_ram_bank

317 Generic map(

318 B_RAM_SIZE => B_RAM_SIZE ,

319 B_RAM_BIT_WIDTH => G_BIT_WIDTH ,

320 NUM_B_RAM => NUM_B_RAM ,

321 C_S_AXI_DATA_WIDTH => C_S_AXI_DATA_WIDTH ,

322 C_S_AXI_ADDR_WIDTH => C_S_AXI_ADDR_WIDTH

323)

324 Port map(

325 clk => clk ,

326 aresetn => aresetn ,

327

151

328 -- B_ram interface

329 read_enable => read_enable ,

330
331 data_out => b_ram_out ,

332 v_len => v_len ,

333 R_order => Ref_Order ,

334 num_pixels => num_pixels ,

335 init_flag => initialized ,

336
337
338 -- Register interface

339 enable => enable ,

340 s_axi_ctrl_status_awaddr => s_axi_ctrl_status_awaddr ,

341 s_axi_ctrl_status_awprot => s_axi_ctrl_status_awprot ,

342 s_axi_ctrl_status_awvalid => s_axi_ctrl_status_awvalid ,

343 s_axi_ctrl_status_awready => s_axi_ctrl_status_awready ,

344 s_axi_ctrl_status_wdata => s_axi_ctrl_status_wdata ,

345 s_axi_ctrl_status_wstrb => s_axi_ctrl_status_wstrb ,

346 s_axi_ctrl_status_wvalid => s_axi_ctrl_status_wvalid ,

347 s_axi_ctrl_status_wready => s_axi_ctrl_status_wready ,

348 s_axi_ctrl_status_bresp => s_axi_ctrl_status_bresp ,

349 s_axi_ctrl_status_bvalid => s_axi_ctrl_status_bvalid ,

350 s_axi_ctrl_status_bready => s_axi_ctrl_status_bready ,

351 s_axi_ctrl_status_araddr => s_axi_ctrl_status_araddr ,

352 s_axi_ctrl_status_arprot => s_axi_ctrl_status_arprot ,

353 s_axi_ctrl_status_arvalid => s_axi_ctrl_status_arvalid ,

354 s_axi_ctrl_status_arready => s_axi_ctrl_status_arready ,

355 s_axi_ctrl_status_rdata => s_axi_ctrl_status_rdata ,

356 s_axi_ctrl_status_rresp => s_axi_ctrl_status_rresp ,

357 s_axi_ctrl_status_rvalid => s_axi_ctrl_status_rvalid ,

358 s_axi_ctrl_status_rready => s_axi_ctrl_status_rready

359);

360
361 --Dot product module declaration

362 gen_dp: for i in 0 to 3 generate

363 dp: entity work.dot_product_module

364 generic map(

365 RAW_BIT_WIDTH => 16,

366 G_BIT_WIDTH => G_BIT_WIDTH ,

367 NUM_B_RAM => NUM_B_RAM ,

368 P_BIT_WIDTH => P_BIT_WIDTH

369)

370 port map(

371 clk => clk ,

372 aresetn => aresetn ,

373 en => dp_enable(i),

374 in_G => dp_data_in ((G_BIT_WIDTH*NUM_B_RAM)*i+(G_BIT_WIDTH*NUM_B_RAM)-1 downto (

G_BIT_WIDTH*NUM_B_RAM)*i),

375 in_raw => fifo_register_timing_opt(i*16+15 downto i*16),

376 v_len => v_len ,

377 p_rdy => p_rdy(i),

378 p_out => p_out(NUM_B_RAM*P_BIT_WIDTH*i + NUM_B_RAM*P_BIT_WIDTH -1 downto NUM_B_RAM*

P_BIT_WIDTH*i)

379);

380 end generate gen_dp;

381
382 --Output module/Axi Gearbox declaration

383 gb: entity work.axi_gearbox

384 generic map(

385 B_RAM_SIZE => B_RAM_SIZE ,

386 B_RAM_BIT_WIDTH => G_BIT_WIDTH ,

387 NUM_B_RAM => NUM_B_RAM ,

388 RAW_BIT_WIDTH => RAW_BIT_WIDTH ,

389 G_BIT_WIDTH => G_BIT_WIDTH ,

390 P_BIT_WIDTH => P_BIT_WIDTH ,

391 C_S_AXI_DATA_WIDTH => C_S_AXI_DATA_WIDTH ,

392 C_S_AXI_ADDR_WIDTH => C_S_AXI_ADDR_WIDTH

393)

394 port map(

395 clk => clk ,

396 aresetn => aresetn ,

397 p_out => p_out ,

398 p_rdy => p_rdy ,

399 p_int => p_irq_w ,

400 Ref_order => Ref_Order ,

401 enable => enable ,

402 last_p => last_p ,

403 num_pixels => num_pixels ,

404 m_axis_tdata => m_axis_tdata ,

405 m_axis_tvalid => m_axis_tvalid ,

406 m_axis_tready => m_axis_tready ,

407 m_axis_tlast => m_axis_tlast ,

408 out_stream_handshake => out_stream_handshake

409);

410 end Behavioral;

152

G.2.3 Top module testbench

1 `timescale 1ns / 1ps

2
3 module top_tb;

4 parameter C_S_AXI_DATA_WIDTH = 32;

5 parameter C_S_AXI_ADDR_WIDTH = 6;

6 parameter B_RAM_SIZE = 400;

7 parameter NUM_B_RAM = 16;

8 parameter RAW_BIT_WIDTH = 64;

9 parameter G_BIT_WIDTH = 32;

10 parameter P_BIT_WIDTH = 64;

11 parameter PERIOD = 10;

12
13 parameter FIFO_DEPTH = 64;

14 parameter FIFO_SIZE = 52;

15 parameter WRITE_DATA_WIDTH = 64;

16 parameter WR_DATA_COUNT_WIDTH = 7;

17 parameter FIFO_MARGIN = 50;

18 parameter RD_DATA_COUNT_WIDTH = 7;

19 parameter READ_DATA_WIDTH = 16;

20 parameter LATENCY_CYCLES = 13;

21
22 reg clk , aresetn;

23 reg [63:0] s_axis_tdata;

24 reg s_axis_tvalid , s_axis_tlast;

25 wire s_axis_tready , p_irq;

26
27 reg [32:0] counter;

28 wire [63:0] m_axis_tdata;

29 wire m_axis_tvalid , m_axis_tlast;

30 reg m_axis_tready;

31
32
33 reg [5:0] s_axi_ctrl_status_awaddr;

34 reg [2:0] s_axi_ctrl_status_awprot;

35 reg s_axi_ctrl_status_awvalid;

36 reg [31:0] s_axi_ctrl_status_wdata;

37 reg [3:0] s_axi_ctrl_status_wstrb;

38 reg s_axi_ctrl_status_wvalid;

39 reg s_axi_ctrl_status_bready;

40 reg [5:0] s_axi_ctrl_status_araddr;

41 reg [2:0] s_axi_ctrl_status_arprot;

42 reg s_axi_ctrl_status_arvalid;

43 reg s_axi_ctrl_status_rready;

44 wire s_axi_ctrl_status_awready;

45 wire s_axi_ctrl_status_wready;

46 wire [1:0] s_axi_ctrl_status_bresp;

47 wire s_axi_ctrl_status_bvalid;

48 wire s_axi_ctrl_status_arready;

49 wire [31:0] s_axi_ctrl_status_rdata;

50 wire [1:0] s_axi_ctrl_status_rresp;

51 wire s_axi_ctrl_status_rvalid;

52
53
54 top

55 #(. C_S_AXI_DATA_WIDTH(C_S_AXI_DATA_WIDTH),

56 .C_S_AXI_ADDR_WIDTH(C_S_AXI_ADDR_WIDTH),

57 .B_RAM_SIZE(B_RAM_SIZE),

58 .NUM_B_RAM(NUM_B_RAM),

59 .RAW_BIT_WIDTH(RAW_BIT_WIDTH),

60 .G_BIT_WIDTH(G_BIT_WIDTH),

61 .P_BIT_WIDTH(P_BIT_WIDTH),

62 .FIFO_DEPTH(FIFO_DEPTH),

63 .FIFO_SIZE(FIFO_SIZE),

64 .WRITE_DATA_WIDTH(WRITE_DATA_WIDTH),

65 .WR_DATA_COUNT_WIDTH(WR_DATA_COUNT_WIDTH),

66 .FIFO_MARGIN(FIFO_MARGIN),

67 .RD_DATA_COUNT_WIDTH(RD_DATA_COUNT_WIDTH),

68 .READ_DATA_WIDTH(READ_DATA_WIDTH),

69 .LATENCY_CYCLES(LATENCY_CYCLES)

70)

71 DUT

72 (.clk(clk),

73 .aresetn(aresetn),

74 .p_irq(p_irq),

75 //IN-STREAM

76 .s_axis_tdata(s_axis_tdata),

77 .s_axis_tvalid(s_axis_tvalid),

78 .s_axis_tready(s_axis_tready),

79 .s_axis_tlast(s_axis_tlast),

80
81 //OUT -STREAM

82 .m_axis_tdata(m_axis_tdata),

83 .m_axis_tvalid(m_axis_tvalid),

84 .m_axis_tready(m_axis_tready),

85 .m_axis_tlast(m_axis_tlast),

86
87 //REGISTER -INTERFACE

153

88 .s_axi_ctrl_status_awaddr(s_axi_ctrl_status_awaddr),

89 .s_axi_ctrl_status_awprot(s_axi_ctrl_status_awprot),

90 .s_axi_ctrl_status_awvalid(s_axi_ctrl_status_awvalid),

91 .s_axi_ctrl_status_wdata(s_axi_ctrl_status_wdata),

92 .s_axi_ctrl_status_wstrb(s_axi_ctrl_status_wstrb),

93 .s_axi_ctrl_status_wvalid(s_axi_ctrl_status_wvalid),

94 .s_axi_ctrl_status_bready(s_axi_ctrl_status_bready),

95 .s_axi_ctrl_status_araddr(s_axi_ctrl_status_araddr),

96 .s_axi_ctrl_status_arprot(s_axi_ctrl_status_arprot),

97 .s_axi_ctrl_status_arvalid(s_axi_ctrl_status_arvalid),

98 .s_axi_ctrl_status_rready(s_axi_ctrl_status_rready),

99 .s_axi_ctrl_status_awready(s_axi_ctrl_status_awready),

100 .s_axi_ctrl_status_wready(s_axi_ctrl_status_wready),

101 .s_axi_ctrl_status_bresp(s_axi_ctrl_status_bresp),

102 .s_axi_ctrl_status_bvalid(s_axi_ctrl_status_bvalid),

103 .s_axi_ctrl_status_arready(s_axi_ctrl_status_arready),

104 .s_axi_ctrl_status_rdata(s_axi_ctrl_status_rdata),

105 .s_axi_ctrl_status_rresp(s_axi_ctrl_status_rresp),

106 .s_axi_ctrl_status_rvalid(s_axi_ctrl_status_rvalid)

107);

108
109 always #(PERIOD /2) clk = ~clk;

110
111 integer f_in_G , f_in_raw , f_out_P;

112 integer iter , i;

113 reg [31:0] in_G_temp;

114 reg [63:0] in_raw_temp;

115 reg [31:0] read_holder;

116 reg flagg;

117
118 initial begin

119 clk = 1'b0;
120 aresetn = 1'b0;
121 counter = 32'b0;
122 s_axis_tlast <= 1'b0;
123 s_axi_ctrl_status_awprot = 'b0;
124 s_axi_ctrl_status_bready = 1'b0;
125 s_axi_ctrl_status_wstrb = 4'hF;
126 s_axi_ctrl_status_arprot = 'b0;
127 m_axis_tready <= 1'b1;
128
129
130
131
132 f_in_G = $fopen("D:/ MasterOppgave/smallsat_prototype/EMSC/in_G.bin", "rb");

133
134 if (f_in_G == 0) begin

135 $display("Failed to open input file %s", "D:/ MasterOppgave/smallsat_prototype/EMSC/in_G.bin");

136 $finish;
137 end

138
139 f_in_raw = $fopen("D:/ MasterOppgave/smallsat_prototype/EMSC/Test/Hardware/raw_large.bin", "rb");

140
141 if (f_in_raw == 0) begin

142 $display("Failed to open input file %s", "D:/ MasterOppgave/smallsat_prototype/EMSC/Test/Hardware

/raw_large.bin");

143 $finish;
144 end

145
146 f_out_P = $fopen("D:/ MasterOppgave/smallsat_prototype/EMSC/P_out_tb.bin", "wb");

147
148 if (f_out_P == 0) begin

149 $display("Failed to open input file %s", "D:/ MasterOppgave/smallsat_prototype/EMSC/P_out_tb.bin"

);

150 $finish;
151 end

152
153 repeat (2) @(posedge clk);

154 aresetn = 1'b1;
155 write_to_reg (6'h8, 32'h3D090);
156 write_to_reg (6'h0, 32'h22034);
157
158 repeat (3) @(posedge clk);

159
160 for (iter = 0; iter < 416; iter = iter + 1) begin

//|

161 for(i = 0; i < 4; i = i + 1) begin

//|

162 in_G_temp[i*8 +: 8] = $fgetc(f_in_G);
//|

163 end

164 write_to_reg (6'h4 , in_G_temp);

//|

165 @(posedge clk);

//|

166 end

167
168 write_to_reg (6'h0, 32'h20034);
169 repeat (2) @(posedge clk);

154

170
171 write_to_reg (6'h0 , 32'h21034);
172 repeat (10) @(posedge clk);

173
174
175
176 for (iter = 0; iter < 3250000; iter = iter + 1) begin

177 while(s_axis_tready == 1'b0) begin

178 @(posedge clk);

179 end

180 //|

181 for(i = 0; i < 8; i = i + 1) begin //|

182 in_raw_temp[i*8 +: 8] = $fgetc(f_in_raw);
//|

183 end

184
185
186 if($urandom % 10 == 0) begin

187 s_axis_tvalid = 1'b0;
188 repeat (4) @(posedge clk);

189 end

190
191 s_axis_tvalid = 1'b1;
192 s_axis_tdata = in_raw_temp;

193 if(iter == 3249999) begin

194 s_axis_tlast <= 1'b1;
195 end //|

196 @(posedge clk);

197 counter = counter + 1;

198 //|

199 end

200 s_axis_tlast <= 1'b0;
201 s_axis_tvalid <= 1'b0;
202
203
204
205
206 $fclose(f_in_G);
207 $fclose(f_in_raw);
208 repeat (100) @(posedge clk);

209 $fclose(f_out_P);
210 end

211
212
213 always @(posedge clk) begin

214 if($urandom % 15 == 0) begin

215 m_axis_tready <= 1'b0;
216 repeat (6) @(posedge clk);

217 end

218 else

219 m_axis_tready <= 1'b1;
220 end

221
222 integer byte_idx , j;

223
224
225
226
227 task write_to_reg;

228 input [5:0] address;

229 input [31:0] data;

230 begin

231 @(posedge clk);

232 s_axi_ctrl_status_awaddr <= address;

233 s_axi_ctrl_status_awvalid <= 1'b1;
234 s_axi_ctrl_status_wvalid <= 1'b1;
235 s_axi_ctrl_status_wdata <= data;

236
237 while (!(s_axi_ctrl_status_awready == 1'b1 && s_axi_ctrl_status_wready == 1'b1)) begin

238 @(posedge clk);

239 end

240
241 s_axi_ctrl_status_awvalid <= 1'b0;
242 s_axi_ctrl_status_wvalid <= 1'b0;
243 end

244 endtask

245
246
247
248 task read_reg;

249 input [5:0] address;

250 output [31:0] data;

251 begin

252 @(posedge clk);

253 s_axi_ctrl_status_araddr = address;

254 s_axi_ctrl_status_arvalid = 1'b1;
255 s_axi_ctrl_status_rready = 1'b1;
256 while (!(s_axi_ctrl_status_rvalid == 1'b1)) begin

257 @(posedge clk);

258 end

259

155

260 s_axi_ctrl_status_rready <= 1'b0;
261 s_axi_ctrl_status_arvalid <= 1'b0;
262 data = s_axi_ctrl_status_rdata;

263
264
265 end

266 endtask

267
268 endmodule

G.2.4 FIFO module design file

1 library IEEE;

2 Library xpm;

3 use IEEE.STD_LOGIC_1164.ALL;

4 use xpm.vcomponents.all;

5
6 entity fifo_module is

7 Generic(

8 FIFO_DEPTH : integer := 16;

9 FIFO_SIZE : integer := 52;

10 WRITE_DATA_WIDTH : integer := 64;

11 WR_DATA_COUNT_WIDTH : integer := 5;

12 FIFO_MARGIN : integer := 5;

13 RD_DATA_COUNT_WIDTH : integer := 5;

14 READ_DATA_WIDTH : integer := 16;

15 LATENCY_CYCLES : integer := 13

16);

17 Port (

18 clk : in std_logic;

19 aresetn : in std_logic;

20 enable : in std_logic;

21 fifo_read : in std_logic_vector (3 downto 0);

22 fifo_in : in std_logic_vector (63 downto 0);

23 fifo_out: out std_logic_vector (16*4 -1 downto 0);

24 fifo_empty : out std_logic_vector (3 downto 0);

25 fifo_full : out std_logic_vector (3 downto 0)

26);

27 end fifo_module;

28
29 architecture Behavioral of fifo_module is

30 signal reset : std_logic;

31 signal fifo_enable : std_logic_vector (3 downto 0);

32 signal fifo_sel : integer range 0 to 4;

33 signal fifo_in_w : std_logic_vector (64*4 -1 downto 0);

34 signal rd_flag : std_logic;

35 signal fifo_in_delay : std_logic_vector (63 downto 0);

36
37 TYPE State_type IS (IDLE , FIFO1 , FIFO2 , FIFO3 , FIFO4); -- Define the states

38 SIGNAL state : State_Type; -- Create a signal that uses

39
40 begin

41
42 reset <= not aresetn;

43
44 --State machince to fill fifos

45 process(clk , aresetn)

46 variable counter : integer := 0;

47 variable start : std_logic := '0';
48 begin

49 if(aresetn = '0') then

50 fifo_sel <= 1;

51 state <= IDLE;

52 counter := 0;

53 fifo_in_delay <= (others => '0');
54 start := '0';
55 elsif(rising_edge(clk)) then

56 case state is

57 when IDLE =>

58 if(enable = '1') then

59 fifo_sel <= 1;

60 state <= FIFO1;

61 end if;

62 when FIFO1 =>

63 if(enable = '1') then

64 counter := counter + 1;

65 if(start = '0') then

66 if(counter >= LATENCY_CYCLES -1) then

67 state <= FIFO2;

68 fifo_sel <= 2;

69 counter := 0;

70 end if;

71 else

72 if(counter >= LATENCY_CYCLES) then

73 state <= FIFO2;

156

74 fifo_sel <= 2;

75 counter := 0;

76 end if;

77 end if;

78 end if;

79 when FIFO2 =>

80 if(enable = '1') then

81 counter := counter +1;

82 if(counter >= LATENCY_CYCLES) then

83 state <= FIFO3;

84 fifo_sel <= 3;

85 counter := 0;

86 end if;

87 end if;

88 when FIFO3 =>

89 if(enable = '1') then

90 counter := counter +1;

91 if(counter >= LATENCY_CYCLES) then

92 state <= FIFO4;

93 fifo_sel <= 4;

94 counter := 0;

95 end if;

96 end if;

97 when FIFO4 =>

98 if(enable = '1') then

99 counter := counter +1;

100 if(counter >= LATENCY_CYCLES) then

101 state <= FIFO1;

102 fifo_sel <= 1;

103 counter := 0;

104 start := '1';
105 end if;

106 end if;

107 end case;

108 fifo_in_delay <= fifo_in;

109 end if;

110 end process;

111
112 --Control fifo enables for all fifos

113 fifo_enable (0) <= '1' when ((state=FIFO1 or state=IDLE) and enable = '1') else '0';
114 fifo_enable (1) <= '1' when (state=FIFO2 and enable = '1') else '0';
115 fifo_enable (2) <= '1' when (state=FIFO3 and enable = '1') else '0';
116 fifo_enable (3) <= '1' when (state=FIFO4 and enable = '1') else '0';
117
118 --Control mux for input to fifos

119 process(fifo_sel , fifo_in_delay)

120 begin

121 case fifo_sel is

122 when 1 =>

123 fifo_in_w (63 downto 0) <= fifo_in_delay;

124 fifo_in_w (255 downto 64) <= (others => '0');
125 when 2 =>

126 fifo_in_w (63 downto 0) <= (others => '0');
127 fifo_in_w (127 downto 64) <= fifo_in_delay;

128 fifo_in_w (255 downto 128) <= (others => '0');
129 when 3 =>

130 fifo_in_w (127 downto 0) <= (others => '0');
131 fifo_in_w (191 downto 128) <= fifo_in_delay;

132 fifo_in_w (255 downto 192) <= (others => '0');
133 when 4 =>

134 fifo_in_w (192 downto 0) <= (others => '0');
135 fifo_in_w (255 downto 192) <= fifo_in_delay;

136 when others =>

137 fifo_in_w <= (others => '0');
138 end case;

139 end process;

140
141 --Declaration of FIFOs

142 fifo_gen: for i in 0 to 3 generate

143 fifo: entity work.fifo

144 Generic map(

145 FIFO_DEPTH => FIFO_DEPTH ,

146 FIFO_SIZE => FIFO_SIZE ,

147 WRITE_DATA_WIDTH => WRITE_DATA_WIDTH ,

148 WR_DATA_COUNT_WIDTH => WR_DATA_COUNT_WIDTH ,

149 FIFO_MARGIN => FIFO_MARGIN ,

150 RD_DATA_COUNT_WIDTH => RD_DATA_COUNT_WIDTH ,

151 READ_DATA_WIDTH => READ_DATA_WIDTH ,

152 LATENCY_CYCLES => LATENCY_CYCLES

153)

154 Port map(

155 clk => clk ,

156 aresetn => aresetn ,

157 wr_en => fifo_enable(i),

158 rd_en => fifo_read(i),

159 fifo_in => fifo_in_w (64*i+63 downto 64*i),

160 fifo_out => fifo_out (16*i+15 downto 16*i),

161 fifo_empty => fifo_empty(i),

162 fifo_full => fifo_full(i)

163);

164 end generate fifo_gen;

157

165 end Behavioral;

G.2.5 FIFO module testbench

1 `timescale 1ns / 1ps

2
3 module fifo_module_tb;

4
5 parameter FIFO_DEPTH = 16;

6 parameter FIFO_SIZE = 52;

7 parameter WRITE_DATA_WIDTH = 64;

8 parameter WR_DATA_COUNT_WIDTH = 5;

9 parameter FIFO_MARGIN = 5;

10 parameter RD_DATA_COUNT_WIDTH = 5;

11 parameter READ_DATA_WIDTH = 16;

12 parameter PERIOD = 10;

13
14 reg clk , aresetn , enable;

15 reg [63:0] fifo_in;

16 wire [16*4 -1:0] fifo_out;

17 wire [3:0] fifo_empty;

18 wire [3:0] fifo_full;

19
20 fifo_module

21 #(. FIFO_DEPTH(FIFO_DEPTH),

22 .FIFO_SIZE(FIFO_SIZE),

23 .WRITE_DATA_WIDTH(WRITE_DATA_WIDTH),

24 .WR_DATA_COUNT_WIDTH(WR_DATA_COUNT_WIDTH),

25 .FIFO_MARGIN(FIFO_MARGIN),

26 .RD_DATA_COUNT_WIDTH(RD_DATA_COUNT_WIDTH),

27 .READ_DATA_WIDTH(READ_DATA_WIDTH))

28 DUT

29 (.clk(clk),

30 .aresetn(aresetn),

31 .enable(enable),

32 .fifo_in(fifo_in),

33 .fifo_out(fifo_out),

34 .fifo_empty(fifo_empty),

35 .fifo_full(fifo_full));

36
37
38 always #(PERIOD /2) clk = ~clk;

39
40 integer f_in_raw;

41 reg [63:0] in_raw_temp;

42 integer iter , i;

43
44 initial begin

45 clk <= 1'b0;
46 enable <= 1'b0;
47 aresetn <= 1'b0;
48 fifo_in <= 64'b0;
49 repeat (2) @(posedge clk);

50
51 f_in_raw = $fopen("D:/ MasterOppgave/smallsat_prototype/EMSC/Test/raw_large.bin", "rb");

52
53 if (f_in_raw == 0) begin

54 $display("Failed to open input file %s", "D:/ MasterOppgave/smallsat_prototype/EMSC/Test/

raw_large.bin");

55 $finish;
56 end

57
58 repeat (2) @(posedge clk);

59 aresetn = 1'b1;
60
61 repeat (2) @(posedge clk);

62
63 // enable <= 1'b1;
64
65 for (iter = 0; iter < 104; iter = iter + 1) begin //|

66 for(i = 0; i < 8; i = i + 1) begin

//|

67 in_raw_temp[i*8 +: 8] = $fgetc(f_in_raw);
//|

68 end

69
70 if($urandom % 3 == 0) begin

71 enable <= 1'b0;
72 repeat (2) @(posedge clk);

73 end

74
75 enable <= 1'b1;
76 fifo_in <= in_raw_temp;

77 repeat (1) @(posedge clk); //|

78 end

158

79
80
81
82 $fclose(f_in_raw);
83 end

84
85 endmodule

G.2.6 Block ram bank design file

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 use ieee.numeric_std.all;

4
5
6 entity b_ram_bank is

7 Generic(

8 B_RAM_SIZE : integer := 100;

9 B_RAM_BIT_WIDTH : integer := 32;

10 NUM_B_RAM : integer := 8;

11 C_S_AXI_DATA_WIDTH : integer := 32;

12 C_S_AXI_ADDR_WIDTH : integer := 6

13);

14 Port (

15 clk : in std_logic;

16 aresetn : in std_logic;

17 read_enable : in std_logic;

18 enable : out std_logic;

19 -- valid_input : in std_logic;

20
21 v_len : out std_logic_vector (11 downto 0);

22 R_order : out std_logic_vector (5 downto 0);

23 init_flag : out std_logic;

24 data_out : out std_logic_vector(B_RAM_BIT_WIDTH*NUM_B_RAM -1 downto 0);

25 num_pixels : out std_logic_vector (31 downto 0);

26
27
28 -- Register interface

29 s_axi_ctrl_status_awaddr : in std_logic_vector (5 downto 0);

30 s_axi_ctrl_status_awprot : in std_logic_vector (2 downto 0);

31 s_axi_ctrl_status_awvalid : in std_logic;

32 s_axi_ctrl_status_awready : out std_logic;

33 s_axi_ctrl_status_wdata : in std_logic_vector (31 downto 0);

34 s_axi_ctrl_status_wstrb : in std_logic_vector (3 downto 0);

35 s_axi_ctrl_status_wvalid : in std_logic;

36 s_axi_ctrl_status_wready : out std_logic;

37 s_axi_ctrl_status_bresp : out std_logic_vector (1 downto 0);

38 s_axi_ctrl_status_bvalid : out std_logic;

39 s_axi_ctrl_status_bready : in std_logic;

40 s_axi_ctrl_status_araddr : in std_logic_vector (5 downto 0);

41 s_axi_ctrl_status_arprot : in std_logic_vector (2 downto 0);

42 s_axi_ctrl_status_arvalid : in std_logic;

43 s_axi_ctrl_status_arready : out std_logic;

44 s_axi_ctrl_status_rdata : out std_logic_vector (31 downto 0);

45 s_axi_ctrl_status_rresp : out std_logic_vector (1 downto 0);

46 s_axi_ctrl_status_rvalid : out std_logic;

47 s_axi_ctrl_status_rready : in std_logic

48);

49 end b_ram_bank;

50
51 architecture Behavioral of b_ram_bank is

52
53 --Control/status registers

54 signal emsc2cpu_register : std_logic_vector (31 downto 0);

55 signal cpu2emsc_register : std_logic_vector (31 downto 0);

56 signal in_G_register : std_logic_vector (31 downto 0);

57
58 --Control signals

59 signal init , valid_input : std_logic;

60 signal G_size : std_logic_vector (11 downto 0);

61 signal Ref_Order : std_logic_vector (5 downto 0);

62 signal initialized : std_logic;

63
64
65 --Registers

66 signal data_in_w : std_logic_vector(B_RAM_BIT_WIDTH -1 downto 0);

67 signal read_address : integer range 0 to B_RAM_SIZE -1;

68 signal write_enable : std_logic_vector(NUM_B_RAM -1 downto 0);

69 signal b_ram_sel : std_logic_vector(NUM_B_RAM -1 downto 0);

70 signal data_in : std_logic_vector (31 downto 0);

71
72 TYPE state_type IS (idle , write , read);

73 SIGNAL state : state_type;

74
75 begin

159

76
77 data_in_w <= data_in(B_RAM_BIT_WIDTH -1 downto 0) when aresetn = '1' else (others => '0');
78
79 init_flag <= initialized;

80 v_len <= G_size;

81 G_size <= cpu2emsc_register (11 downto 0);

82 R_order <= Ref_Order;

83 Ref_Order <= cpu2emsc_register (19 downto 14);

84 enable <= cpu2emsc_register (12) when initialized = '1' else '0';
85 init <= cpu2emsc_register (13);

86 emsc2cpu_register (0) <= initialized;

87 emsc2cpu_register (31 downto 1) <= (others => '0');
88
89
90
91 register_interface: entity work.register_interface

92 generic map(

93 C_S_AXI_DATA_WIDTH => C_S_AXI_DATA_WIDTH ,

94 C_S_AXI_ADDR_WIDTH => C_S_AXI_ADDR_WIDTH ,

95 B_RAM_SIZE => B_RAM_SIZE ,

96 B_RAM_BIT_WIDTH => B_RAM_BIT_WIDTH ,

97 NUM_B_RAM => NUM_B_RAM

98)

99 port map(

100 s_axi_aclk => clk ,

101 s_axi_aresetn => aresetn ,

102
103 s_axi_awaddr => s_axi_ctrl_status_awaddr ,

104 s_axi_awprot => s_axi_ctrl_status_awprot ,

105 s_axi_awvalid => s_axi_ctrl_status_awvalid ,

106 s_axi_awready => s_axi_ctrl_status_awready ,

107
108 s_axi_wdata => s_axi_ctrl_status_wdata ,

109 s_axi_wstrb => s_axi_ctrl_status_wstrb ,

110 s_axi_wvalid => s_axi_ctrl_status_wvalid ,

111 s_axi_wready => s_axi_ctrl_status_wready ,

112
113 s_axi_bresp => s_axi_ctrl_status_bresp ,

114 s_axi_bvalid => s_axi_ctrl_status_bvalid ,

115 s_axi_bready => s_axi_ctrl_status_bready ,

116
117 s_axi_araddr => s_axi_ctrl_status_araddr ,

118 s_axi_arprot => s_axi_ctrl_status_arprot ,

119 s_axi_arvalid => s_axi_ctrl_status_arvalid ,

120 s_axi_arready => s_axi_ctrl_status_arready ,

121
122 s_axi_rdata => s_axi_ctrl_status_rdata ,

123 s_axi_rresp => s_axi_ctrl_status_rresp ,

124 s_axi_rvalid => s_axi_ctrl_status_rvalid ,

125 s_axi_rready => s_axi_ctrl_status_rready ,

126
127 --Register Outputs

128 emsc2cpu_register => emsc2cpu_register ,

129
130 --Register Inputs

131 cpu2emsc_register => cpu2emsc_register ,

132 in_G_register => data_in ,

133 num_pixels => num_pixels ,

134 valid_input => valid_input

135 --read_enable => read_enable_w

136);

137
138
139 b_ram: for i in 0 to NUM_B_RAM -1 generate

140 DUT : entity work.block_ram

141 Generic map(

142 B_RAM_SIZE => B_RAM_SIZE ,

143 B_RAM_BIT_WIDTH => B_RAM_BIT_WIDTH

144)

145 port map(

146 clk => clk ,

147 aresetn => aresetn ,

148 data_in => data_in_w ,

149 write_enable => write_enable(i),

150 read_enable => read_enable ,

151 read_address => read_address ,

152 data_out => data_out(B_RAM_BIT_WIDTH*i + B_RAM_BIT_WIDTH -1 downto B_RAM_BIT_WIDTH*i)

153);

154 end generate b_ram;

155
156
157 process(clk , aresetn)

158 variable counter : integer range 0 to B_RAM_SIZE -1 := 0;

159 variable b_ram_written : integer range 0 to 32 := 0;

160 variable prev_b_ram_addr : std_logic_vector(NUM_B_RAM -1 downto 0);

161 variable valid_prev : std_logic;

162 begin

163 if(aresetn = '0') then

164 initialized <= '0';
165 b_ram_sel <= (others => '0');
166 b_ram_written := 0;

160

167 state <= idle;

168 elsif(rising_edge(clk)) then

169 case state is

170 --Stays in idle until either a init or read should be

171 --performed

172 when idle =>

173 counter := 0;

174 if(init = '1' and valid_input = '1') then

175 state <= write;

176 b_ram_sel <= (0 => '1', others => '0');
177 counter := counter + 1;

178 elsif(read_enable = '1' and initialized = '1') then

179 read_address <= read_address + 1;

180 state <= read;

181 end if;

182
183 --Stays in write until initialization is completed.

184 --Has to take care of bubbles in input data

185 when write =>

186 if(valid_input = '1') then

187 counter := counter + 1;

188 if(counter >= to_integer(unsigned(G_size))) then

189 if(write_enable(to_integer(unsigned(Ref_Order)) -1) = '1' or b_ram_written >=

to_integer(unsigned(Ref_Order)) -1) then

190 state <= idle;

191 initialized <= '1';
192 --write_enable <= (others => '0');
193 else

194 --write_enable <= write_enable(NUM_B_RAM -2 downto 0) & '0';
195 b_ram_sel <= b_ram_sel(NUM_B_RAM -2 downto 0) & '0';
196 b_ram_written := b_ram_written + 1;

197 counter := 0;

198 end if;

199 end if;

200 end if;

201
202 --The read state should simply read out 1 value from each B_ram

203 --each cycle.

204 when read =>

205 if(read_enable = '1') then

206 read_address <= read_address + 1;

207 if(read_address >= to_integer(unsigned(G_size)) -1) then

208 state <= idle;

209 read_address <= 0;

210 end if;

211 end if;

212 end case;

213 end if;

214 end process;

215
216
217 process(b_ram_sel , state , init , valid_input)

218 begin

219 if(state = write and valid_input = '1') then

220 write_enable <= b_ram_sel;

221 elsif(state = idle and init = '1' and valid_input = '1') then

222 write_enable <= (0 => '1', others =>'0');
223 else

224 write_enable <= (others => '0');
225 end if;

226 end process;

227
228 end Behavioral;

G.2.7 Block ram design file

Same as sequential desing

G.2.8 Dot product module design file

Same as sequential design.

G.2.9 Dot product core design file

Same as sequential design.

161

G.2.10 Output Module design file

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 use IEEE.NUMERIC_STD.ALL;

4
5 -- Uncomment the following library declaration if instantiating

6 -- any Xilinx leaf cells in this code.

7 --library UNISIM;

8 --use UNISIM.VComponents.all;

9
10 entity axi_gearbox is

11 Generic(

12 B_RAM_SIZE : integer := 100;

13 B_RAM_BIT_WIDTH : integer := 32;

14 NUM_B_RAM : integer := 8;

15 RAW_BIT_WIDTH : positive := 16;

16 G_BIT_WIDTH : positive := 32;

17 P_BIT_WIDTH : positive := 48;

18 C_S_AXI_DATA_WIDTH : integer := 32;

19 C_S_AXI_ADDR_WIDTH : integer := 6

20);

21 Port (

22 clk : in std_logic;

23 aresetn : in std_logic;

24 p_out : in std_logic_vector (4* P_BIT_WIDTH*NUM_B_RAM -1 downto 0);

25 p_rdy : in std_logic_vector (3 downto 0);

26 enable : in std_logic;

27 p_int : out std_logic;

28 last_p : in std_logic;

29 num_pixels : in std_logic_vector (31 downto 0);

30 Ref_order : in std_logic_vector (5 downto 0);

31
32 m_axis_tdata : out std_logic_vector (63 downto 0);

33 --EMSC is ready to send to DMA.

34 m_axis_tvalid : out std_logic;

35 --DMA is ready to receive data

36 m_axis_tready : in std_logic;

37 --Tell DMA this is last data

38 m_axis_tlast : out std_logic;

39
40 out_stream_handshake : out std_logic

41);

42 end axi_gearbox;

43
44 architecture Behavioral of axi_gearbox is

45 signal res_mem : std_logic_vector(P_BIT_WIDTH*NUM_B_RAM -1 downto 0);

46 signal start : std_logic;

47 signal t_valid_flag : std_logic;

48 signal out_handshake : std_logic;

49 signal last_t_valid : std_logic;

50 begin

51
52 out_stream_handshake <= out_handshake;

53
54 --Process to output data on

55 --AXI -stream interface

56 process(clk ,aresetn)

57 variable counter : integer range 0 to 50 := 0;

58 begin

59 if(aresetn = '0') then

60 m_axis_tdata <= (others => '0');
61 m_axis_tvalid <= '0';
62 t_valid_flag <= '0';
63 counter := 0;

64 elsif(rising_edge(clk)) then

65 if(p_rdy (0) = '1') then

66 res_mem <= p_out(P_BIT_WIDTH*NUM_B_RAM -1 downto 0);

67 start <= '1';
68 elsif(p_rdy (1) = '1') then

69 res_mem <= p_out (2* P_BIT_WIDTH*NUM_B_RAM -1 downto P_BIT_WIDTH*NUM_B_RAM);

70 start <= '1';
71 elsif(p_rdy (2) = '1') then

72 res_mem <= p_out (3* P_BIT_WIDTH*NUM_B_RAM -1 downto 2* P_BIT_WIDTH*NUM_B_RAM);

73 start <= '1';
74 elsif(p_rdy (3) = '1') then

75 res_mem <= p_out (4* P_BIT_WIDTH*NUM_B_RAM -1 downto 3* P_BIT_WIDTH*NUM_B_RAM);

76 start <= '1';
77 elsif(start = '1') then

78 if(m_axis_tready = '1' and t_valid_flag = '1') then

79 counter := counter + 1;

80 end if;

81 if(counter >= to_integer(unsigned(Ref_order))) then

82 m_axis_tvalid <= '0';
83 t_valid_flag <= '0';
84 counter := 0;

85 start <= '0';
86 m_axis_tdata <= (others => '0');
87 else

162

88 m_axis_tdata <= std_logic_vector(resize(signed(res_mem ((P_BIT_WIDTH*counter + P_BIT_WIDTH -1)

downto (P_BIT_WIDTH*counter))),m_axis_tdata 'length));
89 m_axis_tvalid <= '1';
90 t_valid_flag <= '1';
91 end if;

92 else

93 counter := 0;

94 end if;

95
96 end if;

97 end process;

98
99 --Process to assign m_axis_tlast

100 process(clk , aresetn)

101 variable counter : integer;

102 variable p_last_flag : std_logic;

103 begin

104 if(aresetn = '0') then

105 counter := 0;

106 m_axis_tlast <= '0';
107 p_last_flag := '0';
108 last_t_valid <= '0';
109 elsif(rising_edge(clk)) then

110 last_t_valid <= t_valid_flag;

111 if(p_last_flag = '0' and enable = '1') then

112 if(t_valid_flag = '1' and m_axis_tready = '1') then

113 m_axis_tlast <= '0';
114 end if;

115 if(counter >= to_integer(unsigned(num_pixels))) then

116 p_last_flag := '1';
117 counter := 0;

118 elsif(p_rdy (0) = '1' or p_rdy (1) = '1' or p_rdy (2) = '1' or p_rdy (3) = '1') then

119 counter := counter + 1;

120 end if;

121 elsif(p_last_flag = '1' and enable = '1') then

122 counter := counter + 1;

123 if(counter = to_integer(unsigned(Ref_order)) -1) then

124 m_axis_tlast <= '1';
125 counter := 0;

126 P_last_flag := '0';
127 end if;

128 end if;

129 end if;

130 end process;

131
132 p_int <= '1' when (last_t_valid = '1' and t_valid_flag = '0') else '0';
133 out_handshake <= '1' when (m_axis_tready = '1' and t_valid_flag = '1') else '0';
134
135 end Behavioral;

G.2.11 AXI-register interface design file

This is a module designed by Xilinx and found in LogiCORE IP AXI4-Lite IPIF
v2.0 [18]. Some changes was made to make it work with the EMSC parallel
application.

1 library IEEE;

2 use IEEE.STD_LOGIC_1164.ALL;

3 use ieee.numeric_std.all;

4
5 package B_RAM_BANK_pkg is

6 type bus_array is array(natural range <>) of std_logic_vector (31 downto 0);

7 end package B_RAM_BANK_pkg;

8
9 library IEEE;

10 use IEEE.STD_LOGIC_1164.ALL;

11 use ieee.numeric_std.all;

12 use work.B_RAM_BANK_pkg.all;

13
14 entity register_interface is

15 generic (

16 -- Users to add parameters here

17 B_RAM_SIZE : integer := 100;

18 B_RAM_BIT_WIDTH : integer := 32;

19 NUM_B_RAM : integer := 5;

20 -- User parameters ends

21 -- Do not modify the parameters beyond this line

22
23 -- Width of S_AXI data bus

24 C_S_AXI_DATA_WIDTH : integer := 32;

25 -- Width of S_AXI address bus

26 C_S_AXI_ADDR_WIDTH : integer := 6

27);

28 port (

163

29 -- Users to add ports here

30 emsc2cpu_register : in std_logic_vector (31 downto 0);

31 cpu2emsc_register : out std_logic_vector (31 downto 0);

32 num_pixels : out std_logic_vector (31 downto 0);

33 in_G_register : out std_logic_vector (31 downto 0);

34 valid_input : out std_logic;

35 -- read_enable : out std_logic;

36
37 -- User ports ends

38 -- Do not modify the ports beyond this line

39
40 -- Global Clock Signal

41 S_AXI_ACLK : in std_logic;

42 -- Global Reset Signal. This Signal is Active LOW

43 S_AXI_ARESETN : in std_logic;

44 -- Write address (issued by master , acceped by Slave)

45 S_AXI_AWADDR : in std_logic_vector(C_S_AXI_ADDR_WIDTH -1 downto 0);

46 -- Write channel Protection type. This signal indicates the

47 -- privilege and security level of the transaction , and whether

48 -- the transaction is a data access or an instruction access.

49 S_AXI_AWPROT : in std_logic_vector (2 downto 0);

50 -- Write address valid. This signal indicates that the master signaling

51 -- valid write address and control information.

52 S_AXI_AWVALID : in std_logic;

53 -- Write address ready. This signal indicates that the slave is ready

54 -- to accept an address and associated control signals.

55 S_AXI_AWREADY : out std_logic;

56 -- Write data (issued by master , acceped by Slave)

57 S_AXI_WDATA : in std_logic_vector(C_S_AXI_DATA_WIDTH -1 downto 0);

58 -- Write strobes. This signal indicates which byte lanes hold

59 -- valid data. There is one write strobe bit for each eight

60 -- bits of the write data bus.

61 S_AXI_WSTRB : in std_logic_vector ((C_S_AXI_DATA_WIDTH /8) -1 downto 0);

62 -- Write valid. This signal indicates that valid write

63 -- data and strobes are available.

64 S_AXI_WVALID : in std_logic;

65 -- Write ready. This signal indicates that the slave

66 -- can accept the write data.

67 S_AXI_WREADY : out std_logic;

68 -- Write response. This signal indicates the status

69 -- of the write transaction.

70 S_AXI_BRESP : out std_logic_vector (1 downto 0);

71 -- Write response valid. This signal indicates that the channel

72 -- is signaling a valid write response.

73 S_AXI_BVALID : out std_logic;

74 -- Response ready. This signal indicates that the master

75 -- can accept a write response.

76 S_AXI_BREADY : in std_logic;

77 -- Read address (issued by master , acceped by Slave)

78 S_AXI_ARADDR : in std_logic_vector(C_S_AXI_ADDR_WIDTH -1 downto 0);

79 -- Protection type. This signal indicates the privilege

80 -- and security level of the transaction , and whether the

81 -- transaction is a data access or an instruction access.

82 S_AXI_ARPROT : in std_logic_vector (2 downto 0);

83 -- Read address valid. This signal indicates that the channel

84 -- is signaling valid read address and control information.

85 S_AXI_ARVALID : in std_logic;

86 -- Read address ready. This signal indicates that the slave is

87 -- ready to accept an address and associated control signals.

88 S_AXI_ARREADY : out std_logic;

89 -- Read data (issued by slave)

90 S_AXI_RDATA : out std_logic_vector(C_S_AXI_DATA_WIDTH -1 downto 0);

91 -- Read response. This signal indicates the status of the

92 -- read transfer.

93 S_AXI_RRESP : out std_logic_vector (1 downto 0);

94 -- Read valid. This signal indicates that the channel is

95 -- signaling the required read data.

96 S_AXI_RVALID : out std_logic;

97 -- Read ready. This signal indicates that the master can

98 -- accept the read data and response information.

99 S_AXI_RREADY : in std_logic

100);

101 end register_interface;

102
103 architecture arch_imp of register_interface is

104
105 -- AXI4LITE signals

106 signal axi_awaddr : std_logic_vector(C_S_AXI_ADDR_WIDTH -1 downto 0);

107 signal axi_awready : std_logic;

108 signal axi_wready : std_logic;

109 signal axi_bresp : std_logic_vector (1 downto 0);

110 signal axi_bvalid : std_logic;

111 signal axi_araddr : std_logic_vector(C_S_AXI_ADDR_WIDTH -1 downto 0);

112 signal axi_arready : std_logic;

113 signal axi_rdata : std_logic_vector(C_S_AXI_DATA_WIDTH -1 downto 0);

114 signal axi_rresp : std_logic_vector (1 downto 0);

115 signal axi_rvalid : std_logic;

116
117 -- Example -specific design signals

118 -- local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH

119 -- ADDR_LSB is used for addressing 32/64 bit registers/memories

164

120 -- ADDR_LSB = 2 for 32 bits (n downto 2)

121 -- ADDR_LSB = 3 for 64 bits (n downto 3)

122 constant ADDR_LSB : integer := (C_S_AXI_DATA_WIDTH /32)+ 1;

123 constant OPT_MEM_ADDR_BITS : integer := 3;

124 constant C_NUM_REGS : integer := 16;

125 --

126 ---- Signals for user logic register space example

127 --

128 ---- Number of Slave Registers 16

129 type reg_arr_t is array (0 to C_NUM_REGS) of std_logic_vector(C_S_AXI_DATA_WIDTH -1 downto 0);

130 signal slv_regs : reg_arr_t;

131 signal read_data : reg_arr_t;

132
133 signal slv_reg_rden : std_logic;

134 signal slv_reg_wren : std_logic;

135 signal reg_data_out : std_logic_vector(C_S_AXI_DATA_WIDTH -1 downto 0);

136 signal byte_index : integer;

137 signal aw_en : std_logic;

138
139 begin

140 -- I/O Connections assignments

141
142 S_AXI_AWREADY <= axi_awready;

143 S_AXI_WREADY <= axi_wready;

144 S_AXI_BRESP <= axi_bresp;

145 S_AXI_BVALID <= axi_bvalid;

146 S_AXI_ARREADY <= axi_arready;

147 S_AXI_RDATA <= axi_rdata;

148 S_AXI_RRESP <= axi_rresp;

149 S_AXI_RVALID <= axi_rvalid;

150 -- Implement axi_awready generation

151 -- axi_awready is asserted for one S_AXI_ACLK clock cycle when both

152 -- S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is

153 -- de -asserted when reset is low.

154
155 process (S_AXI_ACLK)

156 begin

157 if rising_edge(S_AXI_ACLK) then

158 if S_AXI_ARESETN = '0' then

159 axi_awready <= '0';
160 aw_en <= '1';
161 else

162 if (axi_awready = '0' and S_AXI_AWVALID = '1' and S_AXI_WVALID = '1' and aw_en = '1') then

163 -- slave is ready to accept write address when

164 -- there is a valid write address and write data

165 -- on the write address and data bus. This design

166 -- expects no outstanding transactions.

167 axi_awready <= '1';
168 elsif (S_AXI_BREADY = '1' and axi_bvalid = '1') then

169 aw_en <= '1';
170 axi_awready <= '0';
171 else

172 axi_awready <= '0';
173 end if;

174 end if;

175 end if;

176 end process;

177
178 -- Implement axi_awaddr latching

179 -- This process is used to latch the address when both

180 -- S_AXI_AWVALID and S_AXI_WVALID are valid.

181
182 process (S_AXI_ACLK)

183 begin

184 if rising_edge(S_AXI_ACLK) then

185 if S_AXI_ARESETN = '0' then

186 axi_awaddr <= (others => '0');
187 else

188 if (axi_awready = '0' and S_AXI_AWVALID = '1' and S_AXI_WVALID = '1' and aw_en = '1') then

189 -- Write Address latching

190 axi_awaddr <= S_AXI_AWADDR;

191 end if;

192 end if;

193 end if;

194 end process;

195
196 -- Implement axi_wready generation

197 -- axi_wready is asserted for one S_AXI_ACLK clock cycle when both

198 -- S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is

199 -- de-asserted when reset is low.

200
201 process (S_AXI_ACLK)

202 begin

203 if rising_edge(S_AXI_ACLK) then

204 if S_AXI_ARESETN = '0' then

205 axi_wready <= '0';
206 else

207 if (axi_wready = '0' and S_AXI_WVALID = '1' and S_AXI_AWVALID = '1' and aw_en = '1') then

208 -- slave is ready to accept write data when

209 -- there is a valid write address and write data

210 -- on the write address and data bus. This design

165

211 -- expects no outstanding transactions.

212 axi_wready <= '1';
213 else

214 axi_wready <= '0';
215 end if;

216 end if;

217 end if;

218 end process;

219
220 -- Implement memory mapped register select and write logic generation

221 -- The write data is accepted and written to memory mapped registers when

222 -- axi_awready , S_AXI_WVALID , axi_wready and S_AXI_WVALID are asserted. Write strobes are used to

223 -- select byte enables of slave registers while writing.

224 -- These registers are cleared when reset (active low) is applied.

225 -- Slave register write enable is asserted when valid address and data are available

226 -- and the slave is ready to accept the write address and write data.

227 slv_reg_wren <= axi_wready and S_AXI_WVALID and axi_awready and S_AXI_AWVALID;

228
229 process (S_AXI_ACLK)

230 variable loc_addr : integer range 0 to 2**(OPT_MEM_ADDR_BITS +1) -1;

231 variable slv_regs_nxt : reg_arr_t;

232 begin

233 if rising_edge(S_AXI_ACLK) then

234 if S_AXI_ARESETN = '0' then

235 slv_regs <= (others => (others => '0'));
236 valid_input <= '0';
237 else

238 loc_addr := to_integer(unsigned(axi_awaddr(ADDR_LSB + OPT_MEM_ADDR_BITS downto ADDR_LSB)));

239 valid_input <= '0';
240 if (slv_reg_wren = '1') then

241 if(loc_addr = 1) then

242 valid_input <= '1';
243 end if;

244 if (loc_addr < C_NUM_REGS) then

245 for byte_index in 0 to (C_S_AXI_DATA_WIDTH /8-1) loop

246 if (S_AXI_WSTRB(byte_index) = '1') then

247 -- Respective byte enables are asserted as per write strobes

248 -- slave registor 0

249 slv_regs(loc_addr)(byte_index *8+7 downto byte_index *8) <= S_AXI_WDATA(byte_index *8+7 downto

byte_index *8);

250 end if;

251 end loop;

252 end if;

253 end if;

254 end if;

255 end if;

256 end process;

257
258 -- Implement write response logic generation

259 -- The write response and response valid signals are asserted by the slave

260 -- when axi_wready , S_AXI_WVALID , axi_wready and S_AXI_WVALID are asserted.

261 -- This marks the acceptance of address and indicates the status of

262 -- write transaction.

263
264 process (S_AXI_ACLK)

265 begin

266 if rising_edge(S_AXI_ACLK) then

267 if S_AXI_ARESETN = '0' then

268 axi_bvalid <= '0';
269 axi_bresp <= "00"; --need to work more on the responses

270 else

271 if (axi_awready = '1' and S_AXI_AWVALID = '1' and axi_wready = '1' and S_AXI_WVALID = '1' and

axi_bvalid = '0') then

272 axi_bvalid <= '1';
273 axi_bresp <= "00";

274 elsif (S_AXI_BREADY = '1' and axi_bvalid = '1') then --check if bready is asserted while bvalid is

high)

275 axi_bvalid <= '0'; -- (there is a possibility that bready is always asserted high)

276 end if;

277 end if;

278 end if;

279 end process;

280
281 -- Implement axi_arready generation

282 -- axi_arready is asserted for one S_AXI_ACLK clock cycle when

283 -- S_AXI_ARVALID is asserted. axi_awready is

284 -- de -asserted when reset (active low) is asserted.

285 -- The read address is also latched when S_AXI_ARVALID is

286 -- asserted. axi_araddr is reset to zero on reset assertion.

287
288 process (S_AXI_ACLK)

289 begin

290 if rising_edge(S_AXI_ACLK) then

291 if S_AXI_ARESETN = '0' then

292 axi_arready <= '0';
293 axi_araddr <= (others => '1');
294 else

295 if (axi_arready = '0' and S_AXI_ARVALID = '1') then

296 -- indicates that the slave has acceped the valid read address

297 axi_arready <= '1';
298 -- Read Address latching

166

299 axi_araddr <= S_AXI_ARADDR;

300 else

301 axi_arready <= '0';
302 end if;

303 end if;

304 end if;

305 end process;

306
307 -- Implement axi_arvalid generation

308 -- axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both

309 -- S_AXI_ARVALID and axi_arready are asserted. The slave registers

310 -- data are available on the axi_rdata bus at this instance. The

311 -- assertion of axi_rvalid marks the validity of read data on the

312 -- bus and axi_rresp indicates the status of read transaction.axi_rvalid

313 -- is deasserted on reset (active low). axi_rresp and axi_rdata are

314 -- cleared to zero on reset (active low).

315 process (S_AXI_ACLK)

316 begin

317 if rising_edge(S_AXI_ACLK) then

318 if S_AXI_ARESETN = '0' then

319 axi_rvalid <= '0';
320 axi_rresp <= "00";

321 -- read_enable <= '0';
322 else

323 if (axi_arready = '1' and S_AXI_ARVALID = '1' and axi_rvalid = '0') then

324 -- Valid read data is available at the read data bus

325 axi_rvalid <= '1';
326 axi_rresp <= "00"; -- 'OKAY ' response

327 elsif (axi_rvalid = '1' and S_AXI_RREADY = '1') then

328 -- Read data is accepted by the master

329 -- read_enable <= '1';
330 axi_rvalid <= '0';
331 -- else

332 -- read_enable <= '0';
333 end if;

334 end if;

335 end if;

336 end process;

337
338 -- Implement memory mapped register select and read logic generation

339 -- Slave register read enable is asserted when valid address is available

340 -- and the slave is ready to accept the read address.

341 slv_reg_rden <= axi_arready and S_AXI_ARVALID and (not axi_rvalid);

342
343 process (axi_araddr , read_data)

344 variable loc_addr : integer range 0 to 2**(OPT_MEM_ADDR_BITS +1) -1;

345 begin

346 -- Address decoding for reading registers

347 loc_addr := to_integer(unsigned(axi_araddr(ADDR_LSB + OPT_MEM_ADDR_BITS downto ADDR_LSB)));

348 -- read_enable <= '0';
349 -- if(loc_addr = 0) then

350 -- read_enable <= '1';
351 -- end if;

352 if (loc_addr < C_NUM_REGS) then

353 reg_data_out <= read_data(loc_addr);

354 else

355 reg_data_out <= (others => '0');
356 end if;

357 end process;

358
359 -- Output register or memory read data

360 process(S_AXI_ACLK) is

361 begin

362 if (rising_edge (S_AXI_ACLK)) then

363 if (S_AXI_ARESETN = '0') then

364 axi_rdata <= (others => '0');
365 else

366 if (slv_reg_rden = '1') then

367 -- When there is a valid read address (S_AXI_ARVALID) with

368 -- acceptance of read address by the slave (axi_arready),

369 -- output the read dada

370 -- Read address mux

371 axi_rdata <= reg_data_out; -- register read data

372 end if;

373 end if;

374 end if;

375 end process;

376
377 -- Add user logic here

378 cpu2emsc_register <= slv_regs (0);

379 in_G_register <= slv_regs (1);

380 num_pixels <= slv_regs (2);

381 -- Data returned when reading is the register values -- except for the cases

382 -- where we want reads to behave differently

383 process (slv_regs , emsc2cpu_register)

384 begin

385 for i in 0 to C_NUM_REGS -1 loop

386 read_data(i) <= slv_regs(i);

387 end loop;

388 read_data (1) <= emsc2cpu_register;

389 end process;

167

390 -- User logic ends

391
392 end arch_imp;

168

	Abstract
	Preface
	Introduction
	NTNU SMALLSAT
	Hyperspectral Imaging
	Main contributions

	Data Processing Pipeline
	Prototype
	Carrier Board
	PicoZed
	Image Sensor
	Image Sensor Architecture
	Interfacing the Image Sensor
	SPI
	Requesting Frames
	Reading data from the sensor

	LVDS receiver
	Design Criterias
	Simple Deserialiser
	IDELAYE2
	ISERDESE2
	Existing LVDS receiver designs
	Design 1
	Design 2

	AXI protocols
	Cube DMA
	Pixel Order Alignement Module

	Binning

	Extended Multiplicative Signal Correction
	Mathematical Model

	Method
	Exploring the prototype
	LVDS Receiver
	Simple Deserialiser
	LVDS Deserialiser with Xilinx Primitives
	Pixel Order Alignment
	Connecting the parts

	Binning
	Extended Multiplicative Signal Correction
	MATLAB script
	Software implementation in C++
	Profiling the C++ Implementation

	Hardware implementation
	Block Ram Module
	Dot Product Module
	Output Module
	Sequential EMSC HW design
	Parallel EMSC HW design
	Design Choices

	Combining Hardware and Software
	Software implementation
	Testing the implementations

	Results
	Image sensor pipeline
	LVDS Deserialiser
	Pixel Order Alignement Module
	Binning Module

	EMSC
	Software Implementation
	MATLAB analysis of software implementation results
	Profiling

	Hardware Implementation
	HW/SW Implementation
	Sequential Design
	Profiling
	Parallel implementation
	Profiling
	MATLAB analysis of HW/SW Implementation

	Discussion
	Image Sensor Pipeline
	EMSC

	Conclusion
	Future Work
	EMSC Software Implementation
	Tutorials
	EMSC software implementation on Zedboard
	Building the Hardware in Vivado
	Setting up the SDK Environment
	Launching EMSC

	EMSC Software/Hardware co-design on Zedboard
	Building the Hardware in Vivado
	Setting up debug cores
	Setting up the Xilinx SDK
	Uploading data to memory
	Executing the EMSC code

	CMV2000 Register Overview
	Cube DMA register map
	AXI Dependencies
	Read transaction dependencies
	Write transaction dependencies

	LVDS Receiver Interface
	Deserializer
	Design File
	Test Bench

	Pixel Order Alignment Module
	Design File
	Testbench

	Binning
	Design file
	Test Bench

	Control Interface

	EMSC HW/SW implementation
	Sequential Implementation
	Software
	Top module design file
	Top module testbench
	Block ram bank design file
	Block ram bank testbench
	Block ram design file
	Dot product module design file
	Dot product core design file
	Output Module design file
	AXI-register interface design file

	Parallel Implementation
	Software
	Top module design file
	Top module testbench
	FIFO module design file
	FIFO module testbench
	Block ram bank design file
	Block ram design file
	Dot product module design file
	Dot product core design file
	Output Module design file
	AXI-register interface design file

