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Abstract

Students at the Norwegian University of Science and Technology (NTNU) are developing a
CubeSat through the Orbit project. The on-board image compression system will be imple-
mented on an FPGA. Continuing from previous work, the Encoder module of the JPEG2000
compression standard is investigated in this thesis. The analysis is the majority of the task, and
provides a way for future works.

The Encoder module is sectioned into sub-modules. The MATLAB implementation of the
Partitioner serves as a bridge between the previous work and the new, by dividing the image
into codeblocks. The MATLAB implementation of the Embedded Block Coding with Optimized
Truncation (EBCOT) encodes the codeblocks to produce context labels and decisions. It is
connected to the MATLAB implementation of the Matrix Quantizer (MQ), which produces
bitstreams. The output bitstreams are not properly sent, as the unimplemented Data Orderer
must create and sort the packet locations. Finally, the unimplemented File Packetizer inserts file
headers and markers to produce a jp2 file. The file codestream will be readable by any decoder.

With an incomplete model of the Encoder module, the VHDL implementation is not yet started.
The analysis presented in this thesis should assist future works.
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Sammendrag

Studenter ved Norges teknisk- naturvitenskapelige universitet (NTNU) utvikler en CubeSat
i Orbit-prosjektet. Bildekomprimeringssystemet ombord i satelliten skal implementeres i en
FPGA. Denne fortsettelsen av tidligere arbeid undersøker Encoder-modulen i JPEG2000 stan-
darden for bildekomprimering. Analysen blir hovedparten av oppgaven, og vil vise vei for
fremtidige arbeider.

Encoder-modulen er inndelt i undermoduler. MATLAB-implementasjonen av Partitioner for-
binder tidligere arbeid med dette, og deler bildet i kodeblokker (codeblocks). MATLAB-
implementasjonen av Embedded Block Coding with Optimized Truncation (EBCOT) produserer
merkelapper (context labels) og symboler (decisions) for å beskrive situasjonen og avgjørelsen
som må tas. EBCOT er tilknyttet MATLAB-implementasjonen av Matrix Quantizer (MQ), som
lager bitstrømmer. Bitstrømmene blir ikke sendt riktig, da implementasjonen av Data Orderer
mangler og følgelig lokasjonen de skal lagres til. Implementasjonen av File Packetizer, som
også mangler, vil sette inn markørene som utgjør filformatet jp2. Filens kodestrøm vil være
leselig for alle dekodere.

Siden modellen av Encoder-modulen er uferdig er heller ikke VHDL-implementasjonen på-
begynt. Analysen som presenteres i dette verket vil assistere fremtidige arbeider.
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This work is performed on request for the Orbit project and team at NTNU. They use english as
the primary language, to accommodate foreign students, and so this thesis is written in english.
Many of the limitations to the scope in this thesis is caused by Orbit’s desire to get a functional
prototype first, and improve it later.

I had no previous knowledge of Joint Photographic Experts Group 2000 (JPEG2000) prior to
this work, which I think have made the progress slower. The main task has been to ”translate”
the standard into an understandable extract. I have mostly been working on my own. I would
still acknowledge and thank Amund Gjersvik and Bjørn B. Larsen for their guidance and inputs.
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Problem Description

Students at the Norwegian University of Science and Technology (NTNU) are developing a
CubeSat through the Orbit project, formerly known as NTNU Test Satellite (NUTS). The project
gives hands-on experience to students within multi-disciplinary fields of satellite technology.
Construction and implementation of the CubeSat should be built from scratch and in-house, as
much as possible.

Among other satellite modules, the camera payload module currently needs to be built. Its
purpose is to capture, compress and store images while in low earth orbit. The compression
system is desired for reducing on-board storage and transmission time to earth. The JPEG2000
compression standard will be used. Both a MATLAB and a VHDL implementation exist for the
first few modules of the JPEG2000 compression system, from previous work.

The student’s task will concentrate on investigating and implementing the remainder of the
compression system. This consists of the Encoder module. Tasks will include completing
the MATLAB processing chain, completing the VHDL processing chain, and verifying the
complete system. The MATLAB model will be used as reference for creating and validating the
VHDL implementation. The Encoder module should then be created in VHDL for the FPGA.
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Chapter 1
Introduction

This thesis regards the encoder of a JPEG2000 compression system. The system is part of
a satellite payload whose purpose is to capture and compress images while in low earth orbit.
The satellite, a CubeSat, is under development by Orbit, a student organization at the Norwegian
University of Science and Technology (NTNU).

The payload consists of an image capture system and an image compression system. The for-
mer is performed by an on-board camera that produces raw RGB format images. The latter is
performed by an FPGA implementation of the JPEG2000 compression standard [1].

The images are compressed to reduce storage size in-flight, as well as transmission time during
flyover near the ground station. In general, the satellite has excess time available for such
processing, as it is not in transmission range at all times. The processing must however not
exceed the energy budget, as determined by the solar panels and battery capacity. It must have
a low enough instantaneous power draw to avoid overheating. These considerations must be
inspected during the later prototype stages.

An FPGA implementation of JPEG2000 is partially developed [2]. The remaining parts are the
Encoder module and the Rate Control module. It also needs an interface for communicating
with the satellite and initiating compression execution. The Encoder module is the topic of this
report.

The following chapters 2 and 3 investigates and analyzes the previous work and the JPEG2000
standard. They will provide an overview of the tasks of the Encoder module, as well as the
types of image pieces used in it. The specific sub-modules are then elaborated in detail.

The approach and analysis is performed in Chapter 4. It describes parts of the MATLAB im-
plementation, both as separate sub-modules and as system parts of the Encoder module. The
highlights from the implementation is then shown and commented in Chapter 5. The complete
code is found in Appendix A. A discussion of the situation at the end of this work is presented
in Chapter 6, along with possible improvements both for current software solution and future
hardware solution.
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Chapter 2
Background

2.1 JPEG2000

Joint Photographic Experts Group 2000 (JPEG2000) [1] is an ISO/IEC standard for image com-
pression. A typical compression can convert an input image to an output jp2 file. The compres-
sion execution has several stages, which can be divided into modules [1]. The modules [2] are
shown in Figure 2.1.

Raw
Image

Preprocessing
Image Tiling
Demosaicing

Gamma Correction
DC Level Shifting

Bit Depth Reduction

Component
Transform

Color Transform
Wavelet Transform

Quantization
Scalar Quantization

Tier 1 Encoding
EBCOT Coder

MQ Coder

Tier 2 Encoder
Packetization

Compressed
Image

Rate Control

Figure 2.1: Overview of the modules of the JPEG2000 compression system. [2]

The Preprocessing module performs image adjusting operations such as image tiling, demo-
saicing, gamma correction, DC level shifting and bit depth reduction [2]. The Component
Transform module executes colour transform and Discrete Wavelet Transform (DWT) on the
image [2]. The Quantization module collects coefficient values in bins through a scalar quanti-
zation process [2]. The Preprocessing, Component Transform and Quantization modules have
been implemented and tested in VHDL codein a previous work [2]. The operations used in
these modules will not be elaborated in this thesis, but some details on their resulting image
pieces are shown in the first subsections of Section 3.2. The resulting image pieces after these
three modules are quantized sub-band coefficients.

The Tier 1 Encoder (T1) and Tier 2 Encoder (T2) modules are the focus of this thesis, collec-
tively referred to as the Encoder. Here the Embedded Block Coding with Optimized Truncation
(EBCOT), Matrix Quantizer coder (MQ) and Packetizer operations execute. The Encoder is
described further in Section 3.1.
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Chapter 2. Background

The Rate Control module adjusts the compression rate used in an execution [2]. The Rate
Control module, as well as an overall interface module, remain for future work.

2.2 Design Choices from Previous Work
Some design choices from the previous [2] implementation of JPEG2000 must be accounted
for in this and future work.

The processing of tile-components diverge [2] from the norm of the JPEG2000 standard. They
are processed in another order from normal JPEG2000 processing. In normal processing order
the tile components of a single colour component are processed first. For an RGB image, all
red tile components are processed, then all green tile components and finally the blue. [2]

Because of the VHDL implementation [2] of the Demosaicing module, all tile components of a
single tile are processed first. For an RGB image, a red tile component, then a green and finally
a blue component is processed. This is repeated for each tile. This is a measure to reduce
memory traffic between external memory and the Demosaicing module. The consequence is
one of two alternatives. The first option is for the Encoder module to reorder tile components
into the normal order. The second option requires building a specialized decoder for this system,
thus not truly conforming to the JPEG2000 standard. [2]
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Chapter 3
Theory

3.1 JPEG2000 Encoder Module

The Encoder continues the JPEG2000 compression execution of the image data from the pre-
vious modules (see Figure 2.1). The incoming image data is quantized and DWT-ed [2]. The
output is a file of the jp2 format. The file can be used to reconstruct the image.

JPEG2000 specifies an encoder algorithm [1]. It can be categorized in T1 and T2 [2], covered in
Section 3.1.1 and Section 3.1.2. T1 compresses the intermediate image data into a bitstream. T2
sorts and marks the compressed data, turning it into a meaningful structure; the jp2 file format.

3.1.1 Tier 1 Encoder

The Tier 1 Encoder (T1) has three tasks: Dividing image parts, executing the EBCOT and
executing the MQ [2] [1]. The image parts are explained in Section 3.2. The explanation of the
dividing procedure is in Section 3.3. The details of the EBCOT are in Section 3.4. Section 3.5
explains the MQ. The following paragraph provides an overview of these items.

The first task of the encoder is to divide the image data into codeblocks. The image data is the
incoming quantized, DWT-ed image parts [2]. The EBCOT reads the codeblocks, one bitplane
at a time, and creates a sequence of context labels and decisions. The MQ consumes the context
labels and decisions, and produces bitstreams of compressed image data. The bitstreams are
used in T2. Figure 3.1 and Figure 3.2 show block diagrams for the EBCOT and MQ. [1]

EBCOT Codercodeblock
context labels

decisions

Figure 3.1: Outside view of the EBCOT. [2]
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Chapter 3. Theory

context labels

decisions MQ Coder bitstream

Figure 3.2: Outside view of the MQ. [1]

3.1.2 Tier 2 Encoder
The Tier 2 Encoder (T2) is the final stage of the JPEG2000 compression. T2 has two tasks:
Sorting and packetization of the bitstreams [2] [1]. The sorting is covered in Section 3.6. The
packetization is explained in Section 3.7. The following paragraph provides a brief overview.

The first task is to sort the bitstreams of compressed image data. These are ordered into packets
and layers based on the precincts, the sub-bands and the sorting scheme used. The packetization
inserts markers and headers in between the ordered bitstreams. They contain information about
sizes and other metadata. This creates a filestream of the jp2 format. [1] [2]

3.2 Image Parts Formed by JPEG2000
The JPEG2000 standard defines several pieces that the original image is split into. The image
parts are used in the modules in Figure 2.1. Some of these pieces can be processed separately,
such as the tiles [1]. The output jp2 file contains information about all the image parts [1].

The overview descriptions in this paragraph are shown in Figure 3.3. The original, uncom-
pressed image is split into rectangular tiles. The tiles are non-overlapping. The tiles are further
divided into their colour components. Tile components are the basic blocks of the compression
execution. An RGB image would yield three grayscale tile components, for each tile. The tile
components are decomposed in a DWT. This extracts different frequencies into sub-bands. The
sub-bands are quantized. Each sub-band can have separate stepsizes in the quantization pro-
cess [2]. The pieces in this paragraph are used in the other modules of JPEG2000, prior to the
Encoder module. [1]

Uncompressed image Tiles

T0 T1

T2 T3

Tile components

Red
Green

Blue

Sub-bands

1HL

1LH 1HH

2HL

2LH 2HH

2LL

Figure 3.3: The figure illustrates zooming in on the many image parts defined in JPEG2000.

Figure 3.4 shows the pieces in this paragraph, which are used in the Encoder module. The
sub-bands are organized into precincts. The precincts are split into codeblocks. The codeblocks
are separated into bitplanes. A codeblock consists of coefficients. These are referred to as
coefficient bits in the bitplanes. [1]

The bitstreams of encoded codeblock data are collected in packets. Packets then form layers.
Markers and headers are inserted, yielding a codestream of the jp2 file format. [1]
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3.2 Image Parts Formed by JPEG2000

Sub-bands

1HL

1LH 1HH

2HL

2LH 2HH

2LL

Precincts

P0 P1

P2 P3

Codeblocks

CB0 CB1

CB2 CB3

Bitplanes

BP0
BP1

BP2
BP3

Figure 3.4: The figure illustrates zooming in on the many image parts defined in JPEG2000.

3.2.1 Tiles
Tiles are formed from the original, uncompressed image [2]. They are non-overlapping rectan-
gular shapes of the same size [1]. Tile sizes are in the range from 1 to 232 − 1, based on the SIZ
marker [1]. A power of two simplifies the image splitting in later stages of JPEG2000, because
rounding of values are avoided. The sub-bands, precincts and codeblocks use powers of two
when dividing the image parts. The number of tiles can range from 1, containing the entire
image, to as many as desired [1]. The tile number is of course related to the tile size. Tile sizes
of 128× 128 are recommended and implemented in VHDL [2].

The colour components are extracted from the tiles, forming a tile component [1]. These have
the same sizes as the tiles. The tile components are the basic unit of the JPEG2000 standard,
and can be processed individually [1]. For example, an RGB image will have three times as
many tile components as tiles, because of the three colour components R, G and B.

3.2.2 Sub-bands
A Discrete Wavelet Transform (DWT) decomposes an input into sub-bands. Figure 3.5 illus-
trates the concept for a 1-level and 3-level 2D DWT[2]. The sub-bands contains either high-pass
or low-pass frequency coefficients, labelled the H and L sub-bands. The sub-bands have half
the original size for each dimension [2]

1HL

1LH 1HH

1LL 1HL

1LH 1HH

2HL

2LH 2HH

3HL

3LH 3HH

3LL

Figure 3.5: The DWT can be repeated on the LL sub-band, creating several levels. This example figure
show a 1-level 2D DWT and a 3-level 2D DWT. [2]

A 1D DWT will divide the image into two sub-bands, L and H. A 2D DWT divides this again
to produce four sub-bands of 1

4
the area. The sub-band labels are appended to the 1D labels,

resulting in LL, HL, LH and HH. The decomposition can be repeated on the LL sub-band,
referred to as the decomposition levels of DWT. JPEG2000 does not specify a preferred amount
of decomposition levels, but 4 to 6 is often used. [2]
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Chapter 3. Theory

Every decomposition level contains one of each of the HL, LH and HH sub-bands. The sub-
bands are accompanied with a number representing the decomposition level. The amount of
decomposition levels in a DWT image is represented by a value NL. There is always just one LL
sub-band. It is referred to as the NLLL sub-band, because it is in the innermost decomposition
level. The decomposition levels begin at 1 in the outer sub-bands and increment inwards. The
NL level contains all four sub-band types, LL, HL, LH and HH. [1]

Resolution levels are similar to decomposition levels. The order is reversed, so the inner HL,
LH and HH sub-bands have resolution level 1. The outer have resolution level NL. The LL
sub-band is in a separate level at resolution level 0. This means there is one more resolution
level than decomposition levels. [1]

A particular sub-band’s dimension sizes are a power of 2 smaller than the tile component’s. The
n-th decomposition level sub-bands have the sizes divided by 2n, where n ranges from 1 to NL.
An image of x× y will have second decomposition level sub-bands of x/4× y/4. [1]

3.2.3 Precincts
A precinct is a non-overlapping rectangular piece of a sub-band. The precinct size descriptor PP
is in the range given in Equation 3.1 [1]. It determines the precinct size, given by Equation 3.2
[1]. The value PP is chosen based on preferences such as compression rate and image quality.
The choice must be indicated in the COD or COC markers. PP may only be 0 in the NLLL
band. It is limited by the sub-band size and the resolution level. PP can be declared in the local
markers or the global markers. This means the precincts can have different sizes in different
sub-bands. The ”default” value for PP is 15. [1]

0 ≤ PPX

PPY
≤ 15 (3.1)

(precinct width, precinct height) =
(
2PPX , 2PPY

)
(3.2)

3.2.4 Codeblocks
The codeblock’s size descriptor CB is given by equation Equation 3.3 [1]. The relation between
CB and CB

′ (unmarked versus marked) is given by Equation 3.4 [1], where r is the resolution
level. This essentially means that the codeblocks are limited by the precinct sizes, which are
limited by sub-band sizes. Codeblock sizes are given by Equation 3.5 [1]. CB ranges from 2 to
10, by choice in COC or COD markers. The size is restricted so (CBX + CBY ) ≤ 12. [1]

2 ≤ CBX

CBY
≤ 10 (3.3)

CB
′

X =

{
min(CBX , PPX − 1) for r > 0

min(CBX , PPX ) for r = 0

CB
′

Y =

{
min(CBY , PPY − 1) for r > 0

min(CBY , PPY ) for r = 0

(3.4)
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3.2 Image Parts Formed by JPEG2000

(codeblock width, codeblock height) =
(
2CB

′
X , 2CB

′
Y

)
(3.5)

3.2.5 Bitplanes

The bitplanes are formed from the codeblocks. They are essentially one-bit codeblocks, where
every bit comes from the same bit significance position. This means the width and height are the
same as the codeblock’s. A codeblock with eight bits per coefficient will have eight bitplanes.
[1]

3.2.6 Coefficients

A coefficient is essentially a pixel, but has been modified by the processing operations [1].
For instance, the codeblock coefficients can alternatively be referred to as ”one quantized and
discrete wavelet transformed colour component of a tile’s pixel”. Within a bitplane they are
referred to as coefficient bits [1].

3.2.7 Packets

A packet consists of a packet header and compressed image data. The data consists of parts
of bitstreams from encoded codeblocks. The bitstream parts are encoded results from certain
bitplanes. There can be none or several bitplanes, and the amount may be different for each
codeblock. The packet contains such data from all codeblocks within a precinct. The precinct’s
position is relative to the sub-band. The same relative position is used in all sub-bands of the
current resolution level. Packets are 8-bit aligned. [1]

For example, the packet will contain certain bitplanes’ encoded results from all of the following:
All codeblocks, in raster order, within precinct1 in the 2LH sub-band. Then all codeblocks
within precinct1 in 2HL, and finally all codeblocks within precinct1 in 2HH. This continues for
precinct2 and so on, in raster order, and for all resolution levels.

The packet header contains the information required for decoding the packet. Its first bit de-
scribes if the packet is of zero length. The next pieces of information describes which code-
blocks are included, zero bitplane information, number of coding passes included, and length
of packet data from a given codeblock. The Encoder module may choose to not include com-
pressed data, for higher compression rates, but must still include the packet marked as empty.
[1]

3.2.8 Layers

A layer consists of compressed image data from coding passes of codeblocks. A bitstream is
distributed across one or more layers. Essentially the layers consist of packets. Layers are
structured in such a way as to successively and monotonically increase the reconstructed im-
age’s quality. [1]
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3.3 T1 Partitioner
The Partitioner sub-module is not directly derived from theory, but is implicitly described [1].
It divides the image parts further, from sub-bands to precincts and codeblocks. The input sub-
bands come from an image that has been quantized and DWT-ed. These sub-bands are split
into precincts and codeblocks, using the sizes in Equation 3.2 and Equation 3.5. The codeblock
outputs are then processed in the EBCOT. The metadata information output is sent to the Data
Orderer and Packetizer. This involves the sizes, amount of image pieces created and other things
required for reconstructing the image.

3.4 T1 EBCOT Coder
Figure 3.1 shows the block diagram for the Embedded Block Coding with Optimized Truncation
(EBCOT). It performs coefficient bit modelling through coding passes on a codeblock. This
consists of generating a sequence of context labels and decisions. [1] [2]

The codeblock is encoded one bitplane at a time, in order MSB to LSB. Each bitplane is tra-
versed by the coding passes. The two main contributors in the coding passes are the coefficient
bits and the significance states. [1] [2]

Coefficient bits are elements of bitplanes in codeblocks. The currently-pointed-to coefficient
bit is encoded in exactly one of the coding passes. Significance states are created for the current
codeblock. The significance states that are part of the sliding window affects the encoding
results. [1]

Each bitplane is traversed by three types of coding passes: the significance propagation pass, the
magnitude refinement pass and the cleanup pass. The coding passes encode or skip coefficient
bits according to their rules, as defined in sections 3.4.6, 3.4.7 and 3.4.8. They execute in the
order presented in Section 3.4.5. The scan pattern is used once for each pass. The significance
propagation pass encodes those predicted to become significance state 1 in this bitplane. The
magnitude refinement pass encodes those that have significant state 1 from a previous bitplane.
The cleanup pass encodes those that remain. [1]

3.4.1 Contexts Labels and Decisions
The coding passes of the EBCOT produce context labels and decisions that are used by the
MQ. The context label is formed based on the contribution from the neighbours in the sliding
window. Thus it describes the coefficient bit’s relation to the surrounding significance states.
[1]

JPEG2000 provides 19 context labels, some not explicitly numbered. The context label for-
mation rules are different for each coding pass. Specific values are detailed in Section 3.4.6,
Section 3.4.7 and Section 3.4.8. The values used for the context labels are not important, as
long as they are unique and recognizable by the MQ. [1]

The decisions are binary values. In most cases they are the coefficient bits. Exceptions are the
run-length and the sign coding, which are explained in Section 3.4.8 and Section 3.4.9. [1]
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3.4.2 Significance States
An array of significance states is created when the EBCOT begins execution of a codeblock.
The binary array has the same dimension sizes as the codeblock, and is used for this codeblock
only. It is a temporary array that describes a property of the codeblock. After the initialization
to 0, a significance state can only be changed to 1. It is changed when the first non-zero MSB
of a coefficient is found. This update can only occur in the significance propagation pass or the
cleanup pass. [1]

At any given point in the coding passes, the significance states indicate which coefficient bits
have currently been found to be 1 in any bitplane of the codeblock. The currently-pointed-to
significance state is the only value that can be updated. The neighbouring significance states of
the coefficient bit affects the context label creation in each coding pass. The neighbours are part
of the sliding window. [1]

3.4.3 Scan Pattern
During the coding passes each bitplane is traversed in a specific scan pattern. The scan zigzags
through the bitplane in the order shown by the numbering in Figure 3.6. The scan goes in raster
order, meaning left-to-right and top-to-bottom; the same as reading this text. However, four
vertical elements are scanned for every horizontal step. No elements are scanned twice, so the
fifth row is the next line after reaching the width of the array. This continues until the bottom
right corner is reached. If the last line does not have four vertical elements, the ”missing” rows
are skipped. The 7th and 8th row is ”missing” in Figure 3.6. [1]

0 4 8 12 16 20
1 5 9 13 17 21
2 6 10 14 18 22
3 7 11 15 19 23

24 26 28 30 32 34
25 27 29 31 33 35

Figure 3.6: This example shows the scan pattern in a 6×6 array. The numbers represent the traversal
order, starting with zero. [1]

3.4.4 Sliding Window
A sliding window [2], alternatively called a context window [1], is used during the scan pattern
in the coding passes. The sliding window consists of a 3×3 array, as shown in Figure 3.7. It is
always centered on the current position of the scan pattern. The window slides along, moving
as the scan pattern progresses. [2] [1]

The sliding window is only used as a means of conveniently pointing to relative positions.
The different labels from Figure 3.7 mark the positions relative to the current position X. The
adjacent positions are identified by horizontal H, Vertical V and Diagonal D directions and a
unique number. These are also called the neighbours of X. The unique number is only used
during sign coding. [1]
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D0 V0 D1

H0 X H1

D2 V1 D3

Figure 3.7: The sliding window used during the scan pattern. [1]

The positions are used in three types of arrays, depending on which coding pass is executing.
The most common case uses X to describe the coefficient bit from the bitplane, and the neigh-
bours to describe the significance state bits. The other case occurs during the sign coding in
Section 3.4.9, where each sliding window position describe the sign bits. Thus, the three are the
bitplanes, the significance states array and the sign bit array. [1]

When the center X is at the edges of the array, the neighbours will attempt to access values
outside the border. These are treated in an unobtrusive way. The possible values are significance
states and sign bits. Coefficient bits are not accessed, as they are only read from the center
position. Significance states are treated as a value of 0. Sign bits are not used, because of the
rules for sign coding. [1]

Figure 3.8 shows an example when the scan pattern has reached the sixth element. Again, the
numbers represent order of traversal. The sliding window is formed around every position like
this. The sliding window contains 1, 2, 3, 5, 6, 7, 9, 10 and 11. [1]

0 4 8 12 16 20
1 D0 5 V0 9 D1 13 17 21
2 H0 6 X 10 H1 14 18 22
3 D2 7 V1 11 D3 15 19 23
24 26 28 30 32 34
25 27 29 31 33 35

Figure 3.8: An example of how the sliding window is positioned at a particular position.

3.4.5 Coding Pass Order
The coding passes run in a certain order of appearance. The significance propagation pass is
first, the magnitude refinement pass follows and finally the cleanup pass runs. This is repeated
for all bitplanes in a codeblock. A coefficient bit is encoded in only one coding pass. [1]

An exception to the order occurs in the first bitplanes. The first empty bitplanes are skipped,
empty meaning all elements are 0. The first MSB-plane with a non-zero coefficient bit is
scanned only by the cleanup pass. Any empty bitplanes after the first non-zero bitplane are
scanned as normal. [1]

3.4.6 Significance Propagation Pass
Prior to the initial cleanup pass the neighbour contribution will be 0. The significance propaga-
tion pass will therefore not encode any coefficient bits until after the first MSB-plane.
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The significance propagation pass encodes the coefficient bits that are predicted to become
significance state 1 in a bitplane. The prediction to become significance state 1 is determined
by the neighbour contribution. If any neighbour’s significant state is 1, the coefficient bit is
encoded in this coding pass. [1]

The coefficient bit is the decision. The context label is formed based on the contribution of
the neighbours from the sliding window. Table 3.1 shows the context label formation rules.
The most current significance states are used, meaning changes made during this significance
propagation pass are included. [1]

LL and LH sub-bands HL sub-band HH sub-band Context
(vertical high-pass) (horizontal high-pass) (diagonal high-pass) label∑
Hi

∑
Vi

∑
Di

∑
Hi

∑
Vi

∑
Di

∑
(Hi + Vi)

∑
Di

2 x x x 2 x x ≥3 8
1 ≥1 x ≥1 1 x ≥1 2 7
1 0 ≥1 0 1 ≥1 0 2 6
1 0 0 0 1 0 ≥2 1 5
0 2 x 2 0 x 1 1 4
0 1 x 1 0 x 0 1 3
0 0 ≥2 0 0 ≥2 ≥2 0 2
0 0 1 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0

Table 3.1: Context label formation rules for significance propagation pass and cleanup pass. x indicates
any input. [1]

If a coefficient bit is 1, the significance state is set to 1. In addition the sign bit is the immediate
next encoded bit (see Section 3.4.9). [1]

The adjacent significance states are weighted differently based on whether they are horizontal,
vertical or diagonal neighbours of X, as seen in Table 3.1. The weights depend on which sub-
band the bitplane is within. [1]

3.4.7 Magnitude Refinement Pass
The magnitude refinement pass encodes the coefficient bits that have significant state 1. This
includes all remaining bitplanes after the first 1 bit. Significance states do not change in this
coding pass. [1]

The coefficient bit is the decision. The context label is formed based on whether the coefficient
has been encoded in this coding pass before or not. Table 3.2 shows the formation rules. If this
is the first refinement, the neighbour contribution from the sliding window affects the context
label. [1]

3.4.8 Cleanup Pass
The cleanup pass encodes the remaining coefficient bits. That is, the coefficient bits in the
bitplane that were encoded during neither the significance propagation pass nor the magnitude
refinement pass. The cleanup pass thus ensures all coefficient bits in a bitplane are encoded. [1]
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∑
Hi +

∑
Vi +

∑
Di First refinement for this coefficient Context label

x false 16
≥1 true 15
0 true 14

Table 3.2: Context label formation rules for magnitude refinement pass. x indicates any input. [1]

The cleanup pass has two types of context label formation rules. The run-length coding runs on
four contiguous coefficient bits in the same column. The normal mode operates identical to the
significance propagation pass, but without the prediction. The most current significance states
are used, meaning changes made during this cleanup pass are also included. To select run-
length mode the four coefficient bits must be in the same column, must not have been encoded
in previous coding passes in this bitplane, and must have context label 0. [1]

In normal mode the coefficient bit is the decision. The context label is created from the neigh-
bour contribution, using the same Table 3.1 as in the significance propagation pass. [1]

The run-length mode rules are described in Table 3.3. In run-length mode a decision of 0
indicates all four coefficient bits have significance state 0. A decision of 1 indicates at least
1 coefficient bit of the four have significance state 1, and Uniform will be the next encoding.
Uniform indicates which coefficient bit of the four have the first occurrence of significance state
1. Uniform has two decisions in a series, which together create a binary number in range 0 to 3.
If the first non-zero coefficient bits is not the last of the four, the remaining after it are encoded
in normal mode. [1]

The context labels for run-length mode has two possible values. The first decision has a run-
length context label, while the two Uniform decisions have a Uniform context label [1] . The
values can be arbitrarily selected, as explained in Section 3.4.1. By continuing the numbering
the value 17 can be chosen for the run-length context label and 18 for the Uniform context label.

If a coefficient bit is 1, the significance state is set to 1. In normal mode the sign bit is the
immediate next encoded bit, following the scheme in Section 3.4.9. In run-length mode the
sign bit encoding is delayed until after the Uniform context label and decisions. [1]

3.4.9 Sign Coding
This coding operation is part of the significance propagation pass and the cleanup pass. When-
ever they find a coefficient bit which changes the significance state to 1, the sign is encoded.
The context label and decision of the sign coding is inserted in the EBCOT’s output immedi-
ately after the coefficient bit has been encoded in the caller’s coding. This means the coding
pass that started the sign encoding continues after the sign bit is encoded. Only one coefficient
is encoded when sign encoding is started. Throughout the coding passes, every non-zero pixel
of the codeblock is sign encoded once. [1]

The sliding window is used to find the contribution of the adjacent significance states. The
neighbour positions are additionally used to find the sign bits of the codeblock. The neighbours
contribute as given in Table 3.4, with this table being used identically for both horizontal and
vertical neighbours. [1]
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Four contiguous Symbols Four contiguous bits to be Symbols Number of
coefficients in a column with decoded are zero decoded with coefficients to
remaining to be encoded run-length UNIFORM decode
and each currently has context context
the 0 context
true 0 true none none

true 1

false
skip to first coefficient sign
skip to second coefficient sign
skip to third coefficient sign
skip to fourth coefficient sign

MSB LSB
00
01
10
11

3
2
1
0

false none x none rest of column

Table 3.3: Decision formation rules for run-length mode in the cleanup pass. The second column shows
the decision accompanying the run-length context label. The fourth row shows the two decisions

accompanying the Uniform context label. A value of none indicates that nothing is produced, not even
the context label. [1]

V0 or H0 V1 or H1 V or H contribution
significant, positive significant, positive 1
significant, negative significant, positive 0

insignificant significant, positive 1
significant, positive significant, negative 0
significant, negative significant, negative -1

insignificant significant, negative -1
significant, positive insignificant 1
significant, negative insignificant -1

insignificant insignificant 0

Table 3.4: The contribution from the significant states and sign bits of the neighbouring coefficients.
Significant and insignificant indicates respectively 1 and 0 significance state. This table is the same for

H contribution and V contribution, hence the ”or” in the first row. [1]

Horizontal Vertical Context XOR-
contribution contribution label bit

1 1 13 0
1 0 12 0
1 -1 11 0
0 1 10 0
0 0 9 0
0 -1 10 1
-1 1 11 1
-1 0 12 1
-1 -1 13 1

Table 3.5: The contributions are gathered from Table 3.4, which yields the context label and XOR-bit
for the sign encoding of one coefficient. [1]
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The horizontal and vertical contribution form the context label as detailed in Table 3.5. An
XORbit is also produced by the same table. The XORbit is used in the exclusive or operation
in Equation 3.6. The signbit is gathered from the sign bit of the codeblock, by using the coeffi-
cient’s position. The signbit is 0 for positive numbers and 1 for negative numbers. This forms
the decision output from the sign encoding operation. [1]

decision = signbit ⊕ XORbit (3.6)

3.5 T1 MQ Coder
The Matrix Quantizer coder (MQ) is a binary arithmetic coder. This means it performs arith-
metic coding, also called entropy coding [2]. It takes a series of context labels and decisions as
input and converts them to a bitstream output. The encoded bytes use less bits than the incom-
ing context labels and decisions, which is how the data is compressed [2]. Figure 3.2 shows the
block diagram for the MQ. [1]

The input decision symbol is used to determine the coding method. This is based on its proba-
bility, which can be the more probable symbol (MPS) or less probable symbol (LPS). Thus the
binary decision has two available coding methods to select. [1]

The input context label is used as a reference to a finite state machine (FSM) entry. For 19
context labels there are 19 FSMs. The FSMs are identical for each context label, but they may
have achieved a different progress at any time. There are 47 progress states available, for each
of the 19 context labels. The FSM serves as a lookup table that provides a Qe value and a next-
state, NMPS or NLPS. The lookup values are based on precomputed probability values. The
values are rounded to hexadecimal integer representations of decimal values. The precomputed
values are described in more detail in the JPEG2000 standard, but these details are not used in
this thesis. [1]

The MPS and LPS coding methods use the Qe value to modify the two main values: A-reg
and C-reg. A-reg influences the path executed within the MQ; essentially a control signal.
C-reg contains the intermediate results which occasionally form a byte of the bitstream. The
current coding method decide which of the two next states is used for the FSM. The FSM also
occasionally provides the new MPS and LPS symbols, through its Switch value. [1]

The MQ output bytes should be appended to the packet headers. This means the initial MQ
byte comparison to 0xFF compares with the last packet header byte. Any produced MQ bytes
with value 0xFF must be followed by a byte with a zero MSB. This is achieved by a bit-stuffing
procedure. At the end of the list of context labels and decisions, the flush procedure is executed.
It flushes the remaining bits from C-reg to the bitstream. [1]

3.5.1 Value Explanations and Ranges
A-reg and C-reg are stored in 32-bits registers, divided into sections as seen in Table 3.6. The
’a’ and ’x’ bits hold intermediate results from arithmetic operations. The ’b’ bits hold the byte
that will be output. The ’s’ bits are spacer bits that ensure there is no overflow from the ’x’ bits.
The ’c’ bit is a carry bit that may be added to the previous output byte. [1]
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A-register 0000 0000 0000 0000 1aaa aaaa aaaa aaaa
C-register 0000 cbbb bbbb bsss xxxx xxxx xxxx xxxx

Table 3.6: The 32-bits registers for the A-reg and C-reg variables in the MQ [1].

Table 3.7 shows the value ranges of the essential variables. Qe comes from a lookup reference.
The value in A-reg is forced to always stay within the interval. The operations can decrease its
value below the range, which triggers left-shifting until the 16th bit is 1. The value in C-reg
accumulates in the 16 lower bits (LSBs). The operations can increase its value. C-reg is left-
shifted every time A-reg is left-shifted. When a counter reaches the end of counting, the ’b’ bits
are extracted to form a byte output. The ’c’ bit is prevented from forming a byte, but instead
increases the previous byte. A-reg is initialized to 0x8000. C-reg is initialized to 0. [1]

Range start Variable Name Range end
0x0001 ≤ Qe ≤ 0x5601
0x8000 ≤ A-reg ≤ 0xFFFF

0x0000 0000 ≤ C-reg ≤ 0x0FFF FFFF

Table 3.7: Value range for MQ variables. [1]

3.5.2 MQ Functions In Flowcharts
The JPEG2000 standard shows detailed flowcharts for a recommended MQ implementation [1].
These are too long and too many to list here. They are detailed enough to almost be identical
to the implementation; hence see the code in Appendix A. The FSM table is also provided as a
function here. The function and variable names are mostly identical to the standard’s definitions.

3.6 T2 Data Orderer
The Data Orderer sorts data by precincts, packets and layers. The input bitstreams come from
the MQ. The information about tiles, tile components, precincts and similar comes from the
Partitioner, and is used to reorder the bitstreams. The reordering allows the bitstreams to be
organized in packets, limited by the size of precincts [1]. The packet includes bitstreams from
the same precinct locations in other sub-bands of the same resolution level [1]. Packets then
form layers [1]. The output is a sorted datastream, sent to the Packetizer.

The bitstreams should not already contain markers from main header, tile headers or EOC.
However, any packet headers and in-stream markers should be included. [1]

Each layer provides an increase in the reconstructed image’s quality [1]. The layers enable
the compressed image to be partially reconstructed, i.e. a progressively coded image [1]. The
decoder is able to choose how much of the file to reconstruct. The Data Orderer must therefore
sort the most important data layers first in the datastream. The progression order determines
what is considered as most important.

The progression order is used to determine the order and structure of the file. It is essentially
the order of reading the layers, resolution levels, colour components and positions. These can
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be arranged in five allowed orders, based on the COD marker. The progression order affects
how the partially reconstructed image appears. An example is to get a tiny thumbnail, which
then grows in size and detail. Another example is to get more and more colours as the image is
decoded. [1]

3.7 T2 File Packetizer
The Packetizer receives the ordered datastream from the Data Orderer. Its purpose is to insert
markers and headers in between the compressed image data, which describe the characteristics
of the image. The output is a compressed image of the jp2 file format. [2]

The markers and headers are well defined in the JPEG2000 standard. They are used to delimit
sections of the datastream and make it readable for any JPEG2000 decoder. The header types are
one main header and several tile headers. The markers contain metadata that describe properties
of the image. Markers bundled together form specific headers. [1]

3.7.1 Headers
Headers consists of markers. The main header begins all JPEG2000 files. The minimum main
header consists of SOC, SIZ, COD and QCD markers. It can also contain optional markers,
some of which can be placed in the tile header instead. [1]

3.7.2 Markers
Markers are sequences of bits that represent a specific meaning. They usually start with a unique
label that is reserved for this specific use. If such a unique label is found in the bitstream it is
read and decoded as dictated by the appropriate marker. For instance, the 16 bits 0xFF51
indicate the start of the SIZ marker. The decoder will then know that the following 328 bits are
also part of the SIZ marker. These 328 bits then describe image sizes, tile sizes, offset sizes,
amount of colour components in image, and more. [1]

The types of markers contain metadata for individual fields. Some of the other metadata that
must be described are decomposition levels, amount of empty bitplanes and sizes of different
image pieces. [1]
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Chapter 4
Design Exploration

This chapter explores solutions to the Encoder. It is based on an analysis of the presented
content from Chapter 2 and Chapter 3.

4.1 Encoder
The Partitioner and Data Orderer sub-modules are not defined in the JPEG2000 standard di-
rectly. Their tasks are implicitly referenced, for instance by requiring codeblocks for the
EBCOT from the sub-bands. Their names are therefore created for this thesis. As there was
no Partitioner in the initial stages of this thesis, the first natural step in the implementation was
the EBCOT. The EBCOT is defined in the JPEG2000 standard. The approach of implementing
the defined sub-module is better than working with many assumptions. The task definitions of
the Partitioner and Data Orderer have been uncovered as the work has progressed.

The EBCOT takes codeblocks as input, as Figure 3.1 indicates. The approach to the EBCOT
implementation therefore assumes the codeblocks are already formed. The sub-modules are
built around this assumption. The relation between the EBCOT and the MQ is based on Figure
3.2. The MQ consumes all outputs from the EBCOT, and does not need any more inputs. The
codeblock formation task is given to the Partitioner. The Data Orderer organizes the MQ output,
but is affected by the Partitioner’s output order. The Data Orderer will compensate by inserting
missing items, if the initial codeblock assumption proves wrong. The Packetizer follows the
definitions in the JPEG2000 standard, but is not currently implemented.

4.2 Image Parts
Splitting the image into parts reduces the requirements for internal memory when processing.
Smaller image pieces demand less internal memory at once. The same actually applies to de-
velopers, as the hierarchy structure enables a black-box design thinking. Splitting also allows
separately processing some of these pieces, which allows parallel execution. Tile components
are treated as individual images, and can be processed separately. The current EBCOT imple-
mentation can execute independent of other codeblocks. The same applies for the MQ, but some
if conditions are not currently used properly.
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4.3 EBCOT

The purpose of the EBCOT is to find the order the significant states are updated in. This is
the information contained in the context labels and decisions. For instance the significance
propagation pass predicts that significance states will update. Both if they do and if they do not
it is interesting information, and is useful to encode.

Learning the coding passes in a certain order may make them easier to understand. The magni-
tude refinement pass is the simpler of the three, while the cleanup pass is more difficult. This is
based on the respectively few and many conditions to consider. The magnitude refinement pass
also has fewer context labels than the other two.

4.3.1 Coding Pass Roles

The roles of the coding passes are defined by their use of significance states. The magnitude
refinement pass use the 1s, while the significance propagation pass and cleanup pass use the
0s. This essentially means that the EBCOT is interested mainly in the 0s, especially when they
are about to become 1s. The magnitude refinement pass execution is now separated from the
other two. Now the other two coding passes’ execution must be separated. The significance
propagation pass requires 1s in at least one neighbour. The cleanup pass thus encodes only the
coefficient bits that have significance state 0 as well as being surrounded by such neighbours.
There exists a coding pass example in the JPEG2000 standard [[1]Table D.6]. It is used as a
reference to when the coding passes should execute.

The prediction in the significance propagation pass can compare neighbours to 1 directly, or
create and compare the context label against 0. These are equivalent, as seen in Table 3.1. The
difference in these approaches are not much. The context label can be reused if this coefficient is
to be encoded in this pass, which saves some work. The work is however unnecessary otherwise.

During the EBCOT encoding there is a trend in the roles of the coding passes. The amount of 1s
in the significance states increases as the bitplanes are traversed from MSB to LSB. This causes
the amount of coefficient bits encoded by the magnitude refinement pass to increase, while those
encoded by the cleanup pass decrease. The roles do not at any time go in the opposite direction.
The trend does not guarantee the significance propagation pass is affected in one direction only,
as the following proves. Consider the case where a rectangle with significance states 1 encircles
a 4 times 4 area with 0s. Neighbours of 1s are encoded in the significance propagation pass.
If a single significance state 1 is inserted in the center 2 times 2 area, 3 to 5 new bits will be
encoded by the significance propagation pass. If the entire area with 0s is now replaced with 1s,
there are now fewer bits encoded in the significance propagation pass. The trend requires any
non-zero coefficients to exist in the codeblock. If they do not, all the empty bitplanes will be
skipped, as already elaborated.

Prior to the initial cleanup pass the neighbour contribution will be 0. The significance propa-
gation pass will therefore not encode any coefficient bits until after the first MSB-plane. The
magnitude refinement pass will not encode because none have significance state 1. These are
the reasons for skipping the first bitplanes.

20



4.3 EBCOT

4.3.2 Coding Methods

The magnitude refinement coding needs to know if the current coefficient has been encoded in
a refinement pass before. If is has, other details are disregarded. If it has not, the magnitude
refinement coding regards the neighbours. A context label is created from this knowledge alone.
The decision uses the coefficient bit.

The significance propagation coding encodes solely based on the neighbours. Upon finding a
coefficient bit with value 1, it also executes sign coding. The sign coding then considers both
the neighbours in the significance state array and the sign array. The sign coding does not use
the diagonal neighbours of the sliding window.

The normal cleanup coding is identical to the significance propagation coding. This is true
because it is already established that the cleanup pass executes this particular coefficient bit.

The run-length cleanup coding looks ahead to determine if the four coefficient bits of one col-
umn are encoded in the cleanup pass. If it is, the run-length context label is created. The look
ahead should simultaneously detect the first non-zero coefficient bit’s position. If there are only
0s, the decision is 0. Otherwise the decision is 1, and the position is used for the next two deci-
sions. These two decisions use the Uniform context label. The position is reduced to a relative
value from the top of the column, ranging from 0 to 3. The two bits used to represent the value
are sent MSB first as decisions.

The run-length coding has the ability to reduce the amount of context labels created, compared
to only normal cleanup coding. This occurs in the circumstance where there are four continuous
coefficient bits. In normal coding these produce 4 context labels, plus 4 from sign coding if the
bits are 1s. The run-length coding produces 1 context label for the same first situation. The
second situation with 1s produces minimum 4 context labels for a bit sequence of 0001 and
maximum 10 context labels for a bit sequence of 1111. All sign codings are kept, but the
context labels up to the first non-zero bit are replaced by the 3 context labels for run-length
coding. Experimenting with sequences of bits with one value 1 gives a constant amount of 5
context labels for normal coding. Run-length coding produces 4 context labels for the sequence
0001, increasing by one up to a total 7 context labels for 1000. This proves that it can actually
increase the total results produced in the EBCOT. They are, however, compressed in the MQ,
which should still decrease the total image size. The run-length coding is not repeated on a
column after finding a bit value of 1.

The run-length coding seem to try to simplify the encoding results, by possibly reducing the
amount of context labels. It is most efficient in the empty or almost empty bitplanes, but the
first empty bitplanes are removed before the first cleanup pass. The run-length also gives a very
precise description to the reconstructing decoder. Thus the initial conditions of the codeblock
is easily determined.

For the coding passes, only the sum of the three directional categories are important, namely H,
V and D. For the sign bit encoding, however, the individual horizontal and vertical neighbours
are of importance.
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4.3.3 Trivial Parts of Implementation

The scan pattern implementation is trivial. It is easily verified by filling an array with numbers,
similar to Figure 3.6. Producing the sign bits and magnitude bits are also trivial by using built-in
functions for sign and absolute values.

Significance states can be considered as another, but temporary, bitplane. The states are repre-
sented by a single bit each. As the coding passes conclude, the significance states have fulfilled
their use. They can now either be reinitialized to 0 and reused for new codeblocks, or thrown
away. This depends on whether they are implemented as something that stays in the EBCOT
or something that follows the codeblocks. If reused, they must tolerate different sizes of code-
blocks.

Similar to the image pieces, the use of the sliding window is only a means of acquiring positions.
The sliding window use the same index as the current values ± 1 to get all eight directional po-
sitions. At the edges of the codeblock the sliding window will attempt to access neighbours that
are outside the codeblock. This access would require a memory fetch from another codeblock.
Instead of allowing this access, they are treated as 0. This can be achieved by simply padding
the significance state array with 0s around the edges. The padding negates the need for border
conditions, which makes the scan pattern easier to implement.

4.3.4 Read and Write Observations

Presented here are the coefficient bits, significance states and sign bits, and their type of usage.
Their sliding window position is included. The only coefficient bit ever used is at the center
of the sliding window. The significance states use all positions. The sign bits use all but the
diagonal positions. The coefficient bit is never written to; only read. The central significance
state is written to if the coefficient bit is 1, but never read. The neighbouring significance states
are only ever read. All sign bits are only ever read.

4.4 MQ
The MQ is described in high detail in the JPEG2000 standard. It shows detailed flowcharts for
each of the functions implemented in this thesis. Thus there is not much to analyze and discuss
here.

The MQ is initialized to certain state values, for all of the 19 context states. For the most part the
states increase if the decision equals the MPS, and decreases if it equals the LPS. The context
labels and decisions are read one pair at a time. The states are updated after each. The states
provide a Qe which is added or subtracted to/from A-reg or C-reg. C-reg periodically returns
an output byte, which is here collected in a list. At the end of the MQ encoding, the remaining
contents of C-reg is collected in the list in a special flush procedure. The complete bitstream list
is sent as an output from the MQ, to be sorted in the Data Orderer.

The three procedures/functions Encode, Code1 and Code0 from the flowcharts are merged into
one in the implementation. They determine whether the current decision symbol is the MPS or
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the LPS, which triggers execution of the appropriate coding method. This is a minor modifica-
tion.

The bitstream produced in the current implementation does not yet contain packet headers and
in-stream markers. The lack is a result of not yet having investigated how to treat the MQ’s
output. The packet headers are intended to be inserted by the Data Orderer. The MQ output
bytes require a bit-stuffing procedure in relation to the byte at the end of packet header. The Data
Orderer must therefore perform this bit-stuffing upon inserting the packet headers. Inserting a
0 after each sequence of 0xFF should hopefully be trivial to implement.

4.5 Investigating the Partitioner and Data Orderer
The work of this thesis has so far been concentrated on the EBCOT and the MQ. Continuing
to the Partitioner and Data Orderer, the Encoder module as a whole must be considered. The
considerations regard the memory management and the sorting in the Data Orderer.

4.5.1 Data Orderer Considerations
The sorting in the Data Orderer will be affected by the output order from the Partitioner. The
sorting is based on the packet formation. Therefore, the packets must be considered. The
packets consists of certain bitplanes of several codeblocks. This is in contrast to encoding whole
codeblocks, as initially assumed. The system must be adapted to the now altered conditions.

Initially it appears that the EBCOT has to be modified to pause after certain bitplanes. It will
continue after encoding the other codeblock parts of the packet. This method produces one
finished packet before the next. However, a more thorough examination points to the only issue
being the MQ output. To adjust the current implementation to the updated setting, the MQ’s bit-
stream can be separated into individual streams for each bitplane. The packets are thus produced
codeblock by codeblock. Each packet, in one precinct location, is finished simultaneously. The
precinct location is used in all sub-bands of the resolution level.

It is difficult to split the finished bitstream of a codeblock without providing lots of dictations to
the MQ during the coding passes. If also including the creation of the packet headers, the Par-
titioner must transfer the information about the image sizes as well. This will essentially merge
the MQ with the Data Orderer. Merging the sub-modules will create a larger system block,
which is less manageable. When the data is appended to a packet, the bit-stuffing procedure
must be repeated.

Instead of this complicated modification, the bitstreams can be split during their generation.
This corresponds more with the current MQ implementation, because only the output address
must be sent as additional input to the MQ. The address takes the place of the byte stream
start pointer BPST. The input address will change throughout the codeblock execution in the
EBCOT, when the encoded content belongs in another packet. The MQ must finish and reset
before the change in BPST, as the BPST is set only in the initialization of the MQ. The output
bytes are appended to the packet headers.

The bitstreams should be processed by the Data Orderer. This lets it sort them into packets.
The sorting is performed by providing the address BPST to the MQ sub-module. To know the
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appropriate addresses, the Data Orderer should create the packet headers. The actual sorting
is determined by the progression order and compression rate. These must be investigated in a
future work, along with the content of the packet headers.

4.5.2 Memory Considerations
The EBCOT and MQ implementations currently produce results in new memory locations; in
temporary lists. The incoming quantized image of sub-bands is already stored in a memory
location. The same location should eventually be reused, when the data there is no longer
needed. A temporary location requires doubly the size the current image, minus the reduction
to the size, which should be avoided.

The output of the Partitioner does not need storage, because the incoming data is not modified;
it is merely split into codeblocks. The output of the EBCOT does not need storage, because
the MQ consumes it immediately. The bitstream output must be stored in different packets,
by either the MQ or the Data Orderer. Providing the address input to the MQ from the Data
Orderer serves to keep the sub-modules’ tasks in smaller and more manageable blocks. The
Data Orderer then also naturally takes the task of storing the bitstreams, in the packets. The
bitstream storage requires room for all the encoded codeblocks of one precinct position.

With codeblocks encoded one full codeblock at a time, the codeblock’s memory location can be
overwritten. The purpose of the EBCOT and MQ is to reduce the size of the data, meaning the
encoded data will not exceed the codeblock data. The encoded data overwriting will therefore
not overflow into the other, un-encoded codeblocks. The resulting packet datastreams may
however get a complex address look-up. Their coordinates will follow raster order within a
codeblock. This is simple enough for finished streams, but these streams will be appended to
and grow over time. It is therefore preferred to store packets temporarily in a new memory
location, until the packet is complete or the outdated data is of sufficient size for the packet.

The Data Orderer can sort the packet datastreams into layers after the whole image is encoded,
or during the progress. Regardless of this, the result must be an encoded datastream in sorted
order. As they are sorted the overwriting operation ignores the previous boundaries and data
content. The completed Data Orderer operation has thus produced a single stream of packets or
layers. The Packetizer should not need to read the data from arbitrary codeblock locations. The
datastream must still be sectioned so that the Packetizer can find the starts and ends of where it
should place its markers and headers, but this is what the packet headers are for.

4.6 Partitioner
The task of dividing the sub-bands into precincts and codeblocks is performed in the Partitioner.
It creates a stream of codeblocks, from the incoming quantized sub-band image. These are then
sent for encoding in the EBCOT. The metadata information must be sent to the Data Orderer
when the bitstream arrive from the MQ.

The VHDL implementation [2] provides a quantized image of sub-bands with tile size 128 ×
128 and 5 decomposition levels. Descriptions from sections 3.2.2, 3.2.3 and 3.2.4 lead to the
following computations and results: From 5 decomposition levels the NLLL sub-band has a

24



4.7 Data Orderer

size of 4 × 4. As precincts are parts of a sub-band, the maximum precinct size of the NLLL
band is also 4×4. The NLLL band is at resolution level 0, which gives codeblocks of maximum
size 4 × 4. This codeblock value is also the minimum allowed, from Equation 3.3. The CB

′

value may, however, be higher for other resolution levels. The values for maximum sizes of the
other resolution levels are computed in the same fashion. The values used remain to be selected,
but these maximum values are used to implement a test Partitioner, provided in Appendix A.

The order of sending codeblocks to the EBCOT must be determined. The simplest solution
for the Partitioner is to send in raster order. Both raster order and other orders stay true to
the initial intentions for the Partitioner and EBCOT relation, by using entire codeblocks. The
partially fulfilled Partitioner implementation currently finds codeblocks by precinct positions
in decomposition levels, as in the packet formation. It attempts to produce the codeblocks in
packet order for the Data Ordererto handle them easier. The Partitioner does not currently send
the found codeblocks to the EBCOT.

4.7 Data Orderer
The Data Orderer sorts the bitstreams from the MQ and metadata from the Partitioner. The
resulting datastream is sent to the Packetizer. The Data Orderer must organize bitstreams into
packets and layers. The bitstreams do not overwrite any data in the current implementation, so
the Data Orderer could actually acquire the metadata by itself.

The packet headers contain information about which codeblocks and coding passes are in-
cluded. This information must be used to place the MQ bytes at addresses of different packets.
Packet headers should exist upon initiating the MQ encoding to achieve proper results. The
Data Orderer will control the byte’s output location and sort as items are encoded.

4.8 File Packetizer
The Packetizer finalizes the output of the JPEG2000 compression system. The resulting jp2
file is readable by any decoder. The file has some required and some optional file markers and
headers. The main header identifies the file syntax. A tile header precedes each tile component.
At the end of the file the EOC marker is placed, indicating End of Codestream.

As a specialized encoder it can use hardcoded data for constants. This simplifies some oper-
ations by reducing the amount of conditions. If for example the camera sensor does not have
adjustable image resolution and the same tile size is used, a pregenerated SIZ marker can be
used.

The main remaining decision is the behavior of the output. This involves where and how it
will be placed. Currently affected sub-modules of the Encoder are the MQ, Partitioner and
Data Orderer. Due to not fully performing these tasks, the Packetizer implementation is not
yet begun. This is also the reason why the theory and description for the Packetizer lack vital
information. Consult the documentation for details [1] [2].
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Chapter 5
MATLAB Implementation

This chapter highlights parts from the MATLAB implementation. Extracts from the code is
presented, accompanied by explanations for the choices. For the full code, see Appendix A.
The implementation was made with MATLAB version R2017a [3].

The implementation is made with emphasis on being understandable. Many variable names are
long, as they have deliberately not been abbreviated. This hopefully helps the reader. Extra
steps have been made for the same reason, such as using the variable coefficientBit instead of
directly accessing bitplane(row,col).

Please note that MATLAB automatically converts numbers to double format inside every func-
tion call. An effect of this was an unintended higher-than-byte value in the MQ’s bitstream
output. This particular bug was fixed, but similar bugs could still exist.

This work aims for a hardware implementation of the JPEG2000 compression algorithm. The
MATLAB implementation is the first step towards that goal.

5.1 EBCOT
The EBCOT encodes codeblocks. This produces context labels and decisions at various inter-
vals. The output is collected in a list EBCOToutput. Results are appended to the end of the list
as they are created, by a function call to appendData(..).

The function declarations are listed in Listing 5.1. These are intended for reference throughout
this chapter. The functions are actually placed in separate files in the implementation, as is the
tradition in MATLAB. Throughout the listings in this section an extract of their code will be
presented.

Listing 5.1: The declarations for functions in T1 EBCOT.

1 % Executes the EBCOT coder on one codeblock.
2 function [EBCOToutput, emptyBitplanes] = T1_EBCOT(codeblock,

subbandType, bitsPerPixel)
3
4 % Appends second data input to the first list input.
5 function EBCOToutput = appendData(EBCOToutput, newData)
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6
7 % Performs normal cleanup coding on one bit.
8 function [EBCOToutput, significantStatesPadded] = cleanupCodingNormal

(EBCOToutput, bitplane, significantStatesPadded, subband,
codeblockSignsPadded, row, col)

9
10 % Performs run-length coding on four bits.
11 function [EBCOToutput, significantStatesPadded] =

cleanupCodingRunLength(EBCOToutput, bitplane,
significantStatesPadded, subband, codeblockSignsPadded, baserow,
col)

12
13 % Executes cleanup pass on one bitplane.
14 function [EBCOToutput, significantStatesPadded] = cleanupPass(

EBCOToutput, bitplane, significantStatesPadded, subband,
codeblockSignsPadded, needCleanup)

15
16 % Performs magnitude refinement coding on one bit.
17 function [EBCOToutput, needFirstMR] = magnitudeCoding(EBCOToutput,

bitplane, significantStatesPadded, needFirstMR, row, col)
18
19 % Provides lookup value for context label.
20 function contextLabel = magnitudeContext(firstMR, slidingWindow)
21
22 % Executes magnitude refinement pass on one bitplane.
23 function [EBCOToutput, needFirstMR] = magnitudePass(EBCOToutput,

bitplane, significantStatesPadded, needMR, needFirstMR)
24
25 % Provides directional sums from sliding window.
26 function [sumH, sumV, sumD] = neighbourContribution(slidingWindow)
27
28 % Performs sign coding on one bit.
29 function EBCOToutput = signCoding(EBCOToutput, slidingWindow,

codeblockSignsPadded, row, col)
30
31 % Performs significance propagation coding on one bit.
32 function [EBCOToutput, significantStatesPadded, remainingCoefficients

] = significanceCoding(EBCOToutput, bitplane,
significantStatesPadded, subband, codeblockSignsPadded,
remainingCoefficients, row, col)

33
34 % Provides lookup value for context label.
35 function contextLabel = significanceContext(subband, slidingWindow)
36
37 % Executes significance propagation pass on one bitplane.
38 function [EBCOToutput, significantStatesPadded, remainingCoefficients

] = significancePass(EBCOToutput, bitplane,
significantStatesPadded, subband, codeblockSignsPadded)

The input in the FPGA will be of the signed magnitude representation. This means the first

28



5.1 EBCOT

bit is a sign bit, with 0 for positive and 1 for negative. The remaining bits hold the absolute
value, i.e. greater than or equal to 0. To enforce conforming with the representation, the built
in functions for sign value and absolute value is executed. The sign function however returns
+1 or -1, instead of 0 and 1. It is currently interpreted correctly within the sign coding function,
but should also be fixed in the codeblockSigns variable. codeblockAbs is used to fill bits of the
bitplanes.

The sliding window should read 0 when attempting to access significance states outside the
codeblock. This is achieved by adding a border with 0s around the edges of the array. The
resulting significantStatesPadded is higher and wider by two coefficients. To reach the current
scan coordinate at (row, col), the significanceStatePadded(row+1, col+1) must be accessed.
The padded array is simpler than using conditional checks at the edges. It does come at the cost
of a larger array in memory. The trade-off should be evaluated in the VHDL code.

Deciding which coding pass should encode a particular coefficient bit is done by looking at
the significance states. If the current coefficient’s significance stateis 1, it is encoded in the
magnitude refinement pass. If it is 0, the significance propagation pass or the cleanup pass
encodes it. The significance states used to determine this are the significance states from before
the current bitplane begins its encoding. For instance, if the significance states are updated in
the significance propagation pass, the roles of the passes should not be affected. An updated
value would make the magnitude refinement pass try to encode the coefficient bit. The new-
found significance states must be excluded, as the coefficient bit must be encoded just once in
a bitplane. The solution is to store the significance states array prior to the first coding pass.
This guarantees that changes does not affect the magnitude refinement pass. Additionally, the
first time a coefficient is encoded by the magnitude refinement pass must be detected. Another
array, needFirstMR, is used for this.

The significance states are initialized to 0. An array needCleanup determines when the cleanup
pass encodes a particular coefficient bit. It is initialized to 1, because the cleanup pass encodes
the first bitplane. An array needMR determines when the magnitude refinement pass encodes a
particular coefficient bit. It is a copy of the significance states array. It does not use the same
array, because that array is modified thoughout the bitplane coding. An array needFirstMR
tracks the first time the magnitude refinement pass encodes a particular coefficient (not the bit).
It is initialized to 1, and updates to 0 when encoded.

The bitplanes are collected in a variable codeblockBitplanes through the bitget(..) function.
The implementation simply uses two for-loops to iterate over each coefficient position, and one
for-loop to repeat this over each bit. bitget(..) returns bit at the input n-th position of the input
number.

5.1.1 Coding Passes
Listing 5.2 shows how the empty bitplanes are skipped. The four any functions guarantee the
result is one boolean value, rather than a vector or array. The current and subsequent bitplanes
are not skipped. The amount of bits here begins with bitsPerPixel, which is the number of bits
used to store the values. This may have to be reduced by one to be correct, based on signed
magnitude representation. The bitplanes should not include the sign plane.
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Listing 5.2: The empty bitplanes are skipped.
T1 EBCOT.m:

1 for bitNumber = bitsPerPixel:-1:1 % MSB to LSB.
2 bitplane = codeblockBitplanes(:,:,bitNumber);
3 if any(any(any(any(bitplane))))
4 break;
5 end
6 end
7 emptyBitplanes = bitsPerPixel - bitNumber;

An initial cleanup pass is executed before entering the main loop. This is a function call,
identical to the cleanup pass in the main loop. Hence it will not be listed explicitly here.

The main loop is seen in Listing 5.3. It begins with fetching the correct bitplane. codeblockBit-
planes is a collection of bitplanes that is created by using MATLAB’s built-in bitget function.
The needMR array is updated before the significance states may be modified. The coding passes
then execute in the normal order, as presented earlier.

Listing 5.3: The main loop for the coding passes.
T1 EBCOT.m:

1 for i = (bitNumber-1):-1:1 % MSB to LSB.
2 bitplane = codeblockBitplanes(:,:,i);
3
4 needRefinement(1:codeblockHeight,1:codeblockWidth) ...
5 = significantStatesPadded(2:(codeblockHeight+1), 2:(

codeblockWidth+1));
6
7 [EBCOToutput, significantStatesPadded, needCleanup] ...
8 = significancePass(EBCOToutput, bitplane,

significantStatesPadded, subbandType, codeblockSignsPadded
);

9 [EBCOToutput, needFirstRefinement] ...
10 = magnitudePass(EBCOToutput, bitplane,

significantStatesPadded, needRefinement,
needFirstRefinement);

11 [EBCOToutput, significantStatesPadded] ...
12 = cleanupPass(EBCOToutput, bitplane, significantStatesPadded,

subbandType, codeblockSignsPadded, needCleanup);
13 end

5.1.2 Scan Pattern
All three coding passes use the scan pattern shown in Listing 5.4. The specific code for each
coding pass replaces ”<Insert code>”. The implementation has two sections. The first is for
regular four-column-coefficients scan. The second is for the last rows containing less than four
coefficients. This method is used instead of an if-condition on every scan coefficient, checking
if the height is less than an integer multiple of four.
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Listing 5.4: The scan pattern traversal. ”<Insert code>” is replaced by pass specific code.
significancePass.m,

magnitudePass.m and
cleanupPass.m:

1 for baserow = 1:4:(4*floor(bitplaneHeight/4))
2 for col = 1:bitplaneWidth
3 for row = (baserow+0):(baserow+3)
4 % <Insert code>.
5 end
6 end
7 end
8 if (row < bitplaneHeight)
9 finalRow = row + 1;

10 for col = 1:bitplaneWidth
11 for row = finalRow:bitplaneHeight
12 % <Insert code>.
13 end
14 end
15 end

5.1.3 Significance Propagation Pass
The significance propagation pass executes the code in Listing 5.5. This is the code that replaces
”<Insert code>” within the scan pattern. If the current coefficient’s significance state is 0, the
significance propagation pass or the cleanup pass encodes it. The array remainingCoefficients
collects the coefficient bits not encoded in the significance propagation pass, so the cleanup pass
will encode them.

Listing 5.5: The <insert code> content of the significance propagation pass.
significancePass.m:

1 if significantStatesPadded(row+1, col+1) == 0
2 [EBCOToutput, significantStatesPadded, remainingCoefficients] =

significanceCoding(EBCOToutput, bitplane,
significantStatesPadded, subband, codeblockSignsPadded,
remainingCoefficients, row, col);

3 end

5.1.4 Significance Coding
The significance coding implementation is shown in Listing 5.6. The prediction is considered
before the significance coding is executed. If the context label is 0, no neighbours have sig-
nificance state 1. contextLabelForSignificance is used to find the context label, equivalenting
to Table 3.1. If the context label is 0 the coefficient bit is not encoded in this pass, but is sent
to the cleanup pass instead. Otherwise the context label and decision is added to the end of
the EBCOToutput list. The significance states are updated if necessary, which triggers the sign
coding as the next step.
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Listing 5.6: The significance coding function.
significanceCoding.m:

1 slidingWindow = significantStatesPadded((row):(row+2),(col):(col+2));
2 contextLabel = contextLabelForSignificance(subband, slidingWindow);
3
4 if contextLabel ∼= 0
5 coefficient = bitplane(row,col);
6 decision = coefficient;
7 EBCOToutput = appendData(EBCOToutput, [contextLabel, decision]);
8
9 if coefficient == 1

10 significantStatesPadded(row+1,col+1) = 1;
11
12 EBCOToutput = signCoding(EBCOToutput, slidingWindow,

codeblockSignsPadded, row, col);
13 end
14 else
15 remainingCoefficients(row,col) = 1;
16 end

5.1.5 Sign Coding

Listing 5.7 shows the sign coding function. The sliding window is used to determine the con-
tribution of H and V, as per Table 3.4. The contributions are then used in the implementation
of Table 3.5 to provide a context label and an xorBit. The decision is then determined from the
xorBit and the sign bit. The context label and decision is appended to EBCOToutput.

Sign coding encodes one coefficient bit before returning to the coding pass that triggered it. It
is triggered by either the significance propagation pass or the cleanup pass.

Listing 5.7: The sign coding is called in the significance propagation pass and the cleanup pass.
signCoding.m:

1 contributionH = signContribution(’H’, slidingWindow,
codeblockSignsPadded);

2 contributionV = signContribution(’V’, slidingWindow,
codeblockSignsPadded);

3 [contextLabel, xorBit] = signContext(contributionH, contributionV);
4
5 coefficientSign = codeblockSignsPadded(row+1, col+1); % +1 or -1.
6 signbit = (coefficientSign < 0) + 0;
7 decision = bitxor(signbit, xorBit);
8
9 EBCOToutput = appendContextData(EBCOToutput, [contextLabel, decision

]);

32



5.1 EBCOT

5.1.6 Magnitude Refinement Pass
The magnitude refinement pass executes the code in Listing 5.8. This replaces ”<Insert code>”
within the scan pattern. If the current coefficient’s significance state is 1, it is encoded in the
magnitude refinement pass.

Listing 5.8: The <insert code> content of the magnitude refinement pass.
magnitudePass.m:

1 if needMR(row,col) == 1
2 [EBCOToutput, needFirstMR] = magnitudeCoding(EBCOToutput,

bitplane, significantStatesPadded, needFirstMR, row, col);
3 end

5.1.7 Magnitude Refinement Coding
Listing 5.9 shows the coding for magnitude refinement. The implementation is straightforward.
The context label is generated from an implementation of Table 3.2, and the decision is the
coefficient bit. The logical value indicating if this is the first time this coefficient bit is magnitude
refinement coded, needFirstMR, is updated to 0.

Listing 5.9: The magnitude refinement coding function.
magnitudeCoding.m:

1 coefficient = bitplane(row,col);
2 slidingWindow = significantStatesPadded((row):(row+2),(col):(col+2));
3 firstMR = needFirstMR(row,col);
4
5 contextLabel = contextLabelForMagnitude(firstMR, slidingWindow);
6 decision = coefficient;
7 EBCOToutput = appendData(EBCOToutput, [contextLabel, decision]);
8
9 needFirstMR(row,col) = 0;

5.1.8 Cleanup Pass
The cleanup pass executes the code in Listing 5.10 within the <insert code> in the scan pattern.
Note that the innermost for-loop in Listing 5.4) is replaced by the for-loop in Listing 5.10, so as
not to repeat the same.

The cleanup pass encodes remaining coefficient bits. This is achieved by marking coefficient
bits that have been encoded. A shortcut past checking remaining after the magnitude refinement
pass is done by checking the significance states. Only significance states that are 0 are encoded
by the cleanup pass. This reduces the task to finding which coefficient bits were encoded in the
significance propagation pass. An array for marking the coefficient bits is initialized to 0. A
position is updated to 1 if the significance propagation pass does not encode it.

The cleanup pass first determines whether to use cleanupCodingNormal or cleanupCodingRun-
Length. This requires verifying all four coefficient bits in a column, which means the innermost
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for-loop must complete its iteration. All four coefficient bits must remain to be encoded by
the cleanup pass, i.e. encoded in neither the significance propagation pass nor the magnitude
refinement pass. All four coefficient bits must currently have a context label that is 0, i.e. all
neighbours’ significance states are 0.

If the conditions are met, the run-length cleanup coding is executed. Otherwise, the normal
cleanup coding is executed, where the four coefficient bits are again iterated through the four
coefficient bits.

Listing 5.10: The first <insert code> content of the cleanup pass. The inner for-loop of Listing 5.4 is
not used.

cleanupPass.m:

1 normalMode = false;
2
3 %%% Determine run-length coding or normal coding for this column.
4 for row = baserow:(baserow+3)
5 if (needCleanup(row,col) ∼= 1)
6 normalMode = true;
7 break;
8 end
9

10 slidingWindow = significantStatesPadded((row):(row+2), (col):(col
+2));

11 contextLabel = contextLabelForSignificance(subband, slidingWindow
);

12
13 if (contextLabel ∼= 0)
14 normalMode = true;
15 break
16 end
17 end
18
19 if (normalMode == false) %%% Use Run-length Coding.
20 [EBCOToutput, significantStatesPadded] = cleanupCodingRunLength(

EBCOToutput, bitplane, significantStatesPadded, subband,
codeblockSignsPadded, baserow, col);

21 else %%% Use Normal Cleanup Coding.
22 for row = baserow:(baserow+3)
23 if (needCleanup(row,col) == 1)
24 [EBCOToutput, significantStatesPadded] =

cleanupCodingNormal(EBCOToutput, bitplane,
significantStatesPadded, subband, codeblockSignsPadded
, row, col);

25 end
26 end
27 end

The second part of the scan pattern only executes normal cleanup coding. This is the part from
line 8 to 15 in Listing 5.4. The reason is because there are less than four rows remaining, so
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there is no run-length. The cleanup pass is therefore different in the two <insert code> parts.
The second part is seen in Listing 5.11.

Listing 5.11: The second <insert code> content of the cleanup pass. (The for-loop is the same as
Listing 5.4.)

cleanupPass.m:

1 %%% Normal Cleanup Coding.
2 [EBCOToutput, significantStatesPadded] = cleanupCodingNormal(

EBCOToutput, bitplane, significantStatesPadded, subband,
codeblockSignsPadded, row, col);

3 end

5.1.9 Normal Cleanup Coding
Listing 5.12 shows the normal cleanup coding. This is rather straightforward. The context label
is generated as per Table 3.1 and the decision is gathered from the current coefficient bit. This
is appended to the EBCOToutput. The significance state is updated if the coefficient bit is 1, and
sign coding is triggered.

Listing 5.12: The normal cleanup coding function.
cleanupCodingNormal.m:

1 coefficient = bitplane(row,col);
2 slidingWindow = significantStatesPadded((row):(row+2),(col):(col+2));
3
4 contextLabel = contextLabelForSignificance(subband, slidingWindow);
5 decision = coefficient;
6 EBCOToutput = appendData(EBCOToutput, [contextLabel, decision]);
7
8 if coefficient == 1
9 significantStatesPadded(row+1,col+1) = 1;

10
11 % Immediate next encoding is sign bit.
12 EBCOToutput = signCoding(EBCOToutput, slidingWindow,

codeblockSignsPadded, row, col);
13 end

5.1.10 Run-length Cleanup Coding
The run-length coding is shown in Listing 5.13. At first the for-loop checks if the four continu-
ous coefficient bits are all 0, or if there is a 1 present.

With all-zeroes, the short run-length solution is produced. The short solution is where the
context label holds the run-length value, here chosen to 17, and the decision is 0. This is
appended to EBCOToutput.

With any coefficient bit 1, the long run-length solution is produced. The context label is 17 and
the decision is 1. Th uniform context label then follows for two entries. It is here chosen to be
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18. The two entries have context label 18, while the decision is two bits representing the row
where the coefficient bit equal 1 was found. These are gathered from the variable decisionBase.

Still considering the coefficient bit 1 case, the sign coding follows, as usual for finding a coef-
ficient bit 1. Finally, the normal cleanup coding encodes any coefficient bits remaining, of the
four continuous in a column.

Listing 5.13: The run-length coding function.
cleanupCodingRunLength.m:

1 for columnIndex = 0:3
2 row = baseRow + columnIndex;
3 coefficientBit = bitplane(row, col);
4 if (coefficientBit == 1)
5 break;
6 end
7 end
8
9 if (coefficientBit == 0)

10 contextLabel = 17;
11 decision = 0;
12 EBCOToutput = appendData(EBCOToutput, [contextLabel, decision]);
13 else
14 contextLabel = 17;
15 decision = 1;
16 EBCOToutput = appendData(EBCOToutput, [contextLabel, decision]);
17
18 contextLabel = 18;
19 decisionBase = columnIndex - 1; % Result is one of {0, 1, 2, 3}.
20
21 decision = bitget(decisionBase, 2);
22 EBCOToutput = appendData(EBCOToutput, [contextLabel, decision]);
23
24 decision = bitget(decisionBase, 1);
25 EBCOToutput = appendData(EBCOToutput, [contextLabel, decision]);
26
27
28 slidingWindow = significantStatesPadded((row):(row+2), (col):(col

+2));
29 EBCOToutput = signCoding(EBCOToutput, slidingWindow,

codeblockSignsPadded, row, col);
30
31
32 significantStatesPadded(row+1, col+1) = 1;
33
34 for i = (row+1):(baserow+3) % Normal Mode if any remain.
35 [EBCOToutput, significantStatesPadded] = cleanupCodingNormal(

EBCOToutput, bitplane, significantStatesPadded, subband,
codeblockSignsPadded, i, col);

36 end
37 end
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5.2 MQ Coder
The implementation follows the detailed flowcharts in the JPEG2000 standard [1], and is there-
fore not interesting to comment in details here. Only a brief selection will be displayed. See
Appendix A for the full code. The function declarations are listed in Listing 5.14. In the imple-
mentation they actually have their own files.

Listing 5.14: The declarations for functions in T1 MQ.

1 % Executes the MQ coder on one list of EBCOT output.
2 function MQoutput = T1_MQ(EBCOToutput)
3
4 % Appends byte to MQ output.
5 function [MQoutput, BP, C, CT] = byteOut(MQoutput, BP, C)
6
7 % Executes LPS branch.
8 function [MQoutput, indexCX, A, BP, C, CT, mpsCX] = codeLPS(MQoutput,

indexCX, A, BP, C, CT, mpsCX)
9

10 % Executes MPS branch.
11 function [MQoutput, indexCX, A, BP, C, CT] = codeMPS(MQoutput,

indexCX, A, BP, C, CT)
12
13 % Executes MPS or LPS branch based on decision.
14 function [MQoutput, indexCX, mpsCX, A, BP, C, CT] = decideEncode(

MQoutput, indexCX, mpsCX, descision, A, BP, C, CT)
15
16 % Appends final remaining bytes to MQ output.
17 function [MQoutput, BP, C, CT] = flush(MQoutput, A, BP, C, CT)
18
19 % Provides lookup table for Qe and next-state values.
20 function [Qe, NMPS, NLPS, switchValue] = probabilityEstimation(

indexCX )
21
22 % Shifts the A and C registers after each decision branch.
23 function [MQoutput, A, BP, C, CT] = renorme(MQoutput, A, BP, C, CT)
24
25 % Sets ’x’ bits to 1 before flushing.
26 function C = setBits(A, C)

Similar to the EBCOT implementation, the MQ stores its output in a MQoutput variable. As
was mentioned earlier, this is most likely not ideal for the MQ. The result should rather be
stored in a common memory location.

The main loop of the MQ executes as shown in Listing 5.15. Two lists, indexLookup and
mpsLookup, represent the context states for index and symbol. The current context label from
the EBCOT decides which state is being modified. The modification involves the next state,
NMPS or NLPS, and the encoding variable Qe. Due to MATLAB’s 1-indexed lists, an offset
of 1 is added to each context label before being used to access the lists. The decideEncode(..)
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function is the merged Encode, Code0 and Code1 functions defined in the JPEG2000 standard.
It is shown in Listing 5.16.

Listing 5.15: The main loop of the MQ function.
T1 MQ.m:

1 for i = 1:size(EBCOToutput,1)
2 contextLabel = EBCOToutput(i,1);
3 decision = EBCOToutput(i,2);
4
5 indexCX = indexLookup(contextLabel + offset);
6 mpsCX = mpsLookup(contextLabel + offset);
7
8 [MQoutput, indexCX, mpsCX, A, BP, C, CT] = decideEncode(MQoutput,

indexCX, mpsCX, decision, A, BP, C, CT);
9

10 indexLookup(contextLabel + offset) = indexCX;
11 mpsLookup(contextLabel + offset) = mpsCX;
12 end

Listing 5.16: The three merged functions for reading decision.
decideEncode.m:

1 if descision == mpsCX
2 [MQoutput, indexCX, A, BP, C, CT] = codeMPS(MQoutput, indexCX, A,

BP, C, CT);
3 else
4 [MQoutput, indexCX, A, BP, C, CT, mpsCX] = codeLPS(MQoutput,

indexCX, A, BP, C, CT, mpsCX);
5 end

The function byteOut for acquiring the ’b’ bits of C-reg has a conditional increment. This
occurs when the carry bit ’c’ must be added to the previous byte. MATLAB treats the value
in an undesired way for this implementation. Instead of ignoring the higher-than-byte bits, any
such causes the value to be rounded up to max, i.e. 0xFF. This was fixed by first removing the
higher bits, then copying the ’b’ value. It is, however, worth noting for future work.

5.3 Verification
Test files exists for the EBCOT, MQ and Partitioner implementations, included in Appendix A.
They basically execute the functions with appropriate input parameters. The Partitioner finds
the values for sizes for image, tile, sub-bands, precincts and codeblocks. The codeblocks are
accessed in the proper order for packet formation. The EBCOT provides the inputs for sub-band
type, codeblock and bits per pixel. These should be provided by the Partitioner at a later stage.
The MQ test file only provides the EBCOT output as information. The two latter test files were
mostly used to build the parts of the sub-modules. The functions were extracted into separate
files throughout implementation.
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6.1 Verification

The work presented in this thesis mainly consists of translating and explaining parts from the
JPEG2000 standard. The goal is to achieve progress and to guide future works. The intention
is to implement the Encoder in hardware, but the progress has not yet surpassed a reference
software model implementation. The model must still be verified along every step of the way.

Throughout the implementation of the JPEG2000 standard’s Encoder module the design has
been verified. The test files are included in Appendix A. In every stage of the implementation,
all parts are of course cross-checked with the analysis of which they are based upon. They are
also compared to what the other parts demand from them. The concept could however have
been misinterpreted, which then affects everything presented in this thesis.

The intended verification method was to compare with the existing openJPEG implementation
[4]. It proved non-straightforward to install and understand, thus it was not prioritized. The
main obstacle was the code readability. Their implementation uses structs within structs for
convenience, and is built for speed. Many abbreviations exist without clear instructions for
what they abbreviate. Thus, understanding it was too time consuming. The MATLAB imple-
mentation has also not reached very far, as the focus has been on research. However, it should
definitely be consulted for verification both in this and future work. A step by step debug tool is
very valuable. Once the MATLAB models for all parts are created, the complete compression
chain can be tested. Tests include using any jp2 image viewing applications and converting with
openJPEG. Regardless, the current tests are used without openJPEG and cover several topics.

The current implementation has a shorter progress than desired. The goal of this thesis was
to produce at least one finished VHDL sub-module. This would have reduced the complexity
for the future works. As it is not finished, the future works still has to delve into all the sub-
modules herein presented. However, this thesis should be a helpful map for the continued effort.
The content should aid both in the continued MATLAB implementation and the entire VHDL
implementation of the Encoder module. The presented material would have been of good value
at the beginning of this thesis. As part of a standard, the information is less likely to become
outdated.
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The Encoder module needs more thorough validation of correct behaviour, especially for corner
cases. As this is an early development stage, the focus has been more on demonstrating the
concept.

6.1.1 Partitioner

The Partitioner has been tested by reversing the read operation. Writing 1s and 0s to the coor-
dinates proves they are accessed in proper orders for the packet formation. There is not much
more to do for this currently small sub-module.

6.1.2 EBCOT

The EBCOT is verified by pen and paper walkthrough of every stage. It is then compared with
a step by step traversal in debugging mode. The most difficult to understand, and thus verify,
was the run-length cleanup coding. The section is explained with long sentences with possible
misunderstandings.

The coding passes’ order of appearance, or role, is compared to results from an example code-
block in the JPEG2000 standard. It demonstrates when and which of the different coding passes
execute on specific bits of the codeblock. It does not show the correct context label sequence.
The example has been elaborated by manually generating the output sequence, based on the
appropriate context label tables. Because the pass roles are demonstrated and the tables well
defined, the output should be fairly accurate. Human error may be a factor, and not all cases
are proven in the short example codeblock. Segments of other codeblocks have also been cross-
checked manually.

6.1.3 MQ

The MQ has been executed in debug mode and step by step traversed to see that it executes
properly. It appears to do so and produces some results, but is by no means verified. The
procedures/functions of the MQ are however well described. The merging of three functions
into one decideEncode is verified by comparing results before and after.

6.2 Unfinished Items

Parts of the Encoder module remain to be implemented as MATLAB reference model. The
entire VHDL implementation of the Encoder module also remain. This thesis should serve
as guidance in both implementations, and thus save time for future works. The Packetizer is
however not thoroughly explained here.

The desire of Orbit to build from scratch is part of the reason the openJPEG [4] implementation
is not used instead. The previous work also use a MATLAB implementation, which becomes a
full model when finished.
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6.2.1 Unimplemented Items

At the current implementation stage, certain items are not yet included. Layers are not investi-
gated. The progression order is yet to be investigated and determined. The Data Orderer is not
implemented, but contain useful explanations and analysis. The Packetizer and its headers are
not implemented nor investigated.

Sizes for various parts are undecided, e.g. CB and PP. These should be considered alongside
camera sensor, desired image parameters and other items discovered at a future stage.

6.2.2 Partially Implemented Items

Some items are partially included at the current implementation stage. The order to encode
codeblocks is built in decreasing resolution order, while using raster order within packets. The
codeblocks are not sent to the EBCOT, because the output location was not yet determined.
They can be easily sent by adding a function call at the indicated lines in the test file.

The current implementation does not use the proper output location in the MQ. The majority of
the MQ is however implemented, although not verified due to the output. A solution is however
proposed for it, thus the approach is clear. It should be prioritized, as it finishes one more
sub-module. The output first demands the creation of packet headers. The MQ must be adapted
minorly for the BPST input. The preceding byte, at BPST’s position, should also be included for
convenient comparison, instead of forcing MATLAB to read at the address location. The output
will then be properly appended by providing the packet header end address as input BPST.

The finish and reset signal from the EBCOT to the MQ are currently automatically determined
by the list lengths of context label and decision pairs. The complete list from one codeblock
can easily be split in sections after a complete EBCOT execution. Each sectioned context label
and decision list can then be sent to the MQ to append to a packet, with the MQ automatically
flushing and resetting between each list. To perform the sectioning procedure the context label
values can simply be read to determine which pass they originate from. The values are unique
for the pass types, and can therefore be processed without knowledge of anything else. The
significance propagation coding and normal cleanup coding are easier identified if knowing the
codeblock size, however, as counting the amount of context labels allows noticing the boundary
between each bitplane.

The packet boundaries must be decided. The Data Orderer should switch which packet is being
appended to by MQ encoding of the current bitplane. Information about the end of each coding
pass is necessary, for instance signalled from the EBCOT.

6.3 Thoughts On JPEG2000 Standard
The JPEG2000 standard contains details regarding many aspects. The explanations are not
easily interpreted for inexperienced participants. This is due to being a complex topic, but also
because of the many sidetracks to explain extensions and special cases. It is a heavy read that
can be misinterpreted. It appears to mainly be intended for decoder implementations.
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A considerable amount of time has been spent to understand the content. The explanations
presented in this thesis should assist future works.

6.4 Improvements
The following subsections discuss alternatives and improvements to the encoding operations.
This included both changes to the implementation and general considerations. As the goal is
to create a hardware solution, relevant optimizations should be considered. System parts and
sub-modules should be placed in parallel if possible, to speed up execution time at the cost of
area. A more streamlined pipeline will also contribute to this. It is however still early in the
implementation development. A working solution should be constructed before initiating dras-
tic performance increasing solutions. Too many things going on at a time will make progress
slower, due to higher complexity.

The implementation is now intended for an FPGA. This raises the question of whether a hybrid
software/hardware solution has been investigated. It may be more optimal to perform certain
things in one type environment.

6.4.1 EBCOT
To better present the content of the individual coding passes for packet generation, the EBCOT
could send an output signal after completing each coding pass. The Data Orderer should then
count the desired amount for a packet, then switch to the next packet. In this case the Data
Orderer must also trigger the MQ to perform a byte flush and reset its progress. In one circum-
stance the MQ can be modified to receive such reset signals. This will however be achievable
by using the list lengths of the context label and decision pairs. The input list to the MQ
should therefore be sectioned into packet lengths, instead of entire codeblock lengths, of en-
coded codeblock data. The pairs should therefore not be sent immediately upon discovery, but
be temporarily stored in lists of various lengths.

The method for context label and decision pairs described above is presumed preferred, but this
is for a software implementation. The end goal is a hardware implementation. The described
method is a push method, because results are pushed to the next stage. With a pull method, only
the requested material would be produced. Thus, the Encoder module would not spend time
producing unused results, for instance if not all bitplanes are to be encoded. Implementing a pull
method could therefore be beneficial for when using different compression rates. Additionally,
the intermediate results would presumably be smaller, meaning less temporary internal memory.
It may also aid to pipeline the system.

6.4.2 EBCOT In Parallel
Instances of the EBCOT sub-module could potentially execute in parallel in a hardware imple-
mentation. The codeblocks are read, then independently encoded. New data is thus generated
without affecting the old data. Although the data write is not fully determined, it cannot be
allowed to overwrite codeblocks before they are encoded. Thus, several EBCOT sub-modules
can execute independently in parallel. The system must however be able to handle the data
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write from several of these. The MQ may be a bottleneck, limiting the write for the parallel
EBCOTs. The bitstreams must be appended to packets in appropriate orders, which could also
be a limiting factor for the EBCOTs.

6.4.3 Coding Pass Optimizations
Internally, the EBCOT runs sequentially. The significance states of which the coding passes
depend on are updated in a specific order. They order it is updated in is the main purpose of the
EBCOT. The straightforward realization of the material presented in Section 3 uses three scan
traversals for one bitplane. This is used in the implementation in Chapter 5. The three scans
occur in a deep level of for-loops, iterating through tiles, decomposition levels and codeblocks,
among others. Time can therefore be saved by merging the three scans into one. If merging is
possible, that is. The results must of course still be in the same order. The magnitude refinement
pass and the cleanup pass outputs must be temporarily stored in buffers until the significance
propagation pass finishes. The significance propagation pass should be mostly unmodified, as
it already executes first and is independent of the other passes.

There must be a one-way dependency for the updated significance states. The initial states and
the updates from the significance propagation pass are used by all coding passes. The cleanup
pass’s updates are only used by the cleanup pass. The main issue with merging the three scans
is that significance states no longer update at correct points in time. The 5 positions in the
lower and right parts of the sliding window do not have an updated value from the significance
propagation pass to be used in the other two passes. They would therefore have to either refresh
their results, or delay their context label creation.

Refreshing means adapting the previous context label result to updates in its sliding window.
Updates in the sliding window will affect sumH, sumV or sumD, but must not necessarily give
a new context label. The value is however guaranteed to not decrease, as seen in Table 3.2 and
Table 3.1. The value can therefore be incremented by an appropriate amount, e.g. any update
near a context label of 14 gives +1. Alternatively the appropriate table is reverse looked up
from the context label value, the updated neighbour is added to the directional sum, and the
new context label is produced from the table.

The delay of the context label creation would last until the final neighbour is scanned and po-
tentially updated. This is effectively a pipelined solution of the three scans, and not a merged
solution. They still execute faster than the three scan solution. The pipeline solution will pro-
duce the context label as if the three scans ran separately, but the next pass runs as soon as the
neighbours are stable. A result can be categorized as stable when it no longer changes upon any
updates in its sliding window. Before this it is unstable.

Results can become stable before all neighbours are updated. It is determined by the value of
the context label. For instance, with context label of 3 and only D3 of the sliding window is
unscanned, the context label is not modified for any update to D3. Neither will the result update
if the context labelis at the maximum values of 8, 15 or 16, where further updates do nothing.
The results therefore become stable either when the last neighbour is updated, or when the result
is at maximum value.

The pipeline solution will only be computed once. The refresh solution may be computed up to
six times, if all neighbours below and to the right are updated. The pipeline must have separate
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traversals, while the refresh solution must have conditions to refresh its results. Only D0, H0

and V0 of the sliding window are guaranteed to not update. The refresh solution may actually
just be a disguised pipeline solution. In effect, the refresh solution will always have to update
the result at the current D0 position. To refresh, the sliding window for the D0 position is used.
This is the pipeline with a slight delay.

The magnitude refinement pass is stable in two of three cases, as seen in Table 3.2. It is only
in the case where both it is the first refinement and the sum of neighbours is 0, that it is unsta-
ble. If any neighbours then updates, it is incremented to 15 and immediately becomes stable.
The magnitude refinement pass can therefore be determined simultaneously to the significance
propagation pass, and refreshed if any neighbour updates.

Results become stable once the scan pattern has progressed sufficiently far away from them. The
cost considerations for the merged solution requires the approximate maximum of the code-
block’s width plus the column’s height unstable context label results. The column height is
always 4, and the codeblock width is variable. This amount of unstable results do not require
too much temporary storage. The merged solution has potential to be three times as fast, but
overhead control signals will most likely not give the ideal speedup.

Perhaps the merged solution makes it easier to spot four in a row for the run-lengths, as opposed
to performing the double column scan currently implemented in matlab. The context label list
is looked at in hindsight, and four cleanup pass results are replaced by the run-length context
label. Hindsight would make the solution partially not merged, but the solution is not a goal in
itself. Only by improving the overall execution should it be considered.

6.4.4 MQ
The pointer start variable BPST is not properly used in this implementation. It should point
to the base address in memory of a byte preceding the current bitstream. This is assumed to
contain the final byte result from the packet header or the previous bitstream encoding. This
implementation has only been tested with a single codeblock encoding at a time. Thus, there
has only ever been one bitstream result, and no packets are created yet. The BPST value is
therefore not correctly implemented. This in turn affects the BP pointer and the B byte result.
The if condition in the initialization is also affected, as it now cannot detect if the previous byte
was 0xFF. The behaviour and result for the output must therefore be produced before using the
MQ implementation. The bitstream is now sent as a function output, instead of being written to
a memory location.

A-reg and C-reg can be simplified in the future FPGA implementation. They are currently
assigned 32 bits registers. In the hardware implementation they can be assigned exactly the
bits they use: respectively 16 bits and 28 bits. The reason is because the 16 MSBs of A-reg are
always 0, and likewise for the 4 MSBs of C-reg. Addition operations can thus also be simplified,
as the reduced bits only need to propagate a carry bit with half-adders.

6.4.5 Stream Sorting
Old data may be overwritten in a practical implementation to utilize memory. The packet gen-
eration decides the data write location. If packets overwrite old data on a codeblock basis, the
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resulting packets will be segmented across different codeblock locations due to being appended
piece by piece from different codeblocks. The codeblocks only become old data after being
encoded. Accessing the packets afterwards may give complex address patterns. With enough
resources, this would not be a problem. In an ideal system with infinite memory the packets are
built as separate streams. These are collected in a sorted, continuous datastream only after the
packets are complete.

The sorting is based on packets. The packet headers requires knowledge of sizes of the im-
age pieces. These are already known to the Partitioner. The packet headers can therefore be
constructed by the Partitioner, and forwarded to the Data Orderer only when they are complete
packets. The packets are then only sorted in the Data Orderer. This allows the BPST and pack-
ets to always be sent forward in the compression chain, as opposed to the Data Orderer sending
backwards. Sending forward should make future pipelining optimizations easier to implement.
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Conclusion

The EBCOT sub-module is implemented in MATLAB and tested thoroughly. It is however not
compared towards already existing solutions, thus it is not completely verified. The context
labels and decisions produced are currently generated in a continuous list for one entire code-
block. Because of how the packets are created, the continuous list should be split into sections
for each packet. The splitting should be sufficiently easy to do after the EBCOT, meaning the
sub-module does not need modifications, due to the unique values for context labels. Alterna-
tively, the EBCOT can be modified to produce tokens at each potential section.

The MATLAB implementation of the MQ sub-module is almost complete. The packet headers
are missing, which is where the output will be appended to. The MQ bitstream output is affected
by the final byte of the packet header. The append operation can potentially be delayed until the
Data Orderer sub-module, which must then perform the bit-stuffing operation now performed
in the MQ. It will however be difficult to split the bitstream into different packets, thus the Data
Orderer should not perform this. Instead, the MQ implementation should be modified to take
the output address BPST of the packet header as input.

A Partitioner sub-module is implemented in MATLAB as a simple way of accessing each code-
block, with appropriate sizes for each sub-band and precinct.

The Encoder module is not fully implemented in MATLAB. The currently connected sub-
modules are the EBCOT and MQ. The Partitioner could be modified slightly to be included
in the pipeline. The output behaviour is not yet determined, which is part of the unimplemented
Data Orderer. After this stage the produced result will be a sorted datastream, intended for final-
izing in the unimplemented Packetizer. The implemented sub-modules also have accompanying
test files.

Due to the current state of the MATLAB Encoder module, the VHDL implementation for the
FPGA is not started.

A considerable amount of time has been spent to understand the content. The explanations
presented in this thesis should assist future works.
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Chapter 8
Future Work

The next item to be considered is the packet formation. Producing packets will enable fulfilling
the MQ and the Partitioner. The packets order to be sorted must be investigated, by looking at
layers and progression orders. After this there should be sufficient knowledge to implement the
Data Orderer. Headers and markers must be investigated next for a Packetizer implementation.
Several values must be decided, such as codeblock sizes.

The openJPEG [4] implementation is recommended for acquiring debugging information and
design inspiration. It can be used to verify the parts, the complete Encoder and the entire
JPEG2000 implementation.

With the model in place, the VHDL implementation should be built. The JPEG2000 system
will then be one long chain, which must surely need validation of proper behaviour. The com-
pression system will still require the Rate Control module and an interface.
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Appendix A
Source Files

The files for the MATLAB implementation can be found at <https://github.com/
torevb/JPEG2000-Encoder>.
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