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Abstract

NTNUCyborg is developing a cybernetic organism, combining neuroscience and robotics,
as a research platform in these fields. This thesis adds incremental improvements to the
robotics part of the project. Firstly, by creating a new control system using behavior trees.
The aim of this system is to be able to represent more life-like behavior than the current
finite state machine control system. Secondly, by creating a software application for visu-
alizing the running behavior tree. This application will make the control system easier to
debug. Thirdly, by creating an object detection and classification system that fetches video
from the Cyborg’s stereoscopic camera and analyzes this using a neural network. The au-
thor has also assisted Experts in Teamwork (EiT) groups that are involved with the Cyborg
project.

To implement the described functionality, the Robot Operating System (ROS) is used, as
well as other software from the ROS project, in addition to software fromMobileRobots.
The library behavior3 is used for implementing behavior trees. The library OpenCV and
the YOLO detection system is used for object detection and classification.

The final software architecture for each contribution is presented, as well as a discussion on
the strengths and weaknesses of the chosen solution compared to relevant alternatives.
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Forord

NTNUCyborg utvikler en kybernetisk organisme, en kombinasjon av nevrovitenskap og
robotikk, som en forskningsplattform innen disse feltene. Denne oppgaven bidrar med
inkrementelle forbedringer til robotikkdelen av prosjektet. For det første, ved å lage et nytt
kontrollsystem basert på behavior trees. Målet med systemet er at det skal være i stand til å
representere mer realistisk oppførsel enn dagens system som baserer seg på tilstandsmask-
iner. For det andre, ved å lage en programvareapplikasjon for å visualisere behavior treet
mens det kjører. Denne applikasjonen vil gjøre kontrollsystemet lettere å feilsøke, noe som
vil gjøre det lettere å implementere avansert oppførsel i det nye systemet. For det tredje,
ved å lage et objektdetekterings- og klassifiseringssystem som henter video fra robotens
stereokamera, og analyserer disse ved hjelp av et nevralt nettverk.

For å implementere denne funksjonaliteten benyttes Robot Operating System (ROS), i til-
legg til annen programvare fra ROS-prosjektet i tillegg til programvare fra MobileRobots.
Biblioteket behavior3 benyttes for å implementere behavior trees. BiblioteketOpenCV og
detekteringssystemet YOLO til objektdetektering og klassifisering.

Den endelige programvarearkitekturen for hvert bidrag blir presentert, sammenmed drøft-
ing av fordelene og ulempene med løsningene som ble valgt sammenliknet med relevante
alternativ.
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1 Introduction

NTNU Cyborg is a project to develop a cybernetic organism. Themain goal of the project is
to enable communication between live nerve tissue and a robot. The robot acts as a research
platform for the study of neural signals, robotics and, cybernetic machines. It is the stated
intention of the project to bring NTNU to the forefront of international research in these
research areas.

This thesis contributes to this goal by implementing the following functionalities in the
Cyborg:

• A robust and extensible control system, based on behavior trees

• An application for visualizing the control system during execution

• An object detection and classification system using stereoscopic imagery and neural
networks

In the following, the two main research areas for which the Cyborg serves as a platform are
introduced, and the existing functionalities are summarized.

1.0.1 Neuroscience

The Cyborg has a biological “brain” which consists of a collection of nerve cells grown over
a Micro-Electrode Array (MEA). These spontaneously organize into neural networks, and
communicate with each other using electronic impulses. The impulses are captured by
the MEA, which allows for streaming of nerve activity data to the Cyborg. The long-term
intent of the neuroscientific part of the Cyborg project is to analyze the electrical input and
stimulate the network, in order to form a closed-loop system which allows the network to
be trained. Further information on this research can be found in [1].
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1.0.2 Robotics

The Cyborg has an autonomous robotic body, consisting of a commercial research robot
as well as additions designed at NTNU [2]. The intent of the robotics part of the Cyborg
project is to create a robot able to roam the hallways of the university, and interact with
the people it meets. The robot is intended to receive data from theMEA sensors described
above, and display a representation of the measured neural activity.

1.1 Previous work on the Cyborg project

Previously, student groups have added a rudimentary body for the Cyborg, upon which
the existing LED box is mounted. This acts as a mounting frame for existing equipment,
including the power supply, Jetson computer, Raspberry Pi computer and so on. There
is a stereo camera mounted on the Cyborg, although it is currently not in use. Work has
been done to pass information from the Micro-Electrode Array to the existing LED box,
but this is not in use at the outset of this thesis.

1.2 Contributions of the author

This thesis aims to enhance the Cyborg’s control system, based on the Robot Operating
System (ROS), by implementing an alternative to traditional statemachines called a behavior
tree. This involves integrating a behavior tree implementation, ideally one that already
exists and is well tested, with the ROS architecture. Furthermore, it involves developing
computer software for visualization of the behavior tree so that the state of the behavior
tree can be inspected during Cyborg operation. The mounting frame that is already on
the Cyborg is improved by installing industry-standard 10 inch rack-mounting rails to the
frame. This allows for secure, modular integration of hardware within the Cyborg body.
Finally, imagery from the stereo camera is analyzed to detect objects in the Cyborg’s view
field, such as humans and other everyday objects. These are classified by a neural network,
and the distance to each object is calculated so their location relative to the Cyborg can be
determined.

The goal of these tasks is to take the Cyborg a few steps closer to a state where it is able to
autonomously roam the hallways of the university and act as a mascot for the university
and the Cyborg project.



1.2. Contributions of the author 3

Several existing software applications are used to achieve these goals, and will be described
in more detail in the following chapter. The software used by the author is primarily the
Robot Operating System (ROS). The ros software is run on the Cyborg’s Pioneer LX
base, produced byMobileRobots. ROS is a middleware system, composed by a number of
modules, for the sake of this thesis primarily those delivered byMobileRobots. The ROS
modules, or nodes, developed by the Cyborg project and by the author interface with these
existing modules. A library called behavior3, for implementing behavior trees, has been
used to add a control system to our ROS environment. Visualization of our behavior tree
is developed as a module, or plugin, which extends the rqt software, a graphical interface
for ROS. Object detection is implemented using theOpenCV library.
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2 Background

The Cyborg is composed of a number of major and minor hardware and software compo-
nents. In the following sections, these will be described in order to provide the necessary
background for the subsequent steps undertaken in this thesis to implement the previously
described functionalities.

2.1 Hardware

The Cyborg itself is a MobileRobots Pioneer LX base, with additions made by the Cyborg
project. In addition to a custom power supply, the Cyborg has a Stereolabs ZED stereo
camera, as well as a Nvidia Jetson TX2 embedded computer for image processing. Here,
some detail will be given on each hardware component that is relevant to this thesis.

2.1.1 Pioneer LX

(a)MobileRobots Pioneer LX. (b)NTNUCyborg.

Figure 2.1: Comparison of the original Pioneer LX and the Cyborg.
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TheNTNUCyborg uses the Pioneer LX robot, fromMobileRobots (fig. 2.1a) [3]. Omron
Adept MobileRobots, previously MobileRobots, is a manufacturer of intelligent mobile
robots for commercial and industrial use.

The Pioneer LX comes equippedwith the required sensors for safe, autonomous operation.
The robot has a SICK S300 270° laser rangefinder for navigation and object detection, in
addition to a SICK TiM 510 laser for frontal sensing near floor level. Additionally, the
robot has rear facing ultrasonic sonar sensors and front bumpers for collision detection.
These sensors allow for Simultaneous Mapping and Localization (SLAM), which enables
the robot to navigate without pre-mapping the environment. It is designed for continuous
operation for 13 hours before recharging, which can be performed autonomously.

2.1.2 Stereolabs ZED camera

Figure 2.2: Stereolabs ZED camera.

The Stereolabs ZED (fig. 2.2) is a dual 4 megapixel camera. It provides 1920×1080 video at
30 Frames per Second (FPS) frames per second, or 800×400 at 100 FPS, with a 110° angle
of view [4].

The camera is designed to emulate the stereoscopic operation of human eyes. By recording
an image from two slightly offset points, depth and motion in space can be inferred by
comparing the displacement of pixels in the left and right images. This allows for the
camera to provide a depth map of the recorded scene, where pixels are defined by an (x, y,
z)-tuple rather than the normal (x, y) coordinate pair. The information is exported as a
black andwhite depthmap. By identifying the pixels of an object, the distance to the object
can be determined by calculating the mean intensity of these pixels in the depth map [4].
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2.1.3 Nvidia Jetson TX2

Figure 2.3: Nvidia Jetson TX2 development kit,
image courtesy of Nvidia.

The Nvidia Jetson TX2, shown in fig. 2.3,
is an embedded computer fromNvidia, de-
signed for real-time data processing for ar-
tificial intelligence. The stated purpose of
the device is to move data processing from
a central location to the edge, meaning on
the robot or drone itself. The TX2 has a
small form factor of 17 by 17 centimeters,
and a power consumption of 7.5 watts un-
der normal load. Despite the low footprint
in size and power consumption, the on-
board GPU delivers in excess of 1 TFLOPS
(1012 Floating Point Operations per Sec-
ond) of computing power [5].

2.2 Software

The Cyborg’s onboard computer comes pre-installed with Ubuntu Linux and ROS. Mo-
bileRobots provide a number of software packages for efficient use of the robot. Among
these are the Advanced Robot Interface for Applications (ARIA) library, the Advanced
Robot Navigation and Localization (ARNL) library and the software applications Mo-
bileSim andMobileEyes, which enable implementation of advanced functionality in ROS.

2.2.1 Robot Operating System (ROS)

The Robot Operating System (ROS)1 is an open-source framework for writing robot con-
trol software. It consists of a collection of libraries and tools that simplify the task of im-
plementing complex and robust control software for different robot platforms. It is not an
operating system in the traditional sense of managing and scheduling processes but acts as
middleware, providing a communications layer for a distributed control system.

1https://www.ros.org
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The framework provides middleware for individual software modules, known as nodes, so
that modules from various sources can interact using a standard interface. These can all be
implemented separately and can communicate with each other using the ROS communica-
tions layer. This approach simplifies development, by allowing components developed by
separate individuals, teams or organizations to communicate using a standardized interface.
This promotes collaboration and code reuse, enabling different research teams to focus on
a subset of robot control rather than building a complete solution from the ground up.

The following gives a run-down of the core concepts in ROS. The components of ROS are
nodes,messages, topics and services [6].

Nodes

Nodes are processes that perform computation, and are primarily implemented in Python
or C++. Nodes are self-contained processes, and communicate with other nodes by passing
messages through the ROS middleware. ROS modules are generally constructed from a
number of nodes. This approach follows the Unix philosophy of “do one thing and do it
well”, which simplifies software development by limiting the scope of each individual node.
ROS allows for a control system to be divided into any number of nodes, which may run
on the same machine or on different machines [7].

When implementing nodes in C++, it is also possible to implement them as nodelets. A
nodelet is implemented similarly to a normal node, but is instantiated by a special node, the
nodelet manager. This can be done by creating a separate node, which loads all the required
nodelets, or it can be done using a launch file. The advantage of running multiple nodelets
in one node is that communication is done using shared memory, thereby avoiding the
overhead of TCP communication [6].

Messages

The information passed between nodes is encapsulated inmessages, whichmay be thought
of as analogous to structs in C. Messages are composed of standard data types such as
integers, floats and so on, and arrays of these. A message can also be composed of other
messages. Many standard message formats are available in ROS, and it is also possible
to define custom message types. Nodes publish messages in one of two ways, either by
broadcasting them to a topic or by answering service requests [6].
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Topics

Messages can be published to a topic, that can be subscribed to by other nodes. This
publish-subscribe model allows for sharing of data in a broadcast manner, and there may
be any number of publishers and subscribers for a topic. One example of such a node is the
feedback node, frommove_base, which publishes the current position of the robot. Any
other node that wants to know the current position can subscribe to this, and will receive
the new position whenever the robot moves [6].

Services

While the publish/subscribe model works well for many types of information, it is nec-
essarily an asynchronous form of communication. For applications where synchronous
communication is required, it is possible to use services. A service is defined by two mes-
sages, the input message and the result message. When called, the service will execute and
the result is returned to the caller. Services can be used to request information, request the
execution of a physical action, or some other task. Listing 2.1 shows one such service, in use
by the Cyborg project [6].

Actions

While service calls are useful for remote procedure calls which execute quickly, they are
blocking and should be avoided for long-running tasks, or tasks that may have to be pre-
empted [7]. For this purpose, ROS provides actions. Actions are used for procedure calls
that cause the robot to perform a long-running task, such as moving to a location or some
other real-world action. Actions are able to keep state for the lifetime of a provided goal,
and will provide feedback to each client that issues a goal to the server [6].

2.2.2 ARIA

Advanced Robot Interface for Applications (ARIA) is a C++ library for all robots from
MobileRobots. The library allows for dynamic control of the robot’s velocity, heading,
relative heading as well as other parameters. This can be achieved both using a low-level
interface and a higher-level Actions infrastructure. ARIA receives sensor data from the
robot platform, such as position estimates, sonar data and laser rangefinder data. While
written in C++, the ARIA library can be accessed from other languages, amongst others
Python [8].
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#!/usr/bin/env python

from __future__ import print_function

import rospy
from cyborg_nav.srv import DistanceToGoal, DistanceToGoalResponse
from cyborg_types import Path, Pose
from rosarnl.srv import MakePlan

NAME = 'distance_to_goal_server'

class DistanceToGoalHandler():
def __init__(self):

rospy.init_node(NAME)

srv_name = '/cyborg/nav/get_distance_to_goal'
rospy.Service(srv_name, DistanceToGoal, self.__distance_cb)

srv_name = '/rosarnl_node/make_plan'
rospy.wait_for_service(srv_name)
try:

self._plan_svc = rospy.ServiceProxy(srv_name, MakePlan)
except rospy.ServiceException as e:

rospy.logerr("Service call to %s failed: %s" % (srv_name, e))

rospy.spin()

def __distance_cb(self, data):
# Create a Pose message to validate our input data
goal = Pose.from_pose(data.goal)

# Get a path to the given goal
path = Path.from_posearray(self._plan_svc(goal).path)

# Calculate distance if a path was found, or return inf
distance = path.length if path else float('inf')

return DistanceToGoalResponse(distance=distance)

if __name__ == "__main__":
DistanceToGoalHandler()

Listing 2.1: Example of an ROS service, written by the author.



10 Chapter 2. Background

2.2.3 ARNL

Advanced Robot Navigation and Localization (ARNL) is C++ library fromMobileRobots
built on top of ARIA which provides intelligent navigation and localization. ARNL pro-
vides information about the current position of the robot, and an interface for requesting
that the robot move to a given location. The software updates the current position auto-
matically, using data from the robot’s sensors and map.

These features are provided inROS as a node, called ros-arnl, which exposes this functional-
ity in the form of topics and services. This node provides a simple interface for higher-level
software to monitor and control the position of the robot [9].

2.2.4 MobileEyes

MobileEyes is a graphical interface fromMobileRobots for monitoring robot motion and
sensor output. The program allows the user to monitor the movement of the robot on the
map, and it is possible to send commands to the robot remotely. The software also allows
for reconfiguring the robot, and it is possible to send custom commands or create custom
overlays that are shown on the map [10].

2.2.5 MobileSim

MobileSim is a simulation software package fromMobileRobots, which allows for testing
ROSmodules in simulation. The software emulates the physical robot so that other parts
of the ROS integrate without any necessary changes. This simulation includes data streams
from sensors such as the sonar and laser rangefinders, which allows for efficient testing of
control software during development [11].

2.2.6 ROS 2

Here, we will give an overview of ROS 22, and how the project has attempted to remedy
some perceived shortcomings in ROS. As outlined in [12], ROS was developed based on
the use case of the Willow Garage PR2 robot. Due to this, development was guided by the
characteristics of the PR2 robot, including

• Support for a single robot.

• Significant computational resources available.
2http://www.ros2.org/
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• No real-time requirements.

• Strong network connectivity available.

• Mainly academic applications.

Since the beginning of ROS in 2007, several of these assumptions have changed, and ROS
has been used on a far wider range of robots than for what it was originally designed [12].
Among the new use cases outlined, are

• Control of multiple robots;
Currently, there is no standard way to control more than a single robot using ROS.
ROS has a single-master architecture, and multi-robot support does not elegantly
integrate into this design.

• Limited computational resources;
ROS is not designed to run on micro controllers. Therefore, nodes must interact
with these through a device driver. ROS 2 is designed so that these controllers can
be implemented as nodes, and thereby participate directly in the control system as
first-class citizens.

• Built-in real-time support.

• Non-ideal networks;
As seen in earlier work on this project by [2], ROS does not degrade gracefully when
run on unreliable networks. ROS 2 aims to alleviate this.

• Academic and industrial applications:;
ROS 2 aims for ROS to remain the platform of choice in academic robotics, while
also becoming increasingly relevant in industrial applications.

The central feature of ROS is the publish-subscribe middleware which allows for loose
coupling of individual nodes. As ROS was begun in 2007, there was no sufficiently ma-
ture off-the-shelf technology that provided this, and this system was built essentially from
scratch. The ROS project implemented the necessary framework for node discovery, mes-
sage definition, serialization and transport. Since 2007, a number of technologies have
matured that provide this capability, and it would not have been necessary to build a cus-
tom solution today. Several advantages to using one of these off-the-shelf technologies are
listed by [12]:

• Less code to be maintained by the project developers

• Third party solutions may offer features outside the scope of what the project could
develop themselves
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• The project benefits from ongoing improvements to third party solutions

• Third party solutions may be rigorously proven, and thereby improve the perceived
reliability of ROS

2.3 Biological neural networks

As a long-term goal, the Cyborg project hopes to use biological neurons in a robot control
loop. Here, we will give some background on relevant biological concepts. Further detail
on these concepts can be found in [1].

Neurons are electrically excitable cells, which process and transmit information using electri-
cal and chemical signals. The signals travel via synapses, which are specialized connections
between neurons. The sum of neurons and their connections are referred to as a neural
network. They are the core components of the central nervous system, and along with the
ganglia form the core of the of the peripheral nervous system.

Figure 2.5: Model of the hierarchical structure
of the brain [13].

When themembrane potential of a neuron
is excited past a certain threshold, an action
potential is triggered. An action potential is
a rapid rise and fall in themembrane poten-
tial of the neuron, which causes the axon
hillock to fire an electrical signal down the
axon of the neuron. The membrane poten-
tial of the neuron is excited by the firing of
upstream neurons, and other extracellular
potential changes.

A synapse is a structure which connects two
neurons, and allows for the transmission
of an electrical or chemical signal. Synap-
tic communication generally travels along axons and synaptic terminals of the upstream
neuron to the dendrites of the downstream neuron. Synapses may either transmit electric
signals directly, in electrical synapses, or by using neurotransmitters, in chemical synapses.
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Figure 2.4: Model of a biological neuron, courtesy of BlausenMedical.

The neurons in the brain are organized in a hierarchical manner. Signals enter through the
brain stem, and travel upwards as shown in fig. 2.5. As shown, higher layers of the brain are
responsible for increasingly sophisticated levels of thought. This layering is also present in
the neocortex. Taking vision as an example, lower levels of the neocortex are responsible for
simple features such as edges and corners. Low-level patterns are combined at mid-levels
into more complex features such as curves and textures. Finally, at higher levels of the
neocortex, complex objects such as cars and houses are recognized.
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2.4 Artificial neural networks
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Figure 2.6: Model of an artificial neu-
ron.

The Cyborg is intended to move around in its sur-
roundings, and is equipped with a stereo camera in
order to orient itself. Here, an overview is given of
the techniques used in computer and robot vision,
and the research that has driven the explosion of ac-
tivity within this field in the past few years. This
section provides some background on how artificial
neural networks relate to robot vision, as well as an
overview of how they function in general.

Artificial neural networks are an approach to perform complex computational tasks as
an emergent process of a large number of simple interconnected units. This approach is
inspired by the activity of neurons in the brain. The artificial neuron is modelled by an
activation function, which outputs a value as a function of the sumof its inputs. Historically,
this has been one of several possible sigmoid functions, for example g (x) = 1

1−e−x . An
illustration of an artificial neuron is shown in fig. 2.6.

Nodes in artificial neural networks are organized into layers of units which are connected
to the units in the consequent and previous layers. The value of the signal flowing into a
node is a function of the value flowing out of the previous layer, and the weights assigned
to the particular connections. A neural network with a sufficient number of units and a
continuous, bounded and non-constant activation function, is able to approximate any
mathematical function [14][15].

1
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Figure 2.7: XOR network, illustrat-
ing how neurons can implement basic

logic functions.

Asimple example, which approximates the Exclusive
Or (XOR) function, is illustrated in fig. 2.7. The
weights in this example are determined by construc-
tion. In a real scenario, the weights are found by
minimizing some cost function through the process
of gradient descent, which is referred to as training
the network [16]. Through training, the network
would find a different set ofweightswhile still achiev-
ing the same output.
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Figure 2.8: An example of a neural network with one fully connected
hidden layer. The input to the network is a 28×28 pixel image of a single
digit, flattened to a 784 element vector. The output is a confidence score
for each of the possible digits. The network was trained by the author,
and achieved 92.4% verification accuracy on theMNIST handwritten digit
dataset. More complex networks exceed 99% accuracy on this dataset [17].

2.4.1 ConvolutionalNeuralNetworks (CNNs)

For a fully connected network as the one shown
in fig. 2.8, every neuron in the hidden layer is connected to each input. In this case there are
784 connections, one for each pixel in the input image. However, with one input per color
channel, per pixel, this number would quickly balloon into the hundreds of thousands for
a larger image. Instead of flattening an image to a column vector, as done in the fully con-
nected network shown before, a CNN arranges its neurons in a 3D volume corresponding
to the width, height and color channel depth of the input image. Furthermore, each neu-
ron in a hidden layer is connected only to a smaller region of the previous layer, as shown
in fig. 2.9. Between convolutional layers, pooling layers have traditionally been inserted to
reduce the spatial size of the network. This decreases the computational complexity of the
network, and by lowering the number of parameters also limits overfitting [19].
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Figure 2.9: Structure of a Convolutional Neural Network (CNN) [18].

Figure 2.10: Neural network learning increasingly abstract features [20].

A CNN consists of convolutional, pooling, and fully connected layers, which perform the
following tasks. A convolutional layer consists of a set of learned filters. These filters are
moved across the input image, and as the network is trained it learns filters that activate
when presented with some visual feature. As shown in fig. 2.10, early layers may learn
basic features such as horizontal or vertical lines. Later layers learn increasingly high-level
features, such as the shape of an eye, the corner of a mouth or some other building block
of an image [20].

2.4.2 Image classification

Image classification refers to the task of assigning images to one of a set of possible classes,
based on the contents of the image. Several competitions are hosted yearly, where research
teams compare progress in detecting a wide variety of objects. While neural networks have
been known since they were first described in literature in 1943 [16][21], their utility in
complex tasks such as this has only begun to be developed in the past few years. This
development has largely been attributed to advances in available computing power, the
size of available data sets and algorithmic advances which allow for training larger neural
networks.

As explained in [22], the ability to correctly classify complex images into one of several
thousand possible categories requires amodel with a large learning capacity. However, even
with the millions of images in a dataset such as ImageNet it is infeasible to train an fully
connected neural network to perform this task. Convolutional Neural Networks enable
networks todetect features in images, with a lower computational complexity than standard



2.4. Artificial neural networks 17

Figure 2.11: Illustration of Sigmoid and ReLU activation functions.

nets. At the most basic levels of the network, such features may be simple horizontal and
vertical lines while later layersmay learnmore abstract features. This is illustrated in fig. 2.10
and fig. 2.9. Compared to fully connected networks, such as the one illustrated in fig. 2.8,
CNNs have fewer connections and parameters and are therefore easier to train.

Until 2012, the top performing algorithms in the yearly ImageNet Large Scale Visual Recog-
nitionChallenge (ILSVRC)was dominated by algorithms requiring a large amount ofman-
ual hand coding of features, and that still had an error rate of over 26%. In 2012, researchers
from the University of Toronto presented a deep CNN, made possible by using a new acti-
vation function termed the Rectified Linear Unit (ReLU), see fig. 2.11. While the Sigmoid
function quickly saturates which slows down training in deeper layers, the ReLU func-
tion does not. This makes networks using ReLU less susceptible to disappearing gradients,
which has allowed for training of a deeper network than previously possible [22]. Their



18 Chapter 2. Background

Figure 2.12: Progress of image classification, and the growth of deep
networks. The graph shows the top-5 classification errors of each year’s
ILSVRC winner, and the depth of the network used. The 2011 winner
did not employ a neural network solution. The data for this figure is

from [22], [23], [19] and [24].

network was entered in the 2012 ILSVRC competition, and was able to classify images with
an error rate of 15.3%. This outcompeted previous winners by over 10 percentage points,
as shown in fig. 2.12. While the concept of CNNs and deep learning had been known for
many years, this was the first significant use of such networks in computer vision.

Later advances have improved the applicability of deepneural networks further. In 2015, the
authors of [24] proposed a novel technique of feed-forward from the input signal, leading
to great improvement of the trainability of extremely deep networks. As explained, a neural
network can approximate any mathematical function. The key insight of the authors is
that if a network of a given depth can approximate such a function, and a functionally
identical deeper network can be created by inserting unity layers, then a deeper network
should not yield poorer performance than the original network. However, the result found
in practice was that as network depth increases, network performance flattens out and
eventually degrades. The authors proposed that this is a problem of training the network,
rather than a fundamental problem of extremely deep networks. To overcome this, the
authors note that the desired mapping is likely to be closer to its input x, than a zero
mapping. If the original desired mapping is the function H(x), the network is instead
trained to approximateF(x) = H(x)− x. This greatly improves the trainability of the
network and allows for the increase in network depth shown in fig. 2.12. Unlike previous
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Figure 2.13: Illustration of a residual block [24].

approaches, the network achieves high accuracy through a deep but simple and repeating
architecture composed of residual blocks as shown in fig. 2.13. This approach gives the
network a computational complexity much lower than the number of layers might seem
to imply [24].

As deeper networks are able to capture more abstract features in images, machine vision
becomesmore robust and consequently applicable to a larger range of tasks. The organizers
of ILSVRC have announced that the 2018 competition will involve classifying 3D objects
as well as 2D images.

2.4.3 Object Detection

In image classification tasks, the algorithm is trained to classify an image of a single object,
or alternatively the principal object in the image for images with more than one object. In
object detection tasks, the goal is to locate and classify all objects in the image, including
identifying the boundary between objects and how they relate to one another [25]. Just as
deep learning has revolutionized object classification, great strides have beenmade in object
detection in recent years. As these developments are highly relevant to the field of robotics
and the Cyborg project, this section gives an overview of these developments.

The same networks that are used for classifying images with a single object can also be
applied to classify individual objects within a more complex image. The challenge in object
detection is to identify these individual objects, so that they can be classified in the manner
described in the previous section [25].
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Figure 2.14: Object detection and classification using R-CNN [25].

Similar to the progress seen in object classification, previous to the deep learning revolution
the best-effort approaches used other techniques than neural networks [25]. The very
earliest attempts at object detection using CNNs employ a naive technique of moving a
sliding window across the image. Using windows of various sizes and classifying these sub-
images one by one, it is possible to detect objects within an image composed of multiple
objects. However, this is a brute force approach and for fine-grained detection requires
classifying thousands of windows per image.

Regions with CNN (R-CNN)

The approach taken by [25], calledRegions with CNN (R-CNN) extracts region proposals
from the image by a process called selective search. The selective search algorithm looks
at the image through windows of different sizes, and identifies relevant regions by group-
ing adjacent pixels by color, texture or intensity. The resulting groups are reshaped into
bounding boxes, and the contents of each bounding box are fed to an image classifier. If the
contents of a box are successfully classified, the algorithm attempts to tighten the bounding
box using a linear regression model. The process is shown in fig. 2.14. The approach has
low error rate, but the connection of three different models leads to high complexity which
makes the system difficult to train.

Fast R-CNN

While the approach of generating region proposals is significantly less computationally
expensive than using sliding windows, it still requires that around 2000 region proposals
are classified. In a follow-up paper, Gerschick proposes an approach that is improved in
two significant ways called Fast rcnn. Firstly, rather than running individual regions of
the image through the feature classifier one by one, features are computed on the entire
image in a single pass to create a feature map, in a process called Region of Interest Pooling.
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Subsequently, the features for each region can be obtained by selecting the appropriate area
from the pre-computed feature map. Secondly, the three models used previously (region
proposer, image classifier and bounding box regression model), are combined into a single
model. This allows for end-to-end training, which greatly improves trainability [26].

Faster R-CNN

Figure 2.15: Object detection usingR-
CNN [27].

While the advances outlined above greatly improve
on the efficiency of object detection algorithms, they
expose the region proposer as a significant bottle-
neck [27]. Selective search is used to generate region
proposals, while a CNN is used to extract features,
classify the image and compute aboundingbox. The
work done by [27] uses the features computed by the
CNNdiscussed previously, and combines this with a
separate CNN, called the Region Proposal Network.
They name this approach Faster rcnn. By making
use of the same feature map that is used to classify
images, the authors enable essentially cost-free re-
gion proposals. The network passes a sliding win-
dow over the feature map, and computes region proposals along with an objectness-score.
The objectness-scoremeasures the probability that the region contains an object, and allows
for selecting only the regions that meet some minimum threshold.
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Mask R-CNN

Figure 2.16: Pixel-level object detection using Mask R-CNN [28].

Later work extends this approach by detecting which pixels belong to each of the detected
objects, as shown in fig. 2.16 [28], a method named Mask R-CNN. Here, in parallel to
the region proposal network, a network is branched off which simultaneously computes a
binary mask for each object. The binary map identifies which pixels belong to the object,
as shown in fig. 2.16.

You Only Look Once (YOLO)

Figure 2.17: Object detection using YOLO [29].

The network used by this project, named You Only Look Once (YOLO), takes a novel
approach. Rather than making a first pass to detect shapes, and a second pass to classify
them, these operations are performed by a single neural network. The image is divided
into a grid, and the probability that each cell in the grid forms part of a bounding box, as



2.4. Artificial neural networks 23

Figure 2.18: Free-space detection and 3D object detection for au-
tonomous driving [31].

well as the probability that the contents of the box belongs to an image class, is computed
simultaneously. These values are then combined to obtain a class-specific confidence score
which encodes both the probability of the particular class appearing in the box, and how
well the box fits the object. This allows the network to reason globally about the contents
of the image, where the R-CNN approach treats each selected shape separately from the
others. Furthermore, performing detection in a single pass provides greater speed [30].

2.4.4 Transfer learning

The level of performance discussed in the previous section requires the training of very large
convolutional neural networks. Due to problems of overfitting in such large networks, it
is necessary to train the network on very large datasets. In [31], researchers fromNVIDIA
describe a process by training such a network on the ImageNet dataset, consisting of ap-
proximately 1.2 million images. These are in turn augmented by various transformations
to a total dataset of 22 million images. By training on such a large dataset, it is possible to
create a very robust feature detector. However, the amount of training required can take
weeks or months, as in the example described by the researchers.

The features learned by a convolutional neural network, as shown in fig. 2.10, have been
found to be similar across many different applications. Observe in fig. 2.9, that themajority
of a network performs feature detection while only the last few layers use these features
to classify the image. One application of transfer learning is adapting an existing network
to a new domain. This can be done by replacing erasing the weights of the classification
part of the network, or replacing these layers with new layers if required. By keeping the
weights of the feature learning layers of the network fixed, the network can be retrained to
a new purpose. In the case of the work done at NVIDIA, a general image classifier trained
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on the ImageNet dataset was repurposed to identify objects in the autonomous vehicle
domain. This can then be done much faster, and with a much smaller dataset, than what is
required to train a new network. Using this technique resulted in a network able to detect
pedestrians and vehicles, and identify which sections of the road are safe for driving, as
shown in fig. 2.18[31].

2.5 Finite State Machines

At the outset of the work on this thesis, the cyborg was running the decision making soft-
ware outlined in [32].

While state machines are a well-proven approach to flow control in many applications,
there was a desire to investigate alternative approaches. This and the following section will
provide some background on these two approaches. These concepts are explained in detail
in [33].

A finite state machine is an abstract model of computation, that allows for actions to be
encoded into a finite number of states. Changes from one state to another are referred to
as transitions. The transition from an initial state to a new state is governed only by the
starting state, and the event, as shown in fig. 2.19. Whenever the conditions for a transition
are met, the system will perform that transition and execute the action associated with the
new state. State machines typically have actions associated with entering and exiting a state.

2.5.1 Events

The type of state machines described here is termed an event-driven state machine. As
the ROS system needs to perform many different actions, it is necessary that we do not
block the system by polling for new events. Instead, events arrive asynchronously and are
consumed by the state machine before it goes back to sleep.

s1start s2

0
1

1

0

Figure 2.19: An example of a simple state machine.
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2.5.2 Actions

Actions in finite state machines are associated with transitions. In actual use, actions are
typically modularized by splitting into an entry action and an exit action for each state as
well as component executed repeatedly while the state is active. Often, it is desirable to
specify behavior that should trigger when the state machine enters or leaves a state. This
granularity achieved by splitting each actions simplifies behavior reuse, for example if every
transition into a states share behavior that can be placed in an entry action.

2.5.3 Strengths and weaknesses

An overview of the use of state machines for AI in computer games is given in. In general,
the concerns outlined here overlap with the concerns relevant in the sort of high-level
decision making that is necessary in the Cyborg project.

Statemachines haveworkwell for structured behavior, as theymake it simple to implement
a sequence of behaviors and the conditions for transitioning between them. They work
particularly well for behavior where it is necessary to interrupt the current behavior due to
external events.

One major weakness of state machines is that as the control system grows, the number
of states and transitions between states quickly balloons and can be come unmanageable.
Take as an example a control system for the Cyborg, where it should act in different ways
depending on the charge level of its battery. If the battery is in good condition, the Cyborg
should behave as normal. If the battery is in a medium condition, the Cyborg should
attempt to minimize its energy use and should recharge as soon as is convenient. And, if
the battery is in poor condition, the Cyborg should do whatever it can to recharge as soon
as possible. Using a state machine, there are two ways to implement this. Either, would
be possible to use a hierarchy of state machines, one for each battery state. Alternatively,
each state in the state machine can be a state machine in itself, with a state for each battery
state. In both cases, the number of states would be three times the number of states in the
original control system. Furthermore, the number of transitions that must be added when
including a new state grow with the size of the state machine, and the process can quickly
become cumbersome.

Another weakness, which has been an important consideration for this project, is that state
machines fall short when implementing unstructured behavior. While they are well suited
for structured behavior of the type that a robot may do in an industrial setting, they are
less suited for a robot which is intended to roam freely and react in a life-like way to its
surroundings [33].
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class Foo(smach.State):
def __init__(self):

smach.State.__init__(self, outcomes=['outcome1','outcome2'])
self.counter = 0

def execute(self, userdata):
rospy.loginfo('Executing state FOO')
if self.counter < 3:

self.counter += 1
return 'outcome1'

else:
return 'outcome2'

Listing 2.2: State example from the SMACH documentation.

2.5.4 Implementation in ROS

The existing control system at the outset of this project was implemented using SMACH, a
task-level state machine architecture for ROS. SMACH allows for fast prototyping and im-
plementing complex state machines. Since it is a task-level architecture, it is not suitable for
low-level control but rather for high-level decision making. As mentioned in section 2.5.3,
state machines are not well suited to handle unstructured tasks. This is also stated by the
SMACH developers [34].

States in SMACH are implemented as individual classes, which allows for reuse. This also
includes reuse of behavior between states, by using object composition. Actions to be
performed by the robot are associated with states in the state machine, and the robot will
carry out that action for as long as it is in the particular state.

2.6 Behavior trees

A behavior tree is a model for task execution commonly used for artificial intelligence in
video games, but that is also applicable to robotics and other types of control systems.
Much of the strength of the behavior tree approach lies in the ability to compose complex
behavior from simple building blocks, without needing to consider the implementation of
each building block. In this sense they are similar to finite state machines. However, while
the fundamental building block in a state machine is the state, the fundamental building
block in behavior trees is the task. These concepts are explained extensively in [33].
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?
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t1 t2

t3

Figure 2.20: An example of a simple behavior tree.

2.6.1 Types of tasks

All nodes in a behavior tree share certain similarities. At their core, tasks are small execution
units which are run for a certain length of time by the programwhich executes the behavior
tree. At the end of execution, the task returns a status code, typically success, failure, or
running. There are three types of tasks commonly used in behavior trees, actions, conditions,
and composites.

Actions

Actions are behaviors that change the state of the system. For example, an actionmay cause
the Cyborg to move to a given location or check the status of its battery. Actions can be
long running, and will return a running status code to the calling function while they are
performing their task.

Conditions

Conditions are checks made to test a property of the system. These can be used to do
checks before executing an action, for example to check if the action is wanted or possible.
To continue the example given above, the battery status that was updatedmay be compared
to a critical value. In this way, an action can be executed if and only if it is found that the
battery state permits it, or the systemmay execute behavior to recharge the battery if not.
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for node in children:
status = node.tick()

if status != False:
return status

return False

Listing 2.3: An example implementation of the Priority node in Python.

for node in children:
status = node.tick()

if status != True
return status

return True

Listing 2.4: An example implementation of the Sequence node in
Python.

Composites

Composites are nodes which tie the actions and conditions together. While actions and
conditions are implemented by the programmer, there are a fixed and very small set of typ-
ical composite nodes. Generally there are two composite nodes that are used, the Priority
node and the Sequence node.

In the simple example shown in fig. 2.20 the first control node, with the ? symbol, is a
Priority node. This node will execute, or tick, its children from left to right until one of the
children returns successfully, as shown in listing 2.3.

The first child of this node, with the→ symbol, is a Sequence node. This node will execute
its children from left to right until one of the children returns failure, as shown in listing 2.4.
By combining these, the tree shown in fig. 2.20 will first attempt to tick nodes t1 and t2,
and only if either of those fail will it tick node t3.

This approach can be repeated to create increasingly complex behavior, without consider-
ation of the actual behavior performed by the tasks t1, t2, and so on. If behavior reuse is
required, it is possible to compose the behavior in a sub-tree which can be included as a
task in a parent tree.
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2.6.2 The blackboard

In order to create more complex behavior, it is generally necessary to be able to share data
between tasks in a tree. For example, the action which queries for the Cyborg’s battery
charge levelwouldneed somewhere to store this value, so that it canbeusedby the condition
which compares the charge level to a critical value. The blackboard, as it is commonly called,
is a data store used for this purpose. Generally, a blackboard is a key-value store for data
exchange between tasks. The blackboard allows for storage of data that is available to
any node in the tree. Depending on the implementation, it may also allow for data to be
available only to other nodes in a sub-tree or data that is only available to the node which
stored the data.

2.6.3 Strengths and weaknesses

When using behavior trees, complex behavior arises from composition of simple behavioral
components. Where the state machine approach may encourage the developer to encode a
large amount of behavior in each state, when using behavior trees it is useful to break tasks
into their smallest useful parts. By combining the behavior tree approach with a graphical
interface for composing the tree, this allows for non-programmers to create trees from basic
building blocks without needing to write code.

One commonly encountered limitation of behavior trees is that they make it difficult to
implement state-based behavior. For example, while it is simple to encode behavior that
causes theCyborg to dockwith its charging station if the battery runs low, it ismore difficult
to make the Cyborg generally act in a way that conserves energy if it is in a state of having
a somewhat low battery. Doing so would require either that two similar behavior trees
are implemented, one for a normal state and one for an energy-depleted state, or that each
task in the tree is a state machine with these two states. In this way, behavior trees share
some of the weaknesses found in state machines. While this is possible to implement this
functionality, it adds significant design complexity and is therefore generally avoided [33].
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2.6.4 Implementation in ROS

Unlike finite state machines, ROS does not have a go-to implementation like SMACH.
Therefore, to reach the objective of this thesis different approaches are evaluated. These
will be described in the following chapter.
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3 Implementation of the behavior tree
control system

To replace the existing state machine-based control system, a behavior tree control system
was implemented. This chapter will provide details on the goals of this system, the choices
that were made in planning the system and a description of the implementation of the
system itself.

3.1 Goals

At the outset of this thesis, the existing solution which used a state machine approach,
was evaluated. SMACH is a task-level state machine architecture for the Robot Operat-
ing System (ROS). There are some intrinsic issues with large state machines, in particular
concerning maintainability and scalability. As the cyborg state machine grew in size and
complexity, these became increasingly apparent.

As outlined in chapter 2, the events that govern transitions between states in a statemachine
are tightly coupled. Because of this, when adding or removing a state, it is necessary to up-
date the transitions between this state and potentially every other state in the state machine.
Furthermore, a state machine with many states can be difficult to grasp as it becomes clut-
tered, and the many states and transitions require the user to maintain a complex mental
model. Reusability of behaviors can also be difficult, as the states are tightly coupled to their
transitions. Finally, as outlined in the SMACHdocumentation, SMACH is less well suited
for unstructured tasks [34]. As one goal of the NTNUCyborg project is life-like behavior,
it was found that a decision making approach more suited for unstructured behavior was
desirable.
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3.2 Evaluation of alternatives

Before implementing a behavior tree control system for the Cyborg, several existing imple-
mentations and libraries were evaluated. Among these implementations were two existing
implementation in ros called ROS-Behavior-Tree [35] and pi_trees [36]. Also, a behavior
tree library not specifically forROS is evaluated, called behavior3 by the author of [37]. The
main considerations in choosing an implementation are that it needs to be written in C++

or Python, as those are the available languages in ROS. Furthermore, it would be beneficial
if it were possible to specify the behavior tree in a configuration file.

3.2.1 Pi Trees

Pi Trees is implemented by the Pi Robot project. The library is implemented in Python,
and is designed specifically for use with ROS [36]. Behavior trees are implemented in code,
rather than being specified using a configuration file, which adds some complexity to the
design process. As an example, consider a simple tree implementation from the Pi Robot
project [38] shown in listing 3.1.

The Iterator node used here has not been discussed previously, as it is less commonly used.
It iterates through its children in the same way as done by the other types of composite
nodes, but it ignores their return value. As can be seen in the example, each composite
node needs to be named. Properly naming things is considered one of the hardest things
in computer science [39], and it was found that the requirement to name composite nodes
added significant developer overhead.

Also, as Python lacks the ability to do forward declarations of objects, there is a significant
amount of jumping back and forth when configuring the tree. Note for example that
the CLEAN_ROOM task is referred to throughout the example. This is necessary as its
children need to be created before they can be assigned to the parent node. It was found
that this requirement to essentially build the tree from the bottom up was harder to do
than to build the tree from the top down.
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for room in black_board.task_list.keys():
# Convert the room name to upper case for consistency
ROOM = room.upper()

# Initialize the CLEANING_ROUTINE selector for this room
CLEANING_ROUTINE[room] = Selector("CLEANING_ROUTINE_" + ROOM)

# Initialize the CHECK_ROOM_CLEAN condition
CHECK_ROOM_CLEAN[room] = CheckRoomCleaned(room)

# Add the CHECK_ROOM_CLEAN condition to the CLEANING_ROUTINE selector
CLEANING_ROUTINE[room].add_child(CHECK_ROOM_CLEAN[room])

# Initialize the CLEAN_ROOM sequence for this room
CLEAN_ROOM[room] = Sequence("CLEAN_" + ROOM)

# Initialize the NAV_ROOM selector for this room
NAV_ROOM[room] = Selector("NAV_ROOM_" + ROOM)

# Initialize the CHECK_LOCATION condition for this room
CHECK_LOCATION[room] = CheckLocation(room, self.room_locations)

# Add the CHECK_LOCATION condition to the NAV_ROOM selector
NAV_ROOM[room].add_child(CHECK_LOCATION[room])

# Add the MOVE_BASE task for this room to the NAV_ROOM selector
NAV_ROOM[room].add_child(MOVE_BASE[room])

# Add the NAV_ROOM selector to the CLEAN_ROOM sequence
CLEAN_ROOM[room].add_child(NAV_ROOM[room])

# Initialize the TASK_LIST iterator for this room
TASK_LIST[room] = Iterator("TASK_LIST_" + ROOM)

# Add the tasks assigned to this room
for task in black_board.task_list[room]:

# Initialize the DO_TASK sequence for this room and task
DO_TASK = Sequence("DO_TASK_" + ROOM + "_" + task.name)

# Add a CHECK_LOCATION condition to the DO_TASK sequence
DO_TASK.add_child(CHECK_LOCATION[room])

# Add the task itself to the DO_TASK sequence
DO_TASK.add_child(task)

# Create an UPDATE_TASK_LIST task for this room and task
UPDATE_TASK_LIST[room + "_" + task.name] = UpdateTaskList(room, task)

# Add the UPDATE_TASK_LIST task to the DO_TASK sequence
DO_TASK.add_child(UPDATE_TASK_LIST[room + "_" + task.name])

# Add the DO_TASK sequence to the TASK_LIST iterator
TASK_LIST[room].add_child(DO_TASK)

# Add the room TASK_LIST iterator to the CLEAN_ROOM sequence
CLEAN_ROOM[room].add_child(TASK_LIST[room])

# Add the CLEAN_ROOM sequence to the CLEANING_ROUTINE selector
CLEANING_ROUTINE[room].add_child(CLEAN_ROOM[room])

# Add the CLEANING_ROUTINE for this room to the CLEAN_HOUSE sequence
CLEAN_HOUSE.add_child(CLEANING_ROUTINE[room])

Listing 3.1: Implementation of a behavior tree using Pi Trees, from the
Pi Trees documentation.
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#include <actions/action_test_node.h>
#include <conditions/condition_test_node.h>
#include <behavior_tree.h>
#include <iostream>

int main(int argc, char **argv)
{

ros::init(argc, argv, "BehaviorTree");

try
{

int TickPeriod_milliseconds = 1000;

BT::ActionTestNode* action1 = new BT::ActionTestNode("Action1");
BT::ConditionTestNode* condition1 = new BT::ConditionTestNode("Condition1");
BT::SequenceNodeWithMemory* sequence1 = new BT::SequenceNodeWithMemory("seq1");

action1->set_time(5);
condition1->set_boolean_value(true);
sequence1->AddChild(condition1);
sequence1->AddChild(action1);

Execute(sequence1, TickPeriod_milliseconds);
}
catch (BT:BehaviorTreeException& Exception)
{

std::cout << Exception.what() << std::endl;
}

return 0;
}

Listing 3.2: Implementation of a behavior tree using ROS-Behavior-
Tree, from the ROS-Behavior-Tree documentation.

3.2.2 ROS-Behavior-Tree

ROS-Behavior-Tree is implemented in C++ , and like Pi Trees it is created specifically for use
with ROS. The tree is implemented in code, as shown in listing 3.2. As the tree is imple-
mented in code the same added complexity is seen here as described above. Furthermore,
as C++ is a compiled language, any change to the tree requires that the project is rebuild.

3.2.3 behavior3

behavior3 is implemented as both a Python library, behavior3py, as well as a JavaScript
library, behavior3js. Additionally, the project includes an editor, behavior3editor. Of the
options evaluated, behavior3 was the only one that allows for specifying the tree in a text file.
An attempt has been made to implement a tree using one of the other libraries, but it was
quickly discovered that specifying the tree in code, either C++ or Python, became unwieldy
as the tree size increased.
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After evaluating the described options, it was decided to use behavior3. The editor provides
a graphical interface for creating behavior trees, and allows the user to export these as JSON
configuration files. The editor is shown in fig. 3.2. The configuration files can be parsed
and run using behavior3py or behavior3js. As ROS allows for nodes to be implemented in
C++ or Python, this project will use behavior3py.

3.3 Implementation

⇒

→ patrol

→check.battery

nav.dock charge

Figure 3.1: Behavior tree that checks battery
state, and charges if necessary, while patrolling.

As described in chapter 2, a behavior tree is
build from standard composite nodes, as
well as nodes that implement decorators
and actions. To use behavior3py a ROS
nodewasmade, called cyborg_bt, as well as a
node for organizing custom decorators and
actions called cyborg_bt_nodes. cyborg_bt
imports the required decorators and ac-
tions needed by the Cyborg control system
from cyborg_bt_nodes and runs the tree
produced with behavior3editor. Much of
the functionality required to implement
these decorators and actions has been placed in ROS services or topics, in order to make
behavior as reusable as possible.

Figure 3.2: Screenshot of behavior3editor showing implementation of a
simple behavior tree.
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An example of such a node, the action node MoveTo, which moves the Cyborg to a re-
quested location, is included with the attached source code. The node issues a movement
request to the navigation subsystem, and then monitors the progress of the Cyborg as it
moves along the path to its target. If progress stalls for longer than an allowed timeout, the
movement request is aborted. In this case, we monitor the movement along the path to
the target and not merely the Euclidean distance to the target. This is important, as the
Cyborg may have to navigate around obstacles along its path which can involve moving
further away from the target.

A simple demonstration of a working behavior tree is shown in fig. 3.1. This behavior tree
causes the Cyborg to move in a patrol pattern between several locations while it monitors
the state of the Cyborg’s battery charge, and recharges as needed. Figure 3.2 shows the same
functionality being implemented in behavior3.
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4 Implementation of the control system
monitoring application

Tomonitor the state of the control system described in chapter 3, a monitoring application
was implemented. This chapter will provide details on the goals of this system, the choices
that were made in planning the system and a description of the implementation of the
system itself.

4.1 Goals

In addition to the control system, a main objective of this thesis is to present the devel-
opment of an application that allows the user to monitor the status of the Cyborg. One
shortcoming of behavior trees is that it can be hard to troubleshoot behavior, as the be-
havior stems from complex interaction of simple components [33]. For this reason, it was
found necessary to create an application that made it possible to visualize the execution of
the tree in real time.

The application should show the structure of the behavior tree, as well as highlight those
nodes in the tree that are being executed at the current time. It is also useful for the appli-
cation to give the user the ability to halt and resume the execution of the tree.

Initially, the ability to interact with the tree in order to manually change its execution was
also investigated. The original idea was for the application to include the ability to trigger
execution of a particular node of the behavior tree. However, the necessary increase in the
complexity of the application was found not to be justified. Description of the feature is
included, as it significantly influenced the planning stage of the monitoring application
before being dropped from consideration.
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4.2 Evaluation of alternatives

There are several libraries and applications available that allow for visualization of the rele-
vant data, and a choice had to be made regarding which option to choose.

4.2.1 Plotting framework

One approach that was evaluated was to create a standalone monitoring application, or
even a simple dashboard that could be presented in a web browser. Among the options
that have been investigated are d3, which is a visualization library for Javascript, Bokeh,
and Plotly, which are visualization libraries for Python. One of the desired features of the
application was that the visualization should be interactive, so that the user could influence
the state of the Cyborg. All three libraries enable rich visualizations in the browser, but
Bokeh and Plotly were found to offer a higher degree of interaction. As interaction was
originally a desired feature in the monitoring application, a Python solution using either
Bokeh or Plotly was investigated further.

ROS nodes can be implemented in either C++ or Python, as explained in chapter 2. For
implementing visualizations as a web service, Python was deemed to be a good choice. The
monitoring application might have been implemented as a ROS node, were it not for the
fact that ROS uses Python 2.7. Python 2.7, unfortunately, predates the introduction of
asynchronous support in Python. This presented a challenge. Three ways to overcome this
were identified that will be explained in the following sections.

4.2.2 Rosbridge

In order to access information from ROS in an outside application, the Robot Web Tools
project has developed a protocol called rosbridge [40]. The rosbridge protocol exports data
fromROS usingwebsocket which is a two-wayTCP protocol, and uses a simple JSONAPI
for communication. An application, including a web application, can access information
from the Cyborg by communicating with ROS using websocket. This solution makes the
interface easily accessible without requiring that the user installs software locally, and it
allows for the Cyborg to be monitored from any computer with a web browser.

Existing frontends for rosbridge include roslibjs, which is written in Javascript. As it was
found that visualization should be done with Plotly or Bokeh, this would have required
porting of roslibjs to Python.
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4.2.3 ROS 2.0

As porting roslibjs to Python would involve a significant amount of work, ROS 2.0 was
evaluated as an alternative. ROS 2.0 is a new project by the creators of ROS intended to im-
prove on someof the fundamental shortcomings ofROS. In doing so, it also solves the same
problems that rosbridge intends to solve, by making it far easier for outside applications to
communicate with an ROS control system.

As outlined in [12], the development of ROS involved the from-scratch implementation
of a publish-subscribe system. Since the start of the ROS project, many new technologies
have become available which provide features beyond the scope of the implementation
used in ROS. Crucially for the purpose of this project ROS 2.0 uses Python 3, which is a
requirement for the visualization libraries discussed above.

While the core ROS 2.0 implementation is considered stable and ready for production use
at the time of writing, the Cyborg project depends on ROS nodes that are not yet available
for ROS 2.0. Specifically, the project depends on nodes developed byMobileRobots, the
manufacturer of the Pioneer LX, and it is outside the scope of this project to port these to
ROS 2.0. However, ROS 2.0 does include the ability to interoperate with ROS, meaning
that it is possible to leave existing ROS functionality as is, while new functionality could
target ROS 2.0. Unfortunately, many important libraries are not yet ported, including
underlying functionality such as nav_core and move_base, the navigation and movement
subsystems respectively. Once these subsystems are ported it would be feasible to transition
the Cyborg project to ROS 2.0, and certainly to target new functionality at ROS 2.0.

4.2.4 rqt

After evaluating both rosbridge andROS 2.0, it was found that these solutions complicated
the architecture of the Cyborg control system more than necessary. Furthermore, using
off-the-shelf solutions wherever possible minimizes necessary work and maintenance for
the Cyborg project, which allows for efforts to be focused on improving core functionality.

An alternative approach to the solutions described above, and the one decideduponbyMar-
tinius Knudsen (the author’s co-advisor) and the author, was to implement the required
functionality as one or more plugins for rqt. rqt is a Qt-based framework for Graphical
User Interface (GUI) development for ROS, and comes with a rich set of plugins already
available. rqt provides much of the functionality the Cyborg project requires, such as visu-
alization of time series data, a rich logging interface and command input. For these reasons,
the choice was made to implement the behavior tree visualization as a plugin for rqt, and
use existing rqt plugins for the other visualizations needed by the project.
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Figure 4.1: Screenshot of rqt-graph, showing the currently running ROS
nodes and the communication pathways between them.

The behavior tree visualization plugin will be based on the existing rqt graph visualizer
rqt_graph. This plugin visualizes the nodes that make up the ROS control system, and the
communication paths between these nodes as shown in fig. 4.1. The use case for rqt_graph
and the behavior tree plugin are somewhat similar, as they both generate DOT code that
describes the graph which will then be passed to a Qt library for drawing. Due to this
overlap, the rqt_graph served as valuable inspiration for the behavior tree plugin.
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4.3 Implementation

4.3.1 Graphical User Interface

Implementing the GUI using Qt provides a range of graphical widgets, which can be com-
posedusing theQtCreator software. The resultingUI text file can thenbe loaded inPython
which automatically creates objects for each widget specified in the UI file. Interactive wid-
gets provide signals which are emitted upon actions such as a button click, a value change
and so forth. These signals may be connected to functions implemented by the developer,
in order to perform actions when the user interacts with the graphical interface. Actions
may be performed immediately, or theymay be deferred in situations where this is required.
For example, long running tasks may cause the interface to become unresponsive if they are
executed indiscriminantly, and itmay be necessary to defer them for the sake of a better user
experience. Where required, widgets may be subclassed in order to add additional signals,
but this has not been necessary for this project as the default signals sufficed to implement
the needed functionality.

Figure 4.2: Screenshot of Qt Creator.

The behavior tree visualization plugin was named rqt_bt. The plugin was designed using
Qt Creator. The interface of Qt Creator is shown in fig. 4.2. The entire GUI is composed
of a widget created by the author, rqt_bt_widget, which acts as a container for the other
components of the GUI. At the top of the interface, the layout is made up of aQHBoxLay-
out widget, which is a container widget for laying out widgets horizontally. This widget
contains the control buttons for interacting with the application. Below this the layout
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contains an InteractiveGraphicsView widget. This is a widget created by the ROS project,
which extends the stockQGraphicsWidget. Thewidget is responsible for drawing the actual
graphics view to the screen. All of the listed widgets subclass QWidget, which is the base
class for all user interface objects in Qt.

The buttons in the interface allow the user to control the behavior of the plugin in the
following ways:

• TheHighlight Connections check box check box will cause the interface to highlight
the connections from a node to its parent and its children, when the node is hovered
over by the mouse.

• The Fit check box will cause the graph to be automatically drawn to fit within the
view port, so that the whole graph can be seen at the same time. The graphwill resize
to fit even if the graph changes.

• The Fit in View push button will cause the graph to be resized to fit in the view port,
but only a single time. That is, it will not be automatically updated.

• TheDraw Depth spin box allows the user to select how deeply nested behavior trees
should be drawn. Trees deeper than the selected level are collapsed to a single node,
as shown in fig. 4.4.

• The Save as DOT, Save as SVG and Save as Image push buttons allow the user to
save the graph in a variety of formats.

• The Refresh Graph push button forces redrawing of the graph.

• The Run push button enables or disables the behavior tree node running in ROS.

The run push button deserves some further explanation. This button allows the user to
send an enable or disable service request to the behavior tree node, which pauses execution
of the behavior tree. The pluginmonitors the status of the behavior tree, so that the plugin
sends the correct service request depending on the current status of the behavior tree. If the
behavior tree node is running, the button displays a pause symbol and the plugin will send
a request to halt execution of the behavior tree. Conversely, if the behavior tree’s execution
is paused, the button displays a play symbol and the plugin will send a request to resume
execution of the behavior tree.
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Figure 4.3: Screenshot of rqt_bt.

Figure 4.4: Screenshot of rqt_bt with reduced drawing depth.

4.3.2 Displaying the tree

In order to display the behavior tree, as well as which nodes are currently active, two pieces
of information are required tobepublishedby thebehavior tree node cyborg_bt. Firstly, we
require that it publish the structure of the tree, and secondly we require that it publishes
a list with the IDs of the currently active nodes. When the cyborg_bt node is created,
the behavior tree is traversed and a NetworkX graph is created that represents the tree.
NetworkX provides a method for converting these graphs to and from JSON data, which
allows for transmitting the structure of the tree as a stringmessage on a topic, and recover it
upon receipt. The generated data is made available in two separate topics, as a JSON string,
and as a list of ID strings, respectively.
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#!/usr/bin/env python

import json
import networkx as nx
import pygraphviz
import rospy

from cyborg_msgs.msg import BehaviorTree, BehaviorTreeNodes
from networkx.utils.misc import make_str

class BTData(object):
def __init__(self, data_sub_name=None, update_sub_name=None):

if data_sub_name:
rospy.Subscriber(data_sub_name, BehaviorTree, self._bt_cb)

if update_sub_name:
rospy.Subscriber(update_sub_name, BehaviorTreeNodes, self._bt_update_cb)

self.tree = None
self.active_nodes = []

def get_graph(self):
# Create a graph from the JSON data, or fall back to an empty graph
try:

graph = tree_graph(self.tree)
except:

graph = nx.OrderedDiGraph()

G = nx.drawing.nx_agraph.to_agraph(graph)

return G, self.active_nodes

def _bt_cb(self, msg):
self.tree = json.loads(msg.tree)

def _bt_update_cb(self, msg):
self.active_nodes = msg.ids

Listing 4.1: Implementation of the BTData class for rqt_bt.
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In order to consume the provided data, the rqt_bt_widget creates a BTData object, which
listens to these two topics, as shown in listing 4.1. The BTData instance is provided to the
DOTcode generator classBTDotcodeGenerator, shown in listing 4.2. TheBTData instance
will continue to listen to the provided topics, and maintain an updated representation of
the behavior tree graph, which can be retrieved using the get_graph() method. The topics
published by cyborg_bt are latched, meaning that the most recently transmitted message
will be retransmitted to any new subscribers. This means that the BTData instance receives
updated information as soon as it is created. If this is not the case, BTData falls back to
providing an empty graph so that consumers of the graph avoid having to add special cases
for invalid data.

When rqt_bt_widget requires a redraw of the behavior tree graph, either due to periodic
redrawing or due to user interaction, the generate_dotcode() method in BTDotcodeGen-
erator is called. This method retrieves the current graph and the list of currently active
nodes from its instance of BTData. The method performs processing of the graph, such as
culling nodes that are deeper than the requested drawing depth, and adds highlighting to
indicate the currently active nodes. Finally, DOT code is generated to represent the graph,
which is passed back to rqt_bt_widget so that it can be drawn by the Qt framework. If
the DOT code has changed since the last time it was drawn, it is passed to an instance of
DotToQtGenerator. This class is provided by qt_dotgraph, which is a library created by the
ROS project that provides helper functions for drawing DOT graphcs in Qt.

Using the dotcode_to_qt_items() method provided by DotToQtGenerator, we create a list
of nodes and edges. These are added to a QGraphicsScene which is passed to the QGraph-
icsView. The QGraphicsView widget draws the scene on the user’s screen.
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#!/usr/bin/env python

import itertools
import pydot
import rospy

def pairwise(iterable):
"s -> (s0,s1), (s1,s2), (s2, s3), ..."
a, b = itertools.tee(iterable)
next(b, None)
return itertools.izip(a, b)

class RosBTDotcodeGenerator(object):
def __init__(self, data_provider):

self.data_provider = data_provider

def generate_dotcode(self, max_depth=-1):
G, active_nodes = self.data_provider.get_graph()

# Remove nodes that are too deep
for node in G.nodes():

node.attr['shape'] = 'box'

# Remove nodes deeper than the given draw depth
if max_depth != -1 and int(node.attr['depth']) > max_depth:

G.remove_node(node)

G.layout(prog='dot')

# Highlight active nodes
for node in active_nodes:

if node in G.nodes():
n = G.get_node(node)
n.attr['color'] = 'green'

for (start, end) in pairwise(active_nodes):
if start in G.nodes() and end in G.nodes():

try:
e = G.get_edge(start, end)
e.attr['style'] = 'dashed'
e.attr['penwidth'] = 2

e.attr['colorR'] = 255
e.attr['colorG'] = 0
e.attr['colorB'] = 0

except KeyError:
pass

dot = G.string()

return dot

Listing 4.2: Implementation of the BTDotcodeGenerator class for
rqt_bt.
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5 Implementation of object detection and
classification

To provide the Cyborg’s control system with information about objects in the Cyborg’s
surroundings, an object detection and classification system was implemented. This system
uses data from the Cyborg’s depth-sensing stereo camera to both identify and locate ob-
jects in the Cyborg’s surroundings. It continues the work done by Experts in Teamwork
(EiT) students working for the Cyborg project, who evaluated various object detection
approaches and produced a demonstration using the You Only Look Once (YOLO) algo-
rithm [41]. Throughout the time spent on this thesis, the author has collaborated with
and guided this group in their work. This has allowed the author to focus on proven ideas,
unlike previous parts of this thesis where much effort was spent identifying promising so-
lutions. While partially based on these ideas, the following work is done by the author.
This chapter will provide details on the goals of this system, the choices that were made in
planning the system and a description of the implementation of the system itself.

5.1 Goals

As described in chapter 2, the ros-zed-wrapper from StereoLabs exposes the left and right
images of the Cyborg’s stereo camera, as well as a depth map calculated from these images.
Here, we intend to analyze the images from the stereo camera to detect objects in the
images, and then calculate the distance to each object. The output from the system will
be twofold. First, an image with bounding boxes drawn around each detected object is
published as an ros topic. Furthermore, the object’s class and distance from the Cyborg also
drawn on the image. Secondly, a list of detected objects, along with a header containing
the time stamp of the prediction message, and a copy of the header from the input image
is also published as an ROS topic. Each detected object will be represented by a structure
containing its classification, a polygon structure describing its bounding box, its distance
from the Cyborg, and the classification confidence outputted by the detection algorithm.
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string label
float64 confidence
float64 distance
geometry_msgs/Polygon bounding_box

Header header
Header image_header
Prediction[] predictions

Listing 5.1: Prediction and Predictions message formats.

5.2 Evaluation of alternatives

As described in chapter 2, there are many possible algorithms that perform object detection
and image classification. Key to this project is using an approach that performs well using
the limited available computational resources on the Cyborg. It was also desirable to use
off-the-shelf software, to minimize the work needed to create and maintain the solution.

As described, the YOLO algorithm allows for object detection and classification using a
single pass through the neural network, which is an efficient approach [30]. As the object
detection part of this thesis continued existing work by [41], the choice was made to con-
tinue to use the YOLO algorithm. Consideration was given to which implementation of
this algorithm to use.

The demo implementation by [41] used a library called PyYOLO. PyYOLO is a Python
wrapper around the originalCUDA implementationby the author ofYOLO, and therefore
performs very well. The downside to this is that the underlying YOLO implementation
must be compiled for PyYOLO to be used, which adds to the maintenance burden of the
project members.

As of late 2017 there is support for YOLO in theDeep Neural Network (DNN) module
of OpenCV, and it was decided that this merited further research. While OpenCV lacks
CUDA support, and was therefore expected not to perform as well in timing benchmarks,
this is planned for inclusion in future versions of OpenCV. Furthermore, OpenCV’s DNN
module is able to use a number of neural networks, which allows for different object detec-
tion algorithms to be run with only minimal changes to the Cyborg software.
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5.3 Implementation

In this section, we will detail to separate implementations using this algorithm, written by
the author. These implementations make use of a reference implementation of the YOLO
algorithm, to meet the goals outlined above, but are subject to different considerations.
The weights used in the neural network are published by the creator of YOLO [30].

5.3.1 C++ implementation

First, a C++ implementation using OpenCV was developed. There are two significant
advantages to implementing the object detection node in C++. First, it is possible to run
the detection algorithm as a nodelet in the same process as the ros-zed-wrapper. Anodelet is
a variation on the concept of an ROS node, as described in chapter 2. Rather than running
the zed-ros-wrapper node and the object detection node in separate processes, whichwould
require transporting raw image data over TCP, these are run in the same process. This
allows us to use the same publish/subscribe interface as in a normal node, but havemessage
transport handled using shared memory. This change is handled seamlessly by the Nodelet
class, which nodelets inherit from. The only caveat the developer must keep inmind is that
messages cannot be modified, once published to a topic, as their memory is now shared
with all nodelets subscribing to the topic.

In order to make up the object detection node, there are two approaches to launching the
component nodelets that make up the node. It is possible to implement a node in C++
in the usual manner, instantiate a nodelet Loader and use this to load each nodelet. This
is shown in listing 5.2. The alternative approach is to load a nodelet manager, and each
nodelet, using a launch file. This accomplishes the same result, but allows for changing the
launch procedure without requiring a recompilation. The approach is shown in listing 5.3.

The second advantage to using C++ is that we are able to use the implementation of the
YOLO algorithm created by the OpenCV project. As of recent versions of OpenCV, a
wide range of object detection algorithms are available using the same programming inter-
face. This provides a level of flexibility, and also allows for the Cyborg project to benefit
from improvements done by the OpenCV project, simply by upgrading to new versions
of OpenCV in the future.

The full implementation can be found in the attachments, but we will give a run-through
of the steps taken. After the nodelet manager creates an instance of the class, the OnInit()
function is run, which performs the steps normally found in the class constructor. In the
case of the ObjectDetectorNodelet, shown in listing 5.4, this function fetches parameters
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#include <ros/ros.h>
#include <nodelet/loader.h>

int main(int argc, char** argv) {
ros::init(argc, argv, "ros_dnn");

nodelet::Loader nodelet;
nodelet::M_string remap(ros::names::getRemappings());
nodelet::V_string nargv;

nodelet.load(ros::this_node::getName(),
"zed_wrapper/ZEDWrapperNodelet",
remap, nargv);

nodelet.load(ros::this_node::getName(),
"ros_dnn/ObjectDetectorNodelet",
remap, nargv);

ros::spin();

return 0;
}

Listing 5.2: Nodelet instantiation using a C++ node.

<launch>
<node pkg="nodelet" type="nodelet" name="ros_dnn" args="manager"/>

<node pkg="nodelet"
type="nodelet"
name="zed_wrapper"
args="load zed_wrapper/ZEDWrapperNodelet ros_dnn"/>

<node pkg="nodelet"
type="nodelet"
name="object_detector"
args="load ros_dnn/ObjectDetectorNodelet ros_dnn"/>

</launch>

Listing 5.3: Nodelet instantiation using a launch file.
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class ObjectDetectorNodelet: public nodelet::Nodelet {
public:

virtual void onInit();

private:
ros::NodeHandle nh;
ros::NodeHandle nh_ns;

/* Dynamic reconfigure */
dynamic_reconfigure::Server<ros_dnn::ObjectDetectorConfig> server;
dynamic_reconfigure::Server<ros_dnn::ObjectDetectorConfig>::CallbackType f;
void dyn_reconf_cb(ros_dnn::ObjectDetectorConfig &config, uint32_t level);

/* Neural network */
cv::dnn::Net net;
double conf_threshold;
std::vector<std::string> class_labels;
int frame_height;
int frame_width;

/* Draw a list of predictions on an image.
* This adds a bounding box, a label and a confidence.
*/

cv::Mat draw_predictions(
std::vector<ros_dnn::Prediction> predictions,
cv::Mat& frame) const;

/* Pass an image through the neural net and return a list of predictions */
std::vector<ros_dnn::Prediction> get_predictions(

cv::Mat& frame,
const cv::Mat& out,
cv::dnn::Net& net) const;

/* Publish/subscribe */
image_transport::Subscriber sub_img;
image_transport::Publisher pub_img;
ros::Publisher pub_pred;

/* Callback for receiving an image.
* This comes in two flavors, with and without depth map. */

void camera_cb(
const sensor_msgs::ImageConstPtr& img,
const sensor_msgs::ImageConstPtr& depth);

void camera_cb(const sensor_msgs::ImageConstPtr& img);
};

Listing 5.4: ObjectDetectorNodelet class definition.
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from the ROS parameter server, such as the names for the input and output topics as
well as parameters required to load the neural network. This includes a configuration file
describing layers of the network, a filewithweights for the network as described in chapter 2,
and so forth.

Figure 5.1: Screenshot of OpenCV object detection, courtesy of
opencv.org.

Once all the required parameters are retrieved, the class loads the neural network and sub-
scribes to the image and depth map topics published by zed_ros_wrapper. The image and
depth map topics are subscribed to using a SubscriberFilter, which ensures that we receive
both images in the same callback function, so that we can easily process them together.
This also ensures that the received image and depth map have matching time stamps, by
using the ExactSyncPolicy from the message_filters library. If the node is configured to
run without subscribing to a depth map, this filtering step is not performed. Finally, once
topic subscriptions are configured, the output topics created so that the node can publish
the object detection results. We also set up dynamic reconfigure, so the user can change
the classification threshold – the minimum confidence required for a detected object to be
published – while the node is running.

On reception of an image, and optionally a depth map, the callback function camera_cb()
is called. Here, we check if there are any subscribers listening to the output of the node,
and abort if there are not. Then, the received image is converted to OpenCV format and
fed through the neural network. The returned output from the network, for each detected
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class Prediction {
public:

Prediction(std::string label, int confidence, cv::Rect bounding_box)
: label(label),
confidence(confidence),
bounding_box(bounding_box)

{
}

/**
* \brief Convert the prediction to a ros_dnn_msgs::Prediction message.
*/

ros_dnn_msgs::Prediction to_prediction_msg() const;

/**
* \brief Get the distance from the camera to the prediction.
*/

double get_distance(cv::Mat& depth_map) const;

/**
* \brief Draw a prediction on the provided frame.
*/

void draw(cv::Mat& frame) const;

private:
std::string label;
int confidence;
cv::Rect bounding_box;

};

Listing 5.5: Prediction class definition.
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object, includes the object class label, the label confidence and coordinates for a bounding
box around the object. These are processed and a vector of Prediction objects, as shown
in listing 5.5, are created to represent each detected object in the image. If the depth map is
available, this can also be included.

Finally, the predictions are drawn on the image, in the same way as shown in fig. 5.1, and
the image is published to the output image topic. The predictions are also published as a
list, in the form shown in listing 5.1.

5.3.2 Python implementation

Asdescribed previously, themain advantage to usingC++over Pythonwas believed to be in
the ability to run the zed_ros_wrapper in the same process as the object detection algorithm.
In order to test this hypothesis, it was necessary to also implement the same functionality as
a Python node. This initially met a roadblock, as up until the new version of ROS released
in May 2018 ROS used its own version of OpenCV. The version of OpenCV included
with ROS has typically lagged the latest OpenCV release by several months. As the DNN
functionality inOpenCVhas been rewritten very recently, thismeant that this functionality
was unavailable inROSuntil recently. For this reason, we initially implemented one version
in Python without using OpenCV, and a second version after ROS released their new
version.

Initial version

Initially, object detection was implemented in ROS using the PyYOLO library, which is a
simplePython interface to the originalC implementationofYOLO. Just as theC implemen-
tation, the performance of this implementation is significantly higher than the OpenCV
implementation described above. This is hypothesized to be due to CUDA support in the
C implementation, which is lacking in OpenCV.

The demonstration application created by [41] was modified to output the detection im-
age and prediction list described earlier. The program flow in the Python version of the
object detection node is generally similar to the C++ implementation, but implementing
in Python yields significantly more compact code.



5.3. Implementation 55

OpenCV version

With the ability to use a custom compiled version of OpenCV with ROS, it became pos-
sible to use a version with support for cutting edge features, including the Deep Neural
Network (DNN) module. While OpenCV has CUDA support for much of its function-
ality, the DNNmodule is limited to GPU acceleration through OpenCL which currently
only supports Intel GPUs. As the Cyborg project uses an Nvidia Jetson TX2 for graphics
processing, this is a limitation. As GPU acceleration is key to achieving usable performance
when running neural networks, backend support for this platform is key to making an
OpenCV solution practical. Even so, this makes it possible to perform an apples to apples
performance comparison between a C++ and a Python implementation using OpenCV,
which is interesting in itself. Though this was only made possible shortly before the dead-
line for this report, it was interesting enough for theCyborg project that this secondPython
implementation was created.
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6 Other tasks

In addition to themajor tasks presented previously, some smaller tasks have been performed
in the process of writing this thesis. These tasks are described in this chapter.

6.1 Rack mounting system

(a) Before. (b) After.

Figure 6.1: The Cyborg, showing equipment mounting before and after
installation of the 10 inch rack.

At the outset of the project, the Cyborg was equipped with a mounting frame, as shown
in fig. 6.1a. A 10 inch rack mounting systemwas planned for this mounting frame, inspired
by the use of 10 inch equipment enclosures used for home and small business networking
equipment. An example of such an enclosure is shown in fig. 6.2a.

10 inch racks, or network enclosures, are a common equipment standard for small network
equipment such as network patch panels, switches and so forth. By using standard dimen-
sions for enclosure width and height, as well as standard placement for mounting holes,
equipment can easily be swapped in and out of the rack. Thismodularity was found to sim-
plify work on the Cyborg. Both the existing power supply and the enclosure for the Jetson
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(a) Example of a 10 inch cabinet. (b)Rack rails fitted on the Cyborg.

TX2 computer were mountable in the rack, while leaving ample space for one or two extra
modules in the future. By fitting the Cyborg with four rack posts, as shown in fig. 6.2b, it
is possible to mount the power supply facing backwards. This enables neater routing of
power cables, as most computing and networking equipment have power connectors at
the back. The Cyborg can be seen before and after installation of the new rack mounting
system in fig. 6.1. The rack itself was constructed by the authors of [42], as part of their
Experts in Team project, with guidance from the author of this thesis.

6.2 Convenience functionality for future ROS development

To support collection functionality used by all nodes in the Cyborg software environment,
two nodes were created called cyborg_types, cyborg_util and cyborg_nav. These will be de-
scribed in this section.
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6.2.1 cyborg_types

Common data types that are useful in multiple parts of the project are included in this
node, so that they may be easily imported where needed. Generally, these provide useful
convenience functions for processing received ROSmessages.

Point

The Point class represents a point in space. The data used to create a Point is generally
received as a geometry_msgs/Pose or geometry_msgs/Pose2Dmessage, both of which in-
clude a geometry_msgs/Point message from the navigation subsystem in ROS. In addition
to exposing the x, y and z coordinates of the 3D point, the class also provides a convenience
method for computing the Euclidean distance to a second Point.

Quaternion

TheQuaternion class represents an orientation in space. The geometry_msgs/Posemessage
includes a geometry_msgs/Quaternion message, which contains the x, y, z and w coordi-
nates used to instantiate the class. The class also includes a method for instantiating from
a geometry_msgs/Pose2Dmessage, which includes the orientation as an Euler angle.
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Pose

The Pose class represents a point and orientation in space, represented by the previous two
classes. In addition to providing class methods allowing the class to be instantiated from
any of the Pose messages in geometry_msgs, the class also provides a convenience method
for computing the Euclidean distance to a second Pose.

Path

A Path is an ordered collection of Poses, which typically represents a path between two
locations in the world. In the Cyborg control system, it is used to keep an updated repre-
sentation of the current path the Cyborg is moving along, so that progress can be tracked.
To do this, it includes methods for adding and removing Poses from the Path, as well as
advancing along the Path to a given Pose – so long as the given Pose is within a certain
distance from a Pose along the Path. The class also contains a method to retrieve the total
distance from the first to the last Pose along the Path.

6.2.2 cyborg_util

cyborg_util currently contains a single class, Locations. The Locations class retrieves a list
of available goals from theAvailableGoals service, which is described below. The class acts
as a persistent cache for the locations, exposing them as Pose objects.
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6.2.3 cyborg_nav

For simplifying navigational tasks, a set of services was created that can be used by e.g. nodes
in the behavior tree. These provide functionality which might be useful to multiple parts
of the Cyborg software environment, and to simplify code reuse are created as individual
services.

AvailableGoals service

For managing a set of known locations, and exposing these to other parts of the control
system, a service was created called AvailableGoals. The service is shown in listing 6.1. The
service is instantiated with a map file, which contains a list of named waypoints or goals.
Upon request of the list of available goals, the service will parse this map, and create a
response message containing the list. This list will be cached, so that it can be returned in
the future without needing to recreate it.

DistanceToGoal service

For requesting the distance to a goal or waypoint measured from the current location of
the Cyborg, a service was created calledDistanceToGoal. As shown in listing 6.2, the service
will receive a goal, from which a Pose object is created. The Pose class is included with the
attached source code. Using the created Pose object, the service calls theMakePlan service,
which is exposed by the ros_arnl node fromMobileRobots, described in chapter 2. The
DistanceToGoal service will then receive a plan, consisting of a list of positions, which show
the path from the Cyborg to the desired final position. The list of positions is used to create
a Path object. The Path class, which is also included in the attached source code, acts as
a wrapper for this list of positions, and exposes useful functions for interacting with the
list. The DistanceToGoal service will retrieve the length of the Path object, which is then
returned to the user. The length is found by calculating the Euclidean distance between
each pair of coordinates along the path.
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#!/usr/bin/env python

import csv
import rospy
from collections import namedtuple
from itertools import ifilter, imap
from geometry_msgs.msg import Pose2D
from cyborg_msgs.msg import GoalWithHeading
from cyborg_msgs.srv import AvailableGoals, AvailableGoalsResponse

NAME = 'available_goals_server'

GoalRecord = namedtuple('GoalRecord', 'cairn type x y theta comment icon name')

class AvailableGoalsHandler():
def __init__(self):

rospy.init_node(NAME)

srv_name = '/cyborg/nav/get_available_goals'
rospy.Service(srv_name, AvailableGoals, self.goals_cb)

# Will be created on demand
self.response = None

rospy.spin()

def create_response(self, filename):
""" Create AvailableGoalsResponse from map file """
response = AvailableGoalsResponse()
with open(filename) as f:

# Get only lines with the keyword 'Goal' or 'GoalWithHeading'
lines = ifilter(lambda line: 'Cairn: Goal' in line, f)

# Parse lines, and create a GoalRecord, then create a
# GoalWithHeading message for each waypoint
reader = csv.reader(lines, delimiter=' ')
for rec in imap(GoalRecord._make, reader):

pose = Pose2D()
pose.x = float(rec.x) / 1000
pose.y = float(rec.y) / 1000
pose.theta = float(rec.theta)

goal = GoalWithHeading()
goal.name = rec.name
goal.comment = rec.comment
goal.position = pose

response.goals.append(goal)

return response

def goals_cb(self, data):
""" Return list of available goals """
if self.response is None:

map_file = rospy.get_param('~map_file')
self.response = self.create_response(map_file)

return self.response

if __name__ == "__main__":
rospy.set_param('~map_file', '/home/mortenmj/maps/maps/glassgarden.map')
AvailableGoalsHandler()

Listing 6.1: Implementation of the AvailableGoals service.
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#!/usr/bin/env python

from __future__ import print_function

import rospy
from cyborg_msgs.srv import DistanceToGoal, DistanceToGoalResponse
from cyborg_types import Path, Pose
from rosarnl.srv import MakePlan

NAME = 'distance_to_goal_server'

class DistanceToGoalHandler():
def __init__(self):

rospy.init_node(NAME)

srv_name = '/cyborg/nav/get_distance_to_goal'
rospy.Service(srv_name, DistanceToGoal, self.__distance_cb)

srv_name = '/rosarnl_node/make_plan'
rospy.wait_for_service(srv_name)
try:

self._plan_svc = rospy.ServiceProxy(srv_name, MakePlan)
except rospy.ServiceException as e:

rospy.logerr("Service call to %s failed: %s" % (srv_name, e))

rospy.spin()

def __distance_cb(self, data):
# Create a Pose message to validate our input data
goal = Pose.from_pose(data.goal)

# Get a path to the given goal
path = Path.from_posearray(self._plan_svc(goal).path)

# Calculate distance if a path was found, or return inf
distance = path.length if path else float('inf')

return DistanceToGoalResponse(distance=distance)

if __name__ == "__main__":
DistanceToGoalHandler()

Listing 6.2: Implementation of the DistanceToGoal service.
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#!/usr/bin/env python

from __future__ import print_function

import rospy
from cyborg_msgs.srv import DistanceToGoal
from cyborg_msgs.srv import ClosestGoal, ClosestGoalResponse
from cyborg_util import Locations

NAME = 'closest_goal_server'

class ClosestGoalHandler():
def __init__(self):

rospy.init_node(NAME)

# Distance to goal service proxy
srv_name = '/cyborg/nav/get_distance_to_goal'
rospy.wait_for_service(srv_name)
try:

self._dist_svc = rospy.ServiceProxy(srv_name, DistanceToGoal)
except rospy.ServiceException as e:

rospy.logerr("Service call to %s failed: %s" % (srv_name, e))

# Closest goal service
srv_name = '/cyborg/nav/get_closest_goal'
rospy.Service(srv_name, ClosestGoal, self.goal_cb)

self.locations = Locations()

rospy.spin()

# Get the closest point of interest
def goal_cb(self, data):

# Get the distances to each location.
# If no path is found, the path will be empty
dist = dict((k, self._dist_svc(v).distance) for k, v in self.locations)

# Get entry with the shortest distance
name, dist = min(dist.iteritems(), key=lambda p: p[1])

return ClosestGoalResponse(name=name, distance=dist)

if __name__ == "__main__":
ClosestGoalHandler()

Listing 6.3: Implementation of the ClosestGoal service.

ClosestGoal service

For requesting the closest goal, or waypoint, from the current location of the Cyborg, a
service was created called ClosestGoal. Upon creation, this service instantiates a Location
object. The Location class is included in the attached source code. When the Location class
is instantiated, it will call the AvailableGoals service, and create a cache to hold the list of
available goals. The ClosestGoal service iterates through this list, calling the DistanceTo-
Goal service for each available goal, and return the goal with the shortest distance from the
Cyborg.
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#!/usr/bin/env python

import rospy
from rosarnl.srv import LoadMapFile

def load_map():
filename = rospy.get_param('~map_file')

rospy.wait_for_service('/rosarnl_node/load_map_file')
s = rospy.ServiceProxy('/rosarnl_node/load_map_file', LoadMapFile)

try:
s(filename)

except rospy.ServiceException as e:
print("Service failed: %s" % e)

if __name__ == "__main__":
rospy.set_param('~map_file', '/home/mortenmj/maps/maps/glassgarden.map')
load_map()

Listing 6.4: Implementation of the LoadMap service.

LoadMap service

The ros_arnl service LoadMap provides the ability to load a new map file to the Cyborg.
Unfortunately, the service does not allow for automatically loading a given map on startup.
In order to automatically load this map on startup, a simple service was created to call the
ros_arnl LoadMap service. The Cyborg LoadMap service takes a single startup parameter,
map_file, which is used to load the map using the ros_arnl LoadMap service. The service
implementation is shown in listing 6.4.
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7 Results and discussion

The objective of this thesis was to bring the Cyborg closer to a state where it could function
as amascot for the university. In order to do this, theCyborg needed a robost and extensible
control system as well as an awareness of the objects in the world around it. Here, the
results of the work that has been done towards these goals, described in chapters 3, 4 and 5
is presented. The following also includes a discussion of the outcome of the work that has
been done and how it may have been improved. Furthermore, some interesting avenues of
future work are presented.

7.1 Behavior tree control system

A behavior tree control system was implemented using the behavio3 library, described
in chapter 3. In addition to the main goals of being reliable and developer-friendly, the
system was found to be easily scalable. In particular, the ability to create behavior trees
using configuration files and load themusingROS launch files was found to be a significant
advantage. The graphical editor behavior3editor, shown in fig. 3.2, simplified behavior
tree creation further. Compared to the other approaches that were evaluated, where the
behavior tree was specified in code, this was found to simplify the design process.

The control system was tested using the MobileSim andMobileEyes software applications
fromMobileRobots, described in chapter 2. A map of the university campus was loaded
into the simulation software, and the Cyborg was tested in this environment. This can be
seen in fig. 7.1. In combination with the behavior tree visualization application, this setup
allowed for thorough testing of the control software.

It was found that behavior trees are well suited for splitting behavior into their smallest
components, and composing more complex behaviors from sub-trees of these units. How-
ever, it was found that composing complex control systems from basic blocks can lead
to behavior which can be hard to understand without the ability to visualize the flow of
control in the system.
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Figure 7.1: Screenshot of the Cyborg running in simulation, shown in
MobileEyes.

As described in chapter 2, a shortcoming in both finite state machines and behavior trees
is the difficulty in representing alternative behavior in different modes, e.g. a low power
mode and a normal mode. This is a known problem with both approaches, and it would
be useful to investigate possible solutions, as it could lead to more life-like behavior in the
future. As described by [33] there are two obvious ways to fix this, by combining finite state
machines and behavior trees. Firstly, one could implement one behavior tree per mode and
use a state machine to select which tree to run, or secondly one could implement each task
in the behavior tree as a state machine.

In addition to the current composite nodes that exist in behavior3, it would be useful to
have a form of parallel node. Such a node would make it possible to execute multiple
branches at the same time, e.g. in order to monitor the condition of important status
variables in one branch while running the Cyborg’s behavior in another.

It would also be useful to implement services that can attach to composite nodes, that are
run in the background when the composite node’s branch is running. This would make
it possible to retrieve status variables and write them to the blackboard, behind the scenes,
which would simplify condition checking in the behavior tree nodes themselves.

Unfortunately, these features were not investigated further since they were beyond the
scope of this thesis. As the Cyborg as a research platform is continuously subject to im-
provement and modification, this could be implemented in the course of future projects.
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7.2 Control systemmonitoring application

The visualization software, described in chapter 4, was developed in order to simplify cre-
ation and debugging of the behavior trees. The software has shown itself to be a valuable
diagnostic tool for this purpose. The end result can be seen in fig. 4.3 and fig. 4.4. The
software performed well, and as part of the rqt framework it could be used in the same
graphical interface as other useful plugins for rqt. This made it possible to create a cus-
tommonitoring application by selecting relevant rqt plugins and combining them into a
complete monitoring application.

In the course of developing behavior trees for testing the control system, it was found that
being able to visualize the control flow of the system greatly aided in the design process. On
some occasions the behavior of the system was difficult to understand initially, but once
visualized was simple to debug. It is believed to be useful to the project when increasingly
complex behavior is implemented in the scope of future projects.

The initial idea of being able to force the system to go to a particular state, described in chap-
ter 4, was dropped from consideration after consultation with co-advisor Martinius Knud-
sen. However, for the purpose of testing during the development of behavior trees, the
possibility to enable and disable parts of the tree from from the visualization interface
would have been interesting. For example, the user might click on a node to disable this
node and any children below the node, and click again to re-enable. As each node and
edge in the visualization is a Qt object it should be possible to execute callback functions
when these are interacted with. Communication between the visualization interface and
the behavior tree node would need to be planned thoroughly, making this a considerable
undertaking.

7.3 Object detection visualization

The third objective of this thesis was to enable the Cyborg to detect and classify objects in
the surroundingworld, as described in chapter 5. Twoparts of the imageprocessingpipeline
were considered. Thiswas evaluated running the same functionality as bothC++ andPython
implementations. The C++ implementation was tested both running the modules as nodes,
and as nodelets, as described in chapter 5.

Firstly, the time required for image transmission from the zed_ros_wrapper module to the
object_detection module In comparing the execution times of the different implementa-
tions, some interesting results were found. Firstly, the difference when the C++ implementa-
tion was run in the nodelet configuration compared to the node configuration was found
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to be small. While the difference in runtime measured in percent was almost 20%, this
amounts to a total difference of only 2.5 milliseconds. Furthermore, the image transmis-
sion step was found to be largely insignificant compared to the time it took to process the
image by running it through the neural network. Even for the Python implementation,
transmission time increases by only 30% compared to the nodelet implementation in C++ ,
and accounts for about 1% of the total processing time.

Task C++ (nodes) C++ (nodelets) Python

Image transmission 13.24 15.75 17.08
Object detection 2147.48 2147.48 1524.02

Table 7.1: Execution times of object detection implementations, in mil-
liseconds.

Secondly, as expected, the object detection took the same amount of time for both C++

implementations. However, the Python implementation took a shorter amount of time
clocking in at only 70% of the runtime of the C++ implementations. This difference was
confirmed not to be due to any differences in the pre- or post-processing done to the results,
but rather be due to differences in OpenCV itself. Similar results have also been confirmed
by others [43]. Other parts of the image processing, such as calculating the average depth
of the object within the image, were performed using the same underlying libraries in both
C++ and Python and as such achieve nearly identical performance.

It should be noted that these results are from running the neural network on a CPU, and
that improved performance for the object detection phase should be expected when run-
ning on a Graphical Processing Unit (GPU). While OpenCV supports OpenCL as a back-
end for the DNNmodule, this is only available on Intel GPUs, while the Cyborg project
uses an Nvidia GPU for image processing. Support for a CUDA backend for the DNN
module is under active development, it is expected that this will greatly improve perfor-
mance with minimal changes required to our software.

7.4 Other future work

A logical next step would be to combine the work described above. The behavior tree
control system and the object detection system could be integrated, in order to make the
Cyborg control system aware of objects in its surroundings. Making a control system that
is aware of objects in the surrounding world would make it possible to enable advanced
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life-like behavior. The ros_arnl node that is used to communicate with the Cyborg does
not provide the necessary low-level access to the map server that would be needed to place
objects on themap. Placing detected objects on themapwould allow for the path planning
system to take them into account, thereby making this a useful area of research.

The object detection implementations using OpenCV are fully functioning, but would
benefit from CUDA support in OpenCV. As shown by [41], CUDA support greatly ac-
celerates object detection on Nvidia platforms such as the one used by the Cyborg. This
would also be a useful avenue of research, as any contributions to OpenCV would benefit
not only the Cyborg project but the larger computer vision research community.
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8 Conclusion

In summary, the following tasks have been planned and implemented:

• a control system based on behavior trees

• a visualization application for the control system

• an object detection system using neural networks

Additionally, the author has guided and assisted EiT students contributing to the Cyborg.
The outcome of the major tasks has been described and discussed.

The behavior tree control system functions well, and is easier to extend than the state
machine system used previously. Both approaches have shortcomings in expressing multi-
modal behavior. This is expected, and is described in chapter 2 and chapter 7.

The visualization application proved to be a useful debugging tool when creating behavior
trees. Extending this software to provide more interaction with the behavior tree would be
useful, although technically challenging.

Theobject detection algorithmworkswell, butwouldbenefit from improvedGPUsupport
in the underlying library.

When developing software, it is easy to look back and criticize the architectural choices
that have been made. During the development of this thesis, revisiting previous code and
design choices has been a continuous process throughout the work that has been carried
out. In the end this has been worth the effort, as it has led to robust new functionality
implemented in the Cyborg, which yield considerable improvements to its control system.



71

Bibliography

[1] A. M. Knudsen, “NTNU Cyborg: A study into embodying Neuronal Cultures
throughRobotic Systems,” 131, 2016. [Online].Available:https://brage.bibsys.
no/xmlui/handle/11250/2414034.

[2] J. Waløen, “The NTNUCyborg v2.0: The Presentable Cyborg,” Norwegian Uni-
versity of Science and Technology, Tech. Rep., 2017. [Online]. Available: https:
//brage.bibsys.no/xmlui/handle/11250/2457153.

[3] MobileRobots, “Pioneer LX Mobile Research Platform,” Tech. Rep. [Online].
Available:http://www.mobilerobots.com/PDFs/Pioneer%20LX%20datasheet.
pdf.

[4] Stereolabs, Stereolabs ZED Documentation. [Online]. Available: https://docs.
stereolabs.com/overview/getting-started/introduction/ (visited
on 06/17/2018).

[5] Nvidia, “Jetson TX2 Developer Kit User Guide,” Tech. Rep., 2017.
[6] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and

A. Y. Ng, “ROS: an open-source Robot Operating System,” in ICRA Workshop on
Open Source Software, 2009.

[7] ROS,Documentation - ROS Wiki. [Online]. Available: http://wiki.ros.org/
(visited on 06/17/2018).

[8] MobileRobots, ARIA Documentation. [Online]. Available: http://robots.
mobilerobots.com/wiki/ARIA (visited on 06/17/2018).

[9] ——,ARNL Documentation. [Online].Available:http://robots.mobilerobots.
com/wiki/ARNL/MOGS%7B%5C_%7DNavigation%7B%5C_%7Dand%7B%5C_
%7DLocalization%7B%5C_%7DSoftware (visited on 06/17/2018).

[10] ——,MobileEyes Documentation. [Online].Available:http://robots.mobilerobots.
com/wiki/MobileEyes (visited on 06/21/2018).

[11] ——,MobileSim Documentation. [Online].Available:http://robots.mobilerobots.
com/wiki/MobileSim (visited on 06/21/2018).

[12] B. Gerkey, Why ROS 2.0? 2017. [Online]. Available: http://design.ros2.
org/articles/why%7B%5C_%7Dros2.html (visited on 02/08/2018).

https://brage.bibsys.no/xmlui/handle/11250/2414034
https://brage.bibsys.no/xmlui/handle/11250/2414034
https://brage.bibsys.no/xmlui/handle/11250/2457153
https://brage.bibsys.no/xmlui/handle/11250/2457153
http://www.mobilerobots.com/PDFs/Pioneer%20LX%20datasheet.pdf
http://www.mobilerobots.com/PDFs/Pioneer%20LX%20datasheet.pdf
https://docs.stereolabs.com/overview/getting-started/introduction/
https://docs.stereolabs.com/overview/getting-started/introduction/
http://wiki.ros.org/
http://robots.mobilerobots.com/wiki/ARIA
http://robots.mobilerobots.com/wiki/ARIA
http://robots.mobilerobots.com/wiki/ARNL/MOGS%7B%5C_%7DNavigation%7B%5C_%7Dand%7B%5C_%7DLocalization%7B%5C_%7DSoftware
http://robots.mobilerobots.com/wiki/ARNL/MOGS%7B%5C_%7DNavigation%7B%5C_%7Dand%7B%5C_%7DLocalization%7B%5C_%7DSoftware
http://robots.mobilerobots.com/wiki/ARNL/MOGS%7B%5C_%7DNavigation%7B%5C_%7Dand%7B%5C_%7DLocalization%7B%5C_%7DSoftware
http://robots.mobilerobots.com/wiki/MobileEyes
http://robots.mobilerobots.com/wiki/MobileEyes
http://robots.mobilerobots.com/wiki/MobileSim
http://robots.mobilerobots.com/wiki/MobileSim
http://design.ros2.org/articles/why%7B%5C_%7Dros2.html
http://design.ros2.org/articles/why%7B%5C_%7Dros2.html


72 Bibliography

[13] B. D. Perry, “The memories of states: How the brain stores and retrieves trau-
matic experience,” Splintered reflections: Images of the body in trauma., pp. 9–38,
1999. [Online]. Available: http://search.ebscohost.com/login.aspx?
direct=true%7B%5C&%7Ddb=psyh%7B%5C&%7DAN=1999-02692-001%7B%
5C&%7Dsite=ehost-live.

[14] G. Cybenko, “Approximations by superpositions of sigmoidal functions,”Approxi-
mation Theory and its Applications, 1989, issn: 10009221.doi:10.1007/BF02836480.

[15] K.Hornik, “Approximation capabilities ofmultilayer feedforward networks,”Neu-
ral Networks, vol. 4, no. 2, pp. 251–257, Jan. 1991, issn: 0893-6080. doi: 10.1016/
0893-6080(91)90009-T. [Online].Available:https://www.sciencedirect.
com/science/article/pii/089360809190009T?via%7B%5C%%7D3Dihub.

[16] T.M. (M.Mitchell,Machine Learning.McGraw-Hill, 1997, p. 414, isbn: 0070428077.
[Online]. Available: http://www.cs.cmu.edu/%7B~%7Dtom/mlbook.html.

[17] Y. LeCun and C. Cortes, “MNIST handwritten digit database,”AT&T Labs [On-
line]. Available: http://yann. lecun. com/exdb/mnist, 2010. [Online]. Available:
http://yann.lecun.com/exdb/mnist/.

[18] Mathworks, Convolutional Neural Network - MATLAB & Simulink. [Online].
Available: https://www.mathworks.com/content/mathworks/www/en/
discovery/convolutional-neural-network.html (visitedon04/07/2018).

[19] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going Deeper with Convolutions,” arXiv:1409.4842,
2014, issn: 10636919. doi: 10.1109/CVPR.2015.7298594. arXiv: 1409.4842.
[Online]. Available: https : / / www . cv - foundation . org / openaccess /
content%7B%5C_%7Dcvpr%7B%5C_%7D2015/papers/Szegedy%7B%5C_
%7DGoing%7B%5C_%7DDeeper%7B%5C_%7DWith%7B%5C_%7D2015%7B%
5C_%7DCVPR%7B%5C_%7Dpaper.pdf%20https://arxiv.org/abs/1409.
4842.

[20] L. Brown,GPU Accelerated Deep Learning for CUDNN V2, 2015. [Online]. Avail-
able: https://www.slideshare.net/NVIDIA/gpuaccelerated-deep-
learning-for-cudnn-v2 (visited on 04/07/2018).

[21] W. S.McCulloch andW. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115–133, 1943,
issn: 00074985. doi: 10.1007/BF02478259. arXiv: arXiv:1011.1669v3.
[Online]. Available: http://www.cs.cmu.edu/%7B~%7D./epxing/Class/
10715/reading/McCulloch.and.Pitts.pdf.

http://search.ebscohost.com/login.aspx?direct=true%7B%5C&%7Ddb=psyh%7B%5C&%7DAN=1999-02692-001%7B%5C&%7Dsite=ehost-live
http://search.ebscohost.com/login.aspx?direct=true%7B%5C&%7Ddb=psyh%7B%5C&%7DAN=1999-02692-001%7B%5C&%7Dsite=ehost-live
http://search.ebscohost.com/login.aspx?direct=true%7B%5C&%7Ddb=psyh%7B%5C&%7DAN=1999-02692-001%7B%5C&%7Dsite=ehost-live
https://doi.org/10.1007/BF02836480
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1016/0893-6080(91)90009-T
https://www.sciencedirect.com/science/article/pii/089360809190009T?via%7B%5C%%7D3Dihub
https://www.sciencedirect.com/science/article/pii/089360809190009T?via%7B%5C%%7D3Dihub
http://www.cs.cmu.edu/%7B~%7Dtom/mlbook.html
http://yann.lecun.com/exdb/mnist/
https://www.mathworks.com/content/mathworks/www/en/discovery/convolutional-neural-network.html
https://www.mathworks.com/content/mathworks/www/en/discovery/convolutional-neural-network.html
https://doi.org/10.1109/CVPR.2015.7298594
https://arxiv.org/abs/1409.4842
https://www.cv-foundation.org/openaccess/content%7B%5C_%7Dcvpr%7B%5C_%7D2015/papers/Szegedy%7B%5C_%7DGoing%7B%5C_%7DDeeper%7B%5C_%7DWith%7B%5C_%7D2015%7B%5C_%7DCVPR%7B%5C_%7Dpaper.pdf%20https://arxiv.org/abs/1409.4842
https://www.cv-foundation.org/openaccess/content%7B%5C_%7Dcvpr%7B%5C_%7D2015/papers/Szegedy%7B%5C_%7DGoing%7B%5C_%7DDeeper%7B%5C_%7DWith%7B%5C_%7D2015%7B%5C_%7DCVPR%7B%5C_%7Dpaper.pdf%20https://arxiv.org/abs/1409.4842
https://www.cv-foundation.org/openaccess/content%7B%5C_%7Dcvpr%7B%5C_%7D2015/papers/Szegedy%7B%5C_%7DGoing%7B%5C_%7DDeeper%7B%5C_%7DWith%7B%5C_%7D2015%7B%5C_%7DCVPR%7B%5C_%7Dpaper.pdf%20https://arxiv.org/abs/1409.4842
https://www.cv-foundation.org/openaccess/content%7B%5C_%7Dcvpr%7B%5C_%7D2015/papers/Szegedy%7B%5C_%7DGoing%7B%5C_%7DDeeper%7B%5C_%7DWith%7B%5C_%7D2015%7B%5C_%7DCVPR%7B%5C_%7Dpaper.pdf%20https://arxiv.org/abs/1409.4842
https://www.cv-foundation.org/openaccess/content%7B%5C_%7Dcvpr%7B%5C_%7D2015/papers/Szegedy%7B%5C_%7DGoing%7B%5C_%7DDeeper%7B%5C_%7DWith%7B%5C_%7D2015%7B%5C_%7DCVPR%7B%5C_%7Dpaper.pdf%20https://arxiv.org/abs/1409.4842
https://www.slideshare.net/NVIDIA/gpuaccelerated-deep-learning-for-cudnn-v2
https://www.slideshare.net/NVIDIA/gpuaccelerated-deep-learning-for-cudnn-v2
https://doi.org/10.1007/BF02478259
https://arxiv.org/abs/arXiv:1011.1669v3
http://www.cs.cmu.edu/%7B~%7D./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
http://www.cs.cmu.edu/%7B~%7D./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf


Bibliography 73

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,”Advances In Neural Information Processing Sys-
tems, pp. 1–9, 2012, issn: 10495258. doi: http://dx.doi.org/10.1016/
j.protcy.2014.09.007. arXiv: 1102.0183. [Online]. Available: https:
//papers.nips.cc/paper/4824-imagenet-classification-with-
deep-convolutional-neural-networks.pdf.

[23] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolutional Net-
works,” Nov. 2013. arXiv: 1311.2901. [Online]. Available: http://arxiv.org/
abs/1311.2901.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recogni-
tion,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778, 2016, issn: 1664-1078.doi: 10.1109/CVPR.2016.90. arXiv: 1512.
03385. [Online]. Available: http://ieeexplore.ieee.org/document/
7780459/.

[25] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for ac-
curate object detection and semantic segmentation,” Nov. 2013. arXiv: 1311.2524.
[Online]. Available: http://arxiv.org/abs/1311.2524.

[26] R. Girshick, “Fast R-CNN,” Proceedings of the IEEE International Conference on
Computer Vision, vol. 2015 Inter, pp. 1440–1448, Apr. 2015, issn: 15505499. doi:
10.1109/ICCV.2015.169. arXiv: 1504.08083. [Online]. Available: http:
//arxiv.org/abs/1504.08083.

[27] S. Ren, K.He, R. Girshick, and J. Sun, “Faster R-CNN:Towards Real-TimeObject
Detection with Region Proposal Networks,” IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, Jun. 2017, issn: 01628828.
doi: 10.1109/TPAMI.2016.2577031. arXiv: 1506.01497. [Online]. Avail-
able: http://arxiv.org/abs/1506.01497.

[28] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” Proceedings of the
IEEE International Conference on Computer Vision, vol. 2017-Octob, pp. 2980–
2988, Mar. 2017, issn: 15505499. doi: 10.1109/ICCV.2017.322. arXiv: 1703.
06870. [Online]. Available: http://arxiv.org/abs/1703.06870.

[29] JosephRedmon,Darknet: Open Source Neural Networks in C. [Online]. Available:
https://pjreddie.com/darknet/ (visited on 04/07/2018).

[30] J. Redmon, S.Divvala, R.Girshick, andA. Farhadi, “YouOnly LookOnce: Unified,
Real-Time Object Detection,” 2015, issn: 01689002. doi: 10.1109/CVPR.2016.
91. arXiv: 1506.02640. [Online]. Available: http://arxiv.org/abs/1506.
02640.

https://doi.org/http://dx.doi.org/10.1016/j.protcy.2014.09.007
https://doi.org/http://dx.doi.org/10.1016/j.protcy.2014.09.007
https://arxiv.org/abs/1102.0183
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
http://ieeexplore.ieee.org/document/7780459/
http://ieeexplore.ieee.org/document/7780459/
https://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
https://doi.org/10.1109/ICCV.2015.169
https://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
https://doi.org/10.1109/TPAMI.2016.2577031
https://arxiv.org/abs/1506.01497
http://arxiv.org/abs/1506.01497
https://doi.org/10.1109/ICCV.2017.322
https://arxiv.org/abs/1703.06870
https://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870
https://pjreddie.com/darknet/
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2016.91
https://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640


74 Bibliography

[31] NVIDIA,NVIDIA Drive PX2 self-driving car platform visualized - YouTube. [On-
line]. Available: https://www.youtube.com/watch?v=URmxzxYlmtg%7B%
5C&%7Dt=9s (visited on 04/08/2018).

[32] T.R.Andersen, “ControllerModule for theNTNUCyborg,” 2017. [Online].Avail-
able: https://brage.bibsys.no/xmlui/handle/11250/2441148.

[33] I.Millington and J.D.Funge,Artificial intelligence for games.MorganKaufmann/El-
sevier, 2009, p. 870, isbn: 9780123747310.

[34] J. Bohren, SMACH Documentation. [Online]. Available: http://wiki.ros.
org/smach (visited on 06/17/2018).

[35] M. Colledanchise, R. Santomo, and P. Ögren, behavior_tree - ROS Wiki. [Online].
Available: http://wiki.ros.org/behavior%7B%5C_%7Dtree (visited on
06/16/2018).

[36] P. Goebel, pi_trees - ROS Wiki. [Online]. Available: http://wiki.ros.org/
pi%7B%5C_%7Dtrees (visited on 06/16/2018).

[37] R. d. P. Pereira and P. M. Engel, “A Framework for Constrained and Adaptive
Behavior-BasedAgents,” Jun. 2015. arXiv:1506.02312. [Online].Available:http:
//arxiv.org/abs/1506.02312.

[38] Pi Robot, “Programming with Behavior Trees and ROS,” Tech. Rep. [Online].
Available: http://www.pirobot.org/ros/pi%7B%5C_%7Dtrees.pdf.

[39] M. Fowler, TwoHardThings. [Online]. Available: https : / / martinfowler .
com/bliki/TwoHardThings.html (visited on 06/17/2018).

[40] R. Toris, J. Kammerl, D. V. Lu, J. Lee, O. C. Jenkins, S. Osentoski, M. Wills, and S.
Chernova, “RobotWeb Tools: Efficient messaging for cloud robotics,” IEEE Inter-
national Conference on Intelligent Robots and Systems, vol. 2015-Decem, pp. 4530–
4537, 2015, issn: 21530866. doi: 10 . 1109 / IROS . 2015 . 7354021. [Online].
Available: http://robotwebtools.org/pdf/paper.pdf.

[41] T. Opheim, F. Vatsendvik, A. Moltumyr, and E. Henriksen, “Prosjektrapport -
Gruppe 4B,” Tech. Rep., 2018. [Online]. Available: https://ntnu.app.box.
com/v/robot/file/294980938949.

[42] A. Johansen, M. Lervik, A. Moan, T. Myrvang, A. Johannessen, and F. Samdal Sol-
berg, “Prosjektrapport - Gruppe 1B,” Tech. Rep., 2018. [Online]. Available: https:
//ntnu.app.box.com/v/robot/file/294979313498.

[43] D. Liu, OpenCV DNN speed compare in Python, C#, C++. [Online]. Available:
http://www.died.tw/2017/11/opencv-dnn-speed-compare-in-
python-c-c.html (visited on 06/11/2018).

https://www.youtube.com/watch?v=URmxzxYlmtg%7B%5C&%7Dt=9s
https://www.youtube.com/watch?v=URmxzxYlmtg%7B%5C&%7Dt=9s
https://brage.bibsys.no/xmlui/handle/11250/2441148
http://wiki.ros.org/smach
http://wiki.ros.org/smach
http://wiki.ros.org/behavior%7B%5C_%7Dtree
http://wiki.ros.org/pi%7B%5C_%7Dtrees
http://wiki.ros.org/pi%7B%5C_%7Dtrees
https://arxiv.org/abs/1506.02312
http://arxiv.org/abs/1506.02312
http://arxiv.org/abs/1506.02312
http://www.pirobot.org/ros/pi%7B%5C_%7Dtrees.pdf
https://martinfowler.com/bliki/TwoHardThings.html
https://martinfowler.com/bliki/TwoHardThings.html
https://doi.org/10.1109/IROS.2015.7354021
http://robotwebtools.org/pdf/paper.pdf
https://ntnu.app.box.com/v/robot/file/294980938949
https://ntnu.app.box.com/v/robot/file/294980938949
https://ntnu.app.box.com/v/robot/file/294979313498
https://ntnu.app.box.com/v/robot/file/294979313498
http://www.died.tw/2017/11/opencv-dnn-speed-compare-in-python-c-c.html
http://www.died.tw/2017/11/opencv-dnn-speed-compare-in-python-c-c.html

	Abstract
	Forord
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Previous work on the Cyborg project
	Contributions of the author

	Background
	Hardware
	Software
	Biological neural networks
	Artificial neural networks
	Finite State Machines
	Behavior trees

	Implementation of the behavior tree control system
	Goals
	Evaluation of alternatives
	Implementation

	Implementation of the control system monitoring application
	Goals
	Evaluation of alternatives
	Implementation

	Implementation of object detection and classification
	Goals
	Evaluation of alternatives
	Implementation

	Other tasks
	Rack mounting system
	Convenience functionality for future ROS development

	Results and discussion
	Behavior tree control system
	Control system monitoring application
	Object detection visualization
	Other future work

	Conclusion
	Bibliography

