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Preface

This master’s thesis is completed as part of the course TMA4900 at The Department

of Mathematical Sciences at The Norwegian University of Science and Technology

(NTNU), in June 2018.

The aim of this thesis is to analyze a stochastic model for tumor evolution. The

thesis is written in such a way that it is expected that the interested reader has some

basic knowledge of cell biology as there are many definitions that will be presented.

Anyhow, the definition list on page 64 will hopefully simplify the reading.

The topic was suggested by my supervisor Professor Mette Langaas and Co-Supervisor

Thea Bjørnland as a result of recent research in this field, specifically in Williams et al.

(2016). The everlasting importance of understanding the biological phenomenon of

cancer, and the substantial ripple effects new knowledge can serve the entire world,

made this topic extremely motivating for me.

I would like to express my deep gratitude to Professor Mette Langaas and PhD

student Thea Bjørnland for your great guidance, support, motivation and curiosity

during the whole process. It has been a pleasure to work with both of you.
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Sammendrag

Vi utvikler en statistisk forgreiningsprosess med akkumulerende mu-

tasjoner til å modellere nøytral tumorevolusjon. Ved å bruke denne mod-

ellen vil det vises i detalj hvilke approksimasjoner og forenklinger som er

nødvendig for å utlede det samme uttrykket som i Williams et al. (2016),

som karakteriserer en nøytral tumorevolusjon. Stokastiske simuleringer vil

aktivt bli brukt for å validere approksimasjonene med hensyn på nøyak-

tighet.

Modellen vil så ta hensyn til DNA-sekvensiering, og en metode for å få

forståelsen av unøyaktighetene av observerte allelfrekvenser vil bli utledet.

Til slutt vil det bli argumentert for at det fremdeles er for mye usikkerhet

til å utvikle en statistisk hypotesetest som evaluerer hvorvidt en tumor

har utviklet seg nøytralt eller ikke.
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Abstract

We develop a branching process with accumulating mutations to model

neutral tumor evolution. Furthermore, by using this model, it will be

shown in detail which approximations and simplifications that are neces-

sary in order to deduce the same expression as in Williams et al. (2016)

characterizing a neutral tumor evolution. Stochastic simulations will ac-

tively be used in order to validate approximations with respect to accu-

racy.

The model will then take DNA sequencing into account, and a method for

incorporating the inaccuracies of observed variant allele frequencies will

be developed.

Lastly, it will be argued that there are yet too much uncertainties in or-

der to infer, using statistical hypothesis tests, whether a neutral tumor

evolution actually is a good description of evolution for certain tumors.
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1 Introduction

A tumor is an abnormal mass or tissue that arises as a result of uncontrolled growth

of cells. It is thought that the uncontrolled growth of the tumor is initiated by a

multistep process involving the occurrence of somatic mutations, which then can give

a cell selective advantages in terms of larger probability of survival and reproduction

than surrounding cells (Cooper 2000).

Inferring the evolution of a detected tumor is valuable with respect to prognosis

(Williams et al. 2016). However, tumor evolution has shown to be difficult to char-

acterize. One reason for this is that longitudinal measurements after detection of a

tumor can be impractical or even unethical (Davis et al. 2017). Therefore, the evo-

lutionary process of the tumor must often be inferred based on the characteristics of

the tumor when it is first detected.

Another important reason why tumor evolution is difficult to characterize is intra-

tumor heterogeneity (ITH) (Gerashchenko et al. 2013). This means, among other

things, that within a tumor there is a large variation in genetic material in terms

of somatic mutations among different tumor cells. In other words, there are many

subsets of tumor cells in the tumor, often denoted as subclones, that share specific

somatic mutations that other tumor cells do not possess.

In search of the causes of ITH, this has led to much discussion. A major theory is

clonal evolution as first proposed in Nowell (1976), as a result of an ongoing acquisition

of somatic mutations providing cells with new selective advantages during evolution.

This can then lead to mutations that give cells selective advantages or, said in another

word, increased fitness. These mutations are then called driver mutations, creating

subclones where each subclone consist of cells that share a specific driver mutation.

Clonal evolution can then be regarded to follow the theory of Darwinian natural
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selection, where the cells most adapted to the environment are most likely to survive

and reproduce.

However, new research by Sottoriva et al. (2015) showed that the pattern of ITH

may not necessarily need such complex causes as mentioned above. Sottoriva et al.

(2015) showed that often, colorectal cancers predominantly grow as a single expansion

consisting of a large number of intermixed subclones. From this observation, one can

reason that the pattern of ITH is rather as a result of passenger mutations arising

during the evolution. Passenger mutation does not alter the fitness of the cells. This

was investigated further in Williams et al. (2016) leading to a neutral tumor evolution

model, which we define as the following:

Definition 1.1 (Neutral tumor evolution). In neutral tumor evolution all tumor

cells have the same fitness. All mutations occurring after tumor initiation are therefore

passenger mutations.

Using this definition, Williams et al. (2016) established a model and deduced an

expression that characterizes a neutral tumor evolution as a function of the mutation-

and growth rate, or as they call it: The mutation rate per effective cell division. The

model is based on the observed value of the variant allele frequency (VAF) which in

general can be defined as the following:

Definition 1.2 (Variant allele frequency (VAF)). Given a sample of cells and a

particular allele i positioned at a specific locus. Let Si denote the number of times

allele i appears in the sample, and let L denote the total number of copies of the locus

in the sample. The variant allele frequency, VAFi, for allele i is then given by

VAFi = Si
L
. (1)

Somatic mutations in the tumor can be detected by using DNA sequencing tech-

nology, and furthermore the corresponding VAFs can be estimated. In Williams et al.
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(2016), the mutation rate per effective cell division is estimated from observed data

based on the deduced expression characterizing neutral tumor evolution.

1.1 The aim of this thesis

The neutral tumor evolution model is a typical scientific example following Occam’s

razor (Kapp 1958), in being a model consisting of as few assumptions or parameters

as possible in order to explain a phenomenon. The model of neutral tumor evolution

in Williams et al. (2016) is based on a constant mutation rate, a constant growth

rate, and an average number of chromosome sets equal to the ploidy π in each can-

cer cell. Furthermore, considering a continuous-time model, the average number of

somatic mutations having VAF ≥ f in a neutrally evolving tumor, was shown to be

proportional to 1/f .

In this thesis, a discrete-time branching process with accumulating passenger muta-

tions is developed. The primary aim of this thesis is to show in details how a similar

expression as that given in Williams et al. (2016) can be deduced, denoted as M̂N(f)

in this thesis, using this branching process model. In this deduction, it will become

clear which approximations are made, and each approximation will be validated using

stochastic simulations.

As mentioned earlier, somatic mutations can be observed and their respective

VAFs can be estimated using DNA sequencing. A statistical model for DNA sequenc-

ing similar to the one given in Sun et al. (2017) is developed. Using this model,

observed data of VAFs are simulated for a neutrally evolving tumor. The simulated

observed data are then compared with the theoretical expression deduced in Williams

et al. (2016). In addition to this, the inaccuracies of the observed VAFs due to DNA-

sequencing will be discussed.
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In the end, the validity of using the theoretical results deduced in Williams et al.

(2016) and in this thesis to infer if a tumor evolved neutrally, will be discussed.

In summary, the thesis will consist of the following tasks:

1. Develop a branching process with accumulating mutations to model neutral

tumor evolution, and use this model to deduce the same expression as given in

Williams et al. (2016). In addition the result will be validated using stochastic

simulations.

2. Develop a statistical model for DNA sequencing, and compare simulated ob-

served data from a neutrally evolving tumor with power law-distribution.

3. Discuss the validity of using our theoretical results to infer neutral tumor evo-

lution from real data.
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2 Statistical theory

The following statistical theory will be applied during this thesis. The notation and

statistical theory is inspired by Ross (2014), Karr (1993) and Casella & Berger (2002).

2.1 Stochastic process

Definition 2.1. A stochastic process, X(t), t ∈ T , is a collection of stochastic vari-

ables. For each index t ∈ T , X(t) is a stochastic variable.

Usually, t is interpreted as time, hence the notion of a process, but one may also

think of it as a position in space. In general X(t) denotes the state at time t, while

x(t) is the observation at time t. The process can be in a finite or infinite number of

states given by the domain Ω. From the definition of a state, the domain Ω can also

be called a state space. The stochastic process is said to be discrete if T is a countable

set and continuous if T can take any real number in an interval. As t changes, the

process may go from one state to another, a transition.

2.2 Discrete stochastic processes

If the stochastic process is discrete, instead of writing X(t) for a discrete number t, a

common notation is to write Xn to denote the stochastic variable giving the state of

the process after n transitions. The reason for this is that the interest is in how the

stochastic process changes and not when it changes. Let X0 be the initial state.

In a stochastic process there is a probability of going from one specific state to

another given by the transition probabilities. A fundamental idea of predicting the

next transition, and therefore the next state, is to assume that this will be dependent

on all the former states. For that reason, consider transition n + 1 from a discrete
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stochastic process and let i, j ∈ Ω, where i is the state after n transitions and j is the

state after transition n+ 1. The probability of going from state i to state j given all

the former states i, in−1, in−2, ..., i0 ∈ Ω is written as:

P (Xn+1 = j|Xn = i,Xn−1 = in−1, Xn−2 = in−2, ...., X0 = i0). (2)

This notation shows one typical part of the model of what governs the stochastic

process. A model is a simplification of the real world and is made up of assumptions.

The assumption here is that the probability of going from a random state i ∈ Ω to

another random state j ∈ Ω is constant during the process (independent of n).

2.3 Markov chains

Definition 2.2. A Markov chain is a stochastic process where the Markov property

holds, namely that the transition probability is only dependent on the present state.

A Markov chain is a special case of (2) with one additional assumption, namely

that the transition probability of going from state i ∈ Ω to a state j ∈ Ω is only

dependent on state i, and not the former states:

P (Xn+1 = j|Xn = i,Xn−1 = in−1, ..., X0 = i0) = P (Xn+1 = j|Xn = i). (3)

This is called the Markov property. Another word for it is to say that the process

is memoryless.

2.4 Branching process

A branching process is a special case of a discrete stochastic process with Markov

property. Visualize a population of individuals. The interest is now how the population

grows from one individual to many. The individuals behave independently of each

others. The first individual in the population is defined to be generation 0. During
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one generation, an individual can give birth to i ≥ 0 offsprings or daughter cells before

dying. The probability for an individual to give birth to i new individuals is given by

Pi. Here, i ∈ ω where the sample space ω is finite. See Figure 1 for a visualization of

a branching process.

Figure 1: A cartoon of a branching process

The expected number of offsprings denoted by µ from an individual is given by:

µ =
∑
i∈ω

iPi. (4)

The variance, σ2, in the number of offsprings from an individual is given by:

σ2 =
∑
i∈ω

(i− µ)2Pi. (5)

Let Xn be the stochastic variable containing the number of individuals after gen-

eration n where n ∈ {0, 1, 2, ...}. Generation 1 is the number of offsprings from gen-

eration 0 and, in general, generation n is the number of offsprings from generation

n − 1. As Xn will only be dependent on the former generation, n − 1, by definition

this is a Markov chain.

Let Zk be the the stochastic variable giving the number of offsprings from indi-

vidual k in generation n− 1, where E[Zk] = µ and Var (Zk) = σ as given in (4) and

(5). The total number of individuals in generation n is then given by:
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Xn =
Xn−1∑
k=1

Zk. (6)

One interest could be to find the expected number of cells, E[Xn] in generation

n. By conditioning on Xn−1 we find that:

E[Xn] = E[E[Xn|Xn−1]] = E[
Xn−1∑
i=1

E[Zi]]

= E[µXn−1] = µE[Xn−1],
(7)

where µ is given in (4).

As E[X0] = 1, then E[X1] = µ, E[X2] = µ2 up to

E[Xn] = µn. (8)

The variance of Xn can be computed using the conditional variance formula (Ross

(2014) Chapter 3 p. 112):

Var(Xn) = E[Var(Xn|Xn−1)] + Var(E[Xn|Xn−1]). (9)

Looking at one specific generation n, using Equation (8) and by the definition of

independence:

E [Var(Xn|Xn−1)] = E

Xn−1∑
k=1

Var(Zk)
 = E

[
Xn−1σ

2
]

= σ2µn−1.

Furthermore, by using that Var(aX) = a2 VarX for any constant a and any

stochastic variable X, one can show that:

Var(E[Xn|Xn−1]) = Var(
Xn−1∑
k=1

E[Zk]) = Var(µXn−1) = µ2 Var(Xn−1),

showing a recurrence relation between Xn−1 and Xn. Using this recurrence rela-

tion, the variance, Var(Xn) can in fact be derived:
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Var(Xn) = E[Xn−1σ
2] + Var(Xn−1µ)

= σ2µn−1 + µ2 Var(Xn−1)

= σ2µn−1 + µ2
(
σ2µn−2 + µ2 Var(Xn−2)

)
= σ2(µn−1 + µn) + µ4 Var(Xn−2)

= σ2(µn−1 + µn) + µ4
(
σ2µn−3 + µ2 Var(Xn−3)

)
. . .

= σ2(µn−1 + µn + . . .+ µ2n−2) + µ2n Var(X0)

= σ2(µn−1 + µn + . . .+ µ2n−2)

= σ2µn−1(1 + µ+ µ2 + . . .+ µn−1).

The last expression can be seen as a geometric series which has an explicit form

for µ 6= 1 and is equal to n if µ = 1. Therefore,

Var(Xn) =


σ2µn−1

(
1−µn

1−µ

)
, if µ 6= 1

nσ2, if µ = 1.
(10)

2.4.1 Probability of extinction

Let the probability for the population to die out be given by π0. Starting with the

first individual, the population may already die out if the first individual dies with

probability P0. If it does not die out, but creates offsprings, consider one of the

children. This child gives offsprings with the same probability as its mother, and so

the probability that this children or its offsprings will die out also has probability

equal to π0. Conditioning on whether the first cell dies with probability P0 or gives

i offsprings with probability Pi, the probability that the population dies out is given

by:

π0 =
n∑
i=0

πi0Pi. (11)
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Equation (11) results in solving f(π) = 0 for a polynomial function f(π) which has

possibly several solutions. However, it can be shown that the probability of extinction

is the smallest possible solution of the polynomial equation that is greater than zero1.

As seen from Equation (8), if µ given by Equation (4) is less than one, µ < 1,

then π0 = 1 since limn→∞E[Xn] = limn→∞ µ
n = 0.

2.5 Discrete probability distributions

Definition 2.3. The Binomial distribution, P (X = k;N, p), with N, k ∈ N0, X ≤ N ,

and p ∈ [0, 1] is given by:

P (X = k;N, p) =
(
N

k

)
pk(1− p)N−k. (12)

The binomial distribution is used to model the number of successes out of N

trials when each trial is independent of the other trials and the probability of having

a success is given by p. The mean value of X is Np.

Definition 2.4. The Poisson distribution, P (X = k;λ), with k ∈ N0 and parameter

λ ∈ R>0 is given by:

P (X = k;λ) = λk

k! e
−λ. (13)

The Poisson distribution is used as a model for the number of occurrences in a

period of time or in space. The mean value and the variance of X is given by λ.

Theorem 2.1. Consider both X and Y to be independent and Poisson distributed

with rate λ1 and λ2 respectively, X ∼ Poisson(λ1), Y ∼ Poisson(λ2). The sum X +Y

is then also Poisson distributed with rate equal to the sum of the rates, X + Y ∼

Poisson(λ1 + λ2).
1See Grinstead & Snell (2003) from page 378.
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Theorem 2.2 (Poisson limit theorem). Consider the binomial distribution (12).

Let N → ∞ and p → 0 such that the mean λ = Np remains constant. Then the

following approximation applies:(
N

k

)
pk(1− p)N−k ≈ λk

k! e
−λ (14)

The result of this Theorem is often called law of rare events. The reason for this

is the fact that when the number of "trials" N → ∞ while the probability, p → 0 in

such a way that Np is kept constant, the binomial distribution can be approximated

as a Poisson distribution.

Definition 2.5. The Gamma-Poisson mixture distribution, P (X = k|ψ, p) with ψ ∈

R+, and p ∈ [0, 1] is given by:

P (X = k;N, p) = Γ(ψ + k)
Γ(ψ)k! p

k(1− p)ψ,

where ψ denotes the size and p is a probability of success. Γ(x) denotes the

Gamma-function2. The mean value of X is given by τ = ψ(1 − p)/p. The distri-

bution can be reparameterized by setting p = ψ/(ψ + τ), meaning the distribution is

described through the parameters τ and ψ. The distribution is then given by:

P (X = k;ψ, τ) = Γ(ψ + k)
Γ(ψ)k!

(
ψ

ψ + τ

)k (
τ

ψ + τ

)ψ
.

The variance, σ2, as a function of τ and ψ is σ2 = τ + τ 2/ψ.

In this thesis, X ∼ GP(τ, ψ), will mean that the random variable X is Gamma-

Poisson mixture distributed.
2See appendix B
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2.6 Ordinary least squares method

Given explanatory variables x1, x2, ..., xn and response variables y1, y2, ..., yn. Consider

a simple linear regression model, ŷi = αxi + β. In simple linear regression, the coeffi-

cients α and β are determined using the ordinary least squares method by minimizing

the following expression:

min
α,β

Q(α, β) = min
α,β

n∑
i=1

(yi − αxi − β)2 .

This can be solved analytically (see for instance Walpole et al. (2014) on page

450), and coefficients given by α̂ and β̂ are given by:

α̂ =
∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2 ,

and

β̂ = ȳ − α̂x̄.

2.7 Hypothesis Testing

Definition 2.6. A hypothesis test is a rule that decides whether a given hypothesis

called the null hypothesis, H0, is chosen to be accepted or rejected given a sample of

values, X. The complement of H0 is the alternative hypothesis, H1, which is accepted

if H0 is rejected. More formally:

1. For a given set S of sample values, H0 is accepted as true.

2. For sample values not part of the set S, but in the complement set, Sc, H0 is

rejected and so H1 is accepted.

Remark the underline of the word chosen. It’s up to the constructor of the hy-

pothesis test what is acceptable enough in order to accept H0. Accepting H0 is not

the same as proving H0, but rather the test failed to conclude that H0 is false.
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2.8 Approximation methods

Definition 2.7. Let T1,...,Tk be random variables with means θ1, ..., θk and define T

= (T1, ..., Tk) and θ = (θ1, ..., θk). Let g(T) be any differentiable function. Then the

first-order Taylor series expansion given the observed values t = (t1, ..., tk) is given

by:

g(t) = g(θ) +
k∑
i=1

g′i(θ)(ti − θi) + Remainder,

where g′i(θ) = ∂
∂ti
g(t)|t1=θ1,...,tk=θk

.

This expression for first-order Taylor series of a multivariate function gives rise

to an approximation method for E[g(T)]. First, observing that E(ti − θi) = 0, the

first-order approximation shows that:

E[g(T)] ≈ g(θ) +
k∑
i=1

g′i(θ)E[Ti − θi] = g(θ). (15)

The method of approximations of expectancies and variances using Taylor series

is often called the Delta method.

2.9 Conditional probability and conditional expectation for

discrete distributions

Definition 2.8. Given the event A in addition to the mutually exclusive events

B1, . . . , Bn, whose probabilities sum to 1, ∑n
i P (Bi) = 1. By the law of total probabil-

ity, the probability of event A, P (A), may be written:

P (A) =
n∑
i=1

P (A|Bi)P (Bi) (16)

Definition 2.9. Given a discrete random variable X in addition to any discrete

random variable Y . Then, by the law of total expectation:

E[X] =
∑
y

E[X|Y = y]P (Y = y) = EY [E[X|Y ]] (17)
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2.10 Moment generating function (MGF)

The moment generating function (MGF), MX(t), for a random variable X is by

definition:

MX(t) = E[etX ], (18)

for any t ∈ R, where the expectation exists.
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3 A branching process with accumulating muta-

tions for modelling neutral tumor evolution

In this thesis, the growth of a tumor evolving neutrally as defined in 1.1 will be mod-

elled as a branching process as described in Section 2. The idea behind this model

is based on the assumption that all tumor cells are regarded to have equal fitness,

meaning that all tumor cells during the whole evolution are equally likely to survive

and reproduce. Strictly speaking, the tumor size should be regarded to change with

one cell at a time, where each cell at some time point after birth takes a decision to

either divide or die. However, as the tumor cells have equal fitness, the tumor cells can

be expected to reproduce at same rate. Therefore, visualizing the growth of a tumor

as a branching tree beginning with the first tumor cell in generation 0, the change

in the number of tumor cells from generation to generation is regarded to reflect the

change in tumor size in discrete time3.

In addition to model the growth of the tumor, the accumulation of passenger muta-

tions must also be modelled in order to model neutral tumor evolution as described

in Definition 1.1. New mutations are allowed to happen in each generation. Having

a model for both the growth of the tumor and the accumulation of passenger muta-

tions, the aim is ultimately to show how to deduce the theoretical expression given in

Williams et al. (2016), yielding a characteristic pattern for a neutrally evolving tumor.

3.1 Underlying assumptions of the model

Let Xi denote the number of tumor cells in generation i, and X0 = 1 represent the

first tumor cell. This first tumor cell has selective advantages, or in other words the
3See Appendix A for more mathematical motivation of the model.
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probability for the cell to reproduce is higher than surrounding (nontumor-)cells. The

tumor cell can then divide and the two new tumor cells, called daughter cells, are

assumed to inherit the same selective advantages. This process then may continue

creating a colony of tumor cells.

The fate of any tumor cell is assumed to be either to die or to divide into two

new cells. Using the same notation as in Section 2, P0 ≥ 0, P2 ≥ 0 and Pi = 0 ∀

i 6= {0, 2}. After a cell division, new mutations may occur. Here, only point mutations

are considered. A new mutation occurring in one cell is assumed to be inherited

by all the potential future daughter cells. The number of new mutations occurring

in a daughter cell is modelled to be Poisson distributed. The reasoning behind this

probability model may be explained in such a way that the average probability, p, for

a point mutation to occur at at specific locus somewhere along the whole genome is

very low, and the mutations are regarded to be independent of each other. Referring

to Equation (12) in Section 2, as N → ∞ and p → 0 the binomial distribution can

be approximated as a Poisson distribution as seen in Theorem 2.2. N will represent

the large number of nucleotide bases in the genome. Denoting P as the number of

mutations occurring in a daughter cell, one formally writes:

P ∼ Poisson(λ), (19)

where λ is the average number of somatic mutations a new daughter cell possesses.

The assumptions above are really as a result of the so-called Infinite Sites Model (ISM)

(Kimura 1968). The model is based on three assumptions, where the first assumption

is necessary in order for the two next assumptions to hold:

1. The genome is regarded to be a sequence of infinite number of nucleotides (the

same as setting N →∞ above).

2. Every new mutation occurs at a novel site.
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3. Once a mutation at a novel site has occurred, it is not allowed to mutate back

to the origin.

By the definition of neutral tumor evolution in Definition 1.1, only passenger

mutations are allowed to occur during evolution, as opposed to driver mutations. A

passenger mutation does not change the fitness of a cell, while a driver mutation does.

The fitness is a measure of reproductive success. Increasing the fitness of the cell will

increase the cell’s probability of dividing. The driver mutations are only allowed to

arise prior to tumor initiation following The Big Bang model in Sottoriva et al. (2015).

One can now visualize the model in all its generality as in Figure 2.

Figure 2: Drawing summarizing the branching process with accumulating mutations

to model neutral tumor evolution.
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3.2 Mathematical details of model

As described earlier, for neutral tumor evolution no driver mutations are assumed

to occur during the process. This means that all cells have the same probability of

dividing during the whole process. Visualizing this case as a branching process, let

P2 = β and P0 = 1 − β be the probability for any cell to respectively divide or die,

noting that Pi = 0 ∀ i 6= {0, 2} . As described earlier, λ is the mutation rate given

in Equation (19). Furthermore, the analysis for this model is based on the fact that

β > 0.5 since a tumor will not grow large if β < 0.5 as shown in Section 2. From

Equation (4), the expected number of offsprings from a tumor cell, µ, is given by

µ = 0(1− β) + 2β = 2β,

while the variance given in Equation (5), σ2, is given by

σ2 = (0− µ)2(1− β) + (2− µ)2β = 4β(1− β),

which is intuitively maximized for β = 0.5. From Equation (8), the expected

number of tumor cells in generation i, E[Xi], is given by

E[Xi] = (2β)i, (20)

while from Equation (9) the variance in generation i, Var(Xi) is given by

Var(Xi) =


4β(1− β)(2β)i−1

(
1−(2β)i

1−2β

)
if β 6= 0.5

4iβ(1− β) if β = 0.5
(21)

Let Zi
j be the number of offsprings for a tumor cell j in generation i. Given the

number of tumor cells Xi in generation i, the total number of tumor cells in the next

generation, Xi+1, is given by Xi+1|Xi = ∑Xi
j=1 Z

i
j. Knowing the distribution of Zi

j, one

realizes that the number of cells that divide in generation i is binomial distributed.
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Let Di
j be the stochastic variable equal to 1 if cell j in generation i divides and 0

otherwise. Then P (Di
j = 1) = P (Zi

j = 2) = β and P (Di
j = 0) = P (Zi

j = 0) = 1− β,

and the total number of cells that divide in generation i, Di, is given by

Di|Xi =
Xi∑
j=1

Di
j ∼ Bin(Xi, β).

Knowing how many cells that divide in generation i implies knowing how many

cells there are in generation i+ 1 given by:

Xi+1 = 2Di,

which is two times a binomial distributed variable. The parameter Xi in the distri-

bution of Di will also be 2 times a binomial distributed variable, Xi = 2Di−1. This

result shows that the number of cells in each generation, apart from the first, must

be an even number.

We will now introduce how somatic passenger mutations accumulate during the

growth of the tumor.

3.2.1 Variant allele frequences

Suppose a new passenger mutation arises in a specific locus in a cell in generation i

with a total of Xi cells. In this model, it is regarded that each cell has π copies of this

locus during the whole growth, and therefore in generation i, there are a total of πXi

copies of this locus. The immediate VAF, using Definition 1.2 with L = πXi, for this

specific somatic mutation is then 1/πXi. In other words, when a passenger mutation

arises, the total number of cells in the population at that moment is approximated

to be equal to the number of cells in the corresponding generation in the branching

tree. As explained before, this approximation is based on the fact that all cells divide

at the same rate. For future generations the VAF may change, but what is known for

sure is that the VAF will be of the form:
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V AF =


n
m
, where n

m
< 1/π, n,m ∈ N

0, if all cells having the mutation die out.
(22)

The largest VAF a somatic mutation can have is when it is present in all tumor

cells, which in this model with no copy number variations means a VAF of 1/π.

3.2.2 Properites of surviving tumors

Since cells are allowed to die, the tumor can die as a whole before it has even been

observed. Suppose a tumor cell has been initiated. From Equation (11), the probability

that this cell or all future offsprings of this cell will die, ρ, is given by

ρ =


1
β
− 1, for β > 0.5

1, for β ≤ 0.5
(23)

As only surviving tumors are observed, Equation (20) must be modified, condi-

tioned on whether the tumor eventually dies out or not:

E[Xi] = E[Xi| dies]ρ+ E[Xi| survives](1− ρ). (24)

For instance, the term E[Xi| dies] is the expected value of the number of cells

in generation i given that the tumor at some point will die out (the tumor may die

before generation i or after). The term E[Xi| survives] means the expected value of

number of cells in generation i given that the tumor will increase to infinite size. This

means for instance that E[X1| survives] = 2 for sure. Using Equation (20) and (24)

this yields that E[X1| dies] = 2(1− β). This can also be computed:

E[X1| dies] = 0P (X1 = 0| dies) + 2P (X1 = 2| dies)

= 2P (X1 = 2 ∩ dies)
P (dies) = 2β(1/β − 1)2

(1/β − 1) = 2(1− β),

which motivates Equation (24). Computations of E[Xi| dies] for i > 1 become

infeasible.
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For tumors observed, generation i will naturally be large, and so without any

formal proof the following limit must hold:

lim
i→∞

E[Xi| dies] = 0.

The observed expected number of cells in generation i, when i is large, can then

be regarded to be given by:

E[Xi| survives] ≈ E[Xi]
1− ρ = (2β)i β

2β − 1 . (25)

As an example, consider the case where β = 0.55. Around 350 surviving popula-

tions were simulated reaching generation 150. The sample mean of the number of cells

was computed for each generation and compared with Equation (25). In addition, in

order to show how the variation in population changes for increasing generations, an

interval equal to two sample standard deviation is added for each generation. See

Figure 3.

3.3 Simulations

According to the mathematical model of neutral tumor evolution explained above, the

only parameters needed in order to construct a tumor is the probability of division β

and the mutation rate λ. However, even if the model only requires a few parameters,

the corresponding distribution of VAFs of a growing tumor is complex except the

unrealistic case were β = 1. This motivates for simulations of a growing tumor,

starting with one tumor cell that may divide and produce two new tumor cells possibly

with additional passenger mutations. This process may continue producing a surviving

tumor consisting of a spectre of somatic mutations with different VAFs. An advantage

of simulating neutral tumor evolution is that there is no need to simulate a large

tumor consisting of billions of cells. As the behaviour of neutral tumor evolution is

the same during the growth, the same pattern (VAF-distribution) will be shown no
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Figure 3: Plot shows that Equation (25) is a good approximation of expected popula-

tion growth. Variation increases as the generation increases as can be seen by looking

at the increase in length of the intervals for each respective sample mean, where each

interval equals to two sample standard deviations.

matter the size of the simulated tumor. The simulation is built in the programming

language R (R Core Team 2014). The code is available at https://github.com/

palVJ/tumorEvolution.git and is also given at the end of this thesis.

The simulations will be used to either confirm analytic results or to explore further

when analytic results seem infeasible. The choice of parameters is motivated by earlier

work as given in Jones et al. (2007), where the average point mutation per base pair in

colorectal cancers is estimated to be ≈ 5 ·10−10. As there are ≈ 3 ·109 base pairs in the

genome, the average whole-genome mutation rate per cell division is then estimated

to be the product of these key numbers equal to around 1.5. Inspecting only exome

regions which is about 1 % of the whole genome, the mutation rate per cell division is

estimated to be around 0.015. A mutation rate of µ = 1.5 is used in the simulations.
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The analytical results will anyway be independent of what the value of the mutation

rate is. The probability of cell division, β, must both intuitively and according to the

model be larger than 0.5 in order for a tumor to grow large. As was done in Sun et al.

(2017), β = 0.55 in all simulations.

3.4 A pure birth model

As a toy example, consider the case with β = 1 meaning all cells survive. The result

of this special case gives fruitful information that can be exploited for the realistic

case where β 6= 1. With this pure birth model and ISM, the VAF of a somatic

mutation given in Definition 1.2 will be constant for all future generations once a

new, and therefore unique, mutation has occurred. In order to see this, suppose a

new mutation occurred in generation i which consist of 2i cells as can be seen from

Equation (8). As the mutation is unique only occurring in one cell out of total 2i cells,

the VAF in the pure birth case, fpb(i), with ploidy, π, is equal to:

fpb(i) = 1
π2i (26)

As the cell possessing this mutation divides, two new cells will possess the unique

mutation out of total 2i+1 cells in generation i + 1. The VAF in generation i + 1 is

then:

fpb(i) = 2
π2i+1 = 1

π2i .

In other words, by the assumptions of ISM the VAF remains the same in all future

generations. Suppose a tumor grows according to the pure birth model. Then, each

recorded VAF belongs to a specific generation i in the branching tree, consisting of

2i cells (by Equation (8)). Let T ni (fpb(i)) denote the total number of unique somatic

mutations appearing in generation i, and therefore as discussed above will have VAF

equal to fpb(i) with 1 ≤ i ≤ n. The model then says, using Equation (2.1), that:
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T ni (fpb(i)) ∼ Poisson(2iλ) ∼ Poisson
(
λ

π

1
fpb(i)

)
, (27)

since T ni (fpb(i)) is a result of mutations occurring in generation i, where each

of the 2i possibly mutated cells acquires a given number of mutations according to

Equation (19) with rate λ. From Definition 2.4, the expected value of T ni (fpb(i)) is:

E[T ni (fpb(i))] = λ

π

1
fpb(i)

∝ 1
fpb(i)

. (28)

Furthermore, as was done in Williams et al. (2016), the expected number of so-

matic mutations with VAF larger than some specified value fpb(k), given byM(fpb(k)),

can be computed:

M(fpb(k)) =
k∑
i=1

E[T ni (fpb(i))] = λ

π

k∑
i=1

1
fpb(i)

= λ
k∑
i=1

2i = λ(1− 2k+1

1− 2 − 1)

= λ(2k+1 − 2) = 2λ(2k − 1) = 2λ
(

1
πfpb(k) − 1

)
= 2λ

(
1

πfpb(k) −
π

π

)

= 2λ
π

(
1

fpb(k) − π
)

= 2λ
π

(
1

fpb(k) −
1

fpb(0)

)
= 2λ

π

(
1

fpb(k) −
1
f0

)
,

(29)

where f0 = fpb(0) = 1/π is the maximum VAF a somatic mutation can have

corresponding to truncal somatic mutations already present from the first tumor

cell. Hence, M(fpb(k)) is proportional to 1/fpb(k), M(fpb(k)) ∝ 1/fpb(k), with slope

2λ/π = λ since π = 2.

3.5 A birth and death model

When generalizing the case allowing tumor cells to die, meaning that β < 1, the

number of cells in generation i is now stochastic, not deterministic as in the pure

birth case. Furthermore, the tumor may eventually die out with probability ρ as seen

24



in Section 2. However, in reality only surviving tumors are observed. From Equation

(24):

E[Xi| survives] = E[Xi]
1− ρ −

ρ

1− ρE[Xi| dies], (30)

Denote Yi = Xi| survives. Furthermore, consider somatic mutations arising in gen-

eration i. Only some of the mutations will be present in the observed tumor since only

some of the cells in generation i will produce surviving descendants with probability

(1− ρ). Let Wi denote the number of cells in generation i that will produce surviving

descendants. Given Yi = yi, and since all cells are regarded to be independent of each

other:

Wi|(Yi = yi) ∼ Bin(yi, (1− ρ)).

Using the conditional expectation rule:

E[Wi] = E[E[Wi|Yi]] = E[(1− ρ)Yi] = (1− ρ)E[Yi].

Let Ti denote the number of somatic mutations created in generation i that will

survive. This will be equal to the number of somatic mutations created in cells giving

surviving descendents given by Wi. If Wi = wi, then:

Ti|(Wi = wi) ∼
wi∑
k=1

Poisson(λ) = Poisson(wiλ).

Once again using the conditional expectation rule, the expected number of sur-

viving somatic mutations created in generation i is given by:

E[Ti] = E[E[Ti|Wi]] = E[λWi] = λE[Wi]

= λ(1− ρ)E[Yi]

= λ(1− ρ)
(
E[Xi]
1− ρ −

ρ

1− ρE[Xi| dies]
)

= λE[Xi]− λρE[Xi| dies]

(31)
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Remember that Xi denotes the unconditional number of cells in generation i,

where E[Xi] is given in Equation (20), while E[Xi| dies] is the expected number of

tumor cells in generation i conditioned that the tumor eventually dies.

Using the same philosophy as Williams et al. (2016), one can estimate the expected

number of total surviving somatic mutations that arose in all generations before or

in generation k, given by mN(k):

mN(k) =
k∑
i=1

E[Ti] = λ
k∑
i=1

(2β)i − λρ
k∑
i=1

E[Xi| dies]

= λ

(
1− (2β)k+1

1− 2β − 1
)
− λρ

k∑
i=1

E[Xi| dies]

= 2λ β

2β − 1(2β)k − λ

2β − 1 − λ− λρ
k∑
i=1

E[Xi| dies]

= 2βλ
2β − 1(2β)k − 2βλ

2β − 1 − λρ
k∑
i=1

E[Xi| dies].

(32)

Do notice that Equation (32) is exact. Without going too much into detail of the

distribution of Xi| dies, it is reasonable to think that E[Xi| dies] converges to zero

as the generation i increases since it is given that the tumor will eventually die. As

an example, consider the case where the cell division probability is β = 0.55. By

Equation (23), the probability for a cell and its descendents to eventually die out

is around 0.8. For a population reaching x = 10 cells at one point, the probability

that this population will eventually die out is ρ10 = 0.810 ≈ 0.1 which is quite low.

Therefore, most likely extinct populations does not reach a very large maximum

population since the probability for a tumor to die out given the present number

of tumor cells, ρx = elog(ρ)x, decreases exponentially as the number of tumor cells x

increases. With this argument in mind, this means that the following infinite sum:
∞∑
i=1

E[Xi| dies] = C(β), (33)
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Figure 4: The cumulative sum ∑k
i=1 E[Xi|dies] seems to converge, and is about 7 with

the choice of β = 0.55.

for some constant C(β) dependent on β, the cell division probability. The question

is then how large C(β) is, and how fast the sum converges. As an example, consider

the case where β = 0.55. Simulating only extinct populations, the corresponding

cumulative sum ∑k
i=1 E[Xi| dies] as a function of generation i is plotted in Figure 4

showing that indeed the sum seems to converge4. A histogram showing the distribution

of when the population dies is also given in Figure 4.

If the cumulative sum converges, then also:

lim
k→∞

mN(k) = 2βλ
2β − 1(2β)k − 2βλ

2β − 1 − λρC(β),

converges. In fact, given β = 0.55(ρ ≈ 0.8), Figure 4 shows that C(β) ≈ 7. This

means, given for instance that λ = 1.5, that the last term in Equation (32) converges
4The simulations should not be regarded to give exact results.
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to about λρC(β) ≈ 8.4. The last term in Equation (32) is therefore expected to

be negligible compared to the two first terms. In other words, when k is sufficiently

large, mN(k) will in general increase exponentially. This property can be confirmed

by simulations. Let MN(k) be the total number of surviving somatic mutations that

arose in all generations less than or equal to some generation k5, where β = 0.55 and

λ = 1.5. 1000 tumors are simulated reaching last generation j = 150, and thenMN(k)

for each tumor for generation k = 1 : 40 is computed. For a given generation k, the

mean mN(k) = E[MN(k)] is estimated, given by m̂N(k), by taking the sample mean

from all tumors from the corresponding generation. The sample mean is an unbiased

estimator no matter what the real distribution of MN(k) is. As the cumulative sum∑k
i=1 E[Xi| dies] is regarded to be negligible, instead define m̃N(k) to be:

m̃N(k) = 2βλ
2β − 1(2β)k − 2βλ

2β − 1 , (34)

Then, m̃N(k) is compared to m̂N(k) from the 1000 tumors simulated. In addition

the sample standard deviation of MN(k) for each generation is given having the

purpose of showing the variation in the data. The result is given in Figure 5.

As one can see from Figure 5, m̃N(k) increases in the same way as m̂N(k). Remem-

ber that mN(k) in Equation 32 is in fact exact, while m̂N(k) is the sample mean with

E[m̂N(k)] = mN(k) meaning that limk→∞E[m̃N(k) − m̂N(k)] = λρC(β) in general.

It can also be seen from the figure that m̃N(k) > m̂N(k). Notice the large variation

in MN(k) visualized as as interval equal to two times the sample standard deviation

for each generation k.

5Do notice the difference between mN (k) and MN (k): MN (k) is stochastic, mN (k) = E[MN (k)].
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Figure 5: m̃N(k) (blue points) is a good approximation of m̂N(k)(orange points). As

can be seen, even though m̃N(k) > m̂N(k), the difference is negligible for increasing

generations.

3.5.1 How to adapt the model to observed data

In observed data of somatic mutations, there is of course no information of when each

mutation occurred. Therefore, in order for the branching process model to be practical

it must be independent of which generation each somatic mutation appeared, but

rather be a function of the corresponding VAF in real data. Furthermore, the results

so far has been based on expectancies. However, in reality this is not the kind of data

one observes, but rather a single sample from an unknown statistical distribution,

which in this case will be the VAF-distribution.

As a new somatic mutation arises in generation i > 0, let Sji be the number of cells
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having this mutation in generation j, and let Yj denote the total number of cells in

generation j, where it is known that both the tumor and the mutation survives. The

VAF of this specific somatic mutation, given by f ji , in any future generation j > i is

given by:

f ji = Sji
πYj

,

Consider the expected VAF of this new mutation denoted by E[f ji ] after a gener-

ation j, for j >> i meaning that the tumor has grown large. Using the Delta method

as described in Section 2, where E[Sji ] ≈ (2β)j−i β
2β−1 and E[Yj] ≈ (2β)j β

2β−1 for

large j from Equation (25), the expected VAF of this somatic mutation in first order

approximation is given by:

E[fi] = lim
j→∞

E[f ji ] ≈ E[Sji ]
πE[Yj]

≈ (2β)j−i
π(2β)j = 1

π(2β)i , (35)

which is independent of j just as in the pure birth case. Notice the resemblance

with Equation (26). The difference is that Equation (26) is exact in the special case

β = 1, while in Equation (35), f ji is a random variable, and the expected value is

only approximated to first order. The idea is still the same, namely that somatic

mutations arising at the same generation will be expected to have equal VAFs also in

future because all cells grow at the same rate. This is just one way to explain neutral

tumor evolution. An interesting question is how accurate Approximation (35) is when

j is finite. For sure one must be certain that generation j is large enough compared

to generation i, but regardless of this the first order approximation of the expected

value will be biased. Notice that Approximation (35) is independent of the value of

mutation rate λ, but as the number of arising somatic mutations per generation will

tend to increase for increasing generations, the number of samples per generation

will also tend to increase for increasing generations. In order to check the accuracy

of Approximation (35), 1000 tumors with parameters β = 0.55 and λ = 1.5 are
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simulated where the last generation is j = 150. The VAF of each somatic mutation

reaching last generation, and therefore assumed to survive6, is stored along with the

corresponding generation the mutation arose. Afterwards, given a generation i the

sample mean for all surviving somatic mutations arising in generation i from all the

1000 tumors is computed for i = 1 to 40. The approximated mean to first order,

E[fi], given in Approximation (35) is then compared to these sample means. A plot

including the sample mean for each generation i, with a corresponding interval equal

to two sample standard deviations is given in Figure 6.

Figure 6: 1000 tumors are simulated with last generation j = 150. E[fi] = 1
π(2β)i is a

quite good approximation of E[f ji ] when j is large. An interval equal to two standard

deviations is plotted for the samples in each generation.

Figure 6 clearly shows that E[fi] is a good approximation of E[f ji ], especially for
6Note that this is an approximation
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large generations, but also acceptable for lower generations. The less accurate sample

means for low generations may be due to a smaller amount of samples per generation,

larger variation in VAF and the fact that E[fi] is a first order approximation. A second

order approximation of f ji is given by:

E

[
Si
πXj

]
≈ 1
π

(
E[Sji ]
E[Xj]

− Cov(Sji , Xj)
E[Xj]2

+ E[Sji ]
E[Xj]3

Var(Xj)
)
, (36)

It is reasonable to think that the covariance term will be positive, since a tumor

that grows large will also tend to have somatic mutations being present in a large

amount of the cells. It is also reasonable that the covariance increases for decreasing

generations since the growth of somatic mutations arising early is more dependent on

the growth of the tumor as a whole. This means that the second term in Expression

(36) will be smaller for increasing generations. The third and last term varies as

E[Sji ] which will be smaller for increasing generation. Therefore, the second order

approximation will converge to the first order approximation when increasing the

generation.

Approximation (35) given by E[fi] can now be used to reformulate Equation (32).

By setting (2β)k = 1/(πE[fk]) and assuming the cumulative sum given in Equation

(33) is negligible, let mN(k) be approximated as:

mN(k) = 2λ β

2β − 1(2β)k − 2βλ
2β − 1 − λρ

k∑
i=1

E[Xi| dies]

≈ 2βλ
π(2β − 1)

1
E[fk]

− 2βλ
2β − 1 − λρ

k∑
i=1

E[Xi| dies]

= λ

1− ρ

(
1

E[fk]
− 2

)
− λρ

k∑
i=1

E[Xi| dies]

= λ

1− ρ

(
1

E[fk]
− 1
f0

)
− λρ

k∑
i=1

E[Xi| dies]

≈ λ

1− ρ

(
1

E[fk]
− 1
f0

)
,

(37)
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where it has been used that π = 2, ρ is given by Equation (23) and where

f0 = 1/π = 1/2 is defined to be the VAF corresponding to truncal mutations be-

ing present in the first tumor cell and therefore also in all future tumor cells. Notice

the resemblance with the pure birth case in Equation (29). The only difference is that

the variable fpb(k) in the pure birth model in Equation (29) is replaced by the ex-

pected value of the corresponding random variable in the birth-death model, denoted

as E[fk]. In addition, the mutation rate λ is now divided by 1− ρ in Approximation

(37). However, for pure birth, ρ = 0, so Approximation (37) coincides with Equation

(29) in this case. From now on, let Approximation (37) be denoted as m̃N(E[fk]),

namely:

m̃N(E[fk]) = λ

1− ρ

(
1

E[fk]
− 1
f0

)
. (38)

As a reminder, E[fk] is the expected VAF for a surviving somatic mutation arising

in generation k in a large growing tumor. However, in reality one looks at observed

data from a specific tumor with estimated VAFs of somatic mutations without know-

ing when each mutation occurred. How can mN(E[fk]) be applied to real data when

it is both based on expectancy and dependent on when each mutation occurred? One

idea is to look back at the pure birth case where β = 1. In that case, once a so-

matic mutation arises in generation k, the VAF of this mutation will stay constant

during the whole evolution given by Equation (26). Somatic mutations arising after

generation k will always have a lower VAF. For the birth and death case, this is no

longer the case since a somatic mutation occurring in generation k + 1 may end up

with a larger VAF than a somatic mutation occurring in generation k, or earlier,

with probability larger than zero. This can also be observed by looking at the sample

standard deviations given in Figure 6 showing that there is a large spread of possible

VAF-values for each generation. However, by looking at E[fi] given in Approximation

(35), a somatic mutation occurring in generation k + 1 is expected to have a smaller
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VAF than a somatic mutation occurring in generation k. Having this in mind, one

can expect that somatic mutations having VAF larger than E[fk] occurred in any

generation earlier than generation k. Motivated by this observation, let M̂N(E[fk])

approximate the cumulative number of somatic mutations having VAF equal to or

larger than E[fk]:

M̂N(E[fk]) = λ

1− ρ

(
1

E[fk]
− 1
f0

)
.

M̂N(E[fk]) may be regarded as the "best guess" based on what is expected to

happen. What is nice about M̂N(E[fk]) is that it is as a function of a frequency and

not a specific generation. There is however a problem about M̂N(E[fk]), namely that

E[fk] given in Approximation (35) is dependent on β, which is unknown in observed

data. Despite this inconvenience, as M̂N(E[fk]) changes inversely proportional to

E[fk], M̂N(E[fk]) ∝ 1/E[fk], it is tempting to ask if this is also the case no matter

what the VAF is, namely that M̂N(f) ∝ 1/f . This finally leads to the following

relation:

M̂N(f) = λ

1− ρ

(
1
f
− 1
f0

)
, (39)

This relation is the corresponding result to what was found in Williams et al.

(2016) for a continuous model. M̂N(f) is now an estimator for MN(f), which de-

notes the cumulative number of somatic mutations having VAF ≥ f for a neutrally

evolving tumor. Let M(f) in general denote the observed cumulative number of so-

matic mutations having VAF ≥ f . M(f) can in fact be found from real sequencing

data. Furthermore, the accuracy of M̂N(f) given in Equation (39) can be inspected

by looking at how MN(f) varies as a function of f of simulated tumors. According

to Approximation (39), M̂N(f) ∝ 1/f . Therefore, MN(f) should be approximately

linear as a function of 1/f with slope equal to λ/(1− ρ).
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3.5.2 Validation of model using simulated data

In order to justify Expression (39), 20 tumors are simulated to reach last generation

j = 150 for each set of given parameters: (β = 0.6, λ = 1.5), (β = 0.55, λ = 1.5),

(β = 0.55, λ = 1) and (β = 0.55, λ = 2). For each set of parameters, MN(f) for each

tumor is then plotted, see Figure 7. Included in the plot is the Expression M̂N(f) given

in Equation (39) with corresponding parameters. For each tumor simulated, MN(f)

is fitted to a simple linear regression as a function of 1/f , and the corresponding slope

and intercept is estimated by ordinary least squares method7.

The plots show indeed that MN(f) is approximately linear as a function of 1/f .

The sample mean of the slope for the region 1/f ∈ [0, 100] for each parameterized

neutral tumor is investigated and compared with Expression (39) as shown in Table

1. It shows that the estimated slope given by λ/(1− ρ) in M̂N(f) does not differ very

much from the sample mean of the slope. The sample standard deviation also shows

that within tumors having the same parameters, the slope does not vary particularly

much. According to Expression (39), the slope increases linearly as a function of

λ when β is constant. A doubling of λ would therefore double the slope. This is

also nearly the case when comparing the two tumors (β = 0.55, λ = 1) and (β =

0.55, λ = 2). Likewise, when λ is constant, the slope seems to change as a function of

1/(1− ρ) = β/(2β − 1).

From this analysis, it seems like the slope of MN(f) for a tumor that evolved

neutrally is a good estimator for the expression λ/(1 − ρ), which Williams et al.

(2016) calls the mutation rate per effective cell division. However, it is important to

remember the approximations that are used in this thesis:

1. The population is approximated to grow as a discrete branching process.
7The R function lm() was applied.
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Figure 7: From the simulated tumors, neutral tumor evolution indicates that the

function MN(f) is approximately linear as a function of 1/f. In addition, M̂N(f) in

black dots is a good estimation of MN(f) in these particular simulations.
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β λ Sample mean of slope Sample standard deviation λ/(1− ρ)

0.55 1.5 8.03 1.1 8.25

0.6 1.5 4.33 0.5 4.5

0.55 1 5.47 0.9 5.5

0.55 2 10.61 1.4 11

Table 1: Table showing sample mean and estimated slope λ/(1 − ρ) for 20 tumors

simulated reaching generation 150 for different parameters λ and β.

2. E[f ji ] is approximated to first order, when j is large, given by E[fi] in Equation

(35).

3. The approximation of mN(k) given in (37) by using Approximation (35) and

assuming the cumulative sum given in (33) is negligible.

4. The transition from mN(k) in (37) to M̂N(E[fk]).

5. The transition from M̂N(E[fk]) to M̂N(f) given in Equation (39).

The first three approximations are based on the assumption of neutral tumor

evolution, and according to the analysis summarized in Figure 4 and 6, the approxi-

mations seem to be appropriate. The inaccuracies due to the fourth and fifth approx-

imation are more difficult to interpret. Yet, the simulations and corresponding plots

in Figure 7 indicates that the slope of MN(f) still is a good estimate of the mutation

rate per effective cell division in a neutrally evolving tumor.

Notice that only somatic mutations appearing after tumor initiation is accounted

for when deducing M̂N(f) as an approximation of MN(f). In reality, a tumor is

complex consisting of both healthy cells and tumor cells, and somatic mutations that

appeared both before and after tumor initiation.
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4 The observation model

Until now, tumor evolution has only been investigated from a theoretical point of

view. In order to test the goodness of our model, it must be applied to data from

tissue samples surgically removed from tumors in patients. The tissue is analyzed

using DNA sequencing which will be explained briefly below. Afterwards, similar to

what is done in Williams et al. (2016), a statistical observation model where the

process of DNA sequencing is included will be developed.

4.1 DNA sequencing

DNA Sequencing technology is used to determine the order of nucleotides in the DNA

of the cells. The efficiency of the technology has improved a lot over the past decades

partly as a result of a transition from sequential to massively parallel processing.

Modern sequencing technologies are complex, and there are several approaches. The

collection of these new technologies goes often by the name "Next-generation sequenc-

ing". Usually, the idea is to fragment the genome of the cells into small pieces. The

fragments are then processed, and by using sequencing instruments, the order of nu-

cleotide bases in the original fragments is then determined producing reads. Due to

massively parallel processing, a large amount of reads can be produced simultaneously.

Each read is then mapped to a reference genome which consists of a representative

genome in healthy cells. In this way the position of the corresponding fragment in the

genome can be inferred. The overlapping of different reads can furthermore be used to

infer if a mutation has occurred, and in addition estimate the proportion of cells that

has this mutation yielding an observed VAF. The number of nucleotide bases that

is mapped to a specific locus in the genome is called the read depth (Lindner et al.

2013). An illustration summarizing the process is given in Figure 8. For whole-exome

sequencing, only the exome of the genome is investigated.
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Figure 8: Illustration showing the idea behind sequencing. It also shows two fictive

computations of VAF where mutations have occurred.

As was explained, the observed VAFs are only estimates. In order to analyze the

goodness of any model, neutral evolution or not, the process from actual VAF-values

to observed VAF-values must also be accounted for. This will be explained later on.

4.2 TCGA-data

In this thesis, the observation model developed will be illustrated using Next Gen-

eration sequencing data from The Cancer Genome Atlas (TCGA). TCGA is a col-

laboration between National Cancer Institute (NCI) and National Human Genome

Research Institute (NHGRI). The result is a large database consisting of sequencing

data from 33 different types of cancer. All tumors from TCGA have been resected in

order to provide as much as tissue from the tumor as possible. Some data are pub-

lic, for instance the Mutation Annotation Format(MAF) in the data category Simple

Nucleotide Variation consisting of estimated VAF and read depth for each discovered

mutation at a single nucleotide base. This is the format that will be used in this

thesis, therefore other aspects of the tumor such as copy number variations will not

be covered. A MAF-file is an already preprocessed file based on raw sequencing data.
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Preprosessing and estimating the VAFs from raw sequencing data will not be covered

in this thesis. The MAF-files analysed are preprocessed using the MuTect method

(Cibulskis et al. 2013). In this thesis, only the cancer type Colon Adenocarcinoma

(COAD) will be investigated as this is one of the cancer types that are analyzed and

compared with a neutral tumor evolution in Williams et al. (2016). Data from this

specific cancer type will be denoted as TCGA-COAD data from now on.

4.3 The observation model - Sequencing taken into account

So far, only somatic mutations appearing after tumor initiation, so-called subclonal

mutations, have been modelled. In real data, somatic mutations appearing before

tumor initiation, so-called truncal mutations, will also be present in the tumor. The

question is then how to distinguish between truncal and subclonal mutations. In

addition to this, after resection not only tumor cells will be sequenced, but healthy

cells too. How should this be accounted for? A resection may be only a part of the

whole tumor. The heterogeneity of a tumor indicates that the geometric position of

where the resection is done is also important. How to cope with this? Lastly, when the

tumor cells are sequenced, what is the accuracy of estimated VAFs, and what does

the accuracy depend on? In this section, these questions will be addressed resulting

in a statistical observation model.

4.3.1 Introducing tumor purity and read depth into the model

When sequencing a tissue sample, it is important to recognize that this sample will

consist of both healthy cells and tumor cells. However, the neutral tumor evolution

model derived in Section 3 does not account for healthy cells, and the VAF for each

mutation is only computed among tumor cells. The tumor purity is the proportion of

tumor cells in a sample. For a tissue sample from a resection consisting of a total of
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X cells, a given number of these cells are not tumor cells. In general, let κ denote the

tumor purity. Then there are κX tumor cells in the sample. For a somatic mutation

with VAF among only tumor cells denoted as V, the real VAF of this somatic mutation

in the tissue sample consisting of both tumor cells and healthy cells, VAFreal, is given

by:

VAFreal = κV. (40)

For a given number of tumor cells, the more healthy cells there are in the sample,

the lower the real VAF will be for a given somatic mutation since the VAF is inversely

proportional to the total number of cells as can be seen in Definition 1.2.

The real VAF of any somatic mutation can, as explained above, be estimated by

DNA sequencing. The observed VAF after sequencing is in addition to the tumor

purity also dependent on other parameters. One important parameter is the read

depth for each somatic mutation recorded. A read depth of 100 for a given locus,

often written 100x, will for example mean that a specific locus within the reference

genome is mapped 100 times (100 nucleotide bases is recorded). A somatic mutation

observed 10 times will then give an observed VAF of 10/100. The larger the VAF of a

somatic mutation is, the more likely it to be observed among the reads. In fact, given

a somatic mutation positioned at a specific locus with VAFreal = κV, the probability

for any read covering this locus to include the somatic mutation can be regarded to be

equal to VAFreal. For a read depth equal to R, assuming the reads are independent,

the number of times a somatic mutation will be observed, denoted as O, is then

binomial distributed:

O ∼ Bin(κV,R).

Therefore, the distribution of observed VAFs after sequencing can then be given

as:
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VAFobserved ∼
O

R
. (41)

To link this to what has been done so far, V is the distribution of subclonal somatic

mutations among only tumor cells. One model for this distribution may be the neutral

tumor evolution as discussed theoretically in Section 3. What has not been discussed

yet is how the read depth varies among the somatic mutations.

4.3.2 Read depth

When investigating sequencing data from TCGA, one observes a large variety in read

depth. For instance, for a specific tumor from the cancer type "Colon Adenocarci-

noma", Figure 9 shows the distribution of read depth among all the observed somatic

mutations.

Figure 9: Histogram of observed read depths after sequencing from a TCGA-sample

for the cancer type "Colon Adenocarcinoma" (COAD)

42



This large variation should be accounted for in the model in such a way that the

read depth also is a random variable. In fact, based on some strong assumptions a

known distribution can be applied. Let G denote the total number of base pairs of

interest in the reference genome8. Furthermore, let L denote the length of each read

(segment of nucleotide bases) and assume for now that the length is constant. Lastly,

let N denote the total number of reads from the sequencing. Assume the position

where each read is mapped to the genome follows a discrete uniform distribution.

The probability for a given read to cover a specific nucleotide base in the reference

genome is then L/G. Let Cb denote the number of times a given nucleotide base is

covered, which is what is called the read depth. Assuming that each covering is in

fact detected, then:

P (Cb = c) =
(
N

c

)(
L

G

)c (
1− L

G

)N−c

,

which is a binomial distribution. Using Theorem 2.2, assuming N is large and L/G

is small which is realistic in this case, the binomial distribution can be approximated

by a Poisson distribution, namely9:

Cb∼̇Poisson
(
NL

G

)
.

The expression NL/G can be seen as the average read depth for each position.

An average read depth of around 100 is normal for the tumors sequenced in the

"TCGA-COAD"-project. In Figure 9, the average read depth is 133. Looking more

closely at Figure 9, in this case the distribution has way more variance than a Poisson

distribution, but still has a nice unimodal form. To improve the model further the

randomness in both N and L should also be accounted for. In fact, by letting NL/G be

gamma distributed, one can show that the read depth will follow a Gamma-Poission
8For whole-exome sequencing, G ∼ 107

9Read the sign ∼̇ as "approximately distributed as".
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mixture distribution10. This is a common way to approximate the distribution of

read depth as for instance proposed in Miller et al. (2011) or Sun et al. (2017). The

Gamma-Poisson mixture distribution has two parameters as described in Definition

2.5, the mean and the size parameter. What makes this distribution attractive in this

particular case in comparison to the Poisson distribution, is that the variance can

be chosen independently from the mean. In order to estimate the parameters in the

Gamma-Poisson mixture distribution, one way is to use recorded read depth data to

find the maximum likelihood estimates. However, this must be done numerically since

there are no closed-form expressions for the corresponding estimators11.

Equation (41) can then be generalized:

V AFobserved ∼
O

R
, (42)

where O ∼ Bin(κV,R) and R ∼ GP(τ, ψ), with mean τ and size ψ.

We now focus on how variation in read depth and tumor purity affect the actual

VAF-distribution. What is important to recognize since the read depth is limited in

size, is that the lower the VAF is for a mutation, the more likely it is for the mutation

to not be observed or underestimated after sequencing. For the case where a tumor

evolves neutrally, DNA sequencing with average read depth around 100 would only

provide trustworthy values from early stages of the tumor evolution. By recognizing

this fact, one can understand how tumor purity affects the actual VAF-distribution.

From Equation (40), the lower the tumor purity is, the lower the real VAFs will

be, making it even more likely for mutations not to be observed or underestimated.

Therefore, a low tumor purity will also give larger inaccuracies in the observed VAFs.
10See appendix B for derivation.
11In this analysis, the R function fitdistr from the R package MASS is used to find the MLE-

estimates.
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One can now visualize the impact of read depth by comparing MN(f) from a sim-

ulated tumor evolving neutrally withMN(f) from observed VAFs given in Expression

(42). This is done by first simulating a tumor with β = 0.55 and λ = 1.512. Then,

for a given tumor purity equal to κ = 0.7, MN(f) for the real VAF-values is plotted

by using Equation (40). On the same plot, MN(f) for the observed VAFs given by

Expression (42) is also added with mean read depth equal to 80, 90, 100, 110, 120,

130 and 190 respectively. The size parameter is kept constant equal to 2.5. See Figure

10.

Figure 10: Simulated MN(f) from tumor evolving neutrally as black points versus

observedMN(f) in colours after observation model given in Expression (42). "av. r.d"

means average read depth.

12The tumor reaches generation j = 150. Remember that the size of the tumor does not matter

in the case of neutral tumor evolution.
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Figure 10 clearly shows that the larger the read depth, the more accurate is the

observed MN(f). However, even for a large read depth equal to 130, VAFs less than

or equal to 0.016 corresponding to 1/VAF equal to 60 or more, the observed MN(f)

clearly underestimates the true MN(f). For read depth equal to 80, the observed

MN(f) is only close to the correct MN(f) for VAF larger than around 0.05. Noth-

ing has so far been said about the last parameter of the Gamma-Poisson mixture

distribution, namely the size parameter. By Definition 2.5, the variance is inversely

proportional to the size, and therefore the variance decreases when the size increases.

The lower the variance is, the more positions across the reference genome will have

read depth around the mean, and for that reason the observed MN(f) will be more

accurate the larger the mean read depth and size-parameter is. However, from the

TCGA-data the estimated size parameter, ψ, from different tumors do not differ very

much as it usually varies around from ψ ≈ 2 up to around ψ ≈ 3. On the other hand,

the mean value differs very much from τ ≈ 70 to τ ≈ 200. This shows a particularly

important characteristic of the read depth distribution, as is the case for the Poisson

distribution, that the variance increases when the mean increases. However, as there

is a linear relation for the Poisson distribution, the variance increases faster for the

read depth distribution13. The most important parameter in this model is therefore

the mean read depth from the sequencing.

The read depth is important when considering the observed VAF-values. If the

mean read depth is too small, then many low-frequent mutations will not be detected.

As a measure showing the accuracy of the sequencing given that the distribution of

read depth is Gamma-Poisson mixture distributed, consider the probability P (O = 0),

where O ∼ Bin(κV,R). P (O = 0) is the probability for a somatic mutation to not be
13The variance increases quadratically in terms of the Gamma-Poisson mixture distribution for

instance as can be seen in Definition 2.5 on page 11.
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observed. Using the law of total probability and conditioning on the real VAF value,

V AFreal = κV = v:

P (O = 0|VAFreal = v) =
∞∑
r=0

P (O = 0|R = r,VAFreal = v)P (R = r).

From Definition 12, P (O = 0|R = r,VAFreal = v) = (1 − v)r and R is Gamma

Poisson distributed with mean τ and size ψ as given in Definition 2.5. Using that

(1− v)r = er log(1−v), this shows that:

P (O = 0|VAFreal = v) =
∞∑
r=0

er log(1−v)P (R = r) = E[eRt] = MR(t),

where MR(t) denotes the moment generating function (MGF) for the distribution

of R ∼ GP(τ, ψ) with t = log(1 − v). The MGF for the Gamma-Poisson mixture

distribution can be derived14 and is given by,

MR(t) =
 ψ

τ+ψ

1− (1− ψ
τ+ψ )et

ψ ,
where t < − log(1 − ψ

τ+ψ ) in order for the MGF to exist. For t = log(1 − v) this

is always satisfied, and therefore the probability for a mutation to not be observed is

then given by:

P (O = 0) = MR(log(1− v)) =
 ψ

τ+ψ
ψ

τ+ψ + τ
τ+ψv

ψ . (43)

Setting v = 0, corresponding to a non-existing mutation, P (O = 0) = 1, as

expected. Setting v = 1, corresponding to a truncal mutation gives P (O = 0) =

P (R = 0), which is the probability that the mutation exists, but no reads cover the

position of the mutation. A graph of P (O = 0) for ψ = 2.5 and τ = 100 is given in

Figure 11.
14See Appendix C.
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Figure 11: P (O = 0|R) when R is Gamma-Poisson mixture distributed with mean,

τ = 100, and size, ψ = 2.5.

This expression can now be used to see how low VAF one can get before exceeding

a limit ε for which P (O = 0) > ε. Define pr = ψ
τ+ψ , then:

P (O = 0) =
(

pr
pr + (1− pr)v

)ψ
> ε ⇐⇒ v <

pr(1− ε1/ψ)
(1− pr)ε1/ψ . (44)

For instance, for ψ = 2.5, τ = 130 and ε = 0.01, the probability for not observing

a mutation to be greater than ε = 0.01, is then v < 0.1. Equation (43) can be used as

a tool for deciding a lower bound for the observed VAFs. For instance, from Figure

11, P (O = 0) increases fast for VAFobserved ≤ 0.1. Based on this observation, it would

for instance be reasonable to only look at VAFobserved ≥ 0.1.
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4.3.3 Truncal somatic mutations

So far, only somatic mutations appearing after tumor initiation have been studied.

What has not been evaluated yet is somatic mutations that appear before tumor ini-

tiation. These will be present in all tumor cells and are called truncal mutations15.

As the interest is in tumor evolution, truncal mutations arising before tumor initi-

ation are of no interest to us. However, the VAF-distribution after sequencing will

be as a result of both subclonal and truncal mutations. Therefore, it is important to

understand how to distinguish between these two type of mutations in order to find

information that is only relevant for tumor evolution.

Assuming a constant copy number for all genes equal to the ploidy, truncal mu-

tations already present from the first tumor cell will have VAF among only tumor

cells equal to V = 0.5. Assuming both the read depth, R, and the tumor purity, κ, is

known, the observed VAF of a truncal mutation is then given by:

VAFobserved |(V = 0.5,R, κ) ∼ Bin(0.5κ,R)/R, (45)

where again R ∼ GP(τ, ψ). In other words, the VAF-distribution will then consist

of a mixture of truncal mutations where V = 0.5, and subclonal mutations where the

distribution of V depends on how the tumor evolves.

4.4 Comparing observation model with observed data

As both DNA sequencing, tumor purity and truncal mutations has been described in

the observation model, the theoretical shape of a VAF-distribution after sequencing

a sample from a tumor that has evolved neutrally may now be visualized. In this
15Somatic mutations occurring after tumor initiation may also become present in all cell. See for

instance Bozic et al. (2016)
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example, a tumor is simulated to reach generation 150 in the branching tree. Because

neutral tumor evolution behaves the same during the whole process, there is no need

to simulate a particularly large tumor as the pattern remains the same, as described

before. After having the original VAFs, VAFreal, before sequencing from the subclonal

somatic mutations in the simulated tumor, a specified proportion of truncal muta-

tions having V = 0.5 is added representing somatic mutations being present before

tumor initiation. The sample is then sequenced as described in Equation (42) yielding

observed VAFs. The result with tumor purity κ = 0.63, mean read depth τ = 190,

and size parameter ψ = 2.5 is given in Figure 12 where it has been chosen that 50 %

of the somatic mutations are truncal.

Figure 12: A fictive VAF-distribution from the observation model with κ = 0.63,

τ = 188, ψ = 2.4 and where 30 % of the somatic mutations are truncal. One clearly

sees two peaks, one representing subclonal mutations to the left, and one representing

truncal mutations to the right.
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Figure 12 shows two peaks, where the peak to the left in the plot is a result of

subclonal somatic mutations after neutral evolution, while the distribution to the

right is a result of truncal somatic mutations arising before tumor initiation. When

the observed VAF is approaching zero, one can see from the figure that the number

of observed somatic mutations decreases, even though it should increase according

to a neutral evolution model. However, as explained earlier, since the read depth

is limited in size, somatic mutations with low VAF may be unobserved or at least

underestimated. This observation is exactly the same as what can be seen in Figure

10. The peak representing the truncal somatic mutations seems to be quite symmetric.

In addition, the two peaks are clearly separated from each other.

The theoretical shape of VAF-distribution from Figure 12 may now be compared

with the observed VAF-distribution from a tissue sample coming from the TCGA-

COAD project. An example is given in Figure 13.

In this case, it also shows a distribution with two peaks. According to the ob-

servation model, the peak at the right should represent truncal mutations, while the

peak at the left should represent subclonal mutations. It also shows that the observed

number of somatic mutations decreases when the VAF is approaching zero, just as

predicted. Therefore, in this specific case the observation model described in Section

4 reflects core aspects with the observed VAF-distribution with real data in terms of

equal shape in distribution. However, the peaks are not clearly separated from each

other, but are rather intertwined. The mean read depth for this data set is 178.

There are also samples in TCGA-COAD that does not show a VAF-distribution con-

sisting of two peaks, but only one peak. Even though this does not fit with a neutral

tumor evolution, the reason may rather be either a low tumor purity, a low mean

read depth or even a combination. In order to examine the evolution of the tumor,

both the tumor purity and the mean read depth must be sufficiently large such that
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Figure 13: Histogram of observed VAFs from a TCGA-COAD sample showing two

peaks, and therefore a candidate for neutral tumor evolution. According to the ob-

servation model, the one to the right represents truncal mutations, while the one to

the left represents subclonal mutations.

low VAF-values can be examined. In addition to this, it is also important to have

enough data in terms of observed somatic mutations. A large amount of the samples

from TCGA-COAD consists of too few observed somatic mutations in order to infer

anything about tumor evolution.
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5 Discussion

In order to derive M̂N(f) given in Equation (39) for neutral tumor evolution, there

are several assumptions, simplifications and approximations made. These will be dis-

cussed thoroughly in this section.

Furthermore, even though the observation model for neutral tumor evolution de-

scribed in this thesis can explain a pattern that resembles certain observed VAF-

distributions from real data, this does not prove that a tumor actually evolved neu-

trally. This will also be discussed further.

5.1 Assumptions and simplifications

5.1.1 Constant exponential growth

According to the branching process model developed in Section 3, a tumor can in

theory grow exponentially to infinite size. However, as the tumor grows it will even-

tually be exposed to external pressure from surrounding tissue or organs, and the

need for oxygen and nutrients increases (Nishida et al. 2006). These factors should

eventually reduce the tumor’s growth. It may however be realistic that the tumor

can grow approximately exponentially for a time period after tumor initiation, and

therefore M̂N(f) given in Equation (39) may be a realistic estimation of MN(f) at

this moment. Assuming this is the case, a tumor may be detected during exponential

growth or after exponential growth. If the tumor is detected after exponential growth,

the question is then if M̂N(f) will still be a good estimator of MN(f). The answer

depends on how the growth varies during evolution, but with the following assump-

tion the answer is yes: During evolution, after an exponential growth, the probability

of cell division β per tumor cell can change as time goes by, but at any time point

the probability of cell division is equal for all cells.
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As an example where this assumption is applied, let the expected number of off-

springs per cell in any generation i be dependent on the total number of cells, Xi,

of the tumor at that moment given by µ(Xi). As the tumor grows approximately

exponentially at the beginning, this will mean that µ(Xi) ≈ µ̃ for some constant µ̃ as

long as Xi is small enough. During this evolution, M̂N(f) will be a good estimator of

MN(f) as can be seen in Figure 7. Furthermore, after exponential growth, consider a

somatic mutation appearing in any generation i out of total Xi cells with correspond-

ing VAF equal to S/(πXi). The expected VAF to first order approximation in the

next generation will then be Sµ(Xi)
/

(πXiµ(Xi)) = S/(πXi), resulting in the same

VAF as before. Therefore, if the assumption holds, somatic mutations arising during

exponential growth will relatively to each other produce a pattern similar to M̂(f) in

Equation (39).

Letting the expected number of offsprings vary as a function of number of cells, tumor

evolution can be modelled more realistically. For instance, in a logistic-growth model

the tumor size eventually stabilizes, but this will again require more parameters mak-

ing the model more complicated. In addition, it is reasonable that the growth of the

tumor is dependent on more than the size of the tumor such as local surrounding

pressure or access to oxygen and nutrients. In fact, there exist experimental data that

support larger growth at the surface of the tumor than in the tumor’s core (Waclaw

et al. 2015). This has led to models based on peripheral growth, as can be seen in

Sun et al. (2017). Despite the fact that neutral tumor evolution does not take any

of these factors into account, nevertheless it may be a realistic model during early

growth, and therefore applicable for early detected tumors.
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5.1.2 A tissue sample from a tumor a good representation of the whole

tumor

The TCGA-data are based on a sample resected from a tumor. However, the interest is

to find out how the whole tumor evolved. Can a tissue sample consisting only of a part

of the tumor represent the whole tumor? This question is again dependent on how the

tumor evolved as analyzed in Sun et al. (2017), where virtual tumors both evolving

neutrally and with selection were simulated in 3D, and virtual resections were taken on

different geometrical regions. The analysis showed that simulated VAF-distributions

from different resections of the tumor were more similar to each other for neutrally

evolving tumors, and tumors with weak selection, than from tumors with strong

selection. There is a reasonable explanation for this. In the case of neutral tumor

evolution, all cells have the same fitness providing a somewhat predictive hierarchy

of subclones, namely that mutations that arise early tend to have larger VAF than

mutations that arise at a later stage, no matter the geometric position of the tumor.

On the other hand, for a tumor with strong selection during its evolution, later arising

mutations are more likely to get larger VAF than mutations that arose earlier due

to the potential impact of driver mutations, increasing the fitness of some cells. It

is therefore reasonable that there is a larger variation in VAF-distribution between

samples from different geometric positions for tumors having strong selection, than

in tumors that have weak selection or even neutral growth. What is interesting about

the analysis of Sun et al. (2017) is that this may be one way of investigating if a

tumor evolved neutrally or not by taking multiple resections from different regions of

the tumor.
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5.1.3 Ignoring copy number changes

In this thesis, copy number changes has not been taken into account, as can be seen

in Section 3 where it is regarded that there are always π copies for each locus in each

tumor cell. However, in reality genes or even whole chromosomes may be duplicated

or deleted in some tumor cells. This would then affect the observed VAF. For instance,

if there are more than π copies of some specific mutation in a given proportion of

cells, the probability of detecting this mutation during sequencing would be larger

than if there were only π copies in each cell. Therefore, copy number changes would

violate with the deduction of M̂N(f) in Equation (39). One way to handle this is to

assume that π is the average number of copies for each locus as was done in Williams

et al. (2016). This would then give the same equation of M̂N(f) as in Equation (39).

However, randomness in the copy number for each mutation would make even more

variation in MN(f) for a neutrally evolving tumor.

There exist however computational methods to infer copy number variation for the

observed mutations in the tissue sample (Zhao et al. 2013). In Williams et al. (2016)

copy number changes are taken care of by only looking at diploid regions.

5.2 Can neutral tumor evolution be inferred from observed

data?

As shown in this thesis, given the branching process model of neutral tumor evolution

developed in Section 3, M̂N(f) in Equation (39) was deduced to estimateMN(f) using

several assumptions and approximations, where MN(f) is the cumulative number of

somatic mutations in the tumor having VAF larger than f for a neutrally evolving

tumor. It was shown that M̂N(f) ∝ 1/f . The interest is now to look at the following

situation: givenM(f) ∝ 1/f from observed data, is it possible to infer if a tumor grew

neutrally? Observe that M(f) is the number of somatic mutations having VAF ≥ f
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for any evolving tumor, while MN(f) is specifically for a neutrally evolving tumor.

The alternative theory to neutral tumor evolution is clonal evolution, namely that

driver mutations may arise during the evolution changing the fitness of certain tu-

mor cells. These cells then may grow faster than surrounded tumor cells, creating

subclones that may grow larger than subclones that arised earlier. However, the im-

portance of a driver mutation should naturally depend on when it arises and how

much it changes the fitness. For instance, it is reasonable to think that the earlier the

driver mutation occurs, and the more it changes the fitness of a cell, the more impact

the driver mutation will have on the evolution of the tumor. In weak selection, driver

mutations have small impact on tumor evolution, and should therefore resemble neu-

tral tumor evolution. In this case, it will be difficult to distinguish between neutral

tumor evolution from tumor evolution with weak selection. An example is given in

Tarabichi et al. (2017), where simulated tumors consisting of driver mutations were

classified as a tumor evolving neutrally. Therefore, one should rather try to establish

a hypothesis test inferring if a tumor evolved neutrally or with weak selection on one

side, or if a tumor evolved with strong selection on the other side.

In order to establish a hypothesis test, it is important to recognize that M̂N(f)

deduced in this thesis, is a result of taking the expected value of all random variables.

This means that M̂N(f) in this thesis is based on the fact that everything is evolving

as expected. However, from a statistical point of view, there can be a large difference

between the value of a single observation and its expected value depending on the

variance of the associated distribution. In our case, the single observation is the

observed VAF for each detected somatic mutation, and by looking at Figure 6, there

is a large variation of which VAF each somatic mutation acquire. Furthermore, by

looking at the tumors evolving neutrally in Figure 7, there are some tumors where

MN(f) does not appear particularly linear, but most of them in fact do in average.
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M̂N(f) is a result of averaging all tumors as seen in Figure 7. As can be seen from Table

1, there is also small variations in computed slopes from linear regression between

different tumors with equal parameters, as can be seen by looking at the respective

sample standard deviations for each set of parameters. From this point of view, the

idea is to exploit the property of M̂N(f) such that M(f) from observed data of a

tumor could be classified as a neutrally evolving tumor if M(f) is proportional to

1/f with a given accuracy.

However, M̂N(f) is deduced before the tumor is observed from DNA sequencing, and

the presence of truncal mutations is not yet regarded. As can be seen in Figure 10,

DNA sequencing affects the observation of MN(f) in such a way that linearity is

violated for small VAF-values due to the increase of uncertainties when the VAF is

getting too low. In addition, as can be seen in Figure 13, truncal mutations may have

observed VAFs in the same region as subclonal mutations, creating an intermix of

both subclonal and truncal mutations.

In Williams et al. (2016), this is dealt with by choosing a specific frequency interval of

f ∈ [0.12, 0.24] in the observed distribution of M(f) for all tumors, with the purpose

of making sure that too small VAF-values are discarded due to uncertainty in DNA

sequencing, but also to make sure that truncal mutations are not included within the

interval. The idea in Williams et al. (2016) is then to evaluate the linearity of M(f)

as a function of 1/f by using a simple linear regression where f ∈ [0.12, 0.24], and

then the coefficient of determination, often denoted as R2, is used as the hypothesis

test to infer whether a tumor evolved neutrally or not.

First and foremost, the problem about R2 is that it is rather a measure of how

better a prediction of a linear model is than by predicting a sample to be equal to

the average of all samples16. In order to validate linearity of a function, one should
16See appendix about coefficient of determination
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therefore not use R2 for this purpose. Secondly, as M(f) is a non-decreasing function

anyway, R2 will naturally tend to be closer to 1 than zero for a growing tumor.

In Williams et al. (2016), this is accounted for by declaring tumors as neutral if

R2 ≥ 0.98. However, as pointed out in Tarabichi et al. (2017) and also agreed upon

by the authors of Williams et al. (2016) in their response to this paper (Williams et al.

2017), not rejecting a null hypothesis is not the same as declaring the null hypothesis

to be true.

Therefore, by the property of M̂N(f), namely that M̂N(f) ∝ 1/f , one should

rather develop the following hypothesis test:

H0 : M(f) ∝ 1/f

H1 : M(f) 6∝ 1/f

Be that as it may, this is not a regular hypothesis test, as it is inferring whether a

function,M(f), behaves linearly as a function of 1/f . In addition, due to the impact of

sequencing and truncal mutations aforementioned, one is not free to choose in which

interval to investigate linearity. In Williams et al. (2016), this is dealt with by choosing

a specific interval f ∈ [0.12, 0.24]. This is a rather short interval of frequencies, and it

is important to recognize that a test for linearity will improve the smaller the interval

is, since any function will appear more linear in an interval, the smaller the interval

is.

By this reasoning, one would like a larger interval of investigation than [0.12, 0.24]

in order to infer the evolution of the tumor, but at the same time assure that the

uncertainties in observed VAFs are as low as possible within this interval. Increasing

the interval from above would be difficult, as this increases the probability of including

truncal mutations. Therefore, the simplest way to increase the interval would be to

decrease the lower value of the interval. It is here the measure given in Equation
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(43) comes in handy. If the read depth can be approximated to be a Gamma-Poisson

mixture distribution, Equation (43) can then be used as a measure in order to grasp

when the inaccuracies in observed VAFs begin to be considerable. From Figure 11, for

a mean read depth of τ = 100 and size parameter equal to ψ = 2.5, one can see that

the inaccuracies explode for VAF ≤ 0.1. In this case, the lower limit of Williams et al.

(2016) is in fact reasonable. As there are many observed data in TCGA that actually

have a mean read depth of around 100, one is therefore only able to see a short period

of the evolution of the tumor from these observed data. In order to investigate tumor

evolution with more precision, and to conclude whether a tumor evolved neutrally or

not, there is a need for a larger mean read depth than what is the case by now.

6 Conclusion

In this thesis, using a branching process with accumulating mutations to model neu-

tral tumor evolution, it was shown in details how to deduce the same expression as

deduced in Williams et al. (2016), namely an expression for the average number of

somatic mutations having VAF ≥ f , denoted here as M̂N(f). Using stochastic simu-

lation, the expression was validated.

Afterwards, a statistical model taking DNA sequencing into account was developed,

and was used to investigate the pattern of observed VAFs from a tumor that evolved

neutrally. An expression in order to grasp the inaccuracies of low-frequent VAFs was

developed.

Lastly, inferring neutral tumor evolution from observed data was discussed, and it

was argued that the observed data need a high accuracy in terms of larger mean read

depth in order to properly investigate the evolution of tumor.
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A Motivating the choice of a discrete birth and

death branching process to model neutral tu-

mor growth

As the cells are regarded to have equal fitness, each cell is expected to produce an

equal amount of offsprings given by µ. By Equation (8), the expected number of cells,

Xi, in generation i, given µ is then given by:

E[Xi] = (2µ)i.

By the fact of equal fitness, the cells are also expected to reproduce at the same

rate. Consider the special case where each cell after birth takes a decision to either

divide or die after some timeW, called waiting time. In this case, the expected number

of cells, X(iW) after time iW, is then:

E[X(iW)] = (2µ)i. (46)

Therefore, in this special case, the number of cells in a given generation is the

expected number of cells after a specific discrete time point.

However, in reality, the cells will not use the same amount of time to either divide or

die, but with equal fitness the difference in waiting time from cell to cell is regarded to

be small. Therefore Equation (46) will then be an approximation for the total number

of cells at a given time point.

B Derivation of Gamma-Poisson mixture distribu-

tion

Let f(k|λ), k ∈ [0, 1, 2, ...], be Poisson distributed with rate λ, namely that:
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f(k|λ) = λk

k! e
−λ.

Furthermore, let the parameter λ, λ ∈ R+, be Gamma distributed with shape, k,

equal to r and scale, θ, equal to p/(1− p), namely:

g(λ|k = r, θ = p/(1− p)) = 1
Γ(r)( p

1−p)rλ
r−1e−λ(1−p)/p.

This is an example of a compound probability distribution which in general is a

random variable following a parameterized distribution where some of the parameters

are themselves random variable. The unconditional distribution of f(k) is then given

by:

f(k) =
∫ ∞

0
f(k|λ)g(λ|k = r, θ, θ = p/(1− p))dλ

=
∫ ∞

0

λk

k! e
−λ

 1
Γ(r)( p

1−p)r

λr−1e−λ(1−p)/pdλ

=
 1
k!Γ(r)( p

1−p)r

∫ ∞
0

λk+r−1e−λ/pdλ

=
 pk+r−1

k!Γ(r)( p
1−p)r

 p ∫ ∞
0

xk+r−1e−xdx

=
 pk+r

k!Γ(r)( p
1−p)r

Γ(k + r)

= Γ(r + k)
Γ(r)k! p

k(1− p)r,

(47)

where the substitution x = λ
p
is applied in the integral yielding an integral that

by definition is the Gamma distribution, Γ(z), given by:

Γ(z) =
∫ ∞

0
xz−1e−xdx.

As can be seen from Definition 2.5 on page 10, f(k) is a Gamma-Poisson mixture

distribution.
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C Derivation of MGF for Gamma-Poisson mixture

distribution

Given a Gamma-Poisson mixture distribution, f(x), where x ∈ {0, 1, ...}, p ∈ [0, 1] is

the probability for success and ψ ∈ R+ is the size, the density function is:

f(x) = Γ(x+ ψ)
Γ(ψ)x! p

ψ(1− p)x.

It can be seen that ∑∞x=0 f(x) sums to one using the following Taylor series for

any ψ and |k| < 1:

1
(1− k)ψ =

∞∑
x=0

Γ(x+ ψ)
Γ(ψ)x! k

x. (48)

The MGF of the Gamma-Poisson mixture distribution, E[etx], can also be derived

using this infinite sum:

E[etx] =
∞∑
x=0

etx
Γ(x+ ψ)
Γ(ψ)x! p

ψ(1− p)x = pψ
∞∑
x=0

Γ(x+ ψ)
Γ(ψ)x!

(
et(1− p)

)x
= pψ

(1− et(1− p))ψ
,

(49)

conditioning that et(1− p) < 1, which means that t < − log(1− p).

D Coefficient of determination

The following notation is in correspondence with Walpole et al. (2014).

Given explanatory variables x1, x2, ..., xn and response variables y1, y2, ..., yn in ad-

dition to a simple linear regression model, ŷi = axi+b, the coefficient of determination,

R2 ∈ [0, 1], is given by:

R2 = 1− SSE
SST , (50)
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where SSE is the sum of square errors:

SSE =
n∑
i=1

(yi − ŷi)2,

while SST is the total corrected sum of squares:

SST =
n∑
i=1

(yi − ȳ)2,

where ȳ = 1
n

∑n
i=1 yi. While SSE is a natural measure for the error of the simple

linear regression model, SST should be seen as the corresponding error of the model

where yi = ȳ, namely a model where the response value, yi, is constant and indepen-

dent of the explanatory variable xi. R2 will therefore be close to 1 if a non-constant

linear model fits better than a constant linear model and vice verca.

E Biological definitions in Cell biology

Allele A variant form of a gene.

Copy number variation A phenomenon where sections of the genome are repeated

several times. This is natural, but it may also be as a result of somatic mutations.

Chromosome A double-strand of DNA situated in the cell nucleus encoded with

genes. In humans, the somatic cells consist of 22 pairs of chromosomes plus two

sex chromosomes.

DNA-replication A process where a double-stranded DNA is copied, producing

two identical DNA-molecules. This process occurs prior to cell division.

DNA sequencing The process where the precise order of nucleotides within a DNA

molecule is measured.

Driver mutation A mutation that alters the fitness of the cell.
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Exome The complete set of regions in the genome that code information for protein

synthesis. Each region is situated within a particular gene called and exon.

Fitness A measure of reproductive success.

Genome The complete set of genetic material in a cell.

ISM Infinite Sites Model. See for instance Kimura (1968).

ITH Intratumor heterogeneity. Large genetic variations within a tumor due to so-

matic mutations.

Locus The position of a gene or mutation on a chromosome.

Mapping The process of comparing a read with a reference genome in order to find

the position in the reference genome that is most similar to the read.

Massively parallel Technical term used in computing to denote the use of a large

number of processors in order to do coordinated computations in parallel.

Mutation The process of which the structure of a gene is changed due to rearrange-

ments of one or more base units in the DNA.

Neutral tumor evolution theory See Definition 1.1 on page 2.

Next generation sequencing A modern sequencing technology where

massive amounts of DNA-fragments are sequenced in parallel.

Nucleotide A compound consisting of a nucleoside and a phosphate group. The

structural unit in DNA.

Passenger mutation A mutation not altering the fitness of the cell.

Point mutation A mutation only altering one base unit.
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Ploidy The number of sets of chromosomes in a cell, often denoted by π. In normal

human cells, there are two sets of each autosomal (non-sex) chromosome and

so π = 2.

Proliferation Rapid reproduction of a cell.

Read depth The number of unique reads covering a particular locus after DNA

sequencing. See drawing on page 39.

Reference genome A digital nucleic acid sequence database consisting of a repre-

sentative set of genes for a given species.

Resection Surgical removal of part or all of a damaged organ or structure. The term

is often used for removal of a tumor.

Selection A consequence due to the fact that individuals that adapt better to the

environment, tend to have better chances of surviving in addition to produce

surviving offsprings. Individuals may also be cells in this context.

Somatic cell Any cell in an organism other than sex cells (germ cells).

Somatic mutation A mutation that can occur in any cells of the body except for

the germ cells.

Subclonal mutation A mutation in the tumor that is found in only some of the

tumor cells.

Variant allele frequency (VAF) See Definition 1.2 on page 2.

Tumor initiation The process in which normal cells are transformed to cells capable

of creating tumors.
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Tumor purity The proportion of cells in a tumor sample that consists of tumor

cells.

Truncal mutation A mutation that is found in all tumor cells.
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7 R-code

#Explanation o f R−code :

#Fi r s t , a l l f un c t i on s used w i l l be l i s t e d below . Afterwards , s c r i p t s are

presented in order to use these f unc t i on s and prov ide the same

f i g u r e s as presented in the t h e s i s .

TumorGrowth = func t i on (maxgen , beta , lambda ) {

#Simulate tumor un t i l r each ing gene ra t i on maxgen .

#Di s c r e t e branching t r e e model o f tumor evo lu t i on where each c e l l has

i n i t i a l l y the p r obab i l i t y o f

# " beta " to d i v id e and "1−beta " to die , so only two opt ions . For each

c e l l d i v i s i o n

# both daughter c e l l s have the p o s s i b i l i t y to acqu i r e new mutations . The

number o f passenger mutations i s g iven by a Poisson d i s t r i b u t i o n

with ra t e " lambda " .

#Mutations appear ing at a very l a t e s tage are not expected to be

detec ted . After "maxMuts" c e l l s , the v i r t u a l tumor grows without

#adding new mutations , s i n c e the mutations are assumed not to be

t r a c e ab l e anyway .

#The func t i on r e tu rn s the mutations f o r a l l c e l l s , the gene ra t i on where

each mutation arose and the t o t a l number o f c e l l s .

#Begins with one tumor c e l l

NumberOfCells = 1

gen = 0 #The pre sent gene ra t i on in the branching t r e e . The i n i t i a l

g ene ra t i on i s by d e f i n i t i o n 0 ( c o n s i s t i n g o f the f i r s t tumor c e l l )
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#MutationsInEachCel l i s what i s returned . For neut ra l evo lu t i on : A

vec to r o f l i s t s , where each l i s t r ep r e s en t a c e l l , and the

#l i s t conta in s an atomic vec to r c o n s i s t i n g o f every mutation that has

occured in t h i s s p e c i f i c c e l l g iven by an i n t e g e r .

#Each l i s t in a vec to r r ep r e s en t s a c e l l in t h i s group . The l i s t

c o n s i s t s o f a l l mutations t h i s c e l l in t h i s group has .

#Mutation 0 r ep r e s en t s mutations a l r eady pre sent at the f i r s t tumor

c e l l .

MutationsInEachCel l = 0

m = 1 #Every unique passenger mutation i s l ab e l ed as an i n t e g e r .

#For convenience , l e t the f i r s t c e l l be guaranteed to d iv id e without

new dr i v e r mutations :

NumberOfCells = 2

NumberOfCellsPerGroup = 2

gen = 1

#Mutations in daughter c e l l s :

muts1 = rpo i s (1 , lambda )

muts2 = rpo i s (1 , lambda )

#Pr ea l l o c a t e :

MutationsInEachCel l = vec to r (mode = " l i s t " , l ength = NumberOfCells )

InWhichGenerationMutationsOccurred = vecto r (mode = " l i s t " , l ength =

NumberOfCells )

i f (muts1 >0){

#add mutations :

MutationsInEachCel l [ [ 1 ] ] = c (0 ,m: (m+muts1−1) )

InWhichGenerationMutationsOccurred [ [ 1 ] ] = c (0 , rep ( gen , muts1 ) )

#update number o f mutations that have occured :

m = m + muts1

}
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#daughter c e l l i s j u s t the same as mother c e l l :

e l s e {

MutationsInEachCel l [ [ 1 ] ] = 0

InWhichGenerationMutationsOccurred [ [ 1 ] ] = 0

}

#repeat :

i f (muts2 > 0) {

MutationsInEachCel l [ [ 2 ] ] = c (0 ,m: (m+muts2−1) )

InWhichGenerationMutationsOccurred [ [ 2 ] ] = c (0 , rep ( gen , muts2 ) )

m = m + muts2

}

e l s e {

MutationsInEachCel l [ [ 2 ] ] = 0

InWhichGenerationMutationsOccurred [ [ 2 ] ] = 0

}

#From now on , l e t the tumor grow s t o c h a s t i c a l l y accord ing to a branching

proce s s u n t i l r each ing maxsize c e l l s ( or d i e s out ) .

whi l e ( gen <= maxgen ) {

#Decide how many c e l l s that d i v id e in pre sent gene ra t i on ( the other

c e l l s w i l l e v en tua l l y d i e ) :

Cel l sThatDivided = rbinom (1 , NumberOfCells , beta )

#choose which c e l l s d iv ided :

WhichCellsDivided = sample ( NumberOfCells , Cel lsThatDivided , r ep l a c e =

FALSE)

UpdateNumberOfCells = 2∗Cel lsThatDivided
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# I f tumor d i e s out : r e turn (0 )

i f ( UpdateNumberOfCells == 0) {

return (0 )

}

#Since tumor has not died out , the gene ra t i on has i n c r ea s ed by one

gen = gen + 1

#p r e a l l o c a t e vec to r f o r updating mutations in every c e l l ( assuming

t h i s makes the code f a s t e r ) .

UpdateMutationsInEachCell = vec to r (mode = " l i s t " , l ength =

UpdateNumberOfCells )

UpdateInWhichGenerationMutationsOccurred = vecto r (mode = " l i s t " ,

l ength = UpdateNumberOfCells )

# Update mutations in each c e l l :

# To avoid too much space o f new mutations , stop to c r e a t e new

mutations a f t e r a g iven gene ra t i on given by maxMuts

temp = 1 #temporary va r i ab l e in order to update each c e l l c o r r e c t l y .

i f ( gen <= maxMuts) {

#Simulate the number o f passenger mutations occur ing in each o f

the c e l l s

NrOfMutationsInEachCell = rpo i s ( UpdateNumberOfCells , lambda )

#Update mutations in each c e l l :

f o r ( j in WhichCellsDivided ) {

#Create the two daughter c e l l s coming from c e l l j :

i f ( NrOfMutationsInEachCell [ temp ] > 0) {

UpdateMutationsInEachCell [ [ temp ] ] = c ( MutationsInEachCel l [ [ j

] ] ,m: (m+NrOfMutationsInEachCell [ temp]−1) )
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UpdateInWhichGenerationMutationsOccurred [ [ temp ] ] = c (

InWhichGenerationMutationsOccurred [ [ j ] ] , rep ( gen ,

NrOfMutationsInEachCell [ temp ] ) )

m = m + NrOfMutationsInEachCell [ temp ]

}

e l s e {

UpdateMutationsInEachCell [ [ temp ] ] = MutationsInEachCel l [ [ j ] ]

UpdateInWhichGenerationMutationsOccurred [ [ temp ] ] =

InWhichGenerationMutationsOccurred [ [ j ] ]

}

i f ( NrOfMutationsInEachCell [ temp+1] > 0) {

UpdateMutationsInEachCell [ [ temp+1] ] = c ( MutationsInEachCel l [ [ j

] ] ,m: (m+NrOfMutationsInEachCell [ temp+1]−1) )

UpdateInWhichGenerationMutationsOccurred [ [ temp+1] ] = c (

InWhichGenerationMutationsOccurred [ [ j ] ] , rep ( gen ,

NrOfMutationsInEachCell [ temp+1]) )

m = m + NrOfMutationsInEachCell [ temp+1]

}

e l s e {

UpdateMutationsInEachCell [ [ temp+1] ] = MutationsInEachCel l [ [ j ] ]

UpdateInWhichGenerationMutationsOccurred [ [ temp+1] ] =

InWhichGenerationMutationsOccurred [ [ j ] ]

}

temp = temp + 2

}

}

#e l s e , the re i s no need to add mutations as they w i l l not be

de t e c t ab l e .

e l s e {

#Al l daughter c e l l s i n h e r i t exac t l y the same mutations as t h e i r

parents :
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UpdateMutationsInEachCell = MutationsInEachCel l [ rep (

WhichCellsDivided , 2 ) ]

UpdateInWhichGenerationMutationsOccurred =

InWhichGenerationMutationsOccurred [ rep (WhichCellsDivided , 2 ) ]

# f o r ( j in WhichCellsDivided ) {

# UpdateMutationsInEachCell [ [ temp ] ] = MutationsInEachCel l [ [ j ] ]

# UpdateMutationsInEachCell [ [ temp+1] ] = MutationsInEachCel l [ [ j ] ]

# temp = temp + 2

# }

}

#Update parameters

NumberOfCells = UpdateNumberOfCells

MutationsInEachCel l = UpdateMutationsInEachCell

InWhichGenerationMutationsOccurred =

UpdateInWhichGenerationMutationsOccurred

}

return ( l i s t ( MutationsInEachCell , InWhichGenerationMutationsOccurred ,

NumberOfCells , gen ) )

}

RealDistributionOfVAF = func t i on ( tumorSample , gens , p lo idy = 2) {

#From the s imulated tumor , compute the VAF f o r each somatic mutation .

TotalNumberOfCells = tumorSample [ [ 3 ] ]

TheSample = tumorSample [ [ 1 ] ]

CorGen = tumorSample [ [ 2 ] ]

#Get a l l mutation IDs in one s i n g l e atomic vec to r :
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AllMutat ions = un l i s t (TheSample )

#Get VAF of a l l somatic mutations us ing R−f unc t i on tab l e :

RealVAF = tab l e ( Al lMutat ions ) /( p lo idy ∗TotalNumberOfCells )

#Get the corre spond ing gene ra t i on where each mutation occurred :

GenerationForEachVaf = un l i s t (CorGen)

Vafs = vecto r (mode = " l i s t " , l ength = gens )

f o r ( i in 1 : gens ) {

#Find which mutations belong to the same genera t i on ( some

mutations are equal as they belong to the same parent po s s e s i ng t h i s

mutation )

where = which ( GenerationForEachVaf == i )

#Find the unique mutations appear ing in gene ra t i on i

muts = as . cha rac t e r ( unique ( Al lMutat ions [ where ] ) )

#Store the cor respond ing VAFs o f the somatic mutations appear ing

in gene ra t i on i .

Vafs [ [ i ] ] = as . vec to r (RealVAF [ muts ] )

}

re turn ( Vafs )

}

#COMPUTE OBSERVED M(k) from tumor :

#M(k ) i s the cumulat ive number o f somatic mutations a r i s i n g be f o r e

gene ra t i on k that have surv ived .

RealMk = func t i on ( tumorSample , gens ) {

#tumor conta in s c e l l s and mutations in each c e l l in add i t i on to

which gene ra t i on each su rv i v i ng mutation appeared .

#gens i s the number o f g ene ra t i on s to look at .

TotalNumberOfCells = tumorSample [ [ 3 ] ]

TheSample = tumorSample [ [ 1 ] ]

CorGen = tumorSample [ [ 2 ] ]

#Get a l l mutation IDs in one s i n g l e atomic vec to r :

Al lMutat ions = un l i s t (TheSample )
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#Get the corre spond ing gene ra t i on where each mutation occurred :

GenerationForEachVaf = un l i s t (CorGen)

NrOfMutsAppearedInGenk = vecto r (mode = " numeric " , l ength = gens )

f o r ( k in 1 : gens ) {

#Find which mutations belong to the same genera t i on ( some

mutations are equal as they belong to the same parent po s s e s i ng t h i s

mutation )

where = which ( GenerationForEachVaf == k)

#Find the unique number o f mutations appear ing in gene ra t i on i

NrOfMutsAppearedInGenk [ k ] = length ( unique ( Al lMutat ions [ where ] ) )

}

Mk = cumsum(NrOfMutsAppearedInGenk )

re turn (Mk)

}

Dis t r ibut ionOfPubl i cMutat ions = func t i on ( ID , r eadsF i l e , pur i ty , sims , l ) {

#Get read depth data .

name = paste ( r eadsF i l e , ID , sep = " / " )

name = paste (name , " . RData " , sep = " " )

readsData = load ( f i l e = name)

reads = get ( readsData )

#Compute MLE−e s t imato r s :

l i b r a r y (MASS)

par_es t imato r s = f i t d i s t r ( x = reads , densfun = " negat ive binomial " )

s i z e_par = as . numeric ( par_es t imato r s $ es t imate [ 1 ] )

mu_par = as . numeric ( par_es t imato r s $ es t imate [ 2 ] )

#Generate sims reads :

r = rnbinom (n = sims , s i z e = s i z e_par , mu = mu_par )

#For each read , generate an observed VAF−value :
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VAF_observed = rbinom (n = sims , s i z e = r , prob = 0.5∗ pur i ty ) / r

p = length ( which (VAF_observed < l ) ) / sims

h i s t (VAF_observed , breaks = 100 , xlim = c ( 0 , 0 . 6 ) )

re turn (p)

}

D i s t r i bu t i onOfExt inc t i on = func t i on ( beta , maxgen ) {

#Count number o f c e l l s in each gene ra t i on un t i l e x t i n c t i o n :

#populat ion beg ins with one c e l l :

pop = 1

gen = 1

NrOfCellsInEachGen = vecto r (mode = " numeric " , l ength = maxgen )

whi l e ( pop>0 && gen <= maxgen ) {

#Decide how many c e l l s that d i v id e in pre sent gene ra t i on ( the other

c e l l s w i l l e v en tua l l y d i e ) :

Cel l sThatDivided = rbinom (1 , pop , beta )

pop = 2∗Cel lsThatDivided

# I f tumor d i e s out : r e turn (0 )

i f ( pop == 0) {

return ( NrOfCellsInEachGen )

}

e l s e {

NrOfCellsInEachGen [ gen ] = pop

}

gen = gen + 1

}

#ex t i n c t i o n not guarant ied , re turn 0 :

re turn (0 )

}

D i s t r ibu t i onOfSur iv ingPopu la t i on s = func t i on ( beta , maxgen ) {
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#Count number o f c e l l s in each gene ra t i on un t i l maxgen

#populat ion beg ins with one c e l l :

pop = 1

gen = 1

NrOfCellsInEachGen = vecto r (mode = " numeric " , l ength = maxgen )

whi l e ( gen <= maxgen ) {

#Decide how many c e l l s that d i v id e in pre sent gene ra t i on ( the other

c e l l s w i l l e v en tua l l y d i e ) :

Cel l sThatDivided = rbinom (1 , pop , beta )

pop = 2∗Cel lsThatDivided

# I f tumor d i e s out : r e turn (0 )

i f ( pop == 0) {

return (0 )

}

e l s e {

NrOfCellsInEachGen [ gen ] = pop

}

gen = gen + 1

}

return ( NrOfCellsInEachGen )

}

TakeResection = func t i on ( tumorSample , par_mean , par_s i z e , pur i ty ,

truncalamount , p lo idy = 2) {

#Function has input " tumorSample " from a v i r t u a l tumor crea ted from

tumorGrowth ( ) .

#par_mean and s i z e i s the parameters o f the negat ive binomial

d i s t r i b u t i o n (mean and s i z e ) .
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#Get a l l mutation IDs in one s i n g l e atomic vec to r :

Al lMutat ions = un l i s t ( tumorSample [ [ 1 ] ] )

S = tumorSample [ [ 3 ] ]

#Get VAF of a l l somatic mutations us ing R−f unc t i on tab l e :

RealVAF = ( tab l e ( Al lMutat ions ) /( p lo idy ∗S) ) ∗ pur i ty

#Frequenc ie s that are too low have very l i t t l e chance o f bee ing seen ,

e s p e c i a l l y in the r eg i on o f i n t e r e s t [ 0 . 0 1 , 0 . 2 5 ] .

#Therefore , f o r s imp l i c i t y d i s ca rd too low f r e qu en c i e s as they w i l l

not i n f l u e n c e the grea t p i c tu r e anyway :

RealVAF = RealVAF [RealVAF >= 0 . 0 0 1 ]

#Now, the OBSERVED f r e qu en c i e s o f each somatic mutation i s est imated

assuming a Gamma−Poisson d i s t r i b u t e d read depth :

ObservedVAF = vector (mode = " numeric " , l ength = length (RealVAF) )

#Simulate read depth in each po s i t i o n :

ReadDepths = rnbinom (n = length (RealVAF) , s i z e = par_s i z e , mu = par_

mean )

f o r ( i in 1 : l ength (RealVAF) ) {

i f (ReadDepths [ i ] >= 10) {

NrOfMutationsRecorded = rbinom (1 , ReadDepths [ i ] , as . numeric (RealVAF [

i ] ) )

i f ( NrOfMutationsRecorded >= 3) {

ObservedVAF [ i ] = NrOfMutationsRecorded/ReadDepths [ i ]

}

}

}

ObservedVAF = ObservedVAF [ ObservedVAF!= 0 ]
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#Add t runca l mutations

NrOftruncalMutations = as . i n t e g e r ( ( ( truncalamount ) /(1− truncalamount ) ) ∗

l ength (ObservedVAF) )

truncalVAFs = vecto r (mode = " numeric " , l ength = NrOftruncalMutations )

#Read depths f o r each t runca l mutation :

truncalReadDepths = rnbinom (n = NrOftruncalMutations , s i z e = par_s i z e ,

mu = par_mean )

f o r ( i in 1 : NrOftruncalMutations ) {

i f ( truncalReadDepths [ i ] >= 10) {

NrOfMutationsRecorded = rbinom (n=1, s i z e = truncalReadDepths [ i ] , p

=0.5∗ pur i ty )

i f ( NrOfMutationsRecorded >= 3) {

truncalVAFs [ i ] = NrOfMutationsRecorded/ truncalReadDepths [ i ]

}

}

}

ObservedVAFs = c (ObservedVAF , truncalVAFs )

ObservedVAFs = ObservedVAFs [ ObservedVAFs != 0 ]

re turn (ObservedVAFs )

}

#END OF FUNCTIONS APPLIED

#############################################

#HERE, THE FUNCTIONS ABOVE CAN BE APPLIED

#EACH SCRIPT IS SEPERATED BY HASHTAGS ###. Outcomment a s c r i p t in order

to d i r e c t l y use i t in any R−s c r i p t .
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#Decide parameters here :

beta = 0.55

lambda = 1 .5

maxgen = 150

maxMuts = 40

p lo idy = 2

truncalamount = 0 .5

# par_mean = c (80 ,90 ,100 ,110 ,120 ,130 ,190)

# par_s i z e = c ( 2 . 5 , 2 . 5 , 2 . 5 , 2 . 5 , 2 . 5 , 2 . 5 , 2 . 5 )

# pur i ty = c ( 0 . 7 , 0 . 7 , 0 . 7 , 0 . 7 , 0 . 7 , 0 . 7 , 0 . 7 )

par_mean = 178

par_s i z e = 2.27

pur i ty = 0 .3

##################################################

#CREATE A TUMOR AND COMPUTE M(E[F_k ] )

# k = 1:40

# Efk = 1/(2∗(2∗ beta )^k )

# x = 1/Efk

# mEfk = ( lambda/(2−1/beta ) ) ∗(1/Efk−2)

# t = tumorGrowth (maxgen , beta , lambda , lambda_d ,maxMuts , s )

# whi le ( ob j e c t . s i z e ( t ) <70){

# t= tumorGrowth (maxgen , beta , lambda , lambda_d ,maxMuts , s )

# }

# TotalNumberOfCells = t [ [ 3 ] ]

# TheSample = t [ [ 1 ] ]

# #Get a l l mutation IDs in one s i n g l e atomic vec to r :

# AllMutat ions = un l i s t (TheSample )

# #Get VAF of a l l somatic mutations us ing R−f unc t i on tab l e :

# RealVAF = tab l e ( Al lMutat ions ) /( p lo idy ∗TotalNumberOfCells )

# RealVAF = RealVAF [RealVAF >= 0 . 0 1 ]

# tab = rev ( t ab l e (RealVAF) )
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# Mf = as . vec to r (cumsum( tab ) )

# reco rdedva f s = as . numeric ( names ( tab ) )

# MEfk = vecto r (mode = " numeric " , l ength = length ( Efk ) )

# f o r ( i in 1 : l ength (MEfk) ) {

# po s i t i o n = OrderNumericInRightPlace ( recordedva f s , Efk [ i ] )

# MEfk [ i ] = Mf [ p o s i t i o n ]

# }

# Mf l i s t = l i s t (x ,mEfk , MEfk)

# save ( Mf l i s t , f i l e = )

#####################################################

#COMPARE M( f ) in r e a l data vs . observed data with g iven read depth

d i s t r i b u t i o n :

#

# l i b r a r y ( f o r each )

# l i b r a r y ( doPa ra l l e l )

# #Decide number o f c l u s t e r s here :

# c l = makeCluster (3 )

# r e g i s t e rDoPa r a l l e l ( c l )

#

# foreach ( i = 1 : 7 ) %dopar% {

# o = TakeResection ( t , S , par_mean [ i ] , par_s i z e [ i ] , pur i ty [ i ] )

# save (o , f i l e = )

# }

# stopClus t e r ( c l )

###################################################################

#ESTIMATE d i s t r i b u t i o n o f VAF here when neut ra l evo lu t i on ( only l ook ing

at subc l ona l mutations ) :

NrOftumors = 200

l i b r a r y ( f o r each )
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l i b r a r y ( doPa ra l l e l )

#Decide number o f c l u s t e r s here :

c l = makeCluster (5 )

r e g i s t e rDoPa r a l l e l ( c l )

f o r each ( i = 1 : NrOftumors ) %dopar% {

t = tumorGrowth (maxgen , beta , lambda , lambda_d ,maxMuts , s )

whi l e ( ob j e c t . s i z e ( t ) <70){

t= tumorGrowth (maxgen , beta , lambda , lambda_d ,maxMuts , s )

}

r = RealDistributionOfVAF ( tumorSample = t , gens = maxMuts)

save ( r , f i l e = )

}

##############################################################

# #ESTIMATE EXPECTED GROWTH FOR SURVIVING TUMORS

# NrOftumors = 2000

# l i b r a r y ( f o r each )

# l i b r a r y ( doPa ra l l e l )

# #Decide number o f c l u s t e r s here :

# c l = makeCluster (5 )

# r e g i s t e rDoPa r a l l e l ( c l )

# fo r each ( i = 1 : NrOftumors ) %dopar% {

# sur = Di s t r ibu t i onOfSur iv ingPopu la t i on s ( beta , maxgen )

# i f ( ob j e c t . s i z e ( sur ) > 100) {

# save ( sur , f i l e = )

# }

# }

###########################################################

#FIND M(k) based on 200 tumors

# NrOftumors = 50

# gens = 40
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# l i b r a r y ( f o r each )

# l i b r a r y ( doPa ra l l e l )

# #Decide number o f c l u s t e r s here :

# c l = makeCluster (5 )

# r e g i s t e rDoPa r a l l e l ( c l )

# fo r each ( i = 1 : NrOftumors ) %dopar% {

# t = tumorGrowth (maxgen , beta , lambda , lambda_d ,maxMuts , s )

# whi le ( ob j e c t . s i z e ( t ) <70){

# t= tumorGrowth (maxgen , beta , lambda , lambda_d ,maxMuts , s )

# }

# Mk = RealMk( t , gens )

# save (Mk, f i l e = )

# }

#############################################################

#ESTIMATE expected number o f c e l l s in each gene ra t i on cond i t i oned on

ex t i n c t i o n :

# maxgen = 120

# ext inctMatr ix = matrix ( nrow = 5000000 , nco l = maxgen )

# WhenDied = vecto r (mode = " numeric " , l ength = 120)

# f o r ( i in 1 :5000000) {

# d = Di s t r i bu t i onOfExt inc t i on ( beta , maxgen )

# i f ( l ength (d)>1){

# d = Di s t r i bu t i onOfExt inc t i on ( beta , maxgen )

# when = min ( which (d == 0) )

# WhenDied [ when ] = WhenDied [ when ] + 1

# ext inctMatr ix [ i , ] = d

# }

#

# }

# ex = colMeans ( ext inctMatr ix , na . rm = TRUE)

# save ( ex , f i l e = )
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# save (WhenDied , f i l e = )

#######################################################

#CHECH DISTRIBUTION OF PUBLIC MUTATIONS:

# pm = Dist r ibut ionOfPubl i cMutat ions ( ID = "TCGA−NH−A5IV−01A−42D−A36X

−10" , r e ad sF i l e = ,

# pur i ty = 0 . 8 , s ims = 1000000 , l =

0 . 1 )

#v = Vir tua lSequenceAna lys i s ( 2 0 0 , 2 , 0 . 0 1 , 0 . 5 , 2 0 0 , 2 . 4 , 0 . 7 2 )

# tumor = tumorGrowth (maxsize , beta , lambda , lambda_d ,maxMuts , s )

#

# whi le ( ob j e c t . s i z e ( tumor ) <70){

# tumor = tumorGrowth (maxsize , beta , lambda , lambda_d ,maxMuts , s )

# }

# biopsy = TakeBiopsy ( tumor ,10000000 ,100 ,2 ,1 )

# save ( biopsy , f i l e = )

# # #Simulate bunches o f tumors in p a r a l l e l l :

# l i b r a r y ( f o r each )

# l i b r a r y ( doPa ra l l e l )

# #Decide number o f c l u s t e r s here :

# c l = makeCluster (3 )

# r e g i s t e rDoPa r a l l e l ( c l )

#

# foreach ( i = 1 : 11 ) %dopar% {

#

# #Cal l tumorGrowth ( ) u n t i l a tumor has grown to de s i r ed s i z e

# tumor = tumorGrowth (maxsize , beta , lambda , lambda_d ,maxMuts , s )

# #I f ob j e c t s i z e
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# whi le ( ob j e c t . s i z e ( tumor ) <70){

# tumor = tumorGrowth (maxsize , beta , lambda , lambda_d ,maxMuts , s )

# }

# RealVAF = RealDistributionOfVAF ( tumor )

# #save somewhere :

# save (RealVAF , f i l e = )

# }

# stopClus t e r ( c l )

######################################################

#Create a f i c t i v e VAF−d i s t r i b u t i o n

# tumor = tumorGrowth (maxgen , beta , lambda , lambda_d ,maxMuts , s )

#

# whi le ( ob j e c t . s i z e ( tumor ) <70){

# tumor = tumorGrowth (maxgen , beta , lambda , lambda_d ,maxMuts , s )

# }

# r e s e c t i o n = TakeResection ( tumor , par_mean , par_s i z e , pur i ty ,

truncalamount )
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