
Time-series predictions with Recurrent
Neural Networks
Studying Recurrent Neural Networks

predictions and comparing to state-of-the-art

Sequential Monte Carlo methods

Lene Finsveen

Master of Science in Physics and Mathematics

Supervisor: Thiago Martins, IMF

Department of Mathematical Sciences

Submission date: June 2018

Norwegian University of Science and Technology

Abstract

Recurrent Neural Networks (RNNs) have shown great success in sequence-to-sequence
processing due to its ability to retain memory while incrementally processing se-
quence elements. It has become a fundamental algorithm for processing text and
speech, and is recently becoming more popular on time-series prediction as well.
Recent blog posts showing RNN flexibility applied to time-series prediction com-
bined with flexible and easy-to-use APIs such as Keras, are leading to a widespread
use of RNN for time-series prediction.

The aim of this thesis is to study the performance of RNN to predict time-series
under different scenarios of noise and stationarity. In order to do this, we will simu-
late time-series from a state-space model (SSM) with known noise and stationarity
parameters. An SSM is a subclass of a Bayesian hierarchical model and simulates a
hidden state and observation depending only on static parameters and state. This
is a common setup found in the signal processing literature. The hidden state will
act as an underlying signal while the observation is a mixture of signal and noise.
RNN models will try to predict the signal based on the simulated observed values.
We are going to experiment with a long short-term memory (LSTM) model, which
is the most popular type of RNNs currently used.

We evaluate the quality of the LSTM predictions by computing the cumulative
mean square error (CMSE) with respect to the true simulated signal. In addition,
we will estimate the signal using state-of-the-art Sequential Monte Carlo methods
(SMC) such as the Bootstrap filter and Particle Markov Chain Monte Carlo (PM-
CMC). We then also compare the performance of the LSTM models with respect to
the estimated signals. The objective is to get insights into the LSTM performance
level when compared to custom-tailored state-space models.

The general findings are that the LSTM models perform worse than custom-tailored
SSM models in non-stationary scenarios. PMCMC outperforms LSTM in all sce-
narios given the custom-tailored SSM parameters. Bootstrap filtering struggles
more with estimating the state in non-stationary scenarios as noise increases, but
still perform better than LSTM.

i

Sammendrag

Rekursive Nevrale Nettverk (RNN) har vist seg å gi gode resultater i prosessering
av sekvens-data p̊a grunn av algoritmens evne til å opprettholde internt minne
samtidig som elementene i sekvensen prosesseres. RNN har blitt en fundamental
algoritme for prosessering av text og tale, og har nylig blitt mer populær innen
tidsrekkedata prediksjon. Nylige bloggartikler vitner om at bruken av RNN er
blitt mer utbredt ettersom RNN er fleksibel for tidsrekker og APIer som Keras
gjør det lett å bruke.

Målet for denne masteroppgaven er å studere RNNs utførelsesniv̊a for prediksjon
av tidsrekker under forskjellige scenarier av støy og stasjonæritet. For å gjøre dette
vil vi simulere tidsrekkedata fra en ”state-space” modell (SSM) med kjent støy og
stasjonæritet. SSM simulerer en ukjent tilstand og observasjon kun avhengig av de
statiske parametrene og tilstanden. I litteratur er dette oppsettet mer kjent som
signalprosessering. Den ukjente tilstanden vil være et signal og observasjonene
er en blanding av signal og støy. RNN modeller skal predikere signalet basert
p̊a de kjente observasjonene. Modellen i eksperimentet vil være ”long short-term
memory” (LSTM) modellen, som er den mest poplære typen RNN.

For å vurdere prediksjonkvaliteten p̊a LSTM prediksjonene beregner vi den ku-
mulative ”mean square error”-metrikken (CMSE) for signalet. I tillegg vil to ny-
moderne ”sequential Monte Carlo” metoder estimere signalet, Bootstrap filter og
particle Markov Chain Monte Carlo (PMCMC). Utførelsen til alle LSTM modeller
vil ogs̊a sammenlignes mot hverandre basert p̊a signalestimering. Målet er å f̊a
innsikt i utførelsesniv̊aet til LSTM n̊ar sammenlignet med spesialdesignede SSM
metoder.

Resultatene av eksperimentet viser at LSTM modellene estimerer signalet d̊arligere
enn SMC modellene i ustasjonære scenarier. PMCMC utklasser LSTM i alle scenar-
ier, ikke overraskende siden den er spesialtilpasset for simuleringsdataene. Boot-
strap filteret estimerer signalet d̊arligere i de ustasjonære scenariene n̊ar støyet
øker, men fremdeles bedre enn LSTM.

ii

Preface

Recurrent Neural Networks (RNNs) have become a fundamental algorithm for pro-
cessing text, speech, time-series - in general, sequence-to-sequence processing. The
aim of this thesis is to study the performance of RNN to predict time-series under
different scenarios of noise and stationarity. To do this, we will simulate time-series
from a state-space model (SSM) with known parameters. SSM simulates a hidden
state (a signal) and observations which is a mixture of signal and noise. This setup
is found in signal processing literature and the RNN model will try to predict the
signal based on observed values. To evaluate the model performance state-of-the-
art sequential Monte Carlo (SMC) methods will also estimate the signal and the
objective is to get insights into the RNN performance level.

This thesis concludes my master of Technology in Applied Physics and Mathematics
with specialization in Industrial Mathematics at Norwegian University of Science
and Technology (NTNU). The work was carried out during the spring semester of
2018 at the Department of Mathematical Science under the supervision of Thiago
Guerrera Martins.

My sincere appreciation goes to Thiago Guerrera Martins for guidance and contri-
butions during the process of writing the thesis. He has contributed with motivation
and experience on the topic and showed great patience during the work that has
been carried out. Lastly, he has ensured steady progress during the semester and
provided valuable feedback towards the end.

Lene Finsveen
June 18, 2018

Trondheim, Norway

iii

iv

Table of Contents

Abstract i

Sammendrag ii

Preface iii

Table of Contents v

1 Introduction 1

2 Literature Review 3

3 State Space Models 5
3.1 Simulate data from SSM . 6

4 Recurrent Neural Networks 9
4.1 Defining RNN . 10
4.2 Defining LSTM . 11
4.3 Experiment model . 12

4.3.1 Gradient-based optimizing . 13
4.3.2 Model setup . 15

4.4 Results . 16

5 Sequential Monte Carlo 21
5.1 Monte Carlo Estimation . 21
5.2 Sequential Monte Carlo . 22

5.2.1 Bootstrap filter . 23
5.2.2 PMCMC . 23
5.2.3 Experiment models . 24

6 Discussion and conclusion 29
6.1 Discussion . 29
6.2 Conclusion . 33

Bibliography 35

v

Chapter 1

Introduction

Motivation

Natural Language Processing (NLP) has benefitted greatly from deep neural net-
works (Chowdhury, 2005). NLP is an area for exploring how text and speech can be
processed by computers in order to perform useful tasks. This involves text process-
ing for a variety of applications, e.g. language modeling, handwritten recognition,
text classification and image recognition (Karpathy, 2015; Graves, 2013; Chollet
and Allaire, 2018; Ba et al., 2014).

Recurrent Neural Networks (RNN) have in particular shown its success in text
and sequence processing and become a fundamental algorithm in this area (Chollet
and Allaire, 2018). Text, words or time-series can be represented in sequences,
i.e. it is a sequence of single elements (letters, words, data-points). The ability to
process elements incrementally while maintaining a memory is what makes RNN
great for sequence-to-sequence processing. Chollet and Allaire (2018) elegantly
demonstrates that a basic RNN can be easily setup using Keras (Chollet, 2015).
This simplicity and flexibility are some of the reasons for its widespread use. Recent
blog posts, e.g. Brownlee (2017) also suggest RNNs are growing popular for time-
series and real-time data predictions.

This thesis aims to study the performance of RNN to do signal processing.
A long short-term memory (LSTM) model is employed to make time-series pre-
dictions. The task of LSTM is to capture the signal under different scenarios of
stationarity and noise. The signal and observations are simulated from a state-
space model (SSM) with known stationarity and noise parameters. To evaluate the
RNN state-of-the-art sequential Monte Carlo (SMC) methods will also estimate
the signal. Comparison between the LSTM predictions and SMC signal estimation
will shed light on the RNN model performance level under different scenarios.

1

Outline

In Chapter 2 we give background on RNN and previous work on this area. We
present a common use of RNN and examples of known applications of LSTM. In
Chapter 3, we define SSM and add a section presenting the model parameters and
the resulting simulated datasets. Chapter 4 presents RNNs. It contains model def-
inition, experimental setup and results obtained with the LSTM models. Chapter
5 introduces SMC; its definition and practical use. For this method sampling and
filtering is given, as well as proposed methods and experimental setup. For the final
chapter, Chapter 6, we present our overall findings. In particular a comparison of
the methods and an evaluation of LSTM. Lastly, thoughts on the experiment and
future work are given.

2

Chapter 2

Literature Review

RNNs have recently demonstrated great success in sequence forecasting, e.g. lan-
guage modeling (Karpathy, 2015), financial markets (Cavalcante et al., 2016),
speech and handwriting recognition (Graves, 2013), image captioning (Ba et al.,
2014) and other real world time-series problems.

A long short-term memory (LSTM) network was first introduced by Hochreiter
and Schmidhuber (1997) and is RNN with an appropriate gradient-based learn-
ing and more flexible memory. LSTM was introduced to address the constant
error backdrop, more known as the vanishing gradient problem (Hochreiter, 1991).
Hochreiter and Schmidhuber (1997) showed LSTM could solve complex, artificial
long time lags never before solved by RNN and Gers et al. (2001) analyzed the use
of LSTM on conceptually simpler time-series problems. It suggests LSTM is only
to use when simpler traditional methods fail.

Figure 2.1: An illustration of text being processed by RNN as a sequence of characters
(Karpathy, 2015).

3

Karpathy (2015) shows in a blog post how RNN classifies characters from text
by producing the probability of the next character in the sequence. Figure 2.1
shows the input vector [”h”, ”e”, ”l”, ”l”], and the produced target vector [”e”,
”l”, ”l”, ”o”], ”o” being the next character in the sequence. The data is sent
through a hidden layer where the network is trained, i.e. the weights are adjusted
to produce the probability of each character.

Ba et al. (2014) used an LSTM-RNN in image recognition to preserve infor-
mation from a glimpse feature vector gn, Figure 2.2. The input gn combined with
the recurrent output state r(1) is sent through LSTM layers to update the internal
representation of the input. As Figure 2.2 shows the final outputs l̂n+1, the next
location in the glimpse and ys, the next object to process.

Figure 2.2: Graphical representation of the model Ba et al. (2014) used in image recog-
nition.

Althelaya et al. (2018) evaluated bidirectional LSTM for stock market predic-
tions and found it has better performance on both short- and long-term predictions
compared to shallower neural nets.

Graves (2013) generated real-valued sequences from handwriting. LSTM was
employed to predict online handwriting by generating sequences with long-range
structure. The handwriting was recorded as a sequence of pen-tip locations.

Most papers cited above study the performance of RNNs on applications such
as text and speech. Signal processing has not received the same attention from
the scientific community, which is a gap that we plan to fill with this thesis by
investigating the performance of LSTMs for signal processing and prediction under
different scenarios of noise and stationarity.

4

Chapter 3

State Space Models

The state space model (SSM) is considered to be a subclass of the more general
Bayesian hierarchical model (BHM). SSM admits a joint density of the form

p(y1:t,x0:t,Θ) = p(x0:t,Θ)p(y1:t|x0:t,Θ) (3.1)

where the distributions on the right-hand side of (3.1) are the joint prior distri-
bution of the state vector x0:t and of the parameter vector Θ, p(x0:t,Θ) and the
likelihood function p(y1:t|x0:t,Θ), where y1:t is a vector containing t observations.

When the state is a Markov process and the observation depends only on pa-
rameters and state, the joint density takes the following form:

p(y1:t,x0:t,Θ) = p(Θ)p(x0|Θ)

(
t∏

k=1

p(xk|xk−1,Θ)

)(
t∏

k=1

p(yk|xk,Θ)

)
(3.2)

which is also illustrated in 3.1. The right-hand side of (3.2) contains the prior
distribution of the parameters p(Θ), the prior distribution of the initial state
p(x0|Θ), the conditionally independent prior distribution of the state transition
equation

∏t
k=1 p(xk|xk−1,Θ) and the conditionally independent likelihood func-

tion
∏t
k=1 p(yk|xk,Θ).

Figure 3.1: Figure illustrates an SSM with parameters Θ, Markov state process xt and
observation process yt (Mingas et al., 2017).

5

3.1 Simulate data from SSM

We will simulate data from the following univariate first order SSM to use in our
experiments:

xt = φxt−1 + wt, wt ∼ N(0, 1) (3.3)

yt = xt + vt, vt ∼ N(0, σ2). (3.4)

where xt will be referred to as the signal, and yt the observed value.
Table 3.1 shows how the model in (3.3) and (3.4) are connected to the SSM

class by specifying the different components in the context of (3.2).

Table 3.1: Experiment distributions

Initial state x0 ∼ N(0, 1)
State transition xt|xt−1, φ ∼ N(φxt−1, 1)
Observation yt|xt, σ2 ∼ N(xt, σ

2)

The aim of the experiments is to predict the signal of the simulated datasets.
We will simulate a total of six scenarios, each containing T = 10000 time-steps. The
simulated date will be both stationary and non-stationary (φ ∈ {0.1, 1}) time-series,
each having three signal-to-noise ratios (STNRs) (1/σ2 ∈ {0.2, 0.5, 1}). Figure 3.2
shows the resulting time-series and their characteristics. The data will be named
by its parameters signal to noise (sn) and transition factor (phi):

”sn” + STNR + + ”phi” + φ, (3.5)

so that a simulated time-series with STNR equal to 0.2 and φ equal to 0.1 will be
denoted sn0p2 phi0p1 as the plots in Figure 3.2 show.

6

Figure 3.2: The tail (last 500 points) of the simulated datasets. The columns show
φ = 0.1 (left) and φ = 1 (right) and the rows are σ2 = 0.2 (top), 0.5 (middle) and 1
(bottom).

7

8

Chapter 4

Recurrent Neural Networks

Recurrent neural networks (Chollet and Allaire, 2018) are fundamental deep-learning
algorithms for sequence processing. Sequence data can be thought of as a sequence
of letters, words or values. Applications of RNN are mostly text processing (identi-
fying topic of a book, classifying sentiment of reviews), sequence-to-sequence learn-
ing (decoding sentences from one language to another) and time-series forecasting
(stock market predictions, temperature forecasting) given recent data. In this the-
sis an RNN will be employed to time-series forecasting. The aim is to study the
behavior of RNN on signal processing in different scenarios of noise and stationarity.

Unlike feedforward nets (e.g. DenseNets and convnets) RNN has memory. The
network processes the input incrementally while maintaining a state with infor-
mation of what is being processed. Instead of processing input in a single step,
it loops over all elements in the input-sequence and updates the state constantly.
Figure 4.1 illustrates an unfolded recurrent layer wherein each iteration the state
is updated with what was produced in the previous step.

Figure 4.1: Transition of data in a one-layer RNN.

9

4.1 Defining RNN

A one-layer RNN is a function of a linear transform T between the input at the
current time-step, the input xt and the hidden state at previous time step ht−1:

yt = f(T [xt, ht−1]), f ∈ {sigm, tanh}, (4.1)

T [xt, ht−1] = U1xt + U2ht−1 + b, (4.2)

where yt is the observation at time t, U1 and U2 are weight matrices to be learned
from the data and b is the bias or intercept, also learnable from data. The transition
of data is illustrated in Figure 4.1 and the function f is usually taken to be a non-
linear function such as sigmoid or a rectified linear function.

More generally, we can define a multilayer RNN (Zaremba et al., 2014) with
the following transition function:

RNN : hl−1t , hlt−1 → hlt (4.3)

with layers l ∈ [0, L], and the function given by

hlt = f(T [hl−1t , hlt−1]), f ∈ {sigm, tanh} (4.4)

also illustrated in Figure 4.2. Here, h0t is an input sequence and hLt the activation
to predict yt.

Figure 4.2: CAIS++ (2017) graphically illustrates the transition of data between states
in a multilayer RNN.

10

4.2 Defining LSTM

The long short term memory (LSTM) network is capable of learning long-term
dependencies, as well as forgetting unnecessary information based on the data at
hand. The LSTM representation, as in Zaremba et al. (2014), is similar to (4.3),
but now memory cells clt are introduced:

LSTM : hl+1
t , hlt−1, c

l
t−1 → hlt, c

l
t. (4.5)

The cell state has minor linear interactions and allows for data to flow along un-
changed, as a memory. In RNN the standard module contains one layer, while the
LSTM module contains four layers:

f = sigm(T [hl−1t , hlt−1]) (4.6)

i = sigm(T [hl−1t , hlt−1]) (4.7)

g = tanh(T [hl−1t , hlt−1]) (4.8)

o = sigm(T [hl−1t , hlt−1]). (4.9)

Figure 4.3: A graphical representation of LSTM (Zaremba et al., 2014).

The forget gate f outputs a number between 0 and 1 from the sigmoid activation
layer, i.e. f = 0 forgets everything in cell ct, and f = 1 keeps all information. The
input gate i decides what information to update in the state from the previous
time-step, where the sigmoid layer also here returns a number between 0 and 1. In
order to update the state, the input layers are multiplied by the input modulation
gate g. A candidate vector with elements between −1 and 1 are computed to add
or remove information from the state. The cell state is updated in the following
way:

clt = f · clt−1 + i · g. (4.10)

The output gate o decides what to keep from the memory cell, and output state is

hlt = o · tanh clt. (4.11)

11

4.3 Experiment model

The time-series predictions will be performed by an LSTM model using a sliding
window approach (Weng, 2017). A window Wt, see Figure 4.4, will act as the
feature sequence in order to make one-step-ahead predictions.

Figure 4.4: The model input is l observed values from the sliding window Wt to predict
the target ŷt.

The feature sequence is observed values from the simulations at a given time-
step. The length of the feature sequence (or size of the window) is l, which leads
to the following input-sequences:

W0 = (y0, y1, ..., yl−1) (4.12)

W1 = (y1, y2, ..., yl) (4.13)

... (4.14)

Wt = (yt, ..., yl−1+t). (4.15)

The value to predict is y(l+t) and is denoted the target of the current time-step, ŷt.
The window size will be referred to as lags in the future.

12

4.3.1 Gradient-based optimizing

Gradient-based optmization is the very engine of neural networks (Chollet and
Allaire, 2018). The gradual adjustment of trainable parameters i.e. weights and
bias in an activation layer (see section 4.1) are the training that machine and deep
learning is all about. Gradient descent is the most common way to optimize neural
networks (Ruder, 2016).

Gradient descent aims to minimize an objective function J(θ) parameterized
by parameters θ in order to reach a local minimum. By computing the gradient,
∆J(θ), a slope is created in a downhill direction to the local minimum. The
learning rate, η, determines the step-size in this direction and optimizer steps
determines how many times the parameters are updated for each processed data
batch.

It is important to have an appropriate learning rate as too big steps can lead
to divergence and too small learning rate can lead to slow convergence. Jordan
(2018) illustrates this effect accurately in Figure 4.5.

Figure 4.5

The basic update rule for stochastic gradient descent (SGD) (Duchi et al., 2011)
is

θt+1,i = θt,i − ηgt,i (4.16)

but can vary for variations of the method. We wish to study the behaviour of the
model with two variations of gradient descent, which are described below.

13

Adagrad

Adagrad (Duchi et al., 2011) is short for Adaptive Gradient Algorithm and adds
a term to SGD in order to adapt the learning rate for each parameter θi at every
times-step t. Instead of updating all parameters with the same learning rate,
Adagrad modifies the general learning rate based on the past gradients gt,i =
∆θtJ(θt,i) computed for θi:

θt+1,i = θt,i −G−1t ηgt,i (4.17)

where G := diag(
∑t
j=1 gjg

T
j)1/2.

Adagrad performs smaller updates to more frequent features and larger updates
to the less frequent features. Dean et al. (2012) showed Adagrad can be used for
training large-scale neural nets as it improved the robustness of SGD.

Ftrl

Ftrl or Ftrl-proximally (McMahan et al., 2013) is short for Follow the (proximally)
Regularized Leader. The algorithm has been used by McMahan et al. (2013) due
to its ability to handle larger data sets and larger models. The aim of the algorithm
is to get both sparsity and improved accuracy on predictions from the standard
SGD, and has shown to do so with minimum computing resources. Ftrl is SGD
with regularization and is defined as (McMahan, 2011)

θt+1,i = arg min
θ

(g1:t,iθi + tλ‖θi‖1 +
1

2

t∑
s=1

σs‖θi − θs,i‖22). (4.18)

The first term of the update is an approximation to the objection function, second
term is an non-smooth convex function and the last term is an additional strong
convexity. Here, σts = 1

ηt
and are generalized learning rates, while λ > 0 induces

sparsity in the way that zero-features and less important features are removed.

14

4.3.2 Model setup

Arguments Value

Training optimizer {”Adagrad”, ”Ftrl”}
Number of optimizing steps {10, 100}
Learning rate {0.1, 0.5}
Number lags {5, 10, 20}
Number of hidden layers {1, 2, 3}

Table 4.1: The set of arguments for the LSTM model to investigate.

The model used in the experiments are designed in Tensorflow (Abadi et al.,
2015). The model has an RNN architecture containing basic LSTM cells. Training
optimizer algorithm, number of optimizing steps and learning rate belongs to the
parameter training session (Section 4.3.1). The number of lags or size of feature
sequence will be varied. The model will also stack a different number of cells. The
arguments variables are listed in Table 4.1 and all combinations will be tested.

The objective function to minimize is the mean squared error metric (MSE):

MSE =
1

n

(n∑
i

yi − ŷi
)2
. (4.19)

15

Table 4.2: Results of the experiment, showing simulation parameters, CMSE and op-
timizer hyperparameters for the 5 best models used to predict each of the simulated
time-series. Bold rows mark the best result for each series.

Time-series φ STNR CMSE Optimizer Optimizer steps Learning rate Lags Layers

sn0p2 phi0p1 0.1 0.2 2674.3127 Adagrad 10 0.1 5 1
sn0p2 phi0p1 0.1 0.2 2674.8955 Adagrad 10 0.1 10 1
sn0p2 phi0p1 0.1 0.2 2675.1684 Adagrad 10 0.1 20 1
sn0p2 phi0p1 0.1 0.2 2675.2325 Ftrl 10 0.1 5 1
sn0p2 phi0p1 0.1 0.2 2675.5648 Ftrl 10 0.1 10 1
sn0p5 phi0p1 0.1 0.5 504.9497 Ftrl 10 0.1 10 1
sn0p5 phi0p1 0.1 0.5 505.0840 Adagrad 10 0.1 10 1
sn0p5 phi0p1 0.1 0.5 505.2548 Adagrad 10 0.1 20 1
sn0p5 phi0p1 0.1 0.5 505.2751 Ftrl 10 0.1 10 2
sn0p5 phi0p1 0.1 0.5 505.3038 Ftrl 100 0.5 20 1
sn1 phi0p1 0.1 1 202.6560 Ftrl 10 0.1 5 2
sn1 phi0p1 0.1 1 202.9083 Adagrad 10 0.1 10 1
sn1 phi0p1 0.1 1 203.0482 Adagrad 10 0.1 5 1
sn1 phi0p1 0.1 1 203.0808 Ftrl 10 0.1 10 1
sn1 phi0p1 0.1 1 203.2258 Ftrl 10 0.1 10 2
sn0p2 phi1 1 0.2 3909.5377 Ftrl 100 0.5 5 3
sn0p2 phi1 1 0.2 3911.7528 Ftrl 100 0.5 10 2
sn0p2 phi1 1 0.2 4324.2036 Ftrl 100 0.5 10 3
sn0p2 phi1 1 0.2 4412.7257 Adagrad 100 0.5 10 3
sn0p2 phi1 1 0.2 4427.3217 Adagrad 100 0.5 5 3
sn0p5 phi1 1 0.5 916.6313 Adagrad 100 0.5 10 3
sn0p5 phi1 1 0.5 1023.1265 Ftrl 100 0.5 20 3
sn0p5 phi1 1 0.5 1062.7970 Adagrad 100 0.5 20 3
sn0p5 phi1 1 0.5 1287.9312 Adagrad 100 0.5 10 2
sn0p5 phi1 1 0.5 1292.1424 Adagrad 100 0.5 5 3
sn1 phi1 1 1 432.1487 Ftrl 100 0.5 5 3
sn1 phi1 1 1 523.2287 Adagrad 100 0.5 5 3
sn1 phi1 1 1 545.3177 Ftrl 100 0.5 10 2
sn1 phi1 1 1 569.9921 Ftrl 100 0.5 20 2
sn1 phi1 1 1 624.1589 Ftrl 100 0.5 5 3

4.4 Results

The results, see Table 4.2, indicate stationarity and noise ratio have a significant
impact on the LSTM performance level. The CMSE increases with noise and is in
general much higher in the non-stationary scenarios. In terms of the hyperparam-
eters, stationarity also impacts which model yields the best results. The LSTM
perform better with fewer optimizing steps, lower learning rate and a single-layered
LSTM for stationary time-series, whereas best results were obtained with more op-
timizing steps, higher learning rate and more layers for non-stationary time-series.
This is to be expected as models with higher learning rate are more capable to
adapt to the changing dynamics of non-stationarity data.

16

Parameter analysis

In terms of hyperparameters in the optimizer, the results can be further analyzed.
Figure 4.6 illustrates the average MSE plotted against each individual parameter
type. The figure visually supports what was interpreted in Table 4.2; a low number
of steps, low learning rate and low layers work better for stationary time-series while
the opposite is true for non-stationary time-series.

Figure 4.6: The two plots show mean MSE of all predictions it has made in the different
scenarios.

17

Table 4.3: Results for experiment, showing parameters and lowest cumulative MSE
(CMSE) for each time-series.

Time-series φ STNR CMSE Optimizer Optimizer steps Learning rate Lags Layers

sn0p2 phi0p1 0.1 0.2 2674.3127 Adagrad 10 0.1 5 1
sn0p5 phi0p1 0.1 0.5 504.9497 Ftrl 10 0.1 10 1
sn1 phi0p1 0.1 1 202.6560 Ftrl 10 0.1 5 2
sn0p2 phi1 1 0.2 3909.5377 Ftrl 100 0.5 5 3
sn0p5 phi1 1 0.5 916.6313 Adagrad 100 0.5 10 3
sn1 phi1 1 1 432.1487 Ftrl 100 0.5 5 3

Predictions

The LSTM predictions are shown in Figure 4.7, plotted against the signal. The
plots show the last 500 time-steps in the time-series. The prediction models used
for signal estimations are presented in Table 4.3.

In conclusion, the LSTM-model performs better in stationary, low-noise sce-
narios. This is supported by both CMSE evaluation and parameter analysis. The
LSTM struggles more on non-stationary time-series, where the performance is poor.
The results suggest the use of different values of the hyperparameters (learning rate,
optimizing-steps, layers) dependent on the stationarity of the time-series. The re-
sults obtained were not very sensitive to the choice of the optimizer and the number
of lags used, even though figure 4.6 suggest to use Ftrl for non-stationary series.

18

Figure 4.7: Predictions made by the models according to results from Table 4.3.

19

20

Chapter 5

Sequential Monte Carlo

For the vast majority of Bayesian models, the posterior distribution of its pa-
rameters is not available in closed-form. This requires the use of approximation
techniques to compute posterior distributions. If the model of interest is Gaus-
sian, linear and have low dimensionality, methods such as Kalman filtering and
hidden Markov model (HMM) filter are convenient ways of computing sequence
of posterior distributions through time. However, for more complex models, hav-
ing high dimensionality, non-linearity and/or non-Gaussianity, simulation-based
methods such as Sequential Monte Carlo (SMC) and Markov Chain Monte Carlo
(MCMC) are attractive. For SMC, this includes sequential importance sampling
(SIS) and sequential importance resampling (SIR), otherwise known as particle
and bootstrap filtering respectively (Doucet et al., 2001). Particle Markov Chain
Monte Carlo (PMCMC) uses SMC algorithms to design efficient high dimensional
proposal distributions for MCMC algorithms (Andrieu et al., 2010). We will define
and use both the Bootstrap filtering and the PMCMC methods in the following
sections of this chapter.

5.1 Monte Carlo Estimation

For the rest of this chapter, we will use the same notation used for defining SSMs
in Chapter 3. We are also assuming that most of the computations are done
conditional on the value of the static parameters Θ, unless stated otherwise. The
aim is to estimate the posterior distribution

p(x0:t|y1:t) =
p(y1:t|x0:t)p(x0:t)∫

p(y1:t|x0:t)
(5.1)

If we are able to sample N particles from the posterior distribution above, we can
compute an empirical particle sampling estimate of (5.1) by

PN (dx0:t|y1:t) =
1

N

N∑
i=1

δ
x
(i)
0:t

(dx0:t) (5.2)

21

where δ
x
(i)
0:t

(dx0:t) denotes the delta-Dirac mass. This representation yield the fol-

lowing estimate for the expected value of ft(x0:t) with respect to p(x0:t|y1:t):

IN (ft) =

∫
ft(x0:t)PN (dx0:t|y1:t) =

1

N

N∑
i=1

ft(x
(i)
0:t) (5.3)

5.2 Sequential Monte Carlo

As previously mentioned, most complex models do not admit closed-form solutions
to the posterior p(x0:t|y1:t), making it hard to sample particles directly from it.
Importance sampling methods work around this by sampling from an importance
sampling distribution, π(x0:t|y1:t). The importance sampling distribution is ideally
selected to be a distribution that is as close as possible to the target distribution
while being easy to sample from.

Then, the importance weights

w(x0:t) =
p(x0:t|y1:t)

π(x0:t|y1:t)
(5.4)

are used to correct the fact that the samples came from π(x0:t|y1:t) instead of
p(x0:t|y1:t), leading to the following estimates of p(x0:t|y1:t) and I(ft)

P̂N (dx0:t|y1:t) =

N∑
i=1

w̃
(i)
t δ

x
(i)
0:t

(dx0:t). (5.5)

and

ÎN (ft) =

N∑
i=1

ft(x
(i)
0:t)w̃

(i)
t (5.6)

where w̃
(i)
t are normalized weights w̃

(i)
t =

w(x
(i)
0:t)∑N

j=1 w̃(x
(j)
0:t)

.

Sequential Importance Sampling

Computing an estimate without modifying the past simulated trajectories gives the
SIS method. The importance distribution admits a marginal distribution at the
previous time step and when iterating over time one obtains

π(x0:t|y1:t) = π(x0)

t∏
k=1

π(xk|x0:k−1,y1:k) (5.7)

This means that the importance weights can be evaluated recursively:

w̃
(i)
t ∝ w̃

(i)
t−1

p(yt|x(i)
t)p(x

(i)
t |x

(i)
t−1)

π(x
(i)
t |x

(i)
0:t−1,y1:t)

. (5.8)

22

When the prior distribution is adopted as importance distribution the recursion
becomes

p(x0:t) = p(x0)

t∏
k=1

p(xk|xk−1) (5.9)

and importance weights are given by w̃
(i)
t ∝ w̃

(i)
t−1p(yt|x

(i)
t).

5.2.1 Bootstrap filter

The SIS method becomes ineffective when t increases due to particle degenaration.
Similarly to SIS, the Bootstrap rely on importance sampling, but eliminate particles
of low importance by adding an additional selection step to the SIS algorithm.

Algorithm 1 describes the pseudocode for the Bootstrap particle filter algorithm.

Algorithm 1: Bootstrap particle filter

t = 0
Initalization
for i = 1 : N do

sample x
(i)
0 ∼ p(x0)

end
Set t = 1
Importance sampling

for i = 1 : N do

Sample x
(i)
t ∼ p(xt|x

(i)
t−1)

Set x
(i)
0:t = (x

(i)
0:t−1, x̃

(i)
t)

Evaluate w̃
(i)
t = p(yt|x(i)

t)
end
Normalize weights
Particle selection

Resample N particles (x
(i)
t) from (x̃

(i)
t) with i = 1, ..., N

Set t← t+ 1
Go to importance sampling step.

5.2.2 PMCMC

Particle Markov Chain Monte Carlo (PMCMC) uses SMC algorithms to design
efficient high dimensional proposal distributions for MCMC algorithms (Andrieu
et al., 2010) to sample from the joint posterior distribution of the states and the
static parameters, p(x0:t,Θ|y1:t).

Initially, a set of parameters θ are generated and proposed from a proposal
distribution, q. Then, a corresponding state vector, x0:t, is generated by a bootstrap
filter using the newly proposed parameters. The marginal likelihood l = p(y1:t|θ)

23

is then used to either accept or reject the state and parameter, according to the
following ratio:

α = min

(
1,
l′p(θ′)q(θ|θ′)

lp(θ)q(θ′|θ)

)
(5.10)

Algorithm 2 describes the pseudocode for the PMCMC algorithm used in this
thesis.

Algorithm 2: Particle-filter marginal Metropolis-Hastings

Porpose parameters

θ′ ∼ q(θ′|θ)
Filter
(l′,x′0:t)→ filter(θ′)
α ∼ U(0, 1)
Accept or reject

if α = min

(
1, l

′p(θ′)q(θ|θ′)
lp(θ)q(θ′|θ)

)
then

Accept move
return (θ′,x′0:t, l

′)

else
Rejected move
return (θ,x0:t, l)

end

5.2.3 Experiment models

We will estimate the signal based on the observed data simulated in Section 3.1
using both the Bootstrap particle filter defined in Section 5.2.1 and the PMMC
method defined in Section 5.2.2. For our experiment, we will use the same model
outlined in Section 3.1, under two scenarios.

The optimal scenario will assume that we know all the static parameters in
the model, i.e. φ, the observational noise variance σ2 and the signal noise variance
σ2
x. In this scenario, we only need to estimate the signal x0:t.

The second scenario, referred here as semi optimal, will assume both variances
σ2 and σ2

x to be unknown and define a inverse gamma prior to each of them having
shape = 1 and scale = 10. The prediction results can se seen in Figures 5.1, 5.2
and 5.3.

24

Figure 5.1: The optimal filter model predictions plotted against the true signal with a
95% credibility interval.

25

Figure 5.2: The semi-optimal filter model predictions plotted against the signal 95%
credibility interval.

26

Figure 5.3: The PMCMC model predictions using the optimal model and the semi-
optimal model plotted against the signal.

27

28

Chapter 6

Discussion and conclusion

This chapter sums up the findings of our experiments. The discussion section will
consist of method comparison, both in terms of error evaluation (Figure 6.1) and
prediction results (Figures 6.2 and 6.3). The experimental methods are labeled in
the figures as Table 6.1 describes:

Table 6.1: The labels of the models in figures.

Model Model

LSTM tf pred
PMCMC optimal model libbi pred optimal
PMCMC semi-optial model libbi pred semi optimal
Bootstrap filter optimal model libbi pred optimal filter
Bootstrap semi-optimal model libbi pred semi optimal filter

After the discussion, we will draw a conclusion to the problem we have investigated;
how does the LSTM performance level compare to the custom-tailored SMC meth-
ods in the different scenarios?

6.1 Discussion

The error evaluation plot shows the PMCMC methods, the Bootstrap methods
plotted against the best LSTM model. Errors from the LSTM model predictions are
comparable with the Bootstrap filter in stationary scenarios, while not on the same
level as PMCMC. In non-stationary scenarios the LSTM predictions suffer from
bigger and increasing errors. It is worse than both Bootstrap filter and PMCMC.
Bootstrap filter shows the same amount of errors as LSTM in stationary scenarios,
but estimate better in non-stationary scenarios.

29

Figure 6.1: CMSE comparison for all experiment models.

30

Figure 6.2 shows how the LSTM model is not doing a very good prediction
job in non-stationary scenarios. It is consistently of and getting worse as noise
increases.

Figure 6.2: LSTM predictions plotted against PMPMC model estimatios.

31

Figure 6.3 shows Bootstrap filtering methods are performing better than LSTM
in non-stationary scenarios. With stationarity, on the other hand, LSTM performs
quite well compared to Bootstrap.

Figure 6.3: LSTM predictions plotted against Bootstrap model estimatios.

32

6.2 Conclusion

The main conclusion is that LSTM performs well in stationary scenarios, but not
very well in non-stationary scenarios. Compared to the custom-tailored SSM mod-
els the results proved the LSTM model got worse with time. Further work will be
to tune the hyperparameters from Section 4.3.2 in the direction it showed improve-
ment. LSTM might benefit from tuning the parameters upwards in non-stationary
scenarios in order to improve te prediction results where they evidently got worse
with time.

33

34

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens,
J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y.,
Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous
systems. Software available from tensorflow.org.
URL https://www.tensorflow.org/

Althelaya, K. A., El-Alfy, E.-S. M., Mohammed, S., apr 2018. Evaluation of bidi-
rectional LSTM for short-and long-term stock market prediction. In: 2018 9th
International Conference on Information and Communication Systems (ICICS).
IEEE.
URL https://doi.org/10.1109/iacs.2018.8355458

Andrieu, C., Doucet, A., Holenstein, R., jun 2010. Particle markov chain monte
carlo methods. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 72 (3), 269–342.
URL https://doi.org/10.1111/j.1467-9868.2009.00736.x

Ba, J., Mnih, V., Kavukcuoglu, K., 2014. Multiple object recognition with visual
attention.

Brownlee, J., Aug. 2017. Multivariate Time Series Forecasting with LSTMs in
Keras.
URL https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/

CAIS++, 2017. Lesson 8: Recurrent neural networks.
URL http://caisplusplus.usc.edu/blog/curriculum/lesson8

Cavalcante, R. C., Brasileiro, R. C., Souza, V. L., Nobrega, J. P., Oliveira, A. L.,
2016. Computational Intelligence and Financial Markets: A Survey and Future
Directions. Expert Systems with Applications 55, 194–211.
URL http://www.sciencedirect.com/science/article/pii/

S095741741630029X

35

https://www.tensorflow.org/
https://doi.org/10.1109/iacs.2018.8355458
https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://machinelearningmastery.com/multivariate-time-series-forecasting-lstms-keras/
http://caisplusplus.usc.edu/blog/curriculum/lesson8
http://www.sciencedirect.com/science/article/pii/S095741741630029X
http://www.sciencedirect.com/science/article/pii/S095741741630029X

Chollet, F., 2015. keras. https://github.com/fchollet/keras.

Chollet, F., Allaire, J. J., 2018. Deep Learning with R. Manning Publications.
URL https://www.amazon.com/Deep-Learning-R-Francois-Chollet/dp/

161729554X?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&

linkCode=xm2&camp=2025&creative=165953&creativeASIN=161729554X

Chowdhury, G. G., jan 2005. Natural language processing. Annual Review of In-
formation Science and Technology 37 (1), 51–89.
URL https://doi.org/10.1002/aris.1440370103

Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M., Le, Q. V., Mao, M. Z.,
Ranzato, M., Senior, A., Tucker, P., Yang, K., Ng, A. Y., 2012. Large scale
distributed deep networks. In: NIPS.

Doucet, A., De Freitas, N., Gordon, N., 2001. Sequential Monte Carlo Methods in
Practice.

Duchi, J., Hazan, E., Singer, Y., Jul. 2011. Adaptive subgradient methods for
online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159.
URL http://dl.acm.org/citation.cfm?id=1953048.2021068

Gers, F. A., Eck, D., Schmidhuber, J., 2001. Applying LSTM to Time Series
Predictable through Time-Window Approaches. In: Dorffner, G., Bischof, H.,
Hornik, K. (Eds.), Artificial Neural Networks — ICANN 2001. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 669–676.

Graves, A., 2013. Generating sequences with recurrent neural networks.

Hochreiter, S., 1991. Untersuchungen zu dynamischen neuronalen Netzen. Diploma
thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität
München.

Hochreiter, S., Schmidhuber, J., Nov. 1997. Long short-term memory. Neural Com-
put. 9 (8), 1735–1780.
URL http://dx.doi.org/10.1162/neco.1997.9.8.1735

Jordan, J., Mar. 2018. Setting the learning rate of your neural network.
URL https://www.jeremyjordan.me/nn-learning-rate/

Karpathy, A., 2015. The unreasonable effectiveness of recurrent neural networks.
URL http://karpathy.github.io/2015/05/21/rnn-effectiveness/

McMahan, H. B., 2011. Follow-the-regularized-leader and mirror descent: Equiva-
lence theorems and l1 regularization. In: Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics (AISTATS).

McMahan, H. B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., Nie, L.,
Phillips, T., Davydov, E., Golovin, D., Chikkerur, S., Liu, D., Wattenberg, M.,
Hrafnkelsson, A. M., Boulos, T., Kubica, J., 2013. Ad click prediction: a view
from the trenches. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD).

36

https://github.com/fchollet/keras
https://www.amazon.com/Deep-Learning-R-Francois-Chollet/dp/161729554X?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=161729554X
https://www.amazon.com/Deep-Learning-R-Francois-Chollet/dp/161729554X?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=161729554X
https://www.amazon.com/Deep-Learning-R-Francois-Chollet/dp/161729554X?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=161729554X
https://doi.org/10.1002/aris.1440370103
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://www.jeremyjordan.me/nn-learning-rate/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Mingas, G., Bottolo, L., Bouganis, C.-S., 2017. Particle MCMC algorithms and
architectures for accelerating inference in state-space models. International
Journal of Approximate Reasoning 83, 413–433.
URL http://www.sciencedirect.com/science/article/pii/

S0888613X16302092

Ruder, S., 2016. An overview of gradient descent optimization algorithms. CoRR
abs/1609.04747.
URL http://arxiv.org/abs/1609.04747

Weng, L., Jul. 2017. Predict Stock Prices Using RNN: Part 1.
URL https://lilianweng.github.io/lil-log/2017/07/08/

predict-stock-prices-using-RNN-part-1.html#model-construction

Zaremba, W., Sutskever, I., Vinyals, O., 2014. Recurrent Neural Network Regular-
ization.
URL http://arxiv.org/abs/1409.2329

37

http://www.sciencedirect.com/science/article/pii/S0888613X16302092
http://www.sciencedirect.com/science/article/pii/S0888613X16302092
http://arxiv.org/abs/1609.04747
https://lilianweng.github.io/lil-log/2017/07/08/predict-stock-prices-using-RNN-part-1.html#model-construction
https://lilianweng.github.io/lil-log/2017/07/08/predict-stock-prices-using-RNN-part-1.html#model-construction
http://arxiv.org/abs/1409.2329

38

	Abstract
	Sammendrag
	Preface
	Table of Contents
	Introduction
	Literature Review
	State Space Models
	Simulate data from SSM

	Recurrent Neural Networks
	Defining RNN
	Defining LSTM
	Experiment model
	Gradient-based optimizing
	Model setup

	Results

	Sequential Monte Carlo
	Monte Carlo Estimation
	Sequential Monte Carlo
	Bootstrap filter
	PMCMC
	Experiment models

	Discussion and conclusion
	Discussion
	Conclusion

	Bibliography

