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Preface

This study investigates the effects of modifying ordering policies, on the performance of per-

ishable inventories; where the modifications entail elimination of the underlying assumption

of backorders. The rationale behind these modifications is the absence or uncommonness of

backorders in the retail-consumer link for food products. Due to having their roots in classical

inventory theory, the policies do not take this into account.

This report is a Master’s thesis in Production Management as part of the Global Manufactur-

ing Management study program, at Department of Mechanical and Industrial Engineering at

the Norwegian University of Science and Technology. The study was conducted in the spring

semester of 2018, and the initial motivation for the study was derived from the Retail Supply

Chain 2020 research project.

Trondheim, 11 June 2018

Swapnil Bhalla
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Summary

Inventory control is an indispensable activity in operations management. Variability and uncer-

tainty of demand increase the complexity of inventory control activities. The complexity further

amplifies when the inventories to be controlled are of perishable products, such as fresh fruits

and vegetables, dairy products, meat, blood, chemicals, etc. Such products have limited usable

lifetimes and are discarded if not used within this period. For food products, the discarded items

amount to food wastes, which are associated with negative social, environmental and economic

impacts.

In case of unavailability of products that are of general use rather than special occasion use,

such as milk, customers find alternative products or buy the products elsewhere; but are sel-

dom found postponing the purchase of such products, and buying them later at the same store.

As a result, in cases of unavailability of such products, sales are lost and the phenomenon of

‘backordering’ diminishes.

Majority of inventory replenishment models in classical inventory theory, are based on the as-

sumption of backordering. If replenishment is done assuming that customers will return to

fulfil their demand, while actual customer behaviour contradicts the expected behaviour; the

assumption becomes the cause of over-ordering, as inventory is held in anticipation of demand

that has already been lost.

This issue was observed in policies which are intended to cater to replenishment of perishables

in grocery retail. These policies exhibit an underlying assumption of backordering, due to hav-

ing their roots in classical inventory theory. When the inventoried product under considera-

tion is perishable, over-ordering and holding excess inventory, can become a cause of waste.

However, reducing order sizes can also be expected to fulfil lower proportions of demand, thus,

lowering profits and availability. As a result, the objective of this research was to identify the

simultaneous effects of eliminating the backordering assumption, on various inventory perfor-

mance measures and answering the question:

How are the performance indicators: waste, fill rate, inventory level and number of deliveries; for

perishable inventories with no backorders, affected when lost-sales are taken into account while

ordering?
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To answer the question, a simulation study was conducted on a model that was developed to

represent the characteristics of a milk inventory in grocery retail store; where modified and un-

modified forms of three ordering policies were compared. The unmodified forms reflected a

backordering assumption. The modified forms excluded replenishment for demand that would

be lost by the time the order arrives.

The study showed that the proposed modifications reduce waste for stores that experience waste

under the unmodified policy. However, the percentage reduction varies with the store character-

istics of weekly demand and review intervals. Stores with high weekly demands and low review

intervals were found relatively immune to wastes under the unmodified policy, and have little

value for such modifications. Among the stores with low weekly demands and high review in-

tervals, the policy modification was observed to have varying level of impact on waste and avail-

ability. To summarise the measure of impact, the ratio of change in overstocking and change in

understocking was used; where overstocking was represented by the percentage of items that

were wasted out of those purchased; and understocking was represented by the percentage of

demand that was fulfilled. This measure was referred to as the value of policy change, and was

plotted for various store characteristics; for product characteristics that represented milk; and

additionally for three other set of characteristics to assess the sensitivity towards these charac-

teristics.

The policy modification can be concluded to have varying levels of value for different stores

that face wastes under the unmodified policy forms, and the number of these stores varies with

product characteristics. The value of policy modification is higher, for products with shelf lives

lower than milk, if customer responses to stock-outs of these products reflect no or minimal

backordering.
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Chapter 1

Introduction

1.1 Background

Inventory is defined as a "stored accumulation of material resources in a transformation sys-

tem" (Slack et al., 2010); and an inventory may consist of different kinds of material resources

depending on the context of the transformation system, such as raw materials and purchased

parts, work-in-process (WIP), finished goods, maintenance and repairs, etc. Inventory control

refers to the activity of managing the quantities of items in an inventory, and is usually done

with two primary concerns, namely, fulfilling customer demand and minimising costs of order-

ing and carrying inventories, such that profit can be maximised (Stevenson, 2012).

Within a supply chain, a customer order decoupling point (CODP) marks a boundary of which,

upstream planning processes are forecast driven, while downstream planning processes are

customer order driven (Olhager, 2010). Inventory levels at grocery retail stores are usually planned

on the basis of forecasted customer demand, since the CODP within grocery retail supply chains

is typically located at the stores (Hübner et al., 2013). However, planning based on forecasted

demand rather than customer orders, involves uncertainty regarding the future demand, as the

actual demand may exceed or fall short of the forecasted demand (Stevenson, 2012).

The event of actual demand exceeding the forecasted demand, can be the cause of the phe-

nomenon of ‘out-of-stock’ (OOS), or stock-out. It refers to the unavailability of an item to fulfil

a customer demand (ECR, 2003). This excess demand may remain unfulfilled temporarily (de-

layed sale) or permanently (lost sale) or may be substituted (Zinn and Liu, 2001). The unfulfilled

1
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demand is associated with stock-out costs in the form of loss of current sales, and possible re-

duction in likelihood of future sales (Anderson et al., 2006). On the other hand, substitution

may be a cause of lower profit margins (Smith and Agrawal, 2000) and possibly, loss of customer

goodwill due to unavailability of their preferred product, which may also affect sales of other

products (Corsten and Gruen, 2003).

Yet another challenge associated with stock-outs is the tactical disadvantage posed due to cen-

soring of demand. It refers to the phenomenon of absence of data about the customers who

were unable to purchase their preferred item due to a stock-out (Sachs, 2015b). As a result, the

point of sales (POS) data represent censored demand, and future forecasts based on this POS

data are inaccurate estimates of the demand. Additionally, the censored demand, which makes

up the unfulfilled and substituted components of demand, does not allow assessment of the

achieved fill rate. Silver et al. (1998) define fill rate as the component of customer demand that

is met without backorders (delayed sales), and is of considerable importance to practitioners.

However, stock-outs eliminate the possibility of measuring fill rates, leaving cycle service level

as the practically measurable service measure. The cycle service level refers to the probability of

not having a stock-out in a replenishment cycle or alternatively, number of cycles over a period

of several cycles, when a stock-out does not occur (Silver et al., 1998). Measuring the cycle ser-

vice level is a useful alternative but provides an inaccurate measure of customer service, since

it does not reflect the number of customers whose demand is not fulfilled between a stock-out

and arrival of the next replenishment.

In the event of actual demand falling short of the forecasted demand, the problem is relatively

straightforward, i.e., excess purchasing and holding costs for inventory are incurred (Silver et al.,

1998). However, when the inventory to be controlled consists of perishable items or items with

short shelf life (discussed in section 3.1), excess inventories also contribute to the risk of these

items reaching the end of their shelf life before they are sold.

Inventory control for perishable items is of high importance to grocery retail industry (for per-

ishables such as bread, meat, fruits, vegetables, dairy and poultry) as well as health care sector

(for blood, platelet and pharmaceuticals) (Gürler and Özkaya, 2008). The complexity and sig-

nificance (both, theoretical and practical) of managing perishable inventories is reflected in the

magnitude of research and quantity of published literature in this field, which have been pe-
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riodically reviewed by Bakker et al. (2012); Bhalla (2017); Goyal and Giri (2001); Janssen et al.

(2016); Raafat (1991).

Literature proposing models for inventory control (of perishables and non-perishables) has

increasingly inclined towards a service level approach, rather than an optimisation approach

which aims at maximising profit; mainly due to the complexities of estimating shortage costs

(Janssen et al., 1998). Shortage cost refers to the monetary value of the sales delayed, lost or

substituted, or possible loss of customer goodwill when a stock-out occurs (discussed in sub-

section 3.3.1). Thus, as an alternative, planned or target levels of customer service are used to

set inventory control parameters, as argued by Janssen et al. (1998) for non-perishable inven-

tory models, and by Minner and Transchel (2010) for perishables. Minner and Transchel (2010)

also point out that the optimisation approach, when used for perishables, has been predomi-

nantly pursued for identifying optimal policies. They emphasise that these policies are highly

complex due to their dependencies on the ages of on-hand and in-transit inventories, as also

demonstrated by Nahmias (2011).

Before further discussion, it is important to highlight the distinction between an optimal policy

and an optimal decision, which has been based on combined insights from literature on in-

ventory management (Dvoretzky et al., 1952; Silver et al., 1998; Stevenson, 2012) and decision

theory (Berger, 2013; DeGroot, 2005). Consider a situation where multiple decision alternatives

are available, and each alternative has a different expected utility or payoff, which has been

computed using the information available about possible future consequences of the decision

alternative. An optimal decision is defined as one where the decision alternative with maximum

expected utility or payoff is chosen (Berger, 2013; DeGroot, 2005; Stevenson, 2012). Thus, in the

inventory context, this would refer to choosing the order quantity that is either expected to earn

maximum profit or is expected to achieve the highest service level among various decision al-

ternatives. In the example, profit and service level represent two different decision criterion

on which the payoff of an alternative can be measured (Stevenson, 2012). However, the com-

mon practice is to aim for achieving a target service level rather than maximising it (Minner and

Transchel, 2010), also referred to as satisficing (Odhnoff, 1965). Broekmeulen and Van Donse-

laar (2009); Kiil et al. (2017) also use the target service level as the service objective due to its

practical relevance.
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An optimal policy can be defined as a long term decision which, once made, specifies a set

of parameters, which can be used repeatedly with no or very trivial efforts (such as arithmetic

calculations) and can be expected to have a higher expected payoff as compared to any other

alternatives, in majority of the situations. An optimal inventory policy is defined by Dvoretzky

et al. (1952) as one that strikes "a balance between overstocking and understocking". Thus, an

optimal inventory policy can be expected to successfully trade-off overstocking with achieving

a targeted service level. Common forms of inventory policies are (s,Q), (s,S), (R,S), and (R, s,S),

where s, Q, S, and R represent different policy parameters (discussed in section 3.2.1). Iden-

tifying or defining constant policy parameters is useful for relatively stable demand rates, but

as also pointed out by Silver et al. (1998), "when the demand rate varies with time, we can no

longer assume that the best strategy is always to use the same replenishment quantity".

Time-varying nature is a characteristic of demand in grocery retail (Broekmeulen and Van Don-

selaar, 2009). Therefore, rather than defining policies, decisions on order quantities are made

with smaller planning horizons, using "demand information over a finite period, extending from

present, when determining the appropriate value of the current replenishment quantity" (Sil-

ver et al., 1998). Methods such as pre-specified analytical results, algorithms or heuristics are

utilised in such cases, to determine order quantities every time an order is placed (Silver et al.,

1998). For perishable items, computing optimal policies is highly complex even without the

time-varying characteristic of demand. This is elegantly illustrated by Nahmias (2011), formu-

lating a multi-period dynamic model and explaining the increasing complexity in solving it,

with the increase in the maximum shelf life of product under consideration. Nahmias (2011)

concludes that computing optimal policies is only feasible for product lifetimes as short as two

or three periods. As the maximum life increases, the number of possible states of inventory age

increase drastically, and any inventory expiration because of the immediate decision moves far-

ther away in time. However, these challenges diminish when the horizon is limited to the time

period until the next known decision instance, as is the approach in the heuristics proposed by

Broekmeulen and Van Donselaar (2009); Ferguson and Ketzenberg (2006); Kiil et al. (2017).

Policies and heuristic approaches that utilise stock levels and age information of perishable

items, have been found to perform better than policies and heuristics that use stock levels with-

out considering the age of items. This can be observed in the findings from numerical studies
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conducted by Tekin et al. (2001) and simulation experiments conducted by Broekmeulen and

Van Donselaar (2009); Ferguson and Ketzenberg (2006); Kiil et al. (2017).

Thus, the value of heuristic approaches for determining order quantities is twofold for inven-

tory control of perishables in grocery retail; as they can address the time-varying nature of de-

mand; and also utilise age information with lower levels of computational complexities than

those faced while determining optimal policies. Ferguson and Ketzenberg (2006) also point out

that since optimisation procedures become increasingly impractical for higher shelf life items,

well performing heuristics are considered useful, and their utility is assessed on "a balance be-

tween simplicity and performance".

1.2 Objectives and research question

As mentioned in the previous section (1.1), satisfying the target service level has been the ob-

jective in majority of perishable inventory models in literature, due to its utility for managerial

practitioners. Minner and Transchel (2010) point out that this is used as an alternative to profit

maximisation, which is usually not feasible due to the difficulties faced in estimating costs of

shortages which occur during a stock-out. One of the reasons for the complexity in estimating

these costs, is the variety of possible customer responses to a stock-out (Aastrup and Kotzab,

2010). As a result, while modelling an inventory, it is difficult to identify what proportion of de-

mand that arises during a stock-out, is lost or backordered.

This uncertainty is reduced in inventory models by assuming excess demand to be lost or back-

ordered entirely, or assuming proportions of the two. Among recent literature, the assump-

tion of excess demand being lost is made by Avinadav et al. (2017); Buisman et al. (2017); Chua

et al. (2017); Kara and Dogan (2018); Li et al. (2016, 2017); Mahmoodi et al. (2016); Sazvar et al.

(2016), in the literature reviewed by Bhalla (2017); and by Chao et al. (2015); Chen et al. (2014);

Jammernegg and Kischka (2013); Kouki et al. (2015); Olsson (2014); Pal et al. (2015); Ramadhan

and Simatupang (2012); Sachs (2015a); Sainathan (2013); Shukla and Jharkharia (2014); Wee and

Widyadana (2013), in the literature reviewed by Janssen et al. (2016).

Broekmeulen and Van Donselaar (2009); Kiil et al. (2017) also conduct the simulation studies

to test their heuristics under the assumption of unsatisfied demand being lost. In both, model
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contexts or in a real situation where the assumption holds true, there are essentially two in-

stances when demand may not be fulfilled. First, between the instances of placing an order and

receiving it, i.e., during the lead time of an outstanding order. Second, if a stock-out occurs at

an instance when no order is outstanding. An outstanding order refers to an order that has been

placed but not been received yet (Tekin et al., 2001). Also, henceforth, the phenomenon of un-

satisfied demand due to shortage or stock-out, is referred to as lost-sales, following the common

terminology in literature (Bijvank and Vis, 2011).

Broekmeulen and Van Donselaar (2009); Kiil et al. (2017)’s simulation models conceivably ac-

count for the lost-sales phenomenon occurring at these instances, by only fulfilling demand

that is less than or equal to the on-hand stock. However, the first type of lost demand instance

must also be taken into account while placing orders, i.e., the ordering procedure must exclude

the expected demand in these periods, because the corresponding replenishment arrives af-

ter the demand has occurred already. This is discussed further in detail in section 3.3. It can

be observed that the policies proposed and deployed to calculate ordering quantities in their

simulation studies do not take this into account. The likely cause for this is the assumption of

backordering in classical inventory models, which, as explained in section 3.3, is also the un-

derlying assumption in the EW A and EW ASS heuristic based (R, s,nQ) policies proposed by

Broekmeulen and Van Donselaar (2009) and Kiil et al. (2017) respectively, as well as in the stock-

based (R, s,nQ) policy which Broekmeulen and Van Donselaar (2009) use as a benchmark, to

demonstrate the improvements achieved by using the EW A policy. Bijvank and Vis (2011) point

out that when lost-sales systems are approximated with a backorder model, cost deviations can

be substantial.

Due to underlying backordering assumption, it is suspected that utilising these policies may

over-order, which, as mentioned in section 1.1, contributes to increase in waste for perishables.

After modifying these policies for the lost-sales assumption, the ordered quantities are expected

to reduce. Such corrections are of theoretical importance, as majority of attention in inventory

theory has been on inventory models with the backorder assumption (Bijvank and Vis, 2011).

However, if the reduced orders result in substantial reduction in item availability, with only

marginal or no reduction in waste, the corrections can be expected to be of low value for man-

agers and practitioners. Thus, it is important that the effect of these modifications on inventory
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performance is studied considering both, understocking and overstocking aspects.

With the same concern, i.e., considering understocking as well as overstocking due to a policy,

Kiil et al. (2017) use the performance indicators of fill rate and waste. As Kiil et al. (2017) explain,

low fill rates are representative of lack of availability, while high wastes represent an oversupply.

Further, to consider other performance aspects such as transport and handling cost, and capital

invested in procuring the inventory, Kiil et al. (2017) use the performance indicators of number

of deliveries and average inventory levels. These performance indicators are frequently used

and recommended for perishable inventories in literature, as pointed out by Kiil et al. (2017),

citing Broekmeulen and Van Donselaar (2009); Hübner et al. (2013); Kaipia et al. (2013); Van

Der Vorst (2006).

Thus, the objective of this research is to study the effects of modifying these ordering policies,

on the performance of an inventory system where these policies are deployed for calculating

order quantities. However, a necessary precursor to this study is identification of aspects of the

policies that need to be modified, while clearly demonstrating these modifications, to ensure

conceptual clarity and possibility for future critique. Thus, the preparatory objective is to iden-

tify and implement relevant modifications to the stock-based (R, s,nQ) policy, and age-based

EW A and EW ASS (R, s,nQ) policies, to account for lost-sales. By fulfilling the research objec-

tives, the studies within this research are aimed at answering the following research question:

Research question: How are the performance indicators: waste, fill rate, inventory level and

number of deliveries; for perishable inventories with no backorders, affected when lost-sales are

taken into account while ordering?

The choice of using these policies for investigation, is supported by their utility to the current

and future grocery retail practices. As Kiil et al. (2017) point out, "the EW A policy introduced by

Broekmeulen and Van Donselaar (2009) is a direct extension of the policy found in traditional

automatic replenishment systems, and is intended to be used for automatic replenishment of

perishables", where the ‘policy found in traditional automatic replenishment systems’ refers to

a (R, s,nQ) policy (Potter and Disney, 2010). Thus, any conceptual improvements are not only

of theoretical, but also practical value.

Since inventories of perishable items are found in varying contexts, as mentioned earlier, it is

important to scope such a study, in order to maintain a realistic time-frame. The approach
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taken for scoping this study, is to identify a context where the results of such a study can be of

high practical value, while also ensuring a pragmatic scope of work. The process followed and

arguments made to support this, are described in the subsequent section.

1.3 Scope

Frequent stock-outs in retail stores have motivated vast volumes of research on the topic (re-

viewed by Aastrup and Kotzab (2010)), attempting to understand causes and extent of stock-

outs and customer responses to these occurrences (Corsten and Gruen, 2003, 2005; Gruen et al.,

2002; Verhoef and Sloot, 2006). Citing results from Gruen et al. (2002) and Verhoef and Sloot

(2006), Bijvank and Vis (2011) point out that excess demand can be considered lost in majority

of real world retail settings. While results from Gruen et al. (2002) show that only 15% of the

customers delay their purchase in the event of a stock-out, Verhoef and Sloot (2006) found the

percentage to be 23%. Nonetheless, the proportion of delayed demand, which serves as back-

orders, is much lower as compared to all other customer reactions, which amount to lost-sales.

Subsection 3.3.1 discusses further in detail how various documented customer responses con-

tribute to lost-sales and backorders.

Aastrup and Kotzab (2010) categorise the variables that have been studied in literature to as-

sess their influence on customer responses to stock-outs. One of these categories of variables

are product related variables, implying that product characteristics influence the customer re-

sponses to stock-outs. One such product related finding presented by Emmelhainz et al. (1991)

was that products that are of regular usage rather than special occasion usage, are more likely to

be substituted. The finding is corroborated by the results presented by McKinnon et al. (2007),

where dairy products were found to have the lowest proportion of consumers who would choose

to delay a purchase, as compared to the two other product categories of frozen products, and

health and beauty products. Additionally, their finding for dairy products that approximately

10% of the customers delay their purchase, is even lower than the averages presented by Gruen

et al. (2002); Verhoef and Sloot (2006) for grocery retail. Although the arguments might not apply

for customers who refrain from use of dairy products, but the ones who do, use them often.

Since the objective within the research is to investigate the consequences of including the lost-
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sales assumption into the ordering decision for perishable products, a model of a dairy product

inventory in a retail store was considered a logical choice of premise for investigating potential

changes in inventory performance. Other arguments that provide additional logical support to

this choice, follow.

As Engelseth (2012) describes, the structure of milk supply chain for the largest dairy producer

in Norway is such, that milk is delivered directly to the stores rather than through a wholesaler

or distributor. Additionally, the production and packaging process that transforms raw milk col-

lected from farms, into milk cartons, is partially planned based on orders from the retail stores

(Engelseth, 2012). ‘Partially’ emphasises on the corrective or adaptive feature of the milk pro-

duction planning process, where production is planned in the morning based on forecasts, but

"around noon, the total demand of the day becomes apparent and production volume is ad-

justed so that the production of milk meets daily order requirements" (Engelseth, 2012).

While this structure of supply chain is specific to liquid dairy products such as milk and cream,

other food products (including solid dairy products) are supplied from producers through whole-

salers to the retailers (Stensgård and Hanssen, 2016). As a result, an additional level of diver-

gence is introduced in the supply chain structure. Citing Ganeshan (1999); Hwarng et al. (2005),

Dominguez et al. (2014) explain that a divergent "structure is characterised by a tree-like struc-

ture, where every stock point in the system receives supply from exactly one higher echelon

stock point, but can supply to one or more lower echelon stock points". Thus, while the diver-

gence occurs at one stage in a milk supply chain, i.e., at the production facility; two stages of

divergence occur in supply chains for other food products, i.e., producer and wholesaler.

With an intermediate wholesaler or warehouse storage between the producer and retailer, pro-

ducers plan their production based on forecasts which are made on historical aggregated orders

from various wholesalers; while the wholesalers place these orders based on forecasts which are

made on the historical aggregated orders from various retailers (Chocholáč and Prša, 2016). As

Chocholáč and Prša (2016) demonstrate, such supply chains are highly prone to the bullwhip

effect. The bullwhip effect is defined by Lee et al. (1997) as the distortion of demand infor-

mation as it moves upstream in a supply chain, and Chocholáč and Prša (2016) refer to it as

the "phenomenon where order variability increases as the orders move upstream in the sup-

ply chain". Dominguez et al. (2014) demonstrated, that as the number of stages in the supply
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chain increases, the bullwhip effect in the supply chain can be expected to amplify. This is also

demonstrated for a food supply chain by Chocholáč and Prša (2016). Due to the higher complex-

ity of divergent food supply chains, the model of such a network would be more complex and

would have to involve the occurrence of several phenomena such as change in waste, change in

fill rates, bullwhip, etc. at several stages, simultaneously. This would, in turn, also increase the

scope of investigation. A simulation model of such a divergent supply chain is used as premise

by Kiil et al. (2017), for evaluating the performance of EW ASS and EW A policies.

However, using a milk supply chain model appropriately limits the scope of investigation within

this research. Due to lower number of stages in the Norwegian milk supply chain network, and

direct adjustment of production plans according to the orders from retail stores, the informa-

tion distortion can be expected to be lower as compared to other food supply chains.

Food waste data from Norway, presented by Stensgård and Hanssen (2016), shows a drop of 28%

in waste of liquid dairy products at the producers from the year 2010 to 2015. However, an in-

crease of 28.5% in the waste of liquid dairy products at retailers from the year 2013 to 2015, is

also reported in the same study. As pointed out by Fearne et al. (2003), stores attempt to ensure

high service levels due to the competitive nature of grocery retail industry, and often over-order,

which increases the chances of waste. These wastes, besides the obvious negative financial im-

pacts, also have serious social and environmental impacts (Parfitt et al., 2010). Thus, any efforts

to reduce over-ordering by improving the ordering procedures used at the stores can be consid-

ered to be of value to the entire production network.

The arguments presented above qualify a milk inventory at a retail grocery store as an appropri-

ate premise to investigate potential improvements by modifying ordering procedures, as it can

directly influence waste. Thus, this study tests the effects of the proposed conceptual improve-

ments on a simulation model of a milk inventory at a grocery retail store. However, according to

information on ordering procedures known from Engelseth (2012); Herstad (2016), the current

ordering procedures for milk do not make use of the age of items, because this information is

not available in the barcodes, as highlighted by Damgaard et al. (2012) for most perishable gro-

cery items. This information is a prerequisite for the use of EW A and EW ASS policies.

With age information having been established to improve inventory control of perishables (Broek-

meulen and Van Donselaar, 2009; Ferguson and Ketzenberg, 2006; Kiil et al., 2017; Tekin et al.,
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2001), and under the growing emphasis on automated replenishment among retailers (Broek-

meulen and Van Donselaar, 2009; Kiil et al., 2017; Van Donselaar et al., 2006), it is important that

theoretical knowledge that is expected to support these endeavours, is tested for robustness.

Thus, considering the proposed modifications as conceptually significant, investigation of the

effects of modifying the age-based EW A and EW ASS policies is carried out under the assump-

tion that age information for milk is available.
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1.4 Research outline

Table 1.1: Thesis structure

Chapter 1 The introduction briefly presents the background and motivation, the

Introduction research objectives, research question, scope and structure of this report.

Chapter 2 The methodology describes the process of literature study which led to

Research developing the research objective; explains the rationale for the choice of

methodology research method to fulfil the objective; and describes the research method.

Chapter 3 Theory and literature study provides theoretical background for the

Theory and research context; consolidates arguments to support the research

literature study objective; presents propositions that the research aims to evaluate; and

presents secondary information to support modelling and simulation.

Chapter 4 Modelling and simulation describes the modelled system; describes the

Modelling and modelling approach; describes model notations, model elements, model

simulation verification, validation; and presents results from simulation experiments.

Chapter 5 The discussion uses findings to answer the research question; discusses

Discussion implications and interpretations of the results; discusses limitations and

challenges faced; and proposes future research agenda.

Chapter 6 The conclusion summarises the rationale and findings of the study;

Conclusion highlights contributions to knowledge and practice; discusses limitations

regarding methodology; highlights future research necessity and proposes

prospective approaches.



Chapter 2

Research methodology

"The generally thought of most significant characteristic of good research is that, methodologi-

cally, it is well done" (Karlsson, 2010). Thus, the purpose of this chapter is to discuss the method-

ological aspects of this research. However, to support the methodological approach and choice

of research design, this chapter also describes the process which led to the formulation of the re-

search objective and research question as presented in the previous chapter. Thus, the chapter

is organised as follows: section 2.1 describes the exploratory literature study that resulted in the

curiosity which is expressed in the research question and objective; section 2.2 presents argu-

ments to support the choice of research method and discusses corresponding expansion of the

literature study to support application of the method; and section 2.3 discusses the application

of the method and selected simulation approach, to the problem context.

2.1 Literature study

Among the various purposes of literature review in theses, Ridley (2012) points out that such a

review provides historical background for the research, gives an overview of the current context

while referring to contemporary issues and questions in the field and discusses relevant the-

ory and terminologies. Additionally, it describes how the research addresses a gap in work in

the field and provides supporting evidence for the issue that is to be addressed. While these

purposes provide an extensive checklist for students to ensure that the literature review text in

a thesis, addresses these aspects; it is also important to highlight the importance of literature

13
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study in identifying the problem investigated.

This research was preceded by a project where the very goal was to get familiarised with the field

of perishable inventory models. The project included the application of a research design that

can be categorised as a review, where a systematic literature review was conducted, to identify

research gaps and problem contexts with scope of investigation (Bhalla, 2017).

Following the review, an exploratory literature study for this research was conducted, to get

deeper insights into the problem context. The literature searches for this exploratory study were

conducted using the following keywords individually and in combination, using Boolean oper-

ator ‘OR’ to expand the scope of results:

1. perishable(s);

2. inventory model(s);

3. stock out(s) OR stock-out(s) OR stockout(s);

4. out-of-stock OR OOS;

5. lost-sale(s) OR lost sale(s);

6. backorder OR backorders OR backordering; and

7. waste.

The searches were conducted on online databases Google Scholar, Scopus, and Web of Science.

Assessing the content of the journals and articles found, led to highlighting the unavailability

or nonexistence of research that could answer the research question in the context of interest,

i.e., perishables. This led to the formulation of the objective of this research, and the rationale

behind the formulation is demonstrated in Chapter 3. The following section explains the choice

of simulation as the method in this research.

2.2 Choice of method

Discussing research philosophy, Croom (2010) explains that research philosophy is concerned

with adopting an approach "that will provide insight into the phenomenon or process of inter-

est" to a study, where philosophy refers to the study of truth. Croom (2010) presents Meredith

et al. (1989)’s generic framework for classifying research methods, pointing out that the frame-

work relates philosophical paradigms to the choice of appropriate research methods, by link-
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ing the knowledge generation approach to the sources of information used in research. While

Meredith et al. (1989)’s framework places rational and existential approaches at the two ex-

tremes of knowledge generation approaches, the information sources and kind of information

vary between the extremes of natural to artificial.

Among the various methods described, Meredith et al. (1989) refer to simulation as "a special

type of analytical modeling", implying that it is not a physical model. They further state that

simulation methods can be utilised to evaluate variations in policies, by varying equations in

the model. As pointed out in the previous chapter, the process of interest to this research, is

the ordering of perishable items. The insights that this study aims to gain is regarding the ef-

fect of a decision variable, i.e., order quantities calculated by different policies; on dependent

variables, i.e., performance indicators. Meredith et al. (1989) classify the knowledge generation

approach of such a research method as logical positivist, explaining that such a "perspective as-

sumes that the phenomenon under study can be isolated from the context in which it occurs".

Citing Croom (2010), Kiil et al. (2017) explain that "simulation models are typically found in

the literature to evaluate different inventory scenarios as they provide a risk-free environment".

Thus, following the similar logical positivist approach to knowledge generation, simulation was

considered an appropriate method for this study. However, Meredith et al. (1989) also point out

the risk in the use of such methods, which concerns the source and kind of information used in

such research.

Pointing out that simulation is a commonly used method in operations management research,

Meredith et al. (1989) explain that simulation models include a conceptual model of processes,

using equations, and "an element of reality through the values set for the parameters in the

equations". They further emphasise that the parameter values are, on occasions, hypothesised

in the model rather than being taken from real world data; thus, reducing the fit to the actual

phenomenon and risking irrelevance or reducing external validity of the model. While a sim-

ulation model is already an "artificial reconstruction of object reality" (Meredith et al., 1989),

in order to ensure the validity of the reconstruction, it is important that the simulation study is

supported by empirical or real world data.

To address this concern while maintaining a pragmatic scope for the investigation, the sim-

ulation study was supported by expansion of the literature study. This expansion served the
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following two purposes:

1. to provide empirical basis to the simulation assumptions and parameters, rather than the

use of entirely hypothesised parameters;

2. to identify a real world context where the research outputs could be of value in the future.

Thus, following McKinnon et al. (2007)’s empirical finding about milk being prone to lost-sales,

the literature study progressively expanded with the keywords:

1. milk OR dairy;

2. supply chain;

3. food waste;

4. grocery retail;

5. divergent supply chains;

6. bullwhip effect.

As a result, in addition to providing theoretical basis, the literature study also provided access to

secondary information and data, i.e., data from sources such as scientific journals and articles,

that was collected empirically by the authors. This information provided basis for assumptions

made in the simulation study regarding various model parameters, the process of which is de-

scribed in Chapter 4.

Croom (2010) points out "whether one is undertaking data collection in the ‘real world’, or

conducting experiments with ‘artificial’ data but using proprietary software, one will often en-

counter issues relating to difficulties and opportunities over access to the data or the means

of data analysis preferred in the study" (Gummesson, 2000). While the access to proprietary

software is not a challenge that this research faced, the concern of gaining access to ‘real data’

was overcome by utilising secondary sources. The subsequent section describes the research

method of simulation, and presents arguments to support the choice of the simulation ap-

proach.

2.3 Simulation

An idealised model is an abstraction of a real situation that provides a simplified representa-

tion of reality, meaning that the model may not reflect the complete reality, but only those as-
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pects of reality which are considered of importance to the causal relationship being studied

(Will M. Bertrand and Fransoo, 2002). In operations management practice, quantitative models

are frequently used to improve understanding of systems and thus, aid decision making pro-

cesses; while in operations management research, they allow to identify changes that can allow

for improvements (Stevenson, 2012; Will M. Bertrand and Fransoo, 2002). Modelling refers to

the process of abstracting the system, where system refers to the process or situation of interest

(Law and Kelton, 2007). Models may vary in their level of abstraction, and can be classified as

physical, schematic and mathematical or quantitative models, with physical models being the

least abstract and quantitative models being the most abstract (Stevenson, 2012).

Will M. Bertrand and Fransoo (2002) define quantitative models in operations management

context as models that are "based on a set of variables that vary over a specific domain, while

quantitative and causal relationships have been defined between these variables". Simulation

concerns with imitating the operation of the modelled system using the mathematical model

(Jerry, 2005). Robinson (2004) defines simulation as "experimentation with a simplified imita-

tion (on a computer) of an operations system as it progresses through time, for the purpose of

better understanding and/or improving that system".

Davis et al. (2007) present a seven step roadmap for using simulation methods to develop the-

ory, which are also discussed by Happach and Tilebein (2015). These seven steps for such ex-

perimental research design can be listed, and their rationale described, as:

1. Begin with a research question, which focuses efforts on a relevant theoretical issue for

which simulation is effective.

2. Identify simple theory, which gives shape to theoretical logic, propositions, constructs and

assumptions.

3. Choose a simulation approach, that is appropriate for the research at hand.

4. Create the computational representation, which sets stage for theoretical contributions.

5. Verify computational representation, which confirms robustness and accuracy of compu-

tational representation and confirms internal theoretical validity.

6. Experiment to build novel theory, building new theory through exploration, elaboration

and extension of simple theory.

7. Validate with empirical data, to strengthen external validity.
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This research follows the roadmap laid out by Davis et al. (2007) for using simulation as a re-

search method, however, the external validity of the research contribution is only limited due to

lack of access to empirical data. The first two steps of beginning with a research question and

identifying simple theory which this research aims to develop were briefly addressed in the pre-

vious chapter (1) and are discussed further in Chapter 3. Steps four through seven are further

described in Chapter 4. This discussion focuses on the third step of choosing the appropriate

simulation approach.

Davis et al. (2007) discuss five different simulation approaches, while Happach and Tilebein

(2015) discuss two major simulation approaches, with system dynamics being the one approach

common to these discussions. Davis et al. (2007) explain that usually, a system dynamics ap-

proach "models a system as a series of simple processes with circular causality". Happach and

Tilebein (2015) explain this as "a variable A influences a second variable B and at the same time,

variable B influences variable A"; further pointing out that these approaches are useful when

the goal is to understand the dynamic behaviour caused by several interrelated feedback loops.

The second simulation approach discussed by Happach and Tilebein (2015) is agent based sim-

ulation, where "agents influence one another by interactions which are based on some prede-

fined simple rules and preferences" (Harrison et al., 2007; Tilebein and Stolarski, 2009). Hap-

pach and Tilebein (2015) further explain that "by these interactions, the simulation method fo-

cuses on the individual parts of a system and derives the overall system’s state from the sum of

all interactions as an emergent phenomenon". As can be inferred, to analyse the performance

of an inventory as a result of several inventory transactions over a period of time, one requires

that the overall system state becomes apparent after evolving due to the several transactions.

Inventory transactions refer here, to increase in inventory due to orders and decrease due to

demand or waste. Thus, rather than system dynamics, an agent based simulation approach was

found relevant for this research.

The classification of simulation and modelling approach used in this research, was further facil-

itated by the typology of modelling approaches presented by Pidd (2006), who classifies mod-

elling approaches based on the elements included in the simulation model. These are explained

further, along with the modelling process in Chapter 4.



Chapter 3

Theory and literature study

This chapter provides the necessary theoretical background for understanding the significance

and characteristics of the problem situation; and presents the propositions that this research

aims to test. Firstly, characteristics of perishable products and associated terminology are dis-

cussed in section 3.1, and characteristics of the product category of interest in this research are

clarified. This is followed by discussions on some basic inventory management concepts (sub-

section 3.2.1), effect of demand uncertainty on inventory decisions considered in this research

(subsection 3.2.2) and inventory management of perishable products (subsection 3.2.3) in sec-

tion 3.2. The policy modifications which this research revolves around and relevant theoretical

background are discussed in section 3.3. Section 3.4 presents information from empirical stud-

ies, which supports the modelling process for testing the effect of the proposed modifications,

in the subsequent chapter. Finally, the chapter is summarised in section 3.5.

3.1 Perishables and deterioration

This section discusses terminology regarding perishables used within this research, and clarifies

the characteristics of products relevant to this study. Items are considered ‘perishable’ because

of their property to ‘deteriorate’, meaning that they lose value with time, which has to be taken

into account while modelling inventories of such items (Goyal and Giri, 2001). Raafat (1991)

defines deterioration as the "process that prevents an item from being used for its intended

original use", further classifying the process into:

19
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1. situations where all items in an inventory have utility during the planning horizon but

simultaneously become obsolete at the end of the planning horizon, such as fashion mer-

chandise, and

2. situation in which items continuously deteriorate throughout the planning horizon, which

is further sub-classified into:

• items with fixed shelf life, and

• items with continuous decay and random lifetime.

Goyal and Giri (2001) use a similar approach for classifying inventoried goods, according to the

phenomenon that characterises them, in the categories of obsolescence, deterioration, and no

obsolescence or deterioration.

The definition of obsolescence given by Goyal and Giri (2001), i.e. "items lose their value through

time because of rapid changes in technology or style, or introduction of a new product by a com-

petitor"; is a more precise formulation of the phenomenon. It concerns more with the underly-

ing reason for the occurrence of the phenomenon, which is what differentiates it from deterio-

ration. On the other hand, the definition by Raafat (1991) concerns with ‘when’ the transition in

utility from non-zero to zero occurs, which provides little clarity on how it is differentiated from

deterioration.

Van Donselaar et al. (2006) include items undergoing obsolescence as well as deterioration into

the umbrella of ‘perishables’, however, while also precisely formulating the characteristics of

these items. They consider an item to be perishable if "the high rate of deterioration at ambient

storage conditions requires specific storage conditions at the store and/or at the consumer to

slow the deterioration rate" or "the obsolescence date of the product is such that reordering for

the products with the same date is impractical".

A useful distinction between perishability and obsolescence is established by Silver et al. (1998).

They state that perishability concerns with physical deterioration, and demand for further units

continues when some of the items have perished. On the other hand, when obsolescence oc-

curs, there is negligible demand for further units.

Goyal and Giri (2001) sub-classify items undergoing deterioration on similar criteria as Raafat

(1991), into:
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1. having a known usable life-time, known as perishable products such as fresh food and

vegetables, human blood, etc., and

2. having unknown shelf life, known as decaying products, such as gasoline and alcohol (due

to volatility), radioactive substances (due to radioactive decay), etc.

This research primarily revolves around the inventories of a category of items that undergo ‘de-

terioration’ (as defined by Goyal and Giri (2001); Raafat (1991)) and have a known usable life-

time. It can be observed that the terminology within the field has evolved over the years, which

points to a scope to formalise definitions and criteria for categorising items as perishable, de-

caying, or prone to obsolescence.

Based on insights from different definitions, the ‘storage condition’ criteria for perishables used

by Van Donselaar et al. (2006) can be extended in following ways for grocery items:

• items that require specific storage conditions throughout their usable life, undergo rapid

deterioration if exposed to ambient conditions for prolonged periods, but are highly prone

to be unusable beyond a certain point in time, even if the storage conditions are main-

tained, such as liquid dairy products (which is the focus within this research),

• items whose usable life can be extended with certain storage conditions, but can also stay

usable for prolonged periods in ambient conditions, and for which the end of usable life

is not known with certainty, such as fruits and vegetables, and

• items with extremely low shelf lives which deteriorate rapidly irrespective of the storage

conditions, such as bread.

Besides, the general practice in scientific literature concerning perishable inventories, is to clearly

specify the characteristics of the product(s) and context being considered, which can be ob-

served in literature reviewed by Bhalla (2017); Broekmeulen and Van Donselaar (2009); Janssen

et al. (2016). For example, Van Donselaar et al. (2006) specify that only perishable items in a

retail grocery store, with shelf life less than or equal to 30 days are considered in their study.

A similar clarification of the characteristics of the situation under consideration is carried out in

section 3.4, which allows to narrow down the focus and scope of the study. As can be observed in

results presented by Broekmeulen and Van Donselaar (2009); Ferguson and Ketzenberg (2006);

Kiil et al. (2017), when combined with other situation characteristics such as review interval,
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lead time, etc., the product lifetime has considerable influence on the performance of inventory

control policies. Thus, the magnitude of improvement from the same policy modification can

be expected to yield substantially different results for different products (such as dairy products,

bread, fruits, etc) and thus, must be taken into account before the results are generalised.

3.2 Inventory management

Silver et al. (1998) state that "inventory management encompasses decisions regarding pur-

chasing, distribution, and logistics, and specifically addresses when and how much to order".

They further consider decisions in organisations to be a hierarchy that extends from long range

strategic planning, through medium range tactical planning to short range operational control.

A similar hierarchy can be conceptualised for inventory management as follows (Brown, 1982;

Silver et al., 1998):

• strategic planning decisions such as financial importance of an item (ABC classification),

and choosing type(s) of inventory control system to be used for an item based on its fi-

nancial importance.

• tactical planning decisions such as specifying policy parameters, service objectives, fore-

casting techniques, etc.

• operational control activities such as data collection, calculations, and decisions such as

whether a replenishment order should be placed or not, what should be the size of the

order, etc.

Subsection 3.2.1 discusses concepts that are utilised in, or are a result of, inventory management

decisions at different hierarchical levels; and explains the rationale behind the use of heuristic

based approaches for inventory control. This is followed by a discussion on uncertainty in de-

cisions and the nature of demand uncertainty considered within this research, in subsection

3.2.2. Subsection 3.2.3 discusses inventory management in the context of perishable items.
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3.2.1 Preliminaries

The primary concern of inventory management is to achieve high levels of customer service

while incurring minimum possible costs in achieving the level of service, so that profits can be

maximised (Stevenson, 2012). Silver et al. (1998) list some commonly used measures of cus-

tomer service for inventory management as the following:

1. Cycle service level, which is defined as the fraction of inventory cycles in which a stock-out

occurs, or the probability of no stock-out in a replenishment cycle.

2. Fill rate, which is defined as the fraction of customer demand that is routinely met, where

non-routine refers to backordered demand.

3. Ready rate, which is the fraction of time during which the net stock (on-hand stock minus

backorders) is positive, implying that it is the probability of not facing any backorders.

4. Time between stock-outs, or alternatively, stock-out occasions per year.

Further, the cost factors that are commonly considered in assessing inventory performance, as

described by Silver et al. (1998), are as follows:

1. Unit variable cost, which represents the monetary value of a unit of inventory, and may

have a different valuation for different actors in a supply chain. For example, while a re-

tailer’s valuation of an inventory unit would simply be the price paid to the supplier (which

is set by the supplier) to acquire it; the supplier’s valuation would require that the unit

cost reflects all the costs that have been incurred to make the unit available in the saleable

form.

2. Holding cost or carrying cost, which includes the opportunity cost of capital invested,

expenses incurred for storing inventory in the form of cost of utilities, handling, ware-

housing, etc. and taxes; and is usually expressed as a fraction of the monetary value of the

inventory. The opportunity costs of invested capital refers to the return on investment that

could be earned on the most lucrative investment option, instead of using it for carrying

inventory, and is usually, the largest component of holding costs.

3. Ordering cost, which is a fixed cost that does not vary with the ordered quantity, unlike

purchase costs, and is incurred in the fixed quantity every time an order is placed. These

costs play an important role in determining the ordering frequency.
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4. Cost of insufficiency can be interpreted for a retailer as the costs that are explicitly or im-

plicitly incurred in the event of a stock-out such as emergency shipments to avoid demand

loss, substitution of demand for a less profitable alternative, loss of goodwill due to poor

service, etc., which can be usually estimated empirically, and are highly dependent on

customer responses to unavailability. The variability of customer responses to stock-outs,

is discussed in subsection 3.3.1.

Another important cost factor for perishable items is the cost incurred when they reach the end

of their saleable life without being sold. Silver et al. (1998) include the cost of deterioration, ob-

solescence and pilferage in the description of carrying cost. However, similar to the approach

taken by Nahmias (2011) in demonstrating the preliminaries of modelling perishable inventory

systems, it is common to consider a separate cost of waste or outdating cost per unit, to explic-

itly model and analyse the limited life characteristic of perishables, as also done by Broekmeulen

and Van Donselaar (2009). However, to avoid any biases in estimating the above listed costs, a

useful approach is to analyse the phenomenon which lead to these costs, such as purchased

quantities, number of orders placed, average inventory level, etc., as done by Kiil et al. (2017).

The conceptual components that characterise an inventory control system can be listed as (Sil-

ver et al., 1998):

1. the frequency of determining inventory levels, i.e., continuous review or periodic review;

2. the presence or absence of condition to determine if an inventory replenishment order

should or should not be placed, i.e., reorder point, or no reorder point; and

3. size of the replenishment order, i.e., fixed order quantity, fixed order up to level, or variable

order quantities.

N.B.: Silver et al. (1998) point out that in practical situations with periodic review, it might be

the case that the inventory levels are continuously available from transaction reporting, such as

POS data records. However, the situation is characterised as periodic review due to constraints

on the ordering frequency.

When demand rates are constant and deterministic, the basic economic order quantity (EOQ)

model, which is derived by balancing ordering and carrying costs, is one of the simplest theo-

retical approaches to defining an ordering policy (Silver et al., 1998). The variation of inventory
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Figure 3.1: Behavior of inventory level with time in EOQ model (Herrera et al., 2009)

levels with time, for an inventory which is controlled using parameters Q and T calculated us-

ing the EOQ model, is shown in Figure 3.1. Although the basic EOQ model does not provide a

reorder point, it can be easily calculated using the demand rate (Q/T ) and lead time (L).

When demand is probabilistic (explained further in subsection 3.2.2), i.e. not deterministic, but

average demand still remains approximately constant with time, different types of inventory

control systems may be relevant according to characteristics of the situation (Silver et al., 1998).

Depending on the characteristics of an inventory control system, inventory policies used for

probabilistic demand can be classified into different ‘forms’, most common ones of which being

(Silver et al., 1998):

• Order-Point, Order-Quantity (s,Q) policy (continuous review): an order of fixed quantity

Q is placed whenever inventory position reaches s or lower (lower, referring to the case

where a single demand transaction drops the inventory position from greater than s to

smaller than s).

• Order-Point, Order-Up-To-Level (s,S) policy (continuous review): an order is placed to

increase inventory position to S, whenever inventory position reaches s or lower.

• Periodic-Review, Order-Up-To-Level (R,S) policy: an order is placed to increase the in-

ventory position to S after every R time units.

• (R, s,S) policy: this is a combination of the (s,S) and (R,S) policies. Inventory position

is reviewed after every R time units and if the inventory position is found to be below
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s, a sufficiently large replenishment order is placed to raise the inventory position to S,

however, no order is placed if inventory position is above s.

Choosing the form of policy that is used for an item, and selecting the values for policy pa-

rameters R, s,Q,S, are a combination of strategic and tactical decisions, the process of which is

discussed in detail by Silver et al. (1998). The preferred approach is to select the optimal policy

parameters, i.e., parameters that form an optimal policy, which is defined as one that "strikes a

balance between overstocking and understocking" (Dvoretzky et al., 1952).

If measured in terms of cost, excess costs of purchasing, holding, ordering, as well as outdating

costs for perishables, can be considered contributing costs to the cost of overstocking. The cost

of understocking is comprised of the cost of insufficiency. Optimal policy parameters are deter-

mined by trading-off the estimated values of these costs, such that profit can be maximised in

every inventory cycle (Silver et al., 1998), where inventory cycle refers to the duration between

two ordering instances. An alternative approach is to identify policy parameters to satisfy or

achieve the threshold value of a service measure, i.e., fill rate (Janssen et al., 1998), or fill rate

and cycle service level (Minner and Transchel, 2010). This may not provide the optimal policy,

but is of practical importance due to the complexity of cost estimation and the resultant utility

of the service measure approach in practical settings (Minner and Transchel, 2010).

The types of inventory control systems discussed above, address situations with deterministic

and probabilistic demands, but with approximately constant average demand. The common

characteristic among these situations, is that one inventory cycle can be considered represen-

tative of other inventory cycles, and once a set of policy parameters have been identified as the

best performing for one cycle, they can be expected to produce similar results for subsequent

cycles as well. In the absence of this characteristic, simple average costs over an inventory cycle

cannot be considered to represent every inventory cycle (Silver et al., 1998). Silver et al. (1998)

emphasise that when demand rates vary with time, it can no longer be assumed that using the

same replenishment quantities or order up to levels is the best strategy. They explain that for

such situations, "demand information over a finite period, extending from the present" has to

be used to determine appropriate replenishment quantities. This period is known as the plan-

ning horizon, and should be kept as short as possible, because the farther in future it extends,

the lower is the likelihood of accuracy of demand information (Silver et al., 1998).
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For situations where demand is deterministic but varies with time (referred to as time-varying

demand), Silver et al. (1998) list three alternative approaches for determining immediate order

quantities:

• using the EOQ model, when demand variability is low;

• using exact best solution to a mathematical model of the situation, such as the Wagner-

Whitin algorithm (Wagner and Whitin, 1958); or

• approximate or heuristic methods that capture the essence of complexity due to the time-

varying demand, while also being simple enough to understand for practitioners and not

requiring lengthy computations.

However, Silver et al. (1998) point out that when demand is time-varying and probabilistic, exact

analysis is "far too complicated for routine use in practice", thus, again emphasising on the use

of heuristic approaches.

The discussions above have led to highlighting the utility and importance of heuristic approaches

for inventory control under probabilistic time-varying demand, even without the perishable na-

ture of items. The added advantage of heuristics for inventory control of perishable items un-

der time-varying probabilistic demand is discussed in subsectiion 3.2.3. Before discussing the

impact of introducing the limited life characteristic of perishables on inventory control, the fol-

lowing subsection (3.2.2) clarifies probabilistic demand and associated uncertainty.

3.2.2 Probabilistic demand

This subsection discusses the classification of decisions based on levels of uncertainty which is

utilised to explain the classification of demand within this research as probabilistic, and clarify

terminology for subsequent sections and chapters.

Uncertainty can be defined as "any departure from the unachievable ideal of complete deter-

minism" (Walker et al., 2003). Based on the level of information available when a decision is

made, Whalen and Churchill (1971) classify decision situations under the categories of deci-

sions under certainty, ignorance and risk. Alternatively, Stevenson (2012) makes the distinction

into the categories of decisions under certainty, uncertainty and risk. Their typologies differ in

their terminology, while the essence of the classification criteria, which is degree or level of un-
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Table 3.1: Classification of decision situations on level of uncertainty

Source Walker et al. (2003) Whalen and Churchill (1971) Stevenson (2012)

Decision under
determinism certainty certainty

statistical uncertainty risk risk

scenario uncertainty ignorance uncertainty

certainty, is essentially synonymous. This can be observed in the description of these categories

below:

• Decision making under complete knowledge of outcomes of different decision alterna-

tives: decision under certainty (common for both, Stevenson (2012) and Whalen and

Churchill (1971)).

• Decision making when possible outcomes of a decision alternative can be assigned prob-

abilities: termed as decision under risk by Stevenson (2012); Whalen and Churchill (1971).

• Decision making when possible outcomes of a decision alternative cannot be assigned

probabilities: termed as decision under ignorance by Whalen and Churchill (1971), and

decision under uncertainty by Stevenson (2012).

An extensive classification scheme for uncertainty is presented by Walker et al. (2003), where

uncertainty is classified along three dimensions, namely, location, nature and level of uncer-

tainty. The classifications by Stevenson (2012); Whalen and Churchill (1971) listed above, are

along the dimension of level. Combining typologies of Stevenson (2012); Whalen and Churchill

(1971); Walker et al. (2003), Table 3.1 organises the three classification schemes under one col-

umn each. Terminologies in a row are synonymous, i.e., represent same level of uncertainty;

and level of uncertainty increases downward. The synonymous nature of the three typologies

becomes apparent after the terminology from Walker et al. (2003), is presented below.

Walker et al. (2003) define statistical uncertainty as "any uncertainty that can be described ad-

equately in statistical terms", or uncertainty "where the functional relationships are well de-

scribed and a statistical expression of the uncertainty present can be formulated". Differenti-

ating scenario uncertainty from statistical uncertainty, Walker et al. (2003) state that "scenario

uncertainty implies that there is a range of possible outcomes, but the mechanisms leading to

these outcomes are not well understood and it is, therefore, not possible to formulate the proba-
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Figure 3.2: The progressive transition between determinism and total ignorance (Walker et al.,
2003)

bility of any one particular outcome occurring". Considering these definitions, it appears logical

to organise them as done in Table 3.1.

The advantage of the terminology used by Walker et al. (2003), is recognised when one considers

the entire spectrum of levels of uncertainty presented by them (Figure 3.2). As can be observed,

what Whalen and Churchill (1971) refer to as ignorance, is termed as scenario uncertainty by

Walker et al. (2003), while classifying ignorance as a further higher level of uncertainty. To justify

referring to this as ‘ignorance’, Whalen and Churchill (1971) argue that "some authors call this

uncertainty rather than ignorance, but this is confusing since uncertainty also means anything

other than certainty". However, this issue is resolved by the detailed classification of Walker

et al. (2003).

Decisions under recognised ignorance and total ignorance (shown in Figure 3.2) are not dis-

cussed further due to the scope of investigation within this research. Improvements in decisions

can almost always be expected as uncertainty reduces from ignorance to scenario uncertainty

or statistical uncertainty. An example of this are the potential improvements that have been

demonstrated as a result of considering age information in inventory decisions for perishables,

under same levels of demand uncertainty. This can be observed in the simulation studies by

Broekmeulen and Van Donselaar (2009); Kiil et al. (2017), where ordering procedures ignoring

item ages, are compared with ordering procedures which assume availability of complete infor-

mation about item ages, and include this information in the ordering decision. The improve-

ments achieved due to the determinism of item ages demonstrates the value of eliminating the

ignorance in the decision. However, availability of information about item ages is considered

known within this research, since this information has already been established as being valu-

able.

Putting the discussion on levels of uncertainty, into the context of demand, inventory decisions
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regarding ordering quantities and policy parameters, can be categorised according to the level

of demand information available. Demand forecasting is concerned with predictions for future

demand by using historical demand (Silver et al., 1998). By treating historical demand as a time

series, and identifying levels, trends and patterns in the data, forecasting procedures attempt to

recognise the underlying stochastic process in demand (Silver et al., 1998). However, they do not

eliminate uncertainty. Silver et al. (1998) clarify that after the forecasts have been used to make

decisions, the only thing that is certain is that "the forecasts will be in error". To cope with this,

forecasting procedures are updated to minimise these errors, however, the forecasts are always

expressed with some expected error values. Thus, it can be inferred that forecasting is aimed

at reducing the uncertainty regarding demand from ignorance or scenario uncertainty to statis-

tical uncertainty. Silver et al. (1998) refer to situations where inventory decisions are based on

statistically estimated forecasts, as having a probabilistic demand. As retail inventory planning

is also dependent on demand forecasts (Hübner et al., 2013), demand uncertainty within the

context of this research is also considered probabilistic.

An additional comment can be made here about the nature of uncertainty (Walker et al., 2003)

with regard to situations with probabilistic demand. While forecasts may reduce uncertainty in

decisions, as explained above, they are bound to have errors. This occurs due to the inherent

variability in the demand process which forecasting aims to predict, which points to the differ-

ence between epistemic and variability uncertainties. Walker et al. (2003) explain that epistemic

uncertainty arises due to imperfection in knowledge and can be reduced by empirical efforts

and research activities; while variability uncertainty arises due to the inherent variability of the

real world process, such as those involving human and natural systems or concerning social and

economic developments. Thus, improvements in forecasting techniques, capturing censored

demand data, etc. can be efforts that reduce epistemic uncertainty in the decisions. However, it

may not be possible to reduce the variability uncertainty in demand, but only to predict it.

It is important to clarify here that the variability discussed here is not same as the concept of

time-varying demand, which is concerned with variation in average demand rates. As discussed

in subsection 3.2.1, demand can be time-varying while being deterministic. Alternatively, de-

mand can be probabilistic without having a time-varying characteristic. However, within the

context of this research, demand is considered to be time-varying and probabilistic, as is typical
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to grocery retail (Broekmeulen and Van Donselaar, 2009; Hübner et al., 2013).

3.2.3 Perishable inventories

The increasing level of complexity in inventory management due to introduction of time-varying

and probabilistic characteristics in demand, was discussed in subsection 3.2.1. This section dis-

cusses some added complexities that occur as a result of the perishable nature of items in in-

ventory.

Nahmias (2011) demonstrates the transformations required in the EOQ model for perishable

items with deterministic and stable demand, and states that the modifications required to in-

clude perishability, are straightforward. For varying deterministic demand, Nahmias (2011)

points that the exact requirements or economic lot size (ELS) policy proposed by Wagner and

Whitin (1958), may not always be optimal for perishables. To provide some background, the

premise for Wagner and Whitin (1958)’s model is a steel mill, whose operator wishes to deter-

mine a production schedule for number of beams to produce out of different strength varieties,

where a higher strength beam can replace a lower strength beam, and different strength beams

have different setup costs, and demands in future periods are considered known, and the ob-

jective is to determine the schedule that minimises costs. The key result utilised by Wagner

and Whitin (1958) to construct their efficient algorithm, is that an optimal policy only orders in

periods when starting inventory is zero, which Nahmias (2011) refers to as the zero inventory

property. Nahmias (2011) explains that the first to consider extending the ELS problem for per-

ishables was Smith (1975), followed by Friedman and Hoch (1978), who pointed out flaws in the

algorithm presented by Smith (1975), proving that the zero inventory property does not always

hold true for perishables.

For the case of stable probabilistic demand, through formulation of a dynamic programming

problem, Nahmias (2011) demonstrates that optimal policies for periodic review systems can

be computed only for relatively short lifetimes, such as one or two periods. As the item lifetime

increases, the state vector that describes the inventory age, also grows. Since the optimal policy

depends on the entire age distribution, the feasibility of computing optimal policies decreases

with increasing item lifetime (Nahmias, 2011). Similarly, other complexities regarding comput-

ing optimal policies for continuous review systems are also highlighted by Nahmias (2011).
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Proposed policies can be found in literature for different inventory systems, under varying as-

sumptions. Gürler and Özkaya (2008) consider a continuous review order up to system with

random product life, and zero as well as non-zero lead times. Berk and Gürler (2008) consider a

continuous review and constant order quantity system with positive lead times and fixed prod-

uct life. Tekin et al. (2001) compare age based and stock level based policies to conclude the

superiority of the former for items with high service level requirements. Besides these, several

other publications with varying set of assumptions can be found in the literature reviewed by

Bakker et al. (2012); Bhalla (2017); Janssen et al. (2016).

The examples given above belong to a stream of literature that is focused on identifying modified

policy forms and optimal policy parameters for perishables. Another stream of research focus

can be observed to be on developing and testing heuristics, such as in the work of Broekmeulen

and Van Donselaar (2009); Ferguson and Ketzenberg (2006); Kiil et al. (2017). As discussed in

subsection 3.2.1 and as pointed out by Silver et al. (1998), defining constant policy parameters

is of utility when demand rates are stable. However, with time-varying probabilistic demands,

variable quantity policies using heuristics to compute order quantities are more practical (Silver

et al., 1998).

Time-varying probabilistic nature is characteristic to demand in grocery retail (Broekmeulen

and Van Donselaar, 2009). Further, the demand levels at different stores of one franchise may

also vary substantially, as can be observed in the demand data utilised by Kiil et al. (2017). As

a result, the value of a heuristic that can be used on operational level, is of wider utility than

determining different policy parameters for every setting, on a tactical level. The importance

of performance under varying conditions and extended periods is also emphasised by Broek-

meulen and Van Donselaar (2009), in explaining the advantages of their heuristic over that of

Ferguson and Ketzenberg (2006)’s.

The situation can be simplified for non-perishables by ignoring the time-varying nature of de-

mand and using constant parameter policies which are not optimal, because their financial im-

plications might not be very severe, due to marginal holding costs (Broekmeulen and Van Don-

selaar, 2009). However, for perishables, ignoring the time-varying nature of demand may re-

sult in wastes which have substantial financial as well as social and environmental implications

(Parfitt et al., 2010).



CHAPTER 3. THEORY AND LITERATURE STUDY 33

The first stream of research focus (on finding constant order policies) is of high theoretical im-

portance, and contributes substantially to the development of intuition in the field of perishable

inventory modelling (Bakker et al., 2012). However, the second stream of research (varying or-

ders using heuristics) simultaneously addresses various industrial needs, which is an important

quality in operations management research (Karlsson, 2010). These heuristics capture the time-

varying nature of demand, while also being sufficiently simple for practitioners to understand,

which are highlighted as advantages of heuristic approaches by Silver et al. (1998). Additionally,

they utilise the age information to improve decisions, as demonstrated by Broekmeulen and

Van Donselaar (2009); Kiil et al. (2017), while maintaining their simplicity. Thus, it can be con-

cluded that the value of heuristic approaches to determining order quantities for perishables, is

significant.

This section has provided an overview of preliminary inventory management concepts; de-

scribed demand uncertainty in the context of this research; and concluded by discussing some

aspects of inventory management for perishables, under deterministic as well as probabilistic

time-varying demand, and pointing out the importance of heuristic approaches. While it is im-

portant that they are simple enough to understand and implement for practitioners, it is also

essential that these heuristics are theoretically robust, which is the premise of the policy mod-

ifications presented and tested in this research. The following section discusses evidence from

empirical and theoretical research that validates the relevance of the proposed policy modifica-

tions, which is followed by description of the propositions.

3.3 Lost-sales vs. backorders

As discussed in the previous section, when demand is probabilistic, the inventory management

decisions are taken under uncertainty. However, besides the uncertainty in demand, retail stores

also face uncertainty regarding the responses of customers when they have stock-outs, which

theoretically translate to lost-sales or backorders. The following subsection (3.3.1) elaborates

on this. As a result of the varying inventory behaviours, models and policies aimed specifically

at lost-sales systems have been considered in literature, and demonstrated the increase in math-

ematical complexity as compared to backordering systems (Nahmias, 1979; van Donselaar et al.,
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1996; Huh et al., 2009). However, Bijvank and Vis (2011) point out that lost-sales systems have

received lower attention in literature, than is required considering their importance to grocery

retail, where excess demands are often lost. Referring to the results of Zipkin (2008), Bijvank

and Vis (2011) emphasise that the cost impacts of approximating lost-sales systems with backo-

rdering systems can be substantial. In their review of literature that considers lost-sales models

for perishable items, they refer Broekmeulen and Van Donselaar (2009) as studying a lost-sales

system under constant life time. However, as later explained in subsections 3.3.3 and 3.3.4, the

ordering procedures utilised by them, are based on an underlying assumption of backordering.

Thus, this section focuses on highlighting the importance of studying lost-sales systems, and

demonstrating some relevant changes that are required in policies to account for lost-sales. Sub-

section 3.3.1 discusses how studies on customer responses to stock-outs, validate the lost-sales

assumption; subsection 3.3.2 discusses the concept of inventory position and how it changes

from backordering to lost-sales systems; and subsections 3.3.3 and 3.3.4 demonstrate relevant

modifications to policies.

3.3.1 Customer responses to stock-outs

Aastrup and Kotzab (2010) give an overview of the literature on stock-outs, where the research

on stock-outs is divided into two streams, namely demand and supply side. The former is con-

cerned essentially with the customer responses to stock-outs. This subsection discusses some

possible responses studied in literature and contextualises them with respect to this research.

Discussing progress in the literature on customer responses to stock-outs, Aastrup and Kotzab

(2010) explain that most research in the field until 1991 focused on identifying and mapping

different responses to stock-outs observed among customers. However, due to the significant

variations observed in customer responses, literature since 1991 has mostly focused on ex-

plaining and understanding the factors that influence customer responses, which Aastrup and

Kotzab (2010) classify into product-related variables, store-related variables, situation-specific

variables and consumer related variables. As Aastrup and Kotzab (2010) point out, these varia-

tions were demonstrated by Grocer (1968) and the results have been replicated by ECR (2003);

Gruen et al. (2002); McKinnon et al. (2007).

The three broad categories of behaviours observed in customers during stock-outs are described
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by Zinn and Liu (2001) with the abbreviation ‘SDL’, which stands for Substitute, Delay or Leave.

Corsten and Gruen (2003) point out that while academic research identifies up to 15 different

customer responses to stock-outs, these responses essentially fall into one of the following five

categories of managerial importance:

1. buy item at another store (store switch);

2. delay purchase (buy later at the same store);

3. substitute – same brand (for a different size or type);

4. substitute – different brand (brand switch); and

5. do not purchase the item (lost sale);

and that all of these responses result in direct or indirect loss risks for retailers and manufac-

turers. They classify these loss risks as shopper loss risk, which refers to the risk of permanent

store switch by a customer; and sales loss risk, which refers to the risk of all other customer

responses except delay, i.e., buying item at another store, cancelling purchase, or substituting

with a smaller or lower priced item. Putting these responses into the context of SDL typology

as Zinn and Liu (2001) explain, the first and last categories of responses fall under ‘leave’, the

second into ‘delay’ and the remaining two into the ‘substitute’ category.

Relating different customer responses to costs of understocking, Aastrup and Kotzab (2010) ex-

plain that higher the likelihood of a ‘leave’ response, higher is the cost of understocking; while

higher likelihoods of ‘delay’ and ‘substitute’ responses translate to lower understocking costs.

The variations in the likelihoods or probabilities of these responses with variation in character-

istics related to products, stores, situations and customers, is what causes the complexities in

estimating the costs of insufficiency or understocking (Aastrup and Kotzab, 2010). The conse-

quence of this has been the prominence of the approach of satisficing service levels rather than

optimisation of service levels, as also pointed out by Aastrup and Kotzab (2010), and explained

while justifying their approaches by Janssen et al. (1998); Minner and Transchel (2010).

However, an important breakthrough of empirical research on customer responses to retail

stock-outs has been establishing that ‘delay’ responses are consistently less likely, as compared

to the ‘leave’ and ‘substitute’ responses, where ‘consistently’ implies that this is true for a wide

variety of products and situations. This can be observed in the results of Corsten and Gruen
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(2003, 2005); Emmelhainz et al. (1991); McKinnon et al. (2007); Van Woensel et al. (2007). Em-

melhainz et al. (1991) conclude that the purchase of a product is less likely to be delayed and

more likely to be substituted if it is of regular usage, rather than special occasion usage. The cor-

roboration of this can be inferred from the results of McKinnon et al. (2007), who studied frozen

foods, health and beauty products, and dairy products; and reported a decreasing probability of

‘delay’ response in these product categories respectively.

Silver et al. (1998) explain two extremities of customer responses to a stock-out when demand

is probabilistic, that can be assumed in an inventory model, as:

1. Complete backordering: Unfulfilled demand due to stock-out is backordered and is ful-

filled as soon as a replenishment of adequate size arrives. Examples of such situations are

captive markets, exclusive dealerships, link between the wholesale and retail stages of a

distribution system, etc.

2. Complete lost-sales: Unfulfilled demand due to a stock-out is lost, as the customers satisfy

their demand with a substitute product or find another source for the preferred product,

a common example of which, is the retail-consumer link in a distribution system.

Silver et al. (1998) also point out that in practical situations, it is likely to have a combination of

these two extremes, i.e., some customers use other sources or substitute products to fulfil their

demand, resulting in lost sales, while some come back at a later time to get the specific desired

product, resulting in backordered demand.

Putting the SDL response categories into the context of lost-sales and backorders in inventory

control, it becomes apparent that while the ‘delay’ response is the cause of backorders, the ‘sub-

stitute’ and ‘leave’ responses account for lost-sales. Even if a customer substitutes demand for

a certain stock-keeping-unit (SKU) with another SKU, although the customer’s demand is ful-

filled, the original demand for the preferred SKU ceases to exist. This is also pointed out by

Bijvank and Vis (2011), justifying the assumption of lost-sales for several inventory models in

literature, which are placed in the retail context.

Briefly discussing the classifications of customer responses to stock-outs observed in literature,

and varying likelihoods of these responses, this subsection has provided background for the

lost-sales assumption in inventory models. The following subsection (3.3.2) begins to highlight

the differences between inventory control under lost-sales and backordering situations.
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3.3.2 Inventory position

This subsection discusses the concept of inventory position, to highlight the implications of this

quantity for situations with lost-sales. For the case of probabilistic demand, Silver et al. (1998)

classify inventory stocks into following four categories:

1. On-hand stock, which is defined as inventory that is physically available on the shelf to

satisfy customer demand immediately.

2. Net stock = (On-hand stock) - (Backorders).

3. Inventory position (I P ) = (On-hand stock (SOH )) + (On-order stock (SOO)) - (Backorders) -

(Committed), where on-order stock refers to the stock that has been requisitioned but has

not arrived at the inventory location under consideration. Alternatively, it is the number

of items ordered as part of an outstanding order. The committed stock can be understood

as confirmed component of future demand, for which stock is kept reserved; for example,

an advance bulk order placed by a customer.

4. Safety stock, which refers to the component of a replenishment order that acts as a buffer

against the scenario of actual demand exceeding the forecasted demand.

N.B.: The prospect of a committed stock is not pursued or addressed further in this research,

considering it a rare occurrence. Thus, committed stock is assumed as zero.

For situations when backordering does not occur, one intuitively modifies the definitions of net

stock and inventory position as the following:

Net stock = SOH (3.1)

I P = SOH +SOO (3.2)

This definition of inventory position is also utilised by Broekmeulen and Van Donselaar (2009),

describing the mathematical formulation of the policies they compare. However, additional

modifications in other calculations are also required to account for lost-sales.

As briefly explained in Chapter 1, in a periodic review situation where backordering does not

occur, there are essentially two instances where sales may be lost due to excess demand. They

are as follows:
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Figure 3.3: Comparison of a backorder and lost-sales model (Bijvank and Vis, 2011), where on-
hand stock is represented by a solid line and inventory position by a dashed line

1. during the lead time of an outstanding order (as shown in the second depiction in Figure

3.3, which represents a lost-sales system), i.e., an order is placed at the review instance R,

however the on-hand stock is exhausted before the order arrives at R +1.5R. Any demand

that occurs between the exhaustion of on-hand stock, and arrival of order, amounts to

lost-sales.

2. when there is no order outstanding, i.e., if the on-hand stock were to be exhausted just

before the instance R in Figure 3.3.

Bijvank and Vis (2011) explain "when the demand is lost instead of backordered, the inventory

position does not decrease if the system is out of stock. It is no longer true that the amount of

inventory after the lead time equals the inventory position after the order placement minus the

demand during the lead time." This is explained through an example below.

Consider a periodic review and variable order quantity inventory system where backordering is

possible. On a day t when an order is to be placed, inventory is reviewed at the start of the day,

and order placed is available to fulfil demand from start of day t +L, where L represents the lead

time. Assuming there are no orders outstanding at day t , a quantity nt is ordered. When the

ordered stock becomes becomes available to fulfil demand, inventory position (I Pt+L) is given

by:

I Pt+L = (I Pt +nt )−
t+L−1∑

i=t
Di (3.3)
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where,

I Pt = inventory position just before order is placed;∑t+L−1
i=t Di = demand during lead time.

However, Bijvank and Vis (2011) state that for a lost-sales inventory system,

I Pt+L 6= (I Pt +nt )−
t+L−1∑

i=t
Di (3.4)

but rather, to account for lost-sales during the lead time, inventory position at t +L is calculated

as:

I Pt+L = (I Pt −
t+L−1∑

i=t
Di )++nt (3.5)

where (x)+ =


x if x ≥ 0

0 if x<0

(referred henceforth as positive only function)

While the calculation in equation 3.3 allows the inventory position to be negative, implying

backorders; this is eliminated in eq. 3.5 by imposing a lower limit of zero on the inventory posi-

tion. The difference can be understood through following expressions:

x − y = (x − y)+, if x − y ≥ 0 (3.6)

x − y < (x − y)+, if x − y < 0 (3.7)

In a model that represents an inventory system with lost-sales, if the inventory position calcula-

tions use eq. 3.3, the model would inaccurately represent the behaviour of the inventory system

as the inventory position may take negative values, thus, allowing backordering. If the model

uses the inventory position variable to fulfil demand, it is important that attention is paid at

incorporating the lost-sales behaviour for both types of excess demand instances. For any de-

mand that occurs during the lead time, only the on-hand stock should be considered available

to fulfil this demand, rather than the inventory position, which is the idea behind the modifica-

tion in eq. 3.5.

Broekmeulen and Van Donselaar (2009) do not address this explicitly for their simulation model,
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however, it is assumed here that both these excess demand instances are accounted for lost sales

within their simulation model.

However, in a model that represents a lost-sales system, the first excess demand instance must

also be accounted for, in the ordering procedure deployed in the model. The following sub-

section (3.3.3) describes how the first excess demand instance is not addressed by the ordering

procedure in Broekmeulen and Van Donselaar (2009)’s base policy. For clarification, ‘base pol-

icy’ refers to the benchmark policy, over which their improvements are demonstrated. ‘Stock-

based policies’ are those which do not use age information of perishables, and consequently

‘age-based policies’ are those which also utilise age information also.

3.3.3 A stock-based (R, s,nQ) policy

This subsection discusses the base policy which is used by Broekmeulen and Van Donselaar

(2009) to demonstrate the improvements achieved by using EW A policy, which uses age infor-

mation. The purpose of the discussion is to highlight the modifications required in the ordering

procedure, to account for lost-sales. Age information of items is not used within this policy and

decisions are made only using the inventory levels. This acts as a precursor to similar modifica-

tions proposed for the EW A age-based policy in the next subsection.

The premise used by Broekmeulen and Van Donselaar (2009) is the model of a lost-sales inven-

tory system with a variable order policy of the form (R, s,nQ), where inventory is periodically

reviewed, and if the inventory position is lower than s, then n packs of size Q are ordered. Items

arrive with a lead time of L days. R is the fixed review interval and Q is the fixed batch size or case

pack size, as referred to by Broekmeulen and Van Donselaar (2009). The variable reorder point,

s, is calculated after every R periods, based on the demand forecast for the decision horizon,

i.e., R+L. Decision horizon is used here to refer to the farthest time instance in future which the

decision is concerned with, and not the length of the time period, which is in fact only R due

to lost-sales, i.e., R +L −L. Due to their variable nature, reorder point and order quantity are

referred henceforth as st and nt respectively, i.e. s and n for day t .

The events that occur in a day in their simulation, in the sequence of occurrence, are as follows:

store opens and inventory decreases due to customers’ demand, store closes and perished/out-

dated inventory is removed, remaining inventory is counted and arrived goods are stacked on
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shelves, and finally orders are placed. Some events, may of course, not occur on every day, for

example, ordering decision will be made on alternate days, if R = 2. Forecast or expected de-

mand on day t is represented by E [D t ]; and inventory position at the end of day t , just before

an order is placed, is represented by I Pt .

Broekmeulen and Van Donselaar (2009) explain that at the end of every review period t , a deci-

sion is made which determines the state of inventory on t +L +1. Thus, if an order is placed on

day t , it arrives at the end of day t +L. However, since no demand occurs on day t +L after the

arrival of the order, it effectively becomes available to fulfil demand on day t +L+1.

Their base policy is expressed mathematically as,

st = SS +
t+L+R∑
i=t+1

E
[
Di

]
(3.8)

if I Pt < st , then:

nt =
⌈

st − I Pt

Q

⌉
(3.9)

where dxe rounds up x to the nearest integer.

To analyse the policy, two types of situations are considered, namely, when there can be no other

outstanding orders when an order is placed (R ≥ L); and when it is possible to have another

outstanding order when an order is placed (R < L).

The case of R ≥ L

If there are no other outstanding orders when an order is placed, the inventory position is same

as the on-hand stock, i.e.,

if R ≥ L, at any ordering instance t ,

I Pt = SOH ,t (3.10)

As pointed out previously, an order placed on day t becomes available to fulfil demand at the

start of day t+L+1. Thus, assuming that demand during lead time is same as expected demand,

and order of size nt is placed, the expected inventory position when the current order becomes
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available to fulfil demand, can be calculated as:

E
[
I Pt+L

]= (
I Pt −

t+L∑
i=t+1

E
[
Di

])++nt (3.11)

where,(
I Pt −∑t+L

i=t+1 E
[
Di

])+ = expected on-hand stock just before current order arrives.

Since inventory is counted at the end of everyday, I Pt+L is the amount that fulfils demand on

day t +L+1.

Again, the important detail here is the positive only function which adds a lower limit of zero, to

the inventory position. This further clarifies when the order quantity calculation is considered.

If an order is placed at the present instance, it must be concerned with fulfilling demand from

the arrival instance of this order until the arrival instance of next possible order, i.e., the instance

when the lead time of the next review instance would have elapsed (since there is no possibility

to acquire any inventory before that instance) (Silver et al., 1998). Thus, using the expression for

expected on-hand stock from eq. 3.11, the policy can be accordingly modified as:

st = SS +
t+L+R∑

i=t+L+1
E

[
Di

]
(3.12)

if
(
I Pt −∑t+L

i=t+1 E
[
Di

])+ < st ,

then:

nt =
⌈

SS +∑t+R+L
i=t+L+1 E

[
Di

]− (
I Pt −∑t+L

i=t+1 E
[
Di

])+
Q

⌉
(3.13)

What differentiates the calculation of order quantity in the original form of the base policy (eq.

3.9) from the modified form (eq. 3.13) is the underlying assumption of backordering. By logically

accounting for lost-sales, the order quantity is reduced. As shown below in eq. 3.14, the quantity

calculated by the original policy is either equal to the modified form, or larger when it attempts

to fulfil demand that will be lost by the time the order arrives.

t+R+L∑
i=t+L+1

E
[
Di

]− I Pt +
t+L∑

i=t+1
E

[
Di

]≥ t+R+L∑
i=t+L+1

E
[
Di

]− (
I Pt −

t+L∑
i=t+1

E
[
Di

])+ (3.14)

As can be observed, the two separate expected demand summation terms
(∑

E
[
D

])
in the mod-
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ified form (eq. 3.13) , are simply added in the original form (eq. 3.9), essentially imposing the

backordering assumption and consequantly, ordering for demand that is lost during lead time.

Thus, the modification eliminates the possibility of a negative inventory position in the order

quantity calculation, as inventory position cannot take negative values under lost-sales (Bijvank

and Vis, 2011).

Thus, the two policies would behave in the same way if expected demand during the lead time is

less than the on-hand stock. However, the original policy would over order, when the expected

demand during lead time exceeds the on-hand stock.

The case of R < L

When there are other outstanding orders when an order is placed, the inventory position is not

equal to the on-hand stock but rather the sum of the on-hand stock and outstanding orders, i.e.,

if R < L, at any ordering instance t ,

I Pt = SOHt +
t−1∑

i=t−L+1
ni (3.15)

Thus, even assuming that demand during lead time is same as expected demand, the expected

inventory position when the current order becomes available to fulfil demand (start of day t+L+
1), cannot be calculated as simply as in eq. 3.11. Instead, it requires a recursive formulation for

calculating the expected inventory position day by day, finally leading to the expected inventory

position at the end of day t +L. This is mathematically demonstrated below:

E
[
I Pt+1

]= (
I Pt −E

[
D t+1

])++nt−L+1 (3.16)

E
[
I Pt+2

]= (
E

[
I Pt+1

]−E
[
D t+2

])++nt−L+2 (3.17)

E
[
I Pt+3

]= (
E

[
I Pt+2

]−E
[
D t+3

])++nt−L+3 (3.18)

.

.

.

E
[
I Pt+L

]= (
E

[
I Pt+L−1

]−E
[
D t+L

])++nt (3.19)



CHAPTER 3. THEORY AND LITERATURE STUDY 44

where,(
E

[
I Pt+L−1

]−E
[
D t+L

])+ = expected on-hand stock just before current order arrives. Thus, the

base policy can be accordingly modified as:

st = SS +
t+L+R∑

i=t+L+1
E

[
Di

]
(3.20)

if
(
E

[
I Pt+L−1

]−E
[
D t+L

])+ < st ,

then:

nt =
⌈

SS +∑t+R+L
i=t+L+1 E

[
Di

]− (
E

[
I Pt+L−1

]−E
[
D t+L

])+
Q

⌉
(3.21)

Among the various combinations of parameters considered by Broekmeulen and Van Donselaar

(2009), one parameter combination where R < L is (R = 1,L = 2). Kiil et al. (2017)’s simulation

also includes one such combination, where stores can order everyday, and L ≈ 1.5 (38 hours).

Thus, further analysis of R < L can be useful for such cases. However, since majority of combi-

nations considered by Broekmeulen and Van Donselaar (2009); Kiil et al. (2017) have R ≥ L, only

brief notes on R < L cases are made while discussing modifications to EW A and EW ASS poli-

cies, without the corresponding recursive formulations for expected inventory positions. Cases

where R < L are also not tested for potential improvements in the following chapter, as it is

assumed that L = 1.

3.3.4 The EW A and EW ASS policies

This subsection extends the modifications proposed in the previous subsection, to the age-

based EW A and EW ASS policies for ordering of perishables which were proposed by Broek-

meulen and Van Donselaar (2009) and Kiil et al. (2017), respectively.

The premise of the EW A policy was described in the previous subsection (3.3.3). The EW A

policy essentially modifies the base policy by introducing an estimate of number of items, that

are expected to outdate in the decision horizon, which is computed using the heuristic Broek-

meulen and Van Donselaar (2009) propose. The proposed heuristic is used to compute the es-

timated amount of waste due to outdating by assuming that demand during the days within

the decision horizon, will be equal to the forecast or expected demand; customers pick items
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in an assumed sequence, i.e., First-In-First-Out (FIFO)/Last-In-First-Out (LIFO) picking by cus-

tomers; and assuming item ages to be known. The recursive equations that they propose are

not described here, but in the next chapter (subsection 4.4.3). Broekmeulen and Van Donselaar

(2009) can also be referred for this.

The estimated waste computed using the heuristic at day t , is represented as
∑t+L+R−1

i=t+1 Ôi , where

Ôi represents estimated units outdating at the end of day i ; i = t+1 represents the next day; and

t +L+R−1 represents the penultimate day of the decision horizon. Again, the decision horizon

refers to the farthest time instance, and not the length of the time period considered. Broek-

meulen and Van Donselaar (2009) describe the calculations of st and nt as:

st = SS +
t+L+R∑
i=t+1

E
[
Di

]
(3.22)

if I Pt −∑t+L+R−1
i=t+1 Ôi < st , then:

nt =
⌈

st − I Pt +∑t+L+R−1
i=t+1 Ôi

Q

⌉
(3.23)

Similar to proposed modifications for the base (R, s,nQ) policy in cases where R ≥ L, the order-

ing procedure for the EW A policy in cases where R ≥ L, can be modified as:

st = SS +
t+L+R∑

i=t+L+1
E

[
Di

]
(3.24)

if
(
I Pt −∑t+L

i=t+1 E
[
Di

])+−∑t+L+R−1
i=t+1 Ôi < st , then:

nt =
⌈

st −
(
I Pt −∑t+L

i=t+1 E
[
Di

])++∑t+L+R−1
i=t+1 Ôi

Q

⌉
(3.25)

The difference is again, instead of current inventory position, the expected inventory position

expression for t +L is used, to limit it to positive values. This accordingly influences the reorder

point calculation, and the ‘if’ condition for ordering. However, for the case of R < L, one would

require including the Ôi term in the recursive formulation similar to equations 3.16 to 3.19.

Broekmeulen and Van Donselaar (2009) present improvements of the EW A age-based (R, s,nQ)

policy over the (R, s,nQ) stock-based policy as percentage improvements. Thus, it is possible

that comparing the modified forms of these policies shows marginal changes from the results as

reported by Broekmeulen and Van Donselaar (2009). Nonetheless, the proposed modifications
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are a conceptual improvement for any further theoretical or practical utilisation of the policy.

A previously proposed modified form of the EW A policy, is the EW ASS policy proposed by Kiil

et al. (2017). The two propositions presented by Kiil et al. (2017) to modify the EW A policy are

as follows:

1. Instead of using a constant safety stock (SS), as done by Broekmeulen and Van Donselaar

(2009) while proposing the EW A heuristic, Kiil et al. (2017) propose calculating the safety

stock (SSt ) at every ordering instance as (σR+Lk), i.e., the product of:

• standard deviation of forecast error during review interval and future replenishment

lead time (σR+L), and

• safety factor (k) which is determined using the target service level.

2. Instead of calculating the buffer quantity as the sum of the estimated waste (
∑t+L+R−1

i=t+1 Ôi )

and the constant safety stock (SS), as done by Broekmeulen and Van Donselaar (2009);

Kiil et al. (2017) propose calculating the buffer as the largest of the two, the dynamic safety

stock (SSt ) and the estimated waste
(∑t+L+R−1

i=t+1 Ôi
)
.

The EW ASS policy is also compared to the EW A policy by Kiil et al. (2017), under the assump-

tion that "demand which cannot be satisfied is lost". Kiil et al. (2017) simulate an inventory sys-

tem where lead time is 38 hours, i.e., approximately 1.5 days. The sequence of simulated events

in a day, as described by Kiil et al. (2017) in the order of occurrence are: previously ordered

items arrive and are added to inventory, inventory reduces due to customer demand, orders are

placed, and inventory levels are recorded. While the smallest time unit considered by Kiil et al.

(2017) in the simulation model is hours; approximating the lead time into days, it becomes ap-

parent that items ordered at the end of day t become available to fulfil demand on the start of

day t +2. This is explained by Kiil et al. (2017) as "an order placed Monday afternoon is added

to the inventory Wednesday morning". This is similar to the L = 1 case for Broekmeulen and

Van Donselaar (2009)’s simulation model.

N.B.: To avoid any misinterpretations due to different notations or time units, the policy mod-

ifications for EW ASS policy as described below, are also based on the premise of Broekmeulen

and Van Donselaar (2009)’s simulation model, as explained earlier. Thus, the smallest time unit

is still a day, and I Pt still represents inventory position on day t after demand for the day has
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occurred but order is yet to be placed. Any adjustments required in the policies to fit an hourly

model paradigm, should not take much effort. Also, to clarify some differences in notations; Kiil

et al. (2017) refer:

• to the modified safety stock as SS, which is referred here as SSt , i.e., safety stock as calcu-

lated on day t ;

• to batch size as B , which is referred here as Q, following Broekmeulen and Van Donselaar

(2009);

• to order quantity as Qt which is referred here as nt , again, following Broekmeulen and

Van Donselaar (2009); and

• to inventory position as It which is referred here as I Pt , again, following Broekmeulen and

Van Donselaar (2009).

Calculations of order quantity in the EW ASS policy are carried out by Kiil et al. (2017) as follows:

if I Pt −∑t+L+R−1
i=t+1 Ôi <∑t+L+R

i=t+1 E [Di ]+SSt , then:

if SSt <∑t+L+R−1
i=t+1 Ôi , then:

nt =
⌈∑t+L+R

i=t+1 E [Di ]+∑t+L+R−1
i=t+1 Ôi − I Pt

Q

⌉
(3.26)

if SSt ≥∑t+L+R−1
i=t+1 Ôi , then:

nt =
⌈∑t+L+R

i=t+1 E [Di ]+SSt − I Pt

Q

⌉
(3.27)

Based on the same propositions as presented previously for the stock-based (R, s,nQ) and EW A

policies, the ordering procedure in the EW ASS policy, for cases where R ≥ L, can be modified as:

if
(
I Pt −∑t+L

i=t+1 E [Di ]
)+−∑t+L+R−1

i=t+1 Ôi <∑t+L+R
i=t+L+1 E [Di ]+SSt , then:

if SSt <∑t+L+R−1
i=t+1 Ôi , then:

nt =
⌈∑t+L+R

i=t+L+1 E [Di ]+∑t+L+R−1
i=t+1 Ôi −

(
I Pt −∑t+L

i=t+1 E [Di ]
)+

Q

⌉
(3.28)

if SSt ≥∑t+L+R−1
i=t+1 Ôi , then:
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Figure 3.4: (R,S) inventory system (Silver et al., 1998)

nt =
⌈∑t+L+R

i=t+L+1 E [Di ]+SSt −
(
I Pt −∑t+L

i=t+1 E [Di ]
)+

Q

⌉
(3.29)

Again, the difference from the original EW ASS policy can be observed in the use of expected

inventory position for t +L. It can be observed that the structure of EW ASS policy equations

differs from the structure of EW A and stock-based policy equations mentioned previously. This

has been done to keep the sequence of terms as similar to the original policies as possible, to

facilitate comparison and to make the modifications clearly observable.

An additional modification is required on the EW ASS policy for the safety stock calculation.

The safety stock calculation used in the EW ASS policy by Kiil et al. (2017) while citing Silver

et al. (1998), is:

SSt =σR+Lk (3.30)

however, following the same argument as made for the previous propositions, the safety stock

calculation should be modified as:

SSt =σR−L1+L2 k (3.31)
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where L1 refers to the lead time period of the current order, while L2 refers to the lead time

period for replenishment for the next ordering instance. This can be understood using Fig-

ure 3.4. In Figure 3.4, assuming that the letters A to F represent time duration counted from

zero; when an order is placed at point C assuming lost-sales, the order quantity aims to ful-

fil demand between points D and F . Thus, the safety stock must be calculated for the period

((E −C )−(D −C )+(F −E)), where the three terms represent corresponding R, L1 and L2 respec-

tively. The safety stock calculation method in eq. 3.30 is again based on the underlying assump-

tion of backordering which would be relevant for a system that behaves as shown in Figure 3.4.

But when the inventory level or position cannot go below zero or demand is not backordered,

eq. 3.31 corrects it for such lost-sales situations.

This section has discussed the relevance of the lost-sales assumption in inventory models for

real-world retail situations; highlighted the importance of including the lost-sales assumption

in calculating the inventory position; and proposed modifications to a stock-based (R, s,nQ)

policy and the age-based EW A and EW ASS policies for ordering of perishables, to account for

lost-sales. As a result, it has contributed to fulfilling the preparatory objective of the study. The

following section discusses the characteristics of a real-world inventory system, which are used

as the basis for developing a simulation model, to test the effect of the proposed policy modifi-

cations, and fulfil the main objective of this research by answering the research question.

3.4 Milk inventories at grocery retail stores

As discussed in section 1.3, the structure of milk supply chain in Norway is such, that milk is

delivered directly from the dairies or packaging and production facilities, to the retail stores

(Stensgård and Hanssen, 2016). This is also described by Engelseth (2012) in a case study on

Norway’s largest dairy producer. Due to such a structure, the retail echelon in milk supply chain

becomes a suitable test case for the improvements suggested in the previous section, as also ex-

plained in section 1.3. The arguments made in section 1.3, for choosing retail milk inventories

as the context, are briefly summarised here.

Firstly, the responses of customers to milk stock-outs strongly support the assumption of lost-

sales (Emmelhainz et al., 1991; McKinnon et al., 2007). Secondly, any improvements in the or-
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dering policies for milk at the retailers can directly influence the production planning at the

dairies, as the plans are adjusted based on orders (Engelseth, 2012), thus preventing overpro-

duction. Additionally, due to lower number of stages of divergence in the milk supply chain as

compared to other food supply chains, the bullwhip effect can be expected to be low (Dominguez

et al., 2014). These factors contribute to the argument that any improvements in ordering pro-

cess at retailers, can contribute to reducing waste.

As discussed in the section 3.1, perishable or deteriorating items vary in their characteristics

of deterioration. Additionally, inventory control systems also vary in their characteristics, as

discussed in subsection 3.2.1. Various combinations of characteristics of products and inven-

tory systems can also be observed in literature on perishable inventory modelling (Bakker et al.

(2012); Bhalla (2017); Goyal and Giri (2001); Janssen et al. (2016); Raafat (1991) may be referred

for examples). Thus, for studying the behaviour of an inventory by using a model that represents

it, it is important that the characteristics of the inventory are identified, so that the model can

be developed.

This section discusses some characteristics of milk inventories at grocery retail stores. Litera-

ture in the domains of grocery retail, dairy supply chains, and perishable inventory modelling,

is used to identify important characteristics that are relevant for modelling such an inventory.

These characteristics serve as background for developing a simulation model, using which, the

changes in inventory performance as a result of the modifications proposed in the previous sec-

tion, can be identified.

Common distinctions found in perishable inventory models discussed in literature, are reviewed

and discussed in preceding work of this research (Bhalla, 2017), and can also be observed in lit-

erature reviewed by Bakker et al. (2012); Janssen et al. (2016). These distinctions can be listed

as:

• fixed lifetime vs. random lifetime,

• deterministic vs. stochastic demand,

• LIFO vs. FIFO (issuing policy, or customers’ picking preference in retail context),

• lost-sales vs. backordering (customer response to stock-outs),

• periodic review vs. continuous review,

• age-based vs. stock-based policies,
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• zero lead time vs. non-zero lead time, and

• service level approach vs. cost optimisation (performance objective).

The following subsections discuss the characteristics of a milk inventory, to clarify the position

of this inventory on the distinction dimensions listed above. The characteristics, as discussed

here, are based directly on, or on inferences drawn from, information found in empirical re-

search in the context of dairy and grocery industries such as works of Damgaard et al. (2012);

Engelseth (2012); Hübner et al. (2013); Kiil et al. (2017); and are expected to sufficiently describe

the corresponding real-world situation and challenges.

3.4.1 Product lifetime

While ‘raw-milk’ or untreated cow milk is durable under refrigeration (below 4◦C) for 14 days,

the ‘best-before’ date of treated and packaged milk is printed as 10 days after the date of pro-

duction (Engelseth, 2012). In the best case, these boxes can be assumed to be available for sale

in a store at late evening on the same date, or the next morning. Thus, the maximum shelf life of

boxes that are available in a store can be considered as 9 days. A recent practice adopted by Nor-

wegian dairy producers is the ‘best before, but not bad after’ stamp (Cornall, 2018), which has

been recently modified to ‘best before, often good after’. Although it is unlikely that this enables

the retailers to sell products beyond this date (due to legal reasons), it could prove effective in

reducing waste of these products at the consumers’ end.

3.4.2 Demand

As mentioned earlier, the ‘moment of truth’ when actual demand for a product becomes appar-

ent in grocery retail is when the demand occurs (Hübner et al., 2013). Thus, forecasts based on

historical sales have to be used for making inventory replenishment decisions, since customer

demand is not known in advance. Additionally, seasonal and weekly variations in grocery re-

tail demand have also been documented (Van Donselaar et al., 2006). Thus, demand can be

considered as time-varying and probabilistic (explained in section 3.2).
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3.4.3 Customers’ picking preference

Similar to the magnitude of demand, the nature of demand, i.e., the preferred choice between

older and newer items, is also uncertain and can be expected to be a matter of personal choice.

Inventory models consider either one of the two (Tekin et al., 2001), or both separately (Broek-

meulen and Van Donselaar, 2009), or consider a shift from LIFO to FIFO when price discounts

are introduced on older items (Buisman et al., 2017), or an assumed proportion of both (Kiil

et al., 2017). Nahmias (1982) points out that a FIFO withdrawal is optimal, which is an intu-

itive result, since FIFO withdrawal decreases the possibility of outdating. Further, Janssen et al.

(2016) point out that while a FIFO depletion is relevant in health care, for inventories of blood,

pharmaceuticals, etc.; a depletion with LIFO or mix of both policies is more relevant for food

retail. This can be understood as a consequence of higher control that an inventory manager

would have over issuing from a blood inventory as compared to a grocery store, where cus-

tomers pick items from the shelves and may have a choice between older and newer items.

However, store managers can decrease uncertainty regarding customers’ choice by limiting their

access to items with different lives. Ferguson and Ketzenberg (2006) also point this out as a com-

mon characteristic of dairy products in grocery retail, where products are loaded to the display

shelf from the back, and customers only get access to the older items in front. Thus, it can

be considered that majority of the withdrawal is FIFO. This argument is followed up with an

assumed large percentage of FIFO picking (same as Kiil et al. (2017)), while describing the char-

acteristics of the modelled system in section 4.1.

3.4.4 Customer responses to stock-outs

Based on the extensive discussion in subsection 3.3.1 and the findings of Emmelhainz et al.

(1991); McKinnon et al. (2007), it can be considered that customers who do not find their pre-

ferred milk type or package size, are expected to choose other alternatives, rather than postpon-

ing their purchase to a later time. Thus, customers whose demand for milk is not fulfilled on

their arrival at the store, can be considered as lost.
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3.4.5 Review frequency

As indicated by Engelseth (2012), deliveries of milk to retail stores is carried out by the milk

supplier while combining orders of different products and from multiple stores. Additionally,

different retail stores, depending on their size, demand, and location, may have different per-

mitted ordering days in a week (Kiil et al., 2017). Thus, even though the inventory levels might

be known continuously from digital POS data records which are generated when barcodes are

scanned for billing, it can be considered that the levels are only used when an order is to be

placed, thus characterising the situation as having periodic review.

3.4.6 Level of information utilised in decision

As highlighted in subsection 3.2.3, and in the discussions on policies in subsections 3.3.3 and

3.3.4, inventory decisions for perishables can be made using only the stock levels, or also us-

ing the age information of items in stock. Although age information may not necessarily be

available for most perishable grocery items (Damgaard et al., 2012), it has been established that

age-based policies usually perform better (Broekmeulen and Van Donselaar, 2009; Ferguson

and Ketzenberg, 2006; Tekin et al., 2001). However, the comparison within this research is not

of the age-based policy vs. stock-based policy nature. Thus, even though both, stock-based

and age-based policies are studied; the original form of stock-based policy is compared with

its proposed modified form; and original age-based policies are compared with their respective

modified forms, to investigate the effect of modifications proposed in the previous section (3.3).

3.4.7 Lead time

Delivery lead times are a realistic phenomenon in grocery retail and are included in various

models that are concerned with such a setting (Broekmeulen and Van Donselaar, 2009; Buis-

man et al., 2017; Kiil et al., 2017; Potter and Disney, 2010). Lead times are also important for

the concept of interest, i.e., lost-sales. Describing the ordering process for milk at retail stores,

Engelseth (2012) mentions that products are ordered in the morning and ordered items are de-

livered later on the same day.
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3.4.8 Performance objective

As Silver et al. (1998) highlight, performance objectives essentially govern how safety stocks are

calculated in a policy. As has been pointed out on several occasions in previous sections while

highlighting the challenges in implementing cost optimisation approaches, approaches that

aim at satisfying target service levels are predominant in practice, as can also be observed in

the data from retail stores, used by Kiil et al. (2017). Additionally, modified and original safety

stock calculations described in the previous section are also based on service levels. Thus, ex-

ploring similar modifications for policies where safety stock calculations are based on optimisa-

tion approaches, can be a subject of future research. However, within this study, a service level

approach is presumed.

3.5 Summary

This chapter has provided relevant theoretical background for the investigation domain, de-

scribed the propositions that this research aims to test, and finally identified characteristics of

the system to be modelled for testing the propositions. This section summarises the discussions

from the chapter.

Types of perishable items and different deterioration characteristics were discussed, clarifying

the characteristics of product relevant to this research, i.e., milk. Using insights from literature

on perishable inventories, it is categorised as a product with a known usable life that requires

specific storage conditions throughout the usable life, and undergoes rapid deterioration if ex-

posed to ambient conditions for prolonged periods.

Inventory management concepts have been discussed to highlight the importance of heuristic

approaches for time-varying probabilistic demand, while also discussing and clarifying the level

of uncertainty in probabilistic demand. This was followed by a discussion on inventory man-

agement for perishable items, highlighting the added utility of heuristic approaches for these

items.

Different customer responses to stock-outs and their implications for inventory models were

discussed, to highlight the difference between backorders and lost-sales. Additionally, the pre-

dominance of lost-sales for milk, was highlighted using results from empirical research. This
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was followed by a discussion on difference between inventory position calculations for lost-

sales and backorder systems, highlighting the premise of the propositions presented and tested

in this research.

Policy modifications required to account for lost-sales, in policies which are based on the un-

derlying assumption of backorders, were demonstrated, while focussing on the case where there

are not outstanding orders when an order is placed, i.e., R ≥ L.

Finally, in order to test the effects of the propositions presented, characteristics of a milk inven-

tory have been identified, which serve as the basis for simulation modelling in the subsequent

chapter.





Chapter 4

Modelling and simulation

The previous chapter proposed modifications to order procedures of three variable order quan-

tity policies, to account for lost-sales in the ordering procedures. However, since these modifi-

cations are essentially expected to reduce the ordered quantities, it is important that their influ-

ence on inventory performance measures such as fill rates, waste, average inventory levels and

number of deliveries; is measured, to assess the value of the proposed changes. This activity is

the subject of this chapter, including the development and description of the simulation model

which is used to conduct this activity. The policy performance measures listed here are same as

those used by, and highlighted as frequently used and recommended, by Kiil et al. (2017), citing

Broekmeulen and Van Donselaar (2009); Hübner et al. (2013); Kaipia et al. (2013); Van Der Vorst

(2006). Broekmeulen and Van Donselaar (2009) also use costs to demonstrate improvements,

however, to avoid any biases in estimating costs, other measures that essentially lead to incur-

ring costs, are used instead.

While a model refers to the abstraction of a real system (Will M. Bertrand and Fransoo, 2002),

simulation refers to imitating the operation of such a system (Jerry, 2005). Simulation models

provide a risk free environment for conducting tests where the performance of a system is to

be tested under different operating conditions (Croom, 2010). For the context of this research,

the system of interest is an inventory, while the different operating conditions refer to different

inventory policies, and more specifically, the ordering procedures of these policies. The char-

acteristics of the situation are governed by parameters such as the product shelf life, demand,

batch size, customer picking preferences, etc. However, to assess the effect of policy modifica-
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tions, other parameters are kept constant in a comparison. The importance of simulation to

study comparative performance of policies is also highlighted by Pidd (2006).

This chapter describes the process of setting up a model that represents an inventory system;

and the mathematical operations used to simulate processes such as demand, ordering, etc. The

model development is followed by experimentation using this model. The characteristics of the

system to be modelled are described in section 4.1, where the characteristics are listed and then

organised in a conceptual model which represents the intended behaviour of the simulation

model. This is followed by description of the characteristics of the simulation model in section

4.2, and discussion on the choice of modelling approach. Section 4.3 explains notations and

assumptions for the model; and section 4.4 describes the model, explaining different model ele-

ments, associated modelling approaches, and the verification and validation processes. Section

4.5 describes the simulation experiments and presents results, while section 4.6 further refines

the results to facilitate the interpretation of the results.

4.1 System characteristics and conceptual model

This section describes the characteristics of an inventory, which serve as basis for modelling and

simulations. The characteristics are hypothesised based on the characteristics of a grocery retail

milk inventory, as discussed in section 3.4. This is done to provide context for the assumptions

made while modelling in the subsequent sections.

The system under consideration is an inventory of a milk SKU at a Norwegian retail grocery

store, and the operational decision variable of interest is the ordering policy, which is used to

compute an order quantity at every ordering occasion. The characteristics of the inventory are

as follows:

• Demand is probabilistic, meaning that there is uncertainty regarding its actual realisa-

tion; and discrete, as number of milk boxes can only take integral values. The ordering

decisions are based on a day level forecast, i.e, it provides an expected demand value for

each day.

• Inventory review is periodic, and replenishment orders can only be placed at the specified

periodic intervals and these are the instances when the decision on ordering quantities
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has to be made. These ordering instances occur on the start of an ordering day, and the

demand for that day occurs after the order has been placed.

• Replenishment lead time is assumed as deterministic and known to be 1 day. This implies

that orders that are placed at the start of an ordering day, become available to fulfil de-

mand at the start of the next day. However, the goods may arrive at the end of the same

day, as Engelseth (2012) describes.

• The inventory is shared between two locations within the store boundary, namely, a dis-

play shelf, and a backroom storage. The backroom storage is utilised to ensure that older

boxes are exhausted first, thus, ensuring a FIFO sequence. The appropriateness of FIFO

picking for dairy products is also pointed out by Ferguson and Ketzenberg (2006). How-

ever, to account for practical errors and discrepancies, such as situations when store clerk

has a specific schedule of activities, and old boxes on the display shelf have not been ex-

hausted when he/she loads the display shelf; 90% of the demand withdrawal is considered

as FIFO, while the remaining 10% of the customers use the opportunity to reach behind

the older boxes and take the newer boxes instead. Basis for this assumption was the ap-

proach taken by Kiil et al. (2017), who also use these percentages to model customer pick-

ing in grocery retail.

• The inventory is perishable, meaning that it has a maximum usable shelf life. A best case

scenario is considered where all milk boxes that reach the store have the maximum pos-

sible shelf life remaining. This shelf life is considered as 9 days which is one day less than

the remaining shelf life (to account for lead time) when the boxes are packed, i.e., 10 days

(Engelseth, 2012). The milk boxes are removed from the shelf on the night before the ‘best

before’ date, meaning that a box will be available to fulfil demand before its printed ‘best

before’ date, but not on that date. The boxes removed from inventory at the end of their

shelf life are counted as waste. In real situations, it is possible that products close to the

end of their shelf life are sold for discounted prices to avoid expiration before selling, and

extract some salvage value from these items, as also described by Herstad (2016). How-

ever, discounting is not considered in the model, to limit the scope of investigation.

• Orders can only be placed in multiples of 10, due to the batch size set by the supplier

(Engelseth, 2012).
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• The demand that occurs during a stock-out is considered lost due to the characteristics of

the product under consideration, i.e., considering milk a product which is used generally

rather than on special occasions, and has a high urgency of requirement (as discussed in

subsection 3.3.1).

The ordering policy used is of the form (R, s,nQ), i.e., ordering can be done after every R (con-

stant) days, and if the inventory position is lower than s (which is calculated at every review

instance), the quantity nQ is ordered, where Q is constant and n is calculated if the order is to

be placed. Thus, the sequence of events in a day would be as follows:

1. If an ordering day, order quantity is calculated and ordered.

2. Demand occurs and inventory reduces.

3. Items with ‘best before’ date same as the next day, are removed and counted as waste.

4. Arrived products are added to the inventory for fulfilling next day’s demand.

Considering the inventory described above, as a system that is to be modelled for testing the

performance of this inventory while operating under different policies, the requirement can be

conceptually modelled as shown in Figure 4.1. The conceptual model is developed using the

conceptual modelling framework presented by Robinson (2008). As can be observed, the frame-

work provides a systematic visualisation tool for the causal input-output relation between ex-

perimental factors and responses. Additionally, it provides a simplified yet structured overview

of the model content and modelling objectives. The importance of the model content, as briefly

presented in the conceptual model, becomes clearer as the conceptual model is translated to

the simulation model in the subsequent sections.

4.2 Characteristics of the simulation model

According to Pidd (2006), deciding on principal elements of a simulation model is a prerequisite

for producing the model, as it allows the modeller or analyst to decide on the level of accuracy

and detail required from the simulation; and should be based on:

• the nature of the system being simulated, as the model needs to be a good representation

of the system, and
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• nature of study, i.e., the objectives, and expected results.

Based on these considerations, the decisions regarding the following aspects of the model should

be made (Pidd, 2006):

• time handling: time slicing or next event,

• stochastic or deterministic occurrences and duration, and

• discrete or continuous change.

This section discusses the characteristics of the simulation model used to conduct the simula-

tion experiments, and presents arguments to justify the use of the chosen modelling approach.

The model is a time-slicing stochastic discrete simulation model, based on the terminology of

simulation modelling approaches explained by Pidd (2006). Each of these characteristics of the

model are explained below.

‘Time-slicing’ refers to the time handling approach used in the model. Time handling refers to

the way time-flow is handled in a simulation model (Pidd, 2006). Time-slicing implies that time

increments within the model are uniform, unlike the next-event technique, where time incre-

ments may occur in varying magnitudes (Pidd, 2006). As Pidd (2006) explains, the next-event

approach skips the time-slices when the system state does not change, and jumps to the next

event, where the ‘next event’ refers to the time instance when a system state change occurs.

However, for the system of interest, the time slices used are one day, and all events occurring in

a day, always occur in the same sequence. Thus, there is no randomness regarding the timing of

events. The advantage of the next-event technique could be utilised if shorter time slices, such

as hours were used (Kiil et al., 2017). This would, for example, require several reductions in the

inventory to fulfil demand. However, since none of the events in a day coincide with each other,

it is sufficient to use one mathematical operation for every event transaction, i.e., reduce the

inventory with the day’s demand, increase inventory with ordered quantity after lead time has

elapsed, etc.

‘Stochastic’ implies that the model includes stochastic elements, and probability distributions

are used to model these elements (Pidd, 2006). As described above, the model does not have any

stochastic ‘duration’, meaning that timings of events are deterministic. However, the magnitude

of occurrence of one of the events, i.e., demand, is stochastic. As is explained later, demands
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are generated from a set of probability distributions, using random sampling. Due to this, any

two simulation runs can be expected to provide different results. However, using several runs

can provide a considerable estimate of the performance, and thus, such models should be run

multiple times before any conclusions are drawn from the results they produce (Pidd, 2006).

‘Discrete’ implies that functional variables within the model undergo discrete changes as op-

posed to continuous ones (Pidd, 2006). Since the model represents a milk inventory, all incre-

ments and reductions in the inventory are integral, thus, qualifying it as discrete.

The objective of the model is to study the effect of modifying ordering procedure in a policy, to

account for lost-sales. The effect of these modifications is studied using the performance indi-

cators of waste, fill rates, average inventory levels, and number of deliveries, as done by Kiil et al.

(2017). Broekmeulen and Van Donselaar (2009) use costs as the performance indicator. How-

ever, as discussed in Chapter 3, service level approaches to inventory control are used instead

of cost or profit optimisation approaches because of the difficulties in estimating costs. Thus,

to avoid any biases in estimating these costs, the phenomenon which lead to the costs being

incurred, are used as performance indicators.

The use of simulation for this purpose is justified by the stochastic nature of demand in the

model. Demands are generated by random sampling from probability distributions, and the pa-

rameters for these distributions are defined beforehand. Although once the demand has been

generated, the calculations are essentially deterministic. However, as Pidd (2006) points out,

simulation modelling is useful even for deterministic computations, if the extent of computa-

tions is large. Thus, if the performance of the ordering procedures is to be studied over a pe-

riod of one year, the required calculations can be carried out manually, once random demand

samples are generated. However, simulation simplifies this process. The random sampling tech-

nique is not programmed explicitly, and in-built functionality of the programming environment

(MATLAB) is used to generate random samples from distributions. An agent based simulation

of such nature could also be implemented on an Excel spreadsheet, as demonstrated for sev-

eral examples by Pidd (2006). However, due to a larger in-built mathematical functionality and

intuitive syntax of MATLAB, it was chosen as the platform for modelling.
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4.3 Model notations and assumptions

This section describes the notations used and assumptions made, in modelling the inventory

system. Some of the variables are known model parameters, but variable notations are used to

denote them, in order to explain the functional equations in the following section.

• t denotes the day number, starting from 1 to the maximum simulation length.

• The maximum shelf life of the product is represented by m, and is the remaining shelf life

of an item when it becomes available to fulfil demand.

• The inventory position or level at the start of day t , is denoted by I Pt . The ‘start of the

day’ implies the time of day when orders have not been placed yet and no demand has

occurred yet. Since the tested combinations of parameters is such that R ≥ L, the in-

ventory position would only represent the on-hand stock at this point of time, since any

orders placed on previous day would have already arrived and if an order is placed on the

present day, it would be placed after this instant.

• The on-hand stock comprises of items with different ages. Items with remaining shelf

life of r days on day t form a batch, which is represented by Btr , meaning that Btr is the

number of items on-hand which have remaining shelf life of r days on day t . Batches with

different remaining shelf lives put together in a vector B t , represent the state of inventory,

i.e., B t = (Btm ,Btm−1,Btm−2, ...,Bt1), where

I Pt =
m∑

r=1
Btr (4.1)

Thus, while inventory position is a scalar quantity, state of inventory at any day is a vector

with m elements. The boldface notation for vectors follows the convention, as done by

Nahmias (2011).

• The forecasted or expected demand in period t is denoted by E [D t ].

• The actual demand in period t is denoted by D t .

• The satisfied or fulfilled demand in period t is represented by F D t , and is calculated as:

F D t = mi n(D t , I Pt ) (4.2)
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where mi n(x, y) =


x if x ≤ y

y if y < x

• The unmet or lost demand is denoted by LD t and is calculated as:

LD t = max(0,D t − I Pt ) (4.3)

where max(x, y) =


x if x ≥ y

y if y > x

Such a measurement is possible in the model since the actual demand D t is known, how-

ever, in real situations, if D t > I Pt , the excess demand (D t −I Pt ) is censored, meaning that

it is not known (Sachs, 2015b). Also, note that I Pt denotes the inventory position at the

start of day t , thus, even if there are outstanding orders when demand occurs, I Pt would

only represent the on-hand stock available to fulfil demand.

• The delivery lead time is considered deterministic and constant, and is denoted by L,

while R denotes the review interval.

• σi denotes the standard deviation of forecast error for day i , while k represents the safety

factor which is calculated as the inverse cumulative distribution function (CDF) (F−1
x (X ))

of the target service level on a standard normal distribution (µ = 0,σ = 1), i.e., if target

service level is 98%, k = F−1
x (0.98) = 2.05.

• As described in subsections 3.3.3 and 3.3.4, the stock-based policy and the EW A policy

were compared under the assumption of a constant safety stock by Broekmeulen and

Van Donselaar (2009). Since the constant safety stock is calculated by optimising costs,

this approach is not pursued here. Rather, similar to the EW ASS policies, the other two

policies are also assumed to have dynamic safety stocks. The safety stock in the original

forms of the policies is calculated as σR+Lk and the safety stock in the modified forms

of the policies is calculated as σR−L1+L2 , as explained in subsection 3.3.4 for the EW ASS

policy.
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4.4 Model description

This section describes the development of the simulation model. First, the process of modelling

demand and forecasts is explained in subsection 4.4.1, which is followed by the explanation of

calculation of forecast errors in the model, in subsection 4.4.2. Subsection 4.4.3 describes the

implementation of the EW A heuristic for waste estimation. The functional equations which

are used in the model to simulate various processes/events are described in subsection 4.4.4.

Subsection 4.4.5 describes verification and validation activities for the model.

4.4.1 Demand and forecast

The Poisson distribution is usually an appropriate representation of the distribution of time du-

ration between consecutive customer arrivals at a retail store (Haight, 1967). However, it is also

often utilised to represent the distribution of discrete demand (Alizadeh et al., 2014; Buisman

et al., 2017; Duan and Liao, 2013; Mahmoodi et al., 2016; Tekin et al., 2001). Thus, following this

approach, demand is modelled as a Poisson process.

To specify the λ parameter for the Poisson process, which represents the expected value of the

corresponding Poisson distribution, demand data from a Norwegian retailer, used by Kiil et al.

(2017), is utilised. The data (Table 4.1) represents 21 different store variations, which have dif-

ferent mean weekly sales, target service levels, permitted ordering days, and number of stores.

The permitted ordering days listed by Kiil et al. (2017), have been used to assign approximate

values of R to the different store variations.

For a store variety, the mean weekly sales is assumed to represent the mean weekly demand, and

used to calculate the mean demand for seven weekdays, assuming the daily demand fractions

as [0.12,0.13,0.13,0.16,0.18,0.18,0.10] (taken from Kahn and Schmittlein (1989)). For example,

if weekly mean demand is 100, the mean demands for days Monday to Sunday are given as [12

13 13 16 18 18 10]. Thus, an underlying assumption is that the stores are open on all seven week-

days.

Although Kiil et al. (2017) consider perishable products with shelf lives ranging from 4 to 20 days,

it is not explicitly mentioned that the data represents characteristics for dairy products. How-

ever, it is expected that the wide spectrum of characteristics (sales, service levels, and review
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Table 4.1: Characteristics of store variations modelled (Kiil et al., 2017)

S.no.
Mean weekly Planned Review Number
sales(units) service level interval of stores

1 5 96%

3

12

2 8 96% 23

3 13 96% 25

4 16 97% 11

5 18 96% 17

6 25 97% 11

7 26 96% 11

8 30 97.5%

2

3

9 34 97% 22

10 37 96% 10

11 46 97.5% 9

12 49 97% 17

13 62 97% 8

14 62 97.5% 12

15 74 98%

1

4

16 86 97.5% 14

17 108 98% 6

18 128 97.5% 9

19 172 98% 2

20 222 97.5% 3

21 696 97.5% 3
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interval) provides considerable variations of testing environments for comparing the policies.

The daily mean demand values are used as the expected value (λ parameter) for creating seven

Poisson distributions, one for each weekday. Random numbers generated cyclically from these

distributions are used as forecasts and actual demand for the model. Thus, forecasts and actual

demands for days 1, 8, 15, etc. will be generated from the distribution which represents demand

for Mondays. Similarly, forecasts and actual demands for days 2, 9, 16, etc. will be generated

from the distribution for Tuesdays, and so on.

It should be pointed out that using random sampling to generate forecasts is adopted as a scope

limiting measure in the modelling process. Ideally, a forecasting model should be included in

the simulation, as done by Kiil et al. (2017). The effect of censored demand on forecasting accu-

racy is of high importance, and only the demand that is fulfilled is used for forecasting (Sachs,

2015a). Using the same forecasts for two simulations with different policies, would imply that

irrespective of the demand that the policy fulfils, the forecasts are not affected by the censored

demand, thus, representing reality inaccurately. To account for this, forecast error calculations

are used in the model, which are described in the next subsection. Due to the forecasts being

generated by random sampling, the model essentially represents a situation where forecasts for

a year have been generated at the start of the year, and are not adjusted. Additionally, seasonal

variations that occur during a year, also get neglected in this model, unlike Kiil et al. (2017)’s

model, where actual POS data is utilised to simulate demand, and can be expected to include

seasonal variations. Thus, testing the proposed policy modifications on such realistic models,

should be considered in the future.

Pidd (2006) points out that "if a simulation is being used to compare various ways of operating

a system, it is clearly important to ensure that each policy is examined under the same con-

ditions". Pidd (2006) further points out that these test conditions are partially determined by

the random samples used to model the stochastic processes in the model, and to ensure fair

comparisons, it may be important that the same random numbers are used for every alternative

tested.

As explained by Bell et al., random number generation on computer applications uses a seed

which is a number that, by default, is based on the device time, and changes continuously. Thus,

it is also possible to control the random number generation by specifying a seed, which would
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mean that the same number will be generated every time the program is run, until the seed is

changed. This highlights the characteristic of such numbers being pseudo-random rather than

random as also pointed out by Pidd (2006). It was also observed that often, the random number

generator function returned the same numbers, if two numbers were generated from the same

distribution in consecutive lines of code, meaning that the two lines of code were executed be-

fore the seed could change.

Using a specified seeds to generate the same random samples repeatedly is one of the two ap-

proaches suggested by Pidd (2006) for being able to reuse the samples. The second approach

is to generate a stream of random numbers beforehand, and treat them as random. For the

current context, it can be interpreted as generating the simulated demand beforehand, but not

basing decisions on it, but rather on the forecasts only. This approach is implemented in the

model using two separate loops to generate forecasts and actual demand, to ensure that differ-

ent seeds are used for both. These loops are run from 1 to the maximum number of days for

which demand is to be simulated, and random numbers are generated from the seven distribu-

tions cyclically, with one loop generating the forecasts, and other generating the actual demand.

4.4.2 Forecasting error

The importance of forecast errors within the model lies in the safety stock calculation. Although

any forecasting technique is not explicitly modelled, it is expected that the generated forecasts

and demand provide a sufficiently valid test environment, since they are generated from the

same distributions. And regularly updating forecasts errors is expected to reflect the effect of

censored demand due to lost-sales, in the ordering decision, by influencing safety stock calcu-

lation.

The usual safety stock calculation based on target service level is done as kσR+L , where k is cal-

culated as the inverse CDF of the service level on a standard normal distribution (µ = 0,σ = 1),

and σR+L is the standard deviation of the forecast errors (Silver et al., 1998). However, as men-

tioned previously, in the modified policy forms, this calculation is done as σR−L1+L2 , where L1

represents lead time of present order and L2 represents the lead time of the next possible future

order, since demand during L1 would be lost by the time the order arrives.

Since the forecast and demands are generated from a weekly repeating pattern of distributions,
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the forecast errors are also updated at the same frequency. This implies that demand on a Mon-

day only influences the expected forecast error for the forthcoming Monday, but not other days,

and so on. On the first day of every week, the forecast error for all seven days is corrected for

the previous week’s demand. Although the lost demand and fulfilled demand are known in the

model, only the fulfilled demand value is used for correcting the forecast errors. This is done to

reflect the influence of censored demand, that occurs in real situations (Sachs, 2015b).

The measure of forecast error used in the model is the Mean Squared Error (MSE), which is cal-

culated as:

MSE = 1

n

n∑
t=1

(xt − x̂t−1,t )2 (4.4)

where xt represents the actual demand in period t , while x̂t−1,t represents the one period ahead

forecast for period t , i.e., forecast for period t made at t − 1. The use of MSE is considered

appropriate here because it provides a reasonable estimate of the standard deviation of forecast

errors for calculating safety stock (Silver et al., 1998), through the relation:

σ1 =
p

MSE (4.5)

where σ1 gives the standard deviation for forecast error, and the subscript one denotes that it is

the standard deviation for forecast error in demand for one time period.

Thus, at any simulation time, seven values of σ1 are maintained, one for each weekday, and are

updated on the first day of every week, correcting them for the demand that has occurred in

the previous week. Further, for calculating safety stock, it is required that the corresponding σ1

values are used to calculate σR+L or σR−L1+L2 . This is computed in the model on day t as:

σR+L =
√√√√R+L−1∑

i=0
σ2

1(t+i ,d) (4.6)

or

σR−L1+L2 =
√√√√R+L−1∑

i=L
σ2

1(t+i ,d) (4.7)
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where d ∈ 1 : 7 represents the day number in a week, and is calculated as:

d = r em(t ,7), i.e., remainder from the division t ÷7 (4.8)

As can be seen in eq. 4.6 and 4.7, the safety stock is calculated until the day before the next order

will be expected to arrive. The initial forecast error is set to zero which is not updated until the

second week, and thus, no safety stock would be ordered in the first week. However, since the

simulation allows for the first 94 days (12 weeks) as stabilisation duration, performance for the

initial 94 days is not recorded. Additionally, the initial inventory position is also randomised

with a maximum value of 50, which is then distributed among different age batches randomly.

So, the initial inventory status is also not expected to influence the measured performances.

4.4.3 The EW A heuristic

The order calculation procedure for the different policies were discussed in subsections 3.3.3

and 3.3.4, without describing the EW A heuristic which is used in the age-based (EW A and

EW ASS) policies to calculate
∑t+L+R−1

i=t+1 Ôi . This computation is described here, explaining how

the recursive formulation described by Broekmeulen and Van Donselaar (2009) is implemented

in the simulation model to calculate
∑t+L+R−1

i=t Ôi . The estimated waste of present day is also in-

cluded here, since the ordering is done at the start of the day, unlike Broekmeulen and Van Don-

selaar (2009) and Kiil et al. (2017)’s models, where ordering is done at the end of day. Addi-

tionally, Broekmeulen and Van Donselaar (2009) list the recursive expressions for the heuristic

assuming either FIFO or LIFO withdrawal. However, the assumption of 90% FIFO is also in-

cluded in the EW A computations demonstrated below.

On day t , the waste estimation is carried out assuming F I FO = 0.9, using the following steps:

1. Current age distribution is copied to another variable which represents the estimated

batch.

E Bt = Bt (4.9)

2. From i = 1 to i = R +L (for i ∈ i nt , i.e., integers), steps (a) to (g) are repeated:
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(a) Amounts withdrawn due to demand in FIFO and LIFO sequences are calculated:

F E =
⌈

F I FO ·E
[
D t+i−1

]⌉
(4.10)

LE = E
[
D t+i−1

]−F E (4.11)

(b) A temporary vector is created:

E Bi nt = E Bt+i−1 (4.12)

(c) From r = 1 to r = m (for r ∈ i nt ), repeat (eq. 4.13 to 4.14):

EBi nt (1,r ) = max
(
0,EBi nt (1,r ) −F E

)
(4.13)

F E = max
(
0,F E −EBt+i−1,r

)
(4.14)

(d) From r = m to r = 1 (for r ∈ i nt ), repeat (eq. 4.15 to 4.16):

EBi nt (1,r ) = max
(
0,EBi nt (1,r ) −LE

)
(4.15)

LE = max
(
0,LE −EBt+i−1,r

)
(4.16)

(e) From r = 1 to r = m −1 (for r ∈ i nt ), repeat (equation 4.17):

EBt+i ,r = EBi nt (1,r+1) (4.17)

(f) Estimated waste for day t + i −1 is calculated:

Ôt+i−1 = EBi nt (1,1) (4.18)

3. Finally, the estimated waste is calculated as the sum of all Ôt+i−1 terms, i.e.,
∑L+R

i=1 Ôt+i−1.

As discussed later, a similar logic is applied to simulate inventory reduction due to customer

demand. The following subsection describes functional equation which are used for simulating

different processes.
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4.4.4 Functional equations

To simulate various events or processes that happen in a day, the model requires functional vari-

ables to represent real-world entities or phenomenon, such as the inventory position, demand,

age distribution, etc.; and functional equations that represent the mathematical operations ap-

plied to these variables to simulate relevant real-world processes. This subsection describes the

latter.

When t > 7, a week of demand would have occurred, and forecast errors can be updated. How-

ever, forecast errors are to be updated only once a week. Thus, the forecast errors are updated

as:

if t > 7, AND r em(t ,7) = 1

from i = 1 to i = 7 (for i ∈ i nt ), repeat steps 1 to 3:

1. Update sum of squared errors (SSE):

SSEi = SSEi +
(
F D t+i−8 −E

[
D t+i−8

])2
(4.19)

2. Update mean squared errors:

MSEi = SSEi(
(t −1)/7

) (4.20)

3. Update standard deviation of forecast errors:

σi =
√

MSEi (4.21)

It should be clarified that the subscripts for σ ranging from 1 to 7 reflect the days in a week, and

do not refer to the number of time periods the error is for, as in eq. 4.5.

Further, if it is an ordering day, relevant ordering procedure is applied to calculate the order

quantity. Thus, for any experiment, the three sets of policies that are tested are (also summarised

in Table 4.2):

1. Original stock-based (R, s,nQ) policy with dynamic safety stock calculation; and modified

stock-based (R, s,nQ) policy with modified dynamic safety stock calculation.
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Table 4.2: Policy comparisons

Base policy Modified policy

SBbase SBmod

st = SSt +∑t+L+R−1
i=t E

[
Di

]
st = SStmod +∑t+L+R−1

i=t+L E
[
Di

]
if I Pt < st , then: if

(
I Pt −∑t+L−1

i=t E
[
Di

])+ < st , then:

nt =
⌈

st−I Pt
Q

⌉
nt =

⌈
st−

(
I Pt−∑t+L−1

i=t E
[

Di

])+
Q

⌉
EW Abase EW Amod

st = SSt +∑t+L+R−1
i=t E

[
Di

]
st = SStmod +∑t+L+R−1

i=t+L E
[
Di

]
if I Pt −∑t+L+R−1

i=t Ôi < st , if
(
I Pt −∑t+L−1

i=t E
[
Di

])+−∑t+L+R−1
i=t Ôi < st ,

then: then:

nt =
⌈

st−I Pt+∑t+L+R−1
i=t Ôi

Q

⌉
nt =

⌈
st−

(
I Pt−∑t+L−1

i=t E
[

Di

])++∑t+L+R−1
i=t Ôi

Q

⌉
EW ASS EW ASSmod

st = SSt +∑t+L+R−1
i=t E

[
Di

]
st = SStmod +∑t+L+R−1

i=t+L E
[
Di

]
if I Pt −∑t+L+R−1

i=t Ôi < st , if
(
I Pt −∑t+L−1

i=t E
[
Di

])+−∑t+L+R−1
i=t Ôi < st ,

then: then:

nt =
⌈∑t+L+R−1

i=t E
[

Di

]
−I Pt+max

(
SSt ,

∑t+L+R−1
i=t Ôi

)
Q

⌉
nt =

⌈
st−

(
I Pt−∑t+L−1

i=t E
[

Di

])++max
(

SStmod ,
∑t+L+R−1

i=t Ôi

)
Q

⌉
where, where,

SSt =
√∑t+R+L−1

i=t σ2
i ·k SStmod =

√∑t+R+L−1
i=t+L σ2

i ·k
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2. Original EW A (R, s,nQ) policy with dynamic safety stock calculation; and modified EW A

(R, s,nQ) policy with modified dynamic safety stock calculation.

3. Original EW ASS (R, s,nQ) policy with original safety stock calculation; and modified EW ASS

(R, s,nQ) policy with modified safety stock calculation.

Thus, the safety stock calculation procedure for all original policies is essentially same as that

of the original EW ASS policy. This is done to avoid any biases in calculating the constant safety

stock used by Broekmeulen and Van Donselaar (2009), since they state that the safety stock is

optimised to minimise simulated costs but the process is not described explicitly.

The items ordered on day t are added to Bt+L,m , which is currently zero, i.e.,

Bt+L,m = ntQ (4.22)

This is followed by the reduction in on-hand stock due to demand which occurs with 90% of

FIFO picking. After the demand has been fulfilled, items reaching the end of their shelf lives

are removed from the shelf, counting them as waste. These processes are simulated with the

following steps, where the remaining items which do not expire, are moved to the next day’s

inventory in the final step:

1. The demand that will be lost and demand that can be fulfilled are calculated using follow-

ing eq. (4.23 and 4.24):

LD t = max
(
0,D t − I Pt

)
(4.23)

F D t = D t −LD t (4.24)

2. Amounts to be withdrawn in FIFO and LIFO sequences are calculated using F I FO = 0.9

in the following eq. (4.25 and 4.26):

FW =
⌈

F I FO ·F D t

⌉
(4.25)

LW = F D t −FW (4.26)
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3. A temporary vector is created to mirror the current age distribution:

Bi nt = Bt (4.27)

4. From r = 1 to r = m (for r ∈ i nt ), repeat (eq. 4.28 to 4.29):

Bi nt (1,r ) = max
(
0,Bi nt (1,r ) −FW

)
(4.28)

FW = max
(
0,FW −Bt ,r

)
(4.29)

5. From r = m to r = 1 (for r ∈ i nt ), repeat (eq. 4.30 to 4.31):

Bi nt (1,r ) = max
(
0,Bi nt (1,r ) −LW

)
(4.30)

LW = max
(
0,LW −Bt ,r

)
(4.31)

6. From r = 1 to r = m −1 (for r ∈ i nt ), repeat (eq. 4.32):

Bt+1,r = Bi nt (1,r+1) (4.32)

Eq. 4.32 moves remaining inventory to the next day.

The items to be discarded are calculated as:

w astet = Bi nt (1,1) (4.33)

And finally, the inventory position for the next day is calculated as:

I Pt+1 =
m∑

i=1

(
Bt+1,i

)
(4.34)

All of the equations described in this subsection are used repeatedly, to simulate the processes

day after day. The number of days simulated is 460, i.e., t is varied from 1 to 460 (for t ∈ i nt ),

where the initial 94 days are not used to record inventory performance. Thus, calculating a year

starting from 95, we get (94+365), which gives 459, and is rounded off to 460.

The simulation model is run with all 21 sets of parameters from Table 4.1, i.e., 21 varieties of
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stores, with each of the six policies and finally the comparison is made between the original and

modified forms of corresponding policies. One simulation run for one store variety is consid-

ered representative of all stores of that variety. These simulation experiments are further elabo-

rated in section 4.5.

The policy comparisons made can be seen in Table 4.2. It can be noticed that the policies have

been adjusted for the simulation model, to reflect that ordering is done at the start of the day, un-

like Broekmeulen and Van Donselaar (2009) and Kiil et al. (2017)’s models. The policies are also

allotted different names in Table 4.2. This is done since the original forms of the stock-based and

EW A policies are used here with variable safety stocks, which are calculated as in the original

EW ASS policy. Thus, SBbase refers to the stock-based policy without the lost-sales modifica-

tions, and SBmod refers to the stock-based policy after the lost-sales modifications. Similarly for

the EW A policy. The ‘base’ subscript is not added to the EW ASS policy, since it is used in its

original form.

Before moving to the description of simulation experiments and results in the next section, the

following subsection (4.4.5) discusses the verification and validation processes for the model.

4.4.5 Verification and validation

Citing Law and Kelton (2007), Kleijnen (1995) defines verification as "determining that a simu-

lation computer program performs as intended, i.e., debugging the computer program", while

validation "is concerned with determining whether the conceptual simulation model (as op-

posed to the computer program) is an accurate representation of the system under study". Klei-

jnen (1995) points out that validation cannot be expected to lead to a perfect model, as the

perfect model is the real system itself, however, the model should be ‘good enough’ which de-

pends on the objective of modelling. Kleijnen (1995) further emphasises that some applications

only need relative or comparative simulation responses to different scenarios, thus, if the sim-

ulated and real responses are positively correlated, the simulation can be considered valid. The

study within this research is of a comparative nature, and this form of validity ‘for comparison’

is demonstrated by the model, where decrease in order quantities result in decreased fill rates,

which would also be expected in a real situation. Thus, any deviation from reality would affect

both scenarios compared. However, other validation activities were also conducted to assess
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the absolute validity of the model, which are described below.

Describing their model validation process, Kiil et al. (2017) point out that since the same bench-

mark policy is used in their and Minner and Transchel (2010)’s simulations, the waste percent-

ages from both simulations under the same policy are compared, to assess model validity. How-

ever, in the current context, since all the policies used in the model, except the EW ASS policy,

have been adjusted in terms of safety stocks, the EW ASS policy in its base form was used to val-

idate the model by comparing waste percentages. During the validation process, it was found

that the model consistently gives lower wastes for the same shelf lives; and the fill rates are

much less sensitive to the shelf lives, as compared to Kiil et al. (2017)’s simulation. This can be

expected to be a result of the pseudo-forecasts used in the model, which reduces the variability

between demand and forecasts, as they are generated from the same probability distributions;

as opposed to Kiil et al. (2017)’s simulation model where real POS data are used to simulate

demand, and a forecasting model is also deployed. Thus, conducting the policy comparisons

while including a forecasting model in the simulation, is a prospect for future improvement in

the validity of the simulation model. For conducting the validation activity described above, the

following steps were used for each item shelf life from m = 4 (minimum considered by Kiil et al.

(2017)) to m = 9 (shelf life for milk considered in the model):

1. Waste percentages and fill rates for the 21 store variations were calculated for one simu-

lation run, assuming that EW ASS policy is used for ordering and batch size of 10 is used,

where waste percentages and fill rates are respectively calculated as:

W %m,sv =
∑460

t=1 w astet∑460
t=1 nt

·100 (4.35)

F Rm,sv =
∑460

t=1 F D t∑460
t=1 D t

·100 (4.36)

where W %m,sv and F Rm,sv denote waste percentage and fill rate for shelf life m at a store

variety sv , and remaining notations are same as explained before. Kiil et al. (2017) also

use the same waste percentage measure, describing it as the "fraction of products wasted

compared to received".

2. Using the store specific waste percentages and fill rates, the weighted averages of these
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Table 4.3: Waste percentages and fill rates for model validation

Shelf life,m Waste percentage,W %m Fill rate, F Rm

4 23.75% (± 1.1) 89.63% (± 1.06)

5 19.20% (± 1.2) 92.60% (± 0.85)

6 13.06% (± 1.06) 93.42% (± 1.04)

7 9.56% (± 0.98) 94.25% (± 0.86)

8 7.48% (± 1.09) 95.37% (± 0.71)

9 5.5% (± 0.86) 95.44% (± 0.79)

waste percentages and fill rates were calculated for every simulation run as:

W %m =
∑21

sv=1 Ssv ·W %sv∑21
sv=1 Ssv

(4.37)

F Rm =
∑21

sv=1 Ssv ·F Rsv∑21
sv=1 Ssv

(4.38)

where Ssv denotes number of stores of a store variety sv (from Table 4.1).

3. After calculating W %m , and F Rm for 500 replications of the simulation, the mean of these

500 values was calculated as:

W %m =
∑500

i=1 W %m,i

500
(4.39)

F Rm =
∑500

i=1 F Rm,i

500
(4.40)

4. Finally, these mean waste percentages and fill rates (listed in Table 4.3) were compared

with those reported by Kiil et al. (2017) in the plot for fill rates against waste percentage

for different shelf lives, for the EW ASS policy.

The limits shown with the waste percentages and fill rates represent the 95% confidence interval,

which implies that 95% of the calculated values lie within this interval around the mean (Rees,

1987). As can be observed in the waste percentages and fill rates listed in Table 4.3:

• the wastes are considerably lower than those reported by Kiil et al. (2017), for example:

68% waste for m = 4, and 13% waste for m = 9, without even considering smaller batch

sizes, which can be expected to further reduce the wastes (Eriksson et al., 2014); and
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• the fill rates are considerably higher for smaller shelf lives, and the sensitivity of fill rates

to changes in shelf life is much lower than that observed in the results of Kiil et al. (2017),

for example: 59% for m = 4, and 94% for m = 9.

Thus, it can be concluded that the model under-estimates waste for all shelf lives, and over-

estimates fill rates for lower shelf lives. However, as mentioned previously, since the model is

intended to be used for a comparative study, and any of these discrepancies will influence both,

the base and modified policy forms, it can be expected to give an estimate of the effects of the

suggested policy modifications. It was also observed that the variations in fill rates and waste

(if any) for the same shelf life, were substantial from one store variation to another. Thus, the

experiments conducted and results reported in the next section show the variation in perfor-

mance measures over the entire spectrum of store variations.

Another comparison for assessing validity was made with real waste data for milk, from a gro-

cery retailer, over a period of five months, presented by Herstad (2016). This data presented

by Herstad (2016) is measured as a percentage ratio of the monetary values of waste and sales

turnover or revenue. Assuming that the monetary values denoted to these are equal, the ratio

translates for the current model as:

W R% =
∑460

t=1 w astet∑460
t=1 F D t

·100 (4.41)

where W R% is used to denote percentage waste ratio. The same procedure was followed as

the previous comparison, however, using the SBbase policy, to reflect the ordering situation de-

scribed by Herstad (2016), where age information is neither available nor used for ordering. As

compared to a value of 1.2%, as reported by Herstad (2016), this ratio was calculated in the sim-

ulation as 6.5%, which is closer to other lower volume milk varieties. Additionally, almost half

of the 1.2% reported by Herstad (2016) are actually products sold for a discount, rather than

reaching the end of their shelf life. Thus, for future simulations with higher validity, along with

forecasting models and real demand data, pricing models and their effect on demand could also

included in the simulation model to improve closeness to reality.

Verification of the model was done on various occasions, by verifying intermediate outputs and

statuses of functional variables, which were checked by stopping the simulation midway. At
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such occasions, the values of variables such as inventory level, age distribution, fulfilled de-

mands, etc., were checked through manual calculations. This verification technique is also ex-

plained by Kleijnen (1995). Additionally, throughout the process of developing the model, fre-

quent short runs of the developed modules were conducted, and relevant modifications were

made, if not found to perform as intended.

4.5 Simulation experiments

This section describes the experiments which are conducted on the simulation model which

was described in the previous section. The objective of experimentation, as mentioned earlier,

is to identify the changes in inventory performance measures when the ordering policy is mod-

ified to account for lost-sales.

The policies compared with each other were listed and named in Table 4.2. Firstly, the compar-

isons are made for the milk inventory premise that the model description is based on, i.e., shelf

life of 9 days, batch size of 10 and 90% of FIFO picking. Following this, to test the sensitivity

of the results of policy modification towards three parameters: item shelf life, batch size, % of

FIFO picking; additional comparisons are made by varying only one parameter at a time. Thus,

for a wider range of results, a factorial experimental design, similar to that of Broekmeulen and

Van Donselaar (2009)’s could be conducted in the future.

The comparative experiments can be listed as comparing:

1. SBbase and SBmod ;

2. EW Abase and EW Amod ; and

3. EW ASS and EW ASSmod ;

where each comparison is conducted under the parametric inputs:

I. m = 9, Q = 10, F I FO = 0.9;

II. m = 4, Q = 10, F I FO = 0.9;

III. m = 9, Q = 5, F I FO = 0.9; and

IV. m = 9, Q = 10, F I FO = 0.1.
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Considering all comparisons with every set of parameters, results in 12 experiments. Results

from the 12 experiments are presented in subsection 4.5.2. The result for every policy compari-

son comprises of graphical and numerical results, which are organised as follows:

• graphs are used to depict the change in performance measures as a result of policy change

for milk inventories, for stores with different mean weekly demands; and

• numerical results represent percentage changes in the performance measures as a result

of the policy change for all 232 stores, i.e., also considering the number of stores of each

type.

After presenting these results for all policy comparisons, plots for an additional measure are

presented in section 4.6. This measure is referred to as the ‘value of policy change’, and is calcu-

lated as the ratio of change in overstocking and change in understocking for every store variety.

This measure is plotted for all parameter settings, and these plots demonstrate the objective

implications of these results for every store variety, in terms of understocking and overstocking.

A similar approach of comparing different performance measures is used by Kiil et al. (2017),

however, plotting fill rates against waste percentage. The value of policy change is plotted here

instead to show the variation in impact of the proposed policy modification for different store

sizes. The next subsection (4.5.1) describes the calculation procedure for this policy change

value and other percentage changes reported.

4.5.1 Calculation procedure

This subsection clarifies the calculation procedure for percentage increase or decrease in per-

formance measures, which are reported in the next subsection. Additionally, the calculation

for the value of policy change for various store varieties is also explained, for which plots are

presented in the next section. The performance indicators measured in the simulation are:

1. fill rate (F R);

2. wasted units (w aste);

3. waste percentage, i.e., ratio of wasted and purchased amounts (W %);

4. average inventory level (Iµ); and

5. number of deliveries (Dn).
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The changes in these performance indicators are calculated as the percentage change in the

weighted sum, where the weights depend on the number of stores. Thus, for any performance

indicator x, percentage effect of policy modification is calculated as:

∆%x =
∑21

sv=1 Ssv · xsv,mod −∑21
sv=1 Ssv · xsv,base∑21

sv=1 Ssv ·xsv,base
·100 (4.42)

For one replication of the simulation, the values of xsv,mod and xsv,base are calculated, followed

by the calculation of ∆%x . This process is repeated for multiple replications. Law and Kelton

(2007) propose that if inexpensive, maximum possible replications of a simulation should be

run, if it includes any stochastic components. Thus, the numerical results reported are calcu-

lated as the mean of changes observed over 1000 replications (run-time ≈ 6000 seconds/experi-

ment), since demands are generated for every replication, which gives a 1000 different demand

scenarios in a year for every store. This can also be interpreted as running the simulation for

1000 years and using yearly performance indicators to evaluate the policies. All mean values are

reported with the 95% confidence intervals, which as explained earlier, implies that 95% of the

calculated values lie within this interval.

For every store in one simulation run, value of policy change is calculated as the ratio of reduc-

tion in W % and corresponding decrease in F R. Thus, mathematically expressing,

valuepoli c y chang e =
W %sv,mod −W %sv,base

F Rsv,mod −F Rsv,base
(4.43)

Thus, for any store where no change in W % is observed, the value of policy change amounts to

zero. For the value of policy change to be positive for a store, both the numerator and denom-

inator should be negative, i.e., both, W % and F R should decrease. Further, stores which have

value of policy change larger than one, benefit more from the change, as compared to stores

which have fractional values. Additionally, if W % increases while decreasing the fill rate, the

value is negative. The presented plots in section 4.6, are based on the average value of policy

change over a 1000 simulation replications.
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4.5.2 Results

This subsection presents results from the simulation experiments conducted for identifying the

effect of proposed policy modifications. The results are presented for every policy comparison

separately.

SBbase and SBmod

For the comparison between stock-based policies under parameters representing a milk inven-

tory, results are displayed in Figures 4.2 to 4.6. The average fill rate for all 232 stores decreases

by 1.52% while, while reducing the wasted amounts and waste percentage by 17.53% and 8.46%

respectively. However, as can be observed, the confidence intervals for these results have wide

ranges, and the waste percentage even increases for a very small fraction of scenarios. Addition-

ally, it can be observed in Figures 4.3 and 4.4, that any waste observed, and reduced as a result of

policy change, is concentrated at the lower demand stores; and the cumulative waste reduction

reported, amplifies due to the high number of stores with average weekly demand lower than

50. A significant reduction in average inventory levels is observed, which is not a surprising re-

sult, given the lowered order quantities. The number of deliveries increase marginally, however

the intervals reflect a wide range of occurrences, where the number of deliveries also decrease

for few cases. The only apparent benefit derived by stores with high weekly demands, are the

reduction in average inventory levels. However, coming at the cost of fill rates, these inventory

reductions are unlikely to be pursued by high demand stores.

The percentage changes in the performance measures when parametric settings are changed,

are shown in Table 4.4. The graphical results for these parameter settings can be found in Ap-

pendix A (Figures A.1 to A.15). While the changes in fill rates and average inventory levels are

similar for different parametric changes, the reduction in waste and waste percentage are con-

sistently higher when the shelf life is changed to 4 days; and also when the FIFO percentage is

reduced to 10%, where ‘consistently’ emphasises on their narrow confidence intervals. As was

observed during the model validation process, and can be seen in Kiil et al. (2017)’s results, the

waste percentages increase for the same policy as the product shelf life decreases. A similar

effect can be expected from reducing the FIFO percentage (Nahmias, 1982). Thus, combining
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Figure 4.2: Fill rate comparison for SBbase and SBmod under m = 9, Q = 10, F I FO = 0.9

these insights with the simulation results, it can be inferred that while the values of waste and

waste percentage are higher (than the first parameter setting) for lower shelf life and lower FIFO

percentage under the base policy, the percentage changes in these values due to policy change

are also more significant. This implies that the policy changes have higher value for lower shelf

life products and products where the picking order is not as controlled as expected for milk

inventories (Ferguson and Ketzenberg, 2006). The changes in number of deliveries, are again,

marginal, and widely variable.
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Figure 4.3: Waste comparison for SBbase and SBmod under m = 9, Q = 10, F I FO = 0.9

Figure 4.4: Waste% comparison for SBbase and SBmod under m = 9, Q = 10, F I FO = 0.9
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Figure 4.5: Average inventory level comparison for SBbase and SBmod under m = 9, Q = 10,
F I FO = 0.9

Table 4.4: Numerical results from comparison of SBbase and SBmod : mean values of percentage
changes in performance indicators from 1000 simulation runs, calculated using eq. 4.42 for
every run

Performance m = 9, Q = 10, m = 4, Q = 10, m = 9, Q = 5, m = 9, Q = 10,
measure F I FO = 0.9 F I FO = 0.9 F I FO = 0.9 F I FO = 0.1

F R -1.52% (± 0.77) -1.04% (± 1.07) -1.28% (± 0.43) -1.53% (± 0.79)

w aste -17.53% (± 10.15) -19.37% (± 3.73) -19.6% (± 9.51) -20.2% (± 4.83)

W % -8.46% (± 8.48) -8.66% (± 2.69) -12.06% (± 8.56) -10.38% (± 4.79)

Iµ -7.38% (± 1.04) -7.83% (± 0.92) -7.28% (± 0.75) -7.41% (± 0.95)

Dn 0.27% (± 1.54) 0.12% (± 1.31) -0.07% (± 1.1) 0.09% (± 1.36)
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Figure 4.6: Comparison of number of deliveries for SBbase and SBmod under m = 9, Q = 10,
F I FO = 0.9

EW Abase and EW Amod

For comparison between the EW Abase and EW Amod policies under parameters representing a

milk inventory, results are displayed in Figures 4.7 to 4.11. Benefiting from the EW A heuristic,

the fill rates with EW Abase policy can be seen to be higher than the SBbase policy. Additionally,

moving from the EW Abase policy to the EW Amod policy shows a lower decrease in the fill rates,

as compared to the stock-based policy comparison. As can be seen in Figure 4.7, the stores

with the lowest fill rates when using the EW Abase policy, are also the ones to suffer the largest

decrease in fill rates when switching to the EW Amod policy. Since these stores have weekly

demands between 70 and 100, the policy change is counterproductive for them, as these stores

have no wastes when the EW Abase policy is used. Thus, moving to the EW Amod policy has very

limited value for these stores, i.e., only from the drop in inventory levels. Again, the stores that

benefit most, are those with weekly demands lower than ≈40, as the reduction in fill rates for

these stores is marginal as compared to the waste reduction they achieve by implementing the

policy change.
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Table 4.5: Numerical results from comparison of EW Abase and EW Amod : mean values of per-
centage changes in performance indicators from 1000 simulation runs, calculated using eq. 4.42
for every run

Performance m = 9, Q = 10, m = 4, Q = 10, m = 9, Q = 5, m = 9, Q = 10,
measure F I FO = 0.9 F I FO = 0.9 F I FO = 0.9 F I FO = 0.1

F R -1.24% (± 0.38) -1.39% (± 0.42) -1.21% (± 0.29) -1.32% (± 0.41)

w aste -17.16% (± 11.69) -10.78% (± 2.67) -26.2% (± 14.52) -20.84% (± 6.01)

W % -7.24% (± 7.16) -5.81% (± 1.58) -18.68% (± 9.79) -13.21% (± 4.76)

Iµ -7.77% (± 1.54) -7.32% (± 1.1) -7.94% (± 1.32) -8.24% (± 1.36)

Dn -0.27% (± 1.78) -2.73% (± 1.28) 0.21% (± 1.12) -0.99% (± 1.34)

The graphical results from other parameter settings can be found in Appendix A (Figures A.16

to A.30), while the numerical results are shown in Table 4.5. Considering the results from the

experiment where the shelf life is lowered, the policy change shows lower reductions in absolute

and percentages waste. However, these reduction values are more important for this parameter

setting, as the wastes and waste percentages are much higher for the EW Abase policy (see Figure

A.17), as compared to a shelf life of 9. Additionally, the waste reductions are concentrated about

the mean, implying that the probability of achieving waste reduction as a result of policy change

is higher for lower shelf life products. The change in number of deliveries is also significant and

consistently negative for lower shelf lives. Additionally, this reduction occurs essentially at lower

demand stores (Figure A.20), implying that the policy change is highly relevant for ordering of

low shelf life products at low demand stores. The change observed in waste reduction values

as a result of changing FIFO% and batch size, is similar to that in the base policy comparison;

where the reductions in waste amount and waste percentages increase. It should be pointed

out here, that for the case of 10% FIFO, in addition to the change in customer picking, the waste

estimation is also modified. Thus, the larger waste reduction is a consequence of both, change

in customer picking as well as increased order sizes. The waste estimated by the EW A heuristic

would be higher for 10% FIFO than for 90% FIFO, and so, orders placed would be larger. This

implies that the policy change from EW Abase to EW Amod is much more useful where waste

estimation through EW A heuristic assumes low or no FIFO.
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Figure 4.7: Fill rate comparison for EW Abase and EW Amod under m = 9, Q = 10, F I FO = 0.9

Figure 4.8: Waste comparison for EW Abase and EW Amod under m = 9, Q = 10, F I FO = 0.9
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Figure 4.9: Waste% comparison for EW Abase and EW Amod under m = 9, Q = 10, F I FO = 0.9

Figure 4.10: Average inventory level comparison for EW Abase and EW Amod under m = 9, Q =
10, F I FO = 0.9
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Figure 4.11: Comparison of number of deliveries for EW Abase and EW Amod under m = 9, Q =
10, F I FO = 0.9

EW ASS and EW ASSmod

For comparison between the EW ASS and EW ASSmod policies under parameters representing a

milk inventory, results are displayed in Figures 4.12 to 4.16. As can be observed, the results are

similar to those observed in the previous comparisons. However, unlike the EW Abase policy,

where the stores with lowest demands are the ones with the highest fill rates, the fill rate profile

for different stores under EW ASS policy is similar to that of the stock-based policy. The cause

for this can be expected as the lower buffers that this policy orders, as compared to the EW A

policy. Again, substantial waste reduction is observed; however, the reduction is concentrated

at the lower demand stores, since the higher demand stores have no waste even with the EW ASS

policy. The reduction in waste amounts and waste percentages, similar to the previous two

comparisons, are widely scattered around the mean. Average inventory levels reduce by similar

percentage as the earlier comparisons.

The graphical results from other parameter settings can be found in Appendix A (Figures A.31

to A.45), while the numerical results are shown in Table 4.6. The reduction in waste and waste
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Figure 4.12: Fill rate comparison for EW ASS and EW ASSmod under m = 9, Q = 10, F I FO = 0.9

percentage values decreases for lower shelf life, while increasing for lower batch size and FIFO%

changes. The policy change shows substantial value for all parameter settings in terms of waste

and waste percentage reductions, while again, being more valuable for lower demand stores

than higher demand stores; and more valuable for low shelf lives and low FIFO%.
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Figure 4.13: Waste comparison for EW ASS and EW ASSmod under m = 9, Q = 10, F I FO = 0.9

Figure 4.14: Waste% comparison for EW ASS and EW ASSmod under m = 9, Q = 10, F I FO = 0.9
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Figure 4.15: Average inventory level comparison for EW ASS and EW ASSmod under m = 9, Q =
10, F I FO = 0.9

Table 4.6: Numerical results from comparison of EW ASS and EW ASSmod : mean values of per-
centage changes in performance indicators from 1000 simulation runs, calculated using eq. 4.42
for every run

Performance m = 9, Q = 10, m = 4, Q = 10, m = 9, Q = 5, m = 9, Q = 10,
measure F I FO = 0.9 F I FO = 0.9 F I FO = 0.9 F I FO = 0.1

F R -1.49% (± 0.73) -1.42% (± 0.85) -1.24% (± 0.45) -1.47% (± 0.75)

w aste -17.19% (± 9.95) -16.43% (± 3.46) -18.85% (± 9.78) -19.48% (± 4.96)

W % -9.07% (± 8.56) -8.45% (± 2.53) -13.84% (± 8.56) -11.95% (± 4.94)

Iµ -7.34% (± 1.05) -7.2% (± 0.9) -7.23% (± 0.77) -7.27% (± 0.93)

Dn 0.42% (± 1.46) -0.01% (± 1.07) 0.3% (± 1.09) 0.32% (± 1.22)
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Figure 4.16: Comparison of number of deliveries for EW ASS and EW ASSmod under m = 9, Q =
10, F I FO = 0.9

4.6 Value of policy change

Utilising the results presented in the previous section, this section presents plots which demon-

strate the objective implications of the results for different stores. The value of policy change is

plotted here against the store serial numbers (ranging 1 to 21) from Table 4.1, rather than de-

mand, as the increase in demand from one store to another is not uniform.

Figures 4.17 to 4.20 show the value of moving from a SBbase policy to SBmod policy. For the first

parameter setting (Figure 4.17), which represents a milk inventory, only two store varieties have

value larger than one, while the remaining stores with non-zero value have fractional values.

Larger number of stores benefit from policy change for lower shelf life (Figure 4.18), while two

stores display negative values. The negative values occur due to increase in waste percentages

at these stores as can be observed in Figure A.3. Results for lower batch size show improvements

over the first parameter setting (Figure 4.19), as values for the low demand stores are larger for

reduced batch size. Reduction in FIFO% shows largest improvements, as several stores benefit

from policy change with values larger than one (Figure 4.20).
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Figure 4.17: Value of changing from SBbase to SBmod under m = 9, Q = 10, F I FO = 0.9

While number of stores with non-zero value for policy change is similar for the EW A policy as

the stock-based policy for milk inventories, the values for these stores are larger in magnitude

(Figure 4.21). The stores that do benefit, have substantial value for the policy modification. Sim-

ilarly for other parameter settings (Figures 4.22 to 4.24), most of the stores that do benefit, have

large reductions in waste percentage as compared to fill rate drops.

The value plots for the EW ASS policy change (Figure 4.25 to 4.28), show large similarities to

the value plots for the stock-based policy, which can be considered a consequence of the lower

buffers that the policy orders. Thus, a useful insight from these plot comparisons is that the

proposed policy changes are highly valuable for low demand stores, and the value of the mod-

ifications is larger for the EW A policy as compared to the stock-based and EW ASS policies.

Further, the value of modification is larger for the EW ASS policy than the stock-based policy.

Thus, larger the buffer that a policy orders, larger the value of proposed modifications for the

policy.
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Figure 4.18: Value of changing from SBbase to SBmod under m = 4, Q = 10, F I FO = 0.9

Figure 4.19: Value of changing from SBbase to SBmod under m = 9, Q = 5, F I FO = 0.9
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Figure 4.20: Value of changing from SBbase to SBmod under m = 9, Q = 10, F I FO = 0.1

Figure 4.21: Value of changing from EW Abase to EW Amod under m = 9, Q = 10, F I FO = 0.9
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Figure 4.22: Value of changing from EW Abase to EW Amod under m = 4, Q = 10, F I FO = 0.9

Figure 4.23: Value of changing from EW Abase to EW Amod under m = 9, Q = 5, F I FO = 0.9
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Figure 4.24: Value of changing from EW Abase to EW Amod under m = 9, Q = 10, F I FO = 0.1

Figure 4.25: Value of changing from EW ASS to EW ASSmod under m = 9, Q = 10, F I FO = 0.9
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Figure 4.26: Value of changing from EW ASS to EW ASSmod under m = 4, Q = 10, F I FO = 0.9

Figure 4.27: Value of changing from EW ASS to EW ASSmod under m = 9, Q = 5, F I FO = 0.9
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Figure 4.28: Value of changing from EW ASS to EW ASSmod under m = 9, Q = 10, F I FO = 0.1

4.7 Summary

The characteristics of retail milk inventories, identified in the previous chapter, were utilised to

develop a simulation model, and the process of development has been described in this chap-

ter. The developed model has been utilised to conduct simulation experiments, to identify the

effects of the policy modifications proposed in the previous chapter. This section summarises

the chapter.

The characteristics of milk inventories were translated to the description of a system to be mod-

elled. The system description served as basis for a conceptual model, where the modelling ob-

jective, model content, and input-output causal relationships were organised to support devel-

opment of the simulation model. This was followed by description of the characteristics of the

simulation model, and explanation of the rationale for the chosen simulation modelling ap-

proach.

Model notations and assumptions were stated, to aide the model description process. Mod-

elling and simulation approaches for different model elements were described, including the
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mathematical operations used to implement the simulation of various activities and the EW A

heuristic. Finally, the model verification and validation processes were described, followed by

description of the simulation experiments and results.

The numerical and graphical results presented have provided basis for answering the research

question presented in section 1.2. Additionally, value of the proposed policy changes have been

plotted for different store varieties, where value is measured as the ratio of change in waste per-

centage and change in fill rates, as a result of the policy change. The following chapter uses these

results to answer the research question and discusses the identifiable practical implications of

these results.



Chapter 5

Discussion

As introduced in section 1.2, the objective of this research has been identifying and proposing

modifications for a stock-based and two age-based inventory policies, such that the underly-

ing backordering assumption in these policies, is eliminated; and identifying the effects of the

proposed modifications for perishable inventories with no backorders. The modifications were

proposed and explained in Chapter 3. The quantified effects of policy modifications on inven-

tory performance indicators were identified through simulation experiments in Chapter 4. The

experiments were conducted using data from a Norwegian retail chain (Kiil et al., 2017), which

provided weekly demands, target service levels, approximate review intervals and number of

stores, for the simulation model. The simulation model was based on a milk inventory in a retail

store, where characteristics of the inventory were modelled based on information from relevant

empirical literature (Engelseth, 2012; Ferguson and Ketzenberg, 2006; McKinnon et al., 2007).

The use of milk as the inventoried product of interest, was explained and justified by discussing

its practical significance, in section 1.3. To extend the generality of the conclusions that can be

drawn from the simulation results, shelf life, batch size, and FIFO% were varied, one at a time,

in different simulation experiments.

This chapter uses the quantified effects to answer the research question presented in section 1.2;

discussing implications of the simulation results, that can be generalised to other retail chains

and products. Additionally, limitations and shortcomings of this study are discussed.

105
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5.1 Research question

Research question: How are the performance indicators: waste, fill rate, inventory level and

number of deliveries; for perishable inventories with no backorders, affected when lost-sales are

taken into account while ordering?

As was hypothesised in section 1.2, waste and fill rates decrease with the proposed policy changes.

Among all the policy comparisons with different sets of test parameters, the average reduction

in quantity of waste ranges from 10.78% to 26.2%, while the average reduction in waste percent-

age ranges from 5.81% to 18.68%. The average decrease in fill rate ranges from 1.04% to 1.53%.

The average reduction in inventory levels ranges from 7.2% to 8.24%. The average change in

number of deliveries ranges from -2.73% to 0.42%. These ranges represent the impact of policy

change for 232 stores of a retail chain, however, the impact for every store variety is different.

Combining insights from the graphical results (Figures 4.2 to 4.16; A.1 to A.45; 4.17 to 4.28) with

characteristics of store varieties (Table 4.1), the implications for different store varieties are dis-

cussed below.

While majority of the policy comparisons under different parameter settings show substantial

waste reduction against marginal reduction in fill rates, it is important to take into account that

the waste eliminated comes from stores with lower demands. Additionally, the waste reduction

percentages amplify due to the large number of stores in the low demand range. The policy

changes might be valuable in terms of waste reduction, for a grocery retail chain that has a sim-

ilar distribution of stores and demand levels. However, differentiation must be made between

stores with ‘low demand and high review intervals’ and stores with ‘high demand and low review

intervals’, for assessing the value of such a policy change, similar to the plots presented in the

previous chapter (Figures 4.17 to 4.28). As can be seen in the demand data used for simulations

of different stores (Table 4.1), stores with weekly demands below 30, have a review interval of 3;

stores with weekly demand from 30 to approximately 60, have a review interval of 2; and stores

with weekly demands higher than 70 have a review interval of 1. Thus, for another retail chain

that has larger number of stores of the third variety, the cumulative waste reduction can be ex-

pected to be lower.

The high demand stores appear to be relatively immune to waste due to the mixed effects of
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high demand as well as low review intervals. As a result, the plots for value of policy modifica-

tion show negligible value for these stores. The high demand store varieties do benefit from the

policy modification, but only in terms of the reduction in average inventory levels, which is ex-

pected to be of little value against the reduction in fill rates, given the target service levels are as

high as 98%. Additionally, due to low or no risk of waste, these stores can be expected to attempt

to maximise the fulfilled demand, and any such policy modifications are expected to gain little

interest from managers of such stores. However, the threshold weekly demand beyond which

no wastes are observed, changes with the product shelf life, batch size, and FIFO% under con-

sideration.

Decreasing shelf life and FIFO% increases this threshold demand value, while decreasing the

batch sizes decreases the threshold. Lower the threshold, lower the number of store varieties

that experience any wastes. While these parameters have been changed one at a time in the

experiments, it is important to highlight that these changes can be expected to occur simulta-

neously in real situations. That is, if a product other than milk is considered, it may have a lower

shelf life, and also a smaller batch size, with reduced control over customer picking. Since the

reduction in these parameters individually, shows different effects on the threshold demand; the

combined effects are difficult to predict without product specific experiments, or experiments

where multiple parameters are varied simultaneously.

For a lower demand store that can successfully reduce waste by making such a policy change,

the trade-off of interest for the store manager can be expected to be between the financial

loss due to reduction in fill rates, and gains due to reduction in waste, which is also the ba-

sis of calculating ‘value of policy change’ in the previous chapter. If the former exceeds the

latter, the policy change is unlikely to be accepted by the managers of such stores. On the

other hand, accumulating the waste reduction from several such stores of the retail chain (same

as the numerical results reported), can be of substantial value for the environmental perfor-

mance of the retail chain. As Fernie and Sparks (2014) point out "as consumers are becoming

more environmentally-conscious, retailers’ green credentials are becoming a more important

competitive differentiator. Environmental initiatives can generate higher revenues and secure

greater customer loyalty." Thus, an organisation level strategic trade-off is between the reduced

customer satisfaction due to decreased fill rates, and increased customer loyalty due to an ini-
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tiative that reduces environmental impact, i.e., by reducing wastes.

As pointed out earlier, decreasing the shelf life and FIFO%, increases the threshold demand

value, i.e., larger number of store varieties experience waste. Additionally, the percentage reduc-

tion of waste and waste percentages when changing between stock-based policies, is higher for

these parameters. The useful conclusion that can be drawn from this is that the policy change

has high value for products which have low shelf lives and for which, managers have low con-

trol on customer picking, if the item ages are not utilised in the ordering decisions (Figures 4.18

and 4.20). Additionally, these larger waste reductions are achieved for a lower or same fill rate

reduction as the milk parameter setting (Table 4.4), which further increases the value of the

policy modification for lower shelf life items and items with low customer picking control. As

Damgaard et al. (2012) mention, item shelf life information is not available or used for ordering

decisions for various perishables in grocery retail. As a result, such a policy change can decrease

waste without making any investments in making the age information available for these per-

ishables.

The average inventory levels can be observed to decrease consistently for all comparisons and

parameter settings by approximately 7 to 8%. Thus, for the 232 stores, the excess ordering which

occurs when lost-sales are not accounted for in ordering decisions, is approximately 7.5 to 8.7%,

i.e., the ‘reduction’ as a percentage of the ‘reduced’ quantity ( 7·100
93 to 8·100

92 ). On the other hand,

the changes in number of deliveries vary marginally while increasing for some cases and de-

creasing for others. However, no useful conclusions can be drawn on these changes.

While the simulation results and this discussion have provided insights into the effects and im-

plications of the proposed policy modifications for perishable inventories, these insights only

provide a partial view of the effects and implications. This is due to various scope-limiting mea-

sures that have been taken during the course of research and due to other external limitations.

These limitations and possibilities for future research, are discussed in the subsequent section.

5.2 Limitations and future research agenda

The investigation in this research has been based on the hypothesis that the use of an order-

ing policy which is based on an underlying backordering assumption, in a perishable inventory
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with lost-sales, can be a cause of over-ordering; and that eliminating this assumption can reduce

waste of perishables. The investigation which was carried out through simulation experiments,

confirms this hypothesis under the model assumptions, however, the aim of the investigation

was to identify the simultaneous effects on various inventory performance measures. The ef-

fects have been identified for three policies, under four product related parameter settings, and

the value of eliminating the excess orders has been plotted for stores (of a retail chain) with vary-

ing characteristics. This section discusses the measures taken to limit the scope of investigation

within the time-frame, and exogenous challenges that were faced.

The first scoping measure taken to constrain the investigation is the choice of a product with

a peculiar supply chain structure. The product choice was made with the intent of increasing

the practical utility of the investigation (as described in section 1.3), and has also guided the

assumptions in the development of the simulation model. While the simulation results have

provided useful insights into the effects of the proposed policy modification, these effects must

also be examined in the future for divergent supply chains and wider range of product character-

istics. While one of the primary reasons for using the example of milk, was the large proportion

of customer responses reflecting lost-sales (McKinnon et al., 2007), other products with simi-

lar customer responses but different shelf lives, and batch sizes should be considered in future

studies. These effects should at least be studied for the various parametric combinations on

which Broekmeulen and Van Donselaar (2009) and Kiil et al. (2017) base their simulations, so

that the extent of over-ordering (if any) for all of these combinations can be identified. This can

also establish further improvements in the EW A and EW ASS policies for products with pre-

dominant lost-sales customer responses to stock-outs; such that marginal reduction in fill rates

can provide substantial waste reductions for these products.

The second scoping measure taken is to only consider cases with no outstanding orders when

an order is placed, i.e., R ≥ L. Thus, future simulation studies where wider range of parameters

are considered, can address this by including cases where ordering is done during outstanding

orders, i.e., R < L. The recursive formulation required for such cases, to calculate the expected

on-hand stock when an order is expected to arrive, was demonstrated for the stock-based policy

in subsection 3.3.3. As pointed out in subsection 3.3.4, a similar recursive formulation for the

EW A and EW ASS policies, would require including the estimated waste into the recursive for-
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mulation. Thus, these modifications can be demonstrated, implemented in simulation models,

and tested in future research.

As Bijvank and Vis (2011) point out, the literature on lost-sales inventory models is limited. As a

result, scientific literature that could be used to validate and support the propositions, was lim-

ited. And the validity of the propositions has been essentially based on the reasoning demon-

strated in Chapter 3. Additionally, Bijvank and Vis (2011) list Broekmeulen and Van Donselaar

(2009)’s work as one of the few publications considering lost-sales models for perishables. How-

ever, as has been the premise of this research, Broekmeulen and Van Donselaar (2009) only con-

sider lost-sales in their stated assumptions, while the ordering policies in the simulation model

reveal an underlying backordering assumption. Since the impact of this underlying assumption

is larger for perishables, than non-perishables, there is a definite need for further research on

lost-sales inventory systems for perishable items.

As highlighted in section 4.4, demand and forecasts have been generated from the same proba-

bility distributions, which are based on specified fractions of mean weekly demand in different

weekdays. In order to increase the generality and validity of the model as well as the results ob-

tained, detailed POS data and forecasting models can be used in future simulation studies, sim-

ilar to that of Kiil et al. (2017)’s simulation. This would additionally include the phenomenon

of seasonal trend in retail demand and its effects on the proposed policy changes, which have

been neglected in the simulation due to repeating weekly patterns.

The numerical results presented, essentially represent the distribution of store varieties for a

specific retail chain. While the graphical results provide estimates of impact for stores with dif-

ferent characteristics, these characteristics may vary with products shelf lives as well as review

intervals. For example, for another product with a shelf life of fifteen days, ordering might be

possible only once a week, irrespective of weekly demand; while for yet another product with

shelf life of 4 days, ordering might be possible everyday, irrespective of weekly demand. Thus,

such product specific parametric combinations for products which have been found to be prone

to lost-sales, can be tested in future simulation studies, and impact of the policy modifications,

identified. In order to aide future simulation studies, the simulation codes for the three policy

comparisons with the first set of parameters, have been appended (Appendix B). These codes

can be utilised in future simulations with modifications, as suggested above and as required.
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Conclusion

The objective of this research has been to identify the effect of eliminating replenishment for

demand that is lost during the lead time, for perishable inventories with no backorders. The

rationale behind choosing perishable inventories for this investigation was the hypothesis that

eliminating these orders can contribute to waste reduction in practice, if the simultaneous de-

crease in fill rates is relatively lower than the waste reductions achieved. Non-perishable inven-

tories can also benefit from such policy modifications, but essentially in terms of the reduction

in average inventory levels.

The importance of variable order policies for situations where demand is time-varying, was dis-

cussed to highlight the utility of such policies for grocery retail, where demand is time-varying

and probabilistic (Broekmeulen and Van Donselaar, 2009). The added advantage of heuristic

based variable order policies, was discussed to highlight their utility for inventory management

of perishables, since such approaches can utilise the age information in ordering decisions with-

out excessive computational complexity (Nahmias, 2011).

This was followed by discussing the importance of lost-sales inventory systems for grocery re-

tail (Bijvank and Vis, 2011; Corsten and Gruen, 2005; Gruen et al., 2002), and why they are more

important for some products than others (Emmelhainz et al., 1991; McKinnon et al., 2007), high-

lighting their importance for frequently used products such as milk. The differences that must

be taken into account, when using the ‘inventory position’ in ordering decisions for backorder-

ing and lost-sales inventory systems, were discussed (Bijvank and Vis, 2011).

Relating the discussions on advantages of variable order policies, and lost-sales systems, three

111



CHAPTER 6. CONCLUSION 112

such policies were discussed, to highlight the underlying backordering assumption in their or-

dering procedure. Modifications were proposed to eliminate this assumption, such that their

suitability for lost-sales situations can be increased.

The policies for which these modifications were proposed, were selected from scientific litera-

ture. The first policy was a stock-based policy that is the logic behind automated store ordering

systems in grocery retail for non-perishables (Kiil et al., 2017; Potter and Disney, 2010). The

second policy was a heuristic based extension of this stock-based policy, where a heuristic is

deployed to estimate the waste that is expected to occur before the next earliest order arrival in-

stance; the age-based EW A policy, proposed by Broekmeulen and Van Donselaar (2009), which

uses the EW A heuristic. The third policy was an extension of the EW A policy which was pro-

posed by Kiil et al. (2017), where they proposed changing the safety stock from constant to vary-

ing and calculated at every order instance (thus, the name EW ASS); and changing the buffer

stock from the sum of the safety stock and estimated waste, to the larger of the two.

After demonstrating the proposed modifications, characteristics of milk inventory in a grocery

retail store were discussed. These discussions were based on information or inferences drawn

from the information, that was found in publications on empirical research, which provided

information about milk supply chain structure, logistical characteristics of milk supply, activi-

ties in grocery retail, etc. These inferences and information provided insights which guided the

development of a simulation model, on which the effect of the proposed policy modifications

could be studied. The product choice of milk was based on the rationale that milk stock-outs

are highly likely to result in lost-sales (Emmelhainz et al., 1991; McKinnon et al., 2007). How-

ever, three product characteristics were varied in the experiments, one at a time, to expand the

simulation results and conclusions that can be drawn from them.

Broekmeulen and Van Donselaar (2009) compare the stock-based policy and EW A policy under

the assumption of a constant safety stock, and the calculation or quantity of this safety stock

is not explicitly specified by them. As a result, the safety stock calculations for these policies

was given the same treatment as the EW ASS policy. This adjustment could be a source of dis-

crepancies in the results derived from the simulation experiments, and the shortcoming can be

overcome in the future if the constant safety stock can be identified through cost optimisation.

However, using cost optimisation to determine the safety stock, while using the target service
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level to estimate lost-sales cost (as done by Broekmeulen and Van Donselaar (2009)), is a con-

tradictory amalgamation of two approaches. The approach of satisficing service levels is taken

due to the complexities in estimating costs (Minner and Transchel, 2010). Broekmeulen and

Van Donselaar (2009) utilise the result from a single period newsvendor model to estimate cost

of lost-sales for a multi-period inventory model. Since theoretical justifications or explanation

for their approach could not be identified, the safety stock calculation was conducted as in the

EW ASS policy. It is also suspected that their approach highly overestimates the cost of lost-sales,

and should be subjected to examination in future research.

After describing the modelling process and the simulation setup, experiments were conducted

to answer the research question. While the model development and base experiment for ev-

ery policy comparison were conducted with parameters representing a milk inventory, as men-

tioned earlier, three other parameter settings were also tested. Waste reduction was observed

with reduced fill rates, and it was observed that majority of the waste reduction came from stores

with low weekly demand and high review intervals, since the stores with high demand and low

review intervals had no waste under the unmodified policy. In order to systematically visualise

the impact of policy modifications for different stores, the ratio of change in overstocking and

change in understocking was calculated for all stores, and this parameter was named the ‘value

of policy change’. The change in overstocking was calculated as the change in waste percentage,

and change in understocking was calculated as the change in fill rates; where both changes rep-

resent change as a result of moving from unmodified policy to the modified policy. These value

measures for different stores were plotted while discussing the implications and interpretations

of the results for different stores.

These value plots showed that the value of policy change is higher for policies that order higher

buffers, i.e., the EW A and EW ASS policies, as compared to the stock-based policy. Addition-

ally, it was observed the lower shelf life shows non-zero value for such a policy modification for

larger number of stores; implying that for products with lower shelf life than milk, if customer

responses to stock-outs reflect predominance of lost-sales rather than backorders, such modi-

fications could be valuable. Similarly for products with lower control on customer picking. On

the other hand, as the batch size decreases, the number of stores that benefit from policy change

decreases while increasing the value for the benefiting stores.
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The entire study has been conducted using secondary data and information, i.e., empirical data

and information that were collected by other researchers for their studies. While this has pro-

vided basis for investigating the problem of interest, the results are expected to vary as model

parameters and assumptions are adjusted further to reflect real world data. Not having access

to POS data to simulate demand can be considered the biggest methodological shortcoming of

this research. As a result, aggregated average weekly demands (Kiil et al., 2017) were used, fur-

ther adding the assumption of a specific repeating weekly pattern (Kahn and Schmittlein, 1989).

The research has contributed to knowledge by highlighting an aspect of ordering policies that

is under-researched for all inventory systems (Bijvank and Vis, 2011), and was not found to

have received much attention for perishable inventories either. While external validity of the

results should be subjected to scrutiny in the future, an essential contribution has been high-

lighting that improvements in inventory performance, and specifically waste reduction, are fea-

sible without necessarily investing in collection of age information. However, this finding is also

subject to the assumption that literature reflects practice, i.e., the stock-based policy is used in

practice as found in literature, which may not be the case. This highlights the difference between

contribution to knowledge and contribution to practice. As emphasised by Karlsson (2010), both

of these contributions are addressed by good operations management research. Thus, while the

contribution to knowledge is sufficiently apparent for this research, the contribution to practice

should be subjected to validation in the future.

Additionally, as pointed out in the previous chapter, the effects of policy modifications have

been examined for cases when ordering is done under no outstanding orders. However, exam-

ining cases where ordering is done under other outstanding orders, can expand knowledge of

these policy modification effects for such cases, and identify if the severity is higher or lower

than the cases examined in this research.

Based on the lack of attention that lost-sales systems have received (Bijvank and Vis, 2011), and

the findings of this research; it can be concluded that taking lost-sales into account while or-

dering for perishables has a substantial impact. While this impact may vary with situation and

product related variables, the extent of variation is a subject for future studies. Thus, products

for which empirical studies have established low likelihoods of backorders, should be subject of

similar future studies, while conducting these studies in collaboration with practitioners to en-
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sure higher external validity and access to data. To identify such products, insights from studies

on stock-outs and customer responses to stock-outs, should serve as a good starting point for

future studies.
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Appendix A

Graphical simulation results

Figure A.1: Fill rate comparison for SBbase and SBmod under m = 4, Q = 10, F I FO = 0.9

127
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Figure A.2: Waste comparison for SBbase and SBmod under m = 4, Q = 10, F I FO = 0.9

Figure A.3: Waste% comparison for SBbase and SBmod under m = 4, Q = 10, F I FO = 0.9
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Figure A.4: Average inventory level comparison for SBbase and SBmod under m = 4, Q = 10,
F I FO = 0.9
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Figure A.5: Comparison of number of deliveries for SBbase and SBmod under m = 4, Q = 10,
F I FO = 0.9

Figure A.6: Fill rate comparison for SBbase and SBmod under m = 9, Q = 5, F I FO = 0.9
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Figure A.7: Waste comparison for SBbase and SBmod under m = 9, Q = 5, F I FO = 0.9

Figure A.8: Waste% comparison for SBbase and SBmod under m = 9, Q = 5, F I FO = 0.9
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Figure A.9: Average inventory level comparison for SBbase and SBmod under m = 9, Q = 5,
F I FO = 0.9
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Figure A.10: Comparison of number of deliveries for SBbase and SBmod under m = 9, Q = 5,
F I FO = 0.9

Figure A.11: Fill rate comparison for SBbase and SBmod under m = 9, Q = 10, F I FO = 0.1
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Figure A.12: Waste comparison for SBbase and SBmod under m = 9, Q = 10, F I FO = 0.1

Figure A.13: Waste% comparison for SBbase and SBmod under m = 9, Q = 10, F I FO = 0.1
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Figure A.14: Average inventory level comparison for SBbase and SBmod under m = 9, Q = 10,
F I FO = 0.1
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Figure A.15: Comparison of number of deliveries for SBbase and SBmod under m = 9, Q = 10,
F I FO = 0.1

Figure A.16: Fill rate comparison for EW Abase and EW Amod under m = 4, Q = 10, F I FO = 0.9
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Figure A.17: Waste comparison for EW Abase and EW Amod under m = 4, Q = 10, F I FO = 0.9

Figure A.18: Waste% comparison for EW Abase and EW Amod under m = 4, Q = 10, F I FO = 0.9
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Figure A.19: Average inventory level comparison for EW Abase and EW Amod under m = 4, Q =
10, F I FO = 0.9
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Figure A.20: Comparison of number of deliveries for EW Abase and EW Amod under m = 4, Q =
10, F I FO = 0.9

Figure A.21: Fill rate comparison for EW Abase and EW Amod under m = 9, Q = 5, F I FO = 0.9
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Figure A.22: Waste comparison for EW Abase and EW Amod under m = 9, Q = 5, F I FO = 0.9

Figure A.23: Waste% comparison for EW Abase and EW Amod under m = 9, Q = 5, F I FO = 0.9
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Figure A.24: Average inventory level comparison for EW Abase and EW Amod under m = 9, Q = 5,
F I FO = 0.9
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Figure A.25: Comparison of number of deliveries for EW Abase and EW Amod under m = 9, Q = 5,
F I FO = 0.9

Figure A.26: Fill rate comparison for EW Abase and EW Amod under m = 9, Q = 10, F I FO = 0.1
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Figure A.27: Waste comparison for EW Abase and EW Amod under m = 9, Q = 10, F I FO = 0.1

Figure A.28: Waste% comparison for EW Abase and EW Amod under m = 9, Q = 10, F I FO = 0.1
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Figure A.29: Average inventory level comparison for EW Abase and EW Amod under m = 9, Q =
10, F I FO = 0.1
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Figure A.30: Comparison of number of deliveries for EW Abase and EW Amod under m = 9, Q =
10, F I FO = 0.1

Figure A.31: Fill rate comparison for EW ASS and EW ASSmod under m = 4, Q = 10, F I FO = 0.9
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Figure A.32: Waste comparison for EW ASS and EW ASSmod under m = 4, Q = 10, F I FO = 0.9

Figure A.33: Waste% comparison for EW ASS and EW ASSmod under m = 4, Q = 10, F I FO = 0.9
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Figure A.34: Average inventory level comparison for EW ASS and EW ASSmod under m = 4, Q =
10, F I FO = 0.9
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Figure A.35: Comparison of number of deliveries for EW ASS and EW ASSmod under m = 4, Q =
10, F I FO = 0.9

Figure A.36: Fill rate comparison for EW ASS and EW ASSmod under m = 9, Q = 5, F I FO = 0.9
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Figure A.37: Waste comparison for EW ASS and EW ASSmod under m = 9, Q = 5, F I FO = 0.9

Figure A.38: Waste% comparison for EW ASS and EW ASSmod under m = 9, Q = 5, F I FO = 0.9
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Figure A.39: Average inventory level comparison for EW ASS and EW ASSmod under m = 9, Q = 5,
F I FO = 0.9
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Figure A.40: Comparison of number of deliveries for EW ASS and EW ASSmod under m = 9, Q = 5,
F I FO = 0.9

Figure A.41: Fill rate comparison for EW ASS and EW ASSmod under m = 9, Q = 10, F I FO = 0.1
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Figure A.42: Waste comparison for EW ASS and EW ASSmod under m = 9, Q = 10, F I FO = 0.1

Figure A.43: Waste% comparison for EW ASS and EW ASSmod under m = 9, Q = 10, F I FO = 0.1
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Figure A.44: Average inventory level comparison for EW ASS and EW ASSmod under m = 9, Q =
10, F I FO = 0.1
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Figure A.45: Comparison of number of deliveries for EW ASS and EW ASSmod under m = 9, Q =
10, F I FO = 0.1



Appendix B

Simulation code for MATLAB

Simulation code for comparison of stock-based policies:

1 clear ;

2 t i c ;

3 %Maximum Shelf L i f e

4 m = 9 ;

5 %Maximum number of reps

6 maxrep=1000;

7 %Minimum batch s i z e

8 Q( 1 : maxrep) = 10;

9 %Number of stores

10 Sn = [12 23 25 11 17 11 11 3 22 10 9 17 8 12 4 14 6 9 2 3 3 ] ;

11 %Lead time ( days )

12 l = 1 ;

13 %Simulation duration ( days )

14 simL = 460;

15 %Weekly s a l e s pattern

16 wp = [ 0 . 1 2 0.13 0.13 0.16 0.18 0.18 0 . 1 0 ] ;

17 %Percentage FIFO picking

18 FIFO = 90;

19 %Review i n t e r v a l s

155
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20 R = [3 3 3 3 3 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 ] ;

21

22 pd=makedist ( ’ normal ’ ) ;

23 k1= i c d f (pd, 0 . 9 6 ) ;

24 k2= i c d f (pd, 0 . 9 7 ) ;

25 k3= i c d f (pd, 0 . 9 7 5 ) ;

26 k4= i c d f (pd, 0 . 9 8 ) ;

27 D = [5 8 13 16 18 25 26 30 34 37 46 49 62 62 74 86 108 128 172 222 6 9 6 ] ;

28 k = [ k1 k1 k1 k2 k1 k2 k1 k3 k2 k1 k3 k2 k2 k3 k4 k3 k4 k3 k4 k3 k3 ] ;

29 for i =1:21

30 SL ( i ) =cdf (pd , k ( i ) ) ;

31 end

32

33 for rep = 1 : maxrep

34 for sc =1:21

35 %Daily f r a c t i o n s of weekly mean demand ( used as mean for dai l y

demand d i s t r i b u t i o n s )

36 f_d = D( sc ) * [ 0 . 1 2 , 0 . 1 3 , 0 . 1 3 , 0 . 1 6 , 0 . 1 8 , 0 . 1 8 , 0 . 1 0 ] ;

37 %I n i t i a l i s i n g Inventory Level Array

38 IP ( 1 : simL+7) = 0 ;

39 %I n i t i a l i s i n g forecasted demand array

40 ForD ( 1 , 1 : simL+7) = 0 ;

41 %I n i t i a l i s i n g simulated ( actual ) demand array

42 ActD ( 1 , 1 : simL+7) = 0 ;

43 %Creating probabi l i ty d i s t r i b u t i o n s for every weekday , to generate

forecasted demand

44 for wd = 1:7

45 DD(wd) = makedist ( ’ poisson ’ , f_d (wd) ) ;

46 end
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47 %Generating forecasted demand for entire simulation period using

d i f f e r e n t demand d i s t r i b u t i o n for every week day

48 for week = 1 : ( simL/7)+7

49 for day = 1:7

50 ForD( day +(7*(week−1) ) ) = random(DD( day ) ) ;

51 end

52 end

53 %Generating actual demand for entire simulation period using

d i f f e r e n t demand d i s t r i b u t i o n for every week day

54 for week = 1 : ( simL/7)+7

55 for day = 1:7

56 ActD ( day +(7*(week−1) ) ) = random(DD( day ) ) ;

57 end

58 end

59 %Batch : number of units at day " t " with s h e l f l i f e " r " , and Waste

60 B( 1 : simL +7 ,1:m) = 0 ;

61 W( 1 , 1 : simL+7) = 0 ;

62 %Randomise i n i t i a l inventory position

63 IP ( 1 ) = randi (50) ;

64 I IP = IP ( 1 ) ;

65 remn = IP ( 1 ) ;

66 for r = m:−1:1

67 s i z e = randi (20) ;

68

69 i f size <remn

70 B( 1 , r ) = s i z e ;

71 else

72 B( 1 , r ) = remn ;

73 end

74 remn = max( 0 , (remn − s i z e ) ) ;



APPENDIX B. SIMULATION CODE FOR MATLAB 158

75 i f remn == 0

76 break ;

77 end

78 end

79 IP2 = IP ;

80 B2 = B ;

81 %Array for ordering days

82 R_Day ( 1 : simL ) = 0 ;

83 for x = 1 : simL

84 i f rem( x , R( sc ) ) == 0

85 R_Day( x ) = 1 ;

86 else

87 R_Day( x ) = 0 ;

88 end

89 end

90 %I n i t i a l i s i n g various variables

91 day = 1 ;

92 waste ( 1 : simL ) = 0 ;

93 IP ( 2 : simL ) = 0 ;

94 B( 2 : simL , : ) = 0 ;

95 n ( 1 : simL ) = 0 ;

96 SS ( 1 : simL ) = 0 ;

97 LD( 1 : simL ) = 0 ;

98 FD( 1 : simL ) = 0 ;

99 sd_FE ( sc , 1 : 7 ) = 0 ;

100 SSE ( sc , 1 : 7 ) = 0 ;

101 %Simulating scenario with stock−based ( base ) policy

102 for t = 1 : simL

103 %Updating forecast errors (done weekly )

104 i f t >7 && rem( t , 7 ) ==1
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105 i f t >14

106 for x =1:7

107 SSE ( sc , x ) =SSE ( sc , x ) +(FD( t +x−8)−ForD( t +x−8) ) ^2;

108 MSE( sc , x ) =SSE ( sc , x ) / ( ( t −1) /7) ;

109 sd_FE ( sc , x ) =sqrt (MSE( sc , x ) ) ;

110 end

111 else

112 for x =1:7

113 SSE ( sc , x ) =(FD( x )−ForD( x ) ) ^2;

114 MSE( sc , x ) =SSE ( sc , x ) ;

115 sd_FE ( sc , x ) =sqrt (MSE( sc , x ) ) ;

116 end

117 end

118

119 end

120 %Computing order quantity

121 i f R_Day( t ) == 1

122 %Includes forecast for present day

123 for x = 0 :R( sc )

124 n( t ) = n( t ) +ForD( t +x ) ;

125 end

126

127 %Includes s a f e t y stock for present day

128 s ig_lR = 0 ;

129 for x = 0 :R( sc )

130 i f rem( t , 7 ) +x > 7

131 s ig_lR = sqrt ( ( s ig_lR ) ^2 + ( sd_FE (rem( t , 7 ) +x−7)^2)

) ;

132 e l s e i f rem( t , 7 ) +x ~= 0

133 s ig_lR = sqrt ( ( s ig_lR ) ^2 + ( sd_FE (rem( t , 7 ) +x ) ^2) ) ;
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134 else

135 s ig_lR = sqrt ( ( s ig_lR ) ^2 + ( sd_FE ( 7 ) ^2) ) ;

136 end

137 end

138 SS ( t ) = round ( k ( sc ) * s ig_lR ) ;

139 i f IP ( t ) < n( t ) + SS ( t )

140 n( t ) =Q( rep ) *round ( (max( 0 ,n( t ) +SS ( t )−IP ( t ) ) ) /Q( rep ) ) ;

141 B( t +l ,m) = B( t +l ,m) + n( t ) ;

142 end

143 end

144 %Lost Demand, i f any

145 LD( t ) = max( 0 , ( ActD ( t ) − IP ( t ) ) ) ;

146 %F u l f i l l e d demand

147 FD( t ) = ActD ( t ) − LD( t ) ;

148 %Temporary variable

149 B_interim ( 1 , : ) = B( t , : ) ;

150 %Variable d e f i n i t i o n s for depleting boxes from d i f f e r e n t ’

Batches ’

151 unsatF = round ( FIFO*FD( t ) /100) ;

152 unsatL = FD( t ) − unsatF ;

153 %Calculating forwarded batches a f t e r depletion due to

f u l f i l l e d demand

154 %FIFO Depletion

155 for r = 1 :m

156 B_interim ( 1 , r ) = max( 0 , B_interim ( 1 , r ) − unsatF ) ;

157 unsatF = max( 0 , unsatF − B( t , r ) ) ;

158 end

159 r = m;

160 %LIFO Depletion

161 for r = m:−1:1
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162 B_interim ( 1 , r ) = max( 0 , B_interim ( 1 , r ) − unsatL ) ;

163 unsatL = max( 0 , unsatL − B( t , r ) ) ;

164 end

165 %Moving batches to next day ’ s inventory

166 for r = 1 :m−1

167 B( t +1 , r ) =B_interim ( 1 , r +1) ;

168 end

169 %Removing items to discard and computing waste

170 waste ( t ) = waste ( t ) + B_interim ( 1 , 1 ) ;

171 %Inventory l e v e l for next day a f t e r reduction due to demand

and waste

172 IP ( t +1) = sum(B( t +1 ,1:m) ) ;

173 end

174

175 %I n i t i a l i s i n g variables for modified policy run

176 waste2 ( 1 : simL ) = 0 ;

177 IP2 ( 2 : simL ) = 0 ;

178 B2 ( 2 : simL , : ) = 0 ;

179 n2 ( 1 : simL ) = 0 ;

180 LD2( 1 : simL ) = 0 ;

181 FD2( 1 : simL ) = 0 ;

182 sd_FE ( sc , 1 : 7 ) = 0 ;

183 SSE ( sc , 1 : 7 ) = 0 ;

184 %Simulating scenario with stock−based (mod) policy

185 for t = 1 : simL

186 i f t >7 && rem( t , 7 ) ==1

187 i f t >14

188 for x =1:7

189 SSE ( sc , x ) =SSE ( sc , x ) +(FD2( t +x−8)−ForD( t +x−8) )

^2;
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190 MSE( sc , x ) =SSE ( sc , x ) / ( ( t −1) /7) ;

191 sd_FE ( sc , x ) =sqrt (MSE( sc , x ) ) ;

192 end

193 else

194 for x =1:7

195 SSE ( sc , x ) =(FD2( x )−ForD( x ) ) ^2;

196 MSE( sc , x ) =SSE ( sc , x ) ;

197 sd_FE ( sc , x ) =sqrt (MSE( sc , x ) ) ;

198 end

199 end

200 end

201 i f R_Day( t ) == 1

202 %Does not include forecast for present day

203 for x = l : R( sc )

204 n2( t ) = n2 ( t ) +ForD( t +x ) ;

205 end

206 sig_lR2 = 0 ;

207 %Does not include s a f e t y stock for present day

208 for x = l : R( sc )

209 i f rem( t , 7 ) +x > 7

210 sig_lR2 = ( ( sig_lR2 ) ^2 + ( sd_FE (rem( t , 7 ) +x−7)^2) )

^ 0 . 5 ;

211 e l s e i f rem( t , 7 ) +x~=0

212 sig_lR2 = ( ( sig_lR2 ) ^2 + ( sd_FE (rem( t , 7 ) +x ) ^2) )

^ 0 . 5 ;

213 else

214 sig_lR2 = ( ( sig_lR2 ) ^2 + ( sd_FE ( 7 ) ^2) ) ^ 0 . 5 ;

215 end

216 end

217 SS2 ( t ) = round ( k ( sc ) * sig_lR2 ) ;
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218 i f max( 0 , IP2 ( t )−ForD( t ) ) < n2( t ) +SS2 ( t )

219 n2( t ) =Q( rep ) *round ( ( n2( t ) +SS2 ( t )−max( 0 , IP2 ( t )−ForD( t ) )

) /Q( rep ) ) ;

220 B2( t +l ,m) = B2( t +l ,m) + n2( t ) ;

221 end

222 end

223 %Lost Demand, i f any

224 LD2( t ) = max( 0 , ( ActD ( t ) − IP2 ( t ) ) ) ;

225 %F u l f i l l e d demand

226 FD2( t ) = ActD ( t ) − LD2( t ) ;

227 %Temporary variable

228 B_interim ( 1 , : ) = B2( t , : ) ;

229 %Variable d e f i n i t i o n s for depleting boxes from d i f f e r e n t ’

Batches ’

230 unsatF = round ( FIFO*FD2( t ) /100) ;

231 unsatL = FD2( t ) − unsatF ;

232 %Calculating forwarded batches a f t e r depletion due to

f u l f i l l e d demand

233 %FIFO Depletion

234 for r = 1 :m

235 B_interim ( 1 , r ) = max( 0 , B_interim ( 1 , r ) − unsatF ) ;

236 unsatF = max( 0 , unsatF − B2( t , r ) ) ;

237 end

238 r = m;

239 %LIFO Depletion

240 for r = m:−1:1

241 B_interim ( 1 , r ) = max( 0 , B_interim ( 1 , r ) − unsatL ) ;

242 unsatL = max( 0 , unsatL − B2( t , r ) ) ;

243 end

244 %Moving batches to next day ’ s inventory
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245 for r = 1 :m−1

246 B2( t +1 , r ) =B_interim ( 1 , r +1) ;

247 end

248 %Removing items to discard and computing waste

249 waste2 ( t ) = waste2 ( t ) + B_interim ( 1 , 1 ) ;

250 %Inventory l e v e l for next day a f t e r reduction due to demand

and waste

251 IP2 ( t +1) = sum(B2( t +1 ,1:m) ) ;

252 EB2 = B2 ;

253 end

254

255 %Calculations for performance indicators

256 DelRed ( sc , rep ) = (sum(n2 ( 9 5 : simL ) ~=0)−sum(n( 9 5 : simL ) ~=0) ) /sum(n

( 9 5 : simL ) ~=0) ;

257 AvgInvRed ( sc , rep ) = (mean( IP2 ( 9 5 : simL ) )−mean( IP ( 9 5 : simL ) ) ) /mean( IP

( 9 5 : simL ) ) ;

258 WasteRed12 ( sc , rep ) = (sum( waste2 ( 9 5 : simL ) )−sum( waste ( 9 5 : simL ) ) ) /

sum( waste ( 9 5 : simL ) ) ;

259 LostSalesRed12 ( sc , rep ) = (sum(LD2( 9 5 : simL ) )−sum(LD( 9 5 : simL ) ) ) /sum(

LD( 9 5 : simL ) ) ;

260 nDel_base ( sc , rep ) = sum(n( 9 5 : simL ) ~=0) ;

261 nDel_mod( sc , rep ) = sum(n2 ( 9 5 : simL ) ~=0) ;

262 FR_base ( sc , rep ) = sum(FD( 9 5 : simL ) ) /sum( ActD ( 9 5 : simL ) ) ;

263 FR_mod( sc , rep ) = sum(FD2( 9 5 : simL ) ) /sum( ActD ( 9 5 : simL ) ) ;

264 waste_base ( sc , rep ) = sum( waste ( 9 5 : simL ) ) ;

265 waste_mod( sc , rep ) = sum( waste2 ( 9 5 : simL ) ) ;

266 wastepc_base ( sc , rep ) = sum( waste ( 9 5 : simL ) ) /sum(n( 9 5 : simL ) ) ;

267 wastepc_mod ( sc , rep ) = sum( waste2 ( 9 5 : simL ) ) /sum(n2 ( 9 5 : simL ) ) ;

268 AvgInv_base ( sc , rep ) = mean( IP ( 9 5 : simL ) ) ;

269 AvgInv_mod ( sc , rep ) = mean( IP2 ( 9 5 : simL ) ) ;
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270 end

271 %Percentage reduction ( reduction in weighted sums)

272 FRD( rep ) = (sum(FR_mod ( : , rep ) ’ . * Sn)−sum( FR_base ( : , rep ) ’ . * Sn) ) /sum(

FR_base ( : , rep ) ’ . * Sn) ;

273 WD( rep ) = (sum(waste_mod ( : , rep ) ’ . * Sn)−sum( waste_base ( : , rep ) ’ . * Sn) ) /sum

( waste_base ( : , rep ) ’ . * Sn) ;

274 ID ( rep ) = (sum( AvgInv_mod ( : , rep ) ’ . * Sn)−sum( AvgInv_base ( : , rep ) ’ . * Sn) ) /

sum( AvgInv_base ( : , rep ) ’ . * Sn) ;

275 WPD( rep ) = (sum( wastepc_mod ( : , rep ) ’ . * Sn)−sum( wastepc_base ( : , rep ) ’ . * Sn)

) /sum( wastepc_base ( : , rep ) ’ . * Sn) ;

276 DnD( rep ) = (sum(nDel_mod ( : , rep ) ’ . * Sn)−sum( nDel_base ( : , rep ) ’ . * Sn) ) /sum(

nDel_base ( : , rep ) ’ . * Sn) ;

277 end

278

279 %Plots

280 FRdrop=mean(FRD) ;

281 FRstd=std (FRD) ;

282 FRdist=makedist ( ’ normal ’ ,FRdrop , FRstd ) ;

283 FRl= i c d f ( FRdist , 0 . 0 2 5 ) ;

284 FRu= i c d f ( FRdist , 0 . 9 7 5 ) ;

285 FRlim=(FRu−FRl ) / 2 ;

286 plot (D,mean( FR_base ’ ) , ’DisplayName ’ , ’FR( SB_ { base } ) ’ ) ;

287 hold on ;

288 plot (D,mean(FR_mod’ ) , ’DisplayName ’ , ’FR( SB_ {mod} ) ’ ) ;

289 legend ( ’FR( SB_ { base } ) ’ , ’FR( SB_ {mod} ) ’ ) ;

290 t i t l e ( [ ’ F i l l rate reduced by ’ , num2str(−round(100*FRdrop , 2 ) ) , ’% (\pm’ ,

num2str ( round(100*FRlim , 2 ) ) , ’ ) ’ ] ) ;

291 xlabel ( ’ Weekly mean demand ’ ) ;

292 ylabel ( ’ F i l l rate ’ ) ;

293 grid on ;
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294 hold o f f ;

295

296 avgwst_base=mean( waste_base ’ ) ;

297 avgwst_mod=mean(waste_mod ’ ) ;

298 poswas=sum( avgwst_base~=0) ;

299

300 Wdrop=mean(WD) ;

301 Wstd=std (WD) ;

302 Wdist=makedist ( ’ normal ’ ,Wdrop, Wstd) ;

303 Wl= i c d f ( Wdist , 0 . 0 2 5 ) ;

304 Wu= i c d f ( Wdist , 0 . 9 7 5 ) ;

305 Wlim=(Wu−Wl) / 2 ;

306 plot (D( 1 : poswas ) , avgwst_base ( 1 : poswas ) , ’DisplayName ’ , ’ Waste ( SB_ { base } ) ’ ) ;

307 hold on ;

308 plot (D( 1 : poswas ) ,avgwst_mod ( 1 : poswas ) , ’DisplayName ’ , ’ Waste ( SB_ {mod} ) ’ ) ;

309 legend ( ’ Waste ( SB_ { base } ) ’ , ’ Waste ( SB_ {mod} ) ’ ) ;

310 t i t l e ( [ ’ Waste reduced by ’ , num2str(−round(100*Wdrop, 2 ) ) , ’% ( \pm’ , num2str (

round(100*Wlim, 2 ) ) , ’ ) ’ ] ) ;

311 xlabel ( ’ Weekly mean demand ’ ) ;

312 ylabel ( ’ Waste ’ ) ;

313 grid on ;

314 hold o f f ;

315

316 Idrop=mean( ID ) ;

317 I s t d =std ( ID ) ;

318 I d i s t =makedist ( ’ normal ’ , Idrop , I s t d ) ;

319 I l = i c d f ( I d i s t , 0 . 0 2 5 ) ;

320 Iu= i c d f ( I d i s t , 0 . 9 7 5 ) ;

321 Il im =( Iu−I l ) / 2 ;

322
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323 plot (D,mean( AvgInv_base ’ ) , ’DisplayName ’ , ’ I_ { \mu} ( SB_ { base } ) ’ ) ;

324 hold on ;

325 plot (D,mean( AvgInv_mod ’ ) , ’DisplayName ’ , ’ I_ { \mu} ( SB_ {mod} ) ’ ) ;

326 legend ( ’ I_ { \mu} ( SB_ { base } ) ’ , ’ I_ { \mu} ( SB_ {mod} ) ’ ) ;

327 t i t l e ( [ ’ Average inventory l e v e l s reduced by ’ , num2str(−round(100* Idrop , 2 ) )

, ’% (\pm’ , num2str ( round(100* Ilim , 2 ) ) , ’ ) ’ ] ) ;

328 xlabel ( ’ Weekly mean demand ’ ) ;

329 ylabel ( ’ Average inventory l e v e l ’ ) ;

330 grid on ;

331 hold o f f ;

332

333 avgwstpc_base=mean( wastepc_base ’ ) ;

334 avgwstpc_mod=mean( wastepc_mod ’ ) ;

335 poswaspc=sum( avgwstpc_base~=0) ;

336 Wpcdrop=mean(WPD) ;

337 Wpcstd=std (WPD) ;

338 Wpcdist=makedist ( ’ normal ’ ,Wpcdrop, Wpcstd ) ;

339 Wpcl= i c d f ( Wpcdist , 0 . 0 2 5 ) ;

340 Wpcu= i c d f ( Wpcdist , 0 . 9 7 5 ) ;

341 Wpclim=(Wpcu−Wpcl) / 2 ;

342 plot (D( 1 : poswaspc ) , avgwstpc_base ( 1 : poswaspc ) , ’DisplayName ’ , ’ Waste%(SB_ {

base } ) ’ ) ;

343 hold on ;

344 plot (D( 1 : poswaspc ) ,avgwstpc_mod ( 1 : poswaspc ) , ’DisplayName ’ , ’ Waste%(SB_ {mod

} ) ’ ) ;

345 legend ( ’ Waste%(SB_ { base } ) ’ , ’ Waste%(SB_ {mod} ) ’ ) ;

346 t i t l e ( [ ’ Waste% reduced by ’ , num2str(−round(100*Wpcdrop, 2 ) ) , ’% ( \pm’ ,

num2str ( round(100*Wpclim , 2 ) ) , ’ ) ’ ] ) ;

347 xlabel ( ’ Weekly mean demand ’ ) ;

348 ylabel ( ’ Waste%’ ) ;
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349 grid on ;

350 hold o f f ;

351

352 Ddrop=mean(DnD) ;

353 Ddrop=mean(DnD) ;

354 Dstd=std (DnD) ;

355 Ddist=makedist ( ’ normal ’ ,Ddrop , Dstd ) ;

356 Dl= i c d f ( Ddist , 0 . 0 2 5 ) ;

357 Du= i c d f ( Ddist , 0 . 9 7 5 ) ;

358 Dlim=(Du−Dl ) / 2 ;

359

360 plot (D,mean( nDel_base ’ ) , ’DisplayName ’ , ’D_n( SB_ { base } ) ’ ) ;

361 hold on ;

362 plot (D,mean(nDel_mod ’ ) , ’DisplayName ’ , ’D_n( SB_ {mod} ) ’ ) ;

363 legend ( ’D_n( SB_ { base } ) ’ , ’D_n( SB_ {mod} ) ’ ) ;

364 t i t l e ( [ ’Number of d e l i v e r i e s changed by ’ , num2str ( round(100*Ddrop , 2 ) ) , ’%

( \pm’ , num2str ( round(100*Dlim , 2 ) ) , ’ ) ’ ] ) ;

365 xlabel ( ’ Weekly mean demand ’ ) ;

366 ylabel ( ’Number of d e l i v e r i e s ’ ) ;

367 grid on ;

368 hold o f f ;

369

370 WC_SB1=wastepc_mod−wastepc_base ;

371 FRC_SB1=FR_mod−FR_base ;

372 SB1_val=mean(WC_SB1’ ) . /mean(FRC_SB1 ’ ) ;

373 plot ( 1 : 2 1 , SB1_val , ’ * ’ ) ;

374 hold on ;

375 t i t l e ( ’ Value of modifying stock−based policy for m=9 , Q=10 , FIFO=0.9 ’ ) ;

376 ylabel ( ’ Value ( r a t i o of changes in waste% and f i l l rate ) ’ ) ;

377 xlabel ( ’ Store v a r i e t y ’ ) ;
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378 axis ( [ 0 21 −i n f i n f ] ) ;

379 grid on ;

380 hold o f f ;

381

382 toc ;
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Simulation code for comparison of EW A policies:

1 clear ;

2 t i c ;

3 %Maximum Shelf L i f e

4 m = 9 ;

5 %Maximum number of reps

6 maxrep=1000;

7 %Minimum batch s i z e

8 Q( 1 : maxrep) = 10;

9 %Number of stores

10 Sn = [12 23 25 11 17 11 11 3 22 10 9 17 8 12 4 14 6 9 2 3 3 ] ;

11 %Lead time ( days )

12 l = 1 ;

13 %Simulation duration ( days )

14 simL = 460;

15 %Weekly s a l e s pattern

16 wp = [ 0 . 1 2 0.13 0.13 0.16 0.18 0.18 0 . 1 0 ] ;

17 %Percentage FIFO picking

18 FIFO = 90;

19 %Review i n t e r v a l s

20 R = [3 3 3 3 3 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 ] ;

21

22 pd=makedist ( ’ normal ’ ) ;

23 k1= i c d f (pd, 0 . 9 6 ) ;

24 k2= i c d f (pd, 0 . 9 7 ) ;

25 k3= i c d f (pd, 0 . 9 7 5 ) ;

26 k4= i c d f (pd, 0 . 9 8 ) ;

27 D = [5 8 13 16 18 25 26 30 34 37 46 49 62 62 74 86 108 128 172 222 6 9 6 ] ;

28 k = [ k1 k1 k1 k2 k1 k2 k1 k3 k2 k1 k3 k2 k2 k3 k4 k3 k4 k3 k4 k3 k3 ] ;

29 for i =1:21
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30 SL ( i ) =cdf (pd , k ( i ) ) ;

31 end

32

33 for rep = 1 : maxrep

34 for sc =1:21

35 %Daily f r a c t i o n s of weekly mean demand ( used as mean for dai l y

demand d i s t r i b u t i o n s )

36 f_d = D( sc ) * [ 0 . 1 2 , 0 . 1 3 , 0 . 1 3 , 0 . 1 6 , 0 . 1 8 , 0 . 1 8 , 0 . 1 0 ] ;

37 %I n i t i a l i s i n g Inventory Level Array

38 IP ( 1 : simL+7) = 0 ;

39 %I n i t i a l i s i n g forecasted demand array

40 ForD ( 1 , 1 : simL+7) = 0 ;

41 %I n i t i a l i s i n g simulated ( actual ) demand array

42 ActD ( 1 , 1 : simL+7) = 0 ;

43 %Creating probabi l i ty d i s t r i b u t i o n s for every weekday , to generate

forecasted demand

44 for wd = 1:7

45 DD(wd) = makedist ( ’ poisson ’ , f_d (wd) ) ;

46 end

47 %Generating forecasted demand for entire simulation period using

d i f f e r e n t demand d i s t r i b u t i o n for every week day

48 for week = 1 : ( simL/7)+7

49 for day = 1:7

50 ForD( day +(7*(week−1) ) ) = random(DD( day ) ) ;

51 end

52 end

53 %Generating actual demand for entire simulation period using

d i f f e r e n t demand d i s t r i b u t i o n for every week day

54 for week = 1 : ( simL/7)+7

55 for day = 1:7



APPENDIX B. SIMULATION CODE FOR MATLAB 172

56 ActD ( day +(7*(week−1) ) ) = random(DD( day ) ) ;

57 end

58 end

59 %Batch : number of units at day " t " with s h e l f l i f e " r " , and Waste

60 B( 1 : simL +7 ,1:m) = 0 ;

61 W( 1 , 1 : simL+7) = 0 ;

62 %Randomise i n i t i a l inventory position

63 IP ( 1 ) = randi (50) ;

64 I IP = IP ( 1 ) ;

65 remn = IP ( 1 ) ;

66 for r = m:−1:1

67 s i z e = randi (20) ;

68

69 i f size <remn

70 B( 1 , r ) = s i z e ;

71 else

72 B( 1 , r ) = remn ;

73 end

74 remn = max( 0 , (remn − s i z e ) ) ;

75 i f remn == 0

76 break ;

77 end

78 end

79 IP2 = IP ;

80 B2 = B ;

81 %Array for ordering days

82 R_Day ( 1 : simL ) = 0 ;

83 for x = 1 : simL

84 i f rem( x , R( sc ) ) == 0

85 R_Day( x ) = 1 ;
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86 else

87 R_Day( x ) = 0 ;

88 end

89 end

90 %I n i t i a l i s i n g various variables

91 day = 1 ;

92 waste ( 1 : simL ) = 0 ;

93 IP ( 2 : simL ) = 0 ;

94 B( 2 : simL , : ) = 0 ;

95 n ( 1 : simL ) = 0 ;

96 SS ( 1 : simL ) = 0 ;

97 LD( 1 : simL ) = 0 ;

98 FD( 1 : simL ) = 0 ;

99 sd_FE ( sc , 1 : 7 ) = 0 ;

100 SSE ( sc , 1 : 7 ) = 0 ;

101 %Simulating scenario with stock−based ( base ) policy

102 for t = 1 : simL

103 %Updating forecast errors (done weekly )

104 i f t >7 && rem( t , 7 ) ==1

105 i f t >14

106 for x =1:7

107 SSE ( sc , x ) =SSE ( sc , x ) +(FD( t +x−8)−ForD( t +x−8) ) ^2;

108 MSE( sc , x ) =SSE ( sc , x ) / ( ( t −1) /7) ;

109 sd_FE ( sc , x ) =sqrt (MSE( sc , x ) ) ;

110 end

111 else

112 for x =1:7

113 SSE ( sc , x ) =(FD( x )−ForD( x ) ) ^2;

114 MSE( sc , x ) =SSE ( sc , x ) ;

115 sd_FE ( sc , x ) =sqrt (MSE( sc , x ) ) ;
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116 end

117 end

118

119 end

120 %Computing order quantity

121 i f R_Day( t ) == 1

122 %Includes forecast for present day

123 for x = 0 :R( sc )

124 n( t ) = n( t ) +ForD( t +x ) ;

125 end

126

127 %EWA Heuristic

128 for x = 1 :R( sc ) + l

129 unsatFE = round ( FIFO*ForD( t +x−1)/100) ;

130 unsatLE = ForD( t +x−1) − unsatFE ;

131

132 EB_int ( 1 , : ) = EB( t +x−1 , : ) ;

133

134 %Estimated FIFO dep

135 for r = 1 :m

136 EB_int ( 1 , r ) = max( 0 , EB_int ( 1 , r ) − unsatFE ) ;

137 unsatFE = max( 0 , unsatFE − EB( t +x−1, r ) ) ;

138 end

139

140 %Estimated LIFO dep

141 for r = m:−1:1

142 EB_int ( 1 , r ) = max( 0 , EB_int ( 1 , r ) − unsatLE ) ;

143 unsatLE = max( 0 , unsatLE − EB( t +x−1, r ) ) ;

144 end

145 for r =1:m−1
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146 EB( t +x , r ) = EB_int ( 1 , r +1) ;

147 end

148 EW( t ) = EW( t ) +EB_int ( 1 , 1 ) ;

149 end

150

151 %Includes s a f e t y stock for present day

152 s ig_lR = 0 ;

153 for x = 0 :R( sc )

154 i f rem( t , 7 ) +x > 7

155 s ig_lR = sqrt ( ( s ig_lR ) ^2 + ( sd_FE (rem( t , 7 ) +x−7)^2)

) ;

156 e l s e i f rem( t , 7 ) +x ~= 0

157 s ig_lR = sqrt ( ( s ig_lR ) ^2 + ( sd_FE (rem( t , 7 ) +x ) ^2) ) ;

158 else

159 s ig_lR = sqrt ( ( s ig_lR ) ^2 + ( sd_FE ( 7 ) ^2) ) ;

160 end

161 end

162 SS ( t ) = round ( k ( sc ) * s ig_lR ) ;

163 i f IP ( t )−EW( t ) < n( t ) + SS ( t )

164 n( t ) =Q( rep ) *round ( ( n( t ) +SS ( t ) +EW( t )−IP ( t ) ) /Q( rep ) ) ;

165 B( t +l ,m) = B( t +l ,m) + n( t ) ;

166 end

167 end

168 %Lost Demand, i f any

169 LD( t ) = max( 0 , ( ActD ( t ) − IP ( t ) ) ) ;

170 %F u l f i l l e d demand

171 FD( t ) = ActD ( t ) − LD( t ) ;

172 %Temporary variable

173 B_interim ( 1 , : ) = B( t , : ) ;

174 %Variable d e f i n i t i o n s for depleting boxes from d i f f e r e n t ’



APPENDIX B. SIMULATION CODE FOR MATLAB 176

Batches ’

175 unsatF = round ( FIFO*FD( t ) /100) ;

176 unsatL = FD( t ) − unsatF ;

177 %Calculating forwarded batches a f t e r depletion due to

f u l f i l l e d demand

178 %FIFO Depletion

179 for r = 1 :m

180 B_interim ( 1 , r ) = max( 0 , B_interim ( 1 , r ) − unsatF ) ;

181 unsatF = max( 0 , unsatF − B( t , r ) ) ;

182 end

183 r = m;

184 %LIFO Depletion

185 for r = m:−1:1

186 B_interim ( 1 , r ) = max( 0 , B_interim ( 1 , r ) − unsatL ) ;

187 unsatL = max( 0 , unsatL − B( t , r ) ) ;

188 end

189 %Moving batches to next day ’ s inventory

190 for r = 1 :m−1

191 B( t +1 , r ) =B_interim ( 1 , r +1) ;

192 end

193 %Removing items to discard and computing waste

194 waste ( t ) = waste ( t ) + B_interim ( 1 , 1 ) ;

195 %Inventory l e v e l for next day a f t e r reduction due to demand

and waste

196 IP ( t +1) = sum(B( t +1 ,1:m) ) ;

197 EB=B ;

198 end

199

200 %I n i t i a l i s i n g variables for modified policy run

201 waste2 ( 1 : simL ) = 0 ;
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202 IP2 ( 2 : simL ) = 0 ;

203 B2 ( 2 : simL , : ) = 0 ;

204 n2 ( 1 : simL ) = 0 ;

205 LD2( 1 : simL ) = 0 ;

206 FD2( 1 : simL ) = 0 ;

207 sd_FE ( sc , 1 : 7 ) = 0 ;

208 SSE ( sc , 1 : 7 ) = 0 ;

209 %Simulating scenario with stock−based (mod) policy

210 for t = 1 : simL

211 i f t >7 && rem( t , 7 ) ==1

212 i f t >14

213 for x =1:7

214 SSE ( sc , x ) =SSE ( sc , x ) +(FD2( t +x−8)−ForD( t +x−8) )

^2;

215 MSE( sc , x ) =SSE ( sc , x ) / ( ( t −1) /7) ;

216 sd_FE ( sc , x ) =sqrt (MSE( sc , x ) ) ;

217 end

218 else

219 for x =1:7

220 SSE ( sc , x ) =(FD2( x )−ForD( x ) ) ^2;

221 MSE( sc , x ) =SSE ( sc , x ) ;

222 sd_FE ( sc , x ) =sqrt (MSE( sc , x ) ) ;

223 end

224 end

225 end

226 i f R_Day( t ) == 1

227 %Does not include forecast for present day

228 for x = l : R( sc )

229 n2( t ) = n2( t ) +ForD( t +x ) ;

230 end
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231

232 %EWA Heuristic

233 for x = 1 :R( sc ) + l

234 unsatFE = round ( FIFO*ForD( t +x−1)/100) ;

235 unsatLE = ForD( t +x−1) − unsatFE ;

236

237 EB2_int ( 1 , : ) = EB2( t +x−1 , : ) ;

238

239 %Estimated FIFO dep

240 for r = 1 :m

241 EB2_int ( 1 , r ) = max( 0 , EB2_int ( 1 , r ) − unsatFE ) ;

242 unsatFE = max( 0 , unsatFE − EB2( t +x−1, r ) ) ;

243 end

244

245 %Estimated LIFO dep

246 for r = m:−1:1

247 EB2_int ( 1 , r ) = max( 0 , EB2_int ( 1 , r ) − unsatLE ) ;

248 unsatLE = max( 0 , unsatLE − EB2( t +x−1, r ) ) ;

249 end

250 for r =1:m−1

251 EB2( t +x , r ) = EB2_int ( 1 , r +1) ;

252 end

253 EW( t ) = EW( t ) +EB2_int ( 1 , 1 ) ;

254 end

255

256 sig_lR2 = 0 ;

257 %Does not include s a f e t y stock for present day

258 for x = l : R( sc )

259 i f rem( t , 7 ) +x > 7

260 sig_lR2 = ( ( sig_lR2 ) ^2 + ( sd_FE (rem( t , 7 ) +x−7)^2) )
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^ 0 . 5 ;

261 e l s e i f rem( t , 7 ) +x~=0

262 sig_lR2 = ( ( sig_lR2 ) ^2 + ( sd_FE (rem( t , 7 ) +x ) ^2) )

^ 0 . 5 ;

263 else

264 sig_lR2 = ( ( sig_lR2 ) ^2 + ( sd_FE ( 7 ) ^2) ) ^ 0 . 5 ;

265 end

266 end

267 SS2 ( t ) = round ( k ( sc ) * sig_lR2 ) ;

268 i f max( 0 , IP2 ( t )−ForD( t ) )−EW( t ) < n2( t ) +SS2 ( t )

269 n2( t ) =Q( rep ) *round ( ( ( n2( t ) +SS2 ( t ) +EW( t )−max( 0 , IP2 ( t )−
ForD( t ) ) ) ) /Q( rep ) ) ;

270 B2( t +l ,m) = B2( t +l ,m) + n2( t ) ;

271 end

272 end

273 %Lost Demand, i f any

274 LD2( t ) = max( 0 , ( ActD ( t ) − IP2 ( t ) ) ) ;

275 %F u l f i l l e d demand

276 FD2( t ) = ActD ( t ) − LD2( t ) ;

277 %Temporary variable

278 B_interim ( 1 , : ) = B2( t , : ) ;

279 %Variable d e f i n i t i o n s for depleting boxes from d i f f e r e n t ’

Batches ’

280 unsatF = round ( FIFO*FD2( t ) /100) ;

281 unsatL = FD2( t ) − unsatF ;

282 %Calculating forwarded batches a f t e r depletion due to

f u l f i l l e d demand

283 %FIFO Depletion

284 for r = 1 :m

285 B_interim ( 1 , r ) = max( 0 , B_interim ( 1 , r ) − unsatF ) ;
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286 unsatF = max( 0 , unsatF − B2( t , r ) ) ;

287 end

288 r = m;

289 %LIFO Depletion

290 for r = m:−1:1

291 B_interim ( 1 , r ) = max( 0 , B_interim ( 1 , r ) − unsatL ) ;

292 unsatL = max( 0 , unsatL − B2( t , r ) ) ;

293 end

294 %Moving batches to next day ’ s inventory

295 for r = 1 :m−1

296 B2( t +1 , r ) =B_interim ( 1 , r +1) ;

297 end

298 %Removing items to discard and computing waste

299 waste2 ( t ) = waste2 ( t ) + B_interim ( 1 , 1 ) ;

300 %Inventory l e v e l for next day a f t e r reduction due to demand

and waste

301 IP2 ( t +1) = sum(B2( t +1 ,1:m) ) ;

302 EB2 = B2 ;

303 end

304

305 %Calculations for performance indicators

306 DelRed ( sc , rep ) = (sum(n2 ( 9 5 : simL ) ~=0)−sum(n( 9 5 : simL ) ~=0) ) /sum(n

( 9 5 : simL ) ~=0) ;

307 AvgInvRed ( sc , rep ) = (mean( IP2 ( 9 5 : simL ) )−mean( IP ( 9 5 : simL ) ) ) /mean( IP

( 9 5 : simL ) ) ;

308 WasteRed12 ( sc , rep ) = (sum( waste2 ( 9 5 : simL ) )−sum( waste ( 9 5 : simL ) ) ) /

sum( waste ( 9 5 : simL ) ) ;

309 LostSalesRed12 ( sc , rep ) = (sum(LD2( 9 5 : simL ) )−sum(LD( 9 5 : simL ) ) ) /sum(

LD( 9 5 : simL ) ) ;

310 nDel_base ( sc , rep ) = sum(n( 9 5 : simL ) ~=0) ;
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311 nDel_mod( sc , rep ) = sum(n2 ( 9 5 : simL ) ~=0) ;

312 FR_base ( sc , rep ) = sum(FD( 9 5 : simL ) ) /sum( ActD ( 9 5 : simL ) ) ;

313 FR_mod( sc , rep ) = sum(FD2( 9 5 : simL ) ) /sum( ActD ( 9 5 : simL ) ) ;

314 waste_base ( sc , rep ) = sum( waste ( 9 5 : simL ) ) ;

315 waste_mod( sc , rep ) = sum( waste2 ( 9 5 : simL ) ) ;

316 wastepc_base ( sc , rep ) = sum( waste ( 9 5 : simL ) ) /sum(n( 9 5 : simL ) ) ;

317 wastepc_mod ( sc , rep ) = sum( waste2 ( 9 5 : simL ) ) /sum(n2 ( 9 5 : simL ) ) ;

318 AvgInv_base ( sc , rep ) = mean( IP ( 9 5 : simL ) ) ;

319 AvgInv_mod ( sc , rep ) = mean( IP2 ( 9 5 : simL ) ) ;

320 end

321 %Percentage reduction ( reduction in weighted sums)

322 FRD( rep ) = (sum(FR_mod ( : , rep ) ’ . * Sn)−sum( FR_base ( : , rep ) ’ . * Sn) ) /sum(

FR_base ( : , rep ) ’ . * Sn) ;

323 WD( rep ) = (sum(waste_mod ( : , rep ) ’ . * Sn)−sum( waste_base ( : , rep ) ’ . * Sn) ) /sum

( waste_base ( : , rep ) ’ . * Sn) ;

324 ID ( rep ) = (sum( AvgInv_mod ( : , rep ) ’ . * Sn)−sum( AvgInv_base ( : , rep ) ’ . * Sn) ) /

sum( AvgInv_base ( : , rep ) ’ . * Sn) ;

325 WPD( rep ) = (sum( wastepc_mod ( : , rep ) ’ . * Sn)−sum( wastepc_base ( : , rep ) ’ . * Sn)

) /sum( wastepc_base ( : , rep ) ’ . * Sn) ;

326 DnD( rep ) = (sum(nDel_mod ( : , rep ) ’ . * Sn)−sum( nDel_base ( : , rep ) ’ . * Sn) ) /sum(

nDel_base ( : , rep ) ’ . * Sn) ;

327 end

328

329 %Plots

330 FRdrop=mean(FRD) ;

331 FRstd=std (FRD) ;

332 FRdist=makedist ( ’ normal ’ ,FRdrop , FRstd ) ;

333 FRl= i c d f ( FRdist , 0 . 0 2 5 ) ;

334 FRu= i c d f ( FRdist , 0 . 9 7 5 ) ;

335 FRlim=(FRu−FRl ) / 2 ;
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336 plot (D,mean( FR_base ’ ) , ’DisplayName ’ , ’FR(EWA_{ base } ) ’ ) ;

337 hold on ;

338 plot (D,mean(FR_mod’ ) , ’DisplayName ’ , ’FR(EWA_{mod} ) ’ ) ;

339 legend ( ’FR(EWA_{ base } ) ’ , ’FR(EWA_{mod} ) ’ ) ;

340 t i t l e ( [ ’ F i l l rate reduced by ’ , num2str(−round(100*FRdrop , 2 ) ) , ’% (\pm’ ,

num2str ( round(100*FRlim , 2 ) ) , ’ ) ’ ] ) ;

341 xlabel ( ’ Weekly mean demand ’ ) ;

342 ylabel ( ’ F i l l rate ’ ) ;

343 grid on ;

344 hold o f f ;

345

346

347 avgwst_base=mean( waste_base ’ ) ;

348 avgwst_mod=mean(waste_mod ’ ) ;

349 poswas=sum( avgwst_base~=0) ;

350

351 Wdrop=mean(WD) ;

352 Wstd=std (WD) ;

353 Wdist=makedist ( ’ normal ’ ,Wdrop, Wstd) ;

354 Wl= i c d f ( Wdist , 0 . 0 2 5 ) ;

355 Wu= i c d f ( Wdist , 0 . 9 7 5 ) ;

356 Wlim=(Wu−Wl) / 2 ;

357 plot (D( 1 : poswas ) , avgwst_base ( 1 : poswas ) , ’DisplayName ’ , ’ Waste (EWA_{ base } ) ’ ) ;

358 hold on ;

359 plot (D( 1 : poswas ) ,avgwst_mod ( 1 : poswas ) , ’DisplayName ’ , ’ Waste (EWA_{mod} ) ’ ) ;

360 legend ( ’ Waste (EWA_{ base } ) ’ , ’ Waste (EWA_{mod} ) ’ ) ;

361 t i t l e ( [ ’ Waste reduced by ’ , num2str(−round(100*Wdrop, 2 ) ) , ’% ( \pm’ , num2str (

round(100*Wlim, 2 ) ) , ’ ) ’ ] ) ;

362 xlabel ( ’ Weekly mean demand ’ ) ;

363 ylabel ( ’ Waste ’ ) ;
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364 grid on ;

365 hold o f f ;

366

367

368 Idrop=mean( ID ) ;

369 I s t d =std ( ID ) ;

370 I d i s t =makedist ( ’ normal ’ , Idrop , I s t d ) ;

371 I l = i c d f ( I d i s t , 0 . 0 2 5 ) ;

372 Iu= i c d f ( I d i s t , 0 . 9 7 5 ) ;

373 Il im =( Iu−I l ) / 2 ;

374

375 plot (D,mean( AvgInv_base ’ ) , ’DisplayName ’ , ’ I_ { \mu} (EWA_{ base } ) ’ ) ;

376 hold on ;

377 plot (D,mean( AvgInv_mod ’ ) , ’DisplayName ’ , ’ I_ { \mu} (EWA_{mod} ) ’ ) ;

378 legend ( ’ I_ { \mu} (EWA_{ base } ) ’ , ’ I_ { \mu} (EWA_{mod} ) ’ ) ;

379 t i t l e ( [ ’ Average inventory l e v e l s reduced by ’ , num2str(−round(100* Idrop , 2 ) )

, ’% (\pm’ , num2str ( round(100* Ilim , 2 ) ) , ’ ) ’ ] ) ;

380 xlabel ( ’ Weekly mean demand ’ ) ;

381 ylabel ( ’ Average inventory l e v e l ’ ) ;

382 grid on ;

383 hold o f f ;

384

385

386 avgwstpc_base=mean( wastepc_base ’ ) ;

387 avgwstpc_mod=mean( wastepc_mod ’ ) ;

388 poswaspc=sum( avgwstpc_base~=0) ;

389 Wpcdrop=mean(WPD) ;

390 Wpcstd=std (WPD) ;

391 Wpcdist=makedist ( ’ normal ’ ,Wpcdrop, Wpcstd ) ;

392 Wpcl= i c d f ( Wpcdist , 0 . 0 2 5 ) ;



APPENDIX B. SIMULATION CODE FOR MATLAB 184

393 Wpcu= i c d f ( Wpcdist , 0 . 9 7 5 ) ;

394 Wpclim=(Wpcu−Wpcl) / 2 ;

395 plot (D( 1 : poswaspc ) , avgwstpc_base ( 1 : poswaspc ) , ’DisplayName ’ , ’ Waste%(EWA_{

base } ) ’ ) ;

396 hold on ;

397 plot (D( 1 : poswaspc ) ,avgwstpc_mod ( 1 : poswaspc ) , ’DisplayName ’ , ’ Waste%(EWA_{mod

} ) ’ ) ;

398 legend ( ’ Waste%(EWA_{ base } ) ’ , ’ Waste%(EWA_{mod} ) ’ ) ;

399 t i t l e ( [ ’ Waste% reduced by ’ , num2str(−round(100*Wpcdrop, 2 ) ) , ’% ( \pm’ ,

num2str ( round(100*Wpclim , 2 ) ) , ’ ) ’ ] ) ;

400 xlabel ( ’ Weekly mean demand ’ ) ;

401 ylabel ( ’ Waste%’ ) ;

402 grid on ;

403 hold o f f ;

404

405 Ddrop=mean(DnD) ;

406 Ddrop=mean(DnD) ;

407 Dstd=std (DnD) ;

408 Ddist=makedist ( ’ normal ’ ,Ddrop , Dstd ) ;

409 Dl= i c d f ( Ddist , 0 . 0 2 5 ) ;

410 Du= i c d f ( Ddist , 0 . 9 7 5 ) ;

411 Dlim=(Du−Dl ) / 2 ;

412

413 plot (D,mean( nDel_base ’ ) , ’DisplayName ’ , ’D_n(EWA_{ base } ) ’ ) ;

414 hold on ;

415 plot (D,mean(nDel_mod ’ ) , ’DisplayName ’ , ’D_n(EWA_{mod} ) ’ ) ;

416 legend ( ’D_n(EWA_{ base } ) ’ , ’D_n(EWA_{mod} ) ’ ) ;

417 t i t l e ( [ ’Number of d e l i v e r i e s changed by ’ , num2str ( round(100*Ddrop , 2 ) ) , ’%

( \pm’ , num2str ( round(100*Dlim , 2 ) ) , ’ ) ’ ] ) ;

418 xlabel ( ’ Weekly mean demand ’ ) ;
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419 ylabel ( ’Number of d e l i v e r i e s ’ ) ;

420 grid on ;

421 hold o f f ;

422

423 WC_EWA1=wastepc_mod−wastepc_base ;

424 FRC_EWA1=FR_mod−FR_base ;

425 EWA1_val=mean(WC_EWA1’ ) . /mean(FRC_EWA1’ ) ;

426 plot ( 1 : 2 1 , EWA1_val , ’ * ’ ) ;

427 hold on ;

428 t i t l e ( ’ Value of modifying EWA policy for m=9 , Q=10 , FIFO=0.9 ’ ) ;

429 ylabel ( ’ Value ( r a t i o of changes in waste% and f i l l rate ) ’ ) ;

430 xlabel ( ’ Store v a r i e t y ’ ) ;

431 axis ( [ 0 21 −i n f i n f ] ) ;

432 grid on ;

433 hold o f f ;

434

435 toc ;
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Simulation code for comparison of EW ASS policies:

1 clear ;

2 t i c ;

3 %Maximum Shelf L i f e

4 m = 9 ;

5 %Maximum number of reps

6 maxrep=1000;

7 %Minimum batch s i z e

8 Q( 1 : maxrep) = 10;

9 %Number of stores

10 Sn = [12 23 25 11 17 11 11 3 22 10 9 17 8 12 4 14 6 9 2 3 3 ] ;

11 %Lead time ( days )

12 l = 1 ;

13 %Simulation duration ( days )

14 simL = 460;

15 %Weekly s a l e s pattern

16 wp = [ 0 . 1 2 0.13 0.13 0.16 0.18 0.18 0 . 1 0 ] ;

17 %Percentage FIFO picking

18 FIFO = 90;

19 %Review i n t e r v a l s

20 R = [3 3 3 3 3 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 ] ;

21

22 pd=makedist ( ’ normal ’ ) ;

23 k1= i c d f (pd, 0 . 9 6 ) ;

24 k2= i c d f (pd, 0 . 9 7 ) ;

25 k3= i c d f (pd, 0 . 9 7 5 ) ;

26 k4= i c d f (pd, 0 . 9 8 ) ;

27 D = [5 8 13 16 18 25 26 30 34 37 46 49 62 62 74 86 108 128 172 222 6 9 6 ] ;

28 k = [ k1 k1 k1 k2 k1 k2 k1 k3 k2 k1 k3 k2 k2 k3 k4 k3 k4 k3 k4 k3 k3 ] ;

29 for i =1:21
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30 SL ( i ) =cdf (pd , k ( i ) ) ;

31 end

32

33 for rep = 1 : maxrep

34 for sc =1:21

35 %Daily f r a c t i o n s of weekly mean demand ( used as mean for dai l y

demand d i s t r i b u t i o n s )

36 f_d = D( sc ) * [ 0 . 1 2 , 0 . 1 3 , 0 . 1 3 , 0 . 1 6 , 0 . 1 8 , 0 . 1 8 , 0 . 1 0 ] ;

37 %I n i t i a l i s i n g Inventory Level Array

38 IP ( 1 : simL+7) = 0 ;

39 %I n i t i a l i s i n g forecasted demand array

40 ForD ( 1 , 1 : simL+7) = 0 ;

41 %I n i t i a l i s i n g simulated ( actual ) demand array

42 ActD ( 1 , 1 : simL+7) = 0 ;

43 %Creating probabi l i ty d i s t r i b u t i o n s for every weekday , to generate

forecasted demand

44 for wd = 1:7

45 DD(wd) = makedist ( ’ poisson ’ , f_d (wd) ) ;

46 end

47 %Generating forecasted demand for entire simulation period using

d i f f e r e n t demand d i s t r i b u t i o n for every week day

48 for week = 1 : ( simL/7)+7

49 for day = 1:7

50 ForD( day +(7*(week−1) ) ) = random(DD( day ) ) ;

51 end

52 end

53 %Generating actual demand for entire simulation period using

d i f f e r e n t demand d i s t r i b u t i o n for every week day

54 for week = 1 : ( simL/7)+7

55 for day = 1:7
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56 ActD ( day +(7*(week−1) ) ) = random(DD( day ) ) ;

57 end

58 end

59 %Batch : number of units at day " t " with s h e l f l i f e " r " , and Waste

60 B( 1 : simL +7 ,1:m) = 0 ;

61 W( 1 , 1 : simL+7) = 0 ;

62 %Randomise i n i t i a l inventory position

63 IP ( 1 ) = randi (50) ;

64 I IP = IP ( 1 ) ;

65 remn = IP ( 1 ) ;

66 for r = m:−1:1

67 s i z e = randi (20) ;

68

69 i f size <remn

70 B( 1 , r ) = s i z e ;

71 else

72 B( 1 , r ) = remn ;

73 end

74 remn = max( 0 , (remn − s i z e ) ) ;

75 i f remn == 0

76 break ;

77 end

78 end

79 IP2 = IP ;

80 B2 = B ;

81 %Array for ordering days

82 R_Day ( 1 : simL ) = 0 ;

83 for x = 1 : simL

84 i f rem( x , R( sc ) ) == 0

85 R_Day( x ) = 1 ;
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86 else

87 R_Day( x ) = 0 ;

88 end

89 end

90 %I n i t i a l i s i n g various variables

91 day = 1 ;

92 waste ( 1 : simL ) = 0 ;

93 IP ( 2 : simL ) = 0 ;

94 B( 2 : simL , : ) = 0 ;

95 n ( 1 : simL ) = 0 ;

96 SS ( 1 : simL ) = 0 ;

97 LD( 1 : simL ) = 0 ;

98 FD( 1 : simL ) = 0 ;

99 sd_FE ( sc , 1 : 7 ) = 0 ;

100 SSE ( sc , 1 : 7 ) = 0 ;

101 %Simulating scenario with stock−based ( base ) policy

102 for t = 1 : simL

103 %Updating forecast errors (done weekly )

104 i f t >7 && rem( t , 7 ) ==1

105 i f t >14

106 for x =1:7

107 SSE ( sc , x ) =SSE ( sc , x ) +(FD( t +x−8)−ForD( t +x−8) ) ^2;

108 MSE( sc , x ) =SSE ( sc , x ) / ( ( t −1) /7) ;

109 sd_FE ( sc , x ) =sqrt (MSE( sc , x ) ) ;

110 end

111 else

112 for x =1:7

113 SSE ( sc , x ) =(FD( x )−ForD( x ) ) ^2;

114 MSE( sc , x ) =SSE ( sc , x ) ;

115 sd_FE ( sc , x ) =sqrt (MSE( sc , x ) ) ;
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116 end

117 end

118

119 end

120 %Computing order quantity

121 i f R_Day( t ) == 1

122 %Includes forecast for present day

123 for x = 0 :R( sc )

124 n( t ) = n( t ) +ForD( t +x ) ;

125 end

126

127 %EWA Heuristic

128 for x = 1 :R( sc ) + l

129 unsatFE = round ( FIFO*ForD( t +x−1)/100) ;

130 unsatLE = ForD( t +x−1) − unsatFE ;

131

132 EB_int ( 1 , : ) = EB( t +x−1 , : ) ;

133

134 %Estimated FIFO dep

135 for r = 1 :m

136 EB_int ( 1 , r ) = max( 0 , EB_int ( 1 , r ) − unsatFE ) ;

137 unsatFE = max( 0 , unsatFE − EB( t +x−1, r ) ) ;

138 end

139

140 %Estimated LIFO dep

141 for r = m:−1:1

142 EB_int ( 1 , r ) = max( 0 , EB_int ( 1 , r ) − unsatLE ) ;

143 unsatLE = max( 0 , unsatLE − EB( t +x−1, r ) ) ;

144 end

145 for r =1:m−1
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146 EB( t +x , r ) = EB_int ( 1 , r +1) ;

147 end

148 EW( t ) = EW( t ) +EB_int ( 1 , 1 ) ;

149 end

150

151 %Includes s a f e t y stock for present day

152 s ig_lR = 0 ;

153 for x = 0 :R( sc )

154 i f rem( t , 7 ) +x > 7

155 s ig_lR = sqrt ( ( s ig_lR ) ^2 + ( sd_FE (rem( t , 7 ) +x−7)^2)

) ;

156 e l s e i f rem( t , 7 ) +x ~= 0

157 s ig_lR = sqrt ( ( s ig_lR ) ^2 + ( sd_FE (rem( t , 7 ) +x ) ^2) ) ;

158 else

159 s ig_lR = sqrt ( ( s ig_lR ) ^2 + ( sd_FE ( 7 ) ^2) ) ;

160 end

161 end

162 SS ( t ) = round ( k ( sc ) * s ig_lR ) ;

163 i f IP ( t )−EW( t ) < n( t ) + SS ( t )

164 n( t ) =Q( rep ) *round ( ( n( t ) +max( SS ( t ) ,EW( t ) )−IP ( t ) ) /Q( rep )

) ;

165 B( t +l ,m) = B( t +l ,m) + n( t ) ;

166 end

167 end

168 %Lost Demand, i f any

169 LD( t ) = max( 0 , ( ActD ( t ) − IP ( t ) ) ) ;

170 %F u l f i l l e d demand

171 FD( t ) = ActD ( t ) − LD( t ) ;

172 %Temporary variable

173 B_interim ( 1 , : ) = B( t , : ) ;
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174 %Variable d e f i n i t i o n s for depleting boxes from d i f f e r e n t ’

Batches ’

175 unsatF = round ( FIFO*FD( t ) /100) ;

176 unsatL = FD( t ) − unsatF ;

177 %Calculating forwarded batches a f t e r depletion due to

f u l f i l l e d demand

178 %FIFO Depletion

179 for r = 1 :m

180 B_interim ( 1 , r ) = max( 0 , B_interim ( 1 , r ) − unsatF ) ;

181 unsatF = max( 0 , unsatF − B( t , r ) ) ;

182 end

183 r = m;

184 %LIFO Depletion

185 for r = m:−1:1

186 B_interim ( 1 , r ) = max( 0 , B_interim ( 1 , r ) − unsatL ) ;

187 unsatL = max( 0 , unsatL − B( t , r ) ) ;

188 end

189 %Moving batches to next day ’ s inventory

190 for r = 1 :m−1

191 B( t +1 , r ) =B_interim ( 1 , r +1) ;

192 end

193 %Removing items to discard and computing waste

194 waste ( t ) = waste ( t ) + B_interim ( 1 , 1 ) ;

195 %Inventory l e v e l for next day a f t e r reduction due to demand

and waste

196 IP ( t +1) = sum(B( t +1 ,1:m) ) ;

197 EB=B ;

198 end

199

200 %I n i t i a l i s i n g variables for modified policy run
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201 waste2 ( 1 : simL ) = 0 ;

202 IP2 ( 2 : simL ) = 0 ;

203 B2 ( 2 : simL , : ) = 0 ;

204 n2 ( 1 : simL ) = 0 ;

205 LD2( 1 : simL ) = 0 ;

206 FD2( 1 : simL ) = 0 ;

207 sd_FE ( sc , 1 : 7 ) = 0 ;

208 SSE ( sc , 1 : 7 ) = 0 ;

209 %Simulating scenario with stock−based (mod) policy

210 for t = 1 : simL

211 i f t >7 && rem( t , 7 ) ==1

212 i f t >14

213 for x =1:7

214 SSE ( sc , x ) =SSE ( sc , x ) +(FD2( t +x−8)−ForD( t +x−8) )

^2;

215 MSE( sc , x ) =SSE ( sc , x ) / ( ( t −1) /7) ;

216 sd_FE ( sc , x ) =sqrt (MSE( sc , x ) ) ;

217 end

218 else

219 for x =1:7

220 SSE ( sc , x ) =(FD2( x )−ForD( x ) ) ^2;

221 MSE( sc , x ) =SSE ( sc , x ) ;

222 sd_FE ( sc , x ) =sqrt (MSE( sc , x ) ) ;

223 end

224 end

225 end

226 i f R_Day( t ) == 1

227 %Does not include forecast for present day

228 for x = l : R( sc )

229 n2( t ) = n2( t ) +ForD( t +x ) ;
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230 end

231

232 %EWA Heuristic

233 for x = 1 :R( sc ) + l

234 unsatFE = round ( FIFO*ForD( t +x−1)/100) ;

235 unsatLE = ForD( t +x−1) − unsatFE ;

236

237 EB2_int ( 1 , : ) = EB2( t +x−1 , : ) ;

238

239 %Estimated FIFO dep

240 for r = 1 :m

241 EB2_int ( 1 , r ) = max( 0 , EB2_int ( 1 , r ) − unsatFE ) ;

242 unsatFE = max( 0 , unsatFE − EB2( t +x−1, r ) ) ;

243 end

244

245 %Estimated LIFO dep

246 for r = m:−1:1

247 EB2_int ( 1 , r ) = max( 0 , EB2_int ( 1 , r ) − unsatLE ) ;

248 unsatLE = max( 0 , unsatLE − EB2( t +x−1, r ) ) ;

249 end

250 for r =1:m−1

251 EB2( t +x , r ) = EB2_int ( 1 , r +1) ;

252 end

253 EW( t ) = EW( t ) +EB2_int ( 1 , 1 ) ;

254 end

255

256 sig_lR2 = 0 ;

257 %Does not include s a f e t y stock for present day

258 for x = l : R( sc )

259 i f rem( t , 7 ) +x > 7
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260 sig_lR2 = ( ( sig_lR2 ) ^2 + ( sd_FE (rem( t , 7 ) +x−7)^2) )

^ 0 . 5 ;

261 e l s e i f rem( t , 7 ) +x~=0

262 sig_lR2 = ( ( sig_lR2 ) ^2 + ( sd_FE (rem( t , 7 ) +x ) ^2) )

^ 0 . 5 ;

263 else

264 sig_lR2 = ( ( sig_lR2 ) ^2 + ( sd_FE ( 7 ) ^2) ) ^ 0 . 5 ;

265 end

266 end

267 SS2 ( t ) = round ( k ( sc ) * sig_lR2 ) ;

268 i f max( 0 , IP2 ( t )−ForD( t ) )−EW( t ) < n2( t ) +SS2 ( t )

269 n2( t ) =Q( rep ) *round ( ( ( n2( t ) +max( SS2 ( t ) ,EW( t ) )−max( 0 , IP2

( t )−ForD( t ) ) ) ) /Q( rep ) ) ;

270 B2( t +l ,m) = B2( t +l ,m) + n2( t ) ;

271 end

272 end

273 %Lost Demand, i f any

274 LD2( t ) = max( 0 , ( ActD ( t ) − IP2 ( t ) ) ) ;

275 %F u l f i l l e d demand

276 FD2( t ) = ActD ( t ) − LD2( t ) ;

277 %Temporary variable

278 B_interim ( 1 , : ) = B2( t , : ) ;

279 %Variable d e f i n i t i o n s for depleting boxes from d i f f e r e n t ’

Batches ’

280 unsatF = round ( FIFO*FD2( t ) /100) ;

281 unsatL = FD2( t ) − unsatF ;

282 %Calculating forwarded batches a f t e r depletion due to

f u l f i l l e d demand

283 %FIFO Depletion

284 for r = 1 :m
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285 B_interim ( 1 , r ) = max( 0 , B_interim ( 1 , r ) − unsatF ) ;

286 unsatF = max( 0 , unsatF − B2( t , r ) ) ;

287 end

288 r = m;

289 %LIFO Depletion

290 for r = m:−1:1

291 B_interim ( 1 , r ) = max( 0 , B_interim ( 1 , r ) − unsatL ) ;

292 unsatL = max( 0 , unsatL − B2( t , r ) ) ;

293 end

294 %Moving batches to next day ’ s inventory

295 for r = 1 :m−1

296 B2( t +1 , r ) =B_interim ( 1 , r +1) ;

297 end

298 %Removing items to discard and computing waste

299 waste2 ( t ) = waste2 ( t ) + B_interim ( 1 , 1 ) ;

300 %Inventory l e v e l for next day a f t e r reduction due to demand

and waste

301 IP2 ( t +1) = sum(B2( t +1 ,1:m) ) ;

302 EB2 = B2 ;

303 end

304

305 %Calculations for performance indicators

306 DelRed ( sc , rep ) = (sum(n2 ( 9 5 : simL ) ~=0)−sum(n( 9 5 : simL ) ~=0) ) /sum(n

( 9 5 : simL ) ~=0) ;

307 AvgInvRed ( sc , rep ) = (mean( IP2 ( 9 5 : simL ) )−mean( IP ( 9 5 : simL ) ) ) /mean( IP

( 9 5 : simL ) ) ;

308 WasteRed12 ( sc , rep ) = (sum( waste2 ( 9 5 : simL ) )−sum( waste ( 9 5 : simL ) ) ) /

sum( waste ( 9 5 : simL ) ) ;

309 LostSalesRed12 ( sc , rep ) = (sum(LD2( 9 5 : simL ) )−sum(LD( 9 5 : simL ) ) ) /sum(

LD( 9 5 : simL ) ) ;
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310 nDel_base ( sc , rep ) = sum(n( 9 5 : simL ) ~=0) ;

311 nDel_mod( sc , rep ) = sum(n2 ( 9 5 : simL ) ~=0) ;

312 FR_base ( sc , rep ) = sum(FD( 9 5 : simL ) ) /sum( ActD ( 9 5 : simL ) ) ;

313 FR_mod( sc , rep ) = sum(FD2( 9 5 : simL ) ) /sum( ActD ( 9 5 : simL ) ) ;

314 waste_base ( sc , rep ) = sum( waste ( 9 5 : simL ) ) ;

315 waste_mod( sc , rep ) = sum( waste2 ( 9 5 : simL ) ) ;

316 wastepc_base ( sc , rep ) = sum( waste ( 9 5 : simL ) ) /sum(n( 9 5 : simL ) ) ;

317 wastepc_mod ( sc , rep ) = sum( waste2 ( 9 5 : simL ) ) /sum(n2 ( 9 5 : simL ) ) ;

318 AvgInv_base ( sc , rep ) = mean( IP ( 9 5 : simL ) ) ;

319 AvgInv_mod ( sc , rep ) = mean( IP2 ( 9 5 : simL ) ) ;

320 end

321 %Percentage reduction ( reduction in weighted sums)

322 FRD( rep ) = (sum(FR_mod ( : , rep ) ’ . * Sn)−sum( FR_base ( : , rep ) ’ . * Sn) ) /sum(

FR_base ( : , rep ) ’ . * Sn) ;

323 WD( rep ) = (sum(waste_mod ( : , rep ) ’ . * Sn)−sum( waste_base ( : , rep ) ’ . * Sn) ) /sum

( waste_base ( : , rep ) ’ . * Sn) ;

324 ID ( rep ) = (sum( AvgInv_mod ( : , rep ) ’ . * Sn)−sum( AvgInv_base ( : , rep ) ’ . * Sn) ) /

sum( AvgInv_base ( : , rep ) ’ . * Sn) ;

325 WPD( rep ) = (sum( wastepc_mod ( : , rep ) ’ . * Sn)−sum( wastepc_base ( : , rep ) ’ . * Sn)

) /sum( wastepc_base ( : , rep ) ’ . * Sn) ;

326 DnD( rep ) = (sum(nDel_mod ( : , rep ) ’ . * Sn)−sum( nDel_base ( : , rep ) ’ . * Sn) ) /sum(

nDel_base ( : , rep ) ’ . * Sn) ;

327 end

328

329 %Plots

330 FRdrop=mean(FRD) ;

331 FRstd=std (FRD) ;

332 FRdist=makedist ( ’ normal ’ ,FRdrop , FRstd ) ;

333 FRl= i c d f ( FRdist , 0 . 0 2 5 ) ;

334 FRu= i c d f ( FRdist , 0 . 9 7 5 ) ;
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335 FRlim=(FRu−FRl ) / 2 ;

336 plot (D,mean( FR_base ’ ) , ’DisplayName ’ , ’FR(EWA_{ SS } ) ’ ) ;

337 hold on ;

338 plot (D,mean(FR_mod’ ) , ’DisplayName ’ , ’FR(EWA_{SSmod} ) ’ ) ;

339 legend ( ’FR(EWA_{ SS } ) ’ , ’FR(EWA_{SSmod} ) ’ ) ;

340 t i t l e ( [ ’ F i l l rate reduced by ’ , num2str(−round(100*FRdrop , 2 ) ) , ’% (\pm’ ,

num2str ( round(100*FRlim , 2 ) ) , ’ ) ’ ] ) ;

341 xlabel ( ’ Weekly mean demand ’ ) ;

342 ylabel ( ’ F i l l rate ’ ) ;

343 grid on ;

344 hold o f f ;

345

346

347 avgwst_base=mean( waste_base ’ ) ;

348 avgwst_mod=mean(waste_mod ’ ) ;

349 poswas=sum( avgwst_base~=0) ;

350

351 Wdrop=mean(WD) ;

352 Wstd=std (WD) ;

353 Wdist=makedist ( ’ normal ’ ,Wdrop, Wstd) ;

354 Wl= i c d f ( Wdist , 0 . 0 2 5 ) ;

355 Wu= i c d f ( Wdist , 0 . 9 7 5 ) ;

356 Wlim=(Wu−Wl) / 2 ;

357 plot (D( 1 : poswas ) , avgwst_base ( 1 : poswas ) , ’DisplayName ’ , ’ Waste (EWA_{ SS } ) ’ ) ;

358 hold on ;

359 plot (D( 1 : poswas ) ,avgwst_mod ( 1 : poswas ) , ’DisplayName ’ , ’ Waste (EWA_{SSmod} ) ’ ) ;

360 legend ( ’ Waste (EWA_{ SS } ) ’ , ’ Waste (EWA_{SSmod} ) ’ ) ;

361 t i t l e ( [ ’ Waste reduced by ’ , num2str(−round(100*Wdrop, 2 ) ) , ’% ( \pm’ , num2str (

round(100*Wlim, 2 ) ) , ’ ) ’ ] ) ;

362 xlabel ( ’ Weekly mean demand ’ ) ;
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363 ylabel ( ’ Waste ’ ) ;

364 grid on ;

365 hold o f f ;

366

367

368 Idrop=mean( ID ) ;

369 I s t d =std ( ID ) ;

370 I d i s t =makedist ( ’ normal ’ , Idrop , I s t d ) ;

371 I l = i c d f ( I d i s t , 0 . 0 2 5 ) ;

372 Iu= i c d f ( I d i s t , 0 . 9 7 5 ) ;

373 Il im =( Iu−I l ) / 2 ;

374

375 plot (D,mean( AvgInv_base ’ ) , ’DisplayName ’ , ’ I_ { \mu} (EWA_{ SS } ) ’ ) ;

376 hold on ;

377 plot (D,mean( AvgInv_mod ’ ) , ’DisplayName ’ , ’ I_ { \mu} (EWA_{SSmod} ) ’ ) ;

378 legend ( ’ I_ { \mu} (EWA_{ SS } ) ’ , ’ I_ { \mu} (EWA_{SSmod} ) ’ ) ;

379 t i t l e ( [ ’ Average inventory l e v e l s reduced by ’ , num2str(−round(100* Idrop , 2 ) )

, ’% (\pm’ , num2str ( round(100* Ilim , 2 ) ) , ’ ) ’ ] ) ;

380 xlabel ( ’ Weekly mean demand ’ ) ;

381 ylabel ( ’ Average inventory l e v e l ’ ) ;

382 grid on ;

383 hold o f f ;

384

385

386 avgwstpc_base=mean( wastepc_base ’ ) ;

387 avgwstpc_mod=mean( wastepc_mod ’ ) ;

388 poswaspc=sum( avgwstpc_base~=0) ;

389 Wpcdrop=mean(WPD) ;

390 Wpcstd=std (WPD) ;

391 Wpcdist=makedist ( ’ normal ’ ,Wpcdrop, Wpcstd ) ;
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392 Wpcl= i c d f ( Wpcdist , 0 . 0 2 5 ) ;

393 Wpcu= i c d f ( Wpcdist , 0 . 9 7 5 ) ;

394 Wpclim=(Wpcu−Wpcl) / 2 ;

395 plot (D( 1 : poswaspc ) , avgwstpc_base ( 1 : poswaspc ) , ’DisplayName ’ , ’ Waste%(EWA_{ SS

} ) ’ ) ;

396 hold on ;

397 plot (D( 1 : poswaspc ) ,avgwstpc_mod ( 1 : poswaspc ) , ’DisplayName ’ , ’ Waste%(EWA_{

SSmod} ) ’ ) ;

398 legend ( ’ Waste%(EWA_{ SS } ) ’ , ’ Waste%(EWA_{SSmod} ) ’ ) ;

399 t i t l e ( [ ’ Waste% reduced by ’ , num2str(−round(100*Wpcdrop, 2 ) ) , ’% ( \pm’ ,

num2str ( round(100*Wpclim , 2 ) ) , ’ ) ’ ] ) ;

400 xlabel ( ’ Weekly mean demand ’ ) ;

401 ylabel ( ’ Waste%’ ) ;

402 grid on ;

403 hold o f f ;

404

405 Ddrop=mean(DnD) ;

406 Ddrop=mean(DnD) ;

407 Dstd=std (DnD) ;

408 Ddist=makedist ( ’ normal ’ ,Ddrop , Dstd ) ;

409 Dl= i c d f ( Ddist , 0 . 0 2 5 ) ;

410 Du= i c d f ( Ddist , 0 . 9 7 5 ) ;

411 Dlim=(Du−Dl ) / 2 ;

412

413 plot (D,mean( nDel_base ’ ) , ’DisplayName ’ , ’D_n(EWA_{ SS } ) ’ ) ;

414 hold on ;

415 plot (D,mean(nDel_mod ’ ) , ’DisplayName ’ , ’D_n(EWA_{SSmod} ) ’ ) ;

416 legend ( ’D_n(EWA_{ SS } ) ’ , ’D_n(EWA_{SSmod} ) ’ ) ;

417 t i t l e ( [ ’Number of d e l i v e r i e s changed by ’ , num2str ( round(100*Ddrop , 2 ) ) , ’%

( \pm’ , num2str ( round(100*Dlim , 2 ) ) , ’ ) ’ ] ) ;
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418 xlabel ( ’ Weekly mean demand ’ ) ;

419 ylabel ( ’Number of d e l i v e r i e s ’ ) ;

420 grid on ;

421 hold o f f ;

422

423 WC_EWA_SS1=wastepc_mod−wastepc_base ;

424 FRC_EWA_SS1=FR_mod−FR_base ;

425 EWA_SS1_val=mean(WC_EWA_SS1’ ) . /mean(FRC_EWA_SS1 ’ ) ;

426 plot ( 1 : 2 1 , EWA_SS1_val , ’ * ’ ) ;

427 hold on ;

428 t i t l e ( ’ Value of modifying EWA_{ SS } policy for m=9 , Q=10 , FIFO=0.9 ’ ) ;

429 ylabel ( ’ Value ( r a t i o of changes in waste% and f i l l rate ) ’ ) ;

430 xlabel ( ’ Store v a r i e t y ’ ) ;

431 axis ( [ 0 21 −i n f i n f ] ) ;

432 grid on ;

433 hold o f f ;

434

435 toc ;
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