
Correlating Recovery Factors with
Measures of Reservoir Heterogeneity

Asgeir Nyvoll

Petroleum Geoscience and Engineering

Supervisor: Carl Fredrik Berg, IGP
Co-supervisor: Stein Krogstad, SINTEF Digital

Department of Geoscience and Petroleum

Submission date: June 2018

Norwegian University of Science and Technology

Summary

Field scale reservoir simulations are computationally intensive, and therefore also time
consuming. This thesis focuses on the development and evaluation of computationally
easy measures of reservoir heterogeneity, by comparing their correlation with recovery
factors after waterflooding and tertiary polymer injection. Expected recovery is related to
heterogeneity, as heterogeneities increase the chance of bypassed oil during a waterflood.
While field scale simulations include multiple fluid phases and many time steps, hetero-
geneity measures are often based on steady-state solutions of single-phase flow, which
require much less computations. Heterogeneity measures can therefore be used for rapid
screening of reservoir models, including positioning of wells and other potential recovery
strategies. This allows for the evaluation of more options than what is feasible with only
field scale simulations. After the initial screening, the best options can then be used for
more thorough considerations.

The work has been focused on new heterogeneity measures based on a model of perme-
ability description by the use of streamlines, and heterogeneity measures from a parameter
called the diffusive time of flight. The permeability description divides the averaged per-
meability over a reservoir model into hydraulic conductance, tortuosity, constriction and
effective bulk volume. New measures have further been compared with existing dynamic
measures of reservoir heterogeneity. In addition, the required code to calculate both new
and existing heterogeneity measures has been implemented as an extension to the Matlab
Reservoir Simulation Toolbox (MRST), which is an open-source tool for reservoir simu-
lation and evaluation developed by SINTEF. The code will be shared with the MRST team
at SINTEF, and can be included in coming releases of the software.

The results show that several heterogeneity measures are closely correlated to expected re-
covery. Measures from diffusive time of flight were more promising than measures based
on the permeability model, though especially tortuosity also shows correlation with recov-
ery. However, the best correlations were found among some of the existing heterogeneity
measures, especially sweep efficiency at 1 and 2 pore volumes injected and the dynamic

i

Lorenz coefficient.

The best existing measures gave a Pearson correlation coefficient above 0.9, which is very
significant. The close correlations are interesting, as they indicate that the flow fields from
single-phase steady-state solutions, which the heterogeneity measures are based on, has
resemblance to the average flow fields during multiphase simulations.

ii

Sammendrag

Feltskala reservoarsimuleringer er regnetunge, og derfor også tidkrevende. Denne opp-
gaven fokuserer på utvikling og evaluering av mål på reservoarheterogenitet som ikke er
regnetunge, ved å sammenligne deres korrelasjon med utvinningsgrad etter vannflømming
og tertiær polymerinjeksjon. Forventet utvinningsgrad er relatert til heterogenitet, etter-
som heterogeniteter øker sannsynligheten for forbigått olje under en vannflømming. Mens
simuleringer på feltskala inkluderer flere fluidfaser og mange tidssteg, så er heterogen-
itetsmål ofte basert på løsninger av enfasestrømning ved stabile forhold, som behøver mye
færre utregninger. Heterogenitetsmål kan derfor brukes for rask utsortering av reservoar-
modeller, inkludert plassering av brønner og andre potensielle utvinningsstrategier. Dette
muliggjør evaluering av flere alternativ enn hva som er gjennomførbart med bare fulle
simuleringer på feltskala. Etter utsorteringen kan de beste alternativene videre bli brukt
for grundigere vurderinger.

Arbeidet har vært fokusert på heterogenitetsmål basert på en modell for permeabilitets-
beskrivelse ved bruk av strømlinjer, og heterogenitetsmål fra en parameter kalt diffusiv
flukttid (”diffusive time of flight”). Permeabilitetsbeskrivelsen deler gjennomsnittsperme-
abiliteten over en reservoarmodell opp i hydraulisk konduktans, tortuositet, ”innsnevring”
og effektivt bulkvolum. Nye mål har videre blitt sammenlignet med eksisterende dy-
namiske heterogenitetsmål. I tillegg har den nødvendige koden for å beregne nye og
eksisterende heterogenitetsmål blitt implementert som en utvidelse til Matlab Reservoir
Simulation Toolbox (MRST), som er et verktøy for reservoarsimulering og evaluering med
åpen kildekode, som er utviklet av SINTEF. Koden vil bli delt med MRST-gruppen hos
SINTEF, og kan bli inkludert i kommende utgivelser av programvaren.

Resultatene viser at flere heterogenitetsmål er nært korrelert med forventet utvinning. Mål
fra diffusiv flukttid var mer lovende enn mål basert på permeabilitetsmodellen, selv om
spesielt tortuositet også viser korrelasjon med utvinning. De beste korrelasjonen ble deri-
mot funnet blant noen av de eksiterende heterogenitetsmålene, spesielt sveipe-effektivitet
ved ett og to porevolum injisert og den dynamiske Lorenz-koeffisienten.

iii

De beste eksisterende målene ga en Pearson-korrelasjonskoeffisient på over 0.9, noe som
er meget signifikant. De nære korrelasjonene er interessante, ettersom de indikerer at
strømningsfeltene fra løsninger av enfasestrømning under stabile forhold, som heterogen-
itetsmålene er basert på, har likheter med de gjennomsnittlige strømningsfeltene under
flerfasesimuleringer.

iv

Preface

This thesis has been written during the spring of 2018, as the final work of a Master
of Science in Petroleum Engineering with specialization in Reservoir Engineering and
Petrophysics at the Norwegian University of Science and Technology (NTNU).

I would like to express my gratitude to my supervisor Associate Professor Carl Fredrik
Berg (NTNU). He has introduced me to an interesting topic, and followed up with guid-
ance and comments during the entire project period. Hopefully he has enjoyed our many
discussions as much as I have. I would also like to thank the team at SINTEF that de-
velops the open-source software MRST, and especially my co-supervisor Stein Krogstad
(SINTEF Digital), who has given feedback and help whenever I have asked for it.

Finally, I would like to thank friends, fellow students and family that have motivated me,
challenged me and cared for me, over the last 24 years.

v

vi

Table of Contents

Summary i

Sammendrag iii

Preface v

Nomenclature xv

1 Introduction 1
1.1 Structure of the Thesis . 3

2 Background 5
2.1 Streamlines and Streamtubes in Porous Media 5

2.1.1 Streamlines . 5
2.1.2 Streamtubes . 8

2.2 Time of Flight . 9
2.2.1 Particle Time of Flight . 9
2.2.2 Diffusive Time of Flight . 10

2.3 Heterogeneity Measures . 15
2.3.1 Static Heterogeneity Measures 15

2.3.1.1 Lorenz Coefficient . 16
2.3.1.2 Dykstra-Parsons Coefficient 16

2.3.2 Dynamic Heterogeneity Measures 17
2.3.2.1 Lorenz Coefficient . 18
2.3.2.2 Flow Heterogeneity Index 18
2.3.2.3 Koval Factor . 19

vii

2.3.2.4 Vorticity Factor . 19
2.3.2.5 Coefficient of Variance for Time of Flight 20

2.4 Geological Model: SPE10, Model 2 . 21

3 Methodology 23
3.1 Streamline Tracking and Time of Flight

Pollock’s Algorithm . 23
3.1.1 Algorithm . 23
3.1.2 Expansion of MRST Implementation 26

3.1.2.1 Velocity Vector . 27
3.1.2.2 Streamline Lengths 27
3.1.2.3 Pressure Gradients . 28
3.1.2.4 Periodic Boundary Conditions 32

3.2 Diffusive Time of Flight Using Fast Marching Method 33
3.2.1 Algorithm . 33

3.3 Permeability Description Using Streamlines 36
3.3.1 Theory . 36
3.3.2 Tortuosity τ(S) . 38
3.3.3 Hydraulic Conductance B(S) 39
3.3.4 Constriction C(S) . 39
3.3.5 Effective Conductance, Tortuosity and Constriction 40

3.4 New Heterogeneity Measures . 42
3.4.1 Tortuosity and Constriction Based Heterogeneity Measures 42
3.4.2 Sweep Efficiency From Diffusive Time of Flight 43

3.5 Setup for Numerical Results . 44
3.5.1 Single-Phase Flow Experiments 44
3.5.2 Waterflooding and Tertiary Polymer Injection 45

4 Results 47
4.1 Streamlines Tracked With Pollock Algorithm 47
4.2 Particle and Diffusive Time of Flight . 49
4.3 Uncertainty Analysis . 49

4.3.1 Expanded Pollock Algorithm . 50
4.3.1.1 Streamline Length . 50
4.3.1.2 Pressure Gradient Method 52
4.3.1.3 Number of Streamlines 54

4.3.2 Fast Marching Method for Diffusive Time of Flight 55
4.4 Permeability description Using Streamlines 57
4.5 Heterogeneity Measures . 57

viii

5 Discussion 61
5.1 Effect of Boundary Conditions on Streamlines 61
5.2 Particle and Diffusive Time of Flight . 62
5.3 Uncertainty Analysis . 64

5.3.1 Expanded Pollock Algorithm . 65
5.3.1.1 Streamline Length . 65
5.3.1.2 Pressure Gradient . 65
5.3.1.3 Number of Streamlines 66

5.3.2 Fast Marching Method for Diffusive Time of Flight 67
5.4 Heterogeneity Measures . 68

5.4.1 Existing Heterogeneity Measures 69
5.4.2 New Potential Heterogeneity Measures 72

6 Conclusions 77

7 Recommendations for Further Work 79

Bibliography 80

Appendices 84

A MRST Code 85
A.1 Heterogeneity Measure Script . 85
A.2 Heterogeneity Measure Script, Periodic Grid 89
A.3 Extended Pollock Algorithm . 93
A.4 Fast Marching Diffusive Time of Flight 102
A.5 Permeability Description Model . 105

A.5.1 Streamline Parameters . 105
A.5.2 Effective Model Parameters . 106

B MRST Code for Linear and Trilinear Interpolation of Pressure Gradient 109
B.1 Linear Interpolation . 109
B.2 Trilinear Interpolation . 110

ix

x

List of Figures

2.1 F-Φ curve for a model with Lorenz coefficient = 0.67. 17
2.2 Reservoir model: SPE10 model 2. Porosity and permeability fields. . . . 22
2.3 Reservoir model: SPE10 model 2. Porosity and permeability distributions. 22

3.1 Cell to visualize Pollock’s approximations. 24
3.2 Illustration of straight line approximation for streamline lengths. 27
3.3 Illustration of linear pressure interpolation. 29
3.4 Illustration of trilinear pressure interpolation. 31
3.5 Visualization of neighboring cells that affect the trilinear interpolation

method. 31
3.6 Streamline in periodic grid. 32
3.7 Flow chart for Fast Marching Method. 34
3.8 Numerical stencil for Fast Marching Method. 35
3.9 Model of Darcy’s law over SPE10 layer 80. 37
3.10 Single layer setup for numerical results. 45

4.1 Streamlines in a Tarbert layer (layer 21) for no flow and periodic boundaries. 48
4.2 Streamlines in an Upper Ness layer (layer 68) for no flow and periodic

boundaries. 48
4.3 Comparison of particle and diffusive times of flight. 50
4.4 Mean relative errors of streamline lengths. 51
4.5 Max relative errors of streamline lengths. 51
4.6 Mean relative error of effective hydraulic conductance as a function of

minimum step length, for linear interpolation method. 53
4.7 Layer relative errors of effective hydraulic conductance for each pressure

gradient method. 53

xi

4.8 Relative error of hydraulic conductance Be as a function of the number of
streamlines. 54

4.9 Relative error of the Lorenz coefficient as a function of the number of
streamlines. 56

4.10 Comparison of radial diffusive time of flight and analytic solution in a
homogeneous and isotropic model. 56

5.1 Layer permeability increase with periodic boundaries instead of no flow. . 62
5.2 Permeability field and streamlines for no flow and periodic boundaries in

layer 30. 63
5.3 Flux through each cell for no flow and periodic boundaries in layer 30. . . 63
5.4 Comparison of particle time of flight and diffusive time of flight squared

at the time of breakthrough. 64
5.5 ”Mild” Manhattan distance effect in Fast Marching Method. 68
5.6 Dynamic Lorenz coefficient vs recovery. 69
5.7 Vorticity coefficient vs recovery. 70
5.8 Flow heterogeneity index vs recovery. 70
5.9 Koval factor (from flow) vs recovery. 70
5.10 Volumetric sweep efficiency at flow breakthrough vs recovery. 70
5.11 Coefficient of variation of time of flight vs recovery. 71
5.12 Volumetric sweep efficiency at 1 pore volume injected vs recovery. 71
5.13 Volumetric sweep efficiency at 2 pore volumes injected vs recovery. . . . 71
5.14 Inverse effective constriction factor vs effective tortuosity. 72
5.15 Vorticity index vs effective tortuosity factor. 73
5.16 Effective tortuosity factor vs recovery. 74
5.17 Tortuosity variance vs recovery. 74
5.18 Coefficient of variation of tortuosity vs recovery. 74
5.19 Inverse of effective constriction factor vs recovery. 75
5.20 Variance of inverse constriction factor vs recovery. 75
5.21 Coefficient of variation of inverse of constriction factor vs recovery. . . . 75
5.22 Volumetric diffusive sweep efficiency at breakthrough vs recovery. 75
5.23 Diffusive Koval Factor vs recovery. 76

xii

List of Tables

4.1 Key Data for Pressure Method Comparison 54
4.2 Streamline Based Permeability Parameters 59
4.3 Existing and Potential Heterogeneity Measures for SPE10 Layers 60

xiii

xiv

Nomenclature

Abbreviations

DTOF Diffusive time of flight

FHI Flow heterogeneity index

LHS Left-hand side

MRST Matlab Reservoir Simulation Toolbox

PVI Pore volumes injected

RF Recovery factor

SPE Society of Petroleum Engineers

Subscripts

α Fluid phase

e Effective

i, j, k Counters, usually in the x, y and z directions

src Source or sink term

x, y, z Directions in a Cartesian coordinate system.

b Breakthrough

e Effective

inj Injected

xv

inv Investigation

p Pore

Symbols

β Magnitude function for streamline Darcy velocity

ε Relative error

P̂ Fourier transformed pressure function

Q̂ Fluid discharge through a streamtube cross-section

κ Streamline permeability factor

λ, χ Stream surfaces (also known as stream functions)

K Permeability tensor

S Set of streamlines

S Streamline

µ Viscosity

ω Various uses: 1) Frequency 2) Vorticity

Φ Storage capacity

φ Porosity

σ Standard deviation

τ Tortuosity

τd Diffusive time of flight

τt Time of flight of a neutral particle

~l Unit tangent vector

~n Normal vector

~Q Volumetric rate vector

~q Darcy velocity vector

~v Effective velocity of a neutral particle

~x Position vector [x, y, z]

A Cross-sectional area

xvi

Ak, A0 Amplitude-related terms

B Constriction factor

B Hydraulic conductance

ct Total compressibility

CV Coefficient of variation

dQS Rate of infinitesimal streamtube

EV Displacement efficiency

EV Volumetric sweep efficiency

F Flow capacity

h Various uses: 1) Thickness 2) Horizontal

HK Koval factor

Hs Shear heterogeneity index

HV Vorticity index

J Determinant of Jacobian

k Permeability

kD Layer permeability from Darcy’s law over full model

Lc Lorenz coefficient

Ln Estimated length of streamline with using n substeps

p Pressure

Q Volumetric flow rate

q Darcy velocity

r Various uses: 1) Radius 2) Ratio

S Streamtube cross-section with boundary δS

s Distance

t Time

tD Dimensionless time

V Volume

xvii

xviii Nomenclature

vi Velocity in direction i

VDP Dykstra-Parsons coefficient

Units

cP Centipoise

m Meter

mD Millidarcy

Pa Pascal

s Second

kg Kilogram

Chapter 1
Introduction

The ultimate goal of reservoir engineering is the optimal exploitation of hydrocarbon re-
sources. However, due to the limited data and tremendous complexity of hydrocarbon
reservoirs, the optimal solution is not realistically achievable. Ever since the famous ex-
periments by Darcy (1856), 3 years before what has become known as the beginning of the
modern petroleum industry with the discovery of oil in 1859 in Titusville (Pennsylvania),
engineers have known that flow in porous media is governed by Darcy’s law. Darcy’s law
can be expressed as

~q =
~Q

A
= −K

µ
∇p , (1.1)

where the Darcy velocity ~q is the volumetric flow rate ~Q per cross-sectional area A of
the porous medium; K is the permeability tensor; µ is the fluid viscosity, and ∇p is the
pressure gradient. The permeability tensor K is defined as

K =

kxx kxy kxz

kyx kyy kyz

kzx kzy kzz

 , (1.2)

which can be reduced to a scalar k under the assumption of an isotropic permeability field.
While the permeability is a rock parameter, and Darcy’s law only holds for single-phase,
the concept of relative permeability has later been introduced to extend the use of Equation
(1.1) to multiphase systems (Wyckoff and Botset, 1936). The relative permeability of a

1

2 Chapter 1. Introduction

phase α is defined as

krα =
kα
k

. (1.3)

Lack of data and computational power limited the use of Darcy’s law to mostly analytic
solutions for a long time. The introduction of computers then revolutionized the field of
reservoir engineering, where reservoir simulations based on numerical models now play a
major role. Reservoir models are created by incorporating knowledge of e.g. fluid mod-
els, reservoir geology, fluid dynamics, petrophysical data and PVT properties, and then
history matched against available production data. The simulation models are applied to
forecast future production, and responses of various injection and production strategies.
Depending on the size, complexity and timespan of the model, each simulation can take
anything from seconds, to days or weeks. One may also create an ensemble of equiprob-
able geological realizations to include geological uncertainty, which will further increase
the computational expense. It is therefore not feasible to test every possible well location,
injection strategy or set of well controls with full field simulations, leaving the engineer to
choose a smaller set of cases for further testing.

The recovery factor is related to the goal of optimal exploitation of hydrocarbon resources,
as a higher recovery factor usually means more income. The exception is if the increased
recovery factor comes with a much longer production period, for which the discounted
income in a net present value calculation could decrease. The recovery factor is defined as

RF =
hydrocarbon produced

original hydrocarbon in place
= EDEV , (1.4)

where ED and EV are the displacement and volumetric sweep efficiencies, respectively.
The displacement efficiency is a factor that describes the fraction of the original hydrocar-
bon in place that is displaced in the swept zone. The volumetric sweep efficiency is the
fraction of the volume that is swept at any given time (e.g. during a waterflood), and it is
sometimes divided into a product of areal sweep efficiency and vertical sweep efficiency
(Lake, 1989). The examples used in this thesis are for two-dimensional horizontal flow, so
the volumetric sweep efficiency will equal the areal sweep efficiency (the fraction of the
area that is swept).

The sweep will be uniform in a homogeneous reservoir, and hence you would expect that
the volumetric sweep efficiency is large. On the other hand, in a heterogeneous reser-
voir the fluids will follow the paths of least resistance. The volumetric sweep efficiency
can therefore be drastically decreased, which will reduce the expected recovery factor.

1.1. Structure of the Thesis 3

Hence, it is clear that there is a connection between heterogeneity and expected recovery.
However, a major challenge lies in the fact that there is no universally accepted quantifica-
tion of reservoir heterogeneity. Several potential measures of heterogeneity have already
been proposed (see e.g. Koval, 1963; Lake, 1989; Jensen et al., 2000; Shook and Mitchell,
2009; Rashid et al., 2012), many of which are based on streamline calculations from sim-
ple single-phase and incompressible flow experiments. Additionally, as part of the author’s
Specialization Project at NTNU during the fall of 2017, a streamline based permeability
description at the pore scale (Berg, 2014) was extended to the Darcy scale (Nyvoll, 2017).
The goal of this thesis has been to improve the implementation of this model, in addition
to developing heterogeneity measures based on the model and other methodologies. The
measures have further been compared to existing heterogeneity measures, by correlating
the measures with oil recovery after waterflooding and recovery increase due to polymer
injection.

1.1 Structure of the Thesis

Chapter 2 is written to give the reader the necessary background for the later chapters.
The chapter covers theory on topics such as streamline and streamtube simulation, time
of flight, diffusive time of flight, existing heterogeneity measures, and it also presents the
reservoir model used for comparison of heterogeneity measures. Chapter 3 covers algo-
rithms for streamline simulation and diffusive time of flight, the model of permeability de-
scription from Nyvoll (2017), new potential heterogeneity measures that have been tested,
and the oil recovery simulations that have been used to benchmark the heterogeneity mea-
sures. Chapter 4 covers the main results of the work, including results from an uncertainty
analysis of the implementations. Discussions of the implementations and results then fol-
lows in Chapter 5. Chapter 6 covers the main conclusions, while recommendations for
further work are included in Chapter 7.

4 Chapter 1. Introduction

Chapter 2
Background

The following chapter will cover the essentials of the field of streamline simulation, and the
closely related time-of-flight. In addition, the chapter covers the theory of diffusive time
of flight, and the SPE10 reservoir model that is used for the examples in this work. The
methodologies applied later in this thesis are based mainly on the theory presented in this
chapter, and the understanding of this theory is therefore essential to the understanding
of the methodologies, results and discussions that follows in subsequent chapters. The
descriptions and derivations should be sufficiently comprehensive for the reader to follow
this thesis without specific knowledge of streamline simulation.

2.1 Streamlines and Streamtubes in Porous Media

2.1.1 Streamlines

A streamline is a line which is continuously tangential to the instantaneous velocity field of
fluid flow. It is related, but not necessarily equal, to pathlines and streaklines. Streamlines
are lines tangential to the current velocity field, and therefore not dependent of the velocity
field at previous times, while a pathline is a line that follows the trajectory of a neutral
particle in space over time. Lastly, a streakline is a line that connects all neutral particles
that have passed through a specific point in space (see e.g. Bear, 1972; Datta-Gupta and
King, 2007; Kreyszig, 2011). It follows that streamlines, pathlines and streaklines all will
coincide in steady-state flow.

5

6 Chapter 2. Background

Following the derivations in Bear (1972) and Nelson (1963) we have that a pathline is
described by the solution of

dx

vx(~x, t)
=

dy

vy(~x, t)
) =

dz

vz(~x, t)
= dt , (2.1)

where ~x = [x, y, z] is a position in space. Equation (2.1) can be parameterized to

λ = λ(~x, t) , χ = χ(~x, t) , s = s(~x, t) , (2.2)

where λ=constant , χ=constant and s=constant represent surfaces which at their intersec-
tion describe the position of a neutral particle in space at time t. As streamlines coincide
with pathlines in steady-state flow, we can parameterize streamlines similarly as in Equa-
tion (2.2) by removing the time term t. Streamlines are usually described as the intersec-
tion between two such surfaces, λ=constant and χ=constant, while the last coordinate, s,
is the distance along their intersection (which is the streamline). It is required that λ, χ and
s are independent, which means that the Jacobian of the coordinate transformation must
be non-zero (Bear, 1972):

J =

∣∣∣∣∣∣∣∣ ∂(λ, χ, s)

∂ (x, y, z)

∣∣∣∣∣∣∣∣ = ∇s · ∇λ×∇χ 6= 0 . (2.3)

Since the intersections of the surfaces described by λ and χ for various constants define
streamlines, they are necessarily continuously tangential to the velocity field. Hence, there
is no flow passing through them. Nelson (1963) therefore calls the functions λ and χ the
stream functions of three-dimensional flow, but they are also commonly known as stream
surfaces and bistreamfunctions (see e.g. Bear, 1972; Datta-Gupta and King, 2007). Due
to the fact that λ and χ are functions describing no-flow surfaces, we have that (Nelson,
1963; Bear, 1972)

∇λ · ~q = ∇χ · ~q = 0 , (2.4)

where the Darcy velocity ~q = [qx, qy, qz] is related to the effective particle velocity by
a scaling with the local porosity φ, as the Darcy velocity is related to the cross-sectional
area of the porous medium, while the actual cross-sectional area for fluid flow is the cross-
sectional area of the pore space. Hence,

~q = φ~v . (2.5)

2.1. Streamlines and Streamtubes in Porous Media 7

The no-flow conditions in Equation (2.4) can be written out to a set of two independent
equations:

qx
∂λ

∂x
+ qy

∂λ

∂y
+ qz

∂λ

∂z
= 0 , (2.6)

and

qx
∂χ

∂x
+ qy

∂χ

∂y
+ qz

∂χ

∂z
= 0 . (2.7)

Nelson (1963) and Bear (1972) then create a new set of equations by first eliminating qx,
qy and qz , one at a time. From Equation (2.7) we can find

qz = −qx

(
∂χ
∂x

)
(
∂χ
∂z

) − qy
(
∂χ
∂y

)
(
∂χ
∂z

) , (2.8)

and then insert Equation (2.8) into Equation (2.6) to find

qx

∂λ
∂x
−

(
∂χ
∂x

)
(
∂χ
∂z

) ∂λ
∂z

 = qy

(
∂χ
∂y

)
(
∂χ
∂z

) ∂λ
∂z
− ∂λ

∂y

 , (2.9)

which can be rewritten as

qx(
∂λ
∂y

∂χ
∂z −

∂λ
∂z

∂χ
∂y

) =
qy(

∂λ
∂z

∂χ
∂x −

∂λ
∂x

∂χ
∂z

) . (2.10)

Solving for qx and qy in a similar fashion as in Equations (2.8)-(2.10), we finally get the
relation

qx(
∂λ
∂y

∂χ
∂z −

∂λ
∂z

∂χ
∂y

) =
qy(

∂λ
∂z

∂χ
∂x −

∂λ
∂x

∂χ
∂z

) =
qz(

∂λ
∂x

∂χ
∂y −

∂λ
∂y

∂χ
∂x

) = β , (2.11)

or simply

~q = β∇λ×∇χ , (2.12)

8 Chapter 2. Background

where β = β(x, y, x) is a function that accounts for the magnitude (Nelson, 1963). The
function β has to be a function of only λ and χ for incompressible fluids as ∇ · ~q = 0.
Nelson (1963) justifies the choice of β = 1 for incompressible fluids, while Bear (1972)
says that it can be shown that in general β = 1/ρe, where ρe is the effective density which
is equal to 1 for incompressible flow (Datta-Gupta and King, 2007). Thus, we now have
an expression for the Darcy velocity in a streamline for incompressible flow, expressed by
the stream functions λ and χ:

~q = ∇λ×∇χ . (2.13)

The equations can also easily be reduced to a simpler expression for two-dimensional flow
by using z = constant as the stream surface λ, hence we get

~q2D = [qx, qy] = ∇z ×∇χ = [0, 0, 1]×
[
∂χ

∂x
,
∂χ

∂y

∂χ

∂z

]
=

[
−∂χ
∂y
,
∂χ

∂x

]
. (2.14)

Streamlines are of great use in the evaluation of flow patterns, and can e.g. be used to
visualize well pairs, drainage regions and stagnation points (Lie, 2016; Datta-Gupta and
King, 2007). They are an important part of the group of techniques called flow diagnostics,
which by (Lie, 2016, pg. 360) is defined as ”simple and controlled numerical flow exper-
iments that are run to probe a reservoir model, establish connections and basic volume
estimates, and quickly provide a qualitative picture of the flow patterns in the reservoir”.
However, we will see through the next sections that the opportunities of streamline-based
techniques reach far further than just visualization of flow patterns.

2.1.2 Streamtubes

Streamlines can be used to visualize flow paths in a reservoir, but they have infinitesimal
thickness and are therefore not suitable for volumetric calculations in a discretized reser-
voir model. Streamtubes in three dimensions are constructed for this. Say that we use two
pairs of stream surfaces: λ1 = λ, λ2 = λ+ ∆λ and χ1 = χ, χ2 = λ+ ∆χ. Returning to
the Jacobian in Equation (2.3), and inserting the new expression for incompressible Darcy
velocity ~q from Equation (2.13), Berg (2014) gets

J =

∣∣∣∣∣∣∣∣ ∂(λ, χ, s)

∂ (x, y, z)

∣∣∣∣∣∣∣∣ = ∇s · (∇λ×∇χ) =
~q

q
· ~q = q , (2.15)

2.2. Time of Flight 9

where Berg (2014) uses that ∇s is the unit vector in the direction of s, which also the
normalized Darcy velocity vector ~q/q is. Berg (2014) then uses Stokes’ theorem to show
that the fluid discharge Q̂ through a streamtube cross-section S with boundary δS is

Q̂ =

∫ ∫
S

~q · ~ndS =

∫
δS

λ∇χ ·~lds = (λ2 − λ1)(χ2 − χ1) = ∆λ∆χ , (2.16)

where ~l is the unit tangent to δS.

As the stream surfaces that defines the streamtube are all constants, the flow rate through
a streamtube also has to be constant. Hence, we can now do one-dimensional calculations
in streamtubes to simplify multi-dimensional problems (Datta-Gupta and King, 2007).

2.2 Time of Flight

2.2.1 Particle Time of Flight

The time of flight is the time it takes a neutral particle to reach a point in the reservoir. In
Sections 2.1.1 and 2.1.2 we have used a coordinate system for streamlines and streamtubes
described by the intersection of two stream functions λ and χ, together with a distance s
along the streamline. The distance s is though a function of velocity and time, and as the
velocity field can be calculated with a regular finite-difference method, we can exchange
the distance coordinate s with a time coordinate τt (Datta-Gupta and King, 2007). In
general, the time it takes to travel the distance s through a velocity field in space is the
integral of the reciprocal of the velocity over the path, which can be expressed as

τt =

∫ s

0

1

|~v|
ds =

∫ s

0

φ

|~q|
ds , (2.17)

in the second equality above the relation from Equation (2.5) is used, as the particle veloc-
ity is the effective velocity through the pore space, and not the Darcy velocity. Equation
(2.17) can also be written on the form (Datta-Gupta and King, 2007)

~q · ∇τt = φ . (2.18)

If we now return to the Jacobian of the transformation from Cartesian coordinates, this
time using τt as the last streamline coordinate, the same result as in Equation (2.18) can

10 Chapter 2. Background

be found (Datta-Gupta and King, 2007)

J =

∣∣∣∣∣∣∣∣∂(λ, χ, τt)

∂ (x, y, z)

∣∣∣∣∣∣∣∣ = ∇τt · (∇λ×∇χ) = ∇τt · ~q = φ . (2.19)

We will see that the time of flight is a very useful measurement. It can for example be used
to track the front of an injected fluid in time, which can be used in the evaluation of time
of breakthrough. As Equation (2.19) shows that there is a relation between the coordinate
transformation and the porosity φ, and hence also the pore volume, the time of flight can
also be used to find the displaced volume as a function of time (Datta-Gupta and King,
2007).

2.2.2 Diffusive Time of Flight

The neutral particle time of flight introduced in Section 2.2.1 is useful for many purposes,
but when matching it with field data, e.g. through a tracer test, it can take a long time
for the tracer to reach a producer. In addition, at the time the tracer reaches the well we
will necessarily have breakthrough of injection fluid, and it might already be too late to
initiate countermeasures. A pressure front will though arrive at a much earlier time, which
is a major reason for why transient well testing is used (Kamal, 2009; Datta-Gupta and
King, 2007). The diffusive time of flight, which is the defined as the time it takes the peak
of a pressure response from an impulse source/sink (Dirac-function) to reach a point in
the reservoir, has therefore been introduced (Vasco et al., 2000). Similar approaches had
already been used for diffusive electromagnetic imaging (Virieux et al., 1994), the scalar
wave equation (Fatemi et al., 1995) and diffusive tracer transport (Vasco and Datta-Gupta,
1999).

The diffusivity equation is the general equation for the pressure propagation in a reservoir,
and can on a general form be written as (Datta-Gupta and King, 2007)

φ (~x)µct
∂p (~x, t)

∂t
−∇ · (K∇p (~x, t)) = 0 , (2.20)

where ct is the total compressibility, and the other parameters are defined as before. This
equation is used as the basis for both the diffusive time of flight, and regular well testing.
In well testing the solution is usually found for a line source/sink, which basically means
a well with negligible wellbore radius relative to drainage radius. For a well in radial
transient flow, an appropriate approximation of the solution of the diffusivity equation at a
radius r and a time t after a change to a constant bottom hole rate Q is (Lee, 1982)

2.2. Time of Flight 11

p(r, t) = pi +
Qµ

kh
Ei

(
−φµctr2

4kt

)
, Ei(−x) = −

∫ ∞
x

e−ξ

ξ
dξ , (2.21)

where pi is the initial pressure, and h is the thickness of the formation. Boundaries and
other heterogeneities will induce discrepancies in the wellbore flowing pressure, and can
therefore be used for reservoir evaluation. It is though important to have a quantification of
the depth/radius at which such heterogeneity lies. This is what is commonly termed as the
radius/depth of investigation. As the pressure propagates as a wave, and not a sharp front,
there are several definitions of the radius of investigation (See e.g. Kuchuk, 2009). The
definition as used in Lee (1982) is though common, which is the radius of the maximum
pressure change. This radius can be found be setting the second derivative of the pressure
in Equation (2.21) equal to zero. By first finding the first derivative

dp(r, t)

dt
=
Qµ

kh

−e−φµctr24kt

t

 , (2.22)

and further the second derivative which is equal to 0

d2p(r, t)

dt2
=
Qµ

kh

e−φµctr
2

4kt

(
t− φµctr

2

4k

)
t3

 = 0 , (2.23)

we get the radius of investigation

rinv =

√
4kt

φµct
. (2.24)

Equivalently the time of maximum pressure change at a radius r is given as

tmax =
φµctr

2

4k
. (2.25)

The definition of diffusive time of flight by Vasco et al. (2000) is in fact analogous to the
definition of radius of investigation by Lee (1982), recognizing that a sudden rate change
∆Q in the definition of radius of investigation in Lee (1982) in fact can be regarded as
a Heaviside step-function, for which the derivative is the Dirac-function. The derivation
of the diffusive time of flight was introduced for isotropic media with an asymptotic ap-
proach in Vasco et al. (2000). Similar approaches had already been used for diffusive

12 Chapter 2. Background

electromagnetic propagation (Virieux et al., 1994) and tracer transport (Vasco and Datta-
Gupta, 1999). Vasco et al. (2000) define the location of the pressure front as the location
of the peak pressure response from an impulse source or sink, commonly known as the
peak of the Dirac-function. This is analogous to the definition of radius of investigation
in Lee (1982), recognizing that a sudden rate change can be regarded as a Heaviside step-
function, for which the derivative is the Dirac-function.

The derivation showed here will be a general form for a full tensor permeability K, and
therefore differs slightly from e.g. Vasco et al. (2000) and Kulkarni et al. (2001), though it
follows the same principles. Vasco et al. (2000) begin the derivation of the diffusive time
of flight by transforming equation (2.20) to the frequency domain by applying the Fourier
transform

P̂ (~x, ω) =
1√
2π

∫ ∞
−∞

p (~x, t) e−iωtdt , (2.26)

where ω is the frequency of the pressure wave. We can then write (2.20) as

∇ ·
(
K∇P̂ (~x, ω)

)
= φ (~x)µct (iω) P̂ (~x, ω) (2.27)

As we consider the pressure front as a wave that propagates through the porous medium,
an asymptotic solution of P̂ (~x, ω) can be found on the form (Fatemi et al., 1995; Vasco
et al., 2000)

P̂ (~x, ω) = e−
√
−iωτd(~x)

∞∑
k=0

Ak (~x)(√
iω
)k , (2.28)

where τd is a pseudo phase function of the wave, which is called the diffusive time of flight,
and Ak is a term related to the amplitude. A sharp front solution will be reduced to the
terms governed by rapid variation, thus the terms with the highest order of the frequency
ω. Reducing (2.28) to the single most frequency sensitive term leaves us with the zeroth-
order approximation (Virieux et al., 1994), also called the geometric ray approximation
(Kulkarni et al., 2001)

P̂ (~x, ω) = A0 (~x) e−
√
−iωτd(~x) . (2.29)

Inserting Equation (2.29) into Equation (2.27) we get

2.2. Time of Flight 13

∇ ·
(
K∇

(
A0 (~x) e−

√
−iωτd(~x)

))
= φ (~x)µct (−iω)A0 (~x) e−

√
−iωτd(~x) . (2.30)

We will leave the right hand side of equation (2.30) for a while, and focus on the left hand
side of the equation. By writing out the inner gradient of the left hand side, we get

LHS = ∇ ·
(
K
(
∇A0 (~x) e−

√
−iωτd(~x)

+∇τd (~x)A0 (~x)
(
−
√
−iω

)
e−
√
−iωτd(~x)

))
. (2.31)

The∇A0-term of (2.31) is neglected as it will be of a lower order of
√
−iω, and hence the

second term will dominate Equation (2.31) for a sharp front. By doing this we further get

LHS = A0 (~x)
(
−
√
−iω

)
e−
√
−iωτd(~x) (∇ ·K∇τd (~x))

+
((
−
√
−iω

)
∇
(
A0 (~x) e−

√
−iωτd(~x)

))
·K∇τd (~x) , (2.32)

where we can observe that the second term after the equality sign is equal to−
√
−iω times

the inner gradient at the left hand side of Equation (2.30). This gradient has already been
written out in Equation (2.31), where we also observed that one of the terms became of
higher order of

√
−iω. Hence, we can in the same way neglect the first term of Equation

(2.32), and we end up with

LHS = (−iω)A0 (~x) e−
√
−iωτd(~x) (∇τd (~x) ·K∇τd (~x)) . (2.33)

When inserting Equation (2.33) into the left hand side of Equation (2.30), and dividing
both sides by their common factors, we end up with a form of the Eikonal equation

∇τd (~x) ·K∇τd (~x) = φ (~x)µct , (2.34)

where all the frequency dependent terms are cancelled out. The Eikonal equation can be
efficiently solved with an implementation of the Fast Marching Method (FMM) presented
by Sethian (1996), which will be presented later. For an isotropic medium Equation (2.34)

14 Chapter 2. Background

reduces to

|∇τd (~x)| =

√
φ (~x)µct
k(~x)

, (2.35)

which is equal to the results found in Vasco et al. (2000) and Kulkarni et al. (2001) for
isotropic permeability. Returning to the expression for particle time of flight in Equation
(2.19), we have that as∇τt and ~q are in the same direction

|∇τt (~x)| = φ

q
. (2.36)

Comparing Equation (2.35) and Equation (2.36) we see that the expression for diffusive
time of flight in an isotropic medium has a similar structure to the expression for particle
time of flight. By dimensional analysis, it can also be seen that τd has the dimensions
of
√

time, and it is therefore not the actual travel time of the pressure front. To connect
τd to actual time Vasco et al. (2000) and Kulkarni et al. (2001) finds the inverse Fourier
transform of the zeroth order approximation in Equation (2.29) in accordance with the
solutions presented in Virieux et al. (1994). The limitation of this new expression for
pressure is that it is dependent on the flow regime. For 1D flow, the solution is (Virieux
et al., 1994)

p(~x, t) = A0 (~x)
τd(~x)

2
√
πt
e−

τ2
d(~x)

4t , (2.37)

while for 2D radial flow the solution is (Virieux et al., 1994; Kulkarni et al., 2001)

p(~x, t) = A0 (~x)
τd(~x)

2
√
πt
e−

τ2
d(~x)

4t , (2.38)

and lastly for 3D spherical flow is (Virieux et al., 1994; Kulkarni et al., 2001)

p(~x, t) = A0 (~x)
τd(~x)

2
√
πt3/2

e−
τ2
d(~x)

4t . (2.39)

As discussed previously in this section, the pressure solutions in Equations (2.37)-(2.39)
are results of an impulse source/sink, which is the derivative of a step function, and the
time of their maximum is therefore equivalent to the time of maximum pressure change
in Equation (2.25). The maximum of e.g. the case of 2D radial flow in Equation (2.38) is
(Kulkarni et al., 2001)

2.3. Heterogeneity Measures 15

∂p(~x, t)

∂t
= A0 (~x)

τd(~x)

2
√
π
e−

τ2
d(~x)

4t

(
− 1

t2
+
τ2
d (~x)

4t3

)
= 0 , (2.40)

and thus

tmax2D =
τ2
d (~x)

4
. (2.41)

Equivalent solutions for linear 1D flow and spherical 3D flow are tmax1D = τ2
d (~x)/2 and

tmax3D
= τ2

d (~x)/6 (Kulkarni et al., 2001; Virieux et al., 1994). For more complex flow
regimes, as the numerical examples we will look at in this thesis, the transformation from
τd to actual time is not as easy, but τd can still be used as a tool to evaluate the structure of
the pressure propagation.

2.3 Heterogeneity Measures

The following section will present some existing heterogeneity measures. There are two
main classes of heterogeneity measures (Jensen et al., 2000): static and dynamic. As the
terms imply, the static measures use the static parameters of the formation to estimate
the heterogeneity, while dynamic measures are based upon simple flow experiments. The
dynamic measures are therefore measures of the heterogeneity effect on flow, and hence
they are more likely to give better correlations with oil recovery. The dynamic measures
presented here will later be correlated with simulated recovery data, and compared with
potential new heterogeneity measures that are presented in Section 3.4.

2.3.1 Static Heterogeneity Measures

The following static models are heterogeneity models that are based on a vertical cross-
section, and assumes that the reservoir properties at the cross-section continues infinitely
away from the cross-section. A typical example is a vertical well passing through several
horizontal layers, for which the properties are assumed constant. Two parameters will
have to be introduced, the static Flow Capacity - F and the static Storage Capacity - Φ.
For a reservoir of n layers, each of thickness hi, permeability ki and porosity φi we have
that the relative velocity of a neutral particle in the different layers, is related to the ratio
ri = ki/φi (Lake, 1989). If the layers are first sorted by decreasing r, the cumulative flow
capacity up to layer j is

16 Chapter 2. Background

Fj =

∑j
i=1Qi∑n
i=1Qi

=

∑j
i=1 kihi∑n
i=1 kihi

, (2.42)

hence Fj is the fraction of the total flow that flows faster or at the same speed as layer j
(Lake, 1989). The cumulative storage capacity up to layer j is defined as

Φj =

∑j
i=1 Vpi∑n
i=1 Vpi

=

∑j
i=1 φihi∑n
i=1 φihi

, (2.43)

which is the fraction of the pore volume that flows faster or at the same speed as layer j.

2.3.1.1 Lorenz Coefficient

The static Lorenz coefficient can be obtained by plotting F as a function of Φ, called a
F-Φ curve (see e.g. Lake, 1989; Shook and Mitchell, 2009). The curve will be a straight
line from 0 to 1 for a homogeneous reservoir, and twice the area between the actual curve
and the line between 0 and 1 is used as a heterogeneity measure. The Lorenz coefficient is
thus defined as

Lc = 2

(∫ 1

0

FdΦ− 0.5

)
. (2.44)

Figure 2.1 shows a F-Φ diagram with a Lorenz coefficient Lc=0.67. As seen from both
Figure 2.1 and Equation (2.44), the Lorenz coefficient will always be in the range 0 (ho-
mogeneous) to 1 (infinitely heterogeneous).

2.3.1.2 Dykstra-Parsons Coefficient

The Dykstra-Parsons coefficient is in its simplest form defined as (see e.g. Jensen et al.,
2000)

VDP =
k50 − k84.1

k50
, (2.45)

where the permeabilities are sorted in descending order and k50 is the median permeability
and k84.1 is the permeability value for which 84.1% of the permeabilities are either equal
or higher. As 84.1% is one standard deviation, the coefficient is also called the coefficient

2.3. Heterogeneity Measures 17

Figure 2.1: F-Φ curve for a model with Lorenz coefficient = 0.67.

of permeability variance (Jensen et al., 2000). There is also a modified variant of the
Dykstra-Parsons coefficient for which the porosity heterogeneity is taken into account. If
we again use the ratio r = k/φ, and define the mean of all ri as r̄, then the modified
Dykstra-Parsons coefficient is (Lake, 1989)

VDP =

(
dF
dΦ

)
Φ=0.50

−
(
dF
dΦ

)
Φ=0.841(

dF
dΦ

)
Φ=0.50

=
r(Φ=0.50)

r̄ − r(Φ=0.841)
r̄

r(Φ=0.50)
r̄

=
r(Φ = 0.841)− r(Φ = 0.841)

r(Φ = 0.50)
, (2.46)

where r(Φ = 0.50) and r(Φ = 0.841) are the ratios k/φ of the latest layer to break
through when Φ reaches 0.5 and 0.841, respectively. Hence, the modified Dykstra-Parsons
coefficient is related to theF−Φ curve, but while the Lorenz coefficient uses the area under
the full curve, the Dykstra-Parsons coefficient only uses the relative difference between the
median of the derivative and 1 standard deviation above.

2.3.2 Dynamic Heterogeneity Measures

The dynamic heterogeneity measures are as mentioned based on flow experiments, and
we will see that streamline simulations are often useful to estimate them with limited
computational cost.

18 Chapter 2. Background

2.3.2.1 Lorenz Coefficient

The dynamic Lorenz coefficient is based on the same principle as the static which was
presented in Section 2.3.1.1, but it as applicable to more general reservoirs than the hor-
izontally layered model with equal layer size. Shook and Mitchell (2009) defines the
cumulative flow capacity for layer j, Fj , as

Fj =

∑j
i=1Qi∑n
i=1Qi

, (2.47)

where Qi is the volumetric flow rate of the ith streamtube to reach breakthrough. The
cumulative storage capacity is then

Φj =

∑j
i=1 Vpi∑n
i=1 Vpi

=

∑j
i=1Qiτti∑n
i=1Qiτti

, (2.48)

where τti is the time of flight for the ith streamline/streamtube at breakthrough. The time of
flight from inlet to outlet is also known as the residence time. Equation (2.48) represents a
complete piston like displacement in each streamtube, e.g. a single-phase or unit mobility
flow with constant rate. In such a case, the pore volume of the streamtube has to be the
product of rate and time. The dynamic Lorenz coefficient is then defined equally as the
static through Equation (2.44).

2.3.2.2 Flow Heterogeneity Index

Shook and Mitchell (2009) also briefly discusses a flow heterogeneity index (FHI) that can
be obtained from the F-Φ curve, referring to private communication with a C. Harrison in
Chevron. The FHI is defined as

FHI =
F

Φ

∣∣
∂F
∂Φ =1

. (2.49)

We observe that FHI is 1 for a homogeneous reservoir, and increasing with increasing
heterogeneity. In theory there is no upper limit, and a Lc=1 is equivalent to FHI=∞. Wu
et al. (2008) showed that the derivative of the F-Φ-curve also can be expressed as

∂F

∂Φ
=

τ̄t
τti

, (2.50)

2.3. Heterogeneity Measures 19

which means that the cumulative F/Φ ratio for the streamtube which has time of flight
equivalent to the average time of flight τ̄t can be used as the FHI measure, without finding
the derivative of the full F-Φ curve. For the case in Figure 2.1 the unit slope occurs at
Φ=0.33 and F=0.865, hence FHI=2.62. Shook and Mitchell (2009) conclude that FHI is a
good measure of heterogeneity, though the dynamic Lorenz coefficient is better.

2.3.2.3 Koval Factor

Koval (1963) originally introduced the Koval heterogeneity factor HK , which is defined
as Jensen et al. (2000)

HK =
1

tDb
, (2.51)

where tDb is the dimensionless breakthrough time for a single phase / unit mobility ratio
system equal to

tDb =
Vinjb

Vp
=
tb
∑n
i=1Qi∑n

i=1Qiτti
= EVb . (2.52)

The last equality of Equation (2.52) holds for a set of n streamtubes, each with a rate Qi
and breakthrough-time τti where we have a complete displacement, and where the shortest
time of breakthrough for the set of streamtubes is tb. We can see that the dimensionless
breakthrough time actually is the volumetric sweep efficiencyEV at time of breakthrough.
Idrobo et al. (2000) have used sweep efficiency at breakthrough as a heterogeneity measure
with good results, in addition to sweep efficiency at a later time. Shook and Mitchell
(2009) suggest that sweep efficiency at 1 pore volume injected (PVI) is a better choice,
as the breakthrough data in their results gave multiple curves for various permeability
correlation lengths, while 1 PVI gave a single trend. Equivalently to FHI in Section 2.3.2.2,
the Koval factor has a lower limit of 1 for heterogeneous models, and no upper limit.
Volumetric sweep efficiency at time of breakthrough is on the other hand limited by 0 for
an infinitely heterogeneous reservoir, and 1 for a homogeneous reservoir.

2.3.2.4 Vorticity Factor

There is a relation between permeability variation and rotation of the flow field. The curl
of the Darcy velocity, called the vorticity, is related to the gradient of the logarithm of the

20 Chapter 2. Background

permeability field. Under the assumption of incompressible fluid, constant viscosity and
no gravity effects, Heller (1963) showed that the vorticity can be expressed as

ω = ∇× ~q = ∇ ln k × ~q . (2.53)

The vorticity is a local measure. In the case where the flow direction and the gradient of
the logarithm of permeability are aligned, the cross product will be zero, and the flow is
locally vorticity free. The same happens if the permeability is locally homogeneous and
isotropic. It is obvious from Equation (2.53) that vorticity is related to heterogeneity in
the permeability field, but to use it as a heterogeneity measure, the local vorticities have
to be merged to an overall parameter. Rashid et al. (2010) introduces a parameter called
the shear homogeneity index Hs, which was further developed to a vorticity index Hv in
Rashid et al. (2012). The vorticity index is defined as

HV = CV (|ω|) =
σ|ω|

|ω|
, (2.54)

where CV (|ω|) is the so called coefficient of variation of the (absolute value of) vorticity,
which is the ratio of standard deviation

(
σ|ω|

)
and the mean

(
|ω|
)

. It can be noticed
that Rashid et al. (2010) and Rashid et al. (2012) defines the coefficient of variation as
the inverse of how it is defined here, and thus HV = 1/CV . The definition of CV in
Equation (2.54) is though more commonly used (see e.g. Jensen et al., 2000). HV will
generally decrease with increasing heterogeneity, as the mean usually increases faster than
the standard deviation. For a reservoir model of an infinite number of cells the limits are 0
and∞, but as more thoroughly discussed in (Rashid et al., 2010) and (Rashid et al., 2012),
a limited number of cells will introduce lower bounds > 0 and upper bounds < ∞ due
to the definition of variance of a limited set. We can also see that as long as the mean is
larger than the variance, HV will be below 1. Jensen et al. (2000) also covers the general
properties of the coefficient of variation in even more detail (see e.g. Chapter 6-2.1 in
Jensen et al., 2000).

2.3.2.5 Coefficient of Variance for Time of Flight

Shook and Mitchell (2009) also suggests to use the coefficient of variance for streamline
time of flight as a heterogeneity measure, but they observed the same effect as for break-
through sweep efficiency that was briefly discussed in Section 2.3.2.3: Multiple curves for
various permeability correlation lengths were observed when comparing with oil recovery,

2.4. Geological Model: SPE10, Model 2 21

and they would therefore not recommend the coefficient of time of flight variance. Shook
and Mitchell (2009) define this measure as

CV (τt) =
στt
τ̄t

, (2.55)

where στt is the rate weighted standard deviation of the residence time distribution, and τ̄t
is the rate weighted mean residence time (time from inlet to outlet).

2.4 Geological Model: SPE10, Model 2

The Society of Petroleum Engineers (SPE) released two synthetic models for the 10th SPE
Comparative Solution Project on Upscaling, a project which is summarized by Christie and
Blunt (2001). The second model has later been used been used in several studies within
the fields of upscaling and heterogeneity measures (see e.g.: Rasaei and Sahimi, 2007;
Rashid et al., 2012; Krogstad et al., 2017), which is the main reason why this model has
been chosen for this work. The model will later be referred to simply as the SPE10 model.
The model is already available in MRST’s spe10 module, though the raw data can also be
downloaded directly from the project homepage (Society of Petroleum Engineers, 2000).

The model consists of 1,122,000 equally sized grid cells, where each cell is 20ft × 20ft
× 2ft. The grid cells are distributed into 85 horizontal layers with 60 × 220 grid cells.
Each layer will in this thesis be used as a separate geological realization, such that all
examples are for two-dimensional horizontal flow in a single layer. The model is meant to
be representable for the upper part of the Ness formation and the Tarbert formation in the
North Sea Brent group. Many of the major oil fields in the North Sea have reservoirs in
the Brent group, such as the British Brent field and the Norwegian Statfjord and Gullfaks
fields. The Tarbert formation was deposited as a marginal marine environment (shoreface),
while the underlying Ness formation is thought to be a delta plain/fluvial environment
(Norwegian Petroleum Directorate, 2014).

The porosity and permeability fields are shown in Figure 2.2, where the Tarbert formation
is lifted to let us see a horizontal layer of the Upper Ness formation underneath. We ob-
serve that there is a close correlation between high porosity and high permeability regions.
The Tarbert layers have less sharp contrasts, but there is still a large variation of perme-
ability and porosity values. The fluvial channels in the Upper Ness formation (lower 50
layers) are easily observed as high permeability and porosity regions with sharp contrast
to the backdrop. The probability density functions of porosity and permeability for each

22 Chapter 2. Background

formation are shown in Figure 2.3. We observe that the Tarbert formation has a single nor-
mal distribution of porosity, while the Upper Ness formation is a composite of two normal
distributions, one for the channels and one for the backdrop. The permeability is for both
formations log-normal distributed, and again we observe that the distribution for Upper
Ness is a composite of two distributions.

Figure 2.2: SPE10 model 2. The 35 layers of the Tarbert formation are lifted to visualize a horizontal
section of the Upper Ness formation underneath. Vertical direction exaggerated by 5 times compared
to horizontal directions.

Figure 2.3: SPE10 model 2. Porosity and permeability distributions (free after Lie, 2016).

Chapter 3
Methodology

3.1 Streamline Tracking and Time of Flight
Pollock’s Algorithm

3.1.1 Algorithm

To be able to use streamline and streamtube based methodologies in reservoir modelling,
we need to have a way track them in space. For two-dimensional flow it is possible to
calculate a stream function by a corner-point discretization, from which we can trace the
streamlines that enclose a streamtube. When expanded to three dimensions this is though
not feasible, as calculating the geometry of the streamtube to obtain its cross-sectional
area at all points becomes a tedious task. A solution to this problem is to instead track
streamlines at the center of streamtubes, and then allocate a constant rate to them based on
their rate at the inlet, assuming that the streamline path is sufficiently representable for the
streamtube throughout the reservoir (Datta-Gupta and King, 2007). The most commonly
used methodology for streamline tracking in finite-difference models is the algorithm pre-
sented by Pollock (1988). The algorithm is based on linear interpolation of velocity inter-
nally in each cell to calculate cell-by-cell streamline paths. The algorithm provides mass
balance, but can result in unrealistic velocity discontinuities at cell intersections. Pollock’s
method can be described by taking a cell of dimensions ∆x, ∆y and ∆z in a Cartesian
coordinate system, as shown in Figure 3.1. The average flow velocity over each cell face
can be calculated by dividing the rate over the cell face by the cross-sectional area of the

23

24 Chapter 3. Methodology

pore volume at the cell face. As an example, the velocity vxi in the x-direction will be
used, but the velocities in all directions can be calculated similarly:

~vx1
~vx2

~vz1

~vz2

~vy1

~vy2

∆z

∆x

∆y

Figure 3.1: A cell with average velocities over each surface marked (free after Pollock, 1988).

vxi =
qxi
φ

=
Qxi
φA

=
Qxi

φ∆y∆z
, (3.1)

where Qxi is the flow rate over the cell face; A is the area of the cell face and; φ is the
porosity of the cell and vxi is the average flow velocity in the x-direction over the cell face.
The mass balance of the cell is then conserved through the following equation, with Qsrc
as the production/injection rate in the cell

φ

(
vx2 − vx1

∆x
+
vy2 − vy1

∆y
+
vz2 − vz1

∆z

)
=

Qsrc
∆x∆y∆z

, (3.2)

which is a discretization of

∇ · q = Qsrc . (3.3)

3.1. Streamline Tracking and Time of Flight
Pollock’s Algorithm 25

The velocity of a neutral particle can then be calculated by linear interpolation indepen-
dently in each direction as

~v(~x) =

vx(x)

vy(y)

vz(z)

 =

(x− x1)
vx2
−vx1

∆x + vx1

(y − y1)
vy2−vy1

∆y + vy1

(z − z1)
vz2−vz1

∆y + vz1

 . (3.4)

Pollock (1988) then calculates the time of flight to each exit cell face, and uses the lowest
value as the correct time of flight for the cell. From Equation (2.1) we have that

dτt =
dx

vx(x)
=

dy

vy(y)
=

dz

vz(z)
. (3.5)

Let us denote the point of entry as a = [xa, ya, za] and the point of exit b = [xb, yb, zb].
Each cell face are described by a constant x, y or z value, and the time of flight to reach
the cell face can therefore be found by integrating Equation (3.5) from point a to the cell
face for the relevant coordinate direction. The following example is given for time of
flight to the cell face described by x = x1, but the same methodology can be applied in all
directions

∆τtx1
=

∫ x1

xa

dx

(x− x1)
vx2
−vx1

∆x + vx1

=
∆x

vx2
− vx1

ln

(
vx1

vx (xa)

)
. (3.6)

A couple of special considerations need to be made. If vx (xa) = 0 in Equation (3.6)
above, there will not be a time of flight in the x-direction. Also, if vx1

= vx2
the integral

in Equation (3.6) will become undefined, while it in reality means a constant vx. The
correct equation for the time of flight to the surface x = x1 when vx1

= vx2
= vx is

therefore

∆τtx1
(vx = constant) =

∫ x1

xa

dx

vx
=

(x1 − xa)

vx
. (3.7)

The actual time of flight for the cell (∆τt) is the lowest positive time of flight of the
individual exit faces. After finding ∆τt for the cell, the exit point b = [xb, yb, zb] can be
found by inserting the known ∆τt into (3.6). For the x-coordinate we get

∆τt =

∫ xb

xa

dx

(x− x1)
vx2
−vx1

∆x + vx1

, (3.8)

26 Chapter 3. Methodology

which results in

xb = x1 +
∆x

vx2
− vx1

(
vx(xa) ∗ e

(
vx2−vx1

∆x ∆τt
)
− vx1

)
. (3.9)

The approaches for the other two directions y and z are equal. In the special case vx(xa) =

0 will xb = xa, and if vx = vx1
= vx2

then xb = xa + vx∆τt. After completing the
calculations for the current cell, the algorithm repeats the process in the cell that shares
cell face through which the streamline exits.

Pollock’s algorithm estimates both coordinates and time of flight for a streamline, and
hence we have a way to solve Equation (2.17). Increased coordinate density can be
achieved by taking substeps in time internally in the cell when calculating coordinates.

3.1.2 Expansion of MRST Implementation

An implementation of the Pollock algorithm is already available in the current version of
MRST (2017b), but some modifications to the current implementation of the algorithm
has been done during the work for this thesis. More information about the MRST software
is available in Lie (2016). The existing implementation returns up to three parameters for
each step:

• Streamline coordinates

• Current grid cell

• Time of Flight

In addition to these three, the modified version also returns:

• Velocity vector

• Streamline length

• Pressure gradient

In addition to new available outputs, support for periodic grids has also been added. Pe-
riodic grids can e.g. be useful in upscaling when the assumption of no flow boundaries is
not necessarily realistic. All the added functionalities will be described in the following
sections. The codes for the recommended new variation of the Pollock algorithm imple-
mentation is found in Appendix A.3.

3.1. Streamline Tracking and Time of Flight
Pollock’s Algorithm 27

3.1.2.1 Velocity Vector

The existing MRST implementation solves the particle movement in each grid cell by
transforming the coordinate system to a unit cell. Returning the velocity vector is therefore
simply done by linear interpolation similar to Equation (3.4). The velocity vector can be
used in the calculation of streamline lengths, as we will see in Section 3.1.2.2.

3.1.2.2 Streamline Lengths

Two options for streamline length calculations are added to the existing implementation.
The first option is a simple straight line approximation between each coordinate, visu-
alized in Figure 3.2. As it is a method of shortest path it will necessarily always be an
underestimation of the length, but it is guaranteed to converge towards the right solution
when increasing the number of substeps. Figure 3.2 shows an example of this straight line
approximation for a streamline passing through two cells with two substeps in each grid
cell. The distance s from point ~xi to ~xi+1 is simply

s =
√

(xi+1 − xi)2 + (yi+1 − yi)2 + (zi+1 − zi)2 . (3.10)

Figure 3.2: Streamline using two substeps. Solid line: Actual streamline. Dashed line: Straight line
approximation. Black dots: Evaluation points in Pollock algorithm.

As the Pollock algorithm can return the velocity vector in each evaluation point, it is also
possible to use these as a basis for length calculation. Velocity is the first derivative of
distance, hence the path length s from point a to point p can be expressed as

s =

∫ τtp

τta

|v(~x(t))|dt =

∫ τtp

τta

√
v2
x(t) + v2

y(t) + v2
z(t)dt , (3.11)

28 Chapter 3. Methodology

where τta and τtp are the respective time of flights at point a and point p. The velocity
components of a cell as functions of time can be found by a similar approach as Equation
(3.6), rearranging it for the unknown velocity at a time of flight τt and assuming that point
a is the entry point in the cell. For the x-direction the velocity expression becomes

vx (τt) = vx (xa) e
vx2
−vx1

∆x (τt−τta) . (3.12)

Inserting the componentwise velocities from Equation (3.12) into Equation (3.11) will
result in an integral with no simple analytic solution. The integral can be approximated
by using the mean velocity for each substep, leading to a trapezoidal approximation of the
velocity integral between the evaluation points. The length s between point ~xi and point
~xi+1 is then approximated as

s ≈ v(~xi) + v(~xi+1)

2
(τti+1 − τti) (3.13)

Increasing the number of substeps is therefore expected to improve this length approxi-
mation. An advantage of this method compared to the straight line method is that it is
not dependent on the Cartesian coordinates, which is useful for a periodic grid where the
streamline can exit on one side and immediately reenter on the opposite side of the model.

3.1.2.3 Pressure Gradients

According to Darcy’s law, the flow velocity will be in the negative pressure gradient di-
rection, hence the pressure should be continuously decreasing along a streamline. Pres-
sure values from a regular finite difference solver are cell-averaged pressures, which is a
challenge when trying to create accurate gradients following arbitrary streamlines. The
methods tested during the work for this thesis can be separated into 3 main groups

• Linear pressure interpolation between two cells

• Trilinear pressure interpolation between all surrounding cells

• 1D Darcy flow calculation

Linear Interpolation of Pressure
As the permeability and porosity is assumed constant within each cell, it is a relatively fair
to assume that it is sufficient to find the pressure drop between each cell face. The pressure
drop can then be divided by the step length between each cell, which was discussed in

3.1. Streamline Tracking and Time of Flight
Pollock’s Algorithm 29

Section 3.1.2.2. Figure 3.3 is an illustration of a streamline S through cell i and cell i+ 1.
The proposed approximation of the pressure pS at the streamline intersection is

pS ≈ pi +

 pj − pi
li
ki

+
lj
kj

(li
ki

)
, (3.14)

where pi and pj are the average pressures of the previous and next cells, ki and kj are the
permeabilities of the previous and next cells and li and lj are the lengths of the directional
vectors ~li and ~lj . In the case of permeability anisotropy, the permeability value used is the
magnitude of the product of the permeability tensor K and the unit vectors ~li/li and ~lj/lj .
Equation (3.14) can then be rewritten as

pS ≈ pi +

 pj − pi
li

|Ki
~li
li
|

+
lj

|Kj
~lj
lj
|

 li

|Ki
~li
li
|

 = pi +

 pj − pi
l2i
|Ki~li|

+
l2j

|Kj ~lj |

(l2i

|Ki~li|

)
.

(3.15)

S

pi pj

pSli lj
Ki Kj

Figure 3.3: Approximation of streamline pressure at cell surface. The streamline follows the dashed
line.

The permeability weighting is used as the pressure drop in Darcy’s law has a linear re-
lation to permeability, assuming that everything else is constant. Hence, the pressure is
likely to be closer to the pressure in the cell with the highest permeability. The main ad-
vantage of this method is that it ensures continuously decreasing pressures, as flow over an
intersection only occurs from a cell with higher pressure. As the pressures are interpolated
between neighboring cells, the pressure estimations will never be very far off, as long as
the finite volume solver that was used to generate the cell pressures is relatively accurate.
The main disadvantage is that the resolution is low, with only one gradient per cell. In

30 Chapter 3. Methodology

addition, the method does not use information from other cells. In e.g. the example of
Figure 3.3 the pressure is likely to be higher at the bottom of the figure than at the top, as
the main direction of the streamline is upwards. This effect is not caught by this method,
as it would give the same output for a streamline crossing the cell face close to the top of
the figure as a streamline crossing close to the bottom. The trilinear interpolation method
presented next tries to mitigate this issue.

Trilinear Interpolation of Pressure
A trilinear interpolation of the surrounding cell pressures can potentially increase the pres-
sure gradient resolution. The method proposed here contains of two main steps. First an
estimation of pressures in all vertices (cell corners), and then a trilinear interpolation of
pressure between the 8 vertices of each cell, assuming hexahedral and rectilinear grid cells.
The pressure estimation of each vertex is done similarly as the recently presented linear
interpolation method, but instead of using a weighted average of just two cells, we use all
cells that borders to each vertex. In 3D this means that up to 8 cells can influence the pres-
sure of each vertex. The pressure at any point in a cell can then be estimated by trilinear
interpolation in space between the pressures in the cells vertices. Figure 3.4 shows a unit
cell with pressures defined in each vertex. The trilinear pressure interpolation scheme for
a pressure p(~x) = p(x, y, z) in this unit cell becomes

p0,0 = p0,0,0(1− x) + p1,0,0x (3.16)

p0,1 = p0,0,1(1− x) + p1,0,1x (3.17)

p1,0 = p0,1,0(1− x) + p1,1,0x (3.18)

p1,1 = p0,1,1(1− x) + p1,1,1x (3.19)

p0 = p0,0(1− y) + p1,0y (3.20)

p1 = p0,1(1− y) + p1,1y (3.21)

p(x, y, z) = p0(1− z) + p1z . (3.22)

As seen from Equation (3.22) we are first interpolating in the x-direction, then the y-
direction, and at last the z-direction. There is no need for permeability weighting even in
the case of permeability anisotropy, assuming that x, y and z are also the main directions
of permeability anisotropy, since the x-, y- and z-directions are handled independently in
the interpolation. A useful property of trilinear interpolation is that at an outer surface the
pressure will only be a function of the vertices of the same surface, hence the calculated
pressure at a point on a surface between two cells will be the same no matter which cell you
use as a basis for the calculation. The pressure gradient can now be estimated by dividing

3.1. Streamline Tracking and Time of Flight
Pollock’s Algorithm 31

the pressure drop between two points by the step length discussed in Section 3.1.2.2.

p0,0,0 p1,0,0

p1,0,1p0,0,1

p1,1,0

p0,1,1 p1,1,1

p0,1,0

z

x

y

Figure 3.4: A cell with pressures defined in each vertex that can be used with trilinear interpolation

The main disadvantage of the trilinear interpolation method is that it does not guarantee
that the pressures are continuously decreasing. This is a result of the fact that pressures of
up to 27 cells can affect the resulting value. For the examples in this thesis which are all
for single layer horizontal flow the maximum number of cells is reduced to 9, but it is still
enough to introduce the possibility of pressure oscillations.

(a) The 9 cells affecting the pressures of the
4 vertices (black dots) of the central cell in 2D

(b) The 3x3x3=27 cells affecting the pressures of
the 8 vertices of the central cell (not seen) in 3D

Figure 3.5: The surrounding cells that affect the pressure interpolation in the central cell

1D Darcy Pressure Gradient
From 1D Darcy’s law we have that the pressure gradient is

32 Chapter 3. Methodology

∇p = −~qµ
k

= −φ~vµ
k

, (3.23)

where ~v is the velocity vector from the Pollock algorithm. Since the path of the stream-
line is known we also know the porosity φ and the permeability k, which in the case of
anisotropy is k = |K~v/v|. Using the mean velocity, porosity and permeability for each
substep, we find that the pressure gradient between ~xi and ~xi+1 can be approximated as

∇p == − (φ(~xi) + φ(~xi+1))(~v(~xi) + ~v(~xi+1))µ

2(ki + ki+1)
= , (3.24)

where ki = |K(~xi)
~v(~xi))
v(~xi))

| in the case of anisotropy.

3.1.2.4 Periodic Boundary Conditions

Constant pressure and/or no flow boundary conditions are not always good assumptions,
e.g. in an upscaling case where the boundaries are the boundary of a course grid cell,
and we want to do streamline simulations on the fine grid within the course cell. For
the SPE10 model, the layers are all rectangular cuboids, and it is likely that the reservoir
would actually continue outside each layer. A periodic boundary condition can be used
if we assume that the best guess for what lies outside each model is a copy of the model
itself. In practice, it basically means that we allow flow to exit through one boundary and
immediately let the same amount reenter through the same point at the opposite boundary
as illustrated with a streamline in Figure 3.6, with a constant pressure drop between the
two boundaries.

Figure 3.6: Streamline reentering at opposite side in a periodic grid

3.2. Diffusive Time of Flight Using Fast Marching Method 33

3.2 Diffusive Time of Flight Using Fast Marching Method

3.2.1 Algorithm

Eikonal equations such as Equation (2.34) can be numerically solved by a numerical
method originally presented in Sethian (1996) and Sethian (1999) called the Fast March-
ing Method, or simply FMM. FMM provides the means to track a continuously advancing
front, as the pressure front we are looking at for the diffusive time of flight. The imple-
mentation that is used in this thesis is a variety of FMM for anisotropic permeabilities
presented in Zhang et al. (2013). The main idea of FMM is that the advancing front can be
solved by an iterative solution with an upwind discretization, as the downwind points are
not yet affected by the front and hence they cannot contribute to the solution.

FMM is a stepwise iterative algorithm. Each cell can have three possible states: Ac-
cepted, which means that the cells current value is final; neighbor which means that the
cell borders at least one accepted cell; and far, which means the cell does not border to
an accepted cell. The general form of the algorithm can be described by the following
procedure (Sethian, 1999; Zhang et al., 2013), which is also presented as a flow chart in
Figure 3.7:

1. Initialization: Give a set of start cells their initial value, which usually for diffusive
time of flight is τd = 0, and then mark their state as accepted.

2. Identification: Identify unaccepted neighbors of accepted cells.

If no unaccepted neighbors: Quit.

3. Evaluation: Evaluate value for unaccepted neighbor based on upwind discretization
from their accepted neighbors. Mark as neighbors.

4. Acceptance: Mark the neighbor with the lowest value as accepted. Return to step 2.

To find the diffusive time of flight using FMM, we need to discretize Equation (2.34) to
be able to do the evaluation step. The derivation for a general hexahedral corner point
grid can be found in Zhang et al. (2013), but a Cartesian grid with principal permeability
directions in the x, y and z directions is assumed here, as it is sufficient for the examples
later. We can then rewrite Equation (2.34) as

34 Chapter 3. Methodology

Initialize
model:

Give start
cells their

initial value

Input:
Start cells
and initial

values

State: start
cells =

Accepted,
all other

cells: Far

Identify
new

unaccepted
neighbors

Any
unaccepted
neighbors

left?

Evaluate
unaccepted
neighbors

State:
Unaccepted
neighbors

= Neighbor

Neighbor(s)
with lowest
value: State
= Accepted

Stop

yes

no

Figure 3.7: Flow chart for Fast Marching Method.

∇τd (~x) ·K∇τd (~x) =

∂τd
∂x
∂τd
∂y
∂τd
∂z

 ·
kxx 0 0

0 kyy 0

0 0 kzz

∂τd
∂x
∂τd
∂y
∂τd
∂z

= kxx

(
∂τd
∂x

)2

+ kyy

(
∂τd
∂y

)2

+ kzz

(
∂τd
∂z

)2

= φ (~x)µct . (3.25)

As discussed by Zhang et al. (2013), the pressure front can reach the cell center from one
of four corners in 2D, or one of eight corners in 3D. Let us take the 3D numerical stencil
in Figure 3.8 as an example. The cell we are evaluating is (i, j, k), which can have up to
6 accepted neighbor cells. For e.g. the corner defined by (i − 1, j, k), (i, j, k + 1) and

3.2. Diffusive Time of Flight Using Fast Marching Method 35

(i, j − 1, k), a numerical approximation to Equation (3.25) is (Zhang et al., 2013)

(
τdi,j,k − τdi−1,j,k

)2
ζ2
i−1

+

(
τdi,j,k − τdi,j−1,k

)2
ζ2
j−1

+

(
τdi,j,k − τdi,j,k+1

)2
ζ2
k+1

= 1 , (3.26)

where it is assumed that cells (i − 1, j, k), (i, j, k + 1) and (i, j − 1, k) are all accepted.
Terms for unaccepted cells will be omitted, as they are not yet affected by the pressure
front, and can therefore cannot contribute to the fronts propagation towards (i, j, k). The
pressure front slowness, which is distance weighted between the cells, is governed by the
factor ζ, which for e.g. ζi−1 is defined as (Zhang et al., 2013)

ζi−1 =
l+(i− 1, j, k)√

kxx(i−1,j,k)

φ(i−1,j,k)µct

+
l−(i, j, k)√
kxx(i,j,k)

φ(i,j,k)µct

, (3.27)

where l+(i − 1, j, k) is the distance between the center of (i − 1, j, k) and the cell face
with (i, j, k), and l−(i, j, k) is the distance between the center of (i, j, k) and the cell face
with (i−1, j, k). Keep in mind that if the total compressibility is assumed to be a function
of porosity, then this value will also have to be handled similar to φ.

i, j, k + 1

i, j, k

i− 1, j, k i+ 1, j, k

i, j, k − 1

i, j − 1, k

i, j + 1, k

Figure 3.8: Numerical stencil in 3D (free after Sethian, 1999)

After computing all corners with at least one accepted neighbor, the updated value for the
cell is the lowest value obtained from the individual corners, as this value will represent
the first possible pressure front arrival. The cell can then be compared with the other
cells which are defined as neighbor, for which the lowest value is considered accepted in
accordance with the procedure illustrated in Figure 3.7. Note that the considered value for
a cell specified as neighbor only needs to be recalculated in the next iteration in the case

36 Chapter 3. Methodology

where one of its own neighbors becomes accepted.

3.3 Permeability Description Using Streamlines

3.3.1 Theory

Berg (2012) introduces a description of electric conductance in pore networks by the use
of tortuosity and constriction factors of infinitesimal streamtubes in the pore space of a
porous medium. The concept was further developed to describe permeability from a pore
structure in Berg (2014), which is also partly discussed in Berg and Held (2016). For
large scale reservoir modelling it is not possible to work with pore models, both as it is
impossible to image the pore structure of a full reservoir, and because the simulations
would be computationally impossible. It is therefore desirable to transfer the concept of
pore structure permeability description to a larger scale, where the flow is controlled by
Darcy’s law (herein denoted as the Darcy scale). Section 2.1 presented the theoretical
basis of streamlines and streamtubes in porous media at the Darcy scale. Combining this
with the methodology in Berg (2014), we will find an analogous model for permeability
description by the use of streamlines in Darcy scale reservoir models.

To describe the conversion from pore scale to Darcy scale permeability description, let us
consider a rectangular horizontal layer of length ∆s, cross-sectional area A, total pressure
drop over the layer ∆p, total volume V = A∆s and total flow rateQ as indicated in Figure
3.9. Similarly to Berg (2014) we now introduce a set of infinitesimal streamtubes S ∈ S,
where the set S of streamtubes covers the entire effective bulk volume Ve. The volume Ve
is then the total volume of the grid cells that contribute to flow between inlet and outlet.
From the divergence theorem we have

Q∆p =

∫
∂Ve

p(~q · ~n)dS =

∫
Ve

∇ · (p~q)dV =

∫
Ve

∇p · ~q + p(∇ · ~q)dV =

∫
Ve

∇p · ~qdV,

(3.28)

where∇ · ~q = 0 is used in the last equality. Combining Equation (3.28) with a 1D version
of Darcy’s law from Equation (1.1), then solving for permeability, we can get

k = −Qµ∆s

A∆p
= −Q∆pµ∆s2

V∆p2
=

1

V

∫
Ve

−µ(∇p · ~q)
(

∆s

∆p

)2

dV . (3.29)

The streamline coordinates can now be introduced to Equation (3.29). From Section 2.1.2

3.3. Permeability Description Using Streamlines 37

∆s

p1 p2∆p = p2 − p1

Q Q

Figure 3.9: Reservoir model. Permeability field from Upper Ness formation (SPE10 model layer
80).

we have that the flow rate of a streamtube has to be constant. We can therefore use Equa-
tion (2.16) and allocate an infinitesimal flow rate dQS = dλdχ to the infinitesimal stream-
tube S, so that

∫
S dQS = Q. We can now write

k =
1

V

∫
Ve

−µ(∇p · ~q)
(

∆s

∆p

)2

dV =
1

V

∫
S

∫
S
−µ∇p · ~q

q

(
∆s

∆p

)2

dsdQS

=
1

V

∫
S
−µ∆p

(
∆s

∆p

)2

dQS =
1

V

∫
S
κ(S)dQS =

Q

V
κ(S) , (3.30)

where 1
q is the Jacobian for the variable change shown in Equation (2.15), and κ(S) will be

called the streamline permeability factor. Similarly to Berg (2014) we will here separate
the streamline permeability factor in Equation (3.30) into streamline tortuosity, hydraulic
conductance and constriction factors, resulting in

κ(S) = −µ∆s2

∆p
=

(
∆s
lS

)2 ∫
S −

µ
∇pds

1
l2S

∆p
∫
S

1
∇pds

=
τ2(S)B(S)

C(S)
, (3.31)

38 Chapter 3. Methodology

where the streamline tortuosity τ(S), hydraulic conductivity B(S) and constriction factor
C(S) will be further described in the following sections. Observe from Equations (3.30)
and (3.31) that as µ, ∆s and ∆p are from the model and equal for all streamlines, the
streamline permeability factor κ(S) has to be a constant for all streamlines in a specific
model.

The expression in Equation (3.31) is almost entirely equal to the expression derived in
Berg (2014), but the pressure gradient at Darcy scale follows Darcy’s law for flow in
porous media, instead of Stokes’s law as in the pore scale model in Berg (2014). We will
therefore also see that the permeability descriptors have slightly different physical meaning
at the Darcy scale.

3.3.2 Tortuosity τ(S)

The streamline tortuosity is here defined as

τ(S) =
∆s

lS
, (3.32)

where lS is the actual length of streamline S. Observe that τ(S) is dimensionless. This
is the same definition as in Berg (2014) and Bear (1972), and equivalent to the definitions
in Berg (2012) and Berg and Held (2016), but the inverse of the tortuosity definition in
e.g. Carman (1937). We have that τ(S) ≤ 1, as ∆s is the shortest possible path. When
looking at flow at the pore scale, tortuosity occurs whenever the pore throats are not aligned
in the same direction in the pore network, forcing the fluid to find paths around the grains.
This form of tortuosity is though not the tortuosity we are considering at Darcy scale. As
mentioned in the presentation of the vorticity heterogeneity index in Section 2.3.2.4, it was
proved by Heller (1963) that the curl of the Darcy velocity field, known as the vorticity, is
a function of the gradient of the logarithm of the permeability field through the following
relation (assuming incompressible fluid with constant viscosity and no gravity effects):

∇× ~q = ∇ ln k × ~q . (3.33)

Equation (3.33) shows that the streamlines, which per definition follows the velocity field,
will not deviate from a straight line unless there is a changing permeability field. A line
drive in a homogeneous reservoir model will therefore lead to τ(S) = 1, as expected.
Heterogeneous models will have τ(S) < 1 unless the gradient of the permeability field is
in the same direction as the velocity field at all points. The latter would result in ∇× ~q =

3.3. Permeability Description Using Streamlines 39

∇ ln k × ~q = ~0, and no vorticity.

3.3.3 Hydraulic Conductance B(S)

The term for streamline hydraulic conductance in Equation (3.31) will be defined as

B(S) =

∫
S
− µ

∇p
ds . (3.34)

The physical meaning of the streamline hydraulic conductance B(S) can be further evalu-
ated. The local pressure gradient of an infinitesimal streamtube S with constant rate dQS
can be expressed by Darcy’s law as

∇p = −dQSµ
Ak

, (3.35)

where k is the local permeability in the direction of the streamtube, and A is the stream-
tubes instantaneous cross-sectional area. Inserting Equation (3.35) into Equation (3.34)
we can then get

B(S) =

∫
S
− µ

∇p
ds =

∫
S
k
A

dQS
ds =

∫
S

k

q
ds =

∫
S

k

φv
ds =

∫
S

k

φ
|∇τt|ds , (3.36)

where q and v are the magnitudes of Darcy velocity and effective particle velocity in the
direction of the streamline. As we can see from the expressions in Equation (3.36), the
streamline hydraulic conductance is related to the local permeability and flow velocity
over the length of the streamline, and it has dimensions area × time.

3.3.4 Constriction C(S)

After defining tortuosity and hydraulic conductance, the rest of Equation (3.31) will be
called the streamline constriction factor, which hence is defined as

1

l2S
∆p

∫
S

1

∇p
ds . (3.37)

The streamline constriction factor at the pore scale as derived in Berg (2014) was shown
to be a function of the variation of cross-sectional area of the streamtubes squared. This

40 Chapter 3. Methodology

was a result of the relation between the pressure gradient and the velocity in the Stokes
equation. The pressure gradient at Darcy scale is instead a function of the product of the
cross-sectional areaA of an infinitesimal streamtube and the permeability k in the direction
of the streamtube, as shown for the hydraulic conductance B(S) in the previous section.
The Darcy scale constriction factor C(S) is thus a function of the variation of Ak for an
infinitesimal streamtube around S, with a minimum value of 1, meaning no variation.

3.3.5 Effective Conductance, Tortuosity and Constriction

Like the methodology for streamline decomposition at the pore scale in Berg (2014), we
want to find effective permeability components. These will then be parameters for the
full model in question, and not just locally for individual streamtubes. They are therefore
more likely to be representative for the general reservoir behavior, and might be potential
measurements of e.g. heterogeneity as discussed later in Section 3.4.

The permeability described by pore scale permeability descriptors in Berg (2014) was a
direct function of the ratio of the volume that contributes to flow, namely the effective
porosity φe. The permeability at Darcy scale will also be dependent on the ratio of the
volume that contributes to flow, though the effective volume is no longer the effective pore
space, but instead the effective bulk volume Ve. Hence, we seek an expression for the
permeability of the model of the form:

k =
VeBeτ

2
e

V Ce
. (3.38)

Bear and Bachmat (1967) shows that the effective hydraulic conductance is the volume-
weighted average of the local hydraulic conductance. Where the volume in question is the
total effective bulk volume Ve. In a reservoir model, the total effective bulk volume will
simply be the total volume of all cells that contribute to flow between inlet and outlet. We
then get by averaging Equation (3.34)

Be =
1

Ve

∫
S
B(S)dQS . (3.39)

An interesting observation can be done by reformulating the expression, inserting Equation
3.34 into Equation 3.39. Remember that ds, −∇p and ~q all have the same direction. The
variables in the following derivation can therefore be regarded as scalars.

3.3. Permeability Description Using Streamlines 41

Be =
1

Ve

∫
S
B(S)dQS =

1

Ve

∫
S

∫
S
− µ

∇p
dsdQS

=
1

Ve

∫
S

∫
S
− qµ

q∇p
dsdQS =

1

Ve

∫
S

∫
S
−k
q
dsdQS =

1

Ve

∫
Ve

kdV = k̄ . (3.40)

The effective hydraulic conductance is thus in fact the volumetric average of the perme-
ability for the effective bulk volume Ve. Especially interesting is it to note that Be is in
fact the volumetric average of permeability in the direction of flow at any point. True
volumetric averaging can therefore now be performed even with permeability anisotropy
for steady-state flow fields, resulting in a single scalar permeability value. This value will
of course be dependent on direction of applied pressure gradient on the model, and it can
therefore not be regarded as a pure rock parameter.

To find the tortuosity factor τ2
e we will again use the special constriction free situation with

Ce = C(S) = 1, which as discussed in Section 3.3.4 means no variation in theAk product
for an infinitesimal streamtube along S. This leads to an expression which resembles the
expression for the effective tortuosity factor in Berg (2014):

τ2
e =

V k

VeBe
=

V 1
V

∫
S κ(S)dQS

Ve
1
Ve

∫
SB(S)dQS

=

∫
SB(S)τ2(S)dQS∫

SB(S)dQS
. (3.41)

The effective tortuosity is thus weighted against the streamline conductance B(S), with
more weight on tortuosity in high conductance streamlines. Finally, solving Equation
(3.38) for Ce and inserting the expressions from Equations (3.31), (3.39) and (3.41):

Ce =
VeBeτ

2
e

V k
=

∫
SB(S)τ2(S)dQS∫

S κ(S)dQS
=
κ(S)

∫
S C(S)dQS

κ(S)
∫
S dQS

=
1

Q

∫
S
C(S)dQS .

(3.42)

With this rate-weighted constriction factor; a possible decomposition of the permeability
for the full model to an effective hydraulic conductance factor, an effective tortuosity fac-
tor, an effective constriction factor and the ratio of effective to total bulk volume, is hence
shown to exist at Darcy scale for a porous medium with a streamline-based approach. The
relation is of the form we sought in Equation (3.38), and therefore equal to

k =
VeBeτ

2
e

V Ce
. (3.43)

The methodology is seen as analogous to the pore scale model in Berg (2014).

42 Chapter 3. Methodology

3.4 New Heterogeneity Measures

This section will cover new proposed heterogeneity measures. They will be compared
with existing heterogeneity measures in Chapter 4, using simulated recovery factors at
90% water cut in a two-phase oil/water system, and increased recovery due to polymer
injection as benchmarks. The setup for the examples are further described in Section 3.5.

3.4.1 Tortuosity and Constriction Based Heterogeneity Measures

The effective tortuosity factor τ2
e from Equation (3.41), is a rate and hydraulic conduc-

tance weighted mean tortuosity of the streamlines, and it is therefore a measure of the
average deviation of a straight path between inlet and outlet. Increased tortuosity is likely
to increase the probability of bypassed/unswept regions, and can therefore be a potential
heterogeneity measure in itself.

The coefficient of variation of the set of streamline tortuosities τ2(S) can also have poten-
tial as a heterogeneity measure. The advantage over the effective τ2

e is that it says more
about the disordinance of the flow field. If e.g. close to all the flow occurs in a channel,
as will be seen in some of the examples, the tortuosity of the individual streamlines can
be close to equal, as they follow the same channel. This will lead to a lower coefficient of
variation, even though the flow might be very tortuous. The mean tortuosity used will be
the weighted τ2

e from Equation (3.41), and the weighted variance is then

σ2
τ2 =

∫
SB(S)

(
τ2(S)− τ2

e

)2
dQS∫

SB(S)dQS
. (3.44)

The standard deviation is the square root of variance, hence the coefficient of variation
becomes

CV (τ2) =
στ2

τ2
e

. (3.45)

The other parameters of the permeability description in Equation (3.38) are not likely to
be good measures for heterogeneity, at least when compared with recovery potential. As
shown in Section 3.3.5, the hydraulic conductance Be is simply a volumetric average of
the permeability tangential to flow. In addition, we have seen that B(S) and Be does not
have the same dimensions (area×time and area, respectively), and they can therefore not
be compared directly in e.g. a variance similar to Equation (3.44). The ratio Ve/V of the

3.4. New Heterogeneity Measures 43

bulk volume that contributes to flow is related to heterogeneity, but it will not necessarily
have any effect on recovery, as the inactive parts often will be low porosity zones. The
last parameter, the constriction factor Ce, is definitely also related to heterogeneity, as it
is a measure of the variation of the pressure gradient along the flow path. On the other
hand, permeability variations perpendicular to the flow direction will not decrease the
areal sweep efficiency, as the flow direction will be the same even though it will increase
the constriction factor. Hence, the correlation with recovery is not necessarily strong.
However, correlations with a rate weighted variance and coefficient of variance of the
inverse of the constriction factor have been tested, defining the variance as

σ2
1
C

=
1

Q

∫
S

(
1

C(S)
− 1

Ce

)2

dQS . (3.46)

It should be noted that the inverse of the constriction factor is used instead of the constric-
tion factor alone, as it is the inverse that is the contribution in the permeability in Equation
(3.43). Still, the rate weighting is left the same way, as the inverse of the constriction will
have larger effect in streamtubes of higher rate. The coefficient of variation has then been
defined as

CV

(
1

C

)
=
σ 1
C

1
Ce

= σ 1
C
Ce . (3.47)

3.4.2 Sweep Efficiency From Diffusive Time of Flight

Section 2.3.2.3 presented heterogeneity measures based on streamline time of flight, in-
cluding the Koval factor, and the volumetric sweep efficiency at breakthrough and different
amounts of PVI. Diffusive time of flight can be used instead of particle time of flight to
generate similar measures. The fast marching method (FMM) described in Section 3.2
will return the diffusive time of flight to the individual grid cells. Combining this with the
porosities and bulk volumes of each cell, it is possible to obtain what will be called the dif-
fusive sweep efficiency at any given time. It will be defined as the ratio of the pore volume
that the pressure front has reached at any given time. While sweep efficiency from regular
time of flight is based on a steady-state flow regime, the diffusive time of flight is a more
dynamic parameter, as the pressure front propagates throughout space as a wave, without
”seeing” what is in front of it. The pressure front is therefore also expected to show some
sort of diffraction effects when e.g. passing through a narrow high permeability channel.

Sweep efficiency at a number of pore volumes injected is not a relevant parameter for dif-
fusion time of flight, as it is a measure of pressure propagation, and not mass flux. Potential

44 Chapter 3. Methodology

measures to investigate are the diffusive sweep efficiency at pressure front breakthrough,
and at the time of pressure front arrival to the last observer well section/cell. The inverse
of sweep efficiency at breakthrough is the equivalent of a diffusive Koval factor, which
will be compared to the regular Koval factor.

3.5 Setup for Numerical Results

The numerical examples and results in this thesis have been conducted on the SPE10 model
presented in Section 2.4. Each horizontal layer has been handled as an individual geolog-
ical realization, resulting in 85 two-dimensional models with horizontal flow. The main
goal has been to correlate simple single-phase experiments with more computationally
demanding two-phase simulations.

3.5.1 Single-Phase Flow Experiments

The single-phase steady-state flow fields were found with the already existing MRST
method incompTPFA (incompressible two-point flux approximation). The setup is shown
in Figure 3.10. It is a line drive with constant pressure boundaries on the two shortest
horizontal edges, and a constant pressure drop of 400 bars in the longest horizontal direc-
tions. The magnitude of the pressure drop is not important, as changing it will only scale
the flow rate according to Darcy’s law. The same applies to the fluid viscosity of 1cP .
The heterogeneity measures are all independent of the magnitude of the rate, and they are
therefore not affected (as long as there is a pressure drop over the model). Fluid density
has been set to 1014kg/m3, but also this parameter is irrelevant, as we only consider hor-
izontal flow, and there is therefore no gravity effect. The longest horizontal edges have
been set to either no flow or periodic conditions.

Streamlines were then tracked with the extended Pollock algorithm called pollockMod
(code in Appendix A.3), generating coordinates, time of flights, streamline lengths, ve-
locities and pressure gradients. These are used as a basis for the effective permeability
descriptors from Section 3.3 and the flow based heterogeneity measures (except the vor-
ticity factor, which is from Krogstad et al. (2017)).

The same setup was used for diffusive time of flight. No steady-state solution is required
for this method, though a total compressibility is needed. Similarly to flow, this is just a
scaling factor for the velocity, and does not affect the heterogeneity measures as long as it is
constant for the entire model. The method computeDTOF (code in Appendix A.4) supports

3.5. Setup for Numerical Results 45

No flow
or

periodic

No flow
or

periodic

p1 = 500 bars

p2 = 100 bars

Figure 3.10: Setup for a single layer. The permeability field is from layer 50 (Upper Ness).

a single compressibility value for the whole model, or a vector of compressibilities for each
cell. In this work a constant compressibility of ct = 4.4 ∗ 10−5bars−1 has been used.

An example setup that iterates through the individual layers and does the required calcu-
lations for the heterogeneity measures is shown in Appendix A.1.

3.5.2 Waterflooding and Tertiary Polymer Injection

The two-phase recovery data used to benchmark the heterogeneity measures are from
Krogstad et al. (2017). They presented a proxy for polymer flooding, which in addition
to recovery after waterflooding, and recovery increase due to polymer injection, also in-
cludes an estimation of the recovery increase due to improved macroscopic (volumetric)
sweep efficiency from polymer flooding. Simulations have been conducted in Eclipse to
verify that the results from Krogstad et al. (2017) for recovery at 90% water cut, and for
recovery increase due to polymer injection, are reasonable. The main principles of the

46 Chapter 3. Methodology

methodology will be briefly presented here to describe the physical meaning of the macro
sweep recovery increase data used for comparison with heterogeneity measures in Section
5.4, but for the full description of the model one may read Krogstad et al. (2017).

Krogstad et al. (2017) uses an immiscible two-phase model which includes three fluid
components: oil, water and polymer. The polymer can be dissolved in the water phase to
increase its viscosity, and thereby improve the mobility ratio to oil. At first, only water
is injected with a constant injection rate until the water cut reaches 90%. The recovery
factor at this point is what will be used as recovery at 90% water cut later. From this point
on, polymer is injected with the water at a constant concentration and rate, until a fixed
amount of polymer has been injected. As the layers of the SPE10 model can have different
pore volumes, the injected volume of polymer solution does not equal a fixed number of
pore volumes injected, but according to Krogstad et al. (2017) the fixed amount of poly-
mer solution corresponds to about 0.8 pore volumes for most layers. In addition, a second
polymer injection is computed from the same starting point (water cut 90%), where the
flow field has been locked to its state at the start of polymer injection. Thirdly, a regular
waterflood is continued from the point where the water cut reaches 90%, until the same
amount of water has been injected as for the two cases of polymer injection. The idea
is then that the difference between the polymer injections with locked flow fields and the
regular waterfloods will give the recovery increase due to improved sweep efficiency at
the microscopic level. The recovery difference between the polymer injections with un-
locked and locked flow fields should then represent the recovery increase due to increased
macroscopic sweep efficiency, which they show is related to heterogeneity. Lastly, the
total recovery increase due to polymer injection is the difference between the polymer
injections with unlocked flow fields, and the regular waterfloods.

The setup used by Krogstad et al. (2017) is similar to Figure 3.10, only that they use no
flow boundaries for all boundaries, and instead have a horizontal injector at one edge, and
a horizontal producer at the other. The differences of the flow fields between using wells or
constant pressure boundaries at the two shortest horizontal edges are minimal. The reason
why constant pressure boundaries have been used for the heterogeneity measures, is that
the current Pollock algorithm does not include handling of wells. This will also remove
any potential near-well effects.

Chapter 4
Results

4.1 Streamlines Tracked With Pollock Algorithm

The extended Pollock algorithm in MRST has been used to create sets of streamlines for
single-phase steady-state solutions of the horizontal layers of the SPE10 model. These
streamlines have later been used for calculations of permeability parameters and hetero-
geneity measures. A few example layers are shown here to have an idea of the structure of
the flow fields of both the Tarbert and Upper Ness formations, and the difference between
no flow boundaries and periodic boundary conditions. These conditions are only applied
to the longest horizontal direction, while the boundaries in the shortest horizontal direction
are defined as constant pressure boundaries, creating a line drive from the bottom of each
figure to the top. Only one streamline is used per inlet cell to make sure that the permeabil-
ity field behind is visible. Each streamline is just a visualization of the direction of the flow
field, and not the flow velocity. However, regions with short spacing between the stream-
lines are likely to be regions with higher flux than their surroundings. Figure 4.1 show the
streamlines for a Tarbert layer with no flow boundaries to the left and periodic boundaries
to the right. We can observe that for the no flow model the streamlines near the left and
right side of the model straightens out, while they are more tortuous in the periodic model
where they are allowed to cross the boundary. The same effect can be observed in layer
68 from the Upper Ness formation in Figure 4.2. We can also observe, especially from
the channelized Upper Ness model in Figure 4.2, that the streamlines gather even more in
the high permeability regions in the periodic model than in the no flow case. Comparing
Figure 4.1 and Figure 4.2 it is also clear that the streamline spacing is more uniform for

47

48 Chapter 4. Results

the Tarbert layer in Figure 4.1.

Figure 4.1: Streamlines in a Tarbert layer (layer 21) for no flow and periodic boundaries.

Figure 4.2: Streamlines in an Upper Ness layer (layer 68) for no flow and periodic boundaries.

4.2. Particle and Diffusive Time of Flight 49

4.2 Particle and Diffusive Time of Flight

Figure 4.3 compares the ”regular” flow based particle time of flight (τt) with the diffusive
time of flight (τd) for layer 21 in the SPE10 model, the same as in Figure 4.1. The colorbar
is defined from ”low” to ”high” time of flight / diffusive time of flight instead of numerical
values, as the diffusive time of flight for a heterogeneous medium cannot generally be
converted to actual time, as discussed in Section 2.2.2. In the same section we also saw
that the diffusive time of flight has the dimensions

√
time, while the particle time of flight

has dimensions of time. The diffusive time of flight has therefore been squared before
plotting to improve the comparison. The particle time of flight has been calculated using
the existing computeTimeOfFlight method in MRST, which is an upwind finite-volume
discretization of Equation (2.18) (See Lie, 2016, Section 5.3). It is therefore not based
on the streamline time of flight from the Pollock algorithm. The advantage of the finite-
volume method is that it gives a value for all cells, while a large number of streamlines
could be necessary to ensure that all cells are reached with the Pollock algorithm. The
computeTimeOfFlight method is therefore useful for visualization purposes. The diffusive
time of flight is found with the new method computeDTOF, which is an implementation of
the fast marching method presented in Section 3.2. Both examples are line drive bottom to
top with no flow boundaries at the longest sides. The particle time of flight is cut off at 5
times the mean time of flight to improve the visualization. It can be observed that the low
permeability region at the left side of the model as seen in Figure 4.1 has a greater influence
on the particle time of flight, compared to the diffusive time of flight. Additionally the far
right corner has a stalling point due to inactive cells which we can see is quickly reached
by the pressure front, while the flow rate is infinitesimal, and the particle time of flight is
therefore high.

4.3 Uncertainty Analysis

Before the solvers of streamline parameters and diffusive time of flight can be applied to
generate heterogeneity measures, it is important to quantify to which extent the solvers are
reliable. This section will therefore cover the results from an uncertainty analysis of the
implementations.

50 Chapter 4. Results

Figure 4.3: Comparison of particle time of flight (τt) to the left, and diffusive time of flight squared
(τ2d) to the right. Particle time of flight cutoff at 5 times mean time of flight.

4.3.1 Expanded Pollock Algorithm

4.3.1.1 Streamline Length

The new MRST implementation of the Pollock algorithm in Section 3.1.2 includes two
options for streamline length estimation, the shortest path between each coordinate and a
trapezoidal numerical integration of velocity. In addition to these two options, the length
estimation is also dependent on the number of substeps in each cell. Increasing the num-
ber of substeps will improve the length estimation, but we want to keep the number of
substeps as low as possible to decrease computational cost. To compare the methods, and
the effect of substeps, a test of 1000 substeps will be used as a proxy for the true length,
with 1 streamline starting at each inlet cell. The length error estimate εL for n substeps is
therefore defined as

εL =
|Ln − L1000|

L1000
, (4.1)

where Ln is the length of a streamline using n substeps and L1000 is the length of the same
streamline using 1000 substeps.

4.3. Uncertainty Analysis 51

Figure 4.4 shows the mean relative error εL. In case 4.4a the straight line length with
1000 substeps is used as L1000, while the velocity integral length is used in case 4.4b. We
can observe that the straight line method is superior with both reference points, but both
methods converge towards the right solution. The mean error is less than 1% already at 1
substep for the straight line method, and 3 substeps for the velocity integral method.

0 10 20 30 40 50 60 70 80 90 100

Substeps

10-7

10-6

10-5

10-4

10-3

10-2

10-1

M
e
a
n

L

Velocity integral

Straight line

(a) Reference: Straight line

0 10 20 30 40 50 60 70 80 90 100

Substeps

10-7

10-6

10-5

10-4

10-3

10-2

10-1

M
e
a
n

L

Velocity integral

Straight line

(b) Reference: Velocity integral

Figure 4.4: Mean relative error εL compared to L1000

In addition to the mean, it is also interesting to look at the worst case scenario. The two
subfigures in Figure 4.5 show the maximum relative error εL,max. We can observe that both
methods continuously improve when increasing the number of substeps, but the velocity
integral method is again inferior to the straight line.

0 10 20 30 40 50 60 70 80 90 100

Substeps

10-5

10-4

10-3

10-2

10-1

100

M
a
x

L

Velocity integral

Straight line

(a) Reference: Straight line

0 10 20 30 40 50 60 70 80 90 100

Substeps

10-5

10-4

10-3

10-2

10-1

100

M
a
x

L

Velocity integral

Straight line

(b) Reference: Velocity integral

Figure 4.5: Max relative error εL,max compared to L1000

52 Chapter 4. Results

4.3.1.2 Pressure Gradient Method

Section 3.1.2.3 presents three methods of pressure gradient estimation:

• Permeability weighted linear interpolation of pressure between two neighboring
cells

• Permeability weighted trilinear interpolation of pressure between all cell centers
surrounding a point

• 1D Darcy’s law along streamlines

As we saw from Equation (3.40), the effective hydraulic conductance Be should equal the
volumetric average of the permeability tangential to the flow field. Be is dependent on
the precision of the pressure gradient since B(S) is, as seen from Equation (3.34). As the
SPE10 layers are horizontally isotropic, and all examples in this thesis are for single layer
flow, the error estimate used to quantify the influence of various parameters will be

εBe =
|Be −kh|

kh
, (4.2)

where kh is the volumetric average of permeability in the volume contributing to flow.
This value is found by a setting a lower limit of flux through each cell which is positive
and slightly larger than the machine error. Cells that in theory should have no flow, but
due to the errors introduced through the numerical flow solver get very small rates, are
thus excluded. From the definition of B(S) and Be in Equations (3.34) and (3.39) we can
see that the effective hydraulic conductivity is a function of multiple variables, including
the streamtube pressure gradient, flow rate, path and length, the active bulk volume Ve
and the fluid viscosity which is assumed constant. The error estimate in Equation (4.2) is
therefore a measure of the total error of all these contributions, some of which may work
in different directions. It will be assumed that the relative change of εBe when changing
pressure gradient method will be an adequate measure to compare the methods. 5 substeps
per cell and 5 streamlines per inlet cell are used in all cases, with the straight line method
used for streamline step lengths. The linear interpolation method does not take the position
at the exit face into account, only the distance from the cell center. It is therefore prone
to inaccuracies if the travel distance internally in a cell is short. A minimum step length
parameter is therefore included, and the effect of this parameter can be seen in Figure 4.6.
As the lowest mean error is for minimum step length = 1.5 m (approximately half of the
shortest horizontal grid dimension), this value is used for the comparison with the other
methods.

4.3. Uncertainty Analysis 53

0 0.5 1 1.5 2 2.5 3

Minimum step length [m]

0.04

0.06

0.08

0.1

0.12

0.14

0.16

M
e
a
n

B
e

Linear interpolation method

Figure 4.6: Mean relative error εBe of effective hydraulic conductance as a function of minimum
step length, for linear interpolation method.

The three different pressure gradient methods are compared in Figure 4.7. We can observe
that especially for the Tarbert layers (layer 1 to 35) in the SPE10 model, the 1D Darcy
method is significantly better than the other two. The trilinear pressure interpolation gives
the least accurate results, especially in the channelized Upper Ness formation (layer 36
to 85). Key numbers are summarized in Table 4.1. Based on these results, the 1D Darcy
method is used for the rest of this thesis.

10 20 30 40 50 60 70 80

Layer

0

0.05

0.1

0.15

0.2

0.25

0.3

Linear interpolation

1D Darcy

Trilinear interpolation

Figure 4.7: Layer εBe for each pressure gradient method.

54 Chapter 4. Results

Table 4.1: Key Data for Pressure Method Comparison

Linear Interpolation 1D Darcy Trilinear Interpolation
Formation εBe max εBe εBe max εBe εBe max εBe
Tarbert 0.056 0.081 4.8e-4 0.002 0.067 0.079
Upper Ness 0.037 0.147 0.034 0.129 0.162 0.267
Full model 0.045 0.147 0.020 0.129 0.123 0.267

4.3.1.3 Number of Streamlines

Increasing the streamline density will decrease the streamtube cross-sectional area, and
therefore get us closer to the infinitesimal streamtube in the analytic solution. Hence, in-
creasing streamline density should improve results, but also increase the computational
expense. It is therefore of interest to investigate the achievable improvement from in-
creasing the number of streamlines. The error of effective hydraulic conductance from
Equation (4.2) will again be used as an error estimator, as Be is a rate weighted value of
B(S) for the set of streamlines. Figure 4.8a shows εBe for each layer of the SPE10 model
for n = 1, n = 5 and n = 10 streamlines started in each inlet cell. Figure 4.8b shows
the mean error εBe as a function of streamlines per inlet cell for the full SPE10 model, for
the Tarbert formation alone (layer 1-35), and for the Upper Ness formation alone (layer
36-85). 5 substeps per cell have been used for both figures. We can observe from both
Figure 4.8a and Figure 4.8b that the error is decreasing with increased streamline density
as expected, with the most rapid decline for few streamlines. The observed error of the
Tarbert layers are significantly less than for the channelized Upper Ness layers, and for
practical purposes negligible.

10 20 30 40 50 60 70 80

Layer

0

0.1

0.2

0.3

0.4

0.5

0.6

B
e

n=1

n=5

n=10

(a) Layer εBe for n = 1, n = 5 and
n = 10 streamlines per inlet cell

0 10 20 30 40 50 60 70 80 90 100

Streamlines per inlet cell

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

M
e

a
n

B

e

Full model

Tarbert

Upper Ness

(b) Mean error εBe as a function of the number
of streamlines per inlet cell

Figure 4.8: Relative error of hydraulic conductance Be as a function of the number of streamlines.

4.3. Uncertainty Analysis 55

Some of the heterogeneity measures presented in Section 2.3 and Section 3.4 are based
on streamline time of flight and the flow rate allocated to each streamtube, where a key
assumption is that the streamline time of flight is representable for the whole streamtube.
Reducing the number of streamlines means that each streamline time of flight has to be rep-
resentable for a larger flow rate, and the sensitivity of the heterogeneity measures should
therefore also be considered before choosing a specific streamline density. The streamline
time of flight is independent of the number of substeps in each cell in the MRST imple-
mentation, and the number of substeps will therefore not contribute to variations in the
heterogeneity measures. The dynamic Lorenz coefficient LC presented in Section 2.3.2.1
is only a function of the time of flight of each streamline and the allocated rates to the
streamtubes surrounding each streamline. One would therefore expect that LC is a reli-
able parameter to use for this sensitivity study. Assuming that LC for n = 100 streamlines
per inlet cell is close to the true LC we have a proxy for the relative error for n streamlines
per inlet cell given as

εLC =
|LC(n)− LC(n = 100)|

LC(n = 100)
. (4.3)

Figure 4.9a shows the relative error εLC for each layer of the SPE10 model for n = 1,
n = 5 and n = 10 streamlines per inlet cell using n=100 as the ”true” value. Similar to
εBe in Figure 4.8a we can observe that the errors are generally higher in the Upper Ness
formation (layer 36-85), and that they decrease with the number of streamlines. Figure
4.9b shows the mean error for the full model and the two formations individually, and
again we see the trend from Figure 4.8b where the Upper Ness formation is the main
contributor to errors.

4.3.2 Fast Marching Method for Diffusive Time of Flight

As discussed in Section 2.2.2 there are is an analytic solution to the relation between
diffusive time of flight in transient flow for a homogeneous and isotropic medium. This
is not the case for the SPE10 model, so a simpler model will be used to verify the results.
Using a horizontal homogeneous and isotropic layer, we can compare the results from
the analytic solution in Equation (2.25) with the diffusive time of flight from the FMM,
converted to actual time of flight with the relation in Equation 2.41. The relative error is
thus

εDTOF =
|tDTOF − tAnalytic|

tAnalytic
, (4.4)

56 Chapter 4. Results

10 20 30 40 50 60 70 80

Layer

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
L

c

n=1

n=5

n=10

(a) Layer εLC for n = 1, n = 5 and
n = 10 streamlines per inlet cell.

0 5 10 15 20 25 30 35 40 45 50

Streamlines per inlet cell

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

M
e

a
n

L

c

Full model

Tarbert

Upper Ness

(b) Mean error εLC as a function of the number
of streamlines per inlet cell.

Figure 4.9: Relative error of Lorenz coefficient LC as a function of the number of streamlines,
relative to LC when using 100 streamlines per inlet cell.

where tDTOF and tAnalytic are the times from Equation (2.41) and 2.25, respectively. Figure
4.10 shows a comparison of tDTOF and tAnalytic for a radial pressure front in a homogeneous
and isotropic model. The model is 101m x 101m x 1m with 10201 uniform cells of 1m x
1m x 1m. All cells have a permeability of 1 Darcy, 30% porosity, 1cP fluid viscosity and
a total compressibility of 5e-5 Pa-1. From the relative errors εDTOF in Subfigure 4.10c we
can observe that the relative errors are largest on the diagonals, and decrease with distance
from the origin. The mean relative error (εDTOF) is 0.044.

(a) tDTOF (b) tAnalytic (c) εDTOF

Figure 4.10: Comparison of radial diffusive time of flight and analytic solution in a homogeneous
and isotropic model.

4.4. Permeability description Using Streamlines 57

4.4 Permeability description Using Streamlines

The methodology from Section 3.3 for permeability description by the use of streamlines
has been applied on the 85 layers of the SPE10 model for both no flow and periodic bound-
ary conditions. The results are generated using the Pollock algorithm with 20 streamlines
per inlet cell and 10 substeps per cell. Table 4.2 contains the final results for both straight
line and velocity integrated streamline lengths for the no flow boundaries, and for the
velocity integrated lengths with periodic boundary conditions. 1D Darcy approximation
along streamlines are used for the pressure gradients, as it has proven to be the most of
precise of the evaluated methods. The steady-state flow field is found with the MRST
method incompTPFA. The labels of each column in Table 4.2 are defined as:

• kD: Layer permeability calculated with 1D Darcy’s law over the full model, as in
Equation (3.29). (Units: m2)

• kS : Layer permeability calculated from the streamline permeability descriptors as
in Equation (3.38). (Units: m2)

• Be: Effective hydraulic conductance. Equal to the volumetric permeability average
tangential to the flow field. (Units: m2)

• Ce: Inverse of effective constriction factor Ce. (Unitless)

• τ2
e : Effective tortuosity factor. (Unitless)

We can observe that the differences between straight and integral line length methods for
no flow boundaries are less than what can be expressed with two significant figures, as the
tables are equal. The largest relative difference between these two sub-tables in the original
data set was 0.003. The difference between no flow boundaries and periodic boundaries
are though more significant.

4.5 Heterogeneity Measures

Various existing and potential heterogeneity measures were presented in Section 2.3 and
Section 3.4. Table 4.3 shows summarizes results for several heterogeneity measures using
the no flow boundary condition and 1D darcy approximation for pressure gradients. This
means that they correspond to column 2 to 6 in Table 4.2. The measures are separated into
three groups: one with existing measures, a second with potential new measures based
on the proposed streamline based permeability descriptors, and a third with new potential

58 Chapter 4. Results

measures based on diffusive time of flight. The labels of each column in Table 4.3 are
defined as:

• HV : Vorticity factor. These results are from Krogstad et al. (2017)

• LC : Dynamic Lorenz coefficient

• FHI: Flow heterogeneity index

• HK : Koval factor (Both from particle and diffusive time of flight)

• EV,b: Volumetric sweep efficiency at breakthrough (Both from particle and diffusive
time of flight)

• CV (τt): Coefficient of variation of streamline time of flight (rate weighted)

• EV,1PV I : Volumetric sweep efficiency at 1 pore volume injected

• EV,2PV I : Volumetric sweep efficiency at 2 pore volumes injected

• σ2
τ2 : Variance of tortuosity factor

• CV (τ2): Coefficient of variation for the tortuosity factor

• σ2
1/C : Variance of the inverse of the constriction factor

• CV (1/C): Coefficient of variation of the inverse of the constriction factor

All the measures are unitless. Some layers are missing the vorticity factors from Krogstad
et al. (2017), as the two-phase simulations they used to correlate the heterogeneity measure
with did not converge for all layers, and they have therefore not reported the vorticity factor
for these layers.

4.5. Heterogeneity Measures 59

Table 4.2: Streamline Based Permeability Parameters

No Flow Boundaries, Straight Line Length No Flow Boundaries, Integral Line Length Periodic Boundaries, Integral Line Length
SPE10
Layer kD [m2] kS [m2] Be [m2] 1/Ce τ2

e kD [m2] kS [m2] Be [m2] 1/Ce τ2
e kD [m2] kS [m2] Be [m2] 1/Ce τ2

e

1 1.3E-15 1.3E-15 7.4E-14 2.5E-02 7.1E-01 1.3E-15 1.3E-15 7.4E-14 2.5E-02 7.1E-01 1.4E-15 1.5E-15 7.4E-14 2.7E-02 7.2E-01
2 5.1E-15 5.1E-15 2.0E-13 3.4E-02 7.8E-01 5.1E-15 5.1E-15 2.0E-13 3.4E-02 7.8E-01 5.3E-15 5.4E-15 2.0E-13 3.6E-02 7.7E-01
3 5.9E-15 6.0E-15 3.3E-13 2.7E-02 6.9E-01 5.9E-15 6.0E-15 3.3E-13 2.7E-02 6.9E-01 6.1E-15 6.2E-15 3.3E-13 2.8E-02 7.0E-01
4 1.3E-14 1.4E-14 1.2E-12 1.6E-02 7.1E-01 1.3E-14 1.4E-14 1.2E-12 1.6E-02 7.1E-01 1.4E-14 1.4E-14 1.2E-12 1.6E-02 7.5E-01
5 2.6E-15 2.7E-15 2.6E-13 1.5E-02 7.6E-01 2.6E-15 2.7E-15 2.6E-13 1.5E-02 7.6E-01 3.2E-15 3.3E-15 2.6E-13 1.8E-02 7.4E-01
6 1.0E-14 1.0E-14 2.9E-13 5.0E-02 7.2E-01 1.0E-14 1.0E-14 2.9E-13 5.0E-02 7.2E-01 1.1E-14 1.1E-14 2.9E-13 5.5E-02 7.3E-01
7 1.0E-14 1.0E-14 4.5E-13 2.9E-02 8.2E-01 1.0E-14 1.0E-14 4.5E-13 2.9E-02 8.2E-01 1.0E-14 1.1E-14 4.5E-13 3.0E-02 8.2E-01
8 1.8E-14 1.8E-14 4.1E-13 5.4E-02 7.9E-01 1.8E-14 1.8E-14 4.1E-13 5.4E-02 7.9E-01 1.8E-14 1.8E-14 4.1E-13 5.5E-02 7.9E-01
9 2.3E-14 2.4E-14 8.8E-13 3.3E-02 8.1E-01 2.3E-14 2.4E-14 8.8E-13 3.3E-02 8.1E-01 2.4E-14 2.5E-14 8.8E-13 3.5E-02 8.2E-01
10 9.9E-15 1.0E-14 5.4E-13 2.5E-02 7.5E-01 9.9E-15 1.0E-14 5.4E-13 2.5E-02 7.5E-01 1.1E-14 1.1E-14 5.4E-13 2.8E-02 7.4E-01
11 1.4E-14 1.4E-14 3.2E-13 6.0E-02 7.3E-01 1.4E-14 1.4E-14 3.2E-13 6.0E-02 7.3E-01 1.4E-14 1.5E-14 3.2E-13 6.4E-02 7.2E-01
12 1.2E-14 1.2E-14 3.8E-13 4.2E-02 7.7E-01 1.2E-14 1.2E-14 3.8E-13 4.2E-02 7.7E-01 1.2E-14 1.2E-14 3.8E-13 4.3E-02 7.7E-01
13 3.1E-14 3.2E-14 6.0E-13 7.0E-02 7.5E-01 3.1E-14 3.2E-14 6.0E-13 7.0E-02 7.5E-01 3.3E-14 3.3E-14 6.0E-13 7.3E-02 7.5E-01
14 1.8E-14 1.8E-14 6.4E-13 3.9E-02 7.4E-01 1.8E-14 1.8E-14 6.4E-13 3.9E-02 7.4E-01 2.0E-14 2.0E-14 6.4E-13 4.2E-02 7.4E-01
15 4.4E-14 4.4E-14 3.9E-13 1.6E-01 7.2E-01 4.4E-14 4.4E-14 3.9E-13 1.6E-01 7.2E-01 4.7E-14 4.8E-14 3.9E-13 1.7E-01 7.4E-01
16 2.6E-14 2.7E-14 2.6E-13 1.3E-01 7.7E-01 2.6E-14 2.7E-14 2.6E-13 1.3E-01 7.7E-01 2.7E-14 2.7E-14 2.6E-13 1.4E-01 7.7E-01
17 2.5E-14 2.6E-14 4.1E-13 8.0E-02 7.9E-01 2.5E-14 2.6E-14 4.1E-13 8.0E-02 7.9E-01 2.7E-14 2.7E-14 4.1E-13 8.3E-02 8.1E-01
18 3.1E-14 3.1E-14 9.0E-13 4.7E-02 7.3E-01 3.1E-14 3.1E-14 9.0E-13 4.7E-02 7.3E-01 3.2E-14 3.3E-14 9.0E-13 5.0E-02 7.3E-01
19 2.0E-14 2.0E-14 3.4E-13 8.3E-02 7.2E-01 2.0E-14 2.0E-14 3.4E-13 8.3E-02 7.2E-01 2.3E-14 2.3E-14 3.4E-13 1.1E-01 6.6E-01
20 2.4E-14 2.4E-14 2.3E-13 1.3E-01 8.1E-01 2.4E-14 2.4E-14 2.3E-13 1.3E-01 8.1E-01 2.4E-14 2.4E-14 2.3E-13 1.4E-01 7.9E-01
21 1.2E-14 1.3E-14 2.4E-13 6.9E-02 7.7E-01 1.2E-14 1.3E-14 2.4E-13 6.9E-02 7.7E-01 1.3E-14 1.3E-14 2.4E-13 6.9E-02 7.8E-01
22 1.5E-14 1.5E-14 4.2E-13 4.4E-02 8.1E-01 1.5E-14 1.5E-14 4.2E-13 4.4E-02 8.1E-01 1.6E-14 1.7E-14 4.2E-13 4.8E-02 8.3E-01
23 1.9E-14 1.9E-14 2.3E-13 1.1E-01 8.0E-01 1.9E-14 1.9E-14 2.3E-13 1.1E-01 8.0E-01 2.0E-14 2.0E-14 2.3E-13 1.1E-01 8.0E-01
24 8.7E-15 8.8E-15 9.2E-14 1.1E-01 8.3E-01 8.7E-15 8.8E-15 9.2E-14 1.1E-01 8.3E-01 8.9E-15 9.0E-15 9.2E-14 1.2E-01 8.3E-01
25 5.5E-15 5.5E-15 1.2E-13 6.5E-02 7.5E-01 5.5E-15 5.5E-15 1.2E-13 6.5E-02 7.5E-01 6.6E-15 6.6E-15 1.2E-13 8.1E-02 7.2E-01
26 5.7E-15 5.8E-15 1.9E-13 4.0E-02 7.6E-01 5.7E-15 5.8E-15 1.9E-13 4.0E-02 7.6E-01 6.4E-15 6.5E-15 1.9E-13 4.7E-02 7.4E-01
27 4.1E-15 4.2E-15 2.7E-13 2.1E-02 7.6E-01 4.1E-15 4.2E-15 2.7E-13 2.1E-02 7.6E-01 4.9E-15 5.0E-15 2.7E-13 2.5E-02 7.4E-01
28 1.9E-15 1.9E-15 7.3E-14 3.4E-02 7.9E-01 1.9E-15 1.9E-15 7.3E-14 3.4E-02 7.9E-01 2.2E-15 2.2E-15 7.3E-14 4.0E-02 7.7E-01
29 2.8E-15 2.8E-15 1.0E-13 3.4E-02 8.0E-01 2.8E-15 2.8E-15 1.0E-13 3.4E-02 8.0E-01 3.7E-15 3.8E-15 1.0E-13 4.8E-02 7.6E-01
30 6.0E-15 6.1E-15 8.9E-14 9.7E-02 7.1E-01 6.0E-15 6.1E-15 8.9E-14 9.7E-02 7.1E-01 1.2E-14 1.2E-14 8.9E-14 1.8E-01 7.3E-01
31 1.0E-14 1.1E-14 1.5E-13 9.7E-02 7.1E-01 1.0E-14 1.1E-14 1.5E-13 9.7E-02 7.1E-01 1.1E-14 1.1E-14 1.5E-13 9.9E-02 7.4E-01
32 9.4E-15 9.5E-15 1.1E-13 1.2E-01 7.6E-01 9.4E-15 9.5E-15 1.1E-13 1.2E-01 7.6E-01 1.2E-14 1.2E-14 1.1E-13 1.5E-01 7.9E-01
33 9.2E-15 9.3E-15 1.9E-13 6.6E-02 7.6E-01 9.2E-15 9.3E-15 1.9E-13 6.6E-02 7.6E-01 9.7E-15 9.8E-15 1.9E-13 6.8E-02 7.7E-01
34 1.8E-14 1.8E-14 7.7E-13 2.9E-02 7.9E-01 1.8E-14 1.8E-14 7.7E-13 2.9E-02 7.9E-01 1.9E-14 1.9E-14 7.7E-13 3.0E-02 8.0E-01
35 5.5E-15 5.5E-15 3.3E-13 2.4E-02 7.2E-01 5.5E-15 5.5E-15 3.3E-13 2.4E-02 7.2E-01 7.3E-15 7.4E-15 3.3E-13 3.0E-02 7.5E-01
36 1.7E-16 1.8E-16 5.0E-14 8.5E-03 4.5E-01 1.7E-16 1.8E-16 5.0E-14 8.5E-03 4.5E-01 2.0E-16 2.1E-16 5.1E-14 1.2E-02 3.8E-01
37 3.3E-15 3.5E-15 3.0E-13 3.6E-02 3.4E-01 3.3E-15 3.5E-15 3.0E-13 3.6E-02 3.4E-01 3.3E-15 3.6E-15 2.6E-13 4.5E-02 3.3E-01
38 1.7E-14 1.8E-14 3.7E-13 1.1E-01 4.5E-01 1.7E-14 1.8E-14 3.7E-13 1.1E-01 4.5E-01 1.7E-14 1.8E-14 3.7E-13 1.2E-01 4.5E-01
39 1.7E-14 1.9E-14 2.1E-13 2.0E-01 4.7E-01 1.7E-14 1.9E-14 2.1E-13 2.0E-01 4.6E-01 1.7E-14 1.9E-14 2.1E-13 2.1E-01 4.6E-01
40 2.0E-14 2.2E-14 3.3E-13 1.7E-01 4.1E-01 2.0E-14 2.2E-14 3.3E-13 1.7E-01 4.0E-01 2.0E-14 2.2E-14 3.2E-13 1.8E-01 3.9E-01
41 5.5E-15 6.0E-15 1.9E-13 8.6E-02 4.0E-01 5.5E-15 6.0E-15 1.9E-13 8.6E-02 4.0E-01 5.7E-15 6.2E-15 1.9E-13 8.7E-02 4.0E-01
42 6.0E-16 6.2E-16 2.2E-13 6.4E-03 4.8E-01 6.0E-16 6.2E-16 2.2E-13 6.4E-03 4.8E-01 6.6E-16 6.9E-16 2.2E-13 7.2E-03 4.6E-01
43 1.0E-14 1.1E-14 2.6E-13 8.8E-02 5.2E-01 1.0E-14 1.1E-14 2.6E-13 8.8E-02 5.2E-01 1.1E-14 1.2E-14 2.5E-13 1.2E-01 4.2E-01
44 2.7E-14 2.9E-14 3.8E-13 1.4E-01 5.8E-01 2.7E-14 2.9E-14 3.8E-13 1.4E-01 5.8E-01 3.5E-14 3.7E-14 3.7E-13 1.8E-01 5.7E-01
45 3.8E-14 4.0E-14 3.1E-13 2.2E-01 6.1E-01 3.8E-14 4.0E-14 3.1E-13 2.2E-01 6.1E-01 4.9E-14 5.2E-14 3.1E-13 3.0E-01 5.9E-01
46 1.8E-14 1.9E-14 2.9E-13 1.3E-01 5.3E-01 1.8E-14 1.9E-14 2.9E-13 1.3E-01 5.3E-01 3.0E-14 3.1E-14 2.9E-13 2.1E-01 5.4E-01
47 6.2E-16 6.5E-16 3.0E-13 5.9E-03 3.9E-01 6.2E-16 6.5E-16 3.0E-13 5.9E-03 3.9E-01 1.2E-15 1.2E-15 3.0E-13 1.3E-02 3.3E-01
48 1.0E-14 1.1E-14 2.3E-13 1.3E-01 3.9E-01 1.0E-14 1.1E-14 2.3E-13 1.3E-01 3.9E-01 1.0E-14 1.1E-14 2.0E-13 1.5E-01 3.8E-01
49 1.8E-14 2.0E-14 2.3E-13 1.9E-01 4.8E-01 1.8E-14 2.0E-14 2.3E-13 1.9E-01 4.8E-01 1.8E-14 2.0E-14 2.2E-13 1.9E-01 4.8E-01
50 2.5E-14 2.6E-14 3.5E-13 1.5E-01 5.3E-01 2.5E-14 2.6E-14 3.6E-13 1.5E-01 5.3E-01 2.5E-14 2.6E-14 3.6E-13 1.5E-01 5.0E-01
51 2.9E-14 3.0E-14 4.1E-13 1.6E-01 4.7E-01 2.9E-14 3.0E-14 4.1E-13 1.6E-01 4.7E-01 2.9E-14 3.1E-14 4.2E-13 1.6E-01 4.7E-01
52 2.9E-14 3.1E-14 4.1E-13 1.6E-01 4.9E-01 2.9E-14 3.1E-14 4.1E-13 1.6E-01 4.9E-01 2.9E-14 3.1E-14 3.9E-13 1.7E-01 4.9E-01
53 5.6E-14 5.9E-14 4.3E-13 2.4E-01 5.9E-01 5.6E-14 5.9E-14 4.3E-13 2.4E-01 5.9E-01 5.7E-14 6.0E-14 4.3E-13 2.4E-01 5.9E-01
54 4.6E-14 4.9E-14 4.0E-13 2.0E-01 6.0E-01 4.6E-14 4.9E-14 4.0E-13 2.0E-01 6.0E-01 5.1E-14 5.3E-14 4.0E-13 2.2E-01 6.3E-01
55 5.7E-14 6.0E-14 3.7E-13 2.9E-01 5.7E-01 5.7E-14 6.0E-14 3.7E-13 2.9E-01 5.7E-01 6.4E-14 6.7E-14 3.7E-13 3.1E-01 6.0E-01
56 4.9E-14 5.2E-14 4.1E-13 2.1E-01 6.0E-01 4.9E-14 5.2E-14 4.1E-13 2.1E-01 6.0E-01 5.6E-14 5.9E-14 4.1E-13 2.4E-01 6.1E-01
57 6.3E-14 6.6E-14 3.7E-13 2.9E-01 6.3E-01 6.3E-14 6.6E-14 3.7E-13 2.9E-01 6.3E-01 6.6E-14 6.9E-14 3.8E-13 2.9E-01 6.3E-01
58 6.4E-14 6.8E-14 4.5E-13 2.7E-01 5.7E-01 6.4E-14 6.8E-14 4.5E-13 2.7E-01 5.7E-01 6.7E-14 7.1E-14 4.5E-13 2.8E-01 5.9E-01
59 5.7E-14 6.0E-14 4.0E-13 2.6E-01 5.9E-01 5.7E-14 6.0E-14 4.0E-13 2.6E-01 5.9E-01 5.9E-14 6.2E-14 4.0E-13 2.7E-01 5.7E-01
60 3.8E-14 4.0E-14 4.1E-13 1.9E-01 5.3E-01 3.8E-14 4.0E-14 4.1E-13 1.9E-01 5.3E-01 4.3E-14 4.6E-14 4.1E-13 2.2E-01 5.2E-01
61 3.4E-14 3.6E-14 3.7E-13 2.0E-01 4.9E-01 3.4E-14 3.6E-14 3.7E-13 2.0E-01 4.9E-01 3.7E-14 3.9E-14 3.7E-13 2.2E-01 5.0E-01
62 1.7E-14 1.8E-14 2.9E-13 1.6E-01 4.0E-01 1.7E-14 1.8E-14 2.9E-13 1.6E-01 4.0E-01 1.7E-14 1.9E-14 2.9E-13 1.7E-01 3.9E-01
63 2.2E-14 2.4E-14 2.8E-13 1.9E-01 4.7E-01 2.2E-14 2.4E-14 2.8E-13 1.9E-01 4.7E-01 2.2E-14 2.4E-14 2.8E-13 1.9E-01 4.6E-01
64 4.2E-14 4.4E-14 5.5E-13 1.4E-01 5.9E-01 4.2E-14 4.4E-14 5.5E-13 1.4E-01 5.9E-01 4.2E-14 4.5E-14 5.5E-13 1.5E-01 5.7E-01
65 4.8E-14 5.1E-14 3.6E-13 2.5E-01 5.8E-01 4.8E-14 5.1E-14 3.6E-13 2.5E-01 5.8E-01 4.8E-14 5.1E-14 3.6E-13 2.5E-01 5.8E-01
66 3.7E-14 3.9E-14 5.3E-13 1.4E-01 5.6E-01 3.7E-14 3.9E-14 5.3E-13 1.4E-01 5.5E-01 4.1E-14 4.4E-14 5.3E-13 1.6E-01 5.5E-01
67 4.5E-14 4.8E-14 4.2E-13 2.2E-01 5.4E-01 4.5E-14 4.8E-14 4.3E-13 2.2E-01 5.4E-01 4.8E-14 5.1E-14 4.2E-13 2.3E-01 5.5E-01
68 1.2E-15 1.2E-15 2.6E-13 1.3E-02 3.7E-01 1.2E-15 1.2E-15 2.6E-13 1.3E-02 3.7E-01 1.3E-15 1.3E-15 2.6E-13 1.4E-02 3.8E-01
69 1.8E-14 1.9E-14 2.7E-13 1.6E-01 4.6E-01 1.8E-14 1.9E-14 2.7E-13 1.6E-01 4.6E-01 2.2E-14 2.3E-14 2.7E-13 1.9E-01 4.6E-01
70 4.2E-14 4.5E-14 4.2E-13 2.0E-01 5.4E-01 4.2E-14 4.5E-14 4.2E-13 2.0E-01 5.4E-01 4.2E-14 4.5E-14 4.1E-13 2.0E-01 5.5E-01
71 5.9E-14 6.2E-14 3.8E-13 2.8E-01 6.0E-01 5.9E-14 6.2E-14 3.8E-13 2.8E-01 6.0E-01 5.9E-14 6.2E-14 3.8E-13 2.8E-01 5.9E-01
72 5.0E-14 5.3E-14 4.8E-13 2.0E-01 5.8E-01 5.0E-14 5.3E-14 4.8E-13 2.0E-01 5.8E-01 5.2E-14 5.5E-14 4.8E-13 2.1E-01 5.7E-01
73 2.5E-14 2.7E-14 3.2E-13 1.6E-01 5.4E-01 2.5E-14 2.7E-14 3.2E-13 1.6E-01 5.3E-01 2.6E-14 2.7E-14 3.2E-13 1.6E-01 5.3E-01
74 3.3E-14 3.6E-14 3.7E-13 2.1E-01 4.8E-01 3.3E-14 3.6E-14 3.7E-13 2.1E-01 4.8E-01 3.5E-14 3.7E-14 4.0E-13 2.1E-01 4.7E-01
75 2.2E-14 2.4E-14 3.4E-13 1.6E-01 4.8E-01 2.2E-14 2.4E-14 3.4E-13 1.6E-01 4.8E-01 2.4E-14 2.6E-14 3.4E-13 1.8E-01 4.6E-01
76 1.5E-14 1.6E-14 2.6E-13 1.4E-01 4.7E-01 1.5E-14 1.6E-14 2.6E-13 1.4E-01 4.7E-01 1.5E-14 1.6E-14 2.4E-13 1.5E-01 4.7E-01
77 1.8E-14 1.9E-14 2.0E-13 2.1E-01 4.8E-01 1.8E-14 1.9E-14 2.0E-13 2.1E-01 4.8E-01 1.8E-14 1.9E-14 2.1E-13 2.0E-01 4.8E-01
78 2.6E-14 2.7E-14 4.2E-13 1.3E-01 5.3E-01 2.6E-14 2.7E-14 4.2E-13 1.3E-01 5.3E-01 2.6E-14 2.7E-14 4.2E-13 1.3E-01 5.3E-01
79 5.1E-14 5.4E-14 5.4E-13 2.0E-01 5.2E-01 5.1E-14 5.4E-14 5.4E-13 2.0E-01 5.2E-01 5.1E-14 5.4E-14 5.4E-13 2.0E-01 5.2E-01
80 5.4E-14 5.6E-14 5.3E-13 1.9E-01 5.9E-01 5.4E-14 5.6E-14 5.3E-13 1.9E-01 5.9E-01 5.4E-14 5.6E-14 5.3E-13 1.9E-01 5.9E-01
81 6.0E-14 6.3E-14 4.3E-13 2.6E-01 5.8E-01 6.0E-14 6.3E-14 4.3E-13 2.6E-01 5.8E-01 6.0E-14 6.3E-14 4.1E-13 2.7E-01 5.8E-01
82 4.8E-14 5.0E-14 4.0E-13 2.4E-01 5.4E-01 4.8E-14 5.0E-14 4.0E-13 2.4E-01 5.4E-01 4.8E-14 5.0E-14 4.1E-13 2.4E-01 5.3E-01
83 9.0E-14 9.4E-14 5.3E-13 2.9E-01 6.4E-01 9.0E-14 9.4E-14 5.3E-13 2.9E-01 6.4E-01 9.0E-14 9.4E-14 5.3E-13 2.8E-01 6.5E-01
84 7.9E-14 8.2E-14 5.8E-13 2.2E-01 6.5E-01 7.9E-14 8.2E-14 5.8E-13 2.2E-01 6.5E-01 7.9E-14 8.2E-14 5.8E-13 2.2E-01 6.6E-01
85 9.6E-14 1.0E-13 5.5E-13 2.8E-01 6.5E-01 9.6E-14 1.0E-13 5.5E-13 2.8E-01 6.5E-01 9.6E-14 1.0E-13 5.6E-13 2.8E-01 6.5E-01

60 Chapter 4. Results

Table 4.3: Existing and Potential Heterogeneity Measures for SPE10 Layers

Existing Flow Based Measures From Permeability Description From Diffusive TOF
SPE10
Layer HV LC FHI HK EV,b CV (τt) EV,1PV I EV,2PV I σ2

τ2 CV (τ2) σ2
1/C CV (1/C) EV,b HK

1 7.1E-01 2.3E-01 1.5E+00 2.1E+00 4.9E-01 4.2E-01 8.2E-01 1.0E+00 6.5E-03 1.1E-01 7.6E-05 3.4E-01 9.0E-01 1.1E+00
2 5.7E-01 4.2E-01 1.8E+00 2.5E+00 4.0E-01 1.5E+00 6.4E-01 8.0E-01 4.8E-03 8.9E-02 5.7E-05 2.2E-01 9.1E-01 1.1E+00
3 6.3E-01 4.0E-01 1.8E+00 2.4E+00 4.1E-01 9.2E-01 6.8E-01 8.9E-01 1.9E-03 6.4E-02 9.5E-05 3.6E-01 9.5E-01 1.1E+00
4 7.9E-01 2.3E-01 1.3E+00 1.5E+00 6.5E-01 6.5E-01 8.2E-01 9.5E-01 5.8E-03 1.1E-01 2.5E-05 3.0E-01 9.7E-01 1.0E+00
5 7.6E-01 2.8E-01 1.4E+00 2.0E+00 5.1E-01 7.2E-01 7.9E-01 9.2E-01 3.4E-03 7.6E-02 1.2E-05 2.4E-01 9.8E-01 1.0E+00
6 7.3E-01 3.2E-01 1.6E+00 2.0E+00 5.0E-01 8.6E-01 7.6E-01 9.2E-01 4.0E-03 8.8E-02 1.8E-04 2.7E-01 9.7E-01 1.0E+00
7 7.1E-01 3.2E-01 1.5E+00 1.9E+00 5.4E-01 1.1E+00 7.5E-01 8.7E-01 1.7E-03 5.0E-02 2.6E-05 1.8E-01 9.7E-01 1.0E+00
8 7.9E-01 3.2E-01 1.5E+00 1.9E+00 5.3E-01 1.1E+00 7.6E-01 8.8E-01 8.8E-04 3.7E-02 6.1E-04 4.6E-01 9.6E-01 1.0E+00
9 8.2E-01 2.3E-01 1.3E+00 1.6E+00 6.4E-01 7.2E-01 8.2E-01 9.3E-01 8.3E-04 3.6E-02 3.9E-04 6.0E-01 9.6E-01 1.0E+00
10 7.9E-01 2.3E-01 1.3E+00 1.7E+00 5.9E-01 6.0E-01 8.3E-01 9.6E-01 2.7E-03 6.9E-02 1.7E-04 5.2E-01 9.7E-01 1.0E+00
11 7.1E-01 3.0E-01 1.4E+00 2.0E+00 5.0E-01 7.1E-01 7.8E-01 9.1E-01 4.0E-03 8.6E-02 8.1E-04 4.7E-01 9.2E-01 1.1E+00
12 5.5E-01 4.9E-01 2.0E+00 3.3E+00 3.0E-01 1.4E+00 6.4E-01 7.9E-01 1.4E-03 4.9E-02 1.7E-04 3.1E-01 9.0E-01 1.1E+00
13 6.3E-01 4.4E-01 1.9E+00 2.3E+00 4.3E-01 1.4E+00 6.4E-01 8.0E-01 3.3E-03 7.7E-02 2.8E-04 2.4E-01 9.2E-01 1.1E+00
14 8.1E-01 2.4E-01 1.3E+00 1.8E+00 5.6E-01 6.6E-01 8.3E-01 9.3E-01 4.2E-03 8.7E-02 6.6E-05 2.1E-01 9.4E-01 1.1E+00
15 7.4E-01 3.4E-01 1.5E+00 2.0E+00 5.0E-01 1.0E+00 7.4E-01 8.7E-01 3.2E-03 7.8E-02 7.0E-04 1.7E-01 9.3E-01 1.1E+00
16 6.4E-01 3.9E-01 1.7E+00 2.6E+00 3.9E-01 1.0E+00 7.1E-01 8.7E-01 2.8E-03 6.8E-02 4.2E-04 1.5E-01 8.5E-01 1.2E+00
17 8.7E-01 2.4E-01 1.4E+00 1.6E+00 6.2E-01 6.5E-01 8.2E-01 9.3E-01 4.2E-03 8.2E-02 3.3E-04 2.3E-01 9.6E-01 1.0E+00
18 6.2E-01 4.3E-01 1.7E+00 2.5E+00 4.0E-01 1.4E+00 6.7E-01 8.0E-01 5.3E-03 1.0E-01 3.5E-04 4.0E-01 8.8E-01 1.1E+00
19 7.4E-01 3.0E-01 1.5E+00 2.0E+00 4.9E-01 6.3E-01 7.7E-01 9.5E-01 9.0E-03 1.3E-01 1.0E-03 3.9E-01 9.6E-01 1.0E+00
20 7.6E-01 3.1E-01 1.5E+00 2.2E+00 4.6E-01 8.1E-01 7.6E-01 9.1E-01 2.9E-03 6.6E-02 1.3E-03 2.8E-01 9.0E-01 1.1E+00
21 7.0E-01 3.3E-01 1.5E+00 2.1E+00 4.9E-01 9.5E-01 7.5E-01 8.7E-01 3.1E-03 7.2E-02 1.1E-04 1.5E-01 9.3E-01 1.1E+00
22 8.1E-01 2.8E-01 1.5E+00 2.0E+00 5.1E-01 5.6E-01 7.8E-01 9.7E-01 3.1E-03 6.8E-02 1.6E-03 9.1E-01 9.2E-01 1.1E+00
23 7.7E-01 2.9E-01 1.4E+00 2.0E+00 5.0E-01 7.0E-01 8.0E-01 9.3E-01 5.7E-03 9.4E-02 1.4E-03 3.4E-01 8.8E-01 1.1E+00
24 8.5E-01 2.3E-01 1.3E+00 1.7E+00 6.0E-01 5.2E-01 8.3E-01 9.6E-01 1.0E-03 3.9E-02 3.6E-04 1.6E-01 9.5E-01 1.1E+00
25 6.4E-01 2.6E-01 1.4E+00 1.8E+00 5.5E-01 7.5E-01 8.1E-01 9.3E-01 2.8E-03 7.1E-02 4.3E-04 3.2E-01 8.9E-01 1.1E+00
26 7.9E-01 1.9E-01 1.3E+00 1.7E+00 5.9E-01 4.5E-01 8.7E-01 9.7E-01 5.0E-03 9.3E-02 8.7E-04 7.3E-01 9.1E-01 1.1E+00
27 6.9E-01 2.5E-01 1.5E+00 1.8E+00 5.4E-01 5.3E-01 8.1E-01 9.7E-01 4.3E-03 8.6E-02 1.3E-05 1.8E-01 8.1E-01 1.2E+00
28 7.9E-01 2.3E-01 1.3E+00 1.7E+00 5.9E-01 5.5E-01 8.3E-01 9.6E-01 4.8E-03 8.8E-02 1.5E-04 3.6E-01 8.9E-01 1.1E+00
29 8.9E-01 1.6E-01 1.3E+00 1.5E+00 6.5E-01 3.2E-01 8.9E-01 9.9E-01 5.4E-03 9.2E-02 1.4E-03 1.1E+00 9.1E-01 1.1E+00
30 6.9E-01 3.1E-01 1.5E+00 2.2E+00 4.5E-01 6.2E-01 7.7E-01 9.5E-01 8.0E-03 1.2E-01 6.9E-03 8.6E-01 9.2E-01 1.1E+00
31 6.3E-01 3.0E-01 1.5E+00 2.0E+00 4.9E-01 6.3E-01 7.7E-01 9.5E-01 3.7E-03 8.5E-02 2.9E-03 5.6E-01 9.1E-01 1.1E+00
32 8.2E-01 2.5E-01 1.4E+00 1.8E+00 5.4E-01 5.4E-01 8.1E-01 9.7E-01 3.7E-03 8.0E-02 1.4E-02 1.0E+00 9.2E-01 1.1E+00
33 6.5E-01 3.5E-01 1.6E+00 2.5E+00 4.1E-01 7.3E-01 7.4E-01 9.2E-01 8.5E-03 1.2E-01 8.2E-04 4.4E-01 8.6E-01 1.2E+00
34 6.7E-01 4.1E-01 1.8E+00 2.5E+00 4.0E-01 9.8E-01 6.9E-01 8.3E-01 2.5E-03 6.3E-02 3.4E-04 6.3E-01 9.1E-01 1.1E+00
35 7.2E-01 3.4E-01 1.7E+00 2.5E+00 4.1E-01 7.7E-01 7.3E-01 9.1E-01 1.4E-02 1.7E-01 3.3E-04 7.7E-01 8.7E-01 1.1E+00
36 - 4.0E-01 1.6E+00 3.0E+00 3.4E-01 1.2E+00 6.9E-01 8.1E-01 7.6E-03 1.9E-01 3.3E-05 6.8E-01 7.7E-01 1.3E+00
37 - 7.0E-01 3.2E+00 4.6E+00 2.2E-01 3.2E+00 3.9E-01 4.7E-01 7.6E-03 2.5E-01 4.8E-03 1.9E+00 6.5E-01 1.5E+00
38 - 6.4E-01 2.3E+00 4.7E+00 2.1E-01 5.3E+00 5.1E-01 5.8E-01 6.9E-03 1.9E-01 5.3E-03 6.4E-01 6.4E-01 1.6E+00
39 - 5.5E-01 1.9E+00 3.6E+00 2.8E-01 5.3E+00 5.5E-01 6.1E-01 1.3E-02 2.4E-01 1.1E-02 5.1E-01 7.2E-01 1.4E+00
40 - 5.2E-01 1.9E+00 3.4E+00 2.9E-01 5.1E+00 5.8E-01 6.4E-01 7.3E-03 2.1E-01 1.2E-02 6.3E-01 7.5E-01 1.3E+00
41 3.5E-01 6.0E-01 2.3E+00 3.9E+00 2.6E-01 4.4E+00 5.2E-01 6.1E-01 7.0E-03 2.1E-01 5.3E-03 8.5E-01 7.7E-01 1.3E+00
42 - 5.5E-01 2.2E+00 4.3E+00 2.3E-01 1.9E+00 5.7E-01 7.1E-01 7.5E-03 1.8E-01 1.5E-05 6.1E-01 6.7E-01 1.5E+00
43 3.5E-01 7.1E-01 2.7E+00 5.7E+00 1.8E-01 5.3E+00 4.0E-01 4.5E-01 1.0E-02 2.0E-01 2.4E-02 1.7E+00 6.5E-01 1.5E+00
44 4.5E-01 5.1E-01 1.8E+00 3.3E+00 3.0E-01 4.2E+00 6.1E-01 6.9E-01 1.2E-02 1.9E-01 4.5E-03 4.8E-01 7.8E-01 1.3E+00
45 5.1E-01 4.0E-01 1.6E+00 2.7E+00 3.7E-01 4.3E+00 6.6E-01 7.3E-01 7.0E-03 1.4E-01 7.0E-03 3.8E-01 7.9E-01 1.3E+00
46 4.1E-01 6.3E-01 2.4E+00 4.5E+00 2.2E-01 5.3E+00 4.5E-01 5.3E-01 7.3E-03 1.6E-01 1.7E-02 1.0E+00 8.2E-01 1.2E+00
47 - 4.0E-01 1.6E+00 2.5E+00 4.0E-01 2.0E+00 6.8E-01 7.8E-01 5.5E-03 1.9E-01 3.5E-05 1.0E+00 9.0E-01 1.1E+00
48 - 6.8E-01 2.6E+00 4.5E+00 2.2E-01 5.6E+00 4.5E-01 5.1E-01 5.4E-03 1.9E-01 1.6E-02 1.0E+00 6.7E-01 1.5E+00
49 - 6.5E-01 2.4E+00 3.7E+00 2.7E-01 7.9E+00 4.9E-01 5.5E-01 7.8E-03 1.8E-01 3.4E-03 3.1E-01 6.6E-01 1.5E+00
50 3.8E-01 6.0E-01 2.4E+00 3.6E+00 2.8E-01 1.1E+01 4.8E-01 5.4E-01 7.4E-03 1.6E-01 5.4E-03 5.1E-01 6.6E-01 1.5E+00
51 4.5E-01 5.6E-01 2.0E+00 4.3E+00 2.3E-01 4.6E+00 5.7E-01 6.8E-01 1.1E-02 2.2E-01 6.1E-03 4.8E-01 8.3E-01 1.2E+00
52 5.2E-01 4.5E-01 1.7E+00 3.1E+00 3.2E-01 3.3E+00 6.4E-01 7.2E-01 9.1E-03 2.0E-01 8.6E-03 5.8E-01 8.3E-01 1.2E+00
53 6.1E-01 3.7E-01 1.5E+00 3.0E+00 3.4E-01 3.3E+00 7.2E-01 8.2E-01 5.3E-03 1.2E-01 3.7E-03 2.5E-01 8.7E-01 1.2E+00
54 6.1E-01 3.7E-01 1.5E+00 2.2E+00 4.5E-01 3.3E+00 7.1E-01 7.9E-01 1.0E-02 1.7E-01 2.6E-03 2.5E-01 9.0E-01 1.1E+00
55 5.4E-01 5.4E-01 1.9E+00 3.2E+00 3.1E-01 7.0E+00 6.3E-01 6.9E-01 2.0E-02 2.5E-01 1.3E-02 4.0E-01 7.6E-01 1.3E+00
56 - 4.7E-01 1.7E+00 2.8E+00 3.6E-01 3.1E+00 6.6E-01 7.4E-01 1.7E-02 2.1E-01 5.5E-03 3.5E-01 7.6E-01 1.3E+00
57 6.3E-01 3.2E-01 1.4E+00 2.1E+00 4.8E-01 2.1E+00 7.3E-01 8.0E-01 8.7E-03 1.5E-01 4.0E-03 2.2E-01 8.7E-01 1.2E+00
58 5.4E-01 4.4E-01 1.6E+00 2.5E+00 3.9E-01 4.2E+00 7.0E-01 7.7E-01 2.0E-02 2.5E-01 5.8E-03 2.8E-01 8.4E-01 1.2E+00
59 5.0E-01 5.1E-01 1.8E+00 3.2E+00 3.1E-01 4.6E+00 6.0E-01 6.8E-01 2.1E-02 2.4E-01 1.5E-02 4.8E-01 7.5E-01 1.3E+00
60 4.6E-01 4.5E-01 1.7E+00 2.8E+00 3.6E-01 5.7E+00 6.1E-01 6.8E-01 1.3E-02 2.2E-01 4.6E-03 3.6E-01 7.8E-01 1.3E+00
61 5.4E-01 4.1E-01 1.6E+00 2.9E+00 3.4E-01 3.2E+00 6.4E-01 7.1E-01 4.5E-03 1.4E-01 6.3E-03 3.9E-01 8.4E-01 1.2E+00
62 - 5.2E-01 1.9E+00 3.4E+00 2.9E-01 2.9E+00 6.2E-01 7.1E-01 5.1E-03 1.8E-01 4.5E-03 4.2E-01 7.7E-01 1.3E+00
63 4.6E-01 5.0E-01 1.8E+00 3.1E+00 3.2E-01 4.6E+00 6.0E-01 6.7E-01 7.1E-03 1.8E-01 3.1E-03 2.9E-01 7.8E-01 1.3E+00
64 4.6E-01 5.6E-01 2.0E+00 3.9E+00 2.5E-01 7.1E+00 5.7E-01 6.5E-01 7.9E-03 1.5E-01 3.4E-03 4.1E-01 8.1E-01 1.2E+00
65 4.5E-01 4.9E-01 1.8E+00 2.9E+00 3.4E-01 7.1E+00 6.1E-01 6.7E-01 1.1E-02 1.8E-01 9.2E-03 3.8E-01 7.8E-01 1.3E+00
66 - 5.1E-01 1.8E+00 3.1E+00 3.2E-01 6.8E+00 5.7E-01 6.1E-01 8.6E-03 1.7E-01 3.6E-03 4.4E-01 7.6E-01 1.3E+00
67 5.1E-01 5.4E-01 1.8E+00 3.7E+00 2.7E-01 6.7E+00 5.8E-01 6.2E-01 9.2E-03 1.8E-01 6.4E-03 3.7E-01 7.3E-01 1.4E+00
68 3.9E-01 6.2E-01 2.7E+00 5.7E+00 1.7E-01 1.9E+00 5.0E-01 6.6E-01 1.2E-02 3.0E-01 4.0E-04 1.5E+00 8.4E-01 1.2E+00
69 4.3E-01 5.4E-01 1.9E+00 2.9E+00 3.4E-01 6.0E+00 5.6E-01 6.0E-01 6.6E-03 1.8E-01 1.1E-02 6.5E-01 8.3E-01 1.2E+00
70 - 5.4E-01 2.0E+00 3.4E+00 3.0E-01 5.2E+00 5.7E-01 6.5E-01 1.2E-02 2.0E-01 3.6E-03 2.9E-01 7.6E-01 1.3E+00
71 5.4E-01 3.8E-01 1.5E+00 2.3E+00 4.4E-01 5.2E+00 6.9E-01 7.6E-01 8.4E-03 1.5E-01 1.1E-02 3.6E-01 8.1E-01 1.2E+00
72 5.3E-01 3.7E-01 1.5E+00 2.5E+00 4.1E-01 4.3E+00 6.6E-01 7.1E-01 1.1E-02 1.8E-01 4.6E-03 3.4E-01 8.2E-01 1.2E+00
73 - 5.0E-01 1.9E+00 3.0E+00 3.4E-01 4.9E+00 5.9E-01 6.5E-01 1.1E-02 2.0E-01 1.9E-03 2.7E-01 7.6E-01 1.3E+00
74 - 4.9E-01 1.8E+00 2.8E+00 3.6E-01 5.8E+00 5.7E-01 6.3E-01 6.1E-03 1.6E-01 6.0E-03 3.7E-01 7.3E-01 1.4E+00
75 3.7E-01 6.9E-01 2.8E+00 4.4E+00 2.3E-01 7.3E+00 4.1E-01 4.6E-01 1.2E-02 2.3E-01 9.8E-03 6.3E-01 6.6E-01 1.5E+00
76 - 6.9E-01 2.7E+00 4.8E+00 2.1E-01 8.0E+00 4.2E-01 4.8E-01 8.8E-03 2.0E-01 3.9E-03 4.5E-01 6.2E-01 1.6E+00
77 - 4.8E-01 1.8E+00 3.2E+00 3.2E-01 5.7E+00 5.9E-01 6.3E-01 6.5E-03 1.7E-01 2.1E-03 2.2E-01 7.0E-01 1.4E+00
78 - 6.0E-01 2.2E+00 4.0E+00 2.5E-01 9.1E+00 5.0E-01 5.7E-01 1.7E-02 2.5E-01 1.7E-03 3.3E-01 6.9E-01 1.5E+00
79 - 6.1E-01 2.3E+00 4.5E+00 2.2E-01 1.2E+01 5.2E-01 6.0E-01 4.0E-03 1.2E-01 2.3E-03 2.4E-01 7.3E-01 1.4E+00
80 - 5.4E-01 2.0E+00 3.5E+00 2.9E-01 1.4E+01 5.4E-01 6.1E-01 6.9E-03 1.4E-01 1.7E-03 2.2E-01 7.8E-01 1.3E+00
81 4.8E-01 5.2E-01 1.9E+00 3.4E+00 3.0E-01 1.1E+01 5.8E-01 6.4E-01 1.3E-02 2.0E-01 1.1E-02 4.0E-01 7.5E-01 1.3E+00
82 5.1E-01 4.4E-01 1.6E+00 2.7E+00 3.7E-01 6.0E+00 6.6E-01 7.3E-01 1.8E-02 2.5E-01 7.0E-03 3.5E-01 7.9E-01 1.3E+00
83 5.8E-01 4.0E-01 1.5E+00 2.8E+00 3.5E-01 3.5E+00 7.4E-01 8.2E-01 8.4E-03 1.4E-01 9.8E-03 3.5E-01 9.0E-01 1.1E+00
84 6.7E-01 2.9E-01 1.3E+00 2.1E+00 4.9E-01 3.9E+00 8.0E-01 8.6E-01 1.1E-02 1.6E-01 4.1E-03 2.9E-01 9.3E-01 1.1E+00
85 6.0E-01 4.0E-01 1.8E+00 3.0E+00 3.3E-01 1.9E+00 7.1E-01 8.6E-01 1.2E-02 1.7E-01 9.6E-03 3.5E-01 8.7E-01 1.1E+00

Chapter 5
Discussion

5.1 Effect of Boundary Conditions on Streamlines

Figure 4.1 and Figure 4.2 in Section 4.1 shows streamlines tracked with the Pollock algo-
rithm for no flow boundaries and periodic boundaries on the longest horizontal sides for
two layers of the SPE10 model. Regular grids are already supported in MRST’s pollock
method, while the extension to periodic grids has been a part of the work for this thesis.
Streamlines will follow the path of least resistance, and hence they will gather in the high
permeability regions as observed in both figures. The periodic boundary conditions allow
for flow across the sides and the almost straight streamlines at each side which are not
natural flow paths unless the reservoir actually is a rectangular cuboid are avoided. It is
therefore likely that the periodic grid will be a better approximation in e.g. an upscaling
process where the reservoir continues outside the cells that are evaluated for upscaling.
As the flow is allowed to find an easier path than in the more conservative no flow case,
the upscaled permeability over the whole periodic model has to be less or equal to the
upscaled permeability in the no flow model. Figure 5.1a shows the permeability increase
for each layer with periodic boundaries. This is the difference between kD for periodic
and no flow boundaries in Table 4.2. The relative increase is shown in Figure 5.1b where
we can observe that while most layers have less than 20% increase, there are still a few
outliers. The greatest relative increase is in layer 30 with more than 93% increase in the
overall permeability.

Figure 5.2 shows the permeability field of layer 30 with tracked streamlines, while Figure
5.3 shows the flow rate through each cell for the same layer, both with no flow and periodic

61

62 Chapter 5. Discussion

10 20 30 40 50 60 70 80

Layer

0

2

4

6

8

10

12
 k

(p

e
ri
o
d
ic

 -
 n

o
 f
lo

w
)

[m
D

]

(a) Increase.

10 20 30 40 50 60 70 80

Layer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 k
 /
 k

(b) Increase relative to no flow boundaries.

Figure 5.1: Layer permeability increase with periodic boundaries instead of no flow.

boundaries. Comparing the two figures, it is likely that the main reason for the permeabil-
ity increase of the layer is that the flow can pass directly through the left boundary from
the high permeability region in the lower left corner and into the high permeability region
right above the center at the right side of the model, without being forced through the low
permeability belt between the two regions. From the same two figures, we also get an
example of how the streamline density is not necessarily a good indicator of flow rate,
as both cases in Figure 5.2 have a concentration of streamlines in the lower right corner,
while most of the flow actually occurs in the lower left corner as seen from Figure 5.3.

5.2 Particle and Diffusive Time of Flight

Figure 4.3 shows a comparison of the flow based particle time of flight τt and the square
of the diffusive time of flight τ2

d found by tracking the pressure front. Some trends can
be observed from the figure, but many of the details are lost due to relatively equal colors
over large areas. A logarithmic color-scale has been tested, but not shown in this thesis,
as it did not improve the contrast. Figure 5.4 shows the τt and τ2

d for layer 30 at the
time of breakthrough, resulting in a better contrast. No flow side boundaries are used, and
the particle time of flight is from the computeDTOF method in MRST, and not streamline
based. Similar to Figure 4.3 the colormap is defined as ”low” to ”high”, as there is no direct
conversion between the two measures. It can be seen that the low permeability region at
the center of the lower half in Figure 5.2 is mainly bypassed by the flow at the time of
flow breakthrough, while the pressure front has a more piston like propagation. A key
difference between these two methods is that while τt is calculated on a steady-state flow

5.2. Particle and Diffusive Time of Flight 63

Figure 5.2: Permeability field and streamlines for no flow and periodic boundaries in layer 30.

Figure 5.3: Flux through each cell for no flow and periodic boundaries in layer 30.

64 Chapter 5. Discussion

field, the front propagation in τd is a more dynamic method, as the pressure front never
knows what lies ahead. A consequence of this is that the flow field passes around low
permeability regions, while the pressure front continues until it hits it. This can be seen
close to the bottom of figure 5.4 where there is a region of low τ2

d near the center, while
τt is above the cut off value. Additionally, the high permeability region seen at the right
side of Figure 5.2 is not reached by the flow for τt at breakthrough , while the pressure
front reaches it long before breakthrough. The main reason for the increased volumetric
sweep of τ2

d is probably that the pressure front behaves like a wave which spreads out in
all possible directions, while the flow follows the path of least resistance. The different
natures of these two methods for time of flight will make an interesting comparison when
discussing the use of these methods for heterogeneity measures.

Figure 5.4: Comparison of particle time of flight (τt) to the left, and diffusive time of flight squared
(τ2d) to the right. Cutoff at time of breakthrough for both. Layer 30, no flow boundaries at the sides.

5.3 Uncertainty Analysis

Results from an uncertainty analysis of the streamline and diffusive time of flight algo-
rithms where shown in Section 4.3. These results will be further discussed in this section.

5.3. Uncertainty Analysis 65

5.3.1 Expanded Pollock Algorithm

5.3.1.1 Streamline Length

The expanded Pollock algorithm allows for two methods of length estimation, a straight
line approach for each substep, and a velocity integral using a trapezoidal approximation
of the velocity magnitude for each substep. We observed in Figure 4.4 and Figure 4.5 that
both the mean relative errors and the maximum relative errors are larger when using the
velocity based method. The straight line approach will always be the shortest path between
two coordinates, and will therefore always be an underestimation of the streamline length.
The velocity integral as implemented here is though only a mean between the velocity
magnitude at the beginning and the end of each substep, multiplied with the time of flight.
If the velocity is changing significantly over the substep, the mean is not necessarily very
representative and this can introduce some errors to the length estimation. An example is
in a sharp turn where the flow changes direction, and there can be something close to a
stalling point at the middle of the turn. In this case the mean velocity will be overestimated,
resulting in an overestimation of the length as well. Still, as we observe from both Figure
4.4 and Figure 4.5, both methods converge towards the correct solution, and the errors are
relatively small as long as about 5 or more substeps are used. The heterogeneity measures
have been calculated with 10 substeps per grid cell, hence the error contribution from the
streamline length estimation is likely to be insignificant. This is also supported from Table
4.2, where there are no differences between the two methods within the two significant
digits.

5.3.1.2 Pressure Gradient

Three methods for pressure gradients along streamlines have been presented, and we have
seen a comparison of them in Figure 4.7 and Table 4.1. The 1D Darcy calculation gave
least errors of the three methods, especially in the Tarbert layers (layer 1-35) where the
relative errors were two orders of magnitude less than for both the linear and the trilinear
interpolation methods. For the Upper Ness layers (layer 36-85), the relative errors are
still lower for the 1D Darcy method, but the linear interpolation is of almost the same
accuracy. The reason why we see such an error increase in the tortuous Upper Ness layers
for the 1D Darcy calculations is likely to be similar to the example we saw for velocity-
integrated streamline lengths in Section 5.3.1.1, where sharp turns could increase errors.
This is because the 1D Darcy implementation uses the same velocity approximation as the
velocity integral length method. An issue with the 1D Darcy method is that it does not
include the pressure grid, while both the linear and the trilinear interpolation methods

66 Chapter 5. Discussion

uses the pressure values for nearby cells. Hence, errors can be accumulated, and the
total pressure drop over the model after multiplying gradients with step lengths are not
necessarily correct. The result of this is shown in Table 4.2, where the permeabilities kD
from Darcy calculations over the full model are not exactly equal to the permeabilities
kS calculated from streamline parameters. However, as the errors are small, the errors are
most likely less than the already existing uncertainty in the geological model, and therefore
not very significant.

Trilinear interpolation gave the largest errors of the three presented methods. This is most
likely a result of the fact that including pressures from up to 9 cells in 2D, and up to 27
cells in 3D, introduce the chance getting positive pressure gradients in the flow direction,
which is not physically possible. The integral of the inverse pressure gradient used in
the streamline hydraulic conductance B(S) and the streamline constriction factor C(S)

will then become somewhat unstable, which is shown in increased errors of the effective
hydraulic conductance Be in Figure 4.7.

5.3.1.3 Number of Streamlines

Results of the sensitivity to an increased number of streamlines are shown for two dif-
ferent methods in Section 4.3.1.3. Figure 4.8 shows the error of the effective hydraulic
conductance Be, relative to the volumetric average of kh, which was shown in Equation
(3.40) to be the exact solution (due to isotropic horizontal permeability). We observe from
Figure 4.8 that the errors in the Tarbert formation are negligible compared to the errors
in the Upper Ness formation with the same number of streamlines. The same difference
can be observed in Figure 4.9 where the error of the dynamic Lorenz coefficient is shown.
The streamlines are more evenly distributed in the Tarbert formation, while the distance
between streamlines in low permeability regions can be quite large, as seen when compar-
ing Tarbert in Figure 4.1 and Upper Ness in Figure 4.2. A streamline in the Upper Ness
formation can therefore be representable for a relatively large fraction of the volume, thus
reducing the accuracy as Be is the volumetric average of kh. When it comes to the Lorenz
coefficient in Figure 4.9, the increased errors in the Upper Ness formation can be due to
the generally larger variance of time of flights, which is seen from the coefficients of varia-
tion in Table 4.3 (column CV (τt), and the cross-plot in Figure 5.11. When the variation of
time of flights is limited, there is also limited room for errors due to too few streamlines.
We also observe that the errors are generally larger for the Lorenz coefficient in Figure 4.9
than the hydraulic conductance in 4.8. 20 streamlines per inlet cell have been used in this
thesis, which should give results within a few percents of error. A challenge is of course
to generalize how many streamlines you would need for an arbitrary reservoir model. If

5.3. Uncertainty Analysis 67

we look at the example F − Φ-diagram in Figure 2.1, from which to Lorenz coefficient is
defined, we see that the Lorenz coefficient will be sensitive to the streamtubes with high
rates per pore-volume.

5.3.2 Fast Marching Method for Diffusive Time of Flight

Section 4.2 shows results of a comparison between the diffusive time of flight converted
to actual time, and the analytic solution from the well-known radius of investigation. The
comparison is done in a homogeneous and isotropic medium, because the same compar-
ison with an analytic solution is not possible for a heterogeneous medium, as previously
mentioned. Nevertheless, the results should at least show whether the implementation
of FMM is working and reliable. Figure 4.10 compares the time from diffusive time of
flight and the analytic solution, and especially the relative error between them in Figure
4.10c is interesting. The error is clearly most severe at the diagonals, especially close
to the origin of the pressure pulse at the center of the figure. The error at the diagonals
is likely to be an effect of a ”mild” version of the so-called Manhattan distance. With
the Manhattan distance, we usually mean the distance following the grid lines instead of
the shortest path, similar to the street structure at the island of Manhattan (New York).
Figure 5.5 shows compares the regular Manhattan distance, with the milder version that
occurs in the FMM implementation. In Figure 5.5a we see the regular Manhattan distance,
where the shortest distance between two neighboring points, marked as a solid blue line, is
C =

√
A2
a +B2

a. If we assume that the cells are all unit cells (dimensions 1× 1), we get
C =

√
12 + 12 =

√
2, while the Manhattan distance marked in red isAa+Ba = 1+1 = 2

(we could also step up, and then left, with the same result). The ratio between the Man-
hattan distance and the shortest distance is thus

√
2 ≈ 1.41. Another step is marked in

dashed lines. If we evaluate the same step with how the diffusive time of flight will be
calculated with the FMM implementation, the pulse will first reach the cells connected
with A1b and A2b, which in a unit cell both are of length 1. These are then both weighted
into the next step, so that we instead follow the dashed diagonal Bb. The length of Bb
is
√

0.52 + 0.52 = 1/
√

2. The ”mild” Manhattan length from the origin is then 1 + 1/
√

2,
which is≈= 1.21 times larger than the shortest distance C. The error is therefore reduced
compared to a regular Manhattan distance implementation. From Figure 4.10c we observe
that the largest relative error is a little less than 0.5. This is a result of the squaring of the
diffusive time of flight in the conversion to actual time, as seen in Equation (2.41). The
largest expected error is therefore ≈ 1.212 − 1 ≈ 0.46. This fits with what we see from
Figure 4.10c. The error is thus exactly as expected due to grid effects, and as the relative
error is quickly reduced with distance to the origin, the implementation will be assumed
to be sufficiently reliable.

68 Chapter 5. Discussion

Aa

Ba C

(a) Manhattan distance.

A1b

A2bCBb

(b) ”Mild” form of Manhattan distance.

Figure 5.5: Comparison of the ”true” Manhattan distance, and the ”mild” version we get with the
FMM implementation

5.4 Heterogeneity Measures

Various existing and potential heterogeneity measures were presented in Section 2.3 and
Section 3.4. Calculated measures for the individual SPE10 layers with no flow boundaries
where presented in Table 4.3. To evaluate their potential as heterogeneity measures their
correlation with the recovery at 90% water cut, recovery increase by tertiary polymer in-
jection, and recovery increase due to increased macroscopic sweep efficiency by tertiary
polymer injection from the study by Krogstad et al. (2017) presented in Section 3.5.2 will
be investigated. Some layers are excluded due to convergence issues in the study, but they
remaining layers should be relatively representable. The correlation coefficient used is the
Pearson correlation coefficient ρ, which is defined as (See e.g. Jensen et al., 2000)

ρ(X,Y) =
Cov(X,Y)

σXσY
, (5.1)

where X and Y are the two data sets, Cov(X,Y) is the covariance of X and Y and σX
and σY are the standard deviations of X and Y , respectively. ρ is bounded between -1,
meaning perfectly negatively correlated, and 1, meaning perfectly positively correlated.
Generally the larger |ρ|, the better heterogeneity measure.

The results of existing heterogeneity measures will be discussed first as a benchmark for
the new potential measures that will follow afterwards. The same structure is followed
for all measures, with three individual plots for recovery at 90% (pure waterflooding),
recovery increase due to polymer injection, and macro sweep increase due to polymer
injection. In addition, the Tarbert and Upper Ness formations are separated with blue and

5.4. Heterogeneity Measures 69

red color, respectively.

5.4.1 Existing Heterogeneity Measures

Figure 5.6 shows the dynamic Lorenz coefficient for the individual layers. A strong cor-
relation is observed in all three plots, especially for recovery at 90% water cut and macro
sweep recovery increase. The vorticity factors in Figure 5.7 also give good correlations
with the recovery data, though slightly lower than the Lorenz coefficient, especially for
the recovery increase due to improved macro sweep where the data is a bit more spread
than for the Lorenz coefficient in Figure 5.6. Notice that the vorticity coefficient is in-
versely related to the degree of heterogeneity. The flow heterogeneity indices (FHI) in
Figure 5.8, the Koval factors in Figure 5.9 and the sweep efficiencies at flow breakthrough
in Figure 5.10 all have significant correlation at about the same level, though less than for
both Lorenz and vorticity. The coefficients of variation of particle time of flight in Fig-
ure 5.11 give a quite high correlation factor for recovery at 90% water cut, but it seems
like there is mostly a trend for the less tortuous Tarbert layers, while the data for the tor-
tuous Upper Ness layers are more spread. It is therefore not likely to be a very reliable
heterogeneity measure. The best correlations of the existing measures are the volumetric
sweep efficiencies at 1 and 2 pore volumes of water injected in Figure 5.12 and Figure
5.13. The generally strong correlations are very interesting, as they are found with a sin-
gle steady-state and single-phase flow field, and still correlates very well with much more
computationally demanding two-phase simulations. It is therefore not unlikely that several
of these measures can be used for rapid evaluation of multiple development strategies.

0.3 0.4 0.5 0.6 0.7

Recovery at 90% water cut

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L
C

=-0.92

Tarbert

Upper Ness

0.04 0.06 0.08 0.1 0.12 0.14

Recovery increase

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L
C

=0.82

Tarbert

Upper Ness

-0.02 0 0.02 0.04 0.06 0.08

Macro sweep recovery increase

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L
C

=0.91

Tarbert

Upper Ness

Figure 5.6: Dynamic Lorenz coefficient vs recovery.

70 Chapter 5. Discussion

0.3 0.4 0.5 0.6 0.7

Recovery at 90% water cut

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H
V

=0.90

Tarbert

Upper Ness

0.04 0.06 0.08 0.1 0.12 0.14

Recovery increase

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H
V

=-0.80

Tarbert

Upper Ness

-0.02 0 0.02 0.04 0.06 0.08

Macro sweep recovery increase

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H
V

=-0.84

Tarbert

Upper Ness

Figure 5.7: Vorticity coefficient vs recovery.

0.3 0.4 0.5 0.6 0.7

Recovery at 90% water cut

1

1.5

2

2.5

3

F
H

I

=-0.84

Tarbert

Upper Ness

0.04 0.06 0.08 0.1 0.12 0.14

Recovery increase

1

1.5

2

2.5

3

F
H

I

=0.70

Tarbert

Upper Ness

-0.02 0 0.02 0.04 0.06 0.08

Macro sweep recovery increase

1

1.5

2

2.5

3

F
H

I

=0.85

Tarbert

Upper Ness

Figure 5.8: Flow heterogeneity index vs recovery.

0.3 0.4 0.5 0.6 0.7

Recovery at 90% water cut

1

2

3

4

5

6

H
K

=-0.84

Tarbert

Upper Ness

0.04 0.06 0.08 0.1 0.12 0.14

Recovery increase

1

2

3

4

5

6

H
K

=0.69

Tarbert

Upper Ness

-0.02 0 0.02 0.04 0.06 0.08

Macro sweep recovery increase

1

2

3

4

5

6

H
K

=0.81

Tarbert

Upper Ness

Figure 5.9: Koval factor (from flow) vs recovery.

0.3 0.4 0.5 0.6 0.7

Recovery at 90% water cut

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
V
 a

t
fl
o
w

 b
re

a
k
th

ro
u
g
h

=0.84

Tarbert

Upper Ness

0.04 0.06 0.08 0.1 0.12 0.14

Recovery increase

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
V
 a

t
fl
o
w

 b
re

a
k
th

ro
u
g
h

=-0.72

Tarbert

Upper Ness

-0.02 0 0.02 0.04 0.06 0.08

Macro sweep recovery increase

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
V
 a

t
fl
o
w

 b
re

a
k
th

ro
u
g
h

=-0.81

Tarbert

Upper Ness

Figure 5.10: Volumetric sweep efficiency at flow breakthrough vs recovery.

5.4. Heterogeneity Measures 71

0.3 0.4 0.5 0.6 0.7

Recovery at 90% water cut

0

2

4

6

8

10

12

C
V
(

t)

=-0.84

Tarbert

Upper Ness

0.04 0.06 0.08 0.1 0.12 0.14

Recovery increase

0

2

4

6

8

10

12

C
V
(

t)

=0.70

Tarbert

Upper Ness

-0.02 0 0.02 0.04 0.06 0.08

Macro sweep recovery increase

0

2

4

6

8

10

12

C
V
(

t)

=0.66

Tarbert

Upper Ness

Figure 5.11: Coefficient of variation of time of flight vs recovery.

0.3 0.4 0.5 0.6 0.7

Recovery at 90% water cut

0.4

0.5

0.6

0.7

0.8

0.9

E
V
 a

t
1
 P

V
I

=0.94

Tarbert

Upper Ness

0.04 0.06 0.08 0.1 0.12 0.14

Recovery increase

0.4

0.5

0.6

0.7

0.8

0.9

E
V
 a

t
1
 P

V
I

=-0.83

Tarbert

Upper Ness

-0.02 0 0.02 0.04 0.06 0.08

Macro sweep recovery increase

0.4

0.5

0.6

0.7

0.8

0.9

E
V
 a

t
1
 P

V
I

=-0.93

Tarbert

Upper Ness

Figure 5.12: Volumetric sweep efficiency at 1 pore volume injected vs recovery.

0.3 0.4 0.5 0.6 0.7

Recovery at 90% water cut

0.4

0.5

0.6

0.7

0.8

0.9

1

E
V
 a

t
2
 P

V
I

=0.97

Tarbert

Upper Ness

0.04 0.06 0.08 0.1 0.12 0.14

Recovery increase

0.4

0.5

0.6

0.7

0.8

0.9

1

E
V
 a

t
2
 P

V
I

=-0.88

Tarbert

Upper Ness

-0.02 0 0.02 0.04 0.06 0.08

Macro sweep recovery increase

0.4

0.5

0.6

0.7

0.8

0.9

1

E
V
 a

t
2
 P

V
I

=-0.91

Tarbert

Upper Ness

Figure 5.13: Volumetric sweep efficiency at 2 pore volumes injected vs recovery.

72 Chapter 5. Discussion

5.4.2 New Potential Heterogeneity Measures

Figure 5.14 shows a cross-plot of the inverse of effective constriction factor vs the effec-
tive tortuosity factor (column 5 and 6 of Table 4.2). A clear separation between the two
formations can be observed. We can also observe that the permeability reduction due to
constriction is larger than the reduction due to increased tortuosity for all layers (keep in
mind that a lower τ2

e means more tortuous). There is no clear correlation between tortuos-
ity and constriction for the Tarbert layers, while there is an observable correlation between
tortuosity and constriction for the more tortuous Upper Ness layers.

0 0.05 0.1 0.15 0.2 0.25 0.3

1/C
e

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 e

Tarbert

Upper Ness

Figure 5.14: Cross-plot of the inverse of the effective constriction factor 1/Ce vs the effective tortu-
osity factor τ2e for each layer of the SPE10 model.

In Section 3.3.2, the relation between vorticity and tortuosity was discussed. We saw that
tortuosity cannot occur if we do not have vorticity. Figure 5.15 therefore shows a cross-
plot of the vorticity index HV and the effective tortuosity τ2

e . The observed correlation
is very strong. Since the vorticity index is already a well-known heterogeneity, and we
also see from Figure 5.14 that the effective tortuosity factor and the inverse constriction
can be used to separate the two formations of the SPE10 model, it is not unlikely that the
permeability descriptors are related to recovery.

Evaluating the permeability descriptors against recovery factors we see in Figure 5.16 that
the effective tortuosity factors are reasonably correlated with recovery, and the effective
tortuosity can therefore have a potential as a heterogeneity measure. We also find a weak
trend in the weighted variance of tortuosity for each layer in Figure 5.17, but the data
spread is significantly larger than for the effective tortuosity factors, and hence the cor-
relation is also worse. The coefficient of variation of tortuosity in Figure 5.18 is a better
choice than the variance, but still not as good as the effective tortuosity factors alone. An

5.4. Heterogeneity Measures 73

0.3 0.4 0.5 0.6 0.7 0.8 0.9

H
V

0.3

0.4

0.5

0.6

0.7

0.8

0.9

e2

=0.88

Tarbert

Upper Ness

Figure 5.15: Cross-plot of the inverse of the effective constriction factor 1/Ce vs the effective tortu-
osity factor τ2e for each layer of the SPE10 model.

issue with the tortuosity factor is that for the Tarbert layers marked in blue the correla-
tion is insignificant, while the correlation is better in the channelized Upper Ness layers,
which we also saw in Figure 5.14. This is a weakness, as a heterogeneity measure should
ideally not be dependent on the reservoir type. The inverse of the effective constriction
factor in Figure 5.19 is on the other hand not a reliable measure, which is not very sur-
prising considering that e.g. permeability changes perpendicular on the flow direction
can give a considerable constriction increase. An example of this is seen in Figure 4.1
where most streamlines pass almost straight forward through the low permeability region
at the bottom, thus keeping the areal sweep. The low permeability region will increase the
constriction factor, but not the tortuosity which is governed by the permeability gradient
perpendicular on the flow direction (see Equation (3.33)), and hence it is not surprising
that the tortuosity correlates better with recovery. The variance of the inverse constriction
factor is also not a useful measure as seen in Figure 5.20. Especially the Tarbert layers
have almost no variation, which is likely to be related to the fact that the high and low
permeability regions in these layers are quite large, which means that a large part of the
flow passes through relatively equal conditions. In the Upper Ness layers the permeability
channels narrow and changing quickly, as seen in Figure 4.2. It is therefore not surprising
that the variance is a lot more significant for these layers for both tortuosity and constric-
tion factors. As neither the inverse constriction factor not its variance shows significant
potential as a heterogeneity measure, it is not surprising that the coefficient of variation for
the inverse constriction factor in Figure 5.21 also does not correlate well.

The measures based on diffusive time of flight seems to be the best of the new potential
measures. The diffusive sweep efficiency at breakthrough of the pressure front in Figure

74 Chapter 5. Discussion

5.22 has the same correlation coefficient for recovery at 90% water cut as its flow based
sibling in Figure 5.10, better correlation with recovery increase due to polymer injection,
and slightly worse correlation with recovery increase due to better macro sweep from
polymer injection. The diffusive Koval factor in Figure 5.23 is the inverse of the sweep
efficiency of breakthrough, and it is therefore not surprising that the same trend is observed
here with about the same correlation for 90% water cut, better correlation with recovery
increase from polymer injection and slightly worse correlation with recovery increase due
to improved macro sweep compared to the flow based Koval factor in Figure 5.9.

0.3 0.4 0.5 0.6 0.7

Recovery at 90% water cut

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
e2

=0.82

Tarbert

Upper Ness

0.04 0.06 0.08 0.1 0.12 0.14

Recovery increase

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
e2

=-0.75

Tarbert

Upper Ness

-0.02 0 0.02 0.04 0.06 0.08

Macro sweep recovery increase

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
e2

=-0.72

Tarbert

Upper Ness

Figure 5.16: Effective tortuosity factor vs recovery.

0.3 0.4 0.5 0.6 0.7

Recovery at 90% water cut

0

0.005

0.01

0.015

0.02

0.025

V
a

r(
2
(S

))

=-0.49

Tarbert

Upper Ness

0.04 0.06 0.08 0.1 0.12 0.14

Recovery increase

0

0.005

0.01

0.015

0.02

0.025

V
a

r(
2
(S

))

=0.40

Tarbert

Upper Ness

-0.02 0 0.02 0.04 0.06 0.08

Macro sweep recovery increase

0

0.005

0.01

0.015

0.02

0.025

V
a

r(
2
(S

))

=0.41

Tarbert

Upper Ness

Figure 5.17: Tortuosity variance vs recovery.

0.3 0.4 0.5 0.6 0.7

Recovery at 90% water cut

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C
V
(

2
(S

))

=-0.71

Tarbert

Upper Ness

0.04 0.06 0.08 0.1 0.12 0.14

Recovery increase

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C
V
(

2
(S

))

=0.60

Tarbert

Upper Ness

-0.02 0 0.02 0.04 0.06 0.08

Macro sweep recovery increase

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C
V
(

2
(S

))

=0.61

Tarbert

Upper Ness

Figure 5.18: Coefficient of variation of tortuosity vs recovery.

5.4. Heterogeneity Measures 75

0.3 0.4 0.5 0.6 0.7

Recovery at 90% water cut

0

0.05

0.1

0.15

0.2

0.25

0.3

1
/C

e

=-0.42

Tarbert

Upper Ness

0.04 0.06 0.08 0.1 0.12 0.14

Recovery increase

0

0.05

0.1

0.15

0.2

0.25

0.3

1
/C

e

=0.44

Tarbert

Upper Ness

-0.02 0 0.02 0.04 0.06 0.08

Macro sweep recovery increase

0

0.05

0.1

0.15

0.2

0.25

0.3

1
/C

e

=0.29

Tarbert

Upper Ness

Figure 5.19: Inverse of effective constriction factor vs recovery.

0.3 0.4 0.5 0.6 0.7

Recovery at 90% water cut

0

0.005

0.01

0.015

0.02

0.025

V
a

r(
1

/C
(S

))

=-0.62

Tarbert

Upper Ness

0.04 0.06 0.08 0.1 0.12 0.14

Recovery increase

0

0.005

0.01

0.015

0.02

0.025

V
a

r(
1

/C
(S

))

=0.62

Tarbert

Upper Ness

-0.02 0 0.02 0.04 0.06 0.08

Macro sweep recovery increase

0

0.005

0.01

0.015

0.02

0.025

V
a

r(
1

/C
(S

))

=0.58

Tarbert

Upper Ness

Figure 5.20: Variance of inverse constriction factor vs recovery.

0.3 0.4 0.5 0.6 0.7

Recovery at 90% water cut

0

0.5

1

1.5

2

C
V
(1

/C
(S

))

=-0.36

Tarbert

Upper Ness

0.04 0.06 0.08 0.1 0.12 0.14

Recovery increase

0

0.5

1

1.5

2

1
/C

V
(C

(S
))

=0.31

Tarbert

Upper Ness

-0.02 0 0.02 0.04 0.06 0.08

Macro sweep recovery increase

0

0.5

1

1.5

2

1
/C

V
(C

(S
))

=0.41

Tarbert

Upper Ness

Figure 5.21: Coefficient of variation of inverse of constriction factor vs recovery.

0.3 0.4 0.5 0.6 0.7

Recovery at 90% water cut

0.6

0.7

0.8

0.9

1

E
V
 a

t
D

 b
re

a
k
th

ro
u
g
h

=0.84

Tarbert

Upper Ness

0.04 0.06 0.08 0.1 0.12 0.14

Recovery increase

0.6

0.7

0.8

0.9

1

E
V
 a

t
D

 b
re

a
k
th

ro
u
g
h

=-0.76

Tarbert

Upper Ness

-0.02 0 0.02 0.04 0.06 0.08

Macro sweep recovery increase

0.6

0.7

0.8

0.9

1

E
V
 a

t
D

 b
re

a
k
th

ro
u
g
h

=-0.71

Tarbert

Upper Ness

Figure 5.22: Volumetric diffusive sweep efficiency at breakthrough vs recovery.

76 Chapter 5. Discussion

0.3 0.4 0.5 0.6 0.7

Recovery at 90% water cut

1

1.1

1.2

1.3

1.4

1.5

1.6

H
K
 d

if
fu

s
iv

e

=-0.85

Tarbert

Upper Ness

0.04 0.06 0.08 0.1 0.12 0.14

Recovery increase

1

1.1

1.2

1.3

1.4

1.5

1.6

H
K
 d

if
fu

s
iv

e

=0.76

Tarbert

Upper Ness

-0.02 0 0.02 0.04 0.06 0.08

Macro sweep recovery increase

1

1.1

1.2

1.3

1.4

1.5

1.6

H
K
 d

if
fu

s
iv

e

=0.72

Tarbert

Upper Ness

Figure 5.23: Diffusive Koval Factor vs recovery.

Chapter 6
Conclusions

The work of this thesis has been focused on developing new potential measures of het-
erogeneity, and comparing them with existing measures of heterogeneity. Correlations
with recovery factors after waterflooding and tertiary polymer injection have been used as
benchmarks for the comparison. An additional aim has been to implement code to gen-
erate these measures which is compatible with the open source MRST software, and an
improvement of the implementation of a model for permeability description by the use of
streamlines.

The main conclusions of the work are:

• Improved implementation of the permeability description model in MRST was achieved,
reducing the estimated errors.

• Modifications have been made to the Pollock algorithm in MRST, introducing ad-
ditional capabilities like pressure gradients, velocity vectors, streamline lengths and
the support for periodic grids.

• The Fast Marching Method (FMM) for diffusive time of flight has been imple-
mented, and can be used with existing code in MRST.

• Several heterogeneity measures correlate well with simulated recovery after water-
flooding, and with simulated recovery increase due to polymer injection.

• The best correlation between heterogeneity measures and recovery factors were
found for volumetric sweep efficiency at 1 and 2 pore volumes injected, while also
the Dynamic Lorenz coefficient and vorticity coefficient showed very promising

77

78 Chapter 6. Conclusions

correlations.

• The diffusive Koval factor was found to be the best heterogeneity measure of the
new potential measures that were tested. The correlation was at the same level as
the regular Koval factor based on steady-state flow.

• The effective tortuosity factor from the permeability description model showed cor-
relation with recovery, but the correlation was mainly limited to reservoir models
with channeling.

Chapter 7
Recommendations for Further
Work

Based on the work and findings of this thesis, the following topics can be considered for
further work:

• Comparison of heterogeneity measures and recovery factors for other reservoir mod-
els, as some of the potential heterogeneity measures showed indications of reservoir
dependence (seen as different trends for the Tarbert and Upper Ness formations).

• Use heterogeneity measures in an optimization workflow for reservoir development,
where the heterogeneity measures are used in a screening process before more pre-
cise simulations.

• The permeability description model, and the extended Pollock algorithm, can po-
tentially be used in upscaling. During upscaling, the permeability of the fine grid
is averaged, and the underlying heterogeneity of the fine grid is lost in the upscaled
cell. If the permeability descriptors are stored, they could possibly be used on the
course grid later. E.g. could the effective tortuosities over the upscaled grid cells be
combined to an overall tortuosity factor for a full model.

• Use the FMM implementation of diffusive time of flight in connection with rate
and pressure transient analysis, following and extending the works of King et al.
(2016) and Li and King (2016). King et al. (2016) uses the diffusive time of flight
to connect production data to drainage volume, while Li and King (2016) integrates
well test pressure derivative data with geological models.

79

80 Chapter 7. Recommendations for Further Work

Bibliography

Bear, J. (1972). Dynamics of Fluids in Porous Media. Dover Publications.

Bear, J. and Bachmat, Y. (1967). A generalized theory on hydrodynamic dispersion in
porous media. In IASH Symposium on Artificial Recharge and Management of Aquifers,
volume 72, pages 7–16.

Berg, C. F. (2012). Reexamining archies law conductance description by tortuosity and
constriction. Physical Review E, 86(4).

Berg, C. F. (2014). Permeability description by characteristic length, tortuosity, constric-
tion and porosity. Transport in Porous Media, 103(3):381–400.

Berg, C. F. and Held, R. (2016). Fundamental transport property relations in porous
media incorporating detailed pore structure description. Transport in Porous Media,
112(2):467–487.

Carman, P. (1937). Fluid flow through granular beds. Transactions of the Institution of
Chemical Engineers, 15:150–156.

Christie, M. and Blunt, M. (2001). Tenth SPE comparative solution project: A comparison
of upscaling techniques. SPE Reservoir Evaluation & Engineering, 4(04):308–317.

Darcy, H. (1856). Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris, France.

Datta-Gupta, A. and King, M. J. (2007). Streamline Simulation: Theory and Practice.
Society of Petroleum Engineers, Richardson, Texas, United States of America.

Fatemi, E., Engquist, B., and Osher, S. (1995). Numerical solution of the high frequency
asymptotic expansion for the scalar wave equation. Journal of Computational Physics,
120(1):145–155.

81

82 Bibliography

Heller, J. P. (1963). The interpretation of model experiments for the displacement of fluids
through porous media. AIChE Journal, 9(4):452–459.

Idrobo, E. A., Choudhary, M. K., and Datta-Gupta, A. (2000). Swept volume calcula-
tions and ranking of geostatistical reservoir models using streamline simulation. In
SPE/AAPG Western Regional Meeting. Society of Petroleum Engineers.

Jensen, J. L., Lake, L. W., Corbett, P. W., and Goggin, D. J. (2000). Statistics For Petroleum
Engineers and Geoscientists. Elsevier, Amsterdam, Netherlands, 2 edition.

Kamal, M. M. (2009). Transient Well Testing. Society of Petroleum Engineers, Richard-
son, Texas, United States of America.

King, M. J., Wang, Z., and Datta-Gupta, A. (2016). Asymptotic solutions of the diffusivity
equation and their applications. In SPE Europec featured at 78th EAGE Conference and
Exhibition. Society of Petroleum Engineers.

Koval, E. (1963). A method for predicting the performance of unstable miscible displace-
ment in heterogeneous media. Society of Petroleum Engineers Journal, 3(02):145–154.

Kreyszig, E. (2011). Advanced Engineering Mathematics. John Wiley & Sons, 3 edition.

Krogstad, S., Lie, K.-A., Nilsen, H. M., Berg, C. F., and Kippe, V. (2017). Efficient flow
diagnostics proxies for polymer flooding. Computational Geosciences, 21(5-6):1203–
1218.

Kuchuk, F. J. (2009). Radius of investigation for reserve estimation from pressure transient
well tests. In SPE Middle East Oil and Gas Show and Conference. Society of Petroleum
Engineers.

Kulkarni, K. N., Datta-Gupta, A., and Vasco, D. (2001). A streamline approach for in-
tegrating transient pressure data into high-resolution reservoir models. SPE Journal,
6(03):273–282.

Lake, L. W. (1989). Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs, New Jersey,
United States of America.

Lee, W. J. (1982). Well Testing. Society of Petroleum Engineers of AIME, Dallas, Texas,
United States of America.

Li, C. and King, M. J. (2016). Integration of pressure transient data into reservoir models
using the fast marching method. In SPE Europec featured at 78th EAGE Conference
and Exhibition. Society of Petroleum Engineers.

Bibliography 83

Lie, K.-A. (2016). An Introduction to Reservoir Simulation Using MATLAB: User Guide
for the Matlab Reservoir Simulation Toolbox (MRST). SINTEF ICT, Departement of
Applied Mathematics, Oslo, Norway.

Nelson, R. W. (1963). Stream functions for three dimensional flow in heterogeneous
porous media. International Association of Scientific Hydrology, 64:290–301.

Norwegian Petroleum Directorate (2014). The Brent Group. http:

//www.npd.no/no/Publikasjoner/Rapporter/CO2-samleatlas/

4-The-Norwegian-North-Sea/41-Geology-of-the-North-Sea/

The-Brent-Group/. Last visited: 02.06.2018.

Nyvoll, A. (2017). Decomposing the effective permeability factor in heterogeneous reser-
voir models. Spezialization Project.

Pollock, D. W. (1988). Semianalytical computation of path lines for finite-difference mod-
els. Ground Water, 26(6):743–750.

Rasaei, M. R. and Sahimi, M. (2007). Upscaling and simulation of waterflooding in het-
erogeneous reservoirs using wavelet transformations: Application to the SPE-10 model.
Transport in Porous Media, 72(3):311–338.

Rashid, B., Bal, A.-L., Williams, G. J. J., and Muggeridge, A. H. (2012). Using vorticity to
quantify the relative importance of heterogeneity, viscosity ratio, gravity and diffusion
on oil recovery. Computational Geosciences, 16(2):409–422.

Rashid, B., Williams, G., Bal, A.-L., and Muggeridge, A. (2010). Quantifying the im-
pact of permeability heterogeneity on secondary recovery performance. In SPE Annual
Technical Conference and Exhibition. Society of Petroleum Engineers.

Sethian, J. A. (1996). A fast marching level set method for monotonically advancing
fronts. Proceedings of the National Academy of Sciences, 93(4):1591–1595.

Sethian, J. A. (1999). Fast marching methods. SIAM review, 41(2):199–235.

Shook, G. M. and Mitchell, K. M. (2009). A robust measure of heterogeneity for ranking
earth models: The f PHI curve and dynamic lorenz coefficient. In SPE Annual Technical
Conference and Exhibition. Society of Petroleum Engineers.

Society of Petroleum Engineers (2000). SPE Comparative Solution Project. http://

www.spe.org/web/csp/index.html. Last visited: 02.06.2018.

Vasco, D. and Datta-Gupta, A. (1999). Asymptotic solutions for solute transport: A for-
malism for tracer tomography. Water Resources Research, 35(1):1–16.

http://www.npd.no/no/Publikasjoner/Rapporter/CO2-samleatlas/4-The-Norwegian-North-Sea/41-Geology-of-the-North-Sea/The-Brent-Group/
http://www.npd.no/no/Publikasjoner/Rapporter/CO2-samleatlas/4-The-Norwegian-North-Sea/41-Geology-of-the-North-Sea/The-Brent-Group/
http://www.npd.no/no/Publikasjoner/Rapporter/CO2-samleatlas/4-The-Norwegian-North-Sea/41-Geology-of-the-North-Sea/The-Brent-Group/
http://www.npd.no/no/Publikasjoner/Rapporter/CO2-samleatlas/4-The-Norwegian-North-Sea/41-Geology-of-the-North-Sea/The-Brent-Group/
http://www.spe.org/web/csp/index.html
http://www.spe.org/web/csp/index.html

84 Bibliography

Vasco, D. W., Keers, H., and Karasaki, K. (2000). Estimation of reservoir properties
using transient pressure data: An asymptotic approach. Water Resources Research,
36(12):3447–3465.

Virieux, J., Flores-Luna, C., and Gibert, D. (1994). Asymptotic theory for diffusive elec-
tromagnetic imaging. Geophysical Journal International, 119(3):857–868.

Wu, X., Pope, G. A., Shook, G. M., and Srinivasan, S. (2008). Prediction of enthalpy pro-
duction from fractured geothermal reservoirs using partitioning tracers. International
Journal of Heat and Mass Transfer, 51(5):1453 – 1466.

Wyckoff, R. D. and Botset, H. G. (1936). The flow of gas-liquid mixtures through uncon-
solidated sands. Physics, 7(9):325–345.

Zhang, Y., Yang, C., King, M. J., and Datta-Gupta, A. (2013). Fast-marching methods for
complex grids and anisotropic permeabilities: Application to unconventional reservoirs.
In SPE Reservoir Simulation Symposium. Society of Petroleum Engineers.

Appendix A
MRST Code

The code given here is tested with Matlab R2017a and MRST 2017b, and is not guaranteed
to work on other versions of the softwares, as the code use already existing functions of
both Matlab and MRST. MRST can be downloaded from http://www.sintef.no/

projectweb/mrst/downloadable-resources/download/.

A.1 Heterogeneity Measure Script

Script that generates heterogeneity measures for Table 4.3, and the ”No Flow Boundaries,
Straight Line Length”-columns of Table 4.2. Change ”linelength = ’straight’;” to ”line-
length = ’integral’;”, and the same code will generate the ”No Flow Boundaries, Integral
Line Length”-columns of Table 4.2.

1 %% User-defined variables

2 %%

3 %Streamlines

4 streamlinesPerCell = 20;

5 nsubsteps = 10;

6 linelength = ’straight’;

7 % Boundary Conditions

8 pIn = 500*barsa();

9 pOut = 100*barsa();

10
11 %Fluid

12 viscosity = 1*centi*poise;

13 density = 1014*kilogram/meterˆ3;

14
15 % rateLimit: since the solver can give very small positive

85

http://www.sintef.no/projectweb/mrst/downloadable-resources/download/
http://www.sintef.no/projectweb/mrst/downloadable-resources/download/

86 Appendix A. MRST Code

16 % rates in cells that are enclosed by no flow cells, but still has positive

17 % permeability themselves. eps is the floating point relative accuracy

18 % of Matlab

19
20 rateLimit = 100*eps; % Cutoff for "active cells"

21
22
23 %% Load necessary MRST modules

24 %%

25 mrstModule add spe10 incomp heterogeneity diagnostics

26 % Heterogeneity is the name I have given the module functions from this

27 % work

28
29 %% Pre-allocating memory for various parameters

30 %%

31
32 Be=zeros(85,1);

33 Ce=Be;

34 Te2=Be;

35 keff=Be;

36 keffs=keff;

37 kavg=keff;

38 kavgact=keff;

39 varTs2=keff;

40 varCs=keff;

41 varInvCs=keff;

42 Lorenz=keff;

43 FHI=keff;

44 Hk=keff;

45 PVI1=keff;

46 PVI2=keff;

47 CvTOF=keff;

48 tofvar=keff;

49 Evdtof=keff;

50 Hkdtof=keff;

51
52 for count=1:85 %iterating over all layers in SPE10

53
54 %% load SPE10 - data, will attempt to download if not available locally

55 %%

56 disp(count) % Current SPE10 layer displayed in console.

57 [G, W, rock] = getSPE10setup(count); % Loads layer

58 rock.perm(rock.poro==0,:)=0; % To fix positive perm in deactivated cells.

59
60 %% Constant pressure boundaries: Linedrive bottom-to-top

61 %%

62 [nx, ny] = deal(G.cartDims(1), G.cartDims(2));

63 bottomCells = (1:nx)’;

64 topCells = (1:nx)’ + nx*(ny-1);

65 bc = pside([],G,’YMin’,pIn);

66 bc = pside(bc,G,’YMax’,pOut);

67
68 %% Computing Transmissibilities, fluid and create initial state

69 %%

70 T = computeTrans(G, rock);

71 fluid = initSingleFluid(’mu’ , viscosity, ...

72 ’rho’, density);

A.1. Heterogeneity Measure Script 87

73 initState = initResSol(G, 0.0);

74 %% Solve incompTPFA to get steady-state pressure solution

75 %%

76
77 sol = incompTPFA(initState, G, T, fluid, ’bc’, bc);

78
79 %% Code that validates solution and generates plots of data

80 %%

81 sol.flux(isnan(sol.flux))=0; %Fix NaN

82 cellNo = rldecode(1:G.cells.num, diff(G.cells.facePos), 2) .’;

83 cf = G.cells.faces;

84 flux= accumarray([cellNo, cf(:,2)], sol.flux(cf(:,1)));

85 clear cf cellNo

86 flux(:,2:2:end)=-1*flux(:,2:2:end);

87 cellFluxSum=sum(flux,2);

88 cellFlux=sum(flux.*(flux>0),2);

89
90
91 %% Compute start positions for streamlines

92 startCells = repmat(bottomCells,1,streamlinesPerCell);

93 startCells = reshape(startCells’,[],1);

94 startPosLoc = [zeros(length(startCells),2), ones(length(startCells),1).*0.5];

95 startStep = 1/streamlinesPerCell; % Streamline spacing in start cell

96 % in unit cell coordinates for pollockMod()

97 first = startStep/2; % Unit cell coordinate first streamline in cell

98 last = 1-first; % Unit cell coordinate first streamline in cell

99 startPosLoc(:,1)=repmat((first:startStep:last)’,length(bottomCells),1);

100 startPos = [startCells, startPosLoc];

101
102 % Finds active start cells

103 active=cellFlux(startCells)>rateLimit;

104
105 [S, T, C,LS,VXYZ,GradP]=pollockMod(G, sol,rock,startPos(active,:), ...

106 ’substeps’, nsubsteps ,’maxsteps’, 4e5,’fluid’,fluid, ’lineLength’,linelength);

107
108 % Rate for each streamtube around streamlines:

109 Qs=ones(size(S)).*flux(startCells(active),3)./streamlinesPerCell;

110
111 % Total rate

112 Q=sum(Qs);

113
114
115 % Effective bulk volume

116 Ve=sum(G.cells.volumes(cellFlux>rateLimit));

117
118 % Pore Volume

119 OmegaS=sum(sum(poreVolume(G,rock)));

120
121 % Find number of streamlines started in active cells:

122 nstreamlines=length(S);

123 BS=zeros(nstreamlines,1);

124 CS=BS;

125 TauS2=BS;

126
127 for i=1:nstreamlines

128 % Streamline/streamtube permeability descriptors

129 [BS(i), CS(i), TauS2(i)]=streamtubePermDesc(GradP{i}, LS{i}, fluid, 670.56);

88 Appendix A. MRST Code

130 %670.56 is the length of each spe10 layer

131 end

132 tof=zeros(length(T),1);

133 for i = 1 : length(T)

134 tof(i,1)=sum(T{i}(:)); % Time of flight /residence time of each streamline

135 end

136
137 %% Heterogeneity Measures

138 %%

139 [tofsort,order]=sort(tof); % Sort residence time for F-Phi curve

140 pvstrlines=tofsort.*Qs(order); %pore volume of each streamtube

141 Phi=cumsum(pvstrlines);

142 Phi=Phi./Phi(end); % Normalized storage capacity

143 F=cumsum(Qs(order));

144 F=F./F(end); % Normalize flow capacity

145 % Dynamic Lorenz (See Shook and Mitchell (2009), SPE 124625)

146 Lorenz(count)=computeLorenz(F,Phi);

147 % End Lorenz

148
149 % FHI (See Shook and Mitchell (2009), SPE 124625)

150 wavgtof=sum(tofsort.*Qs(order))./Q; % Rate weighted tof average

151 [vl,ix]=min(abs(tofsort-wavgtof)); % Find streamline with tof closest to avg

152 FHI(count)=F(ix)./Phi(ix); % Calculate FHI

153 % End FHI

154
155 %Hk (see ’Statistics For Petroleum Engineers and Geoscientists’ Jensen et

156 %al. (2000))

157 tofbreak=min(tof); % Time of breakthrough

158 Hk(count)=OmegaS./(tofbreak.*Q);

159 %End Hk

160
161 %CvTof (See Shook and Mitchell (2009), SPE 124625)

162 tofvar(count)=sum(Qs.*(tof-wavgtof).ˆ2)./Q;

163 CvTOF(count)=sqrt(tofvar(count))./wavgtof;

164 %end CvTOF

165
166 %Ev at 1 and 2 PVI (see Idrobo et al. (2000), SPE 62557 and Shook and

167 %Mitchell (2009), SPE 124625)

168 tof1pvi=OmegaS./Q;

169 PVI1(count)=(sum(tof(tof<tof1pvi).*Qs(tof<tof1pvi))...

170 +sum(tof1pvi.*Qs(tof>=tof1pvi)))./OmegaS;

171
172 tof2pvi=2*OmegaS./Q;

173 PVI2(count)=(sum(tof(tof<tof2pvi).*Qs(tof<tof2pvi))...

174 +sum(tof2pvi.*Qs(tof>=tof2pvi)))./OmegaS;

175 %end Ev at 1 and 2 PVI

176
177 %DTOF

178 dtof=computeDTOF(G,rock,fluid,4.4e-10,startCells,[6.096,3.048,0.6096]);

179 [dtofbreak,ix]=min(dtof(topCells));

180 pv=poreVolume(G,rock);

181 Evdtof(count)=sum(pv(dtof<=dtofbreak))/sum(pv); %Ev at breakthrough

182 Hkdtof(count)=1./Evdtof(count); %Diffusive Hk

183 %End DTOF

184
185 V=sum(G.cells.volumes); % Bulk volume of model

186 %ks(count)=Q./V.*KS{count}(1); % ke calculated with Q*K(S)/V

A.2. Heterogeneity Measure Script, Periodic Grid 89

187
188 % Effective permeability descriptors

189 [Be(count),Ce(count),Te2(count),varTs2(count),varInvCs(count)]= ...

190 effPermDesc(BS,CS,TauS2, Qs, Ve);

191
192 %ke calculated with Darcy over full layer

193 keff(count)=-Q*fluid.properties(1)*670.56/...

194 (-4e7*sum(G.faces.areas(13421:13480)));

195 %Average k_h in V (k_x=k_y=k_h)

196 kavg(count)=mean(rock.perm(:,2));

197 %Average k_h in Ve (for spe10: Should equal Be)

198 kavgact(count)=mean(rock.perm(cellFlux>rateLimit,2));

199 %ke calculated with effective descriptors from streamlines

200 keffs(count)=Te2(count)*Be(count)*Ve/(Ce(count)*V);

201 end

202 %Coefficient of tortuosity variance

203 CvTs2=sqrt(varTs2)./Te2;

204 %Coefficient of inverse constriction variance

205 CvInvCs=sqrt(varInvCs).*Ce;

206 %Diffusive volumetric sweep efficiency at breakthrough

207 Evb=1./Hk;

A.2 Heterogeneity Measure Script, Periodic Grid

Almost equal to the previous script, but with periodic boundary condition, and ’integral’
length setting.

1 %% User-defined variables

2 %%

3 tic

4 %Streamlines

5 streamlinesPerCell = 20;

6 nsubsteps = 10;

7 linelength = ’integral’;

8 % Boundary Conditions

9 pIn = 500*barsa();

10 pOut = 100*barsa();

11
12 %Fluid

13 viscosity = 1*centi*poise;

14 density = 1014*kilogram/meterˆ3;

15
16 % rateLimit: since the solver can give very small positive

17 % rates in cells that are enclosed by no flow cells, but still has positive

18 % permeability themselves. eps is the floating point relative accuracy

19 % of Matlab

20
21 rateLimit = 100*eps; % Cutoff for "active cells"

22
23 %% Load necessary MRST modules

24 %%

25 mrstModule add spe10 incomp heterogeneity diagnostics upscaling

90 Appendix A. MRST Code

26 % Heterogeneity is the name I have given the module functions from this

27 % work

28
29 %% Pre-allocating memory for various parameters

30 %%

31
32 Be=zeros(85,1);

33 Ce=Be;

34 Te2=Be;

35 keff=Be;

36 keffs=keff;

37 kavg=keff;

38 kavgact=keff;

39 varTs2=keff;

40 varCs=keff;

41 varInvCs=keff;

42 Lorenz=keff;

43 FHI=keff;

44 Hk=keff;

45 PVI1=keff;

46 PVI2=keff;

47 CvTOF=keff;

48 tofvar=keff;

49 Evdtof=keff;

50 Hkdtof=keff;

51
52 for count=1:85 %iterating over all layers in SPE10

53
54 close all % Closing existing figures

55 %% load SPE10 - data, will attempt to download if not available locally

56 %%

57 disp(count) % Current SPE10 layer

58 [G, W, rock] = getSPE10setup(count); % Loads layer

59 rock.perm(rock.poro==0,:)=0; % To fix positive perm in deactivated cells.

60 %

61 %% Constant pressure boundaries: Linedrive bottom-to-top

62 %%

63 bcr{1}=pside([],G,’RIGHT’,0); bcl{1}=pside([],G,’LEFT’,0);

64
65 %% Constant pressure boundaries: Linedrive bottom-to-top

66 %%

67 [nx, ny] = deal(G.cartDims(1), G.cartDims(2));

68 bottomCells = (1:nx)’;

69 topCells = (1:nx)’ + nx*(ny-1);

70 [Gp, bcp]=makePeriodicGridMulti3d(G, bcl, bcr, {0});

71 bc = pside([],Gp,’YMin’,pIn);

72 bc = pside(bc,Gp,’YMax’,pOut);

73
74
75 %% Computing Transmissibilities, fluid and create initial state

76 %%

77 T = computeTransGp(G, Gp, rock);

78 fluid = initSingleFluid(’mu’ , viscosity, ...

79 ’rho’, density);

80 initState = initResSol(Gp, 0.0);

81 %% Solve incompTPFA to get steady-state pressure solution

82 %%

A.2. Heterogeneity Measure Script, Periodic Grid 91

83
84 sol = incompTPFA(initState, Gp, T, fluid, ’bc’, bc,’bcp’,bcp);

85
86 %% Code that validates solution and generates plots of data

87 %%

88 sol.flux(isnan(sol.flux))=0; %Fix NaN

89
90 cellNo = rldecode(1:Gp.cells.num, diff(Gp.cells.facePos), 2) .’;

91 cf = Gp.cells.faces;

92 flux= accumarray([cellNo, cf(:,2)], sol.flux(cf(:,1)));

93 clear cf cellNo

94 flux(:,2:2:end)=-1*flux(:,2:2:end);

95 cellFluxSum=sum(flux,2);

96 cellFlux=sum(flux.*(flux>0),2);

97
98
99 %% Compute start positions for streamlines

100 startCells = repmat(bottomCells,1,streamlinesPerCell);

101 startCells = reshape(startCells’,[],1);

102 startPosLoc = [zeros(length(startCells),2), ones(length(startCells),1).*0.5];

103 startStep = 1/streamlinesPerCell; % Streamline spacing in start cell

104 % in unit cell coordinates for pollock()

105 first = startStep/2; % Unit cell coordinate first streamline in cell

106 last = 1-first; % Unit cell coordinate first streamline in cell

107 startPosLoc(:,1)=repmat((first:startStep:last)’,length(bottomCells),1);

108 startPos = [startCells, startPosLoc];

109
110 % Finds active start cells

111 active=cellFlux(startCells)>rateLimit;

112
113 [S, T, C,LS,VXYZ,GradP]=pollockMod(G, sol,rock,startPos(active,:), ...

114 ’substeps’, nsubsteps ,’maxsteps’, 4e5,’fluid’,fluid, ’periodic’, Gp, ’lineLength

’,linelength);

115
116
117 % Rate for each streamtube around streamlines:

118 Qs=ones(size(S)).*flux(startCells(active),3)./streamlinesPerCell;

119
120 % Total rate

121 Q=sum(Qs);

122
123
124 % Effective bulk volume

125 Ve=sum(G.cells.volumes(cellFlux>rateLimit));

126
127 % Pore Volume

128 OmegaS=sum(sum(poreVolume(G,rock)));

129
130 % Find number of streamlines started in active cells:

131 nstreamlines=length(S);

132 BS=zeros(nstreamlines,1);

133 CS=BS;

134 TauS2=BS;

135
136 for i=1:nstreamlines

137 % Streamline/streamtube permeability descriptors

138 [BS(i), CS(i), TauS2(i)]=streamtubePermDesc(GradP{i}, LS{i}, fluid, 670.56);

92 Appendix A. MRST Code

139 %670.56 is the length of each spe10 layer

140 end

141 tof=zeros(length(T),1);

142 for i = 1 : length(T)

143 tof(i,1)=sum(T{i}(:));

144 end

145
146 %% Heterogeneity Measures

147 %%

148 [tofsort,order]=sort(tof); % Sort residence time for F-Phi curve

149 pvstrlines=tofsort.*Qs(order); %pore volume of each streamtube

150 Phi=cumsum(pvstrlines);

151 Phi=Phi./Phi(end); % Normalized storage capacity

152 F=cumsum(Qs(order));

153 F=F./F(end); % Normalize flow capacity

154 % Dynamic Lorenz (See Shook and Mitchell (2009), SPE 124625)

155 Lorenz(count)=computeLorenz(F,Phi);

156 % End Lorenz

157
158 % FHI (See Shook and Mitchell (2009), SPE 124625)

159 wavgtof=sum(tofsort.*Qs(order))./Q; % Rate weighted tof average

160 [vl,ix]=min(abs(tofsort-wavgtof)); % Find streamline with tof closest to avg

161 FHI(count)=F(ix)./Phi(ix); % Calculate FHI

162 % End FHI

163
164 %Hk (see ’Statistics For Petroleum Engineers and Geoscientists’ Jensen et

165 %al. (2000))

166 tofbreak=min(tof); % Time of breakthrough

167 Hk(count)=OmegaS./(tofbreak.*Q);

168 %End Hk

169
170 %CvTof (See Shook and Mitchell (2009), SPE 124625)

171 tofvar(count)=sum(Qs.*(tof-wavgtof).ˆ2)./Q;

172 CvTOF(count)=sqrt(tofvar(count))./wavgtof;

173 %end CvTOF

174
175 %Ev at 1 and 2 PVI (see Idrobo et al. (2000), SPE 62557 and Shook and

176 %Mitchell (2009), SPE 124625)

177 tof1pvi=OmegaS./Q;

178 PVI1(count)=(sum(tof(tof<tof1pvi).*Qs(tof<tof1pvi))...

179 +sum(tof1pvi.*Qs(tof>=tof1pvi)))./OmegaS;

180
181 tof2pvi=2*OmegaS./Q;

182 PVI2(count)=(sum(tof(tof<tof2pvi).*Qs(tof<tof2pvi))...

183 +sum(tof2pvi.*Qs(tof>=tof2pvi)))./OmegaS;

184 %end Ev at 1 and 2 PVI

185
186 %DTOF

187 dtof=computeDTOF(G,rock,fluid,4.4e-10,startCells,[6.096,3.048,0.6096]);

188 [dtofbreak,ix]=min(dtof(topCells));

189 pv=poreVolume(G,rock);

190 Evdtof(count)=sum(pv(dtof<=dtofbreak))/sum(pv); %Ev at breakthrough

191 Hkdtof(count)=1./Evdtof(count); %Diffusive Hk

192 %End DTOF

193
194
195

A.3. Extended Pollock Algorithm 93

196 V=sum(G.cells.volumes); % Bulk volume of model

197 %ks(count)=Q./V.*KS{count}(1); % ke calculated with Q*K(S)/V

198
199 % Effective permeability descriptors

200 [Be(count),Ce(count),Te2(count),varTs2(count),varInvCs(count)]= ...

201 effPermDesc(BS,CS,TauS2, Qs, Ve);

202
203 %ke calculated with Darcy over full layer

204 keff(count)=-Q*fluid.properties(1)*670.56/...

205 (-4e7*sum(G.faces.areas(13421:13480)));

206 %Average k_h in V (k_x=k_y=k_h)

207 kavg(count)=mean(rock.perm(:,2));

208 %Average k_h in Ve (for spe10: Should equal Be)

209 kavgact(count)=mean(rock.perm(cellFlux>rateLimit,2));

210 %ke calculated with effective descriptors from streamlines

211 keffs(count)=Te2(count)*Be(count)*Ve/(Ce(count)*V);

212 end

213 %Coefficient of tortuosity variance

214 CvTs2=sqrt(varTs2)./Te2;

215 %Coefficient of inverse constriction variance

216 CvInvCs=sqrt(varInvCs).*Ce;

217 %Diffusive volumetric sweep efficiency at breakthrough

218 Evb=1./Hk;

A.3 Extended Pollock Algorithm

This is a modified version of the already existing pollock() method in MRST, which in-
cludes new capabilities presented in this thesis. This code is for the 1D Darcy pressure
gradient approximation presented in Section 3.3, which is the recommended choice of the
three methods presented in this work. The less recommended alternatives are shown in
Appendix B.

1 function varargout = pollockMod(G,state, rock, varargin)

2 % Trace streamlines in logically Cartesian grid using Pollock approximation.

3 % In addition to the regular Pollock approximation, pressure gradients are

4 % supported.

5 %

6 %

7 % SYNOPSIS:

8 % [S,T,C,L,V,GP] = pollockMod(G, state, rock)

9 % [S,T,C,L,V,GP] = pollockMod(G, state, rock, startpos)

10 % [S,T,C,L,V,GP] = pollockMod(G, state, rock, ’pn’, pv, ...)

11 % [S,T,C,L,V,GP] = pollockMod(G, state, rock, startpos, ’pn’, pv, ...)

12 %

13 % PARAMETERS:

14 %

15 % G - Cartesian or logically Cartesian grid.

16 %

17 % state - State structure with field ’flux’.

18 %

19 % rock - Rock structure with the field ’poro’.

94 Appendix A. MRST Code

20 %

21 % OPTIONAL PARAMETERS

22 %

23 % positions - Matrix of size (N, 1) or (N, d+1), where d is the dimension

24 % of the grid, used to indicate where the streamlines should

25 % start.

26 %

27 % If the size is (N, 1), positions contains the cell indices

28 % in which streamlines should start. Each streamline is

29 % started in the the local coordinate (0.5, 0.5, ...). To be

30 % precise, this is the mean of the corner points, not the

31 % centroid of the cell.

32 %

33 % If the size is (N, d+1), the first column contains cell

34 % indices, and the d next columns contain the local

35 % coordinates at which to start streamlines.

36 %

37 % OPTIONAL PARAMETERS (supplied in ’key’/value pairs (’pn’/pv ...)):

38 %

39 % substeps - Number of substeps in each cell, to improve visual quality.

40 % Default 5.

41 %

42 % maxsteps - Maximal number of points in a streamline.

43 % Default 1000.

44 %

45 % reverse - Reverse velocity field before tracing.

46 % Default false.

47 % periodic - Grid with periodic boundary conditions.

48 % Default not periodic boundary conditions.

49 %

50 % fluid - MRST fluid structure where fluid.properties(1)=viscosity

51 % Default viscosity: 1 cP

52 %

53 % lineLength - Method for streamline length calculation. Options:

54 % ’straight’ (straight line between plots) and ’integral’.

55 % Default: ’straight’

56 %

57 %

58 % RETURNS:

59 %

60 % S - Cell array of individual streamlines suitable for calls like

61 % streamline(pollock(...)) and streamtube(pollock(...)).

62 %

63 % T - Time-of-flight of coordinate.

64 %

65 % C - Cell number of streamline segment, i.e, line segment between

66 % two streamline coordinates.

67 %

68 % L - Streamline lengths

69 %

70 % V - Velocity vectors

71 %

72 % GP - Pressure gradients

73 %

74 % EXAMPLE:

75 %

76 % [S,T,C,L,V,GP] = pollockMod(G, x, rock,startpos,’fluid’,fluid);

A.3. Extended Pollock Algorithm 95

77 %

78 % streamline(S);

79 % SEE ALSO: pollock()

80 %

81 %

82 %{

83 ORIGINAL COPYRIGHT FROM MRST:

84
85 Copyright 2009-2017 SINTEF ICT, Applied Mathematics.

86
87 This file is part of The MATLAB Reservoir Simulation Toolbox (MRST).

88
89 MRST is free software: you can redistribute it and/or modify

90 it under the terms of the GNU General Public License as published by

91 the Free Software Foundation, either version 3 of the License, or

92 (at your option) any later version.

93
94 MRST is distributed in the hope that it will be useful,

95 but WITHOUT ANY WARRANTY; without even the implied warranty of

96 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

97 GNU General Public License for more details.

98
99 You should have received a copy of the GNU General Public License

100 along with MRST. If not, see <http://www.gnu.org/licenses/>.

101 %}

102
103 % Written by Jostein R. Natvig, SINTEF ICT, 2010.

104 %

105 % Modified by Asgeir Nyvoll, MSc student NTNU, 2018

106
107 d = size(G.nodes.coords, 2);

108
109 if mod(length(varargin),2)==0

110 positions = [(1:G.cells.num)’, repmat(0.5, [G.cells.num, d])];

111 else

112 positions = varargin{1};

113 if size(positions, 2) ==1

114 positions = [positions, repmat(0.5, [size(positions, 1), d])];

115 elseif size(positions, 2) ˜= 1 + d

116 error(’Expected array of local positions of width 1 or 1+d.’);

117 end

118 varargin = varargin(2:end);

119 end

120
121 opt = struct(’substeps’, 5, ’maxsteps’, 1000, ’reverse’, false, ’periodic’,...

122 [], ’fluid’, [],’lineLength’,’straight’);

123 opt = merge_options(opt, varargin{:});

124
125 % Check if fluid properties are given for Darcy calculation of pressure gradient

126 if isempty(opt.fluid)

127 opt.fluid.properties(1)=1*centi*poise; %default value

128 end

129
130
131 % Check that streamline length is calculated with integral of inverse

132 % velocity in case of periodic grid.

133 if ˜isempty(opt.periodic) && ˜isequal(opt.lineLength,’integral’)

96 Appendix A. MRST Code

134 warning(’Length calculation changed: Periodic grids only support integral’)

135 opt.lineLength=’integral’;

136 end

137
138 if size(state.flux, 2) > 1

139 state.flux = sum(state.flux, 2);

140 end

141
142
143 if opt.reverse

144 state.flux = -state.flux;

145 end

146
147 [varargout{1:nargout}] = trace(G, state, positions, rock, opt);

148
149 end

150
151
152
153 % ==

154 function varargout = trace(G, state, pos, rock, opt)

155
156 if isempty(opt.periodic)

157 %State grid and coordinate grid are equal when grid is not periodic.

158 Gp=G;

159 else

160 Gp=opt.periodic;

161 end

162
163 d = size(G.nodes.coords, 2);

164 numStreamlines = size(pos,1);

165 assert(size(pos, 2) == d+1);

166
167 if ˜isfield(G, ’cellNodes’)

168 cn = cellNodes(G);

169 G.cellNodes = accumarray(cn(:,1:2), cn(:,3));

170 end

171
172
173 % Make array face fluxes for each cell in grid

174 cellNo = rldecode(1:Gp.cells.num, diff(Gp.cells.facePos), 2) .’;

175 cf = Gp.cells.faces;

176 pv = poreVolume(Gp,rock);

177 flux = accumarray([cellNo, cf(:,2)], state.flux(cf(:,1)));

178
179 %Particle velocity in unit cell

180 unitVelo = flux./pv;

181 %Remove NaN cases:

182 unitVelo(pv==0,:)=0;

183
184 %Actual velocity

185 velo1=state.flux./Gp.faces.areas;

186 velo = accumarray([cellNo, cf(:,2)],velo1(cf(:,1)))./rock.poro;

187 velo(pv==0,:)=0;

188 clear cf cellNo pv flux velo1

189
190 neighbors = findNeighbors(Gp);

A.3. Extended Pollock Algorithm 97

191
192 magic = 1000;

193 XYZ = nan(numStreamlines, d, magic);

194 VXYZ = nan(numStreamlines, d, magic);

195 T = nan(numStreamlines, magic);

196 C = nan(numStreamlines, magic);

197 Ls = nan(numStreamlines, magic);

198 GradP = nan(numStreamlines, magic);

199
200 active = true(numStreamlines, 1);

201
202 % Store initial values

203 [XYZ(active,:,1)] = globalCoordinate(G, pos(active,1), pos(active, 2:end));

204 [VXYZ(active,:,1)] = globalVelocity(pos(active,1), pos(active, 2:end), velo);

205 T(active, 1) = zeros(sum(active), 1);

206 Ls(active, 1) = zeros(sum(active), 1);

207 C(active, 1) = pos(active, 1);

208 GradP(active, 1) = zeros(sum(active), 1);

209
210 i = 2;

211 while any(active)

212 % Realloc

213
214 if i+opt.substeps+1 > size(XYZ, 3)

215 magic = max(magic, opt.substeps+1);

216 XYZ = cat(3, XYZ, nan(numStreamlines, d, magic));

217 VXYZ = cat(3, VXYZ, nan(numStreamlines, d, magic));

218 T = cat(2, T, nan(numStreamlines, magic));

219 C = cat(2, C, nan(numStreamlines, magic));

220 Ls = cat(2, Ls, nan(numStreamlines, magic));

221 GradP = cat(2, GradP, nan(numStreamlines, magic));

222 end

223 current_cell = pos(active,1);

224 C(active, i-1+(1:opt.substeps)) = repmat(pos(active, 1), [1, opt.substeps]);

225 % Take another pollock step

226 [pos(active,:), t, xyz, VXYZ(active, :, i:i+opt.substeps-1), ...

227 Ls(active,i:i+opt.substeps-1), ...

228 GradP(active,i:i+opt.substeps-1)] = ...

229 step(rock, opt.fluid, pos(active,:), unitVelo, ...

230 velo, neighbors, opt.substeps);

231 T(active, i-1+(1:opt.substeps)) = repmat(t/opt.substeps, [1, opt.substeps]);

232
233 %Store coordinates

234 for k=1:opt.substeps

235
236 %Global coordinate (using coordinate grid G for periodic grid Gp)

237 [XYZ(active, :, i+k-1)] = globalCoordinate(G, current_cell, xyz(:,:,k));

238
239 %Streamline step length (various options)

240 if isequal(opt.lineLength,’straight’)

241 %Straight line between neighboring coordinates

242 [Ls(active, i+k-1)] = ...

243 (sqrt(sum((XYZ(active, :, i+k-1)-XYZ(active, :, i+k-2)).ˆ2,2)));

244
245 elseif isequal(opt.lineLength,’integral’)

246 continue; %Already done in step method

247 else

98 Appendix A. MRST Code

248 error(’Invalid streamline length method. Choose straight or integral’);

249 end

250
251 end

252
253
254 % Update active flag

255 active(active) = pos(active,1) ˜= current_cell;

256
257 i = i+opt.substeps;

258 %Break if reaching maxsteps. Display warning.

259 if i > opt.maxsteps,warning(’Maxsteps reached’), break;end

260 end

261
262 %% Pack coordinates in list with streamlines separated by NaN.

263 p = reshape(permute(XYZ, [3,1,2]), [], d);

264
265 i = ˜isnan(p(:,1));

266 j = i|[true;i(1:end-1)];

267 p = p(j,:);

268
269 % Pack streamline coordinates in a cell array suitable for use with

270 % Matlab streamline, i.e., as in ’streamline(pollock(G, resSol));’

271 flag = isnan(p(:,1));

272 ix = find(flag);

273 dd = diff([0;ix])-1;

274 varargout{1} = mat2cell(p(˜flag,:), dd, d);

275 % Pack times of flight.

276 if nargout > 1

277 T = reshape(T’, [], 1);

278 T = T(j);

279 varargout{2} = mat2cell(T(˜flag), dd, 1);

280 end

281 % Pack cells.

282 if nargout > 2

283 C = reshape(C’, [], 1);

284 C = C(j);

285 varargout{3} = mat2cell(C(˜flag), dd, 1);

286 end

287
288 % Pack step lengths.

289 if nargout > 3

290 Ls = reshape(Ls’, [], 1);

291 Ls = Ls(j);

292 varargout{4} = mat2cell(Ls(˜flag), dd, 1);

293 end

294
295 % Pack velocities.

296 if nargout>4

297 v = reshape(permute(VXYZ, [3,1,2]), [], d);

298
299 i = ˜isnan(v(:,1));

300 j = i|[true;i(1:end-1)];

301 v = v(j,:);

302
303 flag = isnan(v(:,1));

304 ix = find(flag);

A.3. Extended Pollock Algorithm 99

305 dd = diff([0;ix])-1;

306 varargout{5} = mat2cell(v(˜flag,:), dd, d);

307 end

308
309 % Pack pressures gradients.

310 if nargout > 5

311 GradP = reshape(GradP’, [], 1);

312 GradP = GradP(j);

313 varargout{6} = mat2cell(GradP(˜flag), dd, 1);

314 end

315
316 end

317
318
319
320 % ==

321 function xyz = globalCoordinate(G, c, p)

322 % Compute global coordinate corresponding to local coorinate p in cells c

323 % p - local positions == [xi,eta,zeta] in 3D

324 % c -

325 %

326 if numel(c)==1, p = reshape(p, 1, []); end

327 % Compute node weight for quadrilateral or hexahedron

328 d = size(G.nodes.coords, 2);

329 w = ones(size(p,1), 2ˆd);

330 for i=1:d

331 mask = logical(bitget((0:2ˆd-1)’, i));

332 w(:, mask) = w(:, mask).* repmat(p(:,i), [1, sum(mask)]);

333 w(:,˜mask) = w(:,˜mask).* repmat(1-p(:,i), [1, sum(˜mask)]);

334 end

335
336 % Compute weighted average of corner points

337 xyz = zeros(size(p,1), d);

338 for i=1:d

339 xi = G.nodes.coords(:,i);

340 xyz(:,i) = sum(w.*reshape(xi(G.cellNodes(c, :))’, 2ˆd, [])’, 2);

341 end

342 end

343
344
345 function vxyz = globalVelocity(c, p, v)

346 % Return velocity vector at each substep.

347
348 d = size(v,2)/2;

349 w = size(c,1);

350 vxyz=zeros(w,d);

351
352 for i=1:d

353 %Linear interpolation internally in unit cell

354 vxyz(:,i) = (v(c,2*i)-v(c,2*i-1)).*p(:,i)+v(c,2*i-1);

355
356 end

357 end

358 %% ==

359 function [pos, tof, xyz, vxyz, ds, gp] = ...

360 step(rock, fluid, pos, unitflux, flux, neighbors, nsubsteps)

361 % Update pos array by computing new local coordinate and new cell.

100 Appendix A. MRST Code

362 % In addition, compute curve within cell, step lengths, time of flight

363 % and pressure gradients.

364 %

365 %

366 uf = unitflux(pos(:,1),:); % velocity unit cell

367 f = flux(pos(:,1),:); % velocity

368 n = neighbors(pos(:,1),:);

369 dims = size(pos, 2)-1;

370 T = nan(size(pos,1),dims);

371 for i=1:dims

372 T(:,i) = computeTime(pos(:,1+i), uf(:,2*i-1:2*i));

373 end

374 [tof, dir] = min(T, [], 2);

375 % Compute positions, velocities, lengths and pressure gradients

376 [xyz, d, vxyz, ds, gp] = ...

377 computePosVelLenGrad(rock, fluid, pos, uf, tof, f, nsubsteps);

378 pos (:,2:end) = xyz(:,:,end);

379
380 % Find direction to look up neighbor cell

381 k = 2*(dir-1)+d(sub2ind([numel(dir), 3], (1:numel(dir))’, dir));

382 t = sub2ind(size(n), (1:numel(k))’, k);

383
384 % Update cell number if NOT at boundary.

385 % IF at boundary, mark dir with NaN to avoid changing local coordinate

386 % below.

387 ind = n(t)==0;

388 pos(˜ind,1) = n(t(˜ind));

389 dir (ind) = nan;

390
391 % Change local coordinate when moving to new cell

392 k = sub2ind(size(d), (1:size(dir,1))’, dir);

393 k = k(˜isnan(k));

394 pos(numel(dir) + k) = 2-d(k);

395 end

396
397
398 % ==

399 function N = findNeighbors(G)

400 % Build (n x 2*d) -array of neighbors for each cell in (Cartesian) grid G.

401 cellNo = rldecode(1:G.cells.num, diff(G.cells.facePos), 2)’;

402 col = 1 + (cellNo == G.faces.neighbors(G.cells.faces(:,1), 1));

403 c = G.faces.neighbors(double(G.cells.faces(:,1)) + G.faces.num* (col-1));

404 N = accumarray([cellNo, G.cells.faces(:,2)], c);

405 end

406
407
408 % ==

409 function t = computeTime(xi, v)

410 % Compute time needed to reach xi=0 or xi=1 given velocities v=[v1,v2] at

411 % xi=0 and xi=1. The formula is

412 %

413 % t = xi/ui or t = (1-xi)/ui, if v1 = v2 = ui, and

414 %

415 % t = 1/(v2-v1)*log(ue/ui), otherwise

416 %

417 % where ui=v2*xi+v1*(1-xi) is the velocity at xi, and ue=v2 if ui>0 or

418 % ue=v1 if ui<0.

A.3. Extended Pollock Algorithm 101

419 tolerance = 100*eps;

420
421 ui = v(:,1) + xi.*diff(v, 1, 2);%(:,2)-v(:,1));

422 ue = v(:, 2);

423 ue (ui<0) = v(ui<0, 1);

424 arg = ue./ui;

425 t = inf(size(xi));

426
427 % Linear velocity

428 ind = abs(diff(v, 1, 2)) > tolerance*abs(v(:,1));

429 t(ind,:) = 1./diff(v(ind,:), 1, 2).*log(arg(ind,:));

430
431 % Constant velocity

432 ds = -xi;

433 ds(ui > 0) = 1-xi(ui>0);

434 t(˜ind) = ds(˜ind)./ui(˜ind);

435
436 % nan happens for ui=ui=0

437 t(arg<0 | isnan(arg)) = inf;

438 end

439
440
441 % ==

442 function [xyz, d,vxyz,ds,gp] = ...

443 computePosVelLenGrad(rock, fluid, pos, uf, tof, f, nsubsteps)

444 % Compute position at time t given start point xi and velocities v=[v1,v2].

445 %

446 % x = xi + v*t, if v is constant or

447 %

448 % x = xi + (ui*exp((v2-v1)*t) - ui)/(v2-v1), otherwise

449 %

450 dims = size(pos, 2)-1;

451 nel = size(pos, 1);

452 xyz = zeros(nel, dims, nsubsteps);

453 vxyz= xyz;

454 ds = zeros(nel, nsubsteps);

455 gp = ds;

456 d = zeros(nel, 1);

457 du = zeros(nel,dims);

458 dv = du;

459 ui = du;

460 vi = du;

461 dt= tof/nsubsteps;

462
463 for i=1:dims

464 du(:,i)= diff(uf(:,2*i-1:2*i), 1, 2);

465 dv(:,i)= diff(f(:,2*i-1:2*i), 1, 2);

466 ui(:,i)= uf(:,2*i-1) + pos(:,1+i).*du(:,i); %unit cell velocity

467 vi(:,i)= f(:,2*i-1) + pos(:,1+i).*dv(:,i); %velocity

468 d(:,i) = 1 + ˜(ui(:,i)<0);

469 end

470
471 for s=1:nsubsteps

472 t = s*dt; %residence time in cell

473 for i=1:dims

474 tolerance = 100*eps;

475

102 Appendix A. MRST Code

476 xyz(:,i,s)= inf(size(pos(:,1+i)));

477
478 ind = abs(du(:,i)) > tolerance*abs(uf(:,2*i-1));

479
480 % linear velocity

481 xyz(ind,i,s) = pos(ind,1+i) + ...

482 (ui(ind,i).*exp(du(ind,i).*t(ind)) - ui(ind,i))./du(ind,i);

483 vxyz(ind,i,s) =(vi(ind,i)).*exp(du(ind,i).*t(ind));

484
485
486 % Constant velocity

487 xyz(˜ind,i,s) = pos(˜ind,1+i) + uf(˜ind,2*i-1).*t(˜ind, :);

488 xyz(˜ind & t==inf,i,s) = pos(˜ind & t==inf,1+i);

489 vxyz(˜ind,i,s)=f(˜ind,2*i-1);

490
491 end

492
493 if s==1

494 vp=sqrt(sum(vi.ˆ2,2));

495 v=sqrt(sum(vxyz(:,:,s).ˆ2,2)); %velocity at end of step

496 %mean perm

497 k=(sqrt(sum((rock.perm(pos(:,1),:).*vi./vp).ˆ2,2))...

498 +sqrt(sum((rock.perm(pos(:,1),:).*vxyz(:,:,s)./v).ˆ2,2)))./2;

499 else

500 vp=v;

501 v=sqrt(sum(vxyz(:,:,s).ˆ2,2)); %velocity at end of step

502 %mean perm

503 k=(sqrt(sum((rock.perm(pos(:,1),:).*vxyz(:,:,s-1)./vp).ˆ2,2))...

504 +sqrt(sum((rock.perm(pos(:,1),:).*vxyz(:,:,s)./v).ˆ2,2)))./2;

505 end

506
507 %curve length

508 ds(:,s)=dt.*(vp+v)./2;

509
510 %mean pressure gradient

511 gp(:,s)= -((v+vp)./2.*rock.poro(pos(:,1))./k).*fluid.properties(1);

512 end

513 end

A.4 Fast Marching Diffusive Time of Flight

1 function DTOF=computeDTOF(G,rock,fluid,comp,startCells,cellSize)

2 % Compute diffusive time of flight with Fast Marching Method (FMM). See

3 % Zhang et al. 2013 (SPE 163637). The diffusive time of flight is related

4 % to the propagation of a pressure front, similar to the depth of

5 % investigation.

6 %

7 %

8 % SYNOPSIS:

9 % DTOF = computeDTOF(G,rock,fluid,comp,startCells,cellSize)

10 %

11 % PARAMETERS:

12 %

A.4. Fast Marching Diffusive Time of Flight 103

13 % G - Cartesian or logically Cartesian grid.

14 %

15 % rock - Rock structure with the fields ’poro’ and ’perm’.

16 %

17 % fluid - MRST fluid structure where fluid.properties(1)=viscosity

18 %

19 % comp - Total compressibility. Vector of size (1,1) or (N,1)

20 % where N is the number of grid cells.

21 %

22 % startCells - Cells where DTOF=0;

23 %

24 % cellSize - Vector of size (1,d) or (N,d) where d is dimension of the

25 % grid and N is the number of cells.

26 %

27 % RETURNS:

28 %

29 % DTOF - Diffusive time of flight

30 %

31 % Written by Asgeir Nyvoll, MSc student NTNU, 2018

32
33 nbrs=findNeighbors(G);

34 DTOF=NaN(G.cells.num,1);

35 voxelState=zeros(G.cells.num,1); % 0 is far, 1 is evaluated, 2 is accepted

36 DTOF(startCells)=0; % initial

37 voxelState(startCells)=2; % accept initial

38 startNbrs=unique(nbrs(voxelState==2,:));

39 diffu=rock.perm./(rock.poro.*comp.*fluid.properties(1));

40 slowness=cellSize./sqrt(diffu)./2;

41 gdim=size(nbrs,2)/2;

42 if gdim==3

43 if all(nbrs(:,5:6)==0)

44 gdim=2; %Basically 2D

45 end

46 end

47 %Preparing first set of neighbors

48 for n = startNbrs(:).’

49 if n>0 && voxelState(n)==0

50 voxelState(n)=1;

51 DTOF(n)=solveEikonalDTOF(DTOF,voxelState,slowness,nbrs(n,:),n,gdim);

52 end

53 end

54 % Accepting first neighbor

55 acceptedValue=min(DTOF(voxelState==1)); % Lowest DTOF is accepted

56 acceptedNode=find(DTOF==acceptedValue,1); % Node of accepted DTOF

57 voxelState(acceptedNode)=2; % Update status

58 unacceptedNbrs=unique(nbrs(acceptedNode,:)); % Neighbors of accepted

59 unacceptedNbrs=unacceptedNbrs(unacceptedNbrs>0); % Remove boundary

60 % Remove accepted neighbors

61 unacceptedNbrs=unacceptedNbrs(voxelState(unacceptedNbrs)˜=2);

62 voxelState(unacceptedNbrs)=1; %update state of unaccepted neighbors

63
64 % Iterate until all connected cells are reached

65 while ˜isempty(acceptedNode) && any(voxelState˜=2)

66 for n=unacceptedNbrs(:).’

67 % Update DTOF of unaccepted neighbors of latest accepted node

68 DTOF(n)=solveEikonalDTOF(DTOF,voxelState,slowness,nbrs(n,:),n,gdim);

69 end

104 Appendix A. MRST Code

70 % Accept next node, find new neighbors, update states

71 acceptedValue=min(DTOF(voxelState==1));

72 acceptedNode=find(DTOF==acceptedValue);

73 voxelState(acceptedNode)=2;

74 unacceptedNbrs=unique(nbrs(acceptedNode,:));

75 unacceptedNbrs=unacceptedNbrs(unacceptedNbrs>0);

76 unacceptedNbrs=unacceptedNbrs(voxelState(unacceptedNbrs)˜=2);

77 voxelState(unacceptedNbrs)=1;

78 end

79 end

80
81 function tempDTOF=solveEikonalDTOF(DTOF,voxelState,slowness,nbrs,n,gdim)

82 %Solves the Eikonal equation with the approximation from Zhang et al.

83 %

84 tempDTOF=NaN;

85
86 % Evaluate diffusive time of flight from each corner. Smallest value is

87 % valid

88 if gdim==3

89 for i=1:2

90 for j=3:4

91 for k=5:6

92 tempDTOF=min(singleTestSolver(...

93 DTOF,voxelState,slowness,nbrs,n,[i j k]),tempDTOF);

94 end

95 end

96 end

97 elseif gdim==2

98 for i=1:2

99 for j=3:4

100 tempDTOF=min(singleTestSolver(...

101 DTOF,voxelState,slowness,nbrs,n,[i j]),tempDTOF);

102 end

103 end

104 else

105 error(’Neither 2D nor 3D’)

106 %Should "never" happen

107 end

108 end

109
110
111 function dtof=singleTestSolver(DTOF,voxelState,slowness,nbrs,n,testCase)

112 %Solves Equations (9) and (10) in Zhang et al. (2013) for one corner

113 coeff=[0 0 0]; % coeff = [a,b,c] in quadratic equation a*tˆ2+b*t+c

114 for i=1:length(testCase)

115 if (nbrs(testCase(i))>0) %Check that it is not a boundary

116 direction=ceil(testCase(i)/2);

117 if isnan(slowness(n,direction))

118 dtof=NaN;

119 return

120 end

121 if (voxelState(nbrs(testCase(i)))==2 && ...

122 ˜isnan(slowness(nbrs(testCase(i)),direction)))

123 coeff=coeff+1/(slowness(nbrs(testCase(i)),direction)+...

124 slowness(n,direction))ˆ2.*...

125 [1, -2*DTOF(nbrs(testCase(i))),(DTOF(nbrs(testCase(i))))ˆ2];

126 end

A.5. Permeability Description Model 105

127 end

128 end

129 if all(coeff==0)

130 dtof=NaN; return

131 else

132 coeff=coeff-[0 0 1];

133 % Solve quadratic equation

134 dtof=((-coeff(2)+sqrt(coeff(2)ˆ2-4*coeff(1)*coeff(3)))/(2*coeff(1)));

135 return

136 end

137 end

138
139
140 function N = findNeighbors(G)

141 % Build (n x 2*d) -array of neighbors for each cell in (Cartesian) grid G.

142 cellNo = rldecode(1:G.cells.num, diff(G.cells.facePos), 2)’;

143 col = 1 + (cellNo == G.faces.neighbors(G.cells.faces(:,1), 1));

144 c = G.faces.neighbors(double(G.cells.faces(:,1)) + G.faces.num* (col-1));

145 N = accumarray([cellNo, G.cells.faces(:,2)], c);

146 end

A.5 Permeability Description Model

A.5.1 Streamline Parameters

1 function varargout=streamtubePermDesc(gradP, dS, fluid, s)

2 % Calculate streamline permeability descriptors from streamline gradients,

3 % line lengths, fluid model and shortest path.

4 %

5 %

6 % SYNOPSIS:

7 % [Be,Ce,Te2,varTs2,varInvCs] = effPermDesc(BS,CS,TauS2, Qs, Ve);

8 %

9 %

10 % PARAMETERS:

11 %

12 % BS - Streamline/streamtube hydraulic conductance

13 %

14 % CS - Streamline constriction factor

15 %

16 % TauS2 - Streamline tortuosity factor

17 %

18 % Qs - Streamtube rate

19 %

20 % Ve - Effective bulk volume

21 %

22
23 %

24 % RETURNS:

25 %

26 % Be - Effective hydraulic conductance

27 %

106 Appendix A. MRST Code

28 % Ce - Effective constriction factor

29 %

30 % Te2 - Effective tortuosity factor

31 %

32 % varTs2 - Weighted variance of tortuosity factors

33 %

34 % varInvCs - Weighted variance of inverse constriction factors

35
36 %

37 % EXAMPLE:

38 %

39 % [Be,Ce,Te2,varTs2,varInvCs] = effPermDesc(BS,CS,TauS2, Qs, Ve);

40 %

41 % SEE ALSO: streamtubePermDesc()

42 % Written by Asgeir Nyvoll, MSc student NTNU, 2018

43
44 if length(gradP)˜=length(dS)

45 error(’The length of pressure gradients and streamlines have to be equal’)

46 end

47
48
49 gradInt=sum(1./gradP(gradP˜=0).*dS(gradP˜=0));

50
51 varargout{1}=-gradInt.*fluid.properties(1);

52
53 if nargout>1

54 Ls=sum(dS);

55 pDrop=sum(gradP.*dS);

56 varargout{2}=pDrop/(Lsˆ2)*gradInt;

57 end

58
59 if nargout>2

60 varargout{3}=(s/Ls)ˆ2;

61 end

62 end

A.5.2 Effective Model Parameters

1 function varargout=effPermDesc(BS,CS,TauS2, QS, Ve)

2 % Calculate effective permeability descriptors from streamline descriptors

3 % effective bulk volume and rates

4 %

5 %

6 % SYNOPSIS:

7 % [BS, CS, TauS2]=streamtubePermDesc(GradP, LS, fluid, shortestpath);

8 %

9 %

10 % PARAMETERS:

11 %

12 % GradP - Pressure gradients for each substep in Pollock

13 % approximation

14 %

15 % LS - Streamline length for each substep in Pollock approximation

16 %

A.5. Permeability Description Model 107

17 % fluid - MRST fluid structure where fluid.properties(1) is viscosity

18 %

19 % shortestpath - Length of streamline if no tortuosity

20 %

21 %

22 % RETURNS:

23 %

24 % BS - Streamline/streamtube hydraulic conductance

25 %

26 % CS - Streamline constriction factor

27 %

28 % TauS2 - Streamline tortuosity factor

29 %

30 %

31 % EXAMPLE:

32 %

33 % [BS, CS, TauS2]=streamtubePermDesc(GradP, LS, fluid, shortestpath);

34 %

35 % SEE ALSO: effPermDesc(), pollockMod()

36 % Written by Asgeir Nyvoll, MSc student NTNU, 2018

37
38 Q=sum(QS);

39 BSQS=BS.*QS;

40 sBSQS=sum(BSQS);

41 varargout{1}=sBSQS./Ve;

42
43 if nargout>1

44 varargout{2}=sum(CS.*QS)./Q;

45 end

46
47 if nargout>2

48 varargout{3}=sum(TauS2.*BSQS)/sBSQS;

49 end

50
51 if nargout>3

52 varargout{4}=sum(BSQS.*(TauS2-varargout{3}(:)).ˆ2)/sBSQS;

53 end

54
55 if nargout>4

56 varargout{5}=sum(((1./CS-1./varargout{2}).ˆ2).*QS)./Q;

57
58
59 end

108 Appendix A. MRST Code

Appendix B
MRST Code for Linear and
Trilinear Interpolation of Pressure
Gradient

MRST code for linear and trilinear pressure interpolations, though they are not recom-
mended to use based on results shown in this thesis. The recommended code to use is
found in Appendix A.

The code given here is tested with Matlab R2017a and MRST 2017b, and is not guaranteed
to work on other versions of the softwares, as the code use already existing functions of
both Matlab and MRST. MRST can be downloaded from http://www.sintef.no/

projectweb/mrst/downloadable-resources/download/.

B.1 Linear Interpolation

The following function takes the streamline coordinates S and cell numbers C from the
Pollock approximation as input, together with the grid G, rock structure, state/sol and inlet
and outlet pressures. It returns a vector of pressures in each coordinate that can later be
used to calculate the pressure gradient as (p2 − p1)/∆s, where p1 and p2 are the pressures at
the beginning and end of a step, and ∆s is the streamline step length. It is recommended
to take steps over a full cell, as using several substeps can result in pressure oscillations

109

http://www.sintef.no/projectweb/mrst/downloadable-resources/download/
http://www.sintef.no/projectweb/mrst/downloadable-resources/download/

110Appendix B. MRST Code for Linear and Trilinear Interpolation of Pressure Gradient

(not continuously dropping pressures). This function is from Nyvoll (2017).

1 function P=pIntLoverK(G,rock,sol,S,C,pIn,pOut)

2 % Linear interpolation of pressure at cell face between two cells scaled

3 % with permeability

4
5 % PARAMETERS:

6 %

7 % G - Cartesian grid: MRST structure. Has to include

8 % G.cells.centroids

9 %

10 % rock - MRST rock structure witch includes rock.perm

11 %

12 % sol - MRST structure that includes the field sol.pressure

13 % e.g. result from incompTPFA

14 %

15 % S - Coordinates of streamline at cell faces

16 % as found with pollock().

17 %

18 % C - Cell number for steps in the streamline

19 %

20 % pIn - Pressure at start of streamline

21 %

22 % pOut - Pressure at end of streamline

23 %

24 % RETURNS:

25 %

26 % P - Interpolated pressures at cell faces

27
28 % Distance from centroid of previous cell

29 distBef=sqrt(sum((S(2:end-1,:)-...

30 G.cells.centroids(C(1:end-1,:))).ˆ2,2));

31 %Distance from centroid of next cell

32 distAft=sqrt(sum((S(2:end-1,:)-...

33 G.cells.centroids(C(2:end,:))).ˆ2,2));

34 %Pressure of previous cell centroid

35 Pbef=sol.pressure(C(1:end-1));

36 %Pressure of next cell centroid

37 Paft=sol.pressure(C(2:end));

38 %Slope of linear interpolation, including perm-scaling:

39 alpha = (Pbef-Paft)./(distBef./rock.perm(C(1:end-1,:),1)...

40 +distAft./rock.perm(C(2:end,:),1));

41 %Find pressures along streamline:

42 P=[pIn; Pbef-alpha.*distBef./rock.perm(C(1:end-1,:),1);pOut];

B.2 Trilinear Interpolation

Pollock algorithm that includes pressure estimation by the use of trilinear interpolation.
Modified version of MRST’s existing pollock() function. This function returns coordi-
nates, times of flight, cells and pressures. Again the pressure gradient can be estimated by
(p2 − p1)/∆s, where p1 and p2 are the pressures at two neighboring coordinates, and ∆s is

B.2. Trilinear Interpolation 111

the streamline length between them.

1 function varargout = pollockPressureTriLin(G, state, rock, varargin)

2 % Trace streamlines in logically Cartesian grid using Pollock approximation.

3 % In addition to the regular Pollock approximation, pressures are

4 % supported by the use of trilinear interpolation (not recommended).

5 %

6 %

7 % SYNOPSIS:

8 % [S,T,C,P] = pollockMod(G, state, rock)

9 % [S,T,C,P] = pollockMod(G, state, rock, startpos)

10 % [S,T,C,P] = pollockMod(G, state, rock, ’pn’, pv, ...)

11 % [S,T,C,P] = pollockMod(G, state, rock, startpos, ’pn’, pv, ...)

12 %

13 % PARAMETERS:

14 %

15 % G - Cartesian or logically Cartesian grid.

16 %

17 % state - State structure with field ’flux’.

18 %

19 % rock - Rock structure with the field ’poro’.

20 %

21 % OPTIONAL PARAMETERS

22 %

23 % positions - Matrix of size (N, 1) or (N, d+1), where d is the dimension

24 % of the grid, used to indicate where the streamlines should

25 % start.

26 %

27 % If the size is (N, 1), positions contains the cell indices

28 % in which streamlines should start. Each streamline is

29 % started in the the local coordinate (0.5, 0.5, ...). To be

30 % precise, this is the mean of the corner points, not the

31 % centroid of the cell.

32 %

33 % If the size is (N, d+1), the first column contains cell

34 % indices, and the d next columns contain the local

35 % coordinates at which to start streamlines.

36 %

37 % OPTIONAL PARAMETERS (supplied in ’key’/value pairs (’pn’/pv ...)):

38 %

39 % substeps - Number of substeps in each cell, to improve visual quality.

40 % Default 5.

41 %

42 % maxsteps - Maximal number of points in a streamline.

43 % Default 1000.

44 %

45 % reverse - Reverse velocity field before tracing.

46 % Default false.

47 %

48 % RETURNS:

49 %

50 % S - Cell array of individual streamlines suitable for calls like

51 % streamline(pollock(...)) and streamtube(pollock(...)).

52 %

53 % T - Time-of-flight of coordinate.

54 %

55 % C - Cell number of streamline segment, i.e, line segment between

112Appendix B. MRST Code for Linear and Trilinear Interpolation of Pressure Gradient

56 % two streamline coordinates.

57 %

58 % P - Interpolated pressure in each coordinate

59
60 % EXAMPLE:

61 %

62 % [S,T,C,P] = pollockPressureTriLin(G, state, rock,startpos);

63 %

64 %

65 % SEE ALSO: pollockMod()

66 %

67 %

68 %{

69 ORIGINAL COPYRIGHT FROM MRST:

70
71 Copyright 2009-2017 SINTEF ICT, Applied Mathematics.

72
73 This file is part of The MATLAB Reservoir Simulation Toolbox (MRST).

74
75 MRST is free software: you can redistribute it and/or modify

76 it under the terms of the GNU General Public License as published by

77 the Free Software Foundation, either version 3 of the License, or

78 (at your option) any later version.

79
80 MRST is distributed in the hope that it will be useful,

81 but WITHOUT ANY WARRANTY; without even the implied warranty of

82 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

83 GNU General Public License for more details.

84
85 You should have received a copy of the GNU General Public License

86 along with MRST. If not, see <http://www.gnu.org/licenses/>.

87 %}

88
89 % Written by Jostein R. Natvig, SINTEF ICT, 2010.

90 %

91 % Modified by Asgeir Nyvoll, MSc student NTNU, 2018

92
93 d = size(G.nodes.coords, 2);

94 if mod(length(varargin),2)==0

95 positions = [(1:G.cells.num)’, repmat(0.5, [G.cells.num, d])];

96 else

97 positions = varargin{1};

98 if size(positions, 2) ==1

99 positions = [positions, repmat(0.5, [size(positions, 1), d])];

100 elseif size(positions, 2) ˜= 1 + d

101 error(’Expected array of local positions of width 1 or 1+d.’);

102 end

103 varargin = varargin(2:end);

104 end

105 opt = struct(’substeps’, 5, ’maxsteps’, 1000, ’reverse’, false);

106 opt = merge_options(opt, varargin{:});

107
108 if opt.reverse

109 state.flux = -state.flux;

110 end

111
112 [varargout{1:nargout}] = trace(G, state, positions, opt, rock);

B.2. Trilinear Interpolation 113

113
114 end

115
116
117
118 % ==

119 function varargout = trace(G, state, pos, opt, rock)

120 d = size(G.nodes.coords, 2);

121 numStreamlines = size(pos,1);

122 assert(size(pos, 2) == d+1);

123
124 if ˜isfield(G, ’cellNodes’)

125 cn = cellNodes(G);

126 G.cellNodes = accumarray(cn(:,1:2), cn(:,3));

127 end

128
129 % Make array face fluxes for each cell in grid (Not outer).

130 cellNo = rldecode(1:G.cells.num, diff(G.cells.facePos), 2) .’;

131 cf = G.cells.faces;

132 pv = poreVolume(G,rock);

133 flux = accumarray([cellNo, cf(:,2)], state.flux(cf(:,1)));

134 velo = flux./pv;

135 velo(pv==0,:)=0;

136 clear cf cellNo

137
138 neighbors = findNeighbors(G);

139
140 nodePressure=nodePressures(G,state,rock);

141 nodePressure(G.nodes.coords(:,2)==min(G.nodes.coords(:,2)))=5e7;

142 nodePressure(G.nodes.coords(:,2)==max(G.nodes.coords(:,2)))=1e7;

143 state.cellNodePressure=zeros(size(G.cellNodes));

144 state.cellNodePressure(:,:)=nodePressure(G.cellNodes);

145 clear nodePressure

146
147
148
149 magic = 1000;

150 XYZ = nan(numStreamlines, d, magic);

151 T = nan(numStreamlines, magic);

152 C = nan(numStreamlines, magic);

153 P = nan(numStreamlines, magic);

154 active = true(numStreamlines, 1);

155
156
157 % Store crossing coordinates of active streamlines

158 [XYZ(active,:,1)] = globalCoordinate(G, pos(active,1), pos(active, 2:end));

159 T(active, 1) = zeros(sum(active), 1);

160 C(active, 1) = pos(active,1);

161 P(active, 1) = localPressure(state, pos(active,1), pos(active, 2:end));

162
163 i = 2;

164 while any(active)

165 % Realloc

166 if i+opt.substeps+1 > size(XYZ, 3)

167 magic = max(magic, opt.substeps+1);

168 XYZ = cat(3, XYZ, nan(numStreamlines, d, magic));

169 T = cat(2, T, nan(numStreamlines, magic));

114Appendix B. MRST Code for Linear and Trilinear Interpolation of Pressure Gradient

170 C = cat(2, C, nan(numStreamlines, magic));

171 P = cat(2, P, nan(numStreamlines, magic));

172 end

173 current_cell = pos(active,1);

174
175 % Take another pollock step

176 [pos(active, :), t, xyz] = step(pos(active,:), velo, neighbors, opt.substeps);

177
178 % Store crossing coordinates and, optionally, coordinates along curve

179 % trajectory in cell of active streamlines

180 for k=1:opt.substeps

181 [XYZ(active, :, i+k-1)] = globalCoordinate(G, current_cell, xyz(:,:,k));

182 P(active, i+k-1) = localPressure(state, current_cell, xyz(:,:,k));

183 end

184 T(active, i-1+(1:opt.substeps)) = repmat(t/opt.substeps, [1, opt.substeps]);

185 C(active, i-1+(1:opt.substeps)) = repmat(pos(active, 1), [1, opt.substeps]);

186
187 % Update active flag

188 active(active) = pos(active,1) ˜= current_cell;

189
190 i = i+opt.substeps;

191 if i > opt.maxsteps, break;end

192 end

193
194 %% Pack coordinates in list with streamlines separated by NaN.

195 p = reshape(permute(XYZ, [3,1,2]), [], d);

196
197 i = ˜isnan(p(:,1));

198 j = i|[true;i(1:end-1)];

199 p = p(j,:);

200
201 % Pack streamline coordinates in a cell array suitable for use with

202 % Matlab streamline, i.e., as in ’streamline(pollock(G, resSol));’

203 flag = isnan(p(:,1));

204 ix = find(flag);

205 dd = diff([0;ix])-1;

206 varargout{1} = mat2cell(p(˜flag,:), dd, d);

207 if nargout > 1

208 T = reshape(T’, [], 1);

209 T = T(j);

210 varargout{2} = mat2cell(T(˜flag), dd, 1);

211 end

212 if nargout > 2

213 C = reshape(C’, [], 1);

214 C = C(j);

215 varargout{3} = mat2cell(C(˜flag), dd, 1);

216 end

217 if nargout > 3

218 P = reshape(P’, [], 1);

219 P = P(j);

220 varargout{4} = mat2cell(P(˜flag), dd, 1);

221 end

222 end

223
224
225
226 % ==

B.2. Trilinear Interpolation 115

227 function xyz = globalCoordinate(G, c, p)

228 % Compute global coordinate corresponding to local coorinate p in cells c

229 % p - local positions == [xi,eta,zeta] in 3D

230 % c -

231 %

232 if numel(c)==1, p = reshape(p, 1, []); end

233 % Compute node weight for quadrilateral or hexahedron

234 d = size(G.nodes.coords, 2);

235 w = ones(size(p,1), 2ˆd);

236 for i=1:d

237 mask = logical(bitget((0:2ˆd-1)’, i));

238 w(:, mask) = w(:, mask).* repmat(p(:,i), [1, sum(mask)]);

239 w(:,˜mask) = w(:,˜mask).* repmat(1-p(:,i), [1, sum(˜mask)]);

240 end

241
242 % Compute weighted average of corner points

243 xyz = zeros(size(p,1), d);

244 for i=1:d

245 xi = G.nodes.coords(:,i);

246 xyz(:,i) = sum(w.*reshape(xi(G.cellNodes(c, :))’, 2ˆd, [])’, 2);

247 end

248 end

249
250
251
252 %% ==

253 function [pos, tof, xyz] = step(pos, flux, neighbors, nsubsteps)

254 % Update pos array by computing new local coordinate and new cell.

255 % In addition, compute curve within cell.

256 %

257 %

258 %

259 %

260 f = flux(pos(:,1),:);

261 n = neighbors(pos(:,1),:);

262
263 dims = size(pos, 2)-1;

264 T = nan(size(pos,1),dims);

265 for i=1:dims

266 T(:,i) = computeTime(pos(:,1+i), f(:,2*i-1:2*i));

267 end

268 [tof, dir] = min(T, [], 2);

269
270 xyz = zeros(size(pos,1), dims, nsubsteps);

271 d = zeros(size(pos, 1), 1);

272 for s=1:nsubsteps

273 for i=1:dims

274 t = tof*s/nsubsteps;

275 [xyz(:,i,s), d(:,i)] = computePosition(pos(:,1+i), f(:,2*i-1:2*i), t);

276 end

277 end

278
279 pos (:,2:end) = xyz(:,:,s);

280
281 % Find direction to look up neighbor cell

282 k = 2*(dir-1)+d(sub2ind([numel(dir), 3], (1:numel(dir))’, dir));

283 t = sub2ind(size(n), (1:numel(k))’, k);

116Appendix B. MRST Code for Linear and Trilinear Interpolation of Pressure Gradient

284
285 % Update cell number if NOT at boundary.

286 % IF at boundary, mark dir with NaN to avoid changing local coordinate

287 % below.

288 ind = n(t)==0;

289 pos(˜ind,1) = n(t(˜ind));

290 dir (ind) = nan;

291
292 % Change local coordinate when moving to new cell

293 k = sub2ind(size(d), (1:size(dir,1))’, dir);

294 k = k(˜isnan(k));

295 pos(numel(dir) + k) = 2-d(k);

296 end

297
298
299 % ==

300 function N = findNeighbors(G)

301 % Build (n x 2*d) -array of neighbors for each cell in (Cartesian) grid G.

302 cellNo = rldecode(1:G.cells.num, diff(G.cells.facePos), 2)’;

303 col = 1 + (cellNo == G.faces.neighbors(G.cells.faces(:,1), 1));

304 c = G.faces.neighbors(double(G.cells.faces(:,1)) + G.faces.num* (col-1));

305 N = accumarray([cellNo, G.cells.faces(:,2)], c);

306 end

307
308
309
310
311
312
313 % ==

314 function t = computeTime(xi, v)

315 % Compute time needed to reach xi=0 or xi=1 given velocities v=[v1,v2] at

316 % xi=0 and xi=1. The formula is

317 %

318 % t = xi/ui or t = (1-xi)/ui, if v1 = v2 = ui, and

319 %

320 % t = 1/(v2-v1)*log(ue/ui), otherwise

321 %

322 % where ui=v2*xi+v1*(1-xi) is the velocity at xi, and ue=v2 if ui>0 or

323 % ue=v1 if ui<0.

324 tolerance = 100*eps;

325
326 ui = v(:,1) + xi.*diff(v, 1, 2);%(:,2)-v(:,1));

327 ue = v(:, 2);

328 ue (ui<0) = v(ui<0, 1);

329 arg = ue./ui;

330 t = inf(size(xi));

331
332 % Linear velocity

333 ind = abs(diff(v, 1, 2)) > tolerance*abs(v(:,1));

334 t(ind,:) = 1./diff(v(ind,:), 1, 2).*log(arg(ind,:));

335
336 % Constant velocity

337 ds = -xi;

338 ds(ui > 0) = 1-xi(ui>0);

339 t(˜ind) = ds(˜ind)./ui(˜ind);

340

B.2. Trilinear Interpolation 117

341 % nan happens for ui=ui=0

342 t(arg<0 | isnan(arg)) = inf;

343 end

344
345
346 % ==

347 function [x, i] = computePosition(xi, v, t)

348 % Compute position at time t given start point xi and velocities v=[v1,v2].

349 %

350 % x = xi + v*t, if v is constant or

351 %

352 % x = xi + (ui*exp((v2-v1)*t) - ui)/(v2-v1), otherwise

353 %

354 tolerance = 100*eps;

355
356 du = diff(v, 1, 2);

357 ui = v(:,1) + xi.*du;

358 i = 1 + ˜(ui<0);

359 x = inf(size(xi));

360
361 ind = abs(du) > tolerance*abs(v(:,1));

362
363 % linear velocity

364 x(ind) = xi(ind) + (ui(ind).*exp(du(ind).*t(ind)) - ui(ind))./du(ind);

365
366 % Constant velocity

367 x(˜ind,:) = xi(˜ind,:) + v(˜ind, 1).*t(˜ind, :);

368 x(˜ind & t==inf) = xi(˜ind & t==inf);

369 end

370
371 function nodeP=nodePressures(G,state,rock)

372 %Calculates pressure in each node (grid cell corners)

373 cn=cellNodes(G);

374 nodeCells=accumarray([cn(:,3), cn(:,2)], cn(:,1));

375 weights=nodeCells;

376 cellPressures=weights;

377 active=nodeCells>0;

378 wx=weights; wy=weights; wz=weights;

379 wx(active)=G.cells.centroids(nodeCells(active),1);

380 wx=wx-G.nodes.coords(:,1);

381 wx(nodeCells==0)=0;

382
383 wy(active)=G.cells.centroids(nodeCells(active),2);

384 wy=wy-G.nodes.coords(:,2);

385 wy(nodeCells==0)=0;

386
387 wz(active)=G.cells.centroids(nodeCells(active),3);

388 wz=wz-G.nodes.coords(:,3);

389 wz(nodeCells==0)=0;

390
391
392 dims=size(rock.perm);

393 % Length and permeability scaled weighting

394 if(dims(2)==1)

395 weights(weights>0)=(abs(wx(active)).*rock.perm(nodeCells(active),1)...

396 +abs(wy(active))+abs(wz(active))).*rock.perm(nodeCells(active))...

397 ./(wx(active).ˆ2+wy(active).ˆ2+wz(active).ˆ2);

B.2. Trilinear Interpolation

398
399 else

400 weights(weights>0)=(abs(wx(active)).*rock.perm(nodeCells(active),1)...

401 +abs(wy(active)).*rock.perm(nodeCells(active),2)...

402 +abs(wz(active)).*rock.perm(nodeCells(active),3))...

403 ./(wx(active).ˆ2+wy(active).ˆ2+wz(active).ˆ2);

404
405 end

406 weightsum=sum(weights,2);

407 cellPressures(active)=state.pressure(nodeCells(active));

408 nodeP=sum((weights.*cellPressures),2)./weightsum;

409
410 end

411
412 function streamlinePressure=localPressure(state,cell, pos)

413 %Trilinear interpolation

414 c000=state.cellNodePressure(cell,1);

415 c100=state.cellNodePressure(cell,2);

416 c010=state.cellNodePressure(cell,3);

417 c110=state.cellNodePressure(cell,4);

418 c001=state.cellNodePressure(cell,5);

419 c101=state.cellNodePressure(cell,6);

420 c011=state.cellNodePressure(cell,7);

421 c111=state.cellNodePressure(cell,8);

422
423 c00=c000.*(1-pos(:,1))+c100.*pos(:,1);

424 c01=c001.*(1-pos(:,1))+c101.*pos(:,1);

425 c10=c010.*(1-pos(:,1))+c110.*pos(:,1);

426 c11=c011.*(1-pos(:,1))+c111.*pos(:,1);

427
428 c0=c00.*(1-pos(:,2))+c10.*pos(:,2);

429 c1=c01.*(1-pos(:,2))+c11.*pos(:,2);

430
431 streamlinePressure=c0.*(1-pos(:,3))+c1.*pos(:,3);

432 end

	Summary
	Sammendrag
	Preface
	Nomenclature
	Introduction
	Structure of the Thesis

	Background
	Streamlines and Streamtubes in Porous Media
	Streamlines
	Streamtubes

	Time of Flight
	Particle Time of Flight
	Diffusive Time of Flight

	Heterogeneity Measures
	Static Heterogeneity Measures
	Lorenz Coefficient
	Dykstra-Parsons Coefficient

	Dynamic Heterogeneity Measures
	Lorenz Coefficient
	Flow Heterogeneity Index
	Koval Factor
	Vorticity Factor
	Coefficient of Variance for Time of Flight

	Geological Model: SPE10, Model 2

	Methodology
	Streamline Tracking and Time of Flight Pollock's Algorithm
	Algorithm
	Expansion of MRST Implementation
	Velocity Vector
	Streamline Lengths
	Pressure Gradients
	Periodic Boundary Conditions

	Diffusive Time of Flight Using Fast Marching Method
	Algorithm

	Permeability Description Using Streamlines
	Theory
	Tortuosity (S)
	Hydraulic Conductance B(S)
	Constriction C(S)
	Effective Conductance, Tortuosity and Constriction

	New Heterogeneity Measures
	Tortuosity and Constriction Based Heterogeneity Measures
	Sweep Efficiency From Diffusive Time of Flight

	Setup for Numerical Results
	Single-Phase Flow Experiments
	Waterflooding and Tertiary Polymer Injection

	Results
	Streamlines Tracked With Pollock Algorithm
	Particle and Diffusive Time of Flight
	Uncertainty Analysis
	Expanded Pollock Algorithm
	Streamline Length
	Pressure Gradient Method
	Number of Streamlines

	Fast Marching Method for Diffusive Time of Flight

	Permeability description Using Streamlines
	Heterogeneity Measures

	Discussion
	Effect of Boundary Conditions on Streamlines
	Particle and Diffusive Time of Flight
	Uncertainty Analysis
	Expanded Pollock Algorithm
	Streamline Length
	Pressure Gradient
	Number of Streamlines

	Fast Marching Method for Diffusive Time of Flight

	Heterogeneity Measures
	Existing Heterogeneity Measures
	New Potential Heterogeneity Measures

	Conclusions
	Recommendations for Further Work
	Bibliography
	Appendices
	MRST Code
	Heterogeneity Measure Script
	Heterogeneity Measure Script, Periodic Grid
	Extended Pollock Algorithm
	Fast Marching Diffusive Time of Flight
	Permeability Description Model
	Streamline Parameters
	Effective Model Parameters

	MRST Code for Linear and Trilinear Interpolation of Pressure Gradient
	Linear Interpolation
	Trilinear Interpolation

