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Summary

Large RNA-Seq and DNA microarray data sets have enabled the study of relationships
between genes through co-expression analyses. Changes in gene co-expression patterns
are often related to changes in biological function, and differential co-expression network
analyses have become an important step in the comparison of co-expression profiles of
different conditions. The CSD method for differential co-expression analysis is used to
identify conserved, differentiated and specific correlation patterns between gene pairs over
multiple conditions, analyzing pair-wise correlations in gene expression and the variability
of these correlations within each data set. The variability in correlation is found from the
analysis of independent sub-samples from the full data set. The minimum sub-sample size
and required number of sub-samples in total gives a lower bound for the data set size.
An alternative sub-sampling approach allowing dependence between the sub-samples was
investigated in this study. The aim was to find out how the estimated variability was
affected by sub-sample dependence compared to a low number of sub-samples, and to
investigate whether or not sub-sample overlap could be justified as a means to allow for
smaller data sets in a CSD analysis. The results of the study were clear: Sub-sample
dependence had a much smaller negative impact on the estimated variability than having
too few sub-samples. Fewer than 150 sub-samples should therefore be avoided, and for
data sets smaller than 60 data points per gene, sub-sample dependence was suggested as a
valid alternative to the original sub-sampling approach.

Rheumatoid Arthritis (RA) is an autoimmune disease affecting about 1% of the world-
wide population. The disease involves a chronic inflammation of the joints, followed by
progressive articular remodelling and damage, as well as many common comorbidities.
The CSD method was applied on gene expression data from the synovial fluid of RA pa-
tients and healthy controls, with the aim of identifying novel genes that could be central in
RA development. The alternative sub-sampling algorithm was implemented on the small
control data set. The CSD analysis resulted in a differential co-expression network clearly
enriched in genes with functions related to the disease. Eleven network hubs were identi-
fied: Three genes, PDCD1, CTLA4 and PRDM 1, had previously been associated with RA,
while eight genes, ZNF205-AS1, GPRIS, LINC0O0426, SEPTI, ASAP2, ENPPI, IL2RG
and GBP5 were new in this context. Like a high number of genes in the network, most of
them were related to immune function or growth and tissue/organ development, and due
to their high network connectivity, all of them were considered to be possible candidates
for further research of RA. The three most highly connected genes, PDCD1, ZNF205-AS1
and GPRI8, contributed to a highly disassortative sub-network and were hypothesized to
have a coordinating role in RA. PDCD] also was a strong connector between parts of the
network with different correlation relationships. This is consistent with previous reports
of RA association for this gene. The eight other genes were found in a sub-network dom-
inated by differentiated co-expression and particularly enriched with genes related to cell
differentiation and tissue and organ development and morphology. These were hypothe-
sized to be involved in later stages of rheumatoid arthritis.




Samandrag

Store datasett fra RNA-Seq- og DNA mikromatrisestudier har gjort det muleg & stud-
ere samanhengane mellom gen via samuttrykksanalysar. Endringar i samuttrykksmgnster
mellom gen er ofte relaterte til endringar i biologisk funksjon, og analysar av differensielle
samuttrykksnettverk har blitt viktige nér ein skal samanlikne samuttrykksprofilar mellom
ulike biologiske vilkar. CSD-metoden for analyse av differensielt samuttrykk vert brukt til
a identifisere konserverte, differensierte og spesifikke korrelasjonsmgnster mellom ulike
biologiske vilkar, ved a analysere parvise korrelasjonar i genuttrykk, samt intern variasjon
i desse korrelasjonane i kvart datasett. Variasjonen i korrelasjon vert rekna ut fra korre-
lasjonar i uavhengige utval av heile datasettet. Det naudsynte talet pa utval, kombinert med
den minste storleiken dei kan ha, resulterer i ei nedre grense for storleiken pa datasetta.
Ein alternativ framgongsmate for a finne utval, der avhengigheit mellom utvala er tillate,
vart utforska i denne studien. Malet var a finne ut korleis den estimerte variasjonen i
korrelasjon vart paverka av avhengigheit mellom utvala samanlikna med det 4 ha for fa ut-
val. Motivasjonen for dette var & undersgke om overlapp mellom utvala kunne forsvarast
slik at mindre datasett kunne bli brukt i ei CSD-analyse. Resultata av studien var tydelege:
Avhengigheit mellom utvala hadde mykje mindre negativ paverknad pa den estimerte vari-
asjonen i korrelasjon enn det & bruke for fa utval hadde. Farre enn 150 utval vart difor
frarada, og for datasett mindre enn 60 datapunkt per gen vart avhengigheit mellom utvala
fgreslatt som eit gyldig alternativ til den originale tilnzerminga for a finne utval.

Leddgikt er ein autoimmun sjukdom som rammar omlag 1% av befolkninga i verda.
Sjukdomen fgrer med seg kronisk leddbetennelse, etterfulgt av gradvis omforming og
skade pa ledda, samt ei rekke vanlege fglgesjukdomar. CSD-metoden vart nytta pa genut-
trykksdata fra leddvaske hos leddgiktpasientar og friske kontrollpersonar. Den alternative
metoden for & finne utval til utrekning av variasjon i korrelasjon vart brukt pa eit lite
kontrolldatasett. Malet med analysa var a identifisere nye gen som kunne vere sentrale
i utviklinga av leddgikt. CSD-analysa resulterte i eit differensielt samuttrykksnettverk
der gen med funksjonar relaterte til sjukdomen var tydeleg overrepresenterte. Elleve
nettverks-nav vart identifiserte: Tre gen, PDCDI, CTLA4 og PRDM 1, hadde tidlegare
blitt assosiert med leddgikt, medan atte gen, ZNF205-AS1, GPRIS, LINC00426, SEPTI,
ASAP2, ENPPI, IL2RG og GBPS5, var nye i denne samanhengen. Dei fleste var relaterte
til immunforsvaret eller til vekst, vevs- og organutvikling, og pa grunn av knutepunktpo-
sisjonane dei hadde i nettverket vart alle elleve vurdert som mulege kandidatar for vidare
forskning pa leddgikt. Dei tre gena som var kopla til flest andre gen i nettverket, PDCD],
ZNF205-AS1 og GPRIS, bidrog sterkt til disassortativitet i ein del av nettverket, og ei hy-
potese var at desse hadde ei koordinerande rolle i leddgikt. PDCDI knytta ogsa saman
to delar av nettverket som var dominerte av ulike typar korrelasjonssamanhengar. Dette
gir godt samsvar med tidlegare funn av leddgiktassosiasjon for dette genet. Dei resterande
atte gena var plassert i ein del av nettverket som var dominert av differensierte samut-
trykksrelasjonar, og der gen relatert til vekst, samt vevs- og organutvikling og morfologi
var s@rleg overrepresenterte. Ei muleg hypotese var difor at desse kunne vere involverte i
seinare stadier av leddgikt.

ii



Preface

This thesis is submitted to the Department of Biotechnology and Food Science at the Nor-
wegian University for Science and Technology (NTNU), and concludes my M.Sc degree in
Chemical Engineering and Biotechnology where I specialized in Biotechnology/Systems
Biology.

I would like to express my gratitude to my supervisor, professor Eivind Almaas, for
his valuable help in the form of shared insights, feed-back, comments, and not least his
optimism and enthusiasm. With his support I got the courage to embrace new and chal-
lenging tasks in topics that were previously unfamiliar to me, without which I would never
have learned so much and had so much fun. My co-supervisor, Ph.D. candidate André
Voigt, also deserves thanks for giving me helpful advice on the way, on everything from
neat little computer tricks to his thoughts and perspectives on the methodology and results
of the project.

I would also like to acknowledge the help and encouragement that I got from several
other Ph.D. candidates in Eivind’s research group: Emil Karlsen, Martina Hall, Christian
Schultz and Pal Rgynestad all gave me useful ideas and valuable help with computer pro-
gramming and statistics. Last, but not least, I would like to thank my friends and family
for their patience, love and support.

Marta Riise Moksnes
Trondheim, June 2018

iii



iv



Table of Contents

Summary
Preface

Table of Contents
List of Tables
List of Figures
Abbreviations

1 Introduction

1.1 Complex Biological Systems . . . .

2 Background

2.1 Rheumatoid Arthritis . . . . . . ..
2.2 RNA Sequencing . . .. ... ...
2.3 Differential Gene Expression . . . .
24 Network Theory . . . . . ... ...

2.4.1 Network Connectivity and The Adjacency Matrix . . . . . . . . .
2.4.2 The Degree Distribution and Scale-Free Networks . . . . . . ..

2.4.3 Network Modules . . . . . .

2.4.4 Assortative and Disassortative Networks . . . . . . . .. .. ...

2.4.5 Node Parameters . . . . . .
2.4.6 Network Parameters . . . .
2.5 Statistics . . . ... ...
2.5.1 Correlation . . ... .. ..
2.5.2 Computing Running Variance
2.53 Confounding ... ... ..
2.54 Boxplots ..........

iii

viii

xi

XV

—

03 O L

10
11
11
13
13
13
14
15
16




255
25.6
2.5.7
258

Hypothesis Testing . . . . . .. ... ... ... .........
The Multiple Comparison Problem . . . . . ... ... .. ...
The Bonferroni Correction . . . . . . . ... ... ........
The False DiscoveryRate . . . . .. ... ... .........

2.6 Gene Co-Expression Networks . . . . ... .. ... ... ... .....
2.7 Differential Gene Co-Expression Analysis . . . . . .. ... ... ....
2.8 TheCSDMethod . . . .. ... ... .. ... .. . . . . . . . .....

2.8.1
2.8.2
2.8.3
2.84

CSDnetworks . . .. ... ... ... ...
Internal Co-Expression Variations in Each Condition . . . . . . .
Thresholds for the C;, S;; and D;jscores . . . ... ... ...
Node Homogeneity . . . . . . ... ... ... .. ........

Materials and Methods
3.1 Method Study and Development . . . . ... ... ... .........

3.1.1
3.12
3.1.3
3.14
3.1.5
3.1.6
3.1.7

Parameters Affectingog; . . . . . ... ... L.
DataCollection . . . . . . .. .. ... . ... ..
The Alternative Sub-Sampling Algorithm . . . . . .. ... ...
Choice of Method Parameters . . . . . .. ... ... ......
Evaluation of the Alternative Algorithm . . . . . . ... ... ..
Software Implementation of the Alternative Algorithm . . . . . .
CSD-CS Software for Original Sub-Sampling Algorithm . . . . .

3.2 CSD Analysis of Rheumatoid Arthritis . . . . . . . ... ... .. ....

3.2.1
322
323
324

DataCollection . . . . . . . . ... ...
Network Construction . . . . . . .. .. ... ... .......
Biological Process Enrichment Analysis . . . . . . ... ... ..
Software for CSD Analysisof RA . . . . ... ... ... ....

Results and Analysis
4.1 Results: Development of the CSD Method . . . . . . .. .. ... ....

4.1.1
412
4.13
4.1.4

Impact of the Number of Sub-Samples, S . . ... ... ... ..
The Combined Effectsof N, Sando . . . . ... ... ... ...
Evaluation of o7 as Reference Value . . . ............
Investigation of the oY /oT Boxplots’ Outliers . . . ... .. ..

4.2 Results: Application to Rheumatoid Arthritis Gene Expression Data . . .

4.2.1
422
423
424
4.2.5

Discussion

CSDNetwork . . . . . . ...
Degree Distribution . . . . . . .. ... ... ... ...
Hubs and Assortativity . . . . . . ... .. ..o,
GO Functional Enrichment . . . . . . . ... ... ... .....
Genes Previously Associated withRA . . . . . . ... ... ...

5.1 MethodStudy . . . .. ... ...
5.2 CSD Analysis of Rheumatoid Arthritis . . . . . . ... ... ... ....

6 Conclusion and Outlook

27
27
27
28
29
30
31
33
35
35
35
35
36
36

69
69
75

81

vi



Bibliography
Appendices
Al
A2
A3
A4

AS
A6
A7
A8

A9
Al0

.................................... 91
Genes Previously Associated withRA . . . . . . . ... ... .. 91
Genes Used for Signal Plot and Signal Stability Analysis . . . . . 92
Stability of o32® Computed 100 Times for 28 Gene Pairs . . . . . 93
Scripts for Computation of Gene Pair Correlation and Correlation

Variability inaDataSet . . ... ... .............. 94
Script for Filtering Two Correlation/Variance Files for Gene Pairs

notinCommon . . . . . ... ... . Lo 105
Script for Node Homogeneity and Ratios of C-, S- and D-Scores

perNode . . ... ... . ... 107
Signal Plot for o338 . . . . . . . ... ... ... 109
Networks with Alternative Importance Values . . . . . . ... .. 110
The C-,S-and D-networks . . . . . ... ... ... ....... 112
Full Results of GO Enrichment . . . . . . ... ... ...... 115

vii



viii



List of Tables

4.1

4.2

43

4.4

4.5

4.6

The average number, Sy, of valid sub-samples (7 data points) that the
new sub-sampling algorithm was able to find from data sets of size N,
with maximum sub-sample overlaps of o = 1,2,3 and 6. The numbers
are rounded to integers. The number of independent sub-samples found
using the original, deterministic sub-sampling algorithm, So;;4, is given as
a reference. NB! *The highest number of sub-samples in the table is 200
because S was limited to Sy,q = 200. **The S,riy value for N = 60
is correctly lower than at N = 50 due to a numerical coincidence. See
explanationinthetext. . . . . . ... .. ... ... L.
t- and p-values from a two-sample -test of 12 0¥ series against the com-
mon reference o’ series. Any p-value below 0.05 indicates that the two
series are drawn from different underlying distributions. . . . . . . . . . .
Number of outlier genes in chosen 0¥ /o7 boxplots, and the percentage
of all 4950 gene pairs that this number represents. /N denotes the data set
size, and o gives the maximum permitted overlap of sub-samples in the
calculationsof Y. . . . L.
Number of outliers in common between chosen 0¥ /a7 boxplots, as well
as the percentage of each plot’s total number of outliers that this represents.
N denotes data set size, and o gives the maximum permitted overlap of
sub-samples in the calculationsof o2V, . . . . ... ... L.
Stats for boxplot outlier gene pairs: The Spearman correlation, p;;, and as-
sociated aiTj, for the five most extreme outlier gene pairs in the boxplots of
0338 /o1 and 019 /0T (Fig. 4.4) and 0238 /0T and 03° /0T (Fig. 4.7). N
denotes the data set size, and o gives the maximum permitted sub-sample
overlap in the calculationsof V.. . . . . .. ... L.
Stats of gene pairs close to the boxplot medians: The Spearman correla-
tion, p, and the associated o, for five gene pairs lying on or close to the
medians in the boxplots of 0328 /o7 and 01%° /o (Fig. 4.4) and 0338 /0T
and 03° /0™ (Fig. 4.7). N denotes the data set size, and o gives the maxi-
mum permitted sub-sample overlap in the calculations of Y. . . . . . . .




4.7

4.8

4.9

4.10

Al

The hubs of the CSD network with their total degree, k, the number of
connections of each type, k¢, ks, kp, and the node homogeneity, H, of
eachhub. . . . .. . . ...
The eleven most highly connected hub genes in the network are given
with known associated biological functions or processes, as well as pre-
vious disease and symptom associations, if any. The order of the genes
corresponds to their degree in the network, starting with the most highly
connectednode. . . . . . ...
The main GO biological process categories that had an enrichment of as-
sociated genes in the full CSD-network are given with their respective fold
enrichment (FE). The categories are ordered according to their fold enrich-
MENL. . . o vttt e
The GO biological processes that had the strongest enrichment of associ-
ated genes in the full CSD-network and the separate C-, S- and D-networks.
The fold enrichment is given for each process. . . . . . . . . ... .. ..

List of 53 genes previously associated with rheumatoid arthritis. . . . . .




List of Figures

2.1

22

23

24

2.5

4.1

Visualization of an example network: A fictional family member/relation-
ship network. The family members are represented with orange nodes, and
their relationship is represented by blue links. . . . . ... ... ... ..
Conceptual visualization of a clique (nodes 1, 2 and 3) in a network of six
nodes, numbered 1 to 6 (a). The clique is also marked in the corresponding
adjacency matrix (b). . . . . . ...
The degree correlation function k,,,, (k) for three real networks: An assor-
tative collaboration network (¢ = 0.37), a neutral power grid network
(@ = 0.04) and a disassortative metabolic network (u = 0.76). The
green, dotted line gives the regression line through the points, and the
black line illustrates what would be expected if the degree correlation was
completely random. Source: [1] . . . . .. ... ... ... ... ... .
An example boxplot where the first, second and third quartiles, Q1, Q2
and Q3, as well as the interquartile region, IQR, are marked. . . . . . ..
The gene co-expression score surface gives a general representation of the
combinations of correlation coefficients from two conditions that will cor-
respond to the three different types of co-expression relationships; C, S
and D. The variables p; and p, represents the Spearman correlations of a
given gene pair in conditions 1 and 2 respectively. The green areas corre-
sponds to specific (S) differential co-expression, the blue areas correspond
to conserved (C) co-expression, and the red area corresponds to differen-
tiated (D) co-expression. The co-expression relationship types are also
indicated by their respective letter, C, S or D, next to their corresponding
colored area. The white area represents combinations of correlations that
will not result in a network link. Source: [2] . . . . . . . . ... ... ..
The function g(S) represents the o338 signal for 28 gene pairs (with high,
medium and low, as well as both positive and negative correlations) as a
function of the number of sub-samples from which they are calculated, .S.
Each graph represents the signal of one gene pair. . . . . . .. ... ...

11

Xi



4.2

4.3

4.4

4.5

4.6

4.7

4.8

The distribution of the o7 values for all 4950 gene pairs in the data set is
visualized as a histogram with 50 bins representing value intervals for o .
The height of each column represents the number of gene pairs with a o™
in the corresponding interval. . . . . . . ... ...
Stability of the computed o7 values: Fig. (a) shows boxplots of the 0ij
values (N = 338 and o = 1) at S,,,, = 200 obtained from 100 inde-
pendent runs of the random sub-sampling script on 28 gene pairs, ij, with
various correlation coefficients. Fig. (b) shows the coefficient of variation
(CoV) for the same 28 gene pairs. The gene pairs are numbered for easy
comparison between (a)and (b). . . . . ... ... oL
Boxplots of four distributions of the relative standard deviations of the
means, O’év / ol coming from calculations of JéV for 4950 gene pairs,
using the random sub-sampling approach with the parameters o = 1,
N = 338,300,200 and 100, and S,,4 = 200. The corresponding o’
values come from an independent run of the random sub-sampling script
with o = 1, N = 338 and S,,,... = 200, and are used as "true” reference
values foreach gene pair. . . . . . . . . .. . ... ... ...
Boxplots of six distributions of the relative standard deviations of the
means, o /o, coming from calculations of oY for 4950 gene pairs,
using the random sub-sampling approach with the parameters o = 2,
N = 338,300,200,100, 60 and 50, and S,,,, = 200. The o7 values
come from an independent run of the random sub-sampling script with
o=1, N = 338 and S,,,, = 200, and are used as true reference values
foreachgenepair.. . . . . . . . . .. .. ... ...

Boxplots of nine distributions of the relative standard deviations of the
means, 0¥ /o, coming from calculations of o2 for 4950 gene pairs,
using the random sub-sampling approach with the parameters o = 3,
N = 338,300,200, 100, 60, 50, 40, 30 and 25, and S, = 200. The o7
values come from an independent run of the random sub-sampling script
with o = 1, N = 338 and 5, = 200, and are used as true reference
values foreach gene pair. . . . . . . . .. ... ... ...
Boxplots of ten distributions of the relative standard deviations of the
means, o /o, coming from calculations of oY for 4950 gene pairs,

using the random sub-sampling approach with the parameters o = 6,
N = 338, 300, 200, 100, 60, 50, 40, 30, 25 and 20, and Sy, = 200. The
T

o' values come from an independent run of the random sub-sampling
script with o = 1, N = 338 and 5,4 = 200, and are used as true refer-
ence values foreach genepair. . . . . ... ... ... ... ... ...,
Boxplots of seven distributions of the relative standard deviations of the
means, oY /0T, coming from calculations of oY for 4950 gene pairs, us-
ing the random sub-sampling approach with the parameters o = 6 and
N = 100,60,50,40, 30,25 and 20, and S,,,, = 150. The o values
come from an independent run of the random sub-sampling script with
o=1, N =338 and 5,4, = 200, and are used as true reference values

45

47

xii



4.9

4.10

4.11

4.12

4.13

4.14

Al

Fig. (a) displays the boxplot of the distribution of the pair-wise ratios
o338 (new) /o338 (orig) for 4950 gene pairs, used as a comparison of o338
computed using the new sub-sampling approach, denoted (new), and the
original, deterministic method for finding independent sub-samples, de-
noted (orig). Fig. (b) shows the boxplot of the pair-wise ratios of o32% (orig1)
/o338 (orig2) for 4950 gene pairs, used as a comparison of o33% computed
with two runs of the original, deterministic method for finding independent
sub-samples. The sub-sampling is initiated at different places in the data
set for the two runs, which are denoted (origl) and (orig2), respectively. .

Visualization of the CSD network generated using an importance value of
p = 1075, The links are colored according to type: C-type links are blue,
S-type links are green and D-type links arered. . . . . ... ... ....

Visualization of the giant component of the CSD network generated using
an importance value of p = 107°. The links are colored by link type (C-
types are blue, S-types are green and D-types are red), and the nodes are
colored according to link type dominance: Any node where more than 2/3
of the links connected to it are of a given type is colored with the same
color as the dominating link type. Yellow nodes are not dominated by any
link type. Hubs (k > 40) are coloured black and enlarged for emphasis.
The topology of the three largest hubs, PDCD1, ZNF205-AS1 and GRP18,
indicates a strong disassortativity in the part of the network dominated by
S-links (see the text), and are therefore marked explicitly. . . . . . . . ..

Neighborhood connectivity distribution of the C-network: The loglog plot
of node degree, k, versus average connectivity of all neighbors of degree k-
nodes reveals a weak assortativity: The nodes have a tendency to connect
to other nodes of similar degree. The regression line through the data
points gives a positive correlation exponent ;. = 0.37, and the correlation
between the data points and the lineis0.8. . . . . . ... ... ... ...

Neighborhood connectivity distribution of the S-network: The loglog plot
of node degree, k, versus average connectivity of all neighbors of degree
k-nodes reveals a strong disassortativity: Highly connected nodes have a
tendency to link to nodes with low degree and vice versa. The regression
line through the plot gives a negative correlation exponent ;s = —0.61, and
the correlation between the points and the lineis 0.9. . . . ... ... ..

Neighborhood connectivity distribution of the D-network: The loglog plot
of node degree, k, versus average connectivity of all neighbors of degree
k-nodes reveals a weak disassortativity: Highly connected nodes have a
tendency to link to nodes of low degree and vice versa. The regression
line through the plot gives a correlation component 1 = —0.35, and the
correlation between the points and the lineis0.8. . . . . ... ... ...

Boxplots of the final o;; values obtained from 100 repeated runs of my
script on 28 different gene pairs with various correlations represented.
Each plot represents one gene pair. Parameters: Sp,q, = 200, N = 338,
0="0. . . . e

51

60

Xiii



A2

A3

A4

A5

A6

A7

The function g(S) shows the 03°® signal for 28 gene pairs as a function

of the number of sub-samples from which it is calculated, S. Each graph
represents One EeNe Pair. . . . . . . . ..o e e e e
Visualization of the CSD network obtained with an importance level p =
10~%. The network has 7554 nodes and 36 873 links distributed over 178
components. The giant component contains 7101 of those nodes, and the
network had an average degree of kg, = 9.8. The links are colored
according to their link type: C-type links are blue, S-type links are green
and D-type linksarered. . . . . ... ... ... ... ...
Visualization of the CSD network obtained with an importance level p =
10~°. The network has 426 nodes and 360 links distributed over 98 con-
nected components. The biggest component contains 104 of those nodes,
and the average degree of the network is k4,4 = 1.6. The links are colored
according to their link type: C-type links are blue, S-type links are green
and D-type linksarered. . . ... ... ... ... ... ... ...,
The C-network: A visualization of all C-type links and the nodes that they
connectinthe CSDnetwork. . . . . ... ... ... ... . ... ....
The S-network: A visualization of all S-type links and the nodes that they
connectin the CSD network. . . . . . . ... ... ... ...
The D-network: A visualization of all D-type links and the nodes that they
connectinthe CSDnetwork. . . . . . ... ... ... ... ..., .

Xiv



Symbols and Abbreviations

S 3 &~
> =%

SIS IR SRS
[V}

Conserved, Specific, Differentiated

Node homogeneity

Gene pair

Condition or Node degree

Threshold value for C,S and D scores

Sample size in k:pc 3D determination

Number of gene pairs

Sub-sample size for o determination

Data set size: Number of data points per gene
Importance level

Rheumatoid Arthritis

Number of drawn sub-samples

Maximum permitted data point overlap between sub-samples
Spearman correlation coefficient

Standard deviation of the mean

Variance

XV



Xvi



Chapter

Introduction

[ think the next century will be the century of complexity”
- Stephen Hawking (San Jose Mercury News, January 2000)

1.1 Complex Biological Systems

A system is a set of interconnected components and the interactions between them. Our
surroundings are always changing because they are composed of all sorts of interactions
going back and forth between different actors. These interactions often act in messy pat-
terns that are difficult to predict intuitively: We live in a world of complex systems. Coun-
tries, cities, airports and train stations interact by transport of people or cargo between
them, building up networks with roads, flights and railroads. The people in these coun-
tries and cities interact with each other through a variety of channels; they talk to each
other, work together, become friends with each other and interact on social media. They
exchange money and products, e-mails and text messages, physical and sexual contact,
and diseases. For e-mails to be transferred, the electronic components in our computers
also interact with each other by sending electrical signals between them, in order to enable
the computers to communicate over the Internet. These are just some examples; almost
anywhere you look, a complex system can be found.

The desire to understand complex systems and to make sense of their seemingly unpre-
dictable behaviour has lead to the field of network science. Network science is a relatively
new field of science, and has experienced a rapid development during the last two decades.
It builds upon the mathematical field of graph theory, which dates back to 1735, when the
Swiss mathematician Leonard Euler gave a mathematical solution to the famous puzzle
of the seven bridges in Konigsberg. Network science uses both mathematical descrip-
tions and computational modeling of networks in order to gain a deeper understanding of
complex systems and their properties and behaviours. The objective is ultimately to try
to predict and control their future behaviour. All systems can be represented as networks
of components and interactions, and understanding the overall behaviour of different net-
works can lead to improvements in anything from logistics and infrastructure to medicine




Chapter 1. Introduction

and disease control.

Just like the world around you is complex, so is your body. A human body is its very
own world of big and small complex systems, and we are highly dependent on the rela-
tionships between these systems on both a macroscopic and microscopic level. Analysis of
biological networks on the molecular level is the objective of systems biology, a sub-field
of network science. Molecular biological networks are found in humans, but also in other
animals, plants and microorganisms. Two types of cellular networks commonly studied
in systems biology are protein interaction networks and gene co-expression networks. In
protein interaction networks, the nodes represent proteins and the links represent physical
interactions between them, while in gene co-expression networks, the nodes represent in-
dividual genes, and the link between two nodes reflects a coordination in the timing and/or
extent to which the two genes are transcribed into their corresponding messenger RNA,
the primary function of which is to direct the synthesis of a given protein. It is also possi-
ble to study for instance the networks of biochemical reaction pathways or the interactions
between metabolites. All of these systems can be studied together in order to understand
the human body (or any other organism) as an integrated whole, or as a huge, complex
machinery built up of numerous smaller components and systems. In the pursuit of inte-
grating genomic, biochemical, physiological, behavioural and environmental information
about the human body, we enter the field of systems medicine.

Like in any machinery, there are many things that can go wrong in the cellular systems
in our bodies. Most of the time the consequences are small, but sometimes changes in our
biological systems can have a very negative impact on our health and life. In order to find
medical solutions to counter a given disease, it is essential to have knowledge about the
underlying mechanisms behind its occurrence and sustainment: where in the machinery do
things start to go wrong? Are there any loose bolts somewhere? Or maybe all components
are working well on their own, while some biological cogwheels have teeth that cannot
reach its counterpart anymore?

In a normal cellular machinery there are of course no metal bolts or cogwheels, so a
more reasonable place to start the investigations is with genes or proteins. Living systems
might be as different as a giant sequoia tree and a tiny sea slug, but they all have one
thing in common: their cells contain DNA, on which there are genes; sometimes tens of
thousands in number. All cells in a human being contain identical DNA molecules with
the same genes in them, yet there is a huge variety of human cells with very different
functions and properties. The genes act as templates for messenger RNAs, which in turn
function as recipes for proteins to be produced. The regulation of what genes are used
for RNA synthesis or not will determine what proteins can be produced in the given cell
at that moment, and thereby possibly decide its fate. A mistake in the regulation of gene
expression, the extent to which RNA is produced from the individual genes, may therefore
have severe consequences for a cell. By using techniques such as RNA microarrays or
RNA-Seq it is possible to monitor the gene expression of all the genes in our genome at a
given time.

Any cell’s environment is constantly monitored and used as input for gene regulation,
so that the cell will be able to handle any situation as well as possible. The environmental
input that a cell receives will guide its production of specific proteins. These proteins will
bind to the DNA and thereby regulate the RNA producing machinery’s access to different
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genes. Gene expression can in this way be activated or repressed according to the situation
that the cell faces [3].

As previously mentioned, there might still occur mistakes and disturbances in these
highly regulated systems of genes, RNAs and proteins. Mutations in even one single gene
can lead to severe diseases [4]. However, most of the time there is not just one or even a few
genes that cause a disease. An alternative cause of disease is when the interactions between
multiple genes cause trouble for the entire system. Instead of looking for one culprit among
the genes, the researchers now have to look for the central network of criminals.

One disease with which a high number of genes are associated, and where the un-
derlying mechanisms are by no means identified yet, is rheumatoid arthritis (RA), an au-
toimmune inflammatory disease that affects around 1% of the worldwide population [5].
The disease starts as a chronic inflammation of the synovial fluid of the small joints in the
hands and feet, leading to highly painful, stiff and swollen joints. The disease can further
result in tissue remodelling and damage, as well as spreading throughout the body, caus-
ing inflammation and malfunction in other organs. Patients with RA might also experience
more general symptoms of disease, such as fever, fatigue, appetite loss and depression, and
the disease is itself a risk factor for other potentially fatal conditions, such as liver failure
and heart attack. Although there exists medical treatment for patients suffering from RA,
there is no final cure. The heritability of the disease is estimated to be between 40% and
60% [6], so it is important to get as much knowledge as possible about the underlying
genetics of the disease. One method to study the genetics of RA and other genetic diseases
is through the above mentioned gene co-expression analysis.

Gene co-expression analysis methods are used to investigate the relationships between
genes by studying their co-expression: the extent to which their expression is correlated.
In a differential gene co-expression analysis the gene co-expression patterns from two or
more conditions are compared to each other. Such an analysis is widely applicable, and can
be used to compare for instance tissue types, related species, treatment effects to placebo
effects, or healthy tissue to diseased tissue. Gene co-expression patterns often correlate
well with biological functions [7, 8, 9, 10], and are therefore an essential step in trying
to identify the molecular processes behind for instance evolution, cell differentiation, dis-
ease development or cell responses to new drugs. Today there are several online databases
where big data sets of gene expression measurements on diseased and healthy tissue from
many organisms are freely available [11, 12]. Mapping and analyzing co-expression pat-
terns can potentially lead to the discovery of important genes or gene clusters associated
with a given phenotype, leading us one step closer to understanding the mechanisms be-
hind cell function and dysfunction [7, 8].

One method for differential co-expression analysis is the CSD (Conserved - Specific -
Differentiated) method [2]. This method identifies change, loss or conservation of strong
gene pair correlations across two conditions. The method strictly requires that the data
sets from both conditions have a minimum number of data points per gene. Researchers
are sometimes dependent on data they did not collect themselves, and it can therefore be
difficult to control the size of the data sets. As the size requirement of the CSD method
is equally strict on both data sets, it can be especially challenging to find large enough
control data sets to use as a reference for disease data, for example. The existing data
bases with general gene expression data from healthy individuals, for instance the GTEx
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project database [12], are not exhaustive, and some tissue types are more difficult to find
enough data on than others. The size requirements thus puts a restriction on what data sets
can be used for a CSD analysis.

The aim of this study was two-fold. The first part focused on the development of
the CSD method for differential gene co-expression analysis. The objective of this work
was to study the possibility of developing the method to accommodate for smaller data
sets than it was originally designed to handle. This would allow more data sets to be an-
alyzed by the method, making it more broadly applicable. I wrote a Python script where
the method modifications were implemented, and they were tested on a gene expression
data set of healthy whole blood samples. The results were compared to the results from
using the original method on the same data set. In the second part of the study, the CSD
method was used to compare a data set with gene expression measurements obtained from
the joint synovial fluid of patients diagnosed with rheumatoid arthritis, to a data set of
measurements obtained from the joint synovial fluid of healthy individuals. The modifica-
tions in the method was applied to the reference data set, which was too small to be used
otherwise. The objective of this analysis was to identify novel genes that could be essential
in the development and/or sustainment of rheumatoid arthritis.

The thesis is organized to reflect the structure of the project. Chapter 2 provides back-
ground information and theory meant to help readers unfamiliar with the topics presented
in the remaining chapters. This includes information about RA, RNA sequencing and dif-
ferential gene co-expression analysis, including a description of the original CSD method,
as well as topics from network theory and statistics that are relevant for the project. Be-
cause of the two-fold objective in this study I could have structured the remaining chapters
in different ways. For easy navigation, the reader should be aware that I have chosen to
structure all chapters so that the materials related to the method development are given in
the first main section, and the materials related to the CSD analysis of rheumatoid arthritis
are given in the second main section of each respective chapter: Chapter 3 first introduces
the modifications of the CSD method and the steps for analyzing the results, as well as
an overview of the structure of the script where the modifications were implemented. The
second part goes through the different parts of the CSD analysis of RA. Chapter 4 first
presents the results of the method study and development, and then the results of the CSD
analysis. The results are also briefly analyzed in this chapter. Chapter 5 is likewise divided
into a discussion of the method study results and a discussion of the results from the RA
study. Chapter 6 finally gives a conclusion and outlook for both parts of the project.
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Background

This chapter will introduce the main topics underlying the method, discussion and results
presented in this thesis. Most of the theory and background information presented will
therefore be of direct relevance for the remaining chapters, while some parts are also in-
cluded to give a more complete overview of the topics that are discussed. The main parts
of the network theory are obtained from Network Science by Albert-Laszl6 Barabasi [1].
The reader is referred to this book for more extensive information about this topic. The
section about the CSD method for differential gene co-expression analysis is based on the
article by Voigt, Nowick and Almaas where the method was first described [2]. Additional
sources are cited in the text. Some parts of this chapter are taken from the final report
that I wrote for the course TBT4500 Specialization Project at NTNU in the fall 2017 as a
preparation for this thesis.

2.1 Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease affecting about
1% of the worldwide population. The disease can occur at any age, and has a strong
female predominance [5, 6]. The disease begins with immune cells attacking the syn-
ovial membrane of the joints, causing a chronic inflammation and swelling (hyperplasia)
that is most prominent in the small joints of the hands and feet. RA is characterized by
progressive articular remodelling and damage. The disease can further develop to cause
inflammation in other organs, and is thus associated with a long list of comorbidities, for
instance pulmonary, cardiovascular, liver, skeletal and psychological disorders, as well as
early death [13].

The results from familial studies have shown that RA arises from a combination of
genetic and environmental factors [14]. Twin studies have suggested the heritability of
RA to be between 40 and 60 %. Most of these results are from European populations,
but a study of Japanese twins also gave comparable results [6]. The blood of most RA
patients contains the auto-antibodies rheumatoid factor (RF) or anti-citrullinated protein
antibodies (ACPA). RF is also present in other autoimmune diseases, while ACPA seems to

5



Chapter 2. Background

be more specific to RA. Nevertheless there are RA patients without any of these antibodies,
showing that RA can be heterogeneously expressed in different patients [14]. This is
also evident by the fact that not all RA patients responds to the same treatment methods,
and patients who do not respond to one type of biologic therapy may respond well to
another [14].

Human leukocyte antigens (HLAs), and polymorphisms in the corresponding genes,
have been at the center of the RA research for many decades. The gene most highly as-
sociated with RA pathogenesis in previous research is the HLA-DRBI gene found in the
major histocompability complex (MHC) region on Chromosome 6, a gene dense region
that has been consistently shown to be associated with RA. Proteins from multiple of these
genes build up the MHC protein complex that is involved in presenting proteins to devel-
oping T cells, making them able to recognize foreign molecules [15]. Many of the about
220 genes in the MHC region of Chromosome 6 have immunoregulatory functions [16].
HLA genes have been estimated to contribute between 11 and 37% to the RA heritabil-
ity; more in ACPA-positive than in ACPA-negative patients. The moderate association
between the HLA genes and RA heritability illustrates the combined effects of multiple
genetic and non-genetic factors that are in play during RA pathogenesis. Some of the most
relevant non-HLA genes associated with RA include PADI4, PTPN22, TNFAIP3, STAT4
and CCR6 [14, 17]. A list of 54 genes associated with RA is given in Appendix Al.

Environmental factors associated with RA include lung exposure to smoking, noxious
solvents and silica dust, as well as alterations of the gastrointestinal microbiome, and
bacterial infections, in particular periodontitis [5, 18]. These non-genetic factors have in
common that they involve foreign particles that come in contact with one of the mucous
layers of the body, either at respiratory, oral and/or intestinal sites. The mucosal sites
normally function as barriers towards external environmental insults, such as pollutants,
toxins and pathogens, and are tightly connected with the immune system [18]. Obesity
and vitamin D deficiency have also been linked to RA [5].

2.2 RNA Sequencing

Active genes in a given cell are transcribed into their corresponding mRNAs. These are
further processed and translated into protein, the final gene product. The transcriptome
of a cell at a given physiological condition or developmental stage etc., is the full set of
mRNA (and other RNA) transcripts present in the cell in that condition, as well as the
quantity of these transcripts [19].

RNA sequencing (RNA-Seq) is a commonly used method for transcriptome profiling;
the identification and quantification of RNA transcripts present in a biological sample
at a given time. The RNA transcripts are converted to complementary pieces of DNA
(cDNAs), before high-throughput DNA sequencing methods are used to determine the
nucleotide sequence and relative abundance of each transcript [19].

Today the whole human genome is sequenced, and the genes are mapped, giving the
sequence of more or less every human gene. The sequenced RNA transcripts from human
tissue samples can therefore reveal the activity of each individual gene in each sample.
The relative amount of RNA from each gene is known as the expression profile of the
given tissue sample. Gene expression profiles from a high number of subjects can be
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monitored over time, throughout a developmental process or in response to changes in the
cell environment, for example a disease. RNA-Seq is therefore a useful tool in the study
and analysis of differential gene expression. A wide range of data sets with RNA-Seq data
from different experiments have been made publicly available online in databases such
as GEO (Gene Expression Omnibus, [11]) and GTEx (The Genotype-Tissue Expression
Project, [12]).

2.3 Differential Gene Expression

Although the same genetic material is found inside the nucleus of all the cells in your body,
a blood cell differs greatly from a skin cell or a neuron. During development, cells differ-
entiate into different cell types under control of various developmental signal molecules
(growth factors) that control the expression of the different genes [20]. The differential
expression of genes in response to various signals continues after the cells have settled
into their specific cell types. The signals can now be any information from the cell en-
vironment, such as available nutrients, signal molecules released from neighboring cells,
molecules released from infectious bacteria or damage to the cell. These signals lead to
up- or down-regulation of genes coding for proteins called transcription factors (TFs). TF
proteins can thus be viewed as an internal representation of a cell’s environment [3]. Their
function is to further regulate gene expression, making the cell as capable as possible of
handling and responding to its current environment.

The TFs perform their regulation by binding physically to the DNA. The TF-DNA
interaction will then either aid or prevent RNA Polymerase from accessing certain parts of
the DNA, thereby activating or repressing transcription of genes in that area of the DNA
double helix into RNA. The proteins of these genes might be new transcription factors or
they can have other functions in the cell.

Differential gene expression studies are performed to analyze the change in gene ex-
pression profiles in response to some factor of interest. RNA-Seq or similar gene expres-
sion profiling methods are performed on tissue samples taken from two or more conditions
of interest, returning specific expression profiles for each condition. One can then com-
pare the cells’ response to the chosen conditions by performing a statistical comparison
between the expression profiles (see Section 2.5). Differentially expressed genes that are
detected by this approach will be a natural choice for further investigation of the underly-
ing mechanisms of the cells’ response to the given conditions, for instance the mechanisms
underlying a disease. In the best case, the results of such studies might even suggest new
treatment methods, such as a point of attack for new drugs.

Proteins do not perform isolated tasks. They can not only regulate the production
of themselves and each other, they also interact physically, and multiple proteins might
affect the same parts of the cell and the same areas of the DNA, competing or cooperating,
thereby modifying the effects and functions of each other. To a large degree, the function
and behaviour of a cell results from the complex, simultaneous and combined effort of
its proteins. The expression of one gene is therefore not independent of the expression
of other genes. The fact that proteins are not working in isolation has led researchers to
not only study the differential expression of single genes, but to look at pairs of genes
and study the pair-wise relationships between their expression profiles. The synchronized
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expression of gene pairs gives rise to co-expression networks (see Sections 2.6 and 2.7),
which is a way to map genes and the relationships between them.

2.4 Network Theory

A network is defined as a set of components, referred to as nodes or vertices, and the
interactions between them, called links or edges [1]. Networks can be represented visually,
for instance as circles linked together by lines, as illustrated in Fig. 2.1, depicting the
family member/relationship network of a fictional boy named Thomas.

Maria partners Julia exes Chris
owner-pet step mom - step son mom - son dad - son
Esther (dog) best friends Thomas

Figure 2.1: Visualization of an example network: A fictional family member/relationship network.
The family members are represented with orange nodes, and their relationship is represented by blue
links.

Any system where components interact or have some connection or relationship can thus
be represented as networks. The examples in Chapter 1 illustrated the fact that network
structures can be found in highly different contexts, in everything from trading and lo-
gistics to molecular biology. Network nodes can be as different as cities, persons and
molecules, and network links can be as diverse as physical cargo transport, human rela-
tionships and statistical correlations of the translation processes of genes inside cells.
There are many types of complex systems that can be analyzed as networks just within
the field of molecular biology. Because biological molecules are always connected to
other molecules in some way or another; by chemical bonds, interactions, molecular con-
versions, or by affecting each others’ activity, state or dynamics (for instance as enzymes),
all of them can be viewed as components in a network [21]. Some examples of molecu-
lar networks in biology include gene regulatory networks, protein-protein interaction net-
works, metabolic networks, cell signaling networks and the previously mentioned gene
co-expression networks that will be described in more detail in Chapter 2.6. The main
questions in the analysis of biological networks are related to how the networks are con-
nected and what impact this connectivity has on the functionality of the biological systems.
Because networks are representations of real systems with distinct properties, there are al-
ternative ways of constructing networks in order to capture the features of the system at
hand. Some of the most common and basic network properties are presented in the fol-
lowing parts of this section, but it is not by any means an attempt to cover all possible
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properties or characteristics of networks. Most of the topics will be of direct relevance for
the following chapters, while some are included to make the sections more complete.

2.4.1 Network Connectivity and The Adjacency Matrix

The number of nodes in a network is denoted its size. Any node ¢ has a given number of
other nodes to which it is connected. These other nodes are node ¢’s nearest neighbors.
The degree, k;, of a node is equal to its total number of nearest neighbors.

If the interactions in a system have directions (for instance that A affects B, but B does
not affect A), the corresponding network should be a directed network, where each link
has a designated direction. In an undirected network, the links do not have a direction
because the relationship between two connected nodes is always equal for both nodes. An
example of an undirected network is a correlation network, where it is impossible that one
node correlates with another without the other also correlating with the first one.

A connected component of an undirected network is a set of nodes that are connected
with each other in a way that makes it possible to start from any node and follow the links
of the network to reach any other node in the component. If any connected component is
much bigger than any other component of the network, it is called the giant component [1].

Some systems have heterogeneous connections between their components [22], for in-
stance there might be a difference in the passenger capacity of a flight, the strength of a
correlation or the intensity of a signal. Heterogeneous connections or interactions, can
be represented as weighted links. The weight of a link quantifies its relative strength/ca-
pacity/intensity compared to the other links in the network. Weighted networks can be
converted to unweighted networks with homogeneous links by choosing a threshold value
for the weight of the links, and keeping all links with a weight above the threshold.

A simple way of representing the full connectivity structure of a network is its adja-
cency matrix, A [21]. A is a square matrix whose elements a;; represent the presence or
absence, and possibly the direction and/or strength, of a link between nodes ¢ and j. In the
case of an unweighted, undirected network, the adjacency matrix A takes a binary form:
a;; = 1 indicates the presence of a link between nodes i and j, whereas a;; = 0 indicate
the absence of a link between them. An example of the adjacency matrix of an unweighted,
undirected network can be found in Fig. 2.2, which also illustrates the concept of cliques,
which will be presented later in this Chapter. If the network is weighted, the entries of the
adjacency matrix takes a continuous range of numbers reflecting this property, and if the
network is directed, the entries of the adjacency matrix might also take both positive and
negative values.

All connections of a component ¢ is represented by the ¢’th row and the ¢’th column
in the adjacency matrix. In the adjacency matrix of an undirected network, the values and
order of the elements in the ’th row is equal to those of the i’th column, making the matrix
symmetric around its diagonal. In the case of a directed network, the i’th row and the ¢’th
column may differ, because each of them represents one direction of interaction. The
degree of a node ¢ in an undirected network can thus be found by counting the non-zero
entries of either the ¢’th row or the 7’th column of its adjacency matrix, while in the case
of directed networks, the fotal degree of a node i, which is the sum of its in-degree, k;,,
and out-degree, k¢, can be found by counting the non-zero entries of both the ¢’th row
and column. The in- and out-degree gives the number of incoming and outgoing links,
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respectively. If the nodes do not interact with themselves to form self-links, the entries of
the diagonal of the adjacency matrix are all zero.

2.4.2 The Degree Distribution and Scale-Free Networks

The degree distribution of a network refers to the proportion of nodes within the network
that has the degree k. In a random network, such as an Erdés—Rényi-network, links are
randomly associated with nodes based on a uniform probability. The degree distribution
of such an artificial, random network, is a binomial distribution, resembling a Gauss curve
with smaller variance [21]. This means that most nodes have a degree close to the average
degree, < k >.

Most biological and other real-world networks are characterized by being so-called
scale-free, meaning that their degree distribution follows a power-law distribution [1].
This can be formulated by Eq. (2.1), where py denotes the probability that a node will
have the degree k, and -y is the degree exponent:

pr~ k7 @2.1)

Scale-free networks are characterized by having many low-degree nodes and a few
highly connected nodes [1]. Nodes with many more neighbors than the average degree in
the network are called hubs. The scale-free topology makes them robust against random
attacks, for instance randomly removing nodes or changing links in the network. The av-
erage distance in these networks are much shorter than in random networks. A network
distance is defined as the shortest path length between two nodes, in other words the mini-
mum number of links (or link weight in the case of weighted networks) needed to go from
one node to another. Because of the hubs there are many alternative routes between two
nodes if a non-hub node between them disappears. While robust against random attacks,
scale-free networks are all the more vulnerable against targeted attacks: Selectively re-
moving hubs will quickly cause the network to break down, partially or fully depending
on how many hubs are removed [1]. Imagine the chaos that would arise if multiple hubs
in the European airport network, such as London Airport Heathrow or Amsterdam Airport
Schiphol, were immediately closed down for traffic!

2.4.3 Network Modules

Even if the full network is scale-free, local sub-networks can be organized differently and
have other properties. A collection of nodes that forms a sub-network is called a network
module [23]. The term does not have a unique definition, and can refer to any defined
substructure in a given network. An example of a network module is the cligue, in which
all nodes are connected to all the others [1]. Finding cliques is no straight-forward task,
but there are several computer algorithms for detecting different types of cliques in big
networks. For a sufficiently small network, cliques can easily be identified just by looking
at the network itself, or its adjacency matrix. A clique would be visible in the adjacency
matrix as a group of nodes with no zero-entries between any of the nodes in the group. An
example of the identification of one (of two) 3 node cliques in a network consisting of 6
nodes, is given in Fig. 2.2.
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@ (b)

Figure 2.2: Conceptual visualization of a clique (nodes 1, 2 and 3) in a network of six nodes,
numbered 1 to 6 (a). The clique is also marked in the corresponding adjacency matrix (b).

2.4.4 Assortative and Disassortative Networks

Assortativity denotes the tendency of nodes of similar degree to connect to each other,
while disassortativity denotes the tendency of nodes of similar degree to avoid connecting
to each other in the network: highly connected nodes will tend to connect to nodes with
low degree and vice versa [1].

Such degree correlations can be detected by for instance studying the neighborhood
connectivity distribution of a network, found by plotting the average connectivity (degree)
of the neighbors of nodes with degree k as a function of the degree k itself. By approximat-
ing a line through the resulting points, the network’s degree correlation function, k. (k),
is found, expressed in Eq. (2.2):

ke (k) = ak" 2.2)

where k is the degree, i is the correlation exponent, and « is just a regression constant.
The type of degree correlation will be dependent on the correlation exponent, y:

e Assortative networks: p > 0

e Neutral networks: @ =0

o Disassortative networks: p < 0
Fig. 2.3 illustrates the degree distributions of three real networks: one assortative, one
neutral and one disassortative.
2.4.5 Node Parameters

The previously discussed node degree, k, is perhaps the most important parameter of nodes
in a scale-free network, since it gives information about how connected the node is to the
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Figure 2.3: The degree correlation function k., (k) for three real networks: An assortative collabo-
ration network (¢ = 0.37), a neutral power grid network (x = 0.04) and a disassortative metabolic
network (1 = 0.76). The green, dotted line gives the regression line through the points, and the black
line illustrates what would be expected if the degree correlation was completely random. Source: [1]
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rest of the network. Other important parameters include various centrality measures. The
eccentricity of a node i is defined as the maximum finite distance between node i and any
other node in the network. The eccentricity of an isolated node is defined to be zero. The
betweenness centrality of a node is the number of shortest paths in the network that go
through that node. The closeness centrality of a node measures the sum of the shortest
paths from the node to all other nodes in a connected component.

2.4.6 Network Parameters

Networks can be characterized by various parameters that reflect different network prop-
erties. The previously described degree-distribution and degree correlation are two such
parameters. The diameter of a network is defined as the largest eccentricity in a connected
component, while the radius is defined as the smallest of the non-zero eccentricities in
the network. The characteristic path length is the average distance between nodes in the
network.

2.5 Statistics

2.5.1 Correlation

When constructing a network, one needs a systematic way of deciding whether or not there
will be a link between two nodes. The decision to keep or reject a possible link should
be based on the type of connection the link reflects. Although some relations between
components are binary of nature, this is most often not the case. In many networks, the
”connection” between two nodes is a continuous measure, for instance a correlation value
between some property of the nodes. This is the case for gene co-expression networks,
where any links represent a correlation of the levels of RNA from each gene. Most of the
time the correlation coefficient of the expression of two genes is not strictly zero, but it isn’t
necessarily very high either. In order to create a meaningful gene co-expression network,
the question to ask is not just whether there is any relationship between the expression
levels of two genes, but how strong and systematic the relationship between them is. A
strong correlation between two genes might indicate a biologically relevant relationship
between them, so it is important to separate correlations that could just as easily have
happened by coincidence, and those that it would be unlikely to find without there being a
systematic mechanism behind them.

A correlation coefficient, typically denoted p, takes any value between —1 and 1. The
closer p is to —1 or 1, the stronger is the negative or positive correlation, respectively.
A strong positive correlation coefficient reflects two data series where the corresponding
values increase or decrease together, while a strong negative correlation coefficient reflects
the opposite: an increase in one of the data series is closely associated with a decrease in
the other, or vice versa.

The closer p is to zero, the less do the two data series follow a given relationship [24].
Values sufficiently close to —1 or 1 are considered significant.
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Pearson Correlation

The Pearson correlation coefficient can be used to calculate the linear relation between two
raw data measurement series, for instance the normalized gene expression levels obtained
in an RNA-Seq experiment. The Pearson correlation coefficient is given by Eq. (2.3) [25]:

cov(, j)
pij = ——=, (2.3)
003
where cov(i,j) denotes the covariance between measurement series i and j, and o; and o;
denote the standard deviations of the measurement series i and j, respectively.

Spearman Correlation

The equation for the Spearman correlation coefficient has the same form as the Pearson
correlation, but instead of measuring the correlation between the raw data measurements,
it is used to find the correlation of the ranks of the measurements.

The ranks are the numbers that would indicate the place of the measurements in a list
where they were sorted by size. The rank of the numbers 4.5, 2.3, 7.3 and 1.0 would
for example be 3, 2, 4 and 1, respectively. The rank of a gene’s expression level is thus
an alternative way of giving its relative expression level compared to the other measured
genes from the same sample. An advantage of the rank correlation over the linear corre-
lation is that the measurements do not have to be normalized in order for two correlation
coefficients from two different data sets to be compared.

It follows that before calculating the Spearman correlation of the expression levels of
two genes, the N measurements of each gene have to be converted to their correspond-
ing rank in each sample. For two genes i and j with N data points each, the Spearman
correlation coefficient is given by Eq. ( 2.4):

cov(rg(i),rg(4))
Prg(iyrg(j) = ) . 2.4)
Trg(3) Trg(4)
where rg(7) and rg(j) denote the ranks of genes ¢ and j, respectively, cov(rg(z),rg(y)) de-
notes the covariance between rg(z) and rg(j), and o(;) and o, () give the standard devia-
tions of rg(7) and rg(y), respectively.

2.5.2 Computing Running Variance
The variance of a sample of [V data points, x1, ..., T, can be computed using Eq. (2.5) [25]:

N N

02zﬁZ(xi—f)zzzgc?—(N—l)-ﬁcQ (2.5)
i=1 i=1

where Z is the mean of the data points. If new values, x;, are added one at a time, and the

final N is large, the computational task will be so big that a computer should calculate the

variance. If using the left hand side version of the variance formula, the computer has to

go through the data two times for each new z; value: once for calculating the mean and

once for calculating the differences.
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The two-pass approach will be more time consuming, so the most intuitive solution
might then be to make the computer accumulate the two sums of x? and x; (to find T)
separately, and then find the difference according to the right hand side of Eq. (2.5). There
is, however, a possible pitfall to this approach: If each x; is very large or has many deci-
mals, then the sum of squared x;’s will get even bigger, possibly losing precision because
the size of the value exceeds the number of digits the computer has available for storing
float numbers. If the difference between the two sums is small, this might lead to a serious
loss of precision. In the worst case scenario, one might even get a negative number, even
though a variance must always be positive. Not only will the results be far off, but it would
also make it impossible to take the square root of the variances in order to get the standard
deviations.

A solution to this problem was proposed by B.P. Welford in 1962 [26]. His numeri-
cally stable algorithm for computing running variance is given as the following recurrence
formulas initialized with M7 = 1 and S; = 0:

T — Mi_
My, = Myyq + % (2.6)
Sk = Sk—1+ (vx — My_1) - (x — My) 2.7

where the k™ estimate of the variance is found from Eq. (2.8)aslongas2 < k < N:

Sk
2 _=F 2.
7 k—1 2:8)

2.5.3 Confounding

Confounding occurs when there seems to be a direct relationship between two variables,
while in fact the apparent relationship is caused by a hidden factor not accounted for, a
confounding factor. Confounding factors can easily lead to false conclusions. An example
could be the following fictional study: You have bone samples from a group of elderly
people and a group of young people. Almost all the elderly people have osteoporosis, and
none of the young people do. From that you conclude that osteoporosis comes from old
age. If the real reason for the high occurrence of osteoporosis in the group of elderly test
subjects is that without your knowledge, they all live in the same nursing home where
they get too little sun light and their diet does not contain vitamin D, this would be a
confounding factor possibly leading you to make a false conclusion about the origin of
0Steoporosis.

Even if you take care to avoid such obvious sources of errors as in the previous exam-
ple, it will be difficult to remove all possible confounding factors in a data set, for instance
a gene expression data set. If a pair of genes, denoted i and j, shows an overall significant
co-expression across the N samples in a condition k, and the co-expression is similarly big
in all the N individuals, it is likely that a strong co-expression between these genes is typ-
ical for condition k. If, however, the gene pair shows a very strong correlation of the data
for one or more sub-groups of the N samples, and a non-significant co-expression for the
rest of the samples, the overall correlation coefficient could still end up being significant,
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but there is a risk that this significance is due to confounding factor(s): some unknown
condition or conditions that the individuals with strong co-expression have in common
(age, unreported diseases, life-style etc.), instead of the condition k itself. Confounding
factors would therefore typically lead to a high variance in the correlation calculated from
many different subsets of the two full data series.

2.5.4 Boxplots

A boxplot is used to graphically visualize the distribution of numerical data [27]. An
example boxplot is given in Fig. 2.4. Any set of numbers can be ordered, allowing us to
find its different quartiles: The second quartile, Q2, is the middle value (median) of the
data, while the first and third quartiles, Q1 and Q3, are defined to be the middle values
between Q2 and the smallest and biggest values in the data set, respectively.

In a traditional boxplot there is a rectangle, ’the box”, where the first and third quartiles
can be found as the upper and lower sides of the box. The height of the box (= Q3-Q1),
called the interquartile range (IQR) thus gives the range within which 50% of the data
points are found. The second quartile, Q2, representing the median of all the data points,
are found as a horizontal line (the red line in Fig. 2.4) inside the box. Furthermore there are
two whiskers extending above and below the box. The range of the whiskers are typically
set between Wigyer = @1 — C - IQR and Wiypper = @3 + C - IQR where W, e and
Wiower represent the range of each whisker, and C is a constant that has to be chosen. If no
data points are as high or low as these values, the whiskers will instead end at the highest
and lowest data point. Any data point above W, or below W, are represented as
outliers. In Fig. 2.4, each outlier is represented by ~+”.

2.5.5 Hypothesis Testing

In hypothesis testing, one compares a statistical hypothesis H1 to the null hypothesis HO.
Typically the H1 hypothesis can be something like “there is a linear relationship between
these two data sets”, or there is a significant difference between these two measurement
series”, while the respective null hypotheses HO would be ’there is no linear relationship
between the data sets, they are completely uncorrelated”, or "there is no significant differ-
ence between these measurement series”.

To decide if there is a significant correlation between the two, one calculates the corre-
lation coefficient p for the two data sets, and then compares it to the correlation coefficient
distribution from completely uncorrelated data sets of the same size. If the calculated p
could just as likely have been from two uncorrelated data sets, one keeps the null hy-
pothesis, whereas if it is highly unlikely that the calculated p value would come from the
comparison of two uncorrelated data sets, one rejects the null hypothesis in favor of the
alternative hypothesis H1.

To decide whether to reject the null hypothesis or not, it is necessary to quantify
“highly unlikely”; one needs to set a threshold for |p|, above which p values are consid-
ered significant. Tables with the probabilities (p-values) of given p values to occur from
uncorrelated data sets of given sizes, are widely available online or in statistics literature.
By convention, absolute p-values of 0.05 or below are considered significant, and 0.01 or
below is considered highly significant. If you have calculated a correlation coefficient p
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Figure 2.4: An example boxplot where the first, second and third quartiles, Q1, Q2 and Q3, as well
as the interquartile region, IQR, are marked.

from two data sets, and find a corresponding p-value of 0.01, it means that you would only
expect a p value this extreme or more (this close or closer to 1 or —1) to happen 1% of the
times if the null hypothesis HO is true. In other words, in 99% of the cases, a p value this
good would come from a true systematic relationship between the data sets [25, 28].

For large data sets, the Fisher’s z transformation can be used to find p-values from
correlation coefficient values [23]. New z values are computed from the given p values
using Eq. (2.9):

IR U ) 2.9)
2 (1-p)

The obtained z values can be assumed to be normally distributed, and corresponding
p-values can be found in any p-value table for normal distributions. Alternatively, one
can use g-values, which are p-values adjusted for the false discovery rate discussed Sec-
tion 2.5.8.

Following these norms there is still a chance of either rejecting the null hypothesis
when the data sets are really unrelated, or keeping the null hypothesis even if the data sets
are actually related. The first is called a Type I error, or false positive result, while the latter
would be a Type II error, or false negative result [28]. In the specific case of constructing
gene co-expression networks, a Type I error would be to put a link between two genes that
have no biological relation in their expression levels, whereas a Type II error would be
not putting a link between two genes that in reality do have a biological relation of their
expression.

One type of statistical hypothesis testing is the 7-test. The three most common varia-
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tions of the ¢-test are the one-sample, two-sample and paired ¢-tests. Only the two-sample
t-test will be explained in this section, as it is the one that will be relevant in later chapters.

As the name implies, there are two samples, or measurement series, in a two-sample #-
test. The test is used to determine if two data sets are significantly different from each other
or not. More precisely, it tests the null hypothesis that the two measurement series have
the same average, meaning that they can be assumed to come from the same underlying
distribution.

Let y1, ..., y, be the n measurements in sample 1 and x4, ..., z,, be the m measure-
ments in the sample 2. The average of the two samples are denoted ¢ and Z, and the
corresponding sample variances are denoted o2 and 03. The degrees of freedom, df, are
found as df = n + m — 2. From these parameters, the z-statistic can be calculated using
Eq. (2.10) [28]:

(2.10)

From df and the calculated #-statistic, one can find the associated p-value from a 7-table.
If the p-value is smaller than 0.05, the null hypothesis of equal mean values can be rejected,
and the two samples can be assumed to come from different underlying distributions.

2.5.6 The Multiple Comparison Problem

The multiple comparison problem arises when several individual hypothesis tests are con-
sidered at the same time [29]. The significance values of the individual comparisons no
longer reflect the true significance value of the combined set of multiple hypothesis tests,
where the same data are used in many different comparisons. The more comparisons that
are made simultaneously, the more false positives are expected [24].

This would to a great extent be relevant for the construction of large gene co-expression
networks. There are between 20 000 and 30 000 genes in the human genome, and compar-
ing all these genes pair-wise would result in between 1.9 - 108 and 4.5 - 108 simultaneous
hypothesis tests. Even if one does not study the correlation of all the genes in the whole
genome, but restricts the analysis to for instance 103 genes, this would result in almost
5 - 10° comparisons. A p-value of 0.05, normally considered significant, would allow
about 25 000 false positive results. If the goal of a differential co-expression analysis is
for example to identify genes (or relations between genes) involved in a disease (using the
’guilt-by-association” principle), one could end up with a high number of “miscarriages
of justice”. Your network could easily become rather useless as ’evidence”. The Bonfer-
roni correction and the false discovery rate are two possible ways of handling the multiple
comparison problem.

2.5.7 The Bonferroni Correction

There are many different procedures that can be used to protect us from calling differences
significant when they in fact are not. To avoid getting too many false positives, the signif-
icance level has to be adjusted for the number of simultaneous comparisons. An easy way
to do this is to use the Bonferroni correction [24].
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The Bonferroni correction simply divides the individual significance level (0.05) by
the number of tests being conducted (e.g. corresponding to number of gene pairs), and
uses this as the new significance level for all the individual tests [29]. This works well
with relatively few variables, but it is not difficult to see that with for instance 103 genes,
this requires an individual significance level of 5 - 10~°, which is very low. The more
comparisons you make, the lower the significance level gets for each case, with the result
that it becomes more and more difficult to detect even highly significant correlations. As
the overall Type I error rate goes down, the Type II error rate would therefore increase.
The risk of getting many false discoveries decreases dramatically, but you might not get
too many valuable discoveries either. It is therefore often advisable to use other correction
methods when making a very high number of hypothesis tests [29]. However, if there
are enough samples (enough simultaneous measurements of the genes at study), the more
reliable each correlation value would get, and the easier it is to still get results below the
Bonferroni corrected significance level even with a high number of tests.

2.5.8 The False Discovery Rate

A different way of performing multiple comparison correction is by using the false discov-
ery rate (FDR). The false discovery rate quantifies the expected number of false positive
results. The false positive rate of the Bonferroni correction gives the percentage of all re-
sults that will be truly negative, while the FDR gives the percentage of the declared positive
results that will be truly negative. The FDR has a greater power, but is less conservative,
so the number of Type I errors will be larger than if using the Bonferroni correction [30].

2.6 Gene Co-Expression Networks

Gene expression data can be obtained by performing an RNA microarray analysis (see
Section 2.2). Before constructing a gene co-expression network, all the genes need to be
measured simultaneously in a sufficient number of independent samples. In the complete
data set, the expression levels of each gene are represented by a vector with as many ele-
ments as there are samples analyzed. Each vector element thus contains one measurement
of the abundance of mRNA from that gene in a tissue sample from one person. The ex-
pression levels of all the genes measured in the same tissue sample will have the same
placement in their respective gene’s expression vector.

As previously mentioned, a gene co-expression network is a network where the nodes
represent genes, and the links indicate a synchronized gene expression pattern between
the connected genes. Two genes can have positively correlated expression (the up- and
downregulation patterns follow each other, simultaneously or with some delay), nega-
tively correlated expression (upregulation of one gene is associated with downregulation
of the other and vice versa) or no correlation of expression. The connection between two
genes in a co-expression network is the correlation of their respective expression vectors.
In unweighted gene co-expression networks, any correlation above a given threshold is
considered significant, and should be represented as a link in the network. Genes con-
nected by a link are said to be co-expressed. In weighted gene co-expression networks, the
strength of each link will reflect the strength of the correlation.
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The motivation behind constructing these networks is that gene co-expression patterns
are found to often correlate with a given phenotype or biological function [7, 8, 9, 10].
Constructing a network from pairwise gene co-expressions makes it possible to find net-
work characteristics and structures that would otherwise be difficult to detect if you were
to study the genes or even pairs of genes separately.

Expression data always comes from experimental measurements of RNA levels, and
will therefore always be noisy due to measurement uncertainty. It is important to be careful
when analyzing the data, making sure to be aware of possibly false conclusions. When
performing an unweighted network analysis it is important to set a correlation threshold
for co-expression links so that they are likely to reflect significant biological, real-life
relations between the genes as well as possible. Without such a correlation threshold, one
could easily end up with a complete (fully connected) network, where all the nodes are
connected to all the others, and from which no meaningful information can be drawn.

2.7 Differential Gene Co-Expression Analysis

Differential gene co-expression analysis is the analysis of how the pairwise correlations
in gene expression differ between two or more conditions. The analysis is performed in
order to explain for instance a biological system’s level of dysfunction, or the cell response
to given conditions. “Conditions” can in this case refer to the presence or absence of a
variety of categories and factors, such as disease or illness, substance abuse, exposure
to pollutants, medical treatment, lifestyle factors, tissue type, species and so on. Any
condition can be studied by use of the same methods.

There are several approaches to the analysis of the change in gene co-expression, and
the choice of method will usually reflect the type of information one is interested in. The
methods differ both in the way they identify differential gene co-expression, in their main
focus of interest and in their output. One approach is to create one co-expression network
for each condition to be studied, and then simply see what links or nodes have appeared or
disappeared when going from one condition to another [31, 32]. The alternative approach
is to construct one differential co-expression network, where a link between two genes rep-
resents the change in co-expression for that gene pair between two conditions [2, 33, 34].
The change detected with either approach, might either only be the occurrence/disappear-
ance of a link between the conditions, or additionally the change of link type, from positive
to negative correlation, can be included [2]. Some approaches identify differentially ex-
pressed genes instead of focusing on the links [32, 33, 35] and some focus on detecting
different network modules [35, 36, 37].

2.8 The CSD Method

2.8.1 CSD networks

The CSD method for differential co-expression analysis [2] is used to create a single net-
work that describes three different types of co-expression changes for pairs of genes be-
tween two given conditions. A CSD network consists of nodes, representing genes, and
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links, representing a condition-wise change or conservation of the co-expression rela-
tionship between two genes. A network link reveals, in other words, whether or not the
correlation between two genes has changed significantly between the two conditions.

The pair-wise gene co-expression is first calculated for each condition separately. Gene
co-expression is represented by the Spearman correlation coefficient, p;; 1, for a given
gene pair (i,j) over all the N gene expression data points representing condition k. A
co-expression relationship in a given condition can either be a strong positive correlation
(pij,i close or equal to 1), a strong negative correlation (p;; 5 close or equal to —1), or
a weak/no correlation (p;; . close or equal to 0). From the co-expression relationships,
three types of differential co-expression relationships are recognized by the CSD method:
conserved (denoted C), specific (denoted S) and differentiated (denoted D) co-expression:

e A conserved (C) link in the CSD network represents a situation where a significant
co-expression relationship between two genes has not changed between the two
conditions: The correlation is strong, and with the same sign, in both conditions.

e A specific (S) link represents situations where there is a strong correlation of any
sign between the genes in one condition and a weak or no correlation in the other.

o A differentiated (D) link represents the situation where a strong gene pair correlation
changes sign when going from one condition to the other.

The three possible differential co-expression relationships between two genes are vi-
sualized as a gene co-expression score surface plot in Fig. 2.5. The Spearman correlation
coefficients p; and ps for a single gene pair in conditions 1 and 2 are represented on one
axis each, giving a plot with eight co-expression areas of interest. Two blue areas represent
C relationships, with strong, same sign correlation coefficients in both conditions, two red
areas represent D relationships with strong, oppositely signed correlation coefficients in
the two conditions, and four green areas represent S relationships, with a strong correla-
tion of either sign in one condition and a close to zero correlation coefficient in the other
condition. The white area represents combinations of correlation coefficients that will not
result in a link in the CSD network. This includes situations where one or both correlations
are neither particularly strong or particularly weak, and situations where both correlations
are weak.

The C, S or D relationship between a pair of genes i and j is determined by calcu-
lating gene relationship scores, Cj;, S;; and D;;, given in Egs. (2.11), (2.12) and (2.13)
respectively [2]:
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p2

P1

Figure 2.5: The gene co-expression score surface gives a general representation of the combinations
of correlation coefficients from two conditions that will correspond to the three different types of co-
expression relationships; C, S and D. The variables p; and p2 represents the Spearman correlations
of a given gene pair in conditions 1 and 2 respectively. The green areas corresponds to specific (S)
differential co-expression, the blue areas correspond to conserved (C) co-expression, and the red
area corresponds to differentiated (D) co-expression. The co-expression relationship types are also
indicated by their respective letter, C, S or D, next to their corresponding colored area. The white
area represents combinations of correlations that will not result in a network link. Source: [2]
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2.8.2 Internal Co-Expression Variations in Each Condition

Dy (2.13)

The C;;, S;j and D;; scores are corrected for possible confounding factors in the data set
by including the variable a%-’ & in the equations. This is an estimate of the variability in
the Spearman correlation coefficient for each gene pair i,j within the data set representing
condition k. A high variability in correlation between two genes reflects that groups of the
data points for those genes are very differently correlated than the other data points, which
could be caused by some unknown factor affecting only a sub-group of the subjects from
which the tissue samples are taken. If the scores were not corrected for high variabilities
within the data set, there would be a risk of creating a false impression that an observed co-
expression between two genes is related to the studied condition, when in fact it is related
to some unknown factor not accounted for. A high 0%7 i Will therefore reduce the value of
the co-expression scores, Cj;, S;; and D;;.

An estimate for the internal variance in co-expression for each gene pair within each
condition is computed as the standard deviation of the mean of the Spearman correla-
tion coefficients calculated for each independent sub-sample of size n that can be drawn
from the N data points. The sub-sampling is done using the following sub-sampling algo-
rithm [2]:

1. The total of N data points per gene are sequentially numbered.

2. The N data points are divided into non-overlapping sub-samples of size n. With
n =T and N = 49 this would result in 7 initial sub-samples.

3. The first data point is used as the initiating data point, n*. A new sub-sample is built
by starting with data point n*. While sequentially iterating through the data points,
new data points are added by the following criterion: if the current data point has
never previously co-occurred in a sub-sample with any of the data points already in
the current sub-sample, it is added to it.

4. When the size of the current sub-sample reaches n, a new sub-sample is initiated
with the same initiating data point, n*, and step 3 is repeated.
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5. When no valid sub-sample of size n can be drawn using n* as the initiating data
point, step 3 is repeated using n* = n* + 1 as the next initiating data point.

6. The procedure is complete when no more allowed sub-samples of size n can be
constructed.

This algorithm ensures that the highest possible number of independent sub-samples of a
fixed size n is drawn from the full data set. The independence is ensured by the condition
that the intersection between any two sub-samples cannot be more than one data point.

The sub-sampling strategy of the CSD method accounts for the fact that confounding
factors could change the “real” correlation within the sub-populations of samples that they
affect. The rationale for using only independent sub-samples, where no pairs or bigger sets
of data points are part of multiple sub-samples, is therefore that calculating correlations
over the same data points multiple times could possibly lead to an underestimation of the
real variability within the data.

In order to detect confounding factors as well as possible, and also get a high number
of sub-samples from which each ¢;;; can be calculated, the sub-sample size n should
be small, while still allowing reasonable calculations of correlation coefficients. Voigt,
Nowick and Almaas [2] found a sub-sample size of n = 7 to be the minimum requirement
to calculate a meaningful Spearman correlation, and that in order to get enough data points
for the estimation of ;5 1, the data set should have a total of at least N = n? data points
per gene. This restricts the method to data sets with a minimum of 49 data points per gene
per condition.

2.8.3 Thresholds for the C;;, S;; and D;; scores

Looking into Egs. (2.11), (2.12) and (2.13), note that taking the absolute values ensures
positive numerators in each fraction, while the root sum square of the standard deviations
of the means, o;; 1, in the denominator can be any positive number, with no limitation on
how close they are to 0. The scores can therefore take values from 0 to infinity. The C;;,
Si; and D;; scores quantify the extent of each C, S and D co-expression relationship for
a given gene pair, but the values of the three scores are not directly comparable, as the
scores follow different distributions.

In order to obtain one single, meaningful network in which all links are comparable to
each other, the three scores have to be mapped to a common scale. Three threshold values,
kg s k:}f and kf , are determined so that each of them corresponds to an importance level,
p. The importance level is not the same as the traditional p-value common in standard
hypothesis testing. In contrast to a p-value, the importance level in the CSD method is not
based on an hypothesis testing situation, but on the probability of obtaining a given score
from the distributions of the calculated scores. The threshold Values,kff 5D and associated
importance levels p©>'" are determined by the following method (The C' score with its
associated threshold value and importance level is used as an example):

1. Calculate the C' score for all M gene pairs, resulting in a total set of M different Cj;
scores.
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2. Draw m samples, s;, from the total set of C' scores, with each sample having a size
L << M.

3. The threshold value k:g is determined as the average of the maximal values per

sample: kS’ = L 3" max,,,C
i=1

4. The associated importance level p is setas p = 1/L.

The same procedure is used for the threshold values and importance levels of the S and D
scores. By choosing a common importance level p for the three scores, thereby getting an
appropriate sample size L, it is possible to get comparable threshold values for the three
types of scores.

Each pair of genes has a calculated Spearman correlation coefficient, p;; 5, for each
of the two conditions k, resulting in a pair of correlation coefficients, (p;j,1, pij,2). As
explained previously, the C;; score is designed to increase the closer a pair of Spearman
correlations are to the values (—1,—1) or (1,1), and to get small otherwise. Similarly,
the S;; score is designed to increase the closer the pair of Spearman rank correlations
get to (1,0), (0,1), (—1,0) or (0, —1), and to become low otherwise, and the D;; score
is designed to increse the closer a pair of Spearman rank correlation gets to (—1,1) or
(1,—1), and to become low otherwise. Egs. (2.11), (2.12) and (2.13) thus ensure that
for any combinations (p;; 1, pij,2), at most one of the Cy;, S;; and D;; scores will be
above their respective threshold k,, returning only one type of link between genes i and
J. Adjusting the importance value corresponds to increasing or decreasing the areas in
Fig. 2.5, considered to reflect a C, S or D relationship, and it has to be set to a value
that does not make the areas overlap. The importance value can be adjusted to a level that
ensures a network size and link density that is suitable for further analysis.

2.8.4 Node Homogeneity

A node in the CSD network, representing a given gene 4, can be characterized by its
distribution of link types, t (C, S or D). This characteristic is called node homogeneity,
H;, and is calculated as shown in Eq. (2.14) [2]:

(%)
Hi= > j (2.14)

te{C,S,D} g

where k¢ ;, ks; and kp ; denote the number of C, S and D-type links, respectively, and
k; is the degree of node i.
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Chapter

Materials and Methods

This chapter is divided into two main sections. Section 3.1 gives an overview of the method
study and development, while Section 3.2 describes the method and parameters used in
the CSD analysis of rheumatoid arthritis. The CSD method was chosen for this analy-
sis because it provides a more extensive and complete description of the co-expression
changes between two conditions than other comparable methods: It introduces a new type
of co-expression change (the condition-wise sign change of a strong correlation of the
gene expression of two genes), as well as including both loss and conservation of strong
correlations of gene pairs between the two conditions at study. The reader is referred to
Section 2.8 for a complete description of the original method.

3.1 Method Study and Development

To respond to the issue of data set size limitations in the original CSD method [2], its sub-
sampling strategy was modified so that instead of drawing only independent sub-samples, a
higher number of less independent (more overlapping) sub-samples were drawn at random,
until a fixed percentage of sub-samples had been drawn or discarded. The new, alternative
sub-sampling algorithm was tested on smaller and smaller sub-sets of a bigger data set,
and the results obtained were analyzed and compared to the results using the original sub-
sampling algorithm on the same data. The objective of the method development study was
to test if and to what extent allowing a higher dependence between the sub-samples would
lead to a significant over- or underestimations of the gene pair correlation variabilities,
0ij,k» in each data set k, thus uncovering whether or not this would allow data sets with
fewer than 49 data points per gene to be used to create an informative CSD network.

3.1.1 Parameters Affecting o;;

It was essential to get an overview of the parameters that could affect the computed o;;
values prior to the construction of an alternative sub-sampling algorithm . In order for
the reader to better follow the different steps in the method study, the four most important
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parameters affecting the calculated o;; are presented in this section; the size of the data
set, N, the number of sub-samples, S, the sub-sample size, n, and the dependence between
the sub-samples, given by the maximum number of data points that any two sub-samples
are allowed to overlap, o.

A large enough S will ensure that o;; reaches a final, stable value, which will not be
significantly changed by adding more sub-samples. A high number of sub-samples will
also increase the probability of detecting confounding factors, which is the whole point of
both sub-sampling procedures. If sub-samples are allowed to overlap, a higher S will lead
to an increase in the average dependence between the sub-samples that are drawn.

The number of sub-samples that is possible to find is dependent on the combination
of the other three parameters. If possible, increasing N by making more measurements
per gene would be the easiest way of getting more independent sub-samples. Lowering
the sub-sample size, n, will also allow more sub-samples to be drawn, but there is a limit
to how small n can be without reducing the validity of the Spearman correlation: If there
are too few data points per sub-sample, the Spearman correlation coefficient will not be
meaningful anymore. The choice of sub-sample size, n, will obviously affect how many
sub-samples of a given dependence that can be drawn in total. Increasing the dependence
between sub-samples by allowing a higher o is a third way of increasing S.

Originally no dependence between sub-samples was allowed (see Section 2.8): No
pair of data points was allowed in any two sub-samples. Allowing pairs of data points to
appear multiple times, thus allowing some dependence between sub-samples, would allow
more sub-samples to be drawn, but it could also shift the resulting o;; to become a worse
estimate of correlation variability. With random drawing of sub-samples, this effect would
be more apparent for smaller data sets, as fewer data points to draw from would increase
the chance of drawing overlapping sub-samples. If allowing a given overlap between the
sub-samples only resulted in a reasonably small change in o;; %, one could still benefit
from increasing the allowed sub-sample overlap, possibly getting good enough estimates
for o;; even with quite small data sets.

As an illustration of the substantial change in the number of sub-samples that can be
found with just a small increase in the permitted overlap, imagine a data set with NV =9
data points per gene and a sub-sample size n = 3. Using the original requirement of
maximum one data point overlap, this will result in 12 sub-samples by using the original
sub-sampling algorithm described in Section 2.8. Allowing a sub-sample overlap of 2 in
stead of 1, will in this example increase the number of possible sub-samples with 84.

3.1.2 Data Collection

The gene expression data set used to test the new sub-sampling algorithm came from
whole-blood samples of healthy individuals and was published as part of the GTEx project [38,
39]. The data set was found in their online database [12], and contained 338 data points
per gene.

To investigate the consequences of varying the allowed sub-sample overlap on dif-
ferently sized data sets, all 338 measurements of the first 100 genes of this data set was
extracted from the full data set and used for computation of reference values. Smaller data
sets were sliced out from this set in order to produce smaller data sets. The reason for
only using the first 100 genes was to reduce the time consumption, but as this resulted in

28



3.1 Method Study and Development

4950 gene pairs for all the different data sets, it was considered to be enough genes for the
purpose of studying the results of the method modifications.

The smaller data sets were created by extracting the first 300, 200, 100, 60, 50, 40,
30, 25 and 20 data points per gene, respectively. The data set sizes were chosen to be
closer to each other when approaching and going below the lower size limit of the original
CSD method, N = 49 data points per gene. This was done because any effects of higher
maximum permitted overlap between sub-samples would be bigger with smaller data sets
as a result of there being fewer valid sub-samples to draw.

3.1.3 The Alternative Sub-Sampling Algorithm

The original, deterministic sub-sampling algorithm was not easily changed to include a
higher dependence between the drawn sub-samples. The alternative algorithm that was
proposed and implemented in a script was therefore based on random drawing of sub-
samples that were accepted or discarded based on how much overlap they had with pre-
viously drawn sub-samples. The alternative algorithm is presented in the following para-
graphs.

A gene expression data set consists of N RNA measurements per gene. All the gene
expression measurements of a given gene can be thought of as a vector, and elements in the
same place in two genes’ expression vectors come from the same tissue sample and may
be compared. For each gene pair the new algorithm drew multiple sets of seven random
expression vector entry numbers and put them together as new sub-samples. Each new
sub-sample was tested for overlap with previously drawn sub-samples and accepted or
discarded based on the chosen maximum overlap.

The ”maximum sub-sample overlap”, o, was defined as the maximum number of data
points that a given sub-sample had in common with any other sub-sample. For example
the set {1, 2, 3, 4, 5, 6, 7} has o = 1 data point overlap with the set {7, 8, 9, 10, 11,
12, 13}, and the basis for the correlation calculations of these two sets would have been
independent. Furthermore, the set {1, 2, 8, 9, 14, 15, 16} has no more than two data points
overlap with any of the other two sets, and would be allowed together with the previous
two sub-samples if the maximum sub-sample overlap was set to o = 2. Put in another
way: It has no subsets of three data points in common with any of the other sub-samples.
Allowing a sub-sample overlap of o = 3, ensures that no subset of four data points will be
found together in two sub-samples, and so on. Choosing o = 6 gives completely random
dependence for sub-samples of size n = 7, as the only restriction is that no complete
sub-sample is used twice.

The following algorithm was implemented for the calculation of o;; for each gene
pair i,j in a data set with NV data points per gene expression vector, a sub-sample size n, a
maximum number of valid sub-samples per gene, Sy,q., and a maximum overlap of o data
points per sub-sample:

1. Assign integers in increasing order from 1 to IV to each measurement column in the
data set.

2. Draw n random, unique integers in the interval [1, /NV] as the “current sub-sample”.
If more than 2 data points in the corresponding expression vector entries of genes
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i or j has the value zero; discard the sub-sample, and repeat step 2 until a valid
sub-sample is found or a given discard percentage is reached.

3. Compute the Spearman correlation coefficient for genes i and j from the expression
vector elements given by the current sub-sample.

4. Repeat step 2, and proceed to step 3 if the current sub-sample has no more than o
data points overlap with any previously drawn sub-sample. Discard the sub-sample
if this requirement is not met, and repeat 2.

5. Repeat steps 1 to 4 until a given percentage of the sub-samples are discarded or an
upper limit, S, 4z, for the number of valid sub-samples is reached.

6. Calculate the mean and the associated standard deviation of the mean, o055, of the
Spearman correlation coefficients from all valid sub-samples.

The decision not to calculate Spearman correlations of sub-samples with more than two
zero entries per gene was to avoid problems with computing Spearman correlation values
with too many tied ranks. Other tied values were not expected because the measurements
had a high number of decimals. Gene pairs where the computed o;; ;, was based on too
few accepted sub-samples (below a limit S,,;,,) were filtered out from the data set before
further analysis was performed.

3.1.4 Choice of Method Parameters
Discard Percentage

The discard percentage of the sub-sampling algorithm was set to 99%. This parameter
was set after testing a few different values: Using 95 % resulted in significantly fewer
valid sub-samples, while increasing the percentage to 99.9999% did not result in many
more valid sub-samples, but increased the computation time significantly.

Sub-Sample Overlap, o

The test data sets described in Section 3.1.2 were tested with maximum permitted sub-
sample overlaps of o = 1,2,3 and 6. Permitted sub-sample overlap of 0 = 1 corre-
sponded to independent sub-samples like in the original method, only with a different way
of finding them. Adjusting o to 2 or 3 allowed a small to medium sub-sample dependence,
while o = 6 represented the highest possible permitted overlap between non-identical
sub-samples.

Sub-Sample Size, n

Different sub-sample sizes were evaluated by Voigt, Nowick and Almaas [2], who found
that the sub-sample size could not be reduced below n = 7. Based on this, the method
study in this project was restricted to sub-samples of n = 7 data points, because the
new algorithm was to be tested on very small data sets, and it was assumed to already
be difficult to draw a sufficient number of sub-samples of n = 7 when testing with the
smallest sub-sample overlaps.
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The Number of Sub-Samples, S

When using the new sub-sampling strategy with various numbers of allowed sub-sample
overlap, each o;; would be calculated from the given number of sub-samples, .S, that had
met the criteria of allowed overlap and number of zeros. With a low sub-sample over-
lap and/or few data points, relatively few sub-samples would be drawn before the discard
percentage was reached. With too few sub-samples, the o;; that was calculated would
be too dependent on the initial drawing pattern and not reliable as an estimate of correla-
tion variability. When increasing the data set size or the allowed sub-sample overlap, the
maximum number of sub-samples would get higher and higher, possibly leading to very
time-consuming calculations.

Taking these factors into consideration, it was necessary to set both the upper limit,
Sinaz- for the number of sub-samples that the algorithm was allowed to draw per gene pair
before it was reasonable to stop, and the lower limit of sub-samples, S, Where a o0;;
based on fewer sub-samples than this limit was not used in the further tests of the method.

Since the value of o;; was computed continuously for each new sub-sample (see Sec-
tion 3.1.6), one could think of o;; as a signal that would vary according to the number
of sub-samples, before it stabilized after a given number of sub-samples had been drawn.
The lower limit for the number of sub-samples, S,,;,, was set at the lowest number of
sub-samples that would produce a o;; output that was relatively stable compared to the
values obtained with a lower S. The upper limit for the number of sub-samples, S.,4., Was
set at a level where the o;; signal had been stable for a significant number of sub-samples
already, ensuring as reliable values as possible within a reasonable computation time.

The o;; “signal” was measured continuously for 28 gene pairs, increasing Sy, q, grad-
ually from 1 to 200. The parameters S,,,;, and S, 4, Were set to 50 and 200, respectively,
based on the results from this pre-analysis. An evaluation of the limits is given in Chapter
4. The 28 gene pairs were all pair-wise combinations of eight selected genes. The genes
were chosen carefully so that gene pairs with both positive and negative, as well as strong,
medium and weak correlations were present in the selection. The identity of the eight
genes used are given in Appendix A2.

3.1.5 Evaluation of the Alternative Algorithm

The value 0;; was computed using the new sub-sampling algorithm on the 4950 gene pairs
on each of the ten data sets of different size IV, with four different values of the maximum
permitted sub-sample overlaps o. This gave one measurement series per combination of
N and o. These were denoted af)v , and compared to a common series of “true” reference
data. The reference data series o3°% (using the full data set of 338 samples per gene,
and only independent sub-samples, o = 1) was computed independently from the first
measurements, and defined as the “’true standard deviations of the means”, denoted o~ .

Stability of the Computed o Values

The stability of the results from the new sub-sampling algorithm were investigated by

computing o338 and o338 100 separate times for the same 28 gene pairs used for deciding

the S limits in Section 3.1.4. The distributions of ¢33% values for each gene pair were
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visualized as boxplots in order to see the spread of the values. The relative variation in &
for these gene pairs was found as the coefficient of variation, CoV, which measured the
variance of each distribution divided by the mean value of o for each gene pair.

Evaluation of the Effect of Sub-Sample Dependence

The comparison between the o series and the reference series was done by dividing aé\” ij
for each gene pair i,j by its corresponding reference value 0;";. The distribution of each
ol /oT series was plotted as boxplots with whiskers set to span the following ranges:
Wpper = @3 + 1.5 - IQR and Wioyper = Q1 — 1.5 - IQR. The different boxplots
were analyzed in order to investigate how the overall o distributions were affected by the
combination of the various parameters, o, N and S.

The distributions of the oY values were also compared to the distributions of o using
a two-sample z-test. This was done to check at which combinations of o and n the o2
series were so different that they could be assumed to come from a different underlying
distribution. For each o, a -test was performed on the o series with decreasing values of
N until the distributions were found to be significanly different, using a significance level
of 0.05.

Investigation of Outliers

To investigate if there was any system to what gene pairs had the biggest variation in their
computed o values, and therefore ended up as outliers in the boxplots, some of the 0¥ /o
distributions and associated outliers were investigated further. As stated previously, the
boxplot whiskers were set to have a length of 1.5 - IQR, so that any o /o’ value above the
value @3 + 1.5 - IQR or below Q1 — 1.5 - IQ R were defined as outliers.

The total number of outliers, as well as the associated percentage of gene pairs ending
up as outliers, were found for the O'év /o™ distributions with the following (N, 0) com-
binations: (338,1), (300,1), (100,1), (338,6), (100,6), (50,6) and (30, 6). Furthermore, a
comparison was done to find the number and percentage of common outlier gene pairs
between two and two of the chosen oY /o' distributions. The distributions were chosen
so that the combinations of distributions with high/high, high/low and low/low N values
in combination with high/high, high/low and low/low o values were compared. This was
done to ensure that outliers from different types of distributions were investigated without
having to investigate all the 29 possible distributions. The latter would have been too time
consuming.

The most extreme outlier gene pairs were also studied in more detail. Four of the
oN /aT boxplots were chosen for this final outlier analysis: 0338 /0T, 0190 /o7, 5338 /5T
and 03° /0T These represented big and small data sets, and big and small o values. The
five most extreme outliers were identified, as well as the five gene pairs lying closest to the
medians of each distribution. The overall correlation coefficient p and the associated o7
for these gene pairs were found from the o7 series and compared to each other.
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Evaluation of the Reference Data

To test the validity of the o7 series as a good representation of the true correlation vari-
ability within the data set, the o values for all the 4950 gene pairs were compared to the
corresponding series of values obtained by using the original sub-sampling algorithm on
the same gene pairs and 338 data points. The data series found using the original algorithm
was denoted o338 (orig). The distribution of the pair-wise ratios o /o338 (orig) was vi-
sualized as a boxplot equivalent to the ones described in previous paragraphs. In order to
evaluate if the two algorithms gave equally large variations in the resulting o;; values that
they produced, a similar boxplot was also made for the distribution of o338 (orig1) /o338 (orig2)
where 0338(origl) and o338 (orig2) were the results obtained from two different runs of
the CSD-CS software on the same data set. Because the CSD-CS software is deterministic
in the sense that it draws the exact same sub-samples each time if all the parameters are the
same, the different runs were performed setting the software parameter randomSeed to 3
and 12 respectively. This parameter decided a starting point for the sub-sampling process,
ensuring that the exact same sub-samples were not redrawn on the second run.

3.1.6 Software Implementation of the Alternative Algorithm

In order to perform the calculations of Spearman correlation coefficients and standard devi-
ations of the means of sub-sample correlations for a given data set with different maximum
sub-sample overlaps o, I wrote a python script. The script imported a gene expression data
set, created all possible pairs of genes from the set, and computed the Spearman correla-
tion coefficients for each gene pair. The script further implemented the new sub-sampling
algorithm (see Section 3.1.3) to find standard deviations of the means of a given number of
sub-sample correlations. Two versions of the script was made: the first version computed
0;; with maximum sub-sample overlaps of o = 1,2 and 3, while the second version used
sub-samples with maximum sub-sample overlap o = 6. Both versions of the script are
found in Appendix A4.

For each value of o, the standard deviations of the means of up to S;,4, valid sub-
samples were calculated on the run for each new sub-sample, either until S,,,, valid
sub-samples had been found or a given percentage of all drawn sub-samples had been dis-
carded. Welford’s algorithm for the calculation of running variance [26] was implemented
for the variance calculations because it ensured a high numeric stability and precision of
the results. All results for one gene pair were calculated before proceeding to the next
gene pair.

In the first version of the script, all possible combinations of either pairs, triplets or
fours (for permitted overlaps of o = 1, 0 = 2 and o = 3, respectively) of data points from
the currently drawn sub-sample were created for each drawn sub-sample. If none of them
had been used before, the sub-sample was used for correlation and variance calculations,
and all possible orders of the new pairs, triplets or fours from this sub-sample were added
to a dictionary structure of used combinations. This dictionary was used as a reference
for the next sub-sample and so on. If any of the pairs/triplets/fours in a drawn sub-sample
were found in the dictionary already, the sub-sample was discarded.

The second version of the script was simplified for the calculation of p;; and o;; when
the sub-sample overlap was set to o = 6, since storing all combinations of 6 numbers in
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a dictionary structure was a cumbersome procedure. Instead each sub-sample was trans-
formed to a set structure (unordered collections of objects), and all used sub-samples were
stored in a set of sets. If any new sub-sample was not in the set of previously used sub-
samples, the new sub-sample was accepted.

To reduce the overall computation time, the possibility of running parallel computa-
tions was included in both versions of the script, now distributing the gene pair computa-
tions on the available amount of CPUs on the computer.

While the first version of the script was only used for small data sets in the method
development part, the second version of the script was later used for a full size gene ex-
pression data set. The memory demands of the second version of the script were therefore
reduced, the run time was further improved and a progress bar was added so that one
could more easily keep track of the process. The script was furthermore made more robust
against errors, both by including some exception handling that would allow the program
to continue if something went wrong during one of the calculations, just writing an error
message in the result file, and by saving the results at user specified intervals, so that all
computations did not have to be rerun if the script was to stop.

As the parallelization function that was used did not have a built-in way of saving
results on the go, the second version of the script was written so that it divided the list of
gene pairs into a given number of chunks, computed the data for each chunk at a time,
and wrote the results to file before the next chunk was fed to the parallelization function.
This reduced the RAM demands and made the script more robust to failures, by reducing
the potential amount of lost results. The script was set to keep track of all successfully
processed chunks of gene pairs, and return the identity of any non-successful chunks. At
a rerun the script would access this list and only redo the computations on the chunks of
gene pairs that were not successfully processed on previous runs.

In addition to optimizing the existing code, the computation time was sped up by using
multiple computers. The second version of the script was therefore made so that the user
could fill in the number of machines and the number of cores per machine, in order for the
script to divide the gene pairs into groups of corresponding size. For each run on a new
machine, the user then had to write the correct machine number into the script.

The final output of both scripts was a text-file containing a table of gene pairs and their
associated Spearman correlation coefficients, p;;, the associated o2 or (¢27)? (by choice)
for either o = 1, 0 = 2 and 0 = 3 or o = 6 (depending on the version), as well as the
number of sub-samples, .S, from which each aév was calculated.

The first version of the script was run on the test data set of 100 genes and N = 338
measurements per gene. With S,,,4, set to 150, the computations took less than 1.5 hours
running on 24 parallel 3.47 GHz Intel Xeon X5690 cores with 126 GB RAM on Ubuntu
16.04. The second version of the script was run with a data set of roughly 25000 genes
and 152 measurements per gene as input. With S, set to 150, the computations took
about 7 days running on a system consisting of 160 parallel 2.4 GHz Intel Xeon E25-2680
cores distributed on 7 virtual machines ranging from 62.9 GB to 189 GB RAM, running
Ubuntu 16.04.
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3.1.7 CSD-CS Software for Original Sub-Sampling Algorithm

The CSD-CS software developed by M.O. Helland in his master project at NTNU, 2017 [40]
was used for the calculation of o;; values using the original sub-sampling algorithm with

only independent sub-samples. The CSD-CS program has implemented the original sub-

sampling approach of the CSD method described in section 2.8, and can produce a table

of gene pairs and their associated p;;, and ogj. Worth noting is that this implementation of

the CSD method does use all valid sub-samples that can be found with the original sub-

sampling algorithm, but limits the number of sub-samples to a given number equivalent

to the parameter S,,,, described in the previous sections. The software is available on

GitHub (https://github.com/magnusolavhelland/CSD-Software).

3.2 CSD Analysis of Rheumatoid Arthritis
3.2.1 Data Collection

The data used in the analysis of rheumatoid arthritis was published as a part of a study by
Guo, Walsh, Fearon, Smith, Wechalekar, Yin et al. in 2017 [41], and accessed through the
Gene Expression Omnibus (GEO) database (accession number GSE89408). The data set
consisted of total RNA sequencing measurements (25049 genes) of joint synovial biopsy
samples of 152 subjects with rheumatoid arthritis and 28 healthy control subjects. One
tissue sample per subject had been analyzed without replicates. The data set also contained
measurements from 38 individuals with other types of arthritis, all of which were excluded
from the CSD analysis.

3.2.2 Network Construction

Gene expression data from the synovial fluid of patients with RA and healthy control sub-
jects were used to generate a CSD network based on the method described in Section
2.8. The RA data set was big enough for the original sub-sampling algorithm of the CSD
method, while the reference data set was too small: Using the original sub-sampling strat-
egy described by Voigt, Nowick and Almaas [2], 28 data points per gene would not lead
to a large enough number of sub-samples for calculating the internal variability in the data
set.

The original sub-sampling strategy was therefore used only for the RA data set, while
the modified sub-sampling strategy described in Section 3.1.3 was used for the reference
data set. When calculating the o;; .. of each gene pair in the reference data set, sub-
sample overlaps of up to 6 data points were permitted instead of just 1, resulting in a higher
number of sub-samples of random dependence instead of a too low number of independent
sub-samples. These sub-samples were used for the calculation of the variability within the
reference data set.

The results of the method study, which will be presented and analysed in Chapter 4,
indicated that with the available methods, this approach would give the best representation
of the internal correlation variance in a data set as small as N = 28. Other alternatives
would have been to ignore the internal variance in the reference data set, or to not perform
the analysis at all. One should however be aware that a substantial number of the estimated
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0ijref values will be less precise representations of correlation variability in the data set
than what could have been found with more data. Although not optimal, the noise that was
expected in the data as a result of this approach was accepted as the best option available.

In accordance with the results of the method development study the maximum number
of sub-samples were set to Sy,q; = 150, while the lower limit was set to S,,,;, = 100.
Gene pairs that did not meet this criterion were filtered out from the results after the corre-
lation and variance calculations. The large majority of the gene pairs had reached S, 4,
so the gene pairs that were discarded due to a low number of valid sub-samples typically
had reached S values much lower than S,,;,,, due to a high occurrence of zeros in the gene
expression data for one or both genes. Gene pairs with sub-sampling or correlation com-
putation errors (for instance by too many tied ranks in the full data set) were also filtered
out from the data set. RNA coding genes were kept in the network even if they do not code
for protein products as they might have regulatory functions.

The two correlation/variance data sets were finally used to create a CSD network as
described in Section 2.8.

3.2.3 Biological Process Enrichment Analysis

In order to establish if the network was enriched with genes related to specific biologi-
cal processes, a GO (gene ontology) enrichment analysis was performed using the GO
Enrichment Analysis tool of the Gene Ontology Consortium [42, 43, 44] available on-
line (http://www.geneontology.org/page/go-enrichment-analysis). The category “Biolog-
ical Process” was selected for the enrichment search. The GO Enrichment Analysis tool
identifies a biological process as enriched in the group of input genes if genes related to
the given process is under- or over-represented in the network compared to what would
have been expected by chance (with a correction for multiple comparisons, including only
results with a false discovery rate lower than 0.05). The results also return the number of
expected genes in the relevant categories, as well as an enrichment factor, or fold enrich-
ment, indicating how big the over- or under-representation is.

The biological process enrichment analysis was performed on the full network ob-
tained with an importance level of 10~°, as well as the three groups of all nodes containing
C-, S- or D-type links respectively.

3.2.4 Software for CSD Analysis of RA

The Spearman correlation coefficients and variances for all gene pairs in the RA data set
were found using the CSD-CS software described in Section 3.1.7, developed by M.O.
Helland in his master project at NTNU, 2017 [40]. The software was given the following
parameters: sub-sample size: 7, maximum number of sub-samples: 200, randomSeed: 4.
Because the RA data set was bigger, an upper limit for the number of sub-samples was
increased to 200.

The corresponding values for the reference data set was found using the Python script
(second version) described in Section 3.1.6 and given in Appendix A4. The filtration of
the correlation/variance-data obtained by the Python script, was done using a short, self-
written Python script given in Appendix AS, and both the RA and reference correlation/-
variance files were sorted using the sort command of the Linux terminal.
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From the correlation/variance-data, the C-, S- and D-scores were found, and a CSD
network was constructed using the CSD software by Voigt, Nowick and Almaas [2], avail-
able on GitHub (https://github.com/andre-voigt/CSD). The sample size L was set to 10%,
10° and 10° on three separate runs of the software. This corresponds to importance values
pof 104, 1075 and 1076, respectively.

The CSD network of gene pairs and associated CSD link types was visualized and
analyzed using Cytoscape (v.3.5.0) [45]. Cytoscape is a freely available, open source
software for network data integration, analysis and visualization (www.cytoscape.org).

The ratio of C-, S- and D-links on each node, as well as the node homogeneity, H,
were found using another self-written Python script found in Appendix A6. These values
were imported into Cytoscape together with the network.
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Chapter

Results and Analysis

The results in this chapter are divided in two parts according to the two different parts of
the study. Section 4.1 contains the results of the method development study and Section
4.2 presents the results from the CSD analysis of rheumatoid arthritis. The results are also
analyzed in each respective section.

4.1 Results: Development of the CSD Method

4.1.1 Impact of the Number of Sub-Samples, S

The main difference between how the new and the original sub-sampling algorithms were
built was that the new algorithm drew random data points for each sub-sample and ac-
cepted or discarded the sub-samples based on the overlap with previously drawn sub-
samples. In contrast, the original algorithm found new valid sub-samples in a systematic
approach, not wasting time on drawing sub-samples that would later be discarded. The
consequence of drawing the sub-samples in a random fashion was that for each new valid
sub-sample it became increasingly more difficult to draw more valid sub-samples. An im-
portant question was therefore how many valid sub-samples that could be drawn within a
reasonable amount of time when using the new sub-sampling approach.

Table 4.1 shows the average number of valid sub-samples (each of 7 data points),
Shnew, that the new script was able to identify from the data sets of different sizes, N,
with maximum sub-sample overlaps of o = 1,2,3 and 6. Table 4.1 also has a column
called S,4g, showing the maximum possible number of independent sub-samples found
using the original, systematic sub-sampling approach. I got the S,,;, data from by co-
supervisor, André Voigt, who was also the main author of the article on the original CSD
method (Voigt, A. 2018, written communication, May 10th). The reason why the number
of sub-samples seems to stop at 200 is that .S, = 200 was set as an upper limit for the
number of sub-samples to be drawn (see next paragraph). This was also set as a cap on
the S,ri data to avoid confusion. The reader should therefore be aware that for the data
set sizes N = 200, 300 and 338, Table 4.1 does not display the true differences in drawing
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capacity for the different maximum overlap values, as 200 sub-samples was reached for
all the different o values, and the computations were stopped when this limit for .S was
reached. As shown in Table 4.1, the new algorithm could find less than half the number
of independent sub-samples that could be obtained with the original, deterministic method
in most of the cases. At N = 60, the original method can only find 28 sub-samples,
which at first might look like a mistake, since it is lower than the number of sub-samples
at N = 50. This is not a mistake, but a numerical coincidence caused by the combination
of n = 7, N = 60 and the steps of the sub-sampling algorithm. At N = 59, the original
sub-sampling algorithm will find 46 sub-samples, and at N = 61 it will find 45, showing
that this is a very local phenomenon. For /N smaller than 50 data points per gene, the data
sets were too small for the original sub-sampling algorithm to have a big effect, and the
two algorithms therefore have equal performance when it comes to finding independent
sub-samples.

Table 4.1: The average number, Sycq, of valid sub-samples (7 data points) that the new sub-
sampling algorithm was able to find from data sets of size N, with maximum sub-sample overlaps
of o = 1,2, 3 and 6. The numbers are rounded to integers. The number of independent sub-samples
found using the original, deterministic sub-sampling algorithm, Sorig, is given as a reference. NB!
*The highest number of sub-samples in the table is 200 because S was limited to Spqz = 200.
**The Sorig value for N = 60 is correctly lower than at N = 50 due to a numerical coincidence.
See explanation in the text.

N Snew’ o=1 Snews 0=2 Snew, 0=3 Snew, 0=06 Sorig’ o=1
338 200* 200* 200%* 200* 200*
300 200* 200* 200%* 200* 200*
200 200* 200* 200%* 200* 200*
100 62 200* 200%* 200%* 138
60 22 162 200%* 200%* 28%%
50 15 93 200%* 200%* 34
40 9 47 200%* 200%* 8
30 5 19 119 200%* 5
25 4 11 54 200* 4
20 3 5 20 200%* 3

A related question was how many sub-samples were necessary in order to obtain a
stable ¢ value as an estimate of the correlation variability in the data set. Fig. 4.1 shows
the o338 signal for 28 gene pairs as a function, g(), of the number of sub-samples, S. As
described in Chapter 3, the gene pairs were selected so that both positive and negative,
as well as strong, medium and weak correlations were represented. For S between 1 and
50, there is much fluctuation in each g(S) signal”: for one of the gene pairs the signal
reaches values almost ten times higher than its final value. At S = 50, the signal plots
start to descend slowly towards a plateau where the values are not significantly changed as
S increases. Between S = 150 and .S = 200 the plots are almost horizontal, meaning that
additional sub-samples do not change the ¢ values very much in this S range. S = 50 and
S = 200 were therefore chosen as the upper and lower limits of S, Sy, and Sy,4z, in the

further method study. An equivalent plot for o338 as a function of S is found in Appendix
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Figure 4.1: The function g(S) represents the o'3°° signal for 28 gene pairs (with high, medium and
low, as well as both positive and negative correlations) as a function of the number of sub-samples
from which they are calculated, S. Each graph represents the signal of one gene pair.

A7. This plot is nearly identical to Fig. 4.1, which justifies using the same limits with
increased overlap between sub-samples.

Because S, Was set to 200, the end values of the signals in Fig. 4.1 correspond to
the “true” standard deviations used as reference in the further calculations, o7, for these
gene pairs. It is however difficult to distinguish the different values from each other in the
plot. In order to get a better overview of the final o7 values in the data set, the distribution
of o1 for all 4950 gene pairs in the data set is given as a histogram in Fig. 4.2. The range of
all the o7 values is divided into 50 bins of equal size, and the frequency of gene pairs with
o1 values within each of the bins determines the height of the corresponding columns.

The signals in Fig. 4.1, as well as the o7 values visualized in Fig. 4.2, are all outputs
from a single run of the random sub-sampling script, and even if each signal ends up at a
stable value, it would not necessarily end up at the same value on a second run with new
sub-samples. Fig. 4.3a shows boxplots of the o;; values (N = 338 and o = 1) at S = 200
obtained from 100 independent runs of the random sub-sampling script on the same 28
gene pairs that were used for Fig. 4.1. The figure shows that there are indeed variations
in the final o;; values, but for the majority of the runs, these variations are reasonably
small. There are of course differences between the gene pairs, but in general the boxes
have interquartile ranges of roughly 0.002, meaning that the distance from the median to
the first and third quartile (the upper or lower side of the box) will be more or less close
to 0.001 (depending on where in the box the median is found). The whiskers span a range
of approximately 0.005-0.006, meaning that a point lying at the outer end of a whisker
could deviate approximately 0.003 from a given median. Fig. 4.2 shows that the majority
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Figure 4.2: The distribution of the o values for all 4950 gene pairs in the data set is visualized as
a histogram with 50 bins representing value intervals for ¢7. The height of each column represents
the number of gene pairs with a 7 in the corresponding interval.

of the o7 values lie in the interval [0.025, 0.030]. With a median value of 0,5 = 0.025,
a deviation of 0.001 from itself equals a 4% change, while a deviation of 0.003 equals a
12% change.

There are, however, a significant number of gene pairs with o values that are much
lower than 0.025. For these gene pairs, an absolute deviation of 0.001 or 0.003 will repre-
sent a much higher percentage deviation than for the majority of the gene pairs. Fig. 4.3b
shows the coefficient of variation, CoV, for the same 28 gene pairs. The CoV represents
the relative variation in each of the 28 a:f38 series, given as the standard deviation of the
100 o values divided by the mean of the same values. Comparing Fig. 4.3a and Fig. 4.3b,
one can clearly see that gene pairs with a low o7 have higher CoVs and vice versa. This
means that even two very uniformly correlated gene expression series are still so noisy
that the final o values from multiple computations have an absolute variation comparable
to the more inconsistently correlated gene expression series. A plot equivalent to Fig. 4.3a,
only with o = 6 as the only change, is given in Appendix A3. The two plots have no major
differences; they have comparable interquartile ranges and whisker ranges for all the gene
pairs. This indicates that for the given data set size and number of sub-samples, the values
found with o = 6 are equally stable as with o = 1. This will be investigated further later
in this chapter.
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Figure 4.3: Stability of the computed ¢ values: Fig. (a) shows boxplots of the o;; values (N =
338 and 0 = 1) at Siae = 200 obtained from 100 independent runs of the random sub-sampling
script on 28 gene pairs, ij, with various correlation coefficients. Fig. (b) shows the coefficient of
variation (CoV) for the same 28 gene pairs. The gene pairs are numbered for easy comparison
between (a) and (b).

4.1.2 The Combined Effects of NV, S and o

Figs. 4.4 - 4.7 show boxplots of multiple 0¥ /o7 series with maximum overlaps of 0 =
1,2, 3 and 6, respectively. A maximum overlap o = 1 represents independent sub-samples,
while a maximum overlap o = 6 represents the maximum dependence between sub-
samples. Each series represents running the new sub-sampling algorithm on all 4950 gene
pairs in data sets of different sizes N (338, 300, 200, 100, 60, 50, 40, 30, 25, 20) with
Smaz = 200. Data set sizes not represented in the different plots means that the minimum
number of sub-samples, S,,;, = 50, was not obtained for any of the gene pairs for that
combination of NV and o.

Fig. 4.4 shows boxplots of 0¥ /T for N = 338,300,200 and 100. The pair-wise
ratios of 3% against o (0338) are based on two different runs of the new sub-sampling
algorithm. This gives a boxplot with a median of 1, meaning that the median of the 4950
o338/0T ratios represents a gene pair with equal o values at both runs. The first, and third
quartiles, Q1 and Q3, only span approximately 1.0 40.05, and combined with the fact that
the median is exactly 1, this shows that 50% of the gene pairs had ¢ values that were no
more than 5% different from the o values from the indepentent, second computation. Apart
from some outliers, most of the remaining o338 values deviated roughly between 5% and
20% from the reference value with equal parameters. The most extreme outlier gene pair
deviated almost 40% from itself on the two different runs. This first boxplot illustrates the
variation in o solely due to different choice of sub-samples. Given that the o7 values found
with my script are equivalent to the values obtained using the original algorithm (which
will be discussed later), any combinations of N and o resulting in oY /o7 boxplots similar
to the first boxplot from the left in Fig. 4.4 would therefore indicate that the parameters
are justifiable to use in a CSD analysis.

The boxplots of 03°° /o and 67°° /o7 in Fig. 4.4 are more or less equal to the one
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Figure 4.4: Boxplots of four distributions of the relative standard deviations of the means, O'év / T,
coming from calculations of oY for 4950 gene pairs, using the random sub-sampling approach with
the parameters o = 1, N = 338,300, 200 and 100, and Sy,az = 200. The corresponding ol
values come from an independent run of the random sub-sampling script with o = 1, N = 338 and
Smaz = 200, and are used as “’true” reference values for each gene pair.

for 0338 /o1, but the o values show a collective, large positive deviation from their cor-
responding o7 values when N = 100. The median of the ratios is around 1.75, meaning
that the o middle value increased with 75% of its true value. Apart from the lowest out-
liers, none of the 01°° /o7 ratios are close to 1. The box itself is also much wider, and
the whiskers range from around 1.25 to around 2.25. The upper outliers almost reach 3.0,
meaning that a few gene pairs had 010 values almost 300% as big as o .

What could be the cause of the huge change in the results when going from N = 200
to NV = 100 in Fig. 4.4? Table 4.1 shows that NV = 100 is the highest data set size where
the strategy of randomly drawing sub-samples fails to draw 200 independent (0o = 1)
sub-samples. At this data set size, only 62 sub-samples were drawn on average.

Fig. 4.5 shows boxplots of o3’ /o™ for N = 338, 300, 200, 100, 60 and 50, and Fig. 4.6
shows boxplots of 0¥ /a7 for N = 338,300, 200, 100, 60, 50, 40, 30 and 25. The higher
sub-sample overlap, the smaller data sets can be used while still obtaining S' > S,,,;,, and
the more data sets also reaches S = S,,4,. With this in mind, one can see that Figs. 4.5
and 4.6 show trends similar to Fig. 4.4. For data set sizes where S,,,,, Was reached (down
to and including N = 100 and N = 40 in Figs. 4.5 and 4.6 respectively), the medians
lie close to 1.0, but when S approaches S,,;, the medians of the plots start to increase
significantly, and the boxes, whiskers and outliers span much larger ranges.

Looking more closely into Figs. 4.5 and 4.6, it is possible to see a small change in the
boxplots before the decrease in S towards S,,;,; a much smaller increase of the whiskers
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Figure 4.5: Boxplots of six distributions of the relative standard deviations of the means, oY /o7,
coming from calculations of o2 for 4950 gene pairs, using the random sub-sampling approach with
the parameters o = 2, N = 338, 300, 200, 100, 60 and 50, and Sy»q = 200. The o7 values come
from an independent run of the random sub-sampling script with o = 1, N = 338 and Sya = 200,
and are used as true reference values for each gene pair.
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Figure 4.6: Boxplots of nine distributions of the relative standard deviations of the means, oY /o7,
coming from calculations of o2 for 4950 gene pairs, using the random sub-sampling approach with
the parameters o = 3, N = 338, 300, 200, 100, 60, 50, 40, 30 and 25, and Siqz = 200. The oF
values come from an independent run of the random sub-sampling script with o = 1, N = 338 and
Smaz = 200, and are used as true reference values for each gene pair.

46



4.1 Results: Development of the CSD Method

1.8

1.6

1.4}

1.2

0.8}

ol joT
S
AT
+ HW—-D]——WJr
++m+—-m-—-hm++«ﬂ++

0.6

+ H—#M——-D]———WHH—#

0.4}

i%i
BBB
?gg

0.2

Figure 4.7: Boxplots of ten distributions of the relative standard deviations of the means, oY /o7,
coming from calculations of o2 for 4950 gene pairs, using the random sub-sampling approach with
the parameters o = 6, N = 338, 300, 200, 100, 60, 50, 40, 30, 25 and 20, and Sy = 200. The
o7 values come from an independent run of the random sub-sampling script with o = 1, N = 338
and Syq. = 200, and are used as true reference values for each gene pair.
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and interquartile ranges of the boxes when going from left to right in both figures. These
increases are accompanied by medians that are lowered slightly. These changes are un-
related to S being below S,,,., and are not present in Fig. 4.4, where all sub-samples
are independent. This trend is seen much more clearly in Fig. 4.7, showing boxplots of
O’év / o7 for N as low as 20. Here S = S,,,., for all data set sizes, and the sub-samples are
allowed to have a maximum dependence. For N down to 100, the boxplots do not deviate
much from the reference plot 0338 /0T in Fig. 4.4, but the smaller the data sets get, the
more the medians are lowered, and the bigger ranges do the boxes, whiskers and outliers
span.

Looking at Figs. 4.4 - 4.7 together, one can see a general trend where lower N and
S values (fewer data points and fewer valid sub-samples) lead to a higher and higher
overestimation of ¢ regardless of o, while higher o values (increased dependence between
sub-samples) lead to an underestimation of ¢ when S is not a factor. Furthermore, the
overestimation of o when lowering S towards S,,,;, seems to be much stronger than the
underestimation of ¢ when increasing o to its extreme value of 6. To further test the
interaction between S and o, S,,.. Was decreased to 150, and aév / o7 was re-calculated
for N = 100, 60, 50, 40, 30, 25 and 20, which were the data set sizes where the effect of
o = 6 was most significant with .S,,,,, = 200. The results are found in Fig. 4.8. One can
see that in contrast to Fig. 4.7, the medians of the box-plots are above 1 for N as low as
25, while the median of the boxplot is actually very close to 1 at N = 20, and the boxplot
itself is comparable to the boxplot of $° /o7 in Fig. 4.5.

While Figs. 4.4 - 4.7 show clear trends for o when varying N and o, the boxplots do
not explicitly show what the o distributions look like or how similar they are. Table 4.2
shows the #- and p-values resulting from a two-sample #-test of several oY series against
the o7 series. The zero hypothesis of each -test was that the two series came from the
same underlying distribution, and the alternative hypothesis was that the two series came
from two different distributions. Any p-value below 0.05 would indicate that the zero
hypothesis should be rejected. The results from the z-tests show that just by decreasing NV
by a bit more than one third, from 338 to 200, any aév series becomes so different from
o7 that they appear to come from two different underlying distributions. This result is
independent of o, and indicates that for instance the distribution of 0200 is more similar to
the o7 distribution than the 020 distribution is. This illustrates the impact of the available
data points on the results.

4.1.3 Evaluation of o7 as Reference Value

In order for Figs. 4.4 - 4.7 to be meaningful representations of the new sub-sampling
algorithm, it was essential to test if 07 was a good representation of the “true” internal
variability in the data set, and thus could be used as reference values for other 0'(]7\] ’s. The
ol (equal to 0$3®) computed using my own implementation of the new sub-sampling
algorithm, was therefore plotted against o33® obtained using the CSD-CS software (see
Section 3.1.7), which had implemented the original sub-sampling algorithm, on the same
data set.

A boxplot of the pair-wise ratios 038 (new) /o338 (orig.) from the calculations of o
using the new and original method respectively, is given in Fig. 4.9a. The plot looks very
similar to that of 0338 /o7 in Fig. 4.4, which means that the results from the CSD-CS

338( 338
1 1
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Figure 4.8: Boxplots of seven distributions of the relative standard deviations of the means, oY /o7,
coming from calculations of o2 for 4950 gene pairs, using the random sub-sampling approach with
the parameters o = 6 and N = 100, 60, 50,40, 30, 25 and 20, and Sy = 150. The ol values
come from an independent run of the random sub-sampling script with o = 1, N = 338 and
Smaz = 200, and are used as true reference values for each gene pair.
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Table 4.2: ¢- and p-values from a two-sample r-test of 12 o series against the common reference
o7 series. Any p-value below 0.05 indicates that the two series are drawn from different underlying
distributions.

N, 0 | t-value | p-value
338,1 | —0.42 0.672
300, 1 1.20 0.229
200,1 | —2.66 0.008
338,2 | —0.69 0.489
300, 2 0.67 0.500
200,2 | —3.48 0.001
338,3 | —0.94 0.346
300, 3 0.20 0.845
200,3 | —3.79 0.000
338,6 | —0.62 0.540
300, 6 0.51 0.607
200,6 | —3.57 0.000

software do not differ more from the results obtained with my script, than the results from
two runs of my script differ from each other. Fig. 4.3a shows some variation in the o
values on many runs with my script, but in order to find out if the results from the CSD-CS
software and my random sub-sampling script creates an equal amount of variation with the
same parameters .S and o, it would be of further interest to check how much variation there
is in the results from several runs of the CSD-CS software as well. This could indicate if
the variation seen in Fig. 4.9a is mainly caused by the variation in my script or if both my
script and the CSD-CS software seem to be contributing equally to the variation. Fig. 4.9b
shows a boxplot of the pair-wise ratios of 33® from two runs of the CSD-CS software on
the same data as before, limiting the software to draw S = 200 sub-samples. The only
difference between the two runs was varying the "randomSeed” parameter of the program,
to avoid that it produced the exact same sub-samples both times. Figs. 4.9b and 4.9a look
very similar to each other, and also to the 0338 /0T plot in Fig. 4.4. The results from these
two runs of the CSD-CS software were actually slightly more different than the results
from the two alternative softwares were from each other. With additional tests the exact
differenes might change. Figs. 4.9b and 4.9a illustrate that both methods contribute with
a similar amount of variation in the results. The o values used as a reference could
therefore be assumed to be equally good as the 0338 values found using the CSD-CS
software with the original sub-sampling method.

4.1.4 Investigation of the o /o7 Boxplots’ Outliers

The outliers in the o2 /o™ boxplots in Figs. 4.4-4.7 were investigated in more detail. Ta-
ble 4.3 gives the number of outliers for the boxplots that were compared, while Table 4.4
shows the number of outliers that the compared boxplots had in common, as well as the
percentage of outliers that this number represented for both groups respectively. The over-
all Spearman correlation and the associated o for the five most extreme outlier gene
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Figure 4.9: Fig. (a) displays the boxplot of the distribution of the pair-wise ratios
o338 (new) /o3 (orig) for 4950 gene pairs, used as a comparison of o3> computed using the
new sub-sampling approach, denoted (new), and the original, deterministic method for finding inde-
pendent sub-samples, denoted (orig). Fig. (b) shows the boxplot of the pair-wise ratios of

o338 (origl) /o238 (orig2) for 4950 gene pairs, used as a comparison of ¢$>® computed with two
runs of the original, deterministic method for finding independent sub-samples. The sub-sampling
is initiated at different places in the data set for the two runs, which are denoted (origl) and (orig2),
respectively.

pairs, as well as the five gene pairs closest to the median, were found for the boxplots of
o338 )aT, 0190 /0T, 6338 /o and 03" /0T, and given in Tables 4.5-4.6. These plots were
chosen so that both big and small data sets, and high and low o values were represented.

Table 4.3: Number of outlier genes in chosen o)’ /o™ boxplots, and the percentage of all 4950 gene
pairs that this number represents. N denotes the data set size, and o gives the maximum permitted
overlap of sub-samples in the calculations of o2’

N, o | Number of outliers Perceptage
outliers
338, 1 53 1.07%
300, 1 44 0.88%
100, 1 84 1.70%
338, 6 60 1.21%
100, 6 116 2.34%
50, 6 146 2.95%
30, 6 141 2.85%

Tables 4.5-4.6 show that, with a few exceptions, the outliers were strongly correlated
gene pairs with low ¢ values, while the gene pairs close to the boxplot medians were
weakly correlated with high o7 (see Fig. 4.2 for reference). This is consistent with the re-
sults found in Fig. 4.3, which demonstrated that for a few example gene pairs, the variabil-
ity in the o values found using the random sub-sampling approach were of the same magni-
tudes, independent of the magnitudes of the o values. The investigation of outliers further
confirmed that the variation in the final o values from calculations with S,,,,, = 200
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Table 4.4: Number of outliers in common between chosen 2’ /o boxplots, as well as the percent-
age of each plot’s total number of outliers that this represents. N denotes data set size, and o gives
the maximum permitted overlap of sub-samples in the calculations of o2 .

NI ol | N2, 02 Nun'1ber of outliers ) Percentage of outliers
in common in common, plotl, plot2
338,1 | 300, 1 7 13%, 16%
338,1 | 100, 1 6 11%, 7%
338,1 | 338,6 9 23%, 19%
100,1 | 100, 6 35 42%, 30%
50,6 | 100, 6 51 35%, 44%
30,6 | 100, 6 32 23%, 22%

was not much lower for highly correlated gene pairs with low correlation variability.
Fig. 4.2 shows that the number of gene pairs with a relatively low correlation variabil-
ity (o < 0.025) accounts for a much higher amount of the total number of gene pairs than
the highest number of outliers that was detected (0 = 6 and N = 100, 60 and 30). The
numbers of outliers are still quite high, especially compared to the number of gene pairs
with very low correlation variability (¢ < 0.020). However, this does not mean that the
majority of highly correlated gene pairs are outliers. One should also note that even a sub-
stantial overestimation of a o that should have been low, would still normally be below the
highest o values. These over- or underestimations would therefore not be able to change
the characteristics of an entire CSD network.
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Table 4.5: Stats for boxplot outlier gene pairs: The Spearman correlation, p;;, and associated aiTj,

for the five most extreme outlier gene pairs in the boxplots of ¢5°% /o and o1°® /o™ (Fig. 4.4) and
o338 / o7 and o3° / ol (Fig. 4.7). N denotes the data set size, and o gives the maximum permitted
sub-sample overlap in the calculations of o2 .

N, o | Gene pair Spearman’s p ol
338, 1 | ENSG00000240618.1, ENSG00000228327.2 0.879 0.014
ENSG00000188290.6, ENSG00000160072.15 0.720 0.021
ENSG00000237683.5, ENSG00000239906.1 0.729 0.014
ENSG00000188290.6, ENSG00000176022.3 —0.495 0.019
ENSG00000197785.9, ENSG00000189409.8 0.731 0.015
100, 1 | ENSG00000131591.13, ENSG00000186827.6 0.770 0.018
ENSG00000162572.15, ENSG00000162576.12 0.649 0.021
ENSG00000176022.3, ENSG00000175756.9 0.782 0.013
ENSG00000160087.16, ENSG00000272455.1 0.730 0.014
ENSG00000160072.15, ENSG00000197785.9 0.853 0.011
338, 6 | ENSG00000239906.1, ENSG00000241860.2 0.773 0.014
ENSG00000224956.5, ENSG00000269227.1 —0.073 0.024
ENSG00000160072.15, ENSG00000197785.9 0.853 0.011
ENSG00000127054.14, ENSG00000160072.15 0.852 0.016
ENSGO00000131591.13, ENSG00000160072.15 0.857 0.012
30,6 | ENSG00000227232.4, ENSG00000240618.1 —0.328 0.027
ENSG00000238009.2, ENSG00000230021.3 0.646 0.019
ENSG00000233750.3, ENSG00000188976.6 —0.718 0.015
ENSG00000237683.5, ENSG00000239906.1 0.729 0.014
ENSG00000228463.4, ENSG00000186891.9 —0.594 0.020
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Table 4.6: Stats of gene pairs close to the boxplot medians: The Spearman correlation, p, and the
associated o', for five gene pairs lying on or close to the medians in the boxplots of o338 / o7 and
U%OO/JT (Fig. 4.4) and 0’238/0'T and ago/UT (Fig. 4.7). N denotes the data set size, and o gives
the maximum permitted sub-sample overlap in the calculations of o) .

N, o | Gene pair Spearman’s p ol
338, 1 | ENSG00000198744.5, ENSG00000224870 0.223 0.028
ENSG00000198744.5, ENSG00000187730.6 0.123 0.028
ENSG00000198744.5, ENSG00000182873.4 0.152 0.027
ENSG00000229376.3, ENSG00000235098.4 —0.085 0.030
ENSG00000229376.3, ENSG00000269227.1 0.016 0.030
100, 1 | ENSG00000235373.1, ENSG00000228594.1 —0.070 0.029
ENSG00000235373.1, ENSG00000248333.3 —0.276 0.027
ENSG00000240618.1, ENSG00000260179.1 0.072 0.028
ENSG00000240618.1, ENSG00000227775.3 0.257 0.030
ENSG00000228327.2, ENSG00000187583.6 —0.197 0.029
338, 6 | ENSG00000177757.1, ENSG00000272512.1 —0.061 0.028
ENSG00000177757.1, ENSG00000197530.8 —0.096 0.029
ENSG00000188976.6, ENSG00000179403.10 0.189 0.027
ENSG00000187583.6, ENSG00000160075.10 —0.052 0.030
ENSG00000272141.1, ENSG00000179403.10 0.119 0.028
30,6 | ENSG00000250575.1, ENSG00000187608.5 —0.245 0.026
ENSG00000225972.1, ENSG00000224956.5 0.081 0.032
ENSG00000224956.5, ENSG00000197530.8 0.204 0.027
ENSG00000188290.6, NSG00000127054.14 0.613 0.018
ENSG00000188290.6, ENSG00000078369.13 —0.094 0.028
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4.2 Results: Application to Rheumatoid Arthritis Gene
Expression Data

4.2.1 CSD Network

The gene expression data from 25049 genes measured from the synovial fluid of RA pa-
tients and healthy controls resulted in a CSD network of 2287 nodes (genes) and 3610 links
(Fig. 4.10), using an importance level of p = 10~°. The CSD network has approximately
the same amount of the three link types: 1148 C-type links, 1285 S-type links and 1177
D-type links. The majority of the nodes and links are interconnected in a giant component
of 1681 (73.5%) nodes and 3191 (88.4%) links. In addition to the giant component, there
are four connected components with more than 10 nodes, the biggest having 23 nodes and
35 links. The remaining nodes form 211 connected components with fewer than 10 nodes
each. The waste majority of these small components only consists of two nodes. With
very few exceptions, all links outside the giant component are C- and S-type links. Other
importance levels (p = 10~ and p = 10~%) were also investigated, but were found to be
too dense or too sparse. Network visualizations and size parameters are given in Appendix
AS.

Fig. 4.10 shows that although the giant component is interconnected by all three link
types, links of the same type tend to group together. This tendency is strongest for D-
type links and weakest for S-type links. In Fig. 4.11, visualizing the giant component of
the network, the nodes are colored according to which link type they are dominated by.
A node is defined to be dominated by a link type if more than 2/3 of its links are of a
given type. Blue, green and red nodes thus have at least 2/3 of C-, S- and D-type links,
respectively. Yellow nodes are not dominated by one link type only. The majority of the
nodes in Fig. 4.11 are blue, green or red, further confirming the tendency of link types to
group together.

4.2.2 Degree Distribution

The degree distribution of the CSD network was found to follow a heavy-tail power-law
distribution with a degree exponent v = 1.7. This means that the network topology is far
from random, leading us to take a closer look at the network hubs in the next step of the
analysis.

Extracting the networks of nodes connected only by C-, S- or D-type nodes and an-
alyzing them separately revealed that these sub-networks also had degree distributions
that could be approximated with power-law functions with degree exponents yo = 2.0,
vs = 1.5 and 7p = 1.3. As already seen, the C-network does not have any nodes with as
high degrees as those found in the S- and D-networks, but it nevertheless shows a topology
of hundreds of low-degree nodes and a few much more connected nodes. Visualizations
of the separate C-, S- and D-networks are found in the Appendix A9.

4.2.3 Hubs and Assortativity

Network hubs were defined as nodes with more than 40 neighbors. This choice was the
same as was used in a comparable study [2], and resulted in a reasonably low number of
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Figure 4.10: Visualization of the CSD network generated using an importance value of p = 107>,
The links are colored according to type: C-type links are blue, S-type links are green and D-type
links are red.
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Table 4.7: The hubs of the CSD network with their total degree, k, the number of connections of
each type, kc, ks, kp, and the node homogeneity, H, of each hub.

Hub genes k | ko | ks | kp H
PDCDI 98 | 0 | 56 | 42 | 0.51
ZNF205-AS1 | 90| 0 | 90 | O | 1.00
GPRI8 76 0 | 75 1 | 097
LINC00426 | 71| O 0 | 71 | 1.00
SEPTI 64| 0 5 1 59 | 0.86
CTLA4 53| 0 0 | 53 | 1.00
ASAP2 44 1 0 6 | 38 | 0.76
ENPPI 44 1 0 4 | 40 | 0.83
IL2RG 44 | 1 0 | 43 | 0.96
PRDM 1 43 1 0 0 | 43 | 1.00
GBP5 411 0 0 | 41 | 1.00

hubs: Eleven genes were identified as network hubs in the giant component. These are
listed in Table 4.7 and marked as enlarged, black nodes in Fig. 4.11. In order to see the
extent to which the hubs are dominated by one type of link, the number of C-, S- and D-
type connections, k¢, kg, kp, as well as the node homogeneity, H, is given for each hub
in the table. The biggest hub, PDCD1, had a comparable number of S- and D-links, while
the second and third biggest hubs, ZNF205-AS1 and GPRI8, were completely dominated
by S-links. The remaining hubs were highly dominated by D-type links. No hubs were
dominated by C-links; in fact there was only one C-link connected to any of the hubs. The
three highest connected nodes that were dominated by C-links had degrees of k = 29, k =
28 and k = 24, respectively, and all three had node homogeneities of H = 1.00, meaning
that the connections with all neighbors were of the conserved type. Six of the eleven
hubs were among the genes with highest betweenness centrality: PDCDI1, GPRIS, SEPTI
and ZNF205-AS1 were the four genes with the highest betweenness centrality (in that
order), while ASAPI and LINC00426 genes were on the 6th and 7th place, respectively.
PDCDI and SEPTI were also the two genes having the highest closeness centralities in
the network.

Fig 4.11 reveals that the topology seems to differ according to link type distribu-
tion. The sub-network of only S-links seems to be much more disassortative than the
sub-networks of C- or D-type links. Highly connected nodes with a high proportion of S-
links, which includes the three biggest hubs in the CSD network, are connected to a high
proportion of neighbors with low degree. This tendency can be seen as green “bouquets”
in Fig. 4.11. Although close to each other in the network, the three biggest hubs in the
network are not directly linked, but are separated by low degree nodes connected to each
of them. Because the D- and C-type links are so tightly interconnected, it is difficult to
see the topology of these networks by visual inspection of the figure. The neighborhood
connectivity distributions of the separate C-, S- and D-networks (Figs. 4.12,4.13 and 4.14)
show that the C-network is assortative, while both the S- and D-networks are disassorta-
tive; however, the S-network is much more strongly disassortative than the D-network.
The C- and D-networks show about equally strong assortativity and disassortativity re-
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spectively. The topologies of the C-, S- and D-type networks differ somewhat from what
has previously been found using the CSD method: In the CSD network from two differ-
ent brain regions, Voigt, Nowick and Almaas found a highly assortative C-network with a
densely connected core, and a stronger disassortativity for the D-network than for the S-
network [2]. They hypothesized that the tightly co-regulated cluster of C-dominated genes
could reflect more robust regulatory mechanisms, which are less likely to change.

Known information about biological functions and/or disease associations of the iden-
tified hub genes is summarized in Table 4.8 and elaborated in the following paragraphs.
Several of the hub genes are linked to the immune system, either by being directly in-
volved in the function, differentiation or development of B or T cells, by being connected
to other parts of the immune system, or by being associated with RA or other autoimmune
or immune system related diseases. Many of their gene products have GTPase activity or a
broader ability to cleave nucleoside-3-phosphates, and several are associated with cancer.
Two of the hub genes are RNA genes, which do not code for protein products, but which
can possibly have regulatory functions. The link between an autoimmune disease and the
immune system is obvious, but these other functions are also interesting in the context
of RA. GTPases are important in signaling pathways related to the cell cycle [46], and
cancer is characterized by abnormal growth. As RA involves severe tissue deformities,
genes associated with cell differentiation or abnormal growth are also considered to be of
relevance.

The PDCD1 gene codes for a membrane protein are expressed in pro-B-cells, and is
thought to play arole in their differentiation [47]. The protein has also been suggested to be
important in T cell function, and for prevention against autoimmune diseases [48]. It has
previously been associated with RA [49], and also with other inflammatory diseases, such
as Systemic Lupus Erythematosus [50]. The gene GPRI8, which codes for a G-protein
coupled receptor, has been suggested to be involved in immune system regulation [51],
for example in the directed migration of immune cells to sites of interest, mediated by a
lipid-based signaling mechanism in the central nervous system [52]. The CTLA4 gene is
a member of the immunoglobulin family, and codes for a protein that contributes to T cell
inhibition [53]. The gene has been suggested to play a key role in thyroid autoimmunity,
and polymorphisms in the gene has been associated with RA, type I Diabetes Mellitus and
other autoimmune diseases [54]. IL2RG codes for a protein found in many interleukin
receptors, and is important for T cell development [S5] and other parts of the immune
system. Mutations in the gene is associated with severe immunodeficiency disorders [56].
The PRDM1 gene codes for a protein repression of S-interferon gene expression [57]. In-
duced by B lymphocytes, PRDM 1 is a master regulator of plasma cell differentiation [58],
and has previously been associated with RA [59] and T cell lymphomas (cancer) [60].
The ASAP2 gene is involved in regulation of vesicular transport, cellular migration (via
GTPase activation) and autophagy [61]. Immune cells show a high degree of migration
throughout the body, but more important: autophagy can affect both innate and adapted
immunity [62].

The gene ENPPI codes for a protein that is able to cleave all nucleoside-3-phosphates,
and it is also found to be important for the survival of long-lived antibody-secreting plasma
cells (derived from B cells) [63]. The gene is associated with a long list of diseases and
symptoms, among them osteoarthritis [64], type II Diabetes [65], decreased kidney func-
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Figure 4.11: Visualization of the giant component of the CSD network generated using an impor-
tance value of p = 107°. The links are colored by link type (C-types are blue, S-types are green
and D-types are red), and the nodes are colored according to link type dominance: Any node where
more than 2/3 of the links connected to it are of a given type is colored with the same color as the
dominating link type. Yellow nodes are not dominated by any link type. Hubs (k£ > 40) are coloured
black and enlarged for emphasis. The topology of the three largest hubs, PDCD1, ZNF205-AS1 and
GRP18, indicates a strong disassortativity in the part of the network dominated by S-links (see the
text), and are therefore marked explicitly.
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Figure 4.12: Neighborhood connectivity distribution of the C-network: The loglog plot of node de-
gree, k, versus average connectivity of all neighbors of degree k-nodes reveals a weak assortativity:
The nodes have a tendency to connect to other nodes of similar degree. The regression line through
the data points gives a positive correlation exponent ;1 = 0.37, and the correlation between the data
points and the line is 0.8.
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Figure 4.13: Neighborhood connectivity distribution of the S-network: The loglog plot of node
degree, k, versus average connectivity of all neighbors of degree k-nodes reveals a strong disassor-
tativity: Highly connected nodes have a tendency to link to nodes with low degree and vice versa.
The regression line through the plot gives a negative correlation exponent 1 = —0.61, and the
correlation between the points and the line is 0.9.
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Figure 4.14: Neighborhood connectivity distribution of the D-network: The loglog plot of node
degree, k, versus average connectivity of all neighbors of degree k-nodes reveals a weak disassor-
tativity: Highly connected nodes have a tendency to link to nodes of low degree and vice versa.
The regression line through the plot gives a correlation component p = —0.35, and the correlation
between the points and the line is 0.8 .

tion [66] and arterial calcification [67]. The nucleoside-3-phosphate cleaving ability of the
ENPPI gene is shared by SEPTI and GBP5, which both code for two different GTPases.
The protein product of SEPT1 is a member of the septin family of GTPases, showing high
expression in lymphoid tissue [68]. The gene has been found to be involved in cytokine-
sis [69], and has also been associated with oral cancer [70]. The GBP5 gene codes for a
GTPase that can activate NLRP3 inflammasome assembly, and thus plays a role in immu-
nity and inflammation [71]. Just like SEPTI, this gene has also been suggested to have
a cancer related function, and has been shown to be highly expressed in T cell tumor tis-
sue [72]. Overexpression of G-protein coupled receptors (GPRs or GPCRs) has also been
linked to tumor progression [73], possibly also linking the previously mentioned GPRI8
to cancer development.

The gene ZNF205-AS1 does not code for a protein, but for a single stranded RNA
oligonucleotide with an antisense function, meaning that it can bind to the mRNA of the
ZNF205 gene and block its translation into protein. The ZNF205 gene has been identified
as a transcription repressor [74]. LINC00426 is also an RNA gene and does not code for a
protein product. To my knowledge, there is no known function or disease associated with
this gene.

Note that some of the genes are referred to by alternative names in the cited literature:
PD] is an alias for PDCD1, ZNF205 is also referred to as ZNF210 or Rhit, and aliases of
PRDM|1 include PRDI-BF] and Blimp].
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Table 4.8: The eleven most highly connected hub genes in the network are given with known as-
sociated biological functions or processes, as well as previous disease and symptom associations, if
any. The order of the genes corresponds to their degree in the network, starting with the most highly

connected node.

GTPase activity [71]

Hub gene Biological Function or Process Disease Association
Differentiation of pro-B-cells [47] RA [49]
PDCDI Regulation of T cell function[48] Systemic Lupus
Prevention of autoimmune diseases [48] Erythematosus [50]
ZNF205-AS] Non-co.ding RNA thz}t l?locks
translation of transcription repressor [74]
G-protein coupled receptor activity [51]
GPRIS Possible immune system regulation [51] Cancer [73]
LINC00426 Non-coding RNA
SEPTI Cytokinesis [69] Cancer [70]
RA [54]
CTLA4 T cell inhibition [53] Type I Diabetes Mellitus [54]
Other autoimmune diseases [54]
Vesicular transport [61]
ASAP2 Autophagy [61]
Cell migration [61]
Type II diabetes [65]
ENPPI Nucleic acid cleavage [63] Decreased kidney function [66]
Survival of long-lived plasma cells [63] Arterial calcification [67]
Osteoarthritis [64]
IL2RG Treell deYelopment [53] Immunodeficiency disorders [56]
Interleukin receptors [55]
Repression of S-interferon
PRDM 1 gene expression [57] EAm[Sl?iC te cancer [60]
Plasma cell differentiation [58] ymphocy
Immunity [71]
GBP5 Inflammation [71] Cancer [72]
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4.2.4 GO Functional Enrichment

The full network, as well as the separate C-, S- and D-networks, showed high enrichment
of genes related to multiple biological processes. The general GO categories, which in-
cluded a high number of genes, were moderately enriched in the CSD network. Most of
the general terms enriched in the full network were related to regulation of various other
processes. The majority of the more specific processes associated with a lower number
of genes were very highly enriched. Most of them fell into one of three groups: pro-
cesses that could be directly or indirectly linked to the immune system, processes linked
to inflammatory activity and processes associated with cell differentiation.

Table 4.9 gives an overview of the main general biological terms that were enriched
in the full CSD network, and their fold enrichment (FE). The most relevant and specific
sub-processes enriched in the full network, as well as the extracted C-, S- and D-networks,
are described in more detail in the following paragraphs and summarized in Table 4.10,
together with their fold enrichment. Table 4.9 is included to provide a context for the spe-
cific processes in Table 4.10. The complete lists of biological processes where associated
genes were significantly enriched in the four networks, as well as the fold enrichment and
the false discovery rates for each process, is too long to be written out in its entirety in
the Appendix, but a URL to the four lists are given in Appendix A10. Enrichment fac-
tors larger than 1.0 represents an overrepresentation of genes related to the given process,
while factors smaller than 1.0 represents an under-representation. All results are given
with a correction for multiple comparisons, only including results with a false discovery
rate less than 0.05.

The by far most highly enriched processes in the full CSD network were related to the
MHC protein complex (10-fold enrichment), known to be strongly related to RA pathogen-
esis [16]. The most significantly enriched MHC related processes included MHC protein
complex assembly and peptide antigen (immune response trigger) processing and binding
to the MHC. There were however just five genes related to the MHC, and although all five
were represented in the network, resulting in a high enrichment factor, they did not make
up a large proportion of the network. Other enriched processes directly involved with the
immune system included the following categories: immune system processes, regulation
of phagocytosis, the interleukin-1-mediated signaling pathway, the T cell receptor signal-
ing pathway and regulation of B cell differentiation. The most significant other biological
processes that were highly enriched in the full CSD network were related to cell motility,
protein localization to chromosomes/telomeres, regulation of catabolic processes and of
protein localization to Cajal bodies. Immune cells need to have a directed cell motility,
since they migrate to wounded or inflammed sites in the body. Furthermore, premature
aging of immune system T-cells, with accelerated loss of telomeres, have been associated
with RA, and it has been suggested that this is due to excessive proliferative pressure or
inadequate maintenance of the telomeres [75]. Cajal bodies have been found to partici-
pate in the delivery of telomerase (telomere extendig enzyme) to the telomeres, and a high
activity of Cajal bodies allow highly proliferative cells, for instance in tumors, to grow
“indefinitely” [76].

The C-network showed a strong enrichment in processes related to cellular component
organization and assembly. The process with the strongest enrichment (almost 27-fold)
in this category was related to the assembly of antigens with the already mentioned MHC
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Table 4.9: The main GO biological process categories that had an enrichment of associated genes

in the full CSD-network are given with their respective fold enrichment (FE).

ordered according to their fold enrichment.

The categories are

Main GO category FE
Regulation of stem cell differentiation 2.66
Pos. regulation of autophagy 2.33
Macroautophagy 2.24
Regulation of intracellular transport 1.93
Protein folding 1.90
DNA replication 1.89
Cell division 1.86
Regulation of cellular localization 1.78
Neg. regulation of immune system process 1.70
Immune system development 1.61
Regulation. of cell activation 1.57
Cell proliferation 1.52
Cellular component organization or biogenesis | 1.43
Immune syst. process 1.38
Pos. regulation. of cellular process 1.32
Regulation. of cellular metabolic process 1.31
Regulation. of response to stimulus 1.30
Regulation. of cell death 1.29
Response to stress 1.23
Regulation. of signalling 1.21
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Table 4.10: The GO biological processes that had the strongest enrichment of associated genes in
the full CSD-network and the separate C-, S- and D-networks. The fold enrichment is given for each
process.

Network Enriched Process FE
CSD Network | Peptide antigen assemblywith MHC protein complex 10.18
Actin polymerization-dependent cell motility 8.48
Pos. regulation of establishment of protein localizationto telomere | 7.12
Regulation of receptor catabolic process 6.78
Pos. regulation of protein localization to Cajal body 6.78
C-network Peptide antigen assembly with MHC class II protein complex 26.91
Beta selection 26.91
Positive regulation of protein lipidation 20.18
Positive regulation of ER tubular network organization 20.18
Actin polymerization-dependent cell motility 17.94
Pos. regulation of protein localization to Cajal body 17.94
Pos. regulation of establishment of protein localization to telomere | 16.14
Neg. thymic T cell selection 13.45
Positive regulation of RNA export from nucleus 13.45
Protein heterotrimerization 12.23
S-network ER-signalling pathway 4.54
Fatty acid S-oxidation 3.89
Ubiquitin-dependent protein catabolic process 3.53
Anaphase-promoting complex-dependent catabolic process 3.49
Regulation of telomere maintenance via telomere lengthening 3.48
D-network Pharyngeal arch artery morphogenesis 24.98
T-helper 17 cell differentiation 21.86
Pos. regulation of vascular endothelial cell proliferation 20.82
Regulation of cell fate specification 16.65
Paraxial mesoderm development 12.27
Pos. regulation of cardiac muscle cell proliferation 12.14
Outflow tract septum morphogenesis 11.66
Positive regulation of interleukin-2 production 9.71
T cell costimulation 8.55
Cellular defense response 7.03
Negative regulation of T cell proliferation 7.03
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complex. The C-network was also enriched in processes related to immune system de-
velopment (among them T cell differentiation, activation and selection), in which beta
selection processes were the most highly enriched. Genes related to negative thymic T
cell selection were also enriched by a factor of 13 in the C-network. Like the beta selec-
tion, negative thymic selection also contributes to the maturation of T cells. RA patients
have been shown to have a lower diversity of T cells, which is also typical for the immune
dysfunction in elderly people, partly attributed to the loss of thymic function [77]. The
C-network also showed a high enrichment of genes related to the regulation of biological
processes, regulation of cellular component organization, localization and its regulation,
negative T cell selection and regulation of transport. The most highly enriched categories
in these groups include the positive regulation of protein lipidation, endoplasmic reticulum
(ER) organization, RNA export from nucleus, ATP synthesis, protein oligomerization and
skin morphogenesis, as well as the previously mentioned protein localization to telomeres
and Cajal bodies. Protein lipidation is involved in the regulation of numerous biologi-
cal pathways. It can affect protein binding to cell membranes, but also the regulation
of signaling processes, and can be very important for the control of protein localization
and function [78]. The endoplasmic reticulum has many functions, including folding and
modification of proteins and the synthesis of phospholipids and steroids [79]. Of particu-
lar relevance to RA is the fact that steroids are commonly used for their anti-inflammatory
effects, for instance in the treatment of RA [80]. RNA export and protein oligomerization
is also obviously linked to protein production and folding. All the mentioned specific pro-
cesses were enriched by more than a 6-fold in the C-network, most of them by more than
a 10-fold. It must however be noted that there were not always a high number of genes
related to each specific process, but since all of the genes related to for instance antigen
assembly with the MHC complex were present, which was much more than what would
have been expected by chance, this resulted in a high fold enrichment.

The S-network was most enriched in categories related to regulation of metabolic and
signalling processes. It is worth mentioning that these processes showed a lower enrich-
ment than the most specific processes in the C-network (between 2.3-fold and 4.5-fold
enrichment, compared to up to a 27-fold enrichment), but the processes that were enriched
in the S-network were broader and included a higher number of genes. Prominent bio-
logical processes enriched in the S-network included processes related to the ER-nucleus
signalling pathways, biosynthesis of sphingolipids (also involved in signalling pathways),
fatty acid (-oxidation, ubiquitin-dependent protein catabolism and protein polyubiquiti-
nation, telomere maintenance, stem cell differentiation and cell division, RNA processing
and stability, and DNA repair of double DNA strand breaks. Deficiency of the previ-
ously mentioned telomerase is associated with premature immune aging, which is again
associated with loss of critical immune function [81]. Patients with RA have further-
more been shown to have defects in the DNA repair mechanisms related to DNA double
strand breaks [81]. Ubiquitination of proteins normally marks them for degradation by
proteasomes, and ubiquitination of the MHC is also involved in cellular modulation of
immune recognition. The ubiquitin-proteasome system is an important part of the protein
metabolism and quality control in eukaryotes, and is involved in processes such as ox-
idative stress and inflammation [82]. The E3 ubiquitin ligase has been shown to have an
anti-arthritic effect [83].
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The D-network showed a high enrichment of genes related to developmental processes
such as tissue and organ development, respiratory system development, circulatory sys-
tem development, immune system development, connective tissue development, immune
cell activation, cytoskeleton development, and the regulation of developmental processes.
The most highly enriched processes in these groups were pharyngeal arch artery morpo-
genesis, T-helper 17 cell differentiation (in particular T-helper 17 type immune response),
regulation of vascular endothelial cell proliferation and blood vessel endothelial cell mi-
gration, regulation of cell fate specification, regulation of interleukin-2 production and T
cell activation, differentiation and proliferation and also cellular defense responses. Genes
related to these processes were all enriched by more than a 6-fold and up to a 25-fold in
the case of pharyngeal arch artery morphogenesis. The high enrichment of genes related
to processes that actively regulate the development of a high number of tissues and organs
was not seen in the C- or S-networks.

4.2.5 Genes Previously Associated with RA

Appendix Al gives a list of 54 genes that have previously been associated with RA. Out of
these there are 13 genes in the list that can be identified in the CSD network: HLA-DRBI,
PDCDI, CTLA4, PRDM1, FCRL, RASGRP1, IKZF3, IL2RA, IL2RB, CD2, CD40, CD28
and DDX6.

The genes PDCDI, CTLA4 and PRDM] are already identified as network hubs in
previous sections. The genes FCRL and IKZF3 were linked to another hub gene, ASAP2,
and RASGRP1 was connected to two hubs: ASAP2 and ENPPI.

The gene HLA-DRBI is the single gene that has shown the strongest association with
RA in previous research, but being connected to only one other gene, making up a 2-node
component, it had a very modest role in the CSD network. Other HLA-genes were found in
more prominent positions in the network: the gene HLA-DOB had an intermediate degree
of k = 11, and was found in the D-network of the giant component. The genes HLA-DMA,
HIA-DMB, HLA-DPAI, HLA-DPBI, HLA-DQA1 and HLA-DRA were linked together in
the second largest component of 23 nodes connected exclusively by C-links. HLA-DRA,
HLA-DMA, HLA-DRBI and HLA-DMB were in fact three of the four genes making antigen
assembly with the MHC complex so highly enriched in the C-network.
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Discussion

5.1 Method Study

The new sub-sampling algorithm has both advantages and disadvantages. One possible
advantage of the new algorithm compared to the implementation of the original algorithm
that was used, is that all parts of the data set are sampled with equal probability in the
implementation of the new sub-sampling. Although the original algorithm could in theory
find all valid sub-samples, the available CSD-CS software implementing the original al-
gorithm (see Section 3.1.6) would stop after a given number of sub-samples were drawn.
Because of the nature of the algorithm, this meant that data points positioned in the begin-
ning of the data set would be sampled more often than data points in the end of the data
set. Any confounding factors expressed towards the end of the data set would therefore
be less likely to be detected. It is not given how big an advantage this means for the new
algorithm, as it has its own problem with finding valid sub-samples.

The latter point leads us to the most obvious disadvantage with the new sub-sampling
algorithm: the random drawing of sub-samples. It quickly becomes challenging to draw
more valid sub-samples if the sub-samples are forced to be independent or nearly inde-
pendent. If fully independent sub-samples were found to be necessary, it would clearly
be advisable to use the original sub-sampling algorithm. With only one extra point over-
lap between sub-samples, the new algorithm could produce between two and three times
as many nearly independent sub-samples as the number of completely independent sub-
samples found with the original approach. When the sub-sample overlap is allowed to be
fully random, with overlap of up to 6 data points between 7 data point sub-samples, the
random sub-sampling algorithm was able to reach the chosen maximum number of 200
sub-samples even for data sets as small as 20 data points per gene. With high sub-sample
dependence this might even be too much for the smallest data sets, as will be discussed
later. As the new algorithm was not meant to replace the original algorithm for draw-
ing independent sub-samples, the limited number of independent and nearly independent
sub-samples (o = 1 or 2) was not considered to be a big problem for the method study
itself.
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The number of valid sub-samples that can be found for a given gene will be highly
dependent on the actual values in the gene expression data set. Gene pairs where one or
both of the genes have many zeros in any of the data sets will in practice be filtered out
in the final network due to S being too low. The reason for this is that the Spearman
rank correlation is dependent on ranking the data by magnitude, and it can therefore not
be calculated if there are too many identical values in a sub-sample. The data set that was
used for testing happened to have very few zero entries, which meant that few sub-samples
were rejected as a result of a high content of zeros. Using the same approach on a different
data set might therefore lead to a lower average number of valid sub-samples than what
was found in this study. The results should therefore always be filtered based on the actual
number of sub-samples that was drawn for a given gene pair.

The filtering of gene pairs where one or both genes have many zero-entries in the data
set can in turn lead to loss of significant links in the CSD network. If one gene is expressed
at various levels while the other gene is almost completely silent (many zero-entries) in
one of the data sets, this gene pair should be registered as “uncorrelated”, but will instead
be filtered out from the network. If the same genes are expressed and strongly correlated
in the other data set, they should have had an S-link between them that will instead be
lost. Since any gene with many zero entries in the data set will be paired with all the other
genes in the data set, it is possible that quite a substantial amount of significant S-links are
lost due to this issue. The smaller the data set, the more will any fraction of zeros affect
the overall results, as there will be a lower number of non-zero data points left to draw
from. This could therefore also affect C- and D-links. An example would be if we have
a small data set, for instance N = 30: If half of the data points for one gene is zero, and
the other half has high values, and the sample-wise opposite is true for another gene, then
these genes should be registered as “anti-correlated”. Instead they might also be filtered
out from the network because there are only 15 non-zero data points left, from which it
could be difficult to draw enough valid sub-samples with a given permitted overlap.

The problem with a high content of zeros in the data set is however not a problem that
is exclusive for the new sub-sampling approach, since the original sub-sampling algorithm
also finds the Spearman correlation of its sub-samples. The problem might still be smaller
with the original systematic approach, as all possible sub-samples could be checked before
the gene pair is filtered out. With random drawing, on the other hand, it is possible that
the same data points with zeros in them are drawn over and over again by chance, causing
a fast increase in the discard rate.

The upper and lower limits for the number of sub-samples, .S, were based on the plot
of 28 gene pairs’ o signals as a function of S (Fig. 4.1). The early high fluctuations
seen in the signal plot, and which were later dampened with higher S values, make sense
mathematically: With a large number of sub-samples, any single value will influence the
mean value much less than with a low number of sub-samples. Because gene expression
data is normally quite noisy, the early fluctuations were expected. Because the “’signal”
represented the standard deviation of a mean, it also makes sense that the fluctuations did
not go below the final values at any point, since this would mean that the random sampling
by coincidence happened to first draw a collection of very similar sub-samples from a very
noisy data set. This would be unlikely, especially given the low number of gene pairs that
were tested, and the relatively low number of data points in total. Because the 28 gene
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pairs were chosen so that gene pairs with both positive and negative, as well as highly,
medium and poor correlations were present, this plot should be quite representative for the
behaviour of o for differently correlated gene pairs. The signals could have been plotted
separately for high, medium or low correlations to see the difference in how fast the signals
became stable, but as .S,,;,, would have to be based on the signals stabilizing the slowest,
this was not considered important.

Even though the biggest fluctuations were gone at S = 50, the values had not stabilized
fully, so using this as the lower limit for .S can be questioned. Even though the 28 signals
were not very close to their final values at S = 50, they seemed to have reached their
correct order, meaning that it was still possible to distinguish high and low o gene pairs
to some degree, even if the magnitude of the o values would be too high. It was therefore
more or less reasonable to use this lower limit for comparison purposes, sacrificing precise
results for the sake of having data on low o and low N situations. In Figs. 4.4-4.7 one can
clearly see the effect of this choice, namely the fact that the majority of the o values
deviated highly from their reference values even before the average S became as low as
50. This confirmed that this lower limit was indeed too low to get very precise results, and
that this low number of sub-samples should be avoided in an actual CSD analysis. Setting
the lower limit, S,y to for instance 100 would be more appropriate, and an even higher
number would be preferable. To see why correctly ordered, but overestimated o values
would be so problematic, imagine that one of the two data sets are much bigger than the
other, and therefore able to produce more precise (lower) o values, while the smaller data
set gets highly over-estimated o values. The over-estimated o values will then dominate
over the correctly estimated o values from the bigger data set, and potentially shift the C-,
S- and D-scores massively. In the worst case scenario, constantly over-estimating the o
values in only one data set could give a false impression of much confounding in one data
set, and at the same hide the effects of real confounding factors in the other data set.

At S = 200, the signals had not changed much compared to lower S values, and this
was set to be the upper limit for .S in the further calculations. The 28 o;; signals (Fig. 4.1)
could still change slightly more with higher S values, but there would also be a trade-off
between time consumption and precision: Based on the difference between S = 150 and
S = 200, there seems to be very small changes to be gained by increasing S above 200,
while increasing the number of sub-samples for each gene pair by for instance 50 or 100
will significantly slow down the computation time, especially if .S,,,4.. is close to the upper
S limit for that data set size. One should also keep in mind that o is dependent on what
sub-samples were drawn in the given sub-sampling session, so that one could easily obtain
a different 0 when rerunning the sub-sampling procedure. It is impossible to say which of
them would be the most correct one, since o would never be more than an estimate of the
internal variability in the correlation. It is therefore no guarantee that increasing .S more
and more will always result in a better o. For these reasons, Sy, = 200 was considered
to be a good upper limit for .S.

If the computation time had not been an issue, a better way of getting a more precise o
than increasing S could be to run the sub-sampling multiple times and use the average of
the results. This would however slow down the computation time even more than increas-
ing S, and is unfortunately not seen as a realistic option for the current implementation
of the sub-sampling algorithm. One reason why this is unfortunate, is that averaging over
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multiple runs of sub-sampling would not just have given more precise o values in general,
but could also have solved another major issue with the sub-sampling procedure, namely
the fact that the results vary equally much for high and low o values (Fig. 4.3). One could
have expected that a low internal variation in correlation would also give a lower variation
in low o values, but based on o calculated for 28 gene pairs 100 times this did not seem
to be the case. The investigation of outliers from the full data set confirmed that highly
correlated genes with low o were highly overrepresented as extreme outliers, both with
high and low o and N. This is most likely because gene expression measurements are not
very precise, so gene expression data seemed to be very noisy, even for highly correlated
gene pairs with low o. This means that the most interesting gene pairs, namely those with
a low internal variation in correlation over the data set, have a lower precision in o relative
to their absolute magnitude than what gene pairs with high internal variation have. This
is a significant weakness of the sub-sampling approach that will cause some noise in the
CSD network. It is likely that this is also an issue with the original sub-sampling approach.

For the aév series that were investigated, there were never more than 3% of the 4950
gene pairs that ended up as outliers (Table. 4.3). How many percentages of the strongly
correlated gene pairs that this accounted for was not found explicitly, but since the com-
pared o) series had between 7% and 44% of the outlier gene pairs in common, which
gene pairs that ended up as outliers could not be random. The o7 distribution (Fig. 4.2)
also showed that the numbers of outliers made up a significant proportion of the number
of genes with low o, especially for the combinations of low 0 and N. All the o series
were not investigated due to time constraints, but both high and low o and N values were
represented, and the trend was the same for all of them, indicating that the ”choice” of
outlier gene pairs had more to do with their internal correlation as such, than the data set
size or maximum overlap between sub-samples. The same trend was seen from the coeffi-
cient of variation for the 28 gene pairs where the ¢ was computed 100 independent times
(Fig. 4.3b). The fact that highly and most uniformly correlated gene pairs had a bigger
relative variability is a significant disadvantage which can be assumed to apply to both
sub-sampling algorithms.

While the variations in o caused by random sub-sampling are bound create some noise,
it would most likely not be devastating for the CSD network. The variations in ¢ seen for
the 28 gene pairs with various correlations tested 100 times each (Figs. 4.3a,A1) were not
so big that the most extreme results of the highest and lowest o values were overlapping,
so a gene pair with very low internal correlation variation would never be mistaken for
having a very high internal variation and vice versa due to this factor. Single links (gene
pairs) are normally less interesting than network structures involving several gene pairs,
such as hubs or clusters. Unless o is maximally overestimated for the majority of the genes
connected to a big network hub, or for the majority of the gene pairs making up a cluster,
these network structures would not disappear as a consequence of slightly bad variation
estimates. Because the sub-sampling is completely random, it is also highly unlikely that
this would happen by chance.

How big deviation from the true value each outlier represented varied greatly, as the
boundaries of the whiskers in each boxplot were determined by the interquartile ranges of
the given box. The most extreme outlier of a narrow boxplot could therefore be a much
better estimate of o than a different o lying within the box in a broad plot with a big
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interquartile range. As the variation in o due to different choices of sub-samples alone
was shown to not be that big (Fig. 4.4, first boxplot), most of the deviations from the true
o values used as reference were attributed to the variations in IV, S and o, which were also
the parameters that were initially regarded to be of main interest. Some of the variation
was also assumed to come from the fact that the correlation variability might truly change
when a high number of data points are removed.

Each of the above mentioned parameters, N, S and o, had a clear impact on o relative
to the reference values, c7. Lowering N would at some point lead to a forced lowering
of the number of sub-samples, .S, that was possible to draw (Table 4.1). The lowering of
S caused a significant overestimation of o (Figs. 4.4-4.6), visible even with Sg,q = 162,
which was long before Sq,4 Was close to Sy,;, = 50. On the other hand, increasing the
allowed overlap between sub-samples, o, caused a significant underestimation of o relative
to ol (Fig. 4.7). The overestimating effect of lowering S was clearly stronger than the
underestimating effect of increasing o, as the upward shift and broadening of the boxplots
with a lower S were much steeper and bigger than the downward shift and broadening of
boxplots that followed an increase in 0. Even with the parameters S,,,,, = 150 (which
would not be assumed to be a big decrease in .S,,,,,) and o = 6 (which was the maximum
possible value of o for this sub-sample size), the boxplots were shifted upwards even with
data sets as small as N = 30 (see Fig. 4.8), which was small enough that the effect of
increasing o would clearly be relevant. The sub-sample size, n, was a fourth factor which
could be analyzed in further studies of the method. In this study the sub-sample size was
fixed at n = 7, assuming that for the sake of getting more sub-samples, it was best to have
as small sub-samples as possible within the limits of the Spearman correlation calculations.
Because a given o, for instance o = 3, would represent a different relative overlap with
differently sized sub-samples, it is possible that one could benefit from increasing n to for
instance 8 or 9, reducing the sub-sample dependence from a given o at the possible cost of
poorer confounding identification. This is something that could be tested in the future.

The reason why increasing o had a bigger effect on smaller data sets was that a given
o did not imply that the overlap was fixed at a given number of data points each time,
but that any randomly drawn sub-sample would be discarded if it happened to have an
overlap of more than o data points with any previously drawn sub-samples. This means
that with a big enough N, setting o = 6 will not be likely to cause so many (if any)
highly independent sub-samples, while the chance for randomly drawing overlapping sub-
samples will increase with a low IV, due to fewer data points to draw from. The average
overlap between sub-samples is not known in any of the sub-sampling procedures, so it is
not possible to know from the results of this study exactly how dependent the sub-samples
were in each case, and how a known average overlap would affect the results. It was,
however, possible to see at which N/o combinations the results started to deviate much
from the reference. A consequence of the heightened effect of o = 6 on small data sets
was also that a higher S,,,, might actually worsen the results, because a higher number
of sub-samples will force more sub-samples to a higher dependence. For data sets with
N = 30 or below, it might therefore be better to decrease S, 4, from 200 to for instance
150, as shown in Fig. 4.8.

Lowering N leads to a higher dependence between sub-samples, increasing the un-
derestimating effect that a high o has on ¢, while at the same time forcing S to be lower,
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increasing the overestimating effect on o. In both the overestimating case of low S and
low o, and the underestimating case of high S and high o, it is therefore not possible to
use the boxplots to separate the effect of either low S or high o from the effect of low NV
itself. The lowering of N not only meant lowering the number of sub-samples possible to
draw, or heightening the average overlap between sub-samples if this was permitted, but it
also meant a loss of data points. This could only be seen by the #-tests performed on the
different oY series relative to o (Table 4.2). The t-tests showed that the o3°° distribution
was on average closer to the o7 distribution than ¢7°° was, even though o7 and 02°° had
the same number of completely independent sub-samples, while o3°° possibly had some
sub-sample dependence. This could not be seen from the boxplots, but meant that the loss
of 100 data points was itself changing the ¢ distribution more than a high o did on a high
N data set.

It is possible that, by chance, the data points that were removed in order to get smaller
data sets had a significant difference in correlation compared to the remaining data points,
either because of confounding factors or because of inaccurate measurements, meaning
that not sub-sampling over this data would change the o values enough for it to be detected
by the #-test. However, this effect was not necessarily very big, because with many o values
in each group, a t-test would be able to detect very small changes as significant changes
of the distributions. In this case, each group had almost 5000 o;; values in it. The fact
that for instance 02° seems to have a different distribution than o7 does therefore not
automatically mean that 02°° is a bad estimate of the internal correlation variability within
the data set. Increasing the data set with 100 more measurements could just as easily have
made a different distribution than o7, not meaning that 338 data points is too low. The -
test still shows the obvious: that either random noise or confounding can indeed play a role
when calculating correlations, and no matter how the data is measured or how many times,
one cannot get data from data points that are not there. One should therefore obviously try
to get as many measurements as possible. The fact that the removed data points contribute
to the overall o when they are included could also make us question the choice of o7
as reference for o found in the smaller data sets, since these data sets might rightfully
have different correlation variabilities. Since the problem with the small data sets is that
you cannot find enough valid independent sub-samples, 07 was considered to be the best
option to use for reference purposes. However, it seems very unlikely that the difference
in data points could produce the clear over- and underestimating trends in Figs. 4.4-4.7.

The consequences of over- and underestimating o are similar, but not identical. Over-
estimation of ¢ would lead to a false impression that the gene pairs in the given data set
have a higher internal variability in correlations than is actually the case. This will lower
the associated C-, S- or D-scores unnecessarily. If the scores are lowered enough, the
overestimation will lead to more false negative results, as it will result in the loss of sig-
nificant links that should have been present in the CSD network. As previously discussed,
an overall overestimation in just one of the two data sets can hide real confounding in the
other data set, thereby also leading to false positives. If ¢ is underestimated in one data set,
on the other hand, there might be an increase in false positives, but not in false negatives:
One might get links in the network that should not have been present due to confounding
factors that were not detected in the same network, but confounding factors can still be
detected in the other data set. Overestimation of o is therefore likely to have even more
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severe consequences for the CSD network than underestimation.

The overestimating power of low .S was also stronger than the underestimating power
of high o, strengthening the conclusion that low S values are much worse for the final
network than high o values. If you have to choose, it will be preferable to choose a high
number of more dependent sub-samples rather than a low number of fully independent sub-
samples. In this context it is worth noting that the original sub-sampling algorithm of the
CSD method found fewer than 50 sub-samples for data sets of size N = 60 and N = 50.
Seeing the huge deviations from o that was found using on average 62 independent sub-
samples at N = 100 (Table 4.1 and Fig. 4.4), the 34 independent sub-samples that the
original sub-sampling method was able to identify from /N = 50 data points seems to be
far too low. The results of this study therefore indicate that the estimated lower limit of
N = 50 for the original sub-sampling method may have been too optimistic.

Knowing that random drawing fails to find anything close to the maximum number of
valid sub-samples no matter the sizes of IV, S and o, it would have been very beneficial to
find a systematic algorithm that could identify a higher number of sub-samples with up to
a given number of overlapping data points, thereby increasing S while keeping o as low as
possible. In addition to the increased possibility of drawing invalid sub-samples in itself,
the initial random sub-sampling pattern can also possibly reduce the maximum number of
valid sub-samples to be drawn later, due to the combination of sub-samples that are drawn
in the beginning. Using a systematic algorithm, it could have been possible to come close
to an exhaustive selection of sub-samples. This would allow even very small data sets to
be used with a low dependence rather than a high dependence, which would most likely
produce better results for these data sets than the random sub-sampling algorithm that was
proposed in this thesis would. This was however not within the scope of this thesis, and is
suggested for further research.

Another aspect of the method was the run-time of the script that was written and used
for correlation and variance computation. As the two versions of the script were mainly
written for use in this project, the requirement of finishing the computations within ”a
reasonable amount of time” was set in order for the results to be finished within the time
limits of the thesis. While this aim was met, it is obvious that it is costly, both in terms
of time and energy consumption, to run 160 parallel processes for about one week, which
was roughly the time spent on a full gene expression data set (N = 28 and 5,4, = 150)
in the second part of the study. Although not within the scope of this project, I would
therefore, for any future use, suggest implementing the new sub-sampling algorithm using
for instance C++, which is much more efficient than Python. With faster computations,
one could for instance also run the calculations multiple times and use the average of the
obtained o values, reducing the number of outliers in the results. Prefiltration of genes with
a very high occurrence of zeros (instead of just filtering out gene pairs with S < Sy,in)
could also have lowered the computation time, as each gene is possibly part of tens of
thousands of gene pairs.

5.2 CSD Analysis of Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a disease that is highly heterogeneous with a multitude of
genetic and environmental factors affecting the pathogenesis and disease development. I
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therefore expected it to be challenging to find clear disease related patterns in the CSD
network. The network was however enriched with genes related to a high number of regu-
latory processes (Tables 4.9 and 4.10), and the strongest process enrichments were related
to immune function, inflammation, growth, cell differentiation and morphology. Since RA
is an autoimmune inflammatory disease associated with severe tissue remodelling and de-
formation, which in turn demands a high proliferating activity in the affected tissues, this
suggests that the network represented real, meaningful relationships between the genes that
were highlighted. The network followed a power-law degree distribution, showing that the
network topology was far from random. Assuming that this non-randomness reflects some
sort of biological function, it is likely that the network hubs play a special role in RA. It
is, however, important to remember that the C-, S- and D- links do not correspond to gene
regulatory networks or protein-protein interaction networks. The CSD network can there-
fore not be used alone to draw any conclusions about the exact regulatory mechanisms
underlying the development or progression of RA.

The main topological differences between the C-, S- and D-type networks (see Fig. 4.11
and Figs. A5-A7) indicate a possible difference between the regulatory mechanisms lead-
ing to these link types. The C-network is weakly assortative (see Fig. 4.12), has a more
narrow degree distribution and is somewhat densely connected. This is quite similar to
what was seen in Voigt, Nowick and Almaas’ CSD analysis of different brain regions [2],
although their C-network was more strongly assortative and dense. Both the D- and S-
networks are disassortative (see Figs. 4.13-4.14), but the more widespread S-network is
much more disassortative than the very densely connected D-network. It is possible that
the high disassortativity is due to the connectivity distribution alone (since the biggest
hubs are S-dominated). This pattern is nevertheless not the same as what was found in [2],
where the D-network was the most disassortative. The difference between the C-, S- and
D-type networks are also reflected in the fact that they are enriched with genes connected
to different groups of biological processes.

The C-network was highly enriched in processes related to T cell maturation and se-
lection, in addition to various processes that are important for general cell function and
maintenance, for instance ATP synthesis, RNA export from the nucleus and processes re-
lated to cell signaling and pathway regulation in general. A conserved correlation between
genes related to general cell function and maintenance processes (maybe also to especially
important regulatory pathways) can be interpreted as a particular robustness in the related
mechanisms, beneficial for cell survival. The enrichment of genes related to T cell matu-
ration in the C-network was more difficult to explain: T cells are essential for the immune
system, and the MHC complex has consistently been shown to be associated with RA. The
MHC related genes were, however, not found to have very prominent positions in the CSD
network. It is not obvious why these genes appeared in a small C-component in the net-
work, but considering that the MHC gene products build up a protein complex together,
a tight co-regulation is not very strange. It is worth noting that this smaller component
was connected to the giant component when the importance level for the network was in-
creased (see Appendix AS8). Although having conserved co-expression between them, this
group of genes could nonetheless be regulated by other genes that has a changed regulation
pattern in RA patients.

Another possible explanation for the enrichment of MHC related genes in the C-
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network might be that the gene expression data were taken from joint synovial fluid sam-
ples, which is the site where the first inflammation occurs in RA patients. The maturation
of T cells does not happen in the joints, but in the thymus, so when the T cells have been
recruited to the joints, the T cell selection and maturation has already taken place. It could
have been interesting to compare the CSD network from synovial gene expression with a
similar RA CSD network based on, for instance, the blood samples or the thymus. It is
also important to remember that RA does not involve a breakdown of the immune system
as such. The problem is rather that the immune system attacks the patients’ own cells
in addition to foreign compounds. With this in mind, it does not seem unlikely that the
relationship between some tightly connected immune system related genes could be con-
served. The immune system is much more active in RA patients, but the CSD method does
not detect changes in expression levels, so a conserved link does not mean that the level of
gene activity is the same between the two conditions, only that the co-expression between
these genes is conserved.

The S-network represented genes where a co-expression pattern has changed at one
place or another: it might represent a loss of connection between two genes that are nor-
mally coordinated in healthy tissue, or the appearance of new connections that are nor-
mally not present. The S-network was enriched in processes related to different regulatory
and signalling pathways, to various metabolic processes and energy production. Processes
of particular interest included processes related to immune recognition and inflammation,
ubiquitination (marking proteins for phagocytosis), cell division and stem cell differen-
tiation, as well as DNA repair and telomere maintenance mechanisms, which should be
highly active during cell proliferation. There were no very specific processes enriched in
the S-network compared to the C- and D-networks, which was most likely the reason why
the highest enrichment factors were generally lower in the S-network than in the other two.
The S-dominated hubs had a high number of neighboring nodes that were not connected to
any other nodes in the network. Seen together with the high betweenness centrality of the
two S-dominated hubs and the high enrichment of regulatory processes in the S-network
(as well as in the CSD network as a whole), this might indicate that these hubs play a
role in coordinating a high number of other genes. Both ZNF205-AS1 and GPRI8 has
already been linked to regulatory functions. Not previously linked directly to RA, these
seem like interesting genes to pay more attention to in further RA research. In order to get
a deeper insight into the possible regulatory relationships and the loss or gain of biologi-
cal functions, it would have been interesting to investigate which correlations were strong
in the disease state and which were strong in the healthy tissue. The biggest hub in the
network, PDCDI, had a high number of S-links to low degree neighbors, but it also had
almost an equal number of D-links, and thus connected the S- and D-dominated parts of
the CSD network by a substantial number of links. Not surprisingly, it also had the high-
est beweeenness and closeness centrality in the network. This gene has previously been
linked to RA and, just like ZNF205-AS1 and GPRI8, this gene could also be hypothesized
to have some coordinating role in RA.

The waste majority of hubs were however found in the D-network, and although the
D-network was weakly disassortative, this was the link type that was most clearly lim-
ited to one area of the network. This could mean that the biological processes associated
with the D-network were especially closely connected and possibly strongly regulated.
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Although the D-network was also enriched in genes associated with the immune system,
the feature that distinguished the D-network the most from the C- and S-networks was that
it had a high occurrence of genes directly linked to specific tissue and organ development,
as well as proliferation and growth of non-immune cells. The D-network could therefore
possibly be assumed to be linked more tightly to the severe tissue remodelling and defor-
mation processes that first affect the joints, and can later affect other tissues and organs in
RA patients. Big, overreaching processes such as tissue and organ remodelling has to be
highly organized and regulated, and this might be the reason why the D-type links are ex-
tra tightly grouped together. D-links did not reflect the loss of coordination, but an altered
coordination between genes, possibly being related to regulatory malfunction rather than
a complete halt of cellular processes. The enrichment of genes related to late stage symp-
toms of the disease imply a possible connection between the D-dominated hubs and the
deformities seen in later stages of RA. Apart from one of them being directly associated
with decreased kidney function, arterial calcification and osteoarthritis, the D-dominated
hubs were nonetheless highly associated with the immune system, inflammations and au-
toimmune diseases, again emphasizing the interconnectedness of the different processes.

Several of the network hubs were also associated with cancer. Since cancer involves
unimpeded growth, one could hypothesize that defects in these genes, or in the regula-
tion of them may cause the abnormal growth and tissue remodelling seen in RA patients.
One should, however, be careful about drawing such conclusions, as no gene is only an
oncogene, but always has another function that could possibly be altered and lead to other
cellular consequences than abnormal growth. Two of the network hubs were RNA genes,
and although more difficult to find information about, they should not be discarded as ir-
relevant. They could be related to relevant regulatory mechanisms, and were therefore
included in the analysis.

A strength of the method is that both the overall correlation and weighting of corre-
lation variability is taken into account when calculating the C-, S- and D-scores. This
ensures that only gene pairs with consistent co-expression across most of the measure-
ments are highlighted in the final network. All genes, and especially those of the S- and
D-networks, would therefore be of interest in further studies of the disease mechanisms
of RA. It could also be of further interest to compare the CSD network to a protein inter-
action network, in order to see how the products of the different genes found in the CSD
network actually interact. Although the genes in the network could be assumed to be of
direct relevance to RA, there is still a chance that significant genes are not present in the
network: S- and D-type links could be lost due to a high occurrence of zeros in the data
set. As discussed previously, this is especially challenging with S-type links. An additional
source of noise in this particular analysis was the new sub-sampling algorithm used on the
reference data set. The fact that the resulting network did still show a strong connection
to RA supports the assumption that the new sub-sampling approach did not have too grave
consequences for the structure of the CSD network. It is still worth being aware that some
links might have been included that should not have been, and vice versa.

The correction for correlation variability could itself have a downside as well: It is
presupposed that a high correlation variability is caused by confounding factors, ignoring
the fact that some diseases, like RA, are heterogeneously expressed in different patients.
It is impossible to tell if a high correlation variability within a data set is caused by real
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confounding factors or by heterogeneous expression of the given condition. Diseases are,
in general, first characterized based on their phenotype outcome, and not on their under-
lying molecular mechanisms, since these are more difficult to identify. In some cases it
might therefore be multiple molecular mechanisms leading to the same disease or syn-
drome, making it difficult to identify co-exression patterns that correspond to anything
meaningful in a biological context. If multiple molecular mechanisms can lead to the
same phenotype, gene correlations could become less uniform, and genes and correlations
that are indeed related to the disease could end up being filtered out from the network.
This would, however, be a challenge with any systems biology approach, and is not an
exclusive disadvantage of the CSD method. On the upside, this also means that the CSD
network could be assumed to reflect only the factors that different RA patients have in
common, possibly capturing the most essential features of the disease. Since the network
showed so clear associations with immune function and inflammation, it could be assumed
to be of high relevance for understanding the genetic mechanisms underlying at least some
aspects of RA.
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Conclusion and Outlook

The implementation of an alternative sub-sampling algorithm for the CSD method, allow-
ing dependence between sub-samples, showed that a low number of sub-samples had a
strong overestimating effect on the correlation variability, while sub-sample dependence
had a weaker underestimating effect. A low number of sub-samples thus had a higher neg-
ative impact on the correlation variabilities than a higher sub-sample dependence did. In
order to get as good estimates as possible of the correlation variabilities of small data sets,
the number of sub-samples had to be weighed against the maximum permitted overlap.

Based on the results of this study, data sets smaller than 50 data points are recom-
mended to have about 150 sub-samples if the alternative algorithm is used, especially if
a high sub-sample dependence is allowed. Bigger data sets are recommended a higher
number of sub-samples, for instance 200. The maximum sub-sample overlap should in
general be kept as low as possible within these requirements. The smaller data sets are
recommended to have fewer sub-samples to reduce the impact of the high dependence that
is required to find a sufficient number of sub-samples. For data sets with 60 or fewer data
points per gene allowing some sub-sample dependence is in general suggested in order to
increase the number of sub-samples, independent of sub-sampling approach. For data sets
smaller than the limitations set by the original CSD method, which was 49 data points per
gene, it was not possible to find enough sub-samples with a low overlap using the new
algorithm, but when allowing for highly dependent sub-samples, a sufficient number was
easily found for data sets as small as 20 data points per gene. Allowing a high overlap
between sub-samples gave significantly more noisy results, but could nevertheless be a
justifiable option for small data sets.

Developing an algorithm for the deterministic identification of sub-samples with a low
number of overlapping data points is suggested for further research, as this would give bet-
ter results for small data sets and reduce noise in the CSD network. More research is also
suggested in order to further investigate the trade-off between reduction of over-estimation
by increasing the number of sub-samples, and reduction of under-estimation by decreasing
the same number of sub-samples (in order to reduce the average sub-sample dependence).
Finding a general rule for the combination of sub-sample number and overlap for a given
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data set size would have made the new sub-sampling algorithm more easily applicable on
new small data sets. The alternative sub-sampling algorithm should also preferably be im-
plemented in a more efficient programming language, in order for the computations to be
less time and energy consuming.

Two data sets of gene expression data from the synovial fluid of rheumatoid arthritis
(RA) patients and healthy controls were analyzed using the CSD method with the alter-
native sub-sample algorithm, and resulted in a CSD network highly enriched with genes
related to immune function, inflammation and differentiation, growth and morphology
of cells, tissues and organs. Eleven hub genes were identified in the network: PDCDI,
ZNF205-AS1, GPRIS, LINC00426, SEPTI, CTLA4, ASAP2, ENPPI, IL2RG, PRDM1
and GBPS5. Eight of them, ZNF205-AS1, GPRIS, LINC00426, SEPTI, ASAP2, ENPPI,
IL2RG and GBP5 have, to my knowledge, not previously been linked to RA. Two of them,
ASAP2 and ENPP]I, were directly linked to at least one known RA associated gene each.
Per the data presented, these eleven genes can be central in RA progression, and are thus
possible candidates for further research of the disease. The three most highly connected
hubs, PDCD1, ZNF205-AS1 and GPRI8, contributed strongly to a disassortative network
pattern and were hypothesized to have a coordinating role between a high number of other
genes. The PDCD] gene, which was the biggest network hub, was found to connect the
parts of the network dominated by either specific or differentiated co-expression respec-
tively, and had previously been associated with rheumatoid arthritis. The results of this
analysis further supported the position of this gene in RA. The remaining eight genes,
LINC00426, SEPTI, CTLA4, ASAP2, ENPPI, IL2RG, PRDM1 and GBPS5, were posi-
tioned in a sub-network dominated by differentiated co-expression between genes. The
differentiated links were highly interconnected and genes connected to cell differentiation,
growth, tissue and organ development and morphology were over-represented in this part
of the CSD network. These genes are hypothesized to be involved in later stages of the
disease development.

More research is clearly needed in order to understand the genetic mechanisms under-
lying the development of rheumatoid arthritis. As RA is a heterogeneous disease, a possi-
ble next step could be to divide the gene expression samples into different groups based on
differences on phenotype, such as samples from ACPA positive and ACPA negative RA
patients, and either compare them to each other directly with a differential co-expression
analysis, or combine both groups with healthy control samples to make multiple CSD
networks that could be compared to each other. In this way one could possibly get more
uniform correlation patterns in each data set, and maybe find interesting gene relationships
that were not visible in this study due to high correlation variabilities. Furthermore, one
could have studied the S-links of the CSD network in more detail to find out which cor-
relations were present in which condition. It could also have been interesting to compare
multiple CSD networks based on different tissue types from RA patients and controls, for
instance both synovial fluid samples and blood samples. This could possibly capture dif-
ferent stages or aspects of the disease. The genes identified in this study could also have
been compared to other types of networks, such as gene regulatory networks or protein
interaction networks in humans.
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Appendices

Al Genes Previously Associated with RA

Table A1 gives an overview of 53 genes found to be associated with RA in previous studies.

Table A1: List of 53 genes previously associated with rheumatoid arthritis.

HLA-DRBI[14] PTPN22[17]  TRAFI[17] CTLA4[17]  IRF5[17]
STAT4 [17] CCR6 [17] PADI4 [17] IL23R [17] PTPN22 [17]
SAP30BP [84]  LPIN2 [84] DHRS3 [84] TTC38[84]  IRAKI [59]
TLE3 [59] RASGRPI[59] IL6R [59] IRF8 [59] AIRDSB [59]
IKZF3 [59] RUNXI [59] POUSF [59] RCANI[59]  ANKRDSS [59]
RBPJ [59] CCL21 [59] CD40 [59] MMELI [59]  AFF3[59]
REL [59] GINI [59] DNASEIL3[59] IL2RB[59]  DDXG6 [59]
SPRED2[59]  TAGAP [59] IL2RA [59] CD2 [59] CD28 [59]
PTPRC [59] KIF5A [59] PRKCQ [59] FCGR2A [59] PRDMI [59]
IL2-1L21[59]  TRAF6 [59] TYK2 [59] FCRL3 [6] CD244 [6]
BLK [6] TNFAIP3[6]  SLC22A4[6]
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A2 Genes Used for Signal Plot and Signal Stability Analysis

The following list of Ensembl IDs identify the 8 genes used for the signal plot and signal
stability analysis:

e ENSG00000223972.4
ENSG00000238009.2

ENSG00000227232.4

ENSG00000233750.3

ENSG00000268903.1

ENSG00000248527.1

ENSG00000188976.6

ENSGO00000131591.13
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A3 Stability of 033® Computed 100 Times for 28 Gene Pairs

Fig. A1 displays boxplots of the final o;; values for 28 gene pairs ij obtained from a series
of 100 repeated computations of ¢ per gene pair, using the parameters S,,,, = 200, N =
338 and 0 = 6. The gene pairs were all combinations of pairs of the genes given in
Appendix A2 and chosen so that a variety of correlations were represented.
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Figure A1l: Boxplots of the final o;; values obtained from 100 repeated runs of my script on 28
different gene pairs with various correlations represented. Each plot represents one gene pair. Pa-
rameters: Smae = 200, N = 338, 0 = 6.
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A4 Scripts for Computation of Gene Pair Correlation and Correla-
tion Variability in a Data Set

The two following scripts were used for the calculation of Spearman correlation coeffi-
cients of the gene expression of all gene pairs in a data set, and for the sub-sampling and
computation of correlation variability in the data set as the standard deviation of the mean
of sub-sample correlations.

The first script was used if the sub-samples consisting of 7 data points were allowed
to have up to 1, 2 or 3 data points overlap between them, and the standard deviation was
calculated separately for the three degrees of permitted overlap respectively. The second
script was used if the same sized sub-samples were allowed up to 6 data points overlap.

Both scripts take input files on the following format: The first (index) column contains
G gene names, the first (header) row contains N sample names, the remaining rows and
columns contain N gene expression measurements for each of the G genes. No entries
should contain NaN, None or be empty, or the relevant gene could get an error message in
the output file instead of correlation and variability measurements.

Allowed sub-sample overlap from 1 to 3 data points

from __future__ import division
import numpy as np

import pandas as pd

import math, random

import itertools

from scipy import stats

from multiprocessing import Pool

HHHHAHAHHHHAHAHAH AR R AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR RS

This script takes a gene expression data set as input, and computes
Spearman correlation coefficients and variance/standard deviation of
the mean (SDOM) of the correlations of sub—samples in the data set.
The sub—samples have maximum overlap of 1, 2 and 3 data points, and
SDOM/ variances are found for all three options.

#
#
#
#
#
#
#
# Three parameters has to to be filled in by the user:
# The name of the input file (inputfile), the name of the output
# (outputfile), and the number of cores on the machine (nCores).
# If variance should be written

# to file instead of SDOM, this has to be changed inside the

# genepairFunction.

#

#

HAFHHHHHHHHH R AR R R R R R R R R R R R R R

inputfile = >WholeBlood338. txt’
outputfile = *CorrSDOM. txt’
nCores = 24

#genepairFunction calculates Spearman correlation + mean correlation
# and SDOM/var for permitted overlaps of sub—samples set to 1,2 and 3.
def genepairFunction(genepair):

#list to fill with results for genepair

resList=[]
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resList.append(str(genepair))

#Assign rows for the genes in genepair to gl and g2.
gl = gedTable.loc[genepair[0]]
g2 gedTable.loc[ genepair[1]]

#Calculate Spearman for genepair across all columns
RHO, ptot = stats.spearmanr(gl,g2)

resList.append(str (RHO))

#each k gives a new level of permitted overlap between the sub—samples
for k in range(3):

#Stores all pairs/triplets/fours of columns drawn together and
used

usedPairs = {}

#Number of subset correlations calculated for this genepair
N=20

#Sum of calculated corr. values

corrSum = 0

#Sum of squared calculated corr. values

sqrSum = 0

#Standard deviation of the mean, initial value

SDOM = 0

#Mean correlation start value

corrMean = 0

#Initial discard rate — what fraction of pickLists are discarded
discRate=0

#Number of discarded pickLists

disc=0

#tot = total number of pickLists (discared and used)

tot=0

while (discRate < 0.99 and N <= 199) or tot < 20:
pickList = []

tot = tot + 1

#Lists to fill with measurements for gene pair x,y
xList = []

yList = []

#Put seven unique and random col indexes in pickList

while len(pickList) < 7:
pickIndex = int(random.uniform (0, len(gedTable.columns)—1)

if pickIndex not in pickList:
pickList.append(pickIndex)

#Make unique pairs/triplets/fours of the seven indexes

if k ==

currentPairs = list(itertools.combinations(pickList ,2))
elif k == 1:

currentPairs = list(itertools.combinations(pickList ,3))
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else:
currentPairs = list(itertools.combinations(pickList ,4))

#Fill xList and yList with measurements corresponding to the
two

#genes and the columns given in pickList

for i in pickList:

xList.append(gedTable.loc[genepair [0]][i])
yList.append(gedTable.loc[genepair[1]][i])

#Count “pairs” (pairs/triplets/fours) in current pickList that
have previously been drawn
usedCount = 0
for pair in currentPairs:
if pair in usedPairs:
usedCount += 1

#If xList and yList contains enough nonzeros and pickList has
no

#pair/triplet/four in common with previous draws, continue:

if np.count_nonzero(xList)>4 and np.count_nonzero(yList)>4 and
usedCount == 0:

#Add all combinations of used “pairs”, (pairs, triplets or
fours) to currentPairs dict:
if k ==
for pair in currentPairs:
usedPairs [( pair [0], pair[1])] = True
usedPairs [(pair[1l], pair[0])] = True

elif == 1:
for pair in currentPairs:
usedPairs [( pair [0], pair[1], pair[2])] = True
usedPairs [(pair[0], pair[2], pair[1])] = True
usedPairs [(pair[1], pair[0], pair[2])] = True
usedPairs [(pair[1l], pair[2], pair[0])] = True
usedPairs [( pair[2], pair[1], pair[0])] = True
usedPairs [( pair[2], pair[0], pair[l])] = True
else:
for pair in currentPairs:
usedPairs [( pair [0], pair[l], pair[2], pair[3])] =

True

usedPairs [( pair[0], pair[l], pair[3], pair[2])] =
True

usedPairs [( pair [0], pair[2], pair[l], pair[3])] =
True

usedPairs [( pair [0], pair[2], pair[3], pair[l])] =
True

usedPairs [(pair[0], pair[3], pair[l], pair[2])] =
True

usedPairs [(pair[0], pair[3], pair[2], pair[l])] =
True

usedPairs [(pair[1l], pair[0], pair[2], pair[3])] =
True
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True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

True

usedPairs [(pair[1], pair[0], pair[3], pair[2])]
usedPairs [(pair[1], pair[2], pair[0], pair[3])]
usedPairs [(pair[1], pair[2], pair[3], pair[0])]
usedPairs [(pair[1], pair[3], pair[0], pair[2])]

usedPairs [(pair[1l], pair[3], pair[2], pair[0])]

usedPairs [(pair [2], pair[0], pair[l], pair[3])]
usedPairs [( pair[2], pair[0], pair[3], pair[l])]
usedPairs [( pair[2], pair[l], pair[0], pair[3])]
usedPairs [( pair[2], pair[1l], pair[3], pair[0])]
usedPairs [( pair[2], pair[3], pair[0], pair[1])]

usedPairs [(pair[2], pair[3], pair[l], pair[0])]

usedPairs [( pair[3], pair[0], pair[l], pair[2])]
usedPairs [( pair[3], pair[0], pair[2], pair[1])]
usedPairs [( pair[3], pair[1], pair[0], pair[2])]
usedPairs [(pair[3], pair[1], pair[2], pair[0])]
usedPairs [(pair [3], pair[2], pair[0], pair[1])]

usedPairs [(pair[3], pair[2], pair[1l], pair[0])]

#Calculate Spearman correlation from xList, yList and

update var/SDOM

genepair) +

rho, pvalue = stats.spearmanr(xList, yList)
N =N + 1

corrSum = corrSum + rho
sqrSum = sqrSum + rho*x2
corrMean = corrSum /N

#Calculate variance and SDOM of correlation distribution
var = (sqrSum — Nx(corrMean*x2))

SDOM = math. sqrt(var/N)

print *Computing_.CorrVar_.data.for_genepair.’ + str(

s

else:

disc = disc + 1

discRate = disc/tot
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#Add correlation mean, SDOM and number of sub—samples N to resList

#If variance is wanted as output instead of SDOM, change SDOM to
var.

resList.append(str (corrMean))

resList.append(str (SDOM) )

resList.append(str(N))

return resList
#0pen gene expression dataset and import as DataFrame.
ged = open(inputfile , ’r+’)
gedTable = pd.read_table(ged, sep="\t’, header=0 , index-col=0,

lineterminator="\n")

print ’Headers._added.’

#List of all unique pairs of genes

genepairs = list(itertools.combinations(gedTable.index, 2))
pool = Pool(processes = nCores)
result = pool.map(genepairFunction, genepairs)

pool.close ()
pool.join ()

#Create output file corrRes.txt and add headers + content

resFile = open(outputfile ,’w’)

resFile . write (’\t + RHO\ t "+ Rhol\ t "+ SDOMI\ t "+ NI\ t "+ Rho2\ t "+ SDOM2\ t "+~
N2\ t "+ Rho3\ t "+ ’SDOM3\ t "+ ’N3\n ")

for res in result:
resFile . write(’\t .join(res)+ \n")

resFile.close ()
ged.close ()

Allowed sub-sample overlap of 6 data points

from __future__ import division
import numpy as np

import pandas as pd

import math, random

import itertools

from scipy import stats

from multiprocessing import Pool
from tqdm import tqdm

import datetime

LR s s s s e e e e R e s s
#

# This script computes Spearman correlation coefficients of all gene pairs
# in a gene expression data file, draws up to 200 sub—samples of 7

# measurement samples, rejects any sub—samples with more than 1, 2 and 3
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data points overlap and computes the standard deviation of the mean
of the gene pair correlations from all valid sub—samples.

Four parameters has to be changed for each run:
Filenameln , FilenameOut, usedMachines and thisMachine (see SETTINGS
after genepairFunction).

The number of sub—samples are set to 200, but can be changed inside
genepairFunction. If the variance is to be found instead of SDOM, this
must also be changed inside the genepairFunction.

H o oH W HEHHHHHH

HAHHHHHHHHHHRHH R HH R B R R R R R R

#genepairFunction finds the Spearman correlation coefficient,
#mean correlation & standard dev. of the mean for sub—samples with
#up to 6 data points overlap.

def genepairFunction(genepair):

#list to fill with results for genepair
resList=[]
resList.append(str(genepair[0:2]))

try :
#Calculate Spearman for genepair across all columns, and add to result
RHO, ptot = stats.spearmanr(gedTable.loc[genepair[0]], gedTable.loc]|
genepair[1]])
resList.append(str (RHO))

except:
resList.append ("RHO_ERROR")

try:
try:
#Stores all drawn pickLists (sorted)

usedPickLists = set ()

#Number of subset correlations calculated for this genepair

N=20

#Standard deviation of the mean, initial value

SDOM = 0

#Initial discard rate — what fraction of pickLists are discarded
discRate=0

#Number of discarded pickLists

disc=0

#tot = total number of pickLists (discared and used)

tot=0

#variance
var=0

#Variables for variance calculation, Welford’s algorithm

M=20
M2 =0
S =0

#Empty list to fill with current sub—sample
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pickList = [None]x*7
while (discRate < 0.99 and N <= 149) or tot < 50:
tot = tot + 1

#Put seven unique and random col indexes in pickList
pickList = random.sample (xrange (0,gedLen—1),7)

#Check if current sub—sample is allready used, and if so: if it
contains more than 2 zeros. If not, continue:
if frozenset(pickList) not in usedPickLists:
if np.count_nonzero(gedTable.loc[genepair[0]][ pickList])>4 and
np.count_nonzero (gedTable.loc[genepair [1]][ pickList]) >4:
#Add pickList to usedPickLists
usedPickLists .add(frozenset (pickList))

#Calculate Spearman correlation from xList, yList and update
avg., variance etc.

rho, p = stats.spearmanr(gedTable.loc[genepair[0]][ pickList],
gedTable.loc[genepair[1]][ pickList])

N=N+1

#Welford’s algorithm running variance
delta = rho — M

M =M + delta/N

delta2 = rho — M

M2 = M2 + deltaxdelta2

var = M2/N

#discard if sub—sample did not meet criteria. count discard
percentage

else: disc = disc +1

discRate = disc/tot
else:

disc = disc + 1

discRate = disc/tot

#Add correlation mean, SDOM and number of sub—samples N to resList
resList.append(str (M))
resList.append(str (math.sqrt(var/N)))
resList.append(str(N))
except:
resList.append ("UNKNOWN_SUBSAMPLING_ERROR™)

return resList

def wrapMyFunc(arg):
return arg, genepairFunction(arg)

def update (( pair ,ans)):

result[pair[2]] = ans
pbar.update ()

def runChunk(intervalEnds ,i,nProcesses):
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pool = Pool(processes = nProcesses)

#Perform computations if interval is not used before and add used
interval

#to check—file .

for pair in genepairs_-modified[int(intervalEnds[i]):int(intervalEnds|[i
+1]) 1:
pool.apply_async (wrapMyFunc, args = (pair,), callback = update)

pool.close ()
pool.join ()

##HHH R
#SETTINGS: Filenames for input data and output file is set here:

filenameIn = *RActrl.txt’
filenameOut = "RActrl_CorrSDOM_. txt’

HHHHHHHHHHHHHRHH R HH R R H R R R R R R

#0Open gene expression dataset and import as DataFrame.

ged = open(filenameln, “r+")

gedTable = pd.read_table (ged, sep="\t’, header=0, index_col=0,
lineterminator="\n")

gedLen = len(gedTable.columns)

print "Go!”

#List of all unique pairs of genes + number in the list
genepairs_modified = []
genepairsTot = list(itertools.combinations(gedTable.index, 2))

#List the numbers of cores in correct order on the machines that can be
used
nCores = [48, 24, 24, 16 ,16, 16, 16]

HHHHHHHFH AR R HH R R R R R R R R R R

#SETTINGS :

#List the numbers (zero indexing) of all used machines in “usedMachines”,
#e.g. if using machine 2,3 and 4, set: “usedMachines = [2.,3,4]”

#

#Then set “thisMachine” equal to the machine the script is running on,
#e.g. if the script is on machine 3, set ”thisMachine = 3”

usedMachines = [0,1,2,3,4,5,6]
thisMachine = 3

####H S R R
#genepairFunction is run in parallell on the given machine for the
#defined number of gene pairs, the progress bar is updated,

#the logfile with completed chunks + errorlog is updated,

#and the results are written to intermediate backup files and result file.

#HHHHHHHHH R R R R R R R R
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#The genepairs are distributed on the used machines based on the number
#0of cores on the respective machines
totalCores = 0
for machine in usedMachines:
totalCores = totalCores+nCores[machine]
nGenePairsTot = len(genepairsTot)

pairsPerCore = np.ceil(nGenePairsTot/totalCores)

pairlt = 0

genepairsForMachines = []

for machine in usedMachines:
genePairsInterval = []
genePairsInterval .append(pairlt)
pairlt = np.ceil(pairlt+pairsPerCorexnCores[machine])
pairlt = min(pairlt ,nGenePairsTot)
genePairsInterval .append(pairlt)
genepairsForMachines .append ([ genePairsInterval])

genePairsIntervalToRun = genepairsForMachines[thisMachine]
genePairsIntervalToRun = genePairsIntervalToRun [0]
genepairs = genepairsTot[int(genePairsIntervalToRun[0]):int(

genePairsIntervalToRun[1])]

2

print ”"Adding_indexes._to._all_genepairs ...

L = len(genepairs)
print "Number_of_genepairs:._ "+str(L)+”_(interval :_"+str(
genePairsIntervalToRun [0])+”_to_."+str (genePairsIntervalToRun[1])+7)"”

#Add number to each gene pair for use in progress tracking
for i in xrange(L):
genepairs_modified.append (( genepairs[i][0], genepairs[i][1],i))

#Make file to save which chunks are finished

try: #testing to see if the file exists first
test = open( usedChunks.txt’, 'r’)
test.close ()

except: #if not, the file is made and initalized
a = open(’usedChunks.txt’, ’w’)
a.write(’The_following._intervals._are_successfully._processed:\n")
a.close ()

#Make output file and add header
filenameBase = filenameOut.split(”.”)
filenameBase = filenameBase[0]

filenameAll = filenameBase+”_ALL_RESULTS. txt”

resFileAll = open(filenameAll, "w’)

resFileAll. write ("\t + RHO\ t "+ Rhol\ t "+ SDOMrand\ t "+ S\n ")
resFileAll.close ()

print 7"Caculating.Corr/SDOM._data ...”

#Initiate progress bar
pbar = tqdm(total = L)
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result = [None]xL

#nChunks is the number of chunks at which each result is saved,
#i.e. 7save points”

nChunks = 100
#setting up chunk intervals
intervalEnds = np.ceil(np.linspace (0, L, num = nChunks + 1))

#Create error log
dateAndTime = datetime.datetime .now ()
errorFile = open(”errorLog.txt”,’w’)

for i in range(len(intervalEnds)—1):
chunk = str(intervalEnds[i]) + "_to.

”

+ str(intervalEnds[i+1])

#Check if interval is already in the file of used chunks
chunkUsed = False

usedChunksFile = "usedChunks. txt”

a = open(usedChunksFile, 'r’)

lines = a.readlines ()

for line in lines:
lineWithoutNewline = line.split(”\n")
lineWithoutNewline = lineWithoutNewline [0]

if lineWithoutNewline == chunk:
chunkUsed = True
a.close ()

#I1f the chunk interval has not already been run, then run it:
chunkUsed = False
if chunkUsed == False:

runChunk (intervalEnds ,i,nCores[thisMachine])

#try writing to file; if it doesn’t work,
#write the chunk to the error log and give error message

try :

filenameOutForInterval = filenameBase+str (int(intervalEnds[i]))+".
txt”

resFileChunk = open(filenameOutForInterval ,’w’)

resFileAll = open(filenameAll, a’)
noneCounter = 0
for res in result[int(intervalEnds[i]):int(intervalEnds[i+1])]:
if res is None:
noneCounter = noneCounter+l1
else:
resFileChunk . write ("\t .join(res)+ \n")
resFileAll. write(’\t .join(res)+’\n")
if noneCounter >0:
errorFile . write ("Number.of_None_in.chunk:._"+chunk+"\n")
errorFile . write (str (noneCounter)+"\n\n")
resFileChunk . close ()
resFileAll.close ()

b = open(usedChunksFile, "a’)
b.write (chunk + "\n’)
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b.close ()

except:
print ’Error.in.gene_pair.interval._’+chunk+”_(see_errorFile.txt)”

errorFile . write ("Error.in._chunk:”+chunk+"\n")
errorFile . write (str(res)+”\n\n")

errorFile.close ()
pbar.close ()
ged.close ()

print ‘Done!’
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AS Script for Filtering Two Correlation/Variance Files for Gene Pairs
not in Common

The following script was used for filtering out gene pairs that the two gene pair/correla-
tion/variance text files did not have in common:

import pandas as pd
HAHFHHHHHAHFHHHHHAHAHABHHHARHABHHHAHHA B AR AR AR B A HA R A AR A RS R AR AR AR HAHHHH

#This script takes in two gene pair correlation/variance text files ,
#removes all gene pairs that the two files do not have in common,
#and writes the filtered results to two new text files. All gene pairs
#in the new files are listed in the same order, so that the same genes
#are listed first and last. The lists are not sorted alphabetically
#unless they were already on a sorted format, but this can easily be
#done using the ”sort” command in bash/Linux terminal.

##HHH AR SRR
#First input file and name of the filtered output file

filel = "RActrl_clean.txt’
file2 *Corr_Var_RA _jointsyn. txt’

#Second input file and name of the filtered output file
file3 = "RA_Full_Flt.txt’
file4 = RActrl_Full_Flt.txt’

#0pen the first file as dataframe

fl = open(filel , "r+")

dfl = pd.read_table (fl, sep="\t’, header=None, index_col=None,
lineterminator="\n")

firstPairs = {}
commonPairs = {}
#Add all pairs of the first input file to a dictionary
for row in dfl.itertuples (index = False):

pair = str(row[0]) + "\t + str(row[1])

firstPairs [pair] = True

#0pen the second input file

f2 = open(file2, "r+’)

df2 = pd.read_table (f2, sep="\t’, header=None, index_col=None,
lineterminator="\n")

#Add pairs common to both input files to a dictionary of common pairs
for row in df2.itertuples (index = False):

pairl = str(row[0]) + "\t + str(row[1])

pair2 = str(row[1]) + "\t + str(row[0])

if (pairl in firstPairs) or (pair2 in firstPairs):
commonPairs [ pairl ] = True

5

outl = open(file3 , 'w’)
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#Write filtered content of file one to new file
for row in dfl.itertuples (index = False):
pairl = str(row[0]) + *\t’ + str(row[1])
pair2 = str(row[1]) + *\t’ + str(row[0])

if pairl in commonPairs:
outl . write(str(row[0]) + "\t’ + str(row[1]) + "\t  + str(row[2]) +
\Nt’ 4+ str(row[3]) + '\n’)

if pair2 in commonPairs:
outl .write(str(row[1]) + "\t’ + str(row[0]) + "\t + str(row[2]) +
\Nt’ 4+ str(row[3]) + "\n’)

outl .close ()

5

out2 = open(filed4 , "w’)
#write filtered content of file two to new file
for row in df2.itertuples (index = False):

pair = str(row[0]) + "\t + str(row[1])

if pair in commonPairs:
out2 . write(str(row[0]) + "\t’ + str(row[1]) + "\t  + str(row[2]) +
\Nt’ + str(row[3]) + '\n’)
out2.close ()

fl.close ()
f2.close ()
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A6 Script for Node Homogeneity and Ratios of C-, S- and D-Scores
per Node

The following script was used for computing the ratios of C-, S- and D- scores, as well as
the node homogeneity, textitH, for all nodes in the CSD network:

import pandas as pd

#0pen CSD network (three columns: Genel Gene2 CSD-type)
network = *CSDSelection. txt’
f = open(network, ’'r’)

gglink = pd.read_table(f, sep="\t’, header=None, index_col=None,
lineterminator="\n")

genelist = []

#Go through all genepairs and add all gene names to genelist once per gene
for row in gglink.itertuples (index = False):
if str(row[0]) not in genelist:
genelist.append(str(row[0]))

if str(row[1]) not in genelist:
genelist.append(str(row[1]))

columns = ['C’,’S’,’D’]

#Make dataframe with CSDratios for each gene
df = pd.DataFrame(index = genelist, columns = columns)
df = df.fillna (0)

#Iterate through gglink, count the number of C, S and D links per gene
#and add number to respective columns in df
for row in gglink.itertuples(index = False):
if str(row[3]) == 'C’:
df .at[str(row[0]), 'C’] += 1
df .at[str(row[1]), 'C’] += 1

elif str(row[3]) == ’S’:
df.at[str(row[0]), 'S’] += 1
df.at[str(row[1]), 'S’] += 1

elif str(row[3]) == 'D’:
df.at[str(row[0]), 'D’] += 1
df .at[str(row[1]), 'D’] += 1

#Find the node degree and divide the elements of the C, S and D column by
the respective degree
df[’Sum’] = df.sum(axis=1)

df[’C’] = df[’C’ ]/df[ Sum’]
df[’S’] df[’S’]/df[’Sum’ ]
df['D’] = df[’D’]/df[ Sum’]

#Find node homogeneity
df[’H’] = df[’C’]*%2 + df[ S ]%*2 + df[’D’ %2
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#Remove degree—column and write to file
df.drop(’Sum’, inplace =

axis = 1, = True)

df . to_csv (’CSDratios.txt’, sep="\t’, header

= True, index = True)
f.close ()
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A7 Signal Plot for o3

Figure A2 shows the plot of the correlation variability, o3°%, for 28 gene pairs as a func-
tion of the number of sub-samples from which it is calculated, S. The wholeblood gene
expression data set with 338 data points per gene was used with an allowed sub-sample
overlap of 3 data points.

Signal g(S)

Number of subsamples, S

Figure A2: The function g(S) shows the o3°® signal for 28 gene pairs as a function of the number
of sub-samples from which it is calculated, S. Each graph represents one gene pair.
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A8 Networks with Alternative Importance Values

Figs. A3 and A4 give a visualization of the CSD networks obtained with importance levels
of p = 107* and p = 107° respectively. The links are colored according to their link
type (C-type links are blue, S-type links are green and D-type links are red). The network
obtained with p = 10~* has 7554 nodes and 36 873 links distributed over 178 components.
The giant component contains 7101 nodes, and the network has an average degree of
kavg = 9.8. The network obtained with p = 107 has 426 nodes and 360 links distributed
over 98 connected components. The biggest component has 104 nodes, and the average
degree of the network is kq,g = 1.6.
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Figure A3: Visualization of the CSD network obtained with an importance level p = 10~%. The
network has 7554 nodes and 36 873 links distributed over 178 components. The giant component
contains 7101 of those nodes, and the network had an average degree of k4. = 9.8. The links are
colored according to their link type: C-type links are blue, S-type links are green and D-type links
are red.
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Figure A4: Visualization of the CSD network obtained with an importance level p = 107°. The
network has 426 nodes and 360 links distributed over 98 connected components. The biggest com-
ponent contains 104 of those nodes, and the average degree of the network is kqvy = 1.6. The links
are colored according to their link type: C-type links are blue, S-type links are green and D-type
links are red.
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A9 The C-, S- and D-networks

Figs. AS, A6 and A7 visualize the separate C-, S- and D-networks, respectively. Apart
from the smallest components which are moved closer to the giant component, the links
are placed according to their original position in CSD network.

Figure AS5: The C-network: A visualization of all C-type links and the nodes that they connect in
the CSD network.
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Figure A6: The S-network: A visualization of all S-type links and the nodes that they connect in

the CSD network.
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Figure A7: The D-network: A visualization of all D-type links and the nodes that they connect in
the CSD network.
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A10 Full Results of GO Enrichment

All biological process categories that were enriched (with a false discovery rate < 0.05)
in the full CSD network, as well as in the the extracted C-, S- and D-networks, are given
in four external tables that were too long to fit in this Appendix. The number of genes in
the reference list that belongs to each category (#ref), the number of genes in the given
network that belongs to each category (#genes), the expected number of genes to be found
in a random selection of the same number of genes (Exp), the fold enrichment (FE), the
raw p-value and the false discovery rate (FDR) are also found in these tables. The tables
may be found at https://goo.gl/PwV4sU.
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