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Abstract

A successful cement job is determined by the displacement efficiency. Displacement of

drilling fluids in horizontal annuli is a critical element in the completion of wellbores. Op-

timum displacement requires an understanding of flow patterns, frictional pressure losses

and mutual interaction of mud, spacers, and cement in annular spaces. Modelling this com-

plex behaviour is difficult, and requires a fundamental understanding of fluid mechanics,

rheology, and computational techniques. Nevertheless, it is essential to understand the flow

propagation to guarantee displacement success.

A Computational Fluid Dynamics (CFD) model has been developed, and simulations have

been performed in order to analyze the operational downhole conditions during primary ce-

menting. The simulations accounted for complexities such as non-Newtonian fluids and ec-

centricity in annuli for both single-phase and multiphase flow of mud-cement-spacer.

The study identifies the fluid displacement and failure modes associated with fluid displace-

ment due to high eccentricity. For single-phase analysis, the numerical analysis shows ± 5%

accuracy compared to experimental data and study of Zhigarev et al. Multiphase simulations

show that the studied fluid train of drilling mud-spacer-cement display adequate displace-

ment efficiency. Although, an increase of modelling complexity should be performed in or-

der to obtain more accurate representation. Data acquired from the multiphase simulations

should be verified against experimental work, in order to justify the feasibility of the CFD

model used for product design and analysis in specific conditions. Overall, a CFD approach

for analysis of primary cementing may yield adequate information in order to improve ce-

menting to ensure sufficient zonal isolation, which is necessary for well integrity.
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Sammendrag

Vellykket sementering bestemmes av effektiviteten av transport av borefluider. Forskyvning

av borefluider i horisontale ringrom er en kritisk faktor for fullføring av brønner. Optimal

forskyvning av fluider krever en forsåelse av strømningsmønstre, trykktap og gjensidig vek-

selvirkning av borevæske, spacer, og sement i ringrom. Modellering av denne komplekse

oppørselen er av vanskelig, og krever en fundamental forstlse av fluid mekanikk, reologi, og

numeriske beregningsteknikker. Likevel er det essensielt å forståflytutbredelsen for å garan-

tere væskeforskyvningssuksess.

En numerisk strømningsberegnings-modell (CFD-model) har blitt utviklet og simuleringer

har blitt gjennomført for å analysere operasjonsforhold i brønner under primær sementer-

ing. Simuleringer har tatt for seg kompleksiteter som ikke-Newtonske væsker og eksentrisitet

i ringrom for både en-fase og trefase strømning av borevæske-spacer-cement.

Studien har identifisert væskeforskyvningen og feil moduser av væske forskyvning grunnet

høy eksentrisitet. For en-fase analyser har de numeriske resultatene vist en ± 5% nøyaktighet

sammenlignet med eksperimentell data og studier utført av Zhigarev et al. (2011). Fler-

fase simuleringene har vist av borevæske-spacer-sement viser tilstrekkelig forskyvningsef-

fektivitet. Likevel bør en økning av modelleringskomplesititen bli utført for for å få en mer

nøyaktig representasjon. Dataen som er tilegnet for flerfase simuleringer burde også bli veri-

fisert mot eksperimentelt arbeid for å rettferdiggjøre CFD-modellen brukt for produktdesign

og analyser av spesifikke forhold. Alt i alt er en CFD fremgangsmåte for analyse av primær

sementering en effektiv metode for å tilegne seg informasjon for å forbedre sementering og

for å sørge for sone-isolasjon, som er nødvendig for brønnintegritet.
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Part I.

Fluid Displacement in Wellbores
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Introduction 1

1.1. Problem description

For completion of wells, the main purpose of cementing operations is to provide zonal iso-

lation and provide well-integrity. A key factor determining successful cementing is an ade-

quate removal of drilling fluid. Effective displacement of drilling mud is an important el-

ement to ensure sufficient cuttings transportation during drilling operations, and conse-

quently provide a successful cement job in a wellbore. To establish optimal mud removal, the

main technique is to displace the drilling mud with a spacer fluid. The spacer has modified

rheological characteristics designed for a favourable mud-to-spacer and spacer-to-cement

interaction to enhance the fluid displacement. For many cases, it is desirable to monitor

how this interface evolves in time. However, an improper displacement of spacer and mud

may lead to contamination during the cementing. The contamination of drilling muds or

spacer fluids in the cement, can have unfavourable effects during cement settlement and

consequently, a significant increase in costs due to the requirement of remedial repair of the

Figure 1.1.: Settlement of cuttings during horizontal drilling (Courtesy of
Centraflow).
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1.1. PROBLEM DESCRIPTION

inadequate cemented wellbore.

Other factors that impact the mud displacement is the wellbore geometry, mud condition-

ing, drill string movement, casing centralization and optimal pump operations [18]. Yet, it

is often the lack of information to which these variables affect the displacement of drilling

fluids, especially when these complexities are combined. An assumed simple displacement

operation can evolve into a challenging scenario when the variables are increased. The oil &

gas industry has performed numerous studies in this area over the last centuries to evaluate

the importance of these parameters and their effect on displacement efficiency [19].

Despite the number of theoretical, numerical and experimental research devoted to drilling

fluids in wellbores, it is difficult to give a complete description of flow characteristics in

the wellbore for a wide range of drilling operational parameters. In practice, annular flow

increases in complexity due to the presence of eccentricity in annuli, as well as rotation

and reciprocation. Moreover, the drilling fluids applied for drilling operations exhibit non-

Newtonian behaviour. In general, no exact analytic solution can describe this intricate flow

which is complex by nature. Since a well-described solution does not exist, this is still ac-

tively studied.

Figure 1.2.: Inadequate cementing due to the presence of cuttings in the
wellbore (Courtesy of Centraflow).
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1.2. MOTIVATION & OBJECTIVES OF RESEARCH

1.2. Motivation & Objectives of Research

The thesis is developed from a collaboration with the oil & gas company, Centraflow. With

the defined problem description stated previously, Centraflow has developed and designed

down-hole products which aim to improve the fluid displacement. The main series of prod-

ucts, namely CE-BOND, have the ability to divert the flow such that fluid displacement is

desirable in different modes during the drilling operations. These modes can be fluid dis-

placement and cuttings transportation in deviated and horizontal wellbores, drill-string ec-

centricity due to gravity forces, and all aspects related to pumping of various fluids related

to primary cementing.

The basis of the product comes from a patented flow-diversion design, where models have

been designed in CAD environment, analyzed and optimized with CFD as a design tool, and

validated with flow loop tests. The following study emphasizes on the CFD modelling en-

forced to provide a multi-purpose model for flow analysis and design optimization. This

thesis is a continuation of the project work performed in the fall of 2017.

The scope for this thesis will be on the following focus areas:

• Laminar flow behaviour of non-Newtonian fluids

• Rheological analysis of non-Newtonian fluids

• Assessment of CFD tools in the CFD-software, Fluent

• Assessment of CFD implementation in Fluent

• Development of CFD model for non-Newtonian fluids

• Analysis of the effect of eccentricity for single-phase flow

• Analysis of the displacement efficiency for three-phase flow

• Propose suggestions for improvement of primary cementing in well operations

The thesis aims to increase the knowledge of fluids exhibiting non-Newtonian behaviour in

annular flow, determining important flow characteristics such as pressure losses and veloc-

ity profile in annuli. It can be noted that flow regimes in the transition to turbulent and fully

turbulent flow, as well as modelling of cuttings transportation with the non-Newtonian flu-
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ids, are not considered. Only operational conditions regarding the pumping of fluid trains in

annuli are of interest.

Figure 1.3.: The flow diverter product, CE-BOND.

Figure 1.4.: Flow visualization for streamlines past CE-BOND in an eccentric
annulus.
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1.3. OUTLINE OF THE THESIS

1.3. Outline of the Thesis

In the following, an outline of the structure of the thesis is presented.

Part I: Fluid Displacement in Wellbores

The following chapter contains a background description of fluid displacement, with em-

phasis on primary cementing and the drilling problems related to the aspect of petroleum

engineering, respectively.

Part II: Computational Fluid Dynamics

Chapter 3 highlights the governing equations of the fluid dynamics and models used. Chap-

ter 4 provides an assessment of CFD implementation and the techniques utilized in the CFD

model. Chapter 5 presents the knowledge behind computational domain, such as grid struc-

ture and grid generation for CFD analysis.

Part III: Simulations & Case Studies

Chapter 7 presents the results of the CFD analysis performed. Lastly, Chapter 8 provides a

conclusion of the study.
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Background 2

For sub-surface operations, drilling and cementing of wells is the most critical component

for well completion. For various well architecture and constructions, the structure must sat-

isfy extreme criteria of robustness. The process of drilling and cementing is referred to as

primary cementing, and is the well completion process which is the main focus areas of this

thesis.

2.1. Primary Well Cementing

Drilling of Wells

The process of drilling is essentially having a drill bit attached to a drill string, cutting into

the Earth by mechanical actions of shear and cutting forces. During drilling operations, the

fragmented rock, referred to as cuttings, is transported by drilling muds to the surface for

collection. The drilling mud is pumped through nozzles on the drill bit and has various other

applications, such as providing cooling, lubrication, etc. The drilling mud is pumped into

the wellbore and transports the cuttings through the annulus between the drilling string and

wellbore, illustrated in Fig. 2.1. When the drilling fluids reach the surface, the cuttings are

filtered out by systems called shakers, and then pumped back down to the well.

Downhole Pressures

An important function of drilling mud is to control the pressure inside the well during drilling.

The drilling mud forms a column inside the wellbore, exerting hydrostatic pressure to the
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2.1. PRIMARY WELL CEMENTING

Figure 2.1.: An illustration of the most common drill bit, polycrystalline
diamond compact (PDC), drilling through formations [1].

formation preventing the well from collapsing. The properties of the drilling mud can be

varied by changing the density with various weighting-agents.

The pressure exerted by the fluid column must be lower than the pressure causing the forma-

tions to fracture and higher than the pressure caused by the fluids in the rock. This is com-

monly known as the drilling window, seen in Fig. 2.3a. For drilling operations, the drilling

window highly dictates the drilling progression and the quality of the well integrity.

There exist four different downhole pressure modes of importance. Formation pressure, or

pore pressure, refers to the pressure of hydrocarbons within the pores of a reservoir. The

wellbore pressures must exceed the pore pressure to prevent leakage into the annulus dur-

ing drilling. Break-out pressure, which is the pressure at which stress-induced enlargements

occurs in the wellbore. This limit occurs when the pressure exerted by the fluid column is

to low and does not fully support the surrounding formation. Fracture pressure, also known

as the breakdown pressure, is the pressure at which the formation will break due to excessive

pressures exerted by the fluids. This leads to cracks and pockets which allow fluids to flow

inside. The final downhole pressure mode is the hydrostatic pressure. This is the pressure

of fluids present in reservoirs. The pressure is exerted by the fluid column from a depth of

reservoir onto the formations. All four modes can be seen in Fig. 2.2.

In order to maintain proper progression whilst maintaining the drilling window, different

wellbore sizes are drilled with its corresponding casings. There exist standards of drilling
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2.1. PRIMARY WELL CEMENTING

(a) Pore pressure. (b) Break-out pressure. (c) Fracture pressure. (d) Hydrostatic pressure.

Figure 2.2.: Downhole pressure modes.[2]

convention, dictating sizes of the wellbore and casings. This can be modified if drilling in a

complex environment and narrow pressure windows are needed. This is done by cementing

sections in the wellbore, and consequently maintaining, or saving, progress. Cementing is

performed when the pore pressure gradient at the bottom-hole excess the fracture pressure

in the wellbore. A casing-string transported down the well while the drill-string is replaced

with string for pumping fluids [20].

Cementing Process and Functions

For drilling operations to take place, the process of transporting cement slurry into the well-

bore is referred to as the cementing process. The aim is to fill the annular space between the

casing string and wellbore with cement, providing a seal and mechanical structure support-

ing the casing for operational procedures.

The purpose of the cementing process is to displace the cement slurry throughout the an-

nulus, creating a bonding between the casing and the formation. Conventional methods

involve pumping cement down the casing and displacing it around the casing shoe into the

annulus. This also creates a zonal isolation in the wellbore. Zonal isolation is defined as

isolating one zone from another, preventing cross flow and contamination between the dif-
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2.1. PRIMARY WELL CEMENTING

(a) Drilling window with pressures. (b) Drilling window with casings.

Figure 2.3.: Drilling windows during drilling operations [2].

ferent zones in the casing. Different zones can, for example, be between two different casing

sizes, defined by the well schematics. Overall, a proper cement job is essential for further

drilling, and for the production of any reservoir operations to take place.

The most important functions of a primary cementing can be represented in the following

[20]:

• Provide zonal isolation

• Prevent movement of fluids between formations

• Provide structural integrity and protection of casing

• Provide isolation of the casing from corrosive fluids from the formation

• Seal off lost circulation zones

• Seal off leaks

• Provide a temporary plug

• Provide a permanent plug (Plug & Abandonment)

There also exists mechanical requirements for the cement which mainly provide adequate
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2.1. PRIMARY WELL CEMENTING

compressive strength and low permeability during hardening of the cement slurry. This is es-

pecially important for geothermal wells. The most critical factor is to perform a satisfactory

cement job to prevent channeling.

Figure 2.4.: An illustration of cement flow in the annulus through the various
formations [3].

Cementing Modes

Primary cementing is the technique of displacing cement in annular spaces between the cas-

ing and the borehole. The counter-part of primary cementing is squeeze or remedial cement-

ing. This is the process of repairing a primary cement job or the process which falls outside of

primary cementing. Remedial cementing is the process of applying pump pressure to inject

cement into problematic void spaces at a desired location in the well. To remedy any faulty

primary cementing procedure to make sure that the criteria described previously in the list.

2.1 are fulfilled. Remedial cementing can be performed any time during the life of the well,

being during drilling operations, well-completion or production phase. The techniques used

involve forcing cement through perforations in the casing, created by a specialized tool, to

pump it into the problematic void spaces.
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2.2. FLUID FLOW AND DISPLACEMENT IN THE ANNULUS

2.2. Fluid Flow and Displacement in the Annulus

During the process of primary cementing, a sequence of different fluids is pumped down the

well into the annulus, in order to displace drilling mud and prepare the wellbore for cement-

ing. The effects due to eccentricity, breakouts, and irregular cross-sections in wellbores have

a significant impact on displacement efficiency. Moreover, it is shown that break-outs in the

wellbore may have a substantial negative effect on displacement efficiency, due to that the

displaced fluid might flow only into the break-out regions [20]. The effect of channelization

is proved to be present if the wellbore geometry is irregular, even if wash-outs and break-

outs are not present. Channelization may be effectively prevented by increasing the yield

stress of the displacing fluid. The failure modes which is of interest for this study is to be

discussed.

Mud Conditioning

Before the cementing procedure can commence, a sequence of fluids is pumped into the

wellbore in order to displace the drilling mud and prepare the annulus for cement place-

ment. The first process is to circulate all cuttings to the surface with the drilling mud. There-

after, the drill string is removed out of the well while circulating drilling mud to maintain

hydrostatic pressures in the pressure windows. The process of circulating mud is called mud

conditioning, and has also the purpose of removing all gas and solids and removal of filter-

cake. The mud conditioning is carried out as long as it takes to remove all solids and gelled

mud from the annulus [21]. During the entire process, the well is continuously logged to

obtain a full overview of the well conditions.

Another important aspect of proper mud conditioning is to replace the heavier and viscous

fluids used while drilling, with a fluid with less density and viscous properties which are

easier to displace during cementing. Ensuring that solids are not present near the wellbore

walls, will increase the possibility of better cementing. However, when conditioning with a

thinner mud, it is important to not inhibit its ability to hold weighting agents and solids in

suspension and circulation with the highest allowable flow rate is recommended, according

to current practices [22].
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Preflushing

When the wellbore is prepared with mud conditioning, fluids known as preflushes are in-

jected into the well. The preflush fluids are commonly called spacer fluids. The spacer

has to satisfy a set of requirements, preparing for cementing (Sauer, 1987, Nelson & Guil-

lot 2006):

• Wetting the casing and wellbore walls for improved bonding of cement

• Sufficient contact-time with the surfaces for improved bonding

• Pumped with high allowable flow rate for efficient mud removal

• Ensure efficient mud displacement

• Rheology-compatible with the cement for improved displacement

All of these criteria must fulfill general requirements, such as maintaining in the drilling win-

dow. For example, spacer fluids must not be pumped at rates which can lead to fracture pres-

sure. For industry practices, the effect of preflushing regarding contact-time recommends 10

minutes. According to Nelson & Guillot, contact-time of 4, 5 or 8 minutes of spacer exposure

in the wellbore are recommended. For shorter contact-times, the spacers should be pumped

in the turbulent flow regime, for increased hole-cleaning efficiency.

The purpose of a spacer is mainly to separate immiscible fluids and displacing drilling mud

and solids from the wellbore. In order to prevent sedimentation of solids, viscosifiers are

used as a major part of the spacer composition.

Main benefits of utilizing washes, is the increase of hole-cleaning capability, for both flow

regimes of turbulent and laminar flow. However, when the circulation process is stopped,

the risk of influx of formation-fluid is increased, due to the low density of the washers. The

Figure 2.5.: Example of a recommended fluid train for WBM drilling.
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pumping schedule should be planned such that the pressures in the wellbores are main-

tained in the pressure window.

To resolve this issue, the spacer fluids needs weighting in order to increase BHP and thus

prevent borehole instabilities. According to the work of Sauer (1997), the spacer should be 60

kg /m3 heavier than the drilling mud. Similarly, Khalilova et al. suggest spacers to optimally

be 10 % heavier, then the mud [23]. The commonly used weighting agents introduced in the

spacer are barite, hematite and calcium carbonate.

In addition to improving hole-cleaning efficiency, the weighting of the spacer means increas-

ing the fluid density. Consequently, BHP will increase which results in an increase of risk for

formation fracture. This must be accounted for when designing the spacer, as well as having

control of flow rates and pressure windows.

Importance of Fluid Displacement

The process of displacement of fluids in the wellbore during primary cementing are key fac-

tors which determine the structural integrity of the cement. Consequently, this highly affects

the lifetime of the well for production, as well as after the well is abandoned. If drilling mud

is to be left in the annulus, this may lead to failure modes, well control issues, and as a result,

economic and environmental impacts associated with cementing failure.

An ideal primary cementing operation implies that all fluids and solids are removed from the

wellbore, replaced entirely by cement. However, this is rarely achievable, due to the possibil-

ity of undisplaced fluids and solids, which may remain in wash-out areas and other geomet-

rical irregularities in the wellbore.

Main contributors which affect the fluid flow and displacement during primary cementing

are:

• Wellbore geometry (wash-outs, break-outs)

• Eccentricity

• Rheology of fluids

• Density of fluids
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• Operational conditions (Flow rate, pumping time)

• Well inclination

• Flow regime

• Circulation losses

• Fluid losses leaking into the formation

Figure 2.6.: Displacement of mud-spacer-cement for primary cementing [4].

2.2.1. Flow behaviour of Non-Newtonian Fluids

In the literature, there are extensive studies performed for analysis of the flow behaviour

of Non-Newtonian flow. Some of the most notable is the work by Metzner & Reed (1955).

A thorough study was conducted in order to obtain a correlated representation of the fric-

tion factor for flow analysis of annular flow. One of the key results was a representation of

the Reynolds number derived from an analytical point-of-view in conjunction with rheolog-

ical parameters, to use for computation of frictional pressure losses [24]. In recent times,

Madlener et. al. (2009) derived an extended version of the generalized Reynolds number

for flow analysis of non-Newtonian fluids, based on Metzner & Reed’s formulation, where

the Herschel & Bulkley model was at the focus for gelled fluids [25]. This resulted in a gen-

eral representation of the Reynolds number available for a range of non-Newtonian fluids
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expressed as:
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The results showed that the introduction of a generalized Herschel-Bulkley Reynolds num-

ber, ReGenHBE , is not valid only for fluids exhibiting viscosity characteristics of the Herschel-

Bulkley model, but for all viscosity laws which can be included in the given equation. These

viscosity laws are limited to, Newtonian, Bingham, Ostwald de Waele (Power-Law) and Herschel-

Bulkley, respectively.

The presented model allows estimating laminar, transitional and turbulent flow conditions.

Due to its general nature, the model is applicable for Newtonian as well as Bingham-Plastic

and Power-Law, due to relations between stated models with Herschel-Bulkley. It can be

shown that introducing the rheology parameter for a specific model in the generalized Herschel-

Bulkley equation, the aforementioned models will be derived. Thus, all viscosity laws are

included in the presented expression.

From their work, they observed that since the viscosity of their fluid of interest, kerosene-gel,

reached the Newtonian plateau for large shear rates, it is assumed that the critical Reynolds

number where the fluid transitions from laminar to turbulent was from that of Newtonian

fluids, Recr i t = 2300, up to around 4000, highly dependent on the rheology.
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2.2. FLUID FLOW AND DISPLACEMENT IN THE ANNULUS

Figure 2.7.: Correlated data of fluids with the Reynolds number model plotted
against friction factor, Madlener et al. (2009).

2.2.2. Effects of Eccentricity

The common term in petroleum engineering is to use stand-off as en measure of eccentric-

ity, which may be expressed as:

Stand-off [%] = C

A−B
∗100 (2.2)

, where A is the radius of the outer circle, B is the radius of the inner circle, and C is the lower

gap between the inner and outer diameter, seen in Fig. 2.8.

For 100 % stand-off implies concentricity between the casing and open-hole, and 0 % stand-

off denote that the casing is in contact with the wellbore.

For an annulus, eccentricity is defined as the ratio of the distance between the center of the

outer and inner diameter located on the axis. In mathematical terms, this may be expressed
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Figure 2.8.: An annulus defined with variables which decides degree of
eccentricity.

as:

Eccentricity = 1− C

A−B
(2.3)

If the casing string is eccentrically positioned in the wellbore, the main effect is for the fluid

to follow the path of less resistance. This will occur in the wider section of the wellbore, often

referred to as the high-side. Similarly, the narrow section in the annulus, due to eccentricity,

is called the low-side of the annulus. In addition, another contribution of high-side channel-

ing is the non-zero yield stress, which is the non-Newtonian characteristic of most drilling

fluid [20].

To give a more general classification of the different fluids, the drilling mud will be referred

to as mud, the injected fluids as spacer, and the cementing fluids as cement.

The efficiency of the displacement of mud in eccentric annulus is determined by the follow-

ing factors:

• Eccentricity/Stand-off

• Yield stress and effective viscosity

• Density of spacer

• Flow rates
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An alternative method for prediction of pressure loss in eccentric annulus was presented by

Haciislamoglu (1989). A correlation of frictional pressure losses for eccentric annulus was

presented by using a correlation factor and the pressure loss based on concentric geometry.

This correlation is expressed as:

R =

(
∆P f

∆L

)
e(

∆P f

∆L

)
c

(2.4)

, where the correlation factor, R, is given as:

R = 1−0.072
e

n

(
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)0.8485
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+0.96e3pn

(
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This treatment has been further analyzed for prediction of pressure losses have been used

in various studies, notably by Langlinais et. al. (1985) [26], Haciislamglu & Langlinais (1990)

[27] and more recently by Peng et al. (2013) [6]. For the latter, an error estimation of the

Herschel-Bulkley model was performed with high-order non-Newtonian rheology models.

Figure 2.9.: Correlation factor vs. eccentricity for a annulus with pipe ratio of 0.7
(Hacislamoglu & Langlinais) [5].
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(a) Pressure loss analysis from different rheologi-
cal models.

(b) Error analysis of the Herschel-Bullkey model.

Figure 2.10.: Rheology analysis for Herschel-Bulkley model performed by Peng. et. al. (2013)
[6].

As seen in Fig. 2.10, the Herschel-Bulkley model showed satisfactory fitment compared with

experimental data and other rheological models. It was shown for the error estimation of

Herschel-Bulkley that the error related to the ratio of the yield stress of the fluid and wall

shear stress increased as the ratio increased, with different flow index parameter, n.

2.2.3. Modelling Primary Cementing in Annulus

The modelling approach for fluid displacement may typically be performed in three different

ways, that is:

1. Kinematic Models

2. 2D Models

3. 3D Models

For complex geometry and conditions, it is shown that an utilization of CFD may yield a sig-

nificant amount of data for different flow problems. Numerous studies in this field have been

conducted, especially for pressure loss prediction, velocity characteristics, and multiphase

analysis for including two or more phases. Some studies that approach analyses with CFD

modelling will be presented.

For analysis of single-phase non-Newtonian fluids of the effect of eccentricity, there ex-
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2.2. FLUID FLOW AND DISPLACEMENT IN THE ANNULUS

ist numerous research in the literature. Sorgun & Ozbayoglu (2011) presented a study on

frictional pressure loss of horizontal drilling with non-Newtonian fluids [28]. By using a

Eulerian-Eulerian multiphase model, the authors performed extensive experiments, validat-

ing against the CFD simulations, and presented pressure losses and flow characteristics of

given cases. Sorgun (2010) [29] performed similar study, comparing with experimental and

the slot flow approximation, presented by Fredrickson & Bird (1958) [30]. Rushd et al. (2017)

[31], Zhigarev et al (2016) [32], Mao et al. (2012) [33] and Podryabinkin et al. (2013) [34], all

performed noticeable studies on the analysis of eccentric annuli.

On the other hand, for studies involving multiphase analysis for studying fluid-fluid in an-

nuli, present studies in the literature, there exists less extensive analysis. Both in terms of

modelling and experimental approaches.

Noticeable studies was performed by Zulqarnain & Tyagi (2016) [7] and Enayatpour & van

Oort (2017) [35], performing 2D and 3D CFD studies for modelling cement displacement

complexities. Both studies were based on three- and two-phase modelling approach with

mud-spacer-cement utilizing the Volume of Fluid (VOF) multiphase model. It can be noted

that the studies were not performed for the same case, but showed similarities in both ap-

proach and trends of the results. Although, the effects of displacement and the presence

of instabilities shows that the difference in CFD set-up, as well as rheology and operational

parameters, may have resulted in the difference in results.

Figure 2.11.: A presentative plot from the study Zulqarnain & Tyagi (2016),
describing a displacement plot [7].
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2.2. FLUID FLOW AND DISPLACEMENT IN THE ANNULUS

The areas of eccentricity and fluid-fluid analysis are the focus areas for this thesis of multi-

phase flow modelling of primary cementing.
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Fluid Dynamics & Flow Modelling 3

The basis of the following discussion is based on the fundamentals of fluid dynamics, which

are thoroughly discussed in Appendix. A.7.

For clarity, the most important mathematical aspects will be defined. The continuity equa-

tion, given as:

∇·u = 0 (3.1)

The Navier-Stokes equation, given as:

∂(ρu)

∂t
+∇· (ρu⊗u) =−∇P +µ∇·τ +SM (3.2)

The rest of the following chapter will have an emphasis on rheological modelling and imple-

mentation of the fundamental equations for CFD purposes.

3.1. Rheological Model Application for Viscous Term

The conservation equations for fluid flow has more unknown variables than equations. This

is referred to as a closure problem. To close the system, there is required additional mathe-

matical relations which can be denoted as constitute equations.

For viscous stresses, τ, a constitutive equation is the rheological equation of state, which de-

scribes the stresses in the fluid as a function of the strain rate that the fluid experience.
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3.1. RHEOLOGICAL MODEL APPLICATION FOR VISCOUS TERM

Fluids can be characterized as Newtonian and non-Newtonian. Newtonian fluids exhibit

viscous stress in the fluid as a function of a strain rate. More generally, isotropic, isothermal

Newtonian fluids have a constitutive equation given by:

τ =µγ̇− 2

3
µ(∇·u)δ (3.3)

, where µ is the constant dynamic viscosity, δ is the Kronecker delta and γ̇ is the strain rate

vector, or rate of deformation tensor defined:

γ̇ =∇u+ (∇u)T (3.4)

Applying the assumption of incompressible fluid, isothermal flow, and Newtonian fluid, the

viscous stress tensor becomes:

τ =µγ̇ (3.5)

Non-Newtonian contribution on Rheological Equation of State

For non-Newtonian fluid, various characterization can be used for describing it. The follow-

ing represents some ways:

• A fluid whose stress is a non-linear function of strain rate

• A fluid which exhibits non-zero normal stress difference in shear flows

• A fluid with a memory effect due to micro-structures

A non-Newtonian fluid cannot be described by eq.(3.3). Thus, another representation has to

be provided for it to be applicable in the viscous stress term. Two main classifications of non-

Newtonian fluids are time-independent (inelastic) fluids or time-dependent (viscoelastic)

fluids. In both cases, an important characteristic of a non-Newtonian fluid is a shear-rate
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3.1. RHEOLOGICAL MODEL APPLICATION FOR VISCOUS TERM

dependent viscosity, η(γ̇), where the shear rate is given by:

γ̇ =
√

1

2
γ̇γ̇=

√
1

2

∑
i , j
γ̇i j γ̇i j (3.6)

, where the last term is given by Einstein summation.

If the predominant rheological characteristic of a fluid is time-independent and shear rate

dependent viscosity, then the fluid may be modelled with the general constitutive equa-

tion:

τ = η(γ̇)γ̇ (3.7)

, where a viscosity model must be specified for η(γ̇). These models are empirical by na-

ture. Fluids with a shear rate-dependent viscosity η(γ̇) can be classified into different non-

Newtonian rheological classifications.

Classification of non-Newtonian Rheological Models

As stated previously, non-Newtonian fluids are characterized by a non-linear relationship

between strain and stress rates. These characteristics form the basis of classification of fluids

exhibiting different characteristics as the following [36]:

• Shear-thinning (Pseudoplastic)

• Shear-thickening (Dilatant)

• Yield-Value (Viscoplastic)

For each of these classifications, there exist various different non-Newtonian models de-

scribing the rheology of the fluid. Deciding which model which is suited for the numeri-

cal computations, is affected by various factors. For instance, the rheology of the fluid it-

self, which can be determined through experiments, required accuracy, computational re-

sources, complexity, etc.
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3.1. RHEOLOGICAL MODEL APPLICATION FOR VISCOUS TERM

Figure 3.1.: Four time-independent fluids presented [8].

Rheological Parameters non-Newtonian Fluids

For a general description of non-Newtonian behaviour, three parameters characterize this

relationship, namely the consistency index, K , flow index parameter, n, and yield shear stress,

τ0. The consistency index describes the rheological properties related to cohesion in the

fluid, its ability to deform and its resistance to the flow. The consistency index is directly

proportional to the effective viscosity of the fluid [37]. The flow behaviour index is the mea-

sure of the shear-thinning effect. For Newtonian fluids, this relationship is linear, i.e n = 1.

Fluids with shear-thinning properties have flow behaviour index of n < 1, whereas shear-

thickening fluids have values of n > 1.

Due to the fact that the viscosity of non-Newtonian fluids changes with the shear rate, the

term of effective viscosity is defined to give an expression which compensates for the change

of shear rate of the viscosity. The effective viscosity and the corresponding effective shear

stress can be defined as:

ηe = µ

γ̇
τe = τ

γ̇
(3.8)

, where ηe denotes the effective viscosity and τe is the effective shear stress. The viscosity η
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3.1. RHEOLOGICAL MODEL APPLICATION FOR VISCOUS TERM

is used to distinguish effective viscosity from the dynamic Newtonian viscosity, µ.

For Bingham-Plastic fluids, shear stress can be defined as:

τe = τ0 + K γ̇ (3.9)

For Power-Law fluids, the non-Newtonian model is represented by the Ostwald de Waele

model,

τe = K γ̇n (3.10)

For the Yield Power-Law model, also known as the Herschel-Bulkley model, a three-parameter

fluid model is used to model the fluid behaviour. This was introduced by Herschel & Bulkley

(1926) and is represented as:

τe = τ0 + K γ̇n (3.11)

Figure 3.2.: An illustration of different velocity regions for three type of fluids in
eccentric annuli [9].

Choosing the non-Newtonian model will ultimately decide which mathematical representa-

tion of η(γ̇), which is to be implemented for the viscous stress. Consequently, the fluid prob-

lems involving non-Newtonian fluids are very similar to Newtonian problems, but where the

expression for shear stress is determined by either eq. (3.5) for Newtonian fluids, and eq.

(3.7) for Non-Newtonian fluids, where a suitable non-Newtonian model needs to be speci-

fied for solving the problem.
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3.2. Multiphase Flow

Multiphase flow is defined as the simultaneous flow of material of different phases, i.e gas,

liquid and solid, or exhibiting chemical properties for the same phase, such as a fluid-fluid

system of oil in water. The phases may be denoted as primary, secondary phases, and so on,

depending on the number of phases of interest. For two-phase dispersed multiphase flow,

the primary phase will be the continuous phase whilst the secondary are dispersed in the

continuous phase. For stratified flow, the phases are separated by an interface between the

phases [38].

Regarding multiphase flow, the volume fraction of phases of the domain is often of interest.

Each phase exhibit the same flow characteristics as any fluids. The major difference com-

pared to single-phase flow, taking dispersed flow as an example, the primary phase may be

in the turbulent flow regime, while the secondary phase remains turbulent with respect to

the continuous phase.

In the following a list of multiphase flow regimes is given:

• Discrete bubble flow: Discrete gaseous bubbles in continuous liquids

• Annular flow: Continuous liquid along walls where gaseous flow is in the core

• Droplet flow: Discrete fluid droplets in continuous gases

• Slug flow: Large gaseous bubbles in continuous liquid

• Particle-laden flow: Discrete solid particles in a continuous fluid

• Stratified flow: Immiscible fluids separated

• Free-surface flow: Immiscible fluids separated by an interface, such as air and water

In industrial applications, multiphase flow is of importance for processes such as fluidized

bed, bubble-column reactors, scrubbers, combustion, open channel flows, etc. The typi-

cal objective when conducting flow analysis for multiphase flow is to understand the flow

dynamics of the total system or the interaction of phases for an operation or process.
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Figure 3.3.: Example of gas-liquid flow for different multiphase flow regimes
[10].

3.2.1. Physics of Multiphase flows

Due to the complexity of multiple phases for a flow problem, there are various characteristics

that must be understood before performing a multiphase analysis. These may be:

• Characteristics of the flow

• Flow regime present for the phases

• Modelling one flow regime at a time

• Diluted or dense flow

• Additional physical modelling, such as for drag considerations

3.2.2. Modelling approach

There exists several approaching for modeling the physics of multiphase flow. The most

basic is the empirical correlations, to the fully resolved and coupled treatment. In between

are of these two extrema are the five main classes for multiphase analysis, which is [39]:

• Eulerian-Lagrangian model

• Eulerian-Eulerian model
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3.2. MULTIPHASE FLOW

• Mixture model/Algebraic-slip model

• Porous-bed Model

• Volume-of-Fluid Model

For Eulerian-Lagrangian modelling, the primary phase is modelled as a continuum, solving

for the Navier-Stokes equations. For the secondary phase, a large number of individual par-

ticles are modelled as the dispersed phase, where it can exchange mass, momentum, and

energy with the fluid phase. Due to this treatment, the particle trajectories are computed for

either each particle or for a bundle of particles. This approach is limited to systems where

the volume fraction of the dispersed phase is low.

For Eulerian-Eulerian models, all phases are treated as continuous phases, where continuity

and momentum are solved for each phase. This model can handle flows with high com-

plexity, but may not yield satisfying results, due to that empirical models is needed due to

closure problems of the momentum equations. Applications for this model are stirring in

tanks, bubble columns, and other areas.

For mixture model, also referred to as Algebraic-slip model, the phases are assumed to inter-

act in a significant manner, such that solving momentum balances between phases for each

phase is not required. A key factor is the mixture model is the modelling of viscosity for the

mixture. Velocities for the respective phases are computed from drag, buoyancy and other

forces that may affect the flow characteristics. Examples of applications are fine particle sus-

pensions, stirring and other.

For the porous-bed model, the modelling aspect is the pressure drop across the porous bed.

Assuming a bed containing a lot of particles, the geometry complexity becomes a constraint

for solving the Navier-Stokes. Thus, the pressure drop is needed through derived mod-

els.

Lastly, for the Volume-Of-Fluid model, this model is based on a Eulerian-Eulerian type, where

the interface between phases is tracked. VOF modelling is suitable for stratified flows, free-

surface flows and bubble flow where there exists large movement in liquids. Due to issues

resolving the interfaces, it is not applicable for small droplets or bubbles.
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The most relevant model for the problem of interest, the VOF model is the most suited model

to analyze the displacement of mud, spacer, and cement. When the rheology of the fluids

chemistry is developed, fluid interaction is an important parameter, where the fluids should

not intermix or disperse during displacement. Due to this premise, this implies that stratified

flow is a reasonable assumption. Thus, any further discussion of multiphase modelling will

have an emphasis on stratified flow, and especially VOF modelling.

Models for Stratified Flows: Fluid-Fluid Interaction

As mentioned in Section. 3.2.2, the objective is to track the interface of the phases. Where La-

grange and Euler-Euler models fail, utilization of stratified modelling such as front-tracking,

level-set or VOF methods should be applied. Furthermore, these models can be applied for

more advanced CFD approaches, such as DNS for dispersed multiphase problems. It must

be noted that the aforementioned methods assume no-slip condition between the interface,

which also will require to be resolved all the way to the Kolmogorov length scale in presence

of turbulence.

(a) Actual Interface. (b) Geometric reconstruction. (c) Donor-acceptor scheme.

Figure 3.4.: Interface calculations for geometric reconstruction and the donor-acceptor
scheme to represent the actual interface [11].

3.2.3. Volume-of-Fluid Method

The VOF method uses the volume fraction on a cell basis to give information about the inter-

face. The advective terms of the equation are solved by special schemes, such as Lagrangian

and geometrical schemes. The schemes for the advection can handle situations regarding
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cross-flow and are better at handling mass conservation, rather than the counterpart, which

is the levet-set method. However, due to the interface problematics, it can be shown that the

accuracy is only first-order in space and time, and a refined computational grid is required

to resolve the physics.

Volume Fraction of Multiphase systems

The tracking of interfaces is performed by obtained the solution of the continuity equation

expressed with the volume fraction of the phases. This can be expressed as [11]:

1

ρq

[
∂

∂t
(αqρq )+∇· (αqρq vq = Sαq +

n∑
p=1

(ṁpq −ṁqp )

]
(3.12)

, where αq is the volume fraction of the qth fluid, Sαq is the source term, and ṁpq and ṁqp

is the mass transfer between the phase p and fluid q .

The volume fraction, α, has three possible conditions are the absense of fluid q in a cell,

αq = 0, fluid q completely fills the cell, αq = 1, and where a cell contains the interface and is

filled by fluid q with one or more fluids, 0 ≤αq ≤ 1.

The material properties of a multiphase system of n phases, the density is computed by the

volume fraction averaged density given as:

ρ =∑
αqρq (3.13)
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Figure 3.5.: An illustration of interface between two fluid and showing the
normal-vector [12].

Surface Tension

VOF modelling includes the effects of surface tension forces for the interface between the

phases. Additional specifications of contact between the phases and the walls, such as cap-

illary forces, can be implemented if required. These forces are included in the formulations

for momentum equations for the source terms.

The surface tension model used for formulating the VOF in Fluent is the continuum surface

force model presented by Brackbill (1992) [40]. Surface forces can be expressed as volume

forces, by applying Gauss’s theorem, and the following can be expressed as[11]:

Fsur f ace =
∑
i 6= j

σi j
αiρi∇·n j∇α j +α jρ j∇·ni∇αi

1
2

(
ρi +ρ j

) (3.14)

, where σ is the surface tension coefficient and ∇·n divergence of the unit normal vector in

the i - or j -direction.

For the momentum equations, the computation of eq.(3.12), (3.13) and (3.14) is used in the

momentum equation (A.14), where the surface forces are included in the source term. It

must be noted that only the cell in the interface that is shared among the cells for the respec-

tive phases that the momentum equation is different than that of single-phase models.
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The effects of surface tension must be included in the analysis by checking the capillary

number and Weber number. These are defined as:

C a = µU

σ
W e = ρLU 2

σ

, where U is the free-stream velocity, and L is the length scale.

The effects of surface tensions should be included if C a < 1 or W e < 1, and may be neglected

if C a >> 1 or W e >> 1.

The energy equation is not considered due to its absence from the CFD model used in the

thesis. For other scalar quantities, such as turbulence variables, a single set of transport

equations is solved where the turbulence parameters are shared for the phases.
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3.3. General Transport Equation

From the momentum Eq. (A.14), it can be shown that there are significant commonalities

between the various equations. Introducing a general scalar variable φ, the conservative

form of all fluid flow equations, including equations for scalar quantities, may be written in

general form, expressed as the following:

∂(ρφ)

∂t
+∇· (ρφu) =∇· (Γ∇φ)+Sφ (3.15)

, where Φ is a scalar transport property, Γ is the diffusion coefficient, and SΦ is the source

term ofΦ [15].

It can be noted that bringing out the common features for the transport equations requires to

hide term which is not shared between the conservation equations into the source term, Sφ.

This mathematical representation clearly highlights the various transport properties present

for fluid flow.

In words, Eq.(3.15) represents rate of increase of φ of the fluid element + net rate of flow of φ

out of fluid element, which equals the rate of increase ofφ due to diffusion + rate of increase

of φ due to source terms.

Eq. (3.15) is the instance of departure for computational procedures for FVM, which will be

explained and analyzed in more depth in section 4.2. By providing an input of φ equal to

the transport properties (1, u, v, w, P, etc.), and selecting suitable values for Γ and Sφ, the five

PDEs of mass, momentum and energy conservation is obtained, seen in Table. 3.1.

The key step of FVM, which is to be developed, is the integration of Eq. (3.15) over the

CVs:

∫
CV

∂(ρφ))

∂t
dV +

∫
CV

∇· (ρφu)dV =
∫

CV
∇· (Γ∇φ)dV +

∫
CV

SφdV (3.16)

The volume integrals can be rewritten as the integrals over boundaries of the CVs. This is
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Table 3.1.: Transport Equation variable substitution for acquiring the fluid equations.

Equation φ Γ Sφ

Mass Conservation 1 1 φ

X-momentum u µ
∂p
∂x +ρ fx

Y-momentum v µ
∂p
∂y +ρ fy

Z-momentum w µ
∂p
∂z +ρ fz

Energy Equation T κ/cp (τ ·∇) ·u/cp

Specific Mass Fraction Yk ρDk ω̇k

performed be using Gauss’s divergence theorem, which can be stated as:

∫
CV

∇· (a)dV =
∫

A
a ·nd A (3.17)

, where a is a arbitrary vector and n · a is the component of vector a in the direction of the

vector n normal to surface element d A.

Applying Gauss’s Divergence Theorem to Eq. (3.16), Eq. (3.16) can be written as:

∂

∂t

(∫
CV

∂(ρφ))

∂t
dV

)
+

∫
A

(ρuφ ·n)d A =
∫

A
(Γ∇φ ·n)dV +

∫
CV

SφdV (3.18)

It can be shown that in the general transport equation Eq. (3.18) can become the fundamen-

tal fluid equation be substituting φ, Γ and Sφ with the terms seen in table 3.1, as discussed

previously.

The discussion presented, clarifies that integration of the PDE generates a statement of the

conservation of fluid properties for a finite-sized control volume. This forms the fundamen-

tal basis of the Finite Volume Method for solving fluid flow problems.
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A discretization method is a technique of approximating the partial differential equations by

a system of algebraic equations for the variables of a set of discrete locations in space and

time. The discretization process for Finite Volume Method (FVM) can be summarized with

the following properties:

• Method based on discretizing the integral form of the conservation equations over

each control volume of the discrete domain. The basic quantities, such as mass and

momentum, will be conserved at the discrete levels.

• Method is applicable for control volumes for any given geometry

• The systems of PDEs is evaluated in a coupled or segregated matter

• Method is applicable for both steady-state and transient simulations.
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4.1. Differencing Schemes

In computational physics, various different numerical methods exist for solving partial dif-

ferential equations. Furthermore, numerous classes of numerical discretization methods are

available for treating PDEs of different characteristics.

The following section will only take account for numerical discretization methods commonly

used for CFD applications, and utilized in this thesis.

4.1.1. Assessment of Upwind Discretization Scheme

Upwind Scheme

For analysis utilizing computational physics, the schemes using an upwind approach known

as upwind schemes, denote a class of discretization methods for solving hyperbolic PDEs.

Upwind schemes are based on an adaptive FDM evaluate the direction of which the infor-

mation in a flow field propagates. Moreover, by using FDM biased approach, the direction of

flow propagation are determined by the characteristic speeds [41].

To be able to illustrate this method, consider the linear advection equation in the x-direction:

∂u

∂t
+a

∂u

∂x
= 0 (4.1)

, which describes a wave propagating with a velocity a in the x-direction.

First-order Upwind Scheme

The most simple upwind scheme of eq. , is the first-order upwind scheme, given by:

un+1
i −un

i

∆t
+a

un
i −un

i−1

∆x
= 0, f or a > 0 (4.2)
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un+1
i −un

i

∆t
+a

un
i+1 −un

i

∆x
= 0, f or a < 0 (4.3)

Second-Order Upwind Scheme

For discretization of the linear advection equation, the spatial accuracy can be increased

by evaluating for three nodes, instead of two which is the case for the first-order upwind

method. As a result, a more accurate finite difference stencil is used to approximate the

spatial derivative. The second-order upwind scheme may be expressed as:

u−
x = 3un

i −4un
i−1 +un

i−2

2∆x
(4.4)

and a three-point forward difference is defined,

u+
x = −un

i+2 −4un
i+1 +3un

i

2∆x
(4.5)

(a) First-order upwind. (b) Second-order upwind.

Figure 4.1.: Stencils for first- and second-order upwind considered in the x-direction.
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Stability of the Upwind Schemes

For the transient simulations performed in this thesis, being aware of the stability conditions

is a great tool for preventing diverging simulations.

The stability of the upwind scheme is determined by the Courant-Friedrichs-Lewy (CFL)

condition is satisfied [42]:

C =
∣∣∣∣a∆t

∆x

∣∣∣∣≤ 1 (4.6)

If a Taylor expansion analysis of the upwind scheme is performed, it can be shown that the

scheme is first-order accurate in space and time, i.e O(∆x,∆t ).

Using first-order difference in time, and first-order upwind in space, it can be shown by per-

forming a von Neumann stability analysis that the first-order upwind scheme has a stability

condition of:

C ≤ ∆x

∆t
(4.7)

Eq. 4.7 shows that the discretization scheme is conditionally stable if and only if the velocity,

C, is less then the step length, ∆x/∆t , where the ∆x can represent the size of the largest cell,

and ∆t is the time-step.

For the second-order upwind consideration, we assume that first-order difference stencil for

time in the linear advection equation. This is also known as the Beam-Warming second-

order upwind method [43]. Through von Neumann analysis, with Fourier analysis applied,

it can be shown that the stability condition is:

∆t ≤ 2
∆x

|a| (4.8)

, where the CFL condition should be fulfilled.
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The second-order scheme show less diffusive behaviour compared to the first-order scheme.

In addition, the scheme has the ability to not be restricted by the Peclet number and has a

less diffusive than the first-order scheme, which results in a more accurate method when

applied for discretization of physical problems.

4.1.2. Properties of Discretization Schemes

The downside of the differencing method is that for certain cases for both convection and

diffusion, it is highly beneficial to be aware of the properties of the discretization schemes.

Since the computational domain has to be divided into a finite amount of cells, the numer-

ical analysis will only be physically feasible when the discretization employed show certain

properties. The most influential is the following:

• Consertiveness

• Boundedness

• Transportiveness

Accuracy and stability will also provide significant relevance, but in terms of the effect of

discretization, the focus will be on the three presented properties.

Conservativeness

Evaluating convection-diffusion problems over a finite computational domain, consisting

of finite control volumes yields a system of discretized conservation equations involving the

transport property φ through the CV. To ensure that the conservation laws are met for the

solution of the entire domain, the transport property φ entering and leaving a CV must be

equal to give physical meaning. This is achieved by representing the adjacent cells that share

a common cell boundary in a consistent manner for the entire system of CVs.

Boundedness

At each node, the discretized equations represent a set of equations that is to be solved to

obtain a solution. Typically, iterative techniques are utilized to solve these large systems
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of equations. These methods initialize the solution with an initially guessed distribution of

the transport quantity, φ, and continuously update the data structure for the computational

domain until a converged solution is reached. It can be shown that a sufficient condition for

convergence of iterative methods, in terms of numerical analysis, can be expressed as:

∑ |anb |∣∣a ′
p

∣∣ =
 ≤ 1 at all nodes

< 1 at least in one node
(4.9)

, where a
′
p is the net coefficient of cell P, and the summation is taken over all the neighbouring

nodes (nb) [44].

If the chosen differencing schemes produce coefficients from the discretized transport equa-

tion that satisfy the criterion given in eq. 4.9, the resulting coefficient matrix is diagonally

dominant. Diagonally dominance is a property that satisfies the criterion of boundedness.

Transportiveness

The property of transportiveness for fluids, can be illustrated by considering the effect at the

cell of interest, P , due to constant sources of the transport quantity φ [45].

This can be quantified by using the cell-Peclet number, which is a measure of relative strength

convection and diffusion expressed as:

Pe = F

D
= ρu

Γ/δx
(4.10)

, where δx is the characteristic length [15].

For two extreme cases, as the cell-Peclet number goes towards 0, this means there is no con-

vection and pure diffusion. Where the counterpart is the cell-Peclet number going towards

infinity, there is no diffusion and pure convection. The transportiveness is an important

measure, as it represents the relationship between the flow direction and rate of transportiv-

ity, expressed with the cell-Peclet number. The transportiveness is directly bourne from the
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discretization scheme.

44



4.2. DISCRETIZATION OF TRANSPORT EQUATIONS

4.2. Discretization of Transport Equations

In the following, the discretization of the transport equation will be used in conjunction with

FVM that results in the solution of equations, which form the basis of what is to be solved in

a CFD simulation.

4.2.1. Discretization of the Continuity Equation

From the continuity equation, Eq. A.5, may be integrated over the control volume, as seen in

Fig. 4.3 to yield the following discrete equation [11]:

N∑
f

J f A f = 0 (4.11)

, where J f is the mass flux through cell boundary f , A f is the area of boundary f , and is

summed over all boundaries of the control volumes.

Due to the utilization of staggered grid to prevent checkboard pattern, further discussed in

Section. 4.7.1, Fluent uses a technique similar to that of Rhie and Chow, preventing nu-

merical diffusion [46]. The discretization of continuity is performed where a momentum-

weighting average is computed. This is done by using weight-factors based on coefficient

from the cell-center, ap , performed during the iteration of the transport equation for mo-

mentum, seen in Tab. ??. In conclusion, continuity is calculated with the following expres-

sion:

J f = ρ f
ap,c0vn,c0 +ap,c1vn,c1

ap,c0 vn,c1
+d f

(
(pc0 + (∇p)c0 ·~r0

)− (
pc1 + (∇p)c1 ·~r1)

)
= Ĵ f +d f (pc0 +pc1 )

(4.12)

, where the pressure and velocities is given by pc0 , pc1 and vn,c0 , vn,c1 , and Ĵ f contains influ-

ence of velocities in the cells of interest. The term given as d f is a function of the average of

the momentum equations for the cell-center, denoted āp [11].
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4.2.2. Discretization of the Momentum Equation

For the transport equations, the difference scheme is already described in Section. 4.1. The

following discretization is used for all scalar quantities, including for momentum. If the

transport quantity is set as φ = u, in eq. 4.18, the x-momentum equation is calculated in

the form [11]:

ap u =∑
nb

anb unb +
∑

p f A · î +S (4.13)

, where p f is pressure at a cell boundary calculated from an interpolation scheme.

The reasoning for having an additional calculation of pressure is to solve the problem due to

storage of data and discretization of the pressure gradient. If all velocities and mass fluxes

are known, the velocity field can easily be obtained. However, these quantities are not known

a priori in the calculation and must be obtained during calculation of the solution. Due to

the fact that a co-located scheme is enforced, the pressure and velocity are stored at the

cell-centers, and not directly at the boundary of the cell, where it is calculated. Thus, an

additional scheme is required to interpolate the pressures at all boundaries, given by the

cell-value. The p f is then calculated by [11]:

P f =
Pc0

ap,c0
+ Pc1

ap,c1

1
ap,c0

+ 1
ap,c1

(4.14)

It can be mentioned that the interpolation scheme can be changed to any discretization

scheme desired, but requires a more delicate procedure to adjust the solver calculation.
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Figure 4.2.: An illustration of CV evaluation for gradients and scalar value
consideration.

4.2.3. Differencing Schemes Employed in the Transport Equation

For the discretized equations to be computed, suitable differencing schemes should be cho-

sen satisfying the requirements regarding the physical problem, mesh, accuracy and com-

putational time.

Depending on the aforementioned requirements, suitable spatial discretization schemes im-

plemented for the solution method must be chosen. For general fluid problems, there are

three variables which must be solved for in any fluid dynamical problem. Due to the use of

numerical methods, this results in choosing discretization schemes for:

• Gradient

• Pressure

• Momentum

4.2.4. Spatial Discretization: Gradient

The gradient ∇φ of the transport property φ, is computed to be able to discretize the con-

vection and diffusion terms. In Fluent, the gradients may be computed by three different

methods:

• Green-Gauss Cell-Based

• Green-Gauss Node-Based

• Least-Squares Cell-Based

47



4.2. DISCRETIZATION OF TRANSPORT EQUATIONS

Computing and obtaining gradients is important for calculating values of any scalar at the

cell boundaries, as well as computing velocity derivatives and secondary diffusion terms. If

any other method is desired, a User-Defined code must be implemented.

The Green-Gauss Cell-Based computes face values taken from the arithmetic average of the

values of the neighbouring cell centers. The Green-Gauss Node-Based computes the face

values from the arithmetic average of the nodal values on the face.

Least Square Cell-Based

The focus will now be addressed for the Least-Square Cell-Based which is the difference

scheme used for gradient calculations in this thesis. For the method, a major assumption

is that the solution is assumed to vary linearly. The change in cell values from an arbitrary

cell C0 and Ci along the vector ri , from the cell-center c0 and ci can be expressed as:

(∇φ)
i · ri =

(
φi+1 −φi

)
(4.15)

, where φ represents any quantity of interest and ri is the distance between cell i and the

adjacent cell of interest i +1.

Figure 4.3.: An illustration of cell-center evaluation for least-square cell-based
gradient.

The linear system of equations that is stated is over-determined, and is solved by using the
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Gram-Schmidt process [47] in the code. The result of the process is a matrix of weights for

each cell, and the gradient at the cell center can now be determined by multiplying with the

weight factor.

For irregularities in the unstructured grid, such as cells with high skewness and distortion,

where mesh quality is further discussed in Section. 5.2. The least-square method accuracy

is equal to the accuracy of the node-based gradient method. On the other hand, it is less

computationally expensive and is the main reason for choosing this solver [11].

For the second-order spatial discretization schemes chosen, the solver in Fluent uses a mul-

tidimensional linear reconstruction method, based on Barth & Jespersen (1989) work [48].

For this approach, a Taylor expansion is performed about the cell-center which yields high-

order accuracy at the cell faces. Second-order upwind can be expressed as:

φi =φ+∇φ ·~r (4.16)

, where φ represents the value at the cell-center ∇φ the gradient in the adjacent cell, and~r

the direction vector from cell-center to the face-center. The gradient is determined by the

least-square method, discussed previously.

4.2.5. Spatial Discretization: Pressure & Momentum

The discretization is explained in Section. 4.2.2, where the general transport equation is

applied for velocities or pressure. For the transport property, which is the velocities and

pressure at the cell-centers and faces, the Least-Squares cell-based method is used for the

transport properties, and a first-order or second-order upwind used, depending on the dis-

cretization scheme desired. This is explained in section 4.5 which are implemented in Eq.

(4.13).
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4.2.6. Explicit Scheme: Volume Fraction

The volume fraction equation, previously described in Section. 3.2.3, is discretized using any

scheme desired. In Fluent, the discretization is of the form [11]:

αn+1
q ρn+1

q −αn
qρ

n
q

∆t
V +∑

f

(
ρqU n

f α
n
q, f

)
=

[
n∑

p=1
(ṁpq − q̇p +Sαq

]
V (4.17)

, where n is the index of previous time step, n+1 is the index for the next time step,αq, f is the

volume fraction computed from Eq. (3.12), V is the volume of the cell, and U f is the volume

flux through the cell.

Interpolation of cells containing one or more phases are described in Sec. 3.2.2, where a

chosen interpolation scheme is used reconstruct the interface.
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4.3. Solution of 3D Convection-Diffusion Problems

with FVM

In the following, it will be shown how the discretization of the general transport equation

reduces to a system of linear equations which can be implemented into general CFD code.

This forms the basis of CFD implementable code based on numerical schemes and FVM

techniques.

The first step starts with the generation of a computational domain. For a derivation of a sim-

ple general case, the West-East-South-North-Bottom-Top (WESNBT)-Stencil is utilized.

Figure 4.4.: Stencil for 2D & 3D FVM.

A series of assumptions must be employed in order to yield a simplified discretized form of

the transport equation. The transport equation is defined earlier in Eq. (3.15) in differential

form, but will be stated again for a more clear view in this section.

∂(ρφ)

∂t
+∇· (ρφu) =∇· (Γ∇φ)+Sφ (4.18)

Applying steady-state conditions, three-dimensions in space and incompressible flow yields:

∇· (ρφu) =∇· (Γ∇φ)+Sφ (4.19)
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Applying a CV integration which is necessary for the FVM formulation yields:

∫
CV

∇· (ρφu)dV =
∫

CV
∇· (Γ∇φ)dV +

∫
CV

SφdV (4.20)

Applying the Divergence Theorem for the volume yields:

∫
∆V

∂

∂x
(ρφu)dV +

∫
∆V

∂

∂y
(ρφu)dV +

∫
∆V

∂

∂z
(ρφu)dV =∫

∆V

∂

∂x

(
Γ
∂φ

∂x

)
dV +

∫
∆V

∂

∂y

(
Γ
∂φ

∂y

)
dV +

∫
∆V

∂

∂z

(
Γ
∂φ

∂z

)
dV +

∫
∆V

SφdV
(4.21)

, where dV = ∂x∂y∂z is the control volume, respectively.

Applying the stencil for the fluxes around the control volume yields:

[(
ρU Aφ

)
e −

(
ρU Aφ

)
w

]+ [(
ρU Aφ

)
n − (

ρU Aφ
)

s

]+ [(
ρU Aφ

)
t −

(
ρU Aφ

)
b

]=[(
ΓA

∂φ

∂x

)
e
−

(
ΓA

∂φ

∂x

)
w

]
+

[(
ΓA

∂φ

∂y

)
n
−

(
ΓA

∂φ

∂y

)
s

]
+

[(
ΓA

∂φ

∂z

)
t
−

(
ΓA

∂φ

∂z

)
b

]
+

S∆V

(4.22)

Defining Discretization Schemes in the CV

Table 4.1.: Difference scheme for face values for nodal points.

x-direction φe =φE −φP φw =φP −φW

Difference Scheme at Faces y-direction φn =φN −φP φs =φP −φS

z-direction φt =φT −φP φb =φP −φB

Table 4.2.: Convective Fluxes.

x-direction Fe =
(
ρU A

)
e Fw = (

ρU A
)

w

Convective Fluxes y-direction Fn = (
ρU A

)
n Fs =

(
ρU A

)
s

z-direction Ft =
(
ρU A

)
t Fb = (

ρU A
)

b
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Table 4.3.: Difference Scheme for Fluxes at faces for nodal points.

x-direction
(
∂φ
∂x

)
e
= φE−φP

δxPE

(
∂φ
∂x

)
w
= φP−φW

δxW P

Differencing Scheme of Fluxes y-direction
(
∂φ
∂y

)
n
= φN−φP

δyP N

(
∂φ
∂y

)
s
= φP−φS

δxSP

z-direction
(
∂φ
∂z

)
t
= φT −φP

δzPT

(
∂φ
∂z

)
b
= φP−φB

δxBP

Table 4.4.: Diffusive Fluxes.

x-direction De = Γe Ae
δxPE

Dw = Γw Aw
δxW P

Diffusive Fluxes y-direction Dn = Γn An
δyP N

Ds = Γs As
δySP

z-direction D t = Γt At
δzPT

Db = Γb Ab
δzBP

The source term can be discretized as:

S∆V = Su +SφφP (4.23)

Now that the fluxes have been defined with a numerical scheme, these relationships can be

inserted in eq.(4.22) which yields:

[
Fe

(
φE −φP

)−Fw
(
φP −φW

)]+ [
Fn

(
φN −φP

)−Fs
(
φP −φS

)]+[
Ft

(
φT −φP

)−Fb
(
φP −φB

)]= [
De

(
φE −φP

)+Dw
(
φP −φW

)]+[
Dn

(
φN −φP

)+Ds
(
φP −φS

)]+ [
D t

(
φT −φP

)+Db
(
φP −φB

)]+
Su +SφφP

(4.24)

Rearranging the terms gives:

[
(De +Dw +Dn +Ds +D t +Db)− (Fe +Fw +Fn +Fs +Ft +Fb)−Sφ

]
φP

= (De −Fe )φE + (Dw −Fw )φW (DN −FN )φN+
(Ds −Fs)φS + (D t −Ft )φT + (Db −Fb)φB +Su

(4.25)
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This can be written into:

aPφP = aEφE +aWφW +aNφN +aSφS +aTφT +aBφB +Su (4.26)

, where the coefficients are given in the table 4.5.

Table 4.5.: Coefficients

aP (De +Dw +Dn +Ds +D t +Db)−
(Fe +Fw +Fn +Fs +Ft +Fb)−Sφ

aE De −Fe

aw Dw −Fw

aN Dn −Fn

aS Ds −Fs

aT D t −Ft

aB Db −Fb

In a more compact form:

aPφP =∑
anbφnb +Su (4.27)

, where nb denotes the neighbouring points of the node of interest, P .

Equation (4.27) is a useful, compact version of the general transport equation, which forms

the basis for the solution of equations. A general description of the solution algorithms for

solving the transport equation will be discussed in Section. 4.6.
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4.4. Implementation of Boundary Conditions

For all problems solved with CFD, the physics of interests are initialized and calculated with

respect to the boundary and initial conditions. The process of solving flow problems is es-

sentially the extrapolation of dataset defined at the boundaries into the interior domain.

Therefore, it is of importance to understand and specify suitable conditions for physical re-

alistic solutions and well-posed boundary conditions. The conditions highly affect the nu-

merical analysis and solution. One of the main causes of rapid convergence for CFD simu-

lations is appropriate boundary conditions [15]. For transient calculations, the initializing

data of all flow variables are needed at all cells in the computational domain. This involves

no more special measures than initialization of the data arrays in the CFD code, and will not

be discussed further.

This section will present a brief description of the implementation in the discretized equa-

tions for FVM, with common boundary conditions. It can be noted that these specific bound-

ary conditions are implemented for the simulations performed in this thesis. These are:

• Inlet

• Outlet

• Wall

• Symmetry

It can be mentioned that these specific boundary conditions, which is to be discussed, are

implemented for the simulations for this thesis. Other problem specific boundary conditions

such as moving walls, periodic or cyclic boundary conditions are not discussed further.

When constructing the staggered grid arrangement, discussed in sec. 4.7.1, additional nodes

are specified around the physical boundary. Calculations are performed for internal cells,

not accounting the set boundary. There are two notable arrangements. Firstly, physical

boundaries which coincide with CV boundaries, and secondly, cells adjacent to the inlet

outside the domain for inlet condition storage. These are also known as ghost points [49]. By

utilizing this technique enables implementation of boundary conditions with minor modi-

fications to the discretized equations near the inlet. An illustration of an example of the grid
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arrangement and physical boundaries can be seen in Fig. 4.5.

For cells at the boundary, it can be shown that ap and anb can be neglected. Thus, the

discretized equations effectively reduce to:

φp =φ f i x (4.28)

, which sets a fixed value at P for the transport quantity φ.

Additionally, by setting the value of a variable of interest for the internal cells, the treatment

is useful in dealing with obstacles in the domain by fixing φ f i x = 0, or any other specified

value, at the cells for the obstacle region. Thus, the system of discretized equations which

deals with obstacles can be solved without any special treatment.

For further discussion around the boundary conditions and implementation in the discretized

equations, 2D, subsonic flow, hybrid differencing method and SIMPLE solution algorithm

will be assumed. This will enable a more relevant general description of the implementa-

tion.

Figure 4.5.: Grid arrangement at boundaries, where the dotted lines represents
the boundaries for the cells.
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Inlet Boundary Conditions

The distribution of flow variables required to be set at the inlet boundaries As previously

mentioned, the grid extends outside the physical boundary. The nodes along the inlet, line(s)

for 2D or face(s) for 3D, are used to store the inlet values of flow variables. An illustration of

how the different velocities are treated in the mesh can be seen in Fig. 4.6.

(a) u-velocity. (b) v-velocity.

Figure 4.6.: u- and v-velocities at the inlet boundary

The pressure field is obtained during pressure correction calculation, which does not yield

absolute pressure (Patankar, 1980). Therefore, fixing the absolute pressure at inlet nodes, and

performing pressure correction at the respective cells is common practice. By specifying the

reference value in advance, the absolute pressure field can be acquired. An example of how

this is done for a simple grid is shown in Fig. 4.7.
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(a) Pressure correction at inlet. (b) Transport quantity at inlet.

Figure 4.7.: Pressure correction cell and scalar cell at inlet boundary.

Outlet Boundary Conditions

(a) u-velocity. (b) v-velocity.

Figure 4.8.: u- and v-velocities at the outlet boundary.

Outlet boundary conditions are often applied in conjunction with inlet boundary conditions.

The location of an outlet should be sufficiently away from any geometries which may disturb

the flow, such that the flow field can reach a fully developed state. The result of this is that

there occurs no change in the flow direction before the flow exits through the outlet. As a

result, this enables the possibility to select the outlet perpendicular to the flow directions
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and let the gradients in the direction normal to the outlet equal to zero [15]. The way the

velocity components, pressure-correction, and scalar values are treated can be seen in Fig.

4.8 and Fig. 4.9.

(a) Pressure correction cell at outlet. (b) Scalar cell at outlet.

Figure 4.9.: Pressure correction cell and scalar cell at outlet boundary.

Wall Boundary Conditions

Wall boundary conditions are commonly utilized in confined physical flow problems, which

arises for many applications. For the velocity components adjacent to the wall, a no-slip

condition is the most fitting condition. For the cells adjacent to the wall, the node at the

wall-face is set to be equal to zero. This is represented in Fig. 4.10. Thus, the discretized

transport equation for momentum regarding wall treatment can be evaluated without spec-

ifying modifications. Furthermore, since the wall necessary are dictated by the no-slip con-

dition, pressure correction is not performed at the wall, seen in Fig. 4.11.
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(a) v-velocity (b) v-velocity

Figure 4.10.: u- and v-velocities at the wall boundary.

(a) Pressure correction cell (b) Scalar cell

Figure 4.11.: Pressure correction cell and scalar cell at wall boundary.

Symmetry Boundary Conditions

Symmetry boundary conditions are utilized if there exists geometrical symmetry for the ge-

ometry. At the symmetry boundary, no flow is crossed and the scalar flux at the boundary is

zero. For CFD implementation, due to the scalar flux being zero, the normal velocities are

also zero, and the values outside of the domain next to the symmetry boundary are equated

to the values for the adjacent cell inside the domain. Assuming that J is the symmetry bound-
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ary, the transport quantity φ, the previously stated property can be shown as:

φs ymmetr y bound ar y,J =φnei g hbor i ng nodes,J (4.29)

For the pressure correction, the link between the symmetry boundary is performed by setting

the coefficient to zero, resulting in no modifications of the discretized pressure correction

equation.

4.4.1. Best-Practise CFD Implementation of Boundary Conditions

Due to the fact that poorly defined boundary conditions may have a significant impact on

the solution, specifying appropriate boundary conditions related to the physical problem at

hand is of importance. Therefore, there exist various guidelines for boundary implementa-

tion for CFD purposes which one should be aware of. Some guidelines may be:

• Inflow and outflow boundaries

The location of the inflow and outflow boundaries should have the flow entering or

leaving normal to the boundaries. This may lead to better convergence.

• Gradients near a boundary

Observation of large gradient normal to a boundary indicates an incorrect setup, and

the boundary should be moved further upstream/downstream away from the gradi-

ents.

• Mesh near the boundary

For the mesh, the cells near the boundary should not have high skewness, a mesh met-

ric discussed in Sec. 5.2. Error from high skewness will propagate through the rest of

the flow domain.

For chosen boundary conditions, there exists arrangements which lead to a well-posed bound-

ary specification [39]. This may also be the range with robustness. The most robust in-

let/outlet boundary arrangement is the velocity inlet and pressure outlet arrangement. The

flow is driven by the velocity depending on the inlet conditions set, with a static pressure

outlet (velocity inlet/pressure outlet). The inlet total pressure is an implicit result of the pre-
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diction. A robust inlet/outlet configuration is the mass flow inlet with a static pressure at the

outlet (pressure outlet). The total pressure of at the inlet is adjusted by the specified mass

flow. A less robust, but which can yield satisfying robustness is by specifying boundary con-

dition of total pressure at the inlet, with a static pressure at the outlet (pressure inlet/pressure

outlet). By utilizing these conditions, the mass flow of the system will be part of the solution,

which can be used as a measure of accuracy and convergence criteria. The downside with

this configuration it that is is highly sensitive to the initial guess. Inaccurate initial guesses

may lead to unphysical results.

There have been presented three well-posed boundary arrangements, but there also exists

arrangements which is unreliable. One of these is specifying total pressure or mass flow

rate at the inlet with an outflow boundary outlet. This can either be pressure inlet/ outflow

or mass flow inlet with outflow. These combinations should be avoided because the static

pressure will vary depending on the solution, hence it is not fixed. Although, if it is desired

to apply mass flow inlet and outflow configuration for incompressible flow, it can be used

since it is less pressure sensitive. The last unreliable arrangement is applying a velocity inlet

and velocity outlet for the domain. This system will be highly numerically unstable due to

the way the driving forces are implemented [50].
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4.5. Solution of System of Equations

The discretized equation, as seen in Eq. (4.27), must be arranged for cells in the computa-

tional domain in order perform simulations. For CVs adjacent to the domain boundaries,

modifications are performed to the general discretized equation, Eq. (4.27), in order to in-

clude the boundary conditions. The resulting system of equations is then solved to obtain

the distribution of property φ [15].

The discretization using the FVM leads to a sparse linear system of equations, given that

the diffusion coefficient is independent of φ. This yields a corresponding matrix with seven

diagonals or a heptadiagonal matrix.

To obtain the solution for the system of equations, a finite mesh must first be defined. When

the computational domain is defined, discretization over the domain yields one equation for

each node. Represented in a general form, the matrix which is to be solved may be expressed

as:

Ax = b (4.30)

The general transport equation will be on the form:

Aφ= Su (4.31)

, where A is the coefficient matrix, A = {aB , aS , aW , aP , aE , aN , aT }.
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The coefficient matrix becomes the general representation, which may be expressed as:



aPi , j ,k aEi , j ,k aNi , j ,k aTi , j ,k 0

aWi , j ,k

aSi , j ,k aTi , j ,k

aBi , j ,k aNi , j ,k

aEi , j ,k

0 aBi , j ,k aSi , j ,k aWi , j ,k aPi , j ,k



(4.32)

Some remarks can be noted of the solution of the solution of a system of equations:

• Obtaining the FVM of structured or unstructured 3D domain is similar to the repre-

sented derivation, including another spatial direction. If the normal derivative ∂φ
∂n at

the cell-faces are approximated, as discussed previously, and also if the data structure

for the cell boundaries is available.

• Obtaining the FVM of hybrid grids, later discussed in Section. 5.1 stems from the same

basis as mentioned above.

Now that the system of equations has been obtained, any suitable matrix solution technique

may be enlisted for this task. There exist special matrix solution methods that are specially

designed for CFD procedures, which will briefly be discussed in Section. 4.6.
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4.6. Solution of Discretized Equations

Discretization of the governing fluid equations results in a system of equations, shown in

Section. 4.2. The size and complexity of system depending on the number of grid points as

well as discretizations used. The first dictates the number of equations needed to be solved,

where the latter affect the number of mathematical operations required for the sub-routines.

For solving matrices, any desired procedure is valid for solving the algebraic equations. But

the main constraint is the computational resources available.

There exist two families of solution techniques for solving linear algebraic equations, that

is:

• Direct Methods

• In-direct Methods (Iterative Methods)

Iterative methods are general-purpose algorithms that are easily implementable in CFD code,

but their convergence rate can be slow if the system of equations is large. Historically, they

were not considered suitable for general-purpose CFD procedures. However, more recently

multigrid techniques have been developed that have improved convergence rates of iterative

solvers to an extent that they now are the method of choice in commercial CFD codes.

Due to the statements stated above, the focus will be on iterative methods. Furthermore, the

method of interest will be on Gauss-Seidel iteration in conjunction with relaxation methods,

due to their properties. Additionally, it is the techniques utilized for the solver algorithm

implemented in this thesis.

Gauss-Seidel Iteration Method

The Gauss-Seidel method also referred to as Liebmann method or method of successive dis-

placement, is developed by Gauss and von Seidel. The method is similar to the well known

Jacobi method. The method is applicable for all matrices which have non-zero diagonal el-

ements, and convergence is achieved if the system is diagonally dominant. As discussed in

Section. 4.3 as seen in the matrix. 4.32, the coefficient matrix obtained from the discretized

65



4.6. SOLUTION OF DISCRETIZED EQUATIONS

equations fulfills the requirements of the Gauss-Seidel method. Generalized, the iteration

equation for the Gauss-Seidel method can be expressed as:

x(k)
i =

n∑
j=1

(
ai j

ai i

)
x(k)

i +
n∑

j=1+1

(
ai j

ai i

)
x(k−1)

i + bi

ai i
(4.33)

In matrix form:

x(k) = T1 +T2x(k−1) +c (4.34)

A few main benefits of the Gauss-Seidel method is that data storage and convergence. During

treatment of elements, a storage vector is required such that each element can be overwritten

during the computation. In other words, the Gauss-Seidel requires less memory to store the

data, which is advantageous for a larger computational mesh. Ralston and Rabinowitz (1978)

note that the convergence rate of Gauss-Seidel faster, compared with the Jacobi method [15].

On the contrary, convergence is never guaranteed, since there exist many factors which may

contribute to diverging solutions. Rapaport et al. have shown that Gauss-Seidel, and iterative

methods in general, has convergence issues even though the problem may be well-posed

[51].

Relaxation Methods

The rate of convergence for the Gauss-Seidel method depends on the properties of the coef-

ficient matrix. It can be shown that an improvement of the iteration method is achieved by

implementing a relaxation parameter, α, using methods known as relaxation method for the

solution of the system of equations.

The relaxation method modifies the convergence rate of iteration sequences by multiplying

second- and third-order terms byα. Implemented for a solution method, the following form
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is obtained:

x(k)
i = x(k−1)

i +α
[

n∑
j=1

(
ai j

ai i

)
x(k−1)

i + bi

ai i

]
(i = 1,2, ...,n) (4.35)

The main technique is varying the relaxation factor to yield different iteration sequences. If

relaxation factor of 0 < α < 1 is implemented, the procedure is called and under-relaxation

method. If relaxation factor ofα> 1, the procedure is called an over-relaxation method.

In general, utilizing the over-relaxation method can increase the convergence rate, as the

smaller order terms will have a greater impact on the iteration procedure at the cost of higher

numerical residuals, whereas utilizing the under-relaxation method will increase the accu-

racy, but with reduced convergence rate. Thus, the selection of relaxation factor α will affect

simulation time, as well as the numerical accuracy.

The residual, r (k)
i , after i th equation after k iterations be expressed as the following for the

iteration sequence:

r (k)
i = bi −

n∑
j=1

ai j x(k)
j (i = 1,2, ...,n) (4.36)

It can be shown that the expression inside the square bracket of Eq. (4.35) is the residual

vector after k − 1 iterations. Thus, resulting in the iteration sequence which may be given

by:

x(k)
i = x(k−1)

i +α
[

r (k−1)
i

ai i

]
(i = 1,2, ...,n) (4.37)

It can be shown that the relaxation parameter,α, does not affect the converged solution, as it

is not an independent of the residuals. This also suggests that the relaxation method may be

advantageous if an optimum value of the relaxation factor is found and chosen, to minimize

the number of iterations required to reach the converged solution.

By utilizing the relaxation parameter in the iteration sequence, the computational time can
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be reduced. But it has to be noted that finding the optimum value of α for a given prob-

lem may be problematic and is dependent on the computational grid. Thus, giving a precise

guidance for the value is difficult to achieve. Nevertheless, it is in principle possible to se-

lect suitable values of the relaxation factor, which yields faster convergence for the solution.

There exist other methods which use the properties of relaxation method, such as the succe-

sive over-relaxation technique.
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4.7. Solver-Algorithms for Pressure-Velocity Coupling

Convection effects of a transport property,φ, depends solely on the direction and magnitude

of the velocity field. In general, the velocity field is unknown and emerges as a part of the

solution along with auxiliary variables of the flow. Different strategies exist for obtaining the

unknown variables for attaining information of the entire flow field [15]. The focus will be

on a segregated flow, where the pressure-velocity coupling is utilized.

4.7.1. Pressure-Velocity Coupling

For segregated flow modelling, the pressure-velocity coupling is performed by using the dis-

cretized equation of continuity, eq. (4.11) to derive a supplementary condition for the pres-

sure term, by reformatting the equation. For the software used, the pressure-velocity algo-

rithms of SIMPLE, SIMPLEC, and PISO are available [11]. These are based on a predictor-

corrector approach, will be discussed.

Staggered Grid

Discretization of the flow domain for the transport equations in a conventional way yields

a problem regarding storing of information. If the pressure, velocity or other flow variables

are stored in the same location, this is known as a Collocated grid, described by Rhie and

Chow (1983) [52]. If velocities and pressure are defined at the same node, a phenomenon

can occur where a highly non-uniform pressure field can act as uniform pressure field. This

shortcoming can be described as numerical-smearing-error due to the spatial domain dis-

cretization.

A solution for the numerical error was introduced by Harlow & Welch (1965) by introducing a

staggered grid with a method known as Marker-And-Cell (MAC) method [53]. This concept is

to evaluate scalar variables at cell-center, but for the velocity components on a staggered grid

centered around the cell faces. This can be viewed as a shifting of the grid when computing

the velocities. The effect of staggering, results in bypassing the non-physical behaviour of

spatially oscillating pressures. An advantage of this technique is that the shift of location for
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Figure 4.12.: Numerical diffusion for the classical example on flow with
misaligned grid, for first- and second-order upwind [13].

computing a velocity in a direction requires the computations of the transport properties.

Thus, no interpolation is needed at the cell faces, since the information can be extracted di-

rectly. This is previously illustrated during the discussion of boundary conditions, in Section.

4.4.

Figure 4.13.: Presentation of the staggered grid concept introduced by Harlow &
Welch (1965) [14].
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4.7.2. SIMPLE Algorithm

The Semi-Implicit Method for Pressure-Linked Equations, better known under the acronym

SIMPLE, is an algorithm which was originally presented by Patankar and Spalding (1972)

[54]. SIMPLE is, in essence, a solver which uses a guess-and-correct-methodology for cal-

culating the pressure on a staggered grid [15]. The SIMPLE-algorithm is a segregated algo-

rithm, meaning that the discretized equations are solved sequentially. This decoupling is

a characteristic of segregated algorithms, where the counter-part are coupled algorithms,

which solves the system of momentum and pressure-based continuity equations simultane-

ously.

The SIMPLE algorithm is based on a relationship between pressure- and velocity-correction,

where mass conservation is employed to obtain the pressure field. The momentum equation

is solved using a guessed pressure field, p∗, and resulting flux computed from the discretized

continuity equation, Eq. (4.11). This yields an expression for continuity, with the guessed

pressure field, which may be expressed as [11]:

J
′
f = d f (p

′
c0 −p

′
c1) (4.38)

, where p
′
c0 and p

′
c1 is the corrected pressure in cell 0 and 1, and the flux at the cell boundary

is corrected with the following:

J f = J∗f + J
′
f (4.39)

, where J f is the corrected flux, J
′
f the correction of flux and J∗f the guessed flux.

The corrected pressure p ′, is calculated with the discretized transport equation, eq. 3.3,

which may be expressed as:

ap p ′ =∑
nb

anb p
′
nb + Sp ′ (4.40)
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, where Sp ′ is the net flow rate into a cell, given by:

Sp ′ =
N∑
f

J∗f A f (4.41)

, which is obtained by the guessed continuity equation.

The pressure-corrected equation can be solved by using a multigrid method to reduce com-

putational time for the intermediate iterations. When the solution is obtained, the pressure

in the cell can be calculated by:

p = p∗+αp p ′ (4.42)

, whereαp is the under-relaxation factor for pressure, using the relaxation method described

in Section. 4.6.

The corrected flux through a cell, J f , is obtained since the corrected pressure have been

computed, such that:

J f = J∗f +d f (p ′
c0 −p ′

c1) (4.43)

It can be shown that the velocity-correction equations are similar to that of pressure correct-

ing, substituting the calculated, guessed and corrected quantity with velocity-component in

an arbitrary direction. In Fig. A.32, complete algorithm can be visualized.
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Figure 4.14.: Schematic of the modified solver process for SIMPLE.
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Computational Domain 5

This chapter contains a review of modern methodologies for generating computational do-

mains. In the following, principles for grid generation will be introduced, which are widely

accepted and applied for in the realm of CFD, with the main focus on applications for com-

mercial CFD software. Principles related to expanded research, techniques and discussion

will be excluded in this thesis.

Acquiring satisfactory mesh is of utmost importance, due to the fact that the computational

grid forms the basis for which the discretized equations in the flow domain will be solved.

This implies that being aware of mesh behaviour and its effects on important factors such

as convergence, accuracy, computational time and more importantly, obtaining a satisfac-

tory physical solution are essential fundamental knowledge for any CFD user. At the end of

the chapter, an assessment of the data structure which is implemented into Fluent will be

addressed.

5.1. Grid Structure

Classification of Grids

All types of grid structures can be divided into two main groups, that is structured and un-

structured mesh. Based on connectivity, the cells are connected to each other, in an ordered

or unordered manner, which can be shaped to any geometry for analysis.

For structured grids, the cells and nodes are ordered and connected in a structured man-
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(a) Structured. (b) Unstructured. (c) Hybrid.

Figure 5.1.: Classifications of grids.

ner. Normally with equidistant spacings, but also for unequal spacings if one is to refine the

grid spacings in any arbitrary direction. For unstructured grids, any arbitrary geometrical

shape which is identified by an irregular connectivity. Compared to structured grids, this

model is less space efficient and calls for a higher explicit storage of neighbouring cells. For

some cases, a combination of structured and unstructured grids denoted as a hybrid grid.

This mesh configuration is commonly used for complex geometries or multi-body analysis,

requiring both classes of mesh structures. The classifications of a grid can be seen in Fig.

5.1.

Type of Cell-Shapes

For grid generation, there exist three major classes of grids. These are triangular(tri), quadri-

lateral(quad) and polygonal(poly) grids. Tri and quad are the most used types for both 2D

and 3D problems. Furthermore, utilizing both tri and quad common practice, especially for

capturing the physical boundary of geometries the flow behaviour, such as boundary layers.

In recent years, due to the development of meshing technology polygonal and polyhedral

mesh [55]. A table summarizing the different cell-shapes are listed in Tab. 5.1.
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Table 5.1.: Classes of Cell-Shapes.

Cell Classes 2D 3D

Triangular Triangle Tetrahedron

Pyramid

Prism

Quadrilateral Quad Hexahedron

Polygonal Polygonal Polyhedral

Terminology

For mesh generation and mesh control in a meshing environment, there exist various ways

of handling the computational domain at hand. For proper mesh control, several terminolo-

gies must be understood, since this forms basis during meshing operations. These are:

• Cell: Control volume into which the domain consists of

• Node: Gridpoint

• Cell Center: Center of a cell

• Edge: Boundary of a face

• Face: Boundary of a cell

• Zone: Grouping of nodes, faces and cells

• Domain: Group of node, face and cell zones

(a) 2D mesh. (b) 3D mesh.

Figure 5.2.: Mesh Terminology for 2D and 3D mesh.
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5.2. Mesh Metric and Mesh Quality

There exist various ways of quantifying the quality of the mesh during grid generation. For

CFD applications, are some parameters which are commonly used as mesh metric for evalu-

ating mesh quality [56]. These parameters are geometrical considerations and will be further

explained.

Skewness

Skewness is a metric to evaluate the optimal size of a cell. For skewness, there are two meth-

ods for mesh analysis. That is based on equilateral volume or based on deviation from a

normalized equilateral angle.

The first can be mathematically expressed as:

Skewnesss = Opti mal Cell-size−Cell-size

Opti mal Cell-size
(5.1)

Quantifying the quality of equilateral volume applies only to triangles and tetrahedrons, and

is the default method for tri- and tet-mesh.

The skewness based on deviation from a normalized equilateral angle can be expressed

as:

Skewness = max

[
θmax −90

90
,

90−θmi n

90

]
(5.2)

Applies to all cell and face shapes. Always used for prisms and pyramids.

The most common measure of quality is based on equiangle skewness, which is defined:

max

[
θmax −θe

180−θe
,
θe −θmi n

θe

]
(5.3)

, where:
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• θmax = Largest angle in a face or cell

• θmi n = Smallest angle in a face or cell

• θe = angle for equiangular face or cell (i.e 60 for triangle and 90 for square)

The range of the skewness parameter ranges from 0 to 1, where an idealized cell is equidis-

tant, and consequently equiangular, gives an optimal skewness value. The counterpart is

infinite thin cells giving high skewness values.

For large skewness, the accuracy will be compromised of the interpolated regions due to

large jumps compared to the neighbouring cells. In addition, this can lead to numerical

errors, affect the convergence rate and divergence.

Orthogonality

Orthogonal quality (OQ) for cells is computed using the face normal vector, i.e the vector

from the cell centroid to the cell centroid of all adjacent cells. The orthogonal quality for a

cell is computed as the minimum of the following quantities for each face, i .

~Ai ·~fi∣∣~Ai
∣∣ · ∣∣∣~fi

∣∣∣ (5.4)

, where ~Ai is the face normal vector and ~fi is the vector from the centroid to the adjacent cell

that face and where:

~Ai ·~ci∣∣~Ai
∣∣ · |~ci |

(5.5)

, where ~ci is the vector from the cell-center to the adjacent cell that shares the face [11].

Orthogonal quality ranges from 0-1, where 1 is optimal for a cell and 0 is the worst.

Aspect Ratio and Smoothness

The aspect ratio is defined as the ratio of the longest and the shortest edge of a cell. For an

equidistant grid, this will be the optimum value of 1. Smoothness is defined as the change in
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size during mesh transition. There should be no sudden jumps in size, which will cause erro-

neous results at the nearby cells. The aspect ratio may be a metric describing the smoothness

of the mesh.

Mesh-Type Selection for Grid Generation

Depending on the physical problem and the flow behaviour of interest, several cell-types and

mesh configurations can form the computational domain. This discussion will only present

the geometrical aspects of the mesh. Numerical considerations will be addressed in the next

section.

If accuracy is of high priority, a hexahedral mesh is usually preferred. The mesh-density

required for capturing all flow features, and if the geometry allows for it, hex cells should

be the main cell-type in the domain. Although, the mesh-density should not be too high,

capturing details of the flow which is not of interest. In presence of walls, the adjacent cells

must be refined such that boundary layer effects can be resolved [57]. Quad, hex, and prism

cells are preferred here due to the fact that the faces of the cells can be aligned in the normal

direction from the wall and inwards into the domain [58]. Inside the domain in far proximity

from wall and wall-effects, quad and hex cells can be generated. Aligning these cells to the

flow will lead to the ability to capture flow effects in a better manner. This is justified due to

improved of resolving transportation of physical quantities through the cells [59].

Utilizing the mesh-metrics discussed in Sec.5.2 is a useful basis for determining the quality

of the mesh. For the orthogonal quality and skewness, there exist limits which should not

be exceeded after grid generation. The critical factors for both metrics are the minimum

orthogonal quality and maximum skewness. For a cell, high values for OQ and skewness

results in an inadequate computational starting point and may lead to several problems with

the simulation. For best-practice CFD implementation, the following mesh-metrics can be

classified into different ranges of quality, seen in tab.5.2.
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Table 5.2.: Mesh quality for the mesh metrics, orthogonal quality and skewness for grids [11].

Excellent

Very

good Good

Accept

-able Bad

Unaccept

-able

Min. OQ 0.95-1.0 0.7-0.95 0.2-0.69 0.15-0.20 0.001-0.14 0-0.001

Max.

Skewness
0-0.25 0.5-0.8 0.5-0.8 0.80-0.95 0.95-0.97 0.98-1.0

To summarize the mesh-type and consideration regarding mesh quality, the following should

be addressed:

• For a fixed mesh-density, hexahedral meshes that are aligned with the flow are pre-

ferred

• Mesh-density must be sufficiently high to capture all flow characteristics

• Mesh-density adjacent to walls must be sufficiently high to resolve boundary layer ef-

fects

• Achieving high mesh-quality using Tab.5.2 is advised.

• Mesh independence study should be performed to quantify mesh-density vs. simula-

tion results

5.3. Grid Generation

Grid generation is defined as the process of dividing a physical domain into sub-domains,

which consists of cells [60]. In recent times, mesh generation has become a topic of inter-

esting research due to its wide application and influence in technology involving numerical

simulation such as CAD, CFD-analysis, FEA-analysis [56]. A chart of the many various mesh

generation techniques can be found in Fig.5.4. Further detail regarding techniques will not

be discussed, as it is not a topic of interest of this thesis, but several techniques are applied

for mesh generation for performing the simulations - later seen in Part.III.
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Importance of Grid Generation

In the following, a general description of why proper grid generation is important and how it

affects important simulations aspects. The main topics of interests are:

• Physics of interest

• Solution accuracy

• Rate of convergence

• Computational time

• Grid independence

The main focus when performing grid generation is to ensure that the mesh will capture

all flow physics. Not taking models (i.e turbulence, acoustics, etc) into account, the mesh

should be discretized such that flow characteristics of interest are resolved. To ensure sat-

isfactory solution accuracy a suitable mesh-density should be present for constructing the

computational domain. Although solution accuracy is highly dependent on the models im-

plementing for the physics, having a sufficiently resolved grid is of importance due to its

influence on the numerical methods and simulation results.

It is previously stated that an acceptable mesh-density should be generated. However, the

number of cells have an eminently impact on convergence rate, as it governs the number

of calculations that are necessary for solving the solution matrix. As seen in Eq.4.32, the

size of the matrix corresponds to the number of cells. Thus, increasing the grid resolution

implemented for CFD simulation will consequently increase the convergence rate and com-

putational time.

Grid independence is defined as the limit where the solution results exhibit minor or no

change for a further resolved mesh. If case-analysis of a specific problem changing various

flow parameters is conducted, a grid independence-study should be performed such that

the limit for solution convergence or a critical mesh-density limit is quantified.
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Figure 5.3.: Mesh resolution comparison of convergence rate for the well-known
lid driven cavity [15].
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Figure 5.4.: Outline of the various grid generation algorithms [16][17].
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5.3.1. Data Structure of the Mesh

The data structure is related to the way the information of the generated grid is stored. Using

a simple 2D triangular cell seen in Fig.5.5 as an example, the geometric composition consists

of nodes, faces, and volumes. Nodes describe the corners of the cell, faces describe connec-

tivity of the nodes, while the corresponding volume is denoted from the nodes and faces.

Therefore, the data of the nodes and faces are independent, whereas the volume is depen-

dent on the nodes and face data. Thus, information of nodes and faces must be stored in a

data structure.

Figure 5.5.: Triangular cell with node, face volume.

The information for each node, face, and cell for the generated grid will have a unique ID

numbering. It was previously mentioned in Sec. 5.1 that the normal vector for cell faces

needs to be identified, such that this can be stored. This is necessary for calculating con-

vective and diffusive actions in the solver algorithm and specify boundary properties at the

faces.

The mesh data can be concluded for the three main parameters for data structuring:

1. Node data: Information regarding node position and ID numbering for the entire mesh

2. Face data: Information regarding face and face-direction of the normal vector

based on node information

3. Cell data: Information of cell ID and cell position based on face information

From the data structure created during grid generation, boundary conditions may be applied
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directly in a meshing software if desired. This is an option such that boundary condition-

input of the computational domain is not needed to be implemented for the flow solver.

5.3.2. Data Structure of ANSYS Fluent

For understanding the data structuring for an important mesh in Fluent, a discussion with

a simplified example will be presented. The mesh is stored in a mesh file (.msh) format,

readable for a wide range of numerical computational software.

Figure 5.6.: Grid generation of a 2D rectangular domain with tri-cells with
highlighted faces.

Fig. 5.6 is a generated grid, where the boundaries are highlighted at the faces. This mesh

contains data-blocks containing information about the nodes, faces, cells and user-defined

information. The latter is where the data regarding boundary conditions can be stored.

Node Information

The node information contains every node in the mesh, where every node are given a unique

ID. All information is stored and specified with Cartesian coordinates of the spatial position

of the node since the solver also are based on the same coordinate system. Fig.5.7 shows

this where the first two code-lines are the ID of all nodes and the indented a summary of

the nodes with its spatial position in Cartesian coordinates, respectively. The information is

stored using a hexadecimal system.
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Figure 5.7.: Node information extracted from the .msh-file.

Face Information

The face information contains every face, again, where all faces are given a unique face ID.

This is shown in Fig. 5.8. The code starts by stating the faces and summarizing the faces. The

summarized faces are specified in the node information. Information regarding boundary

conditions is also contained in the code, calling on the user-defined information block.

Cell Information

The cell information is based on the face information. Since face information is fixed, the

cells corresponding to the face will also be fixed such that no detailed cell information is

needed. Thus, a few numbers of lines are needed to state the number of cells in the domain,

seen in Fig.5.9.

User-Defined Information

As stated previously, contains the boundary condition data specified by the user. This is

shown in Fig. 5.10.
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(a) Face information part (i). (b) Face information part (ii).

Figure 5.8.: Face information extracted from .msh-file.

Figure 5.9.: Cell information extracted from the .msh-file.

Figure 5.10.: User-defined information extracted from the .msh-file.
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Simulations & Case Studies
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Single-phase Flow Modelling 6

In the following, an assessment of CFD model validation will be presented, followed by a

case-study performed for analyzing the effect of eccentricity in annular flow.

6.1. Model Validation: Single-Phase

A series of simulations were performed to validate the CFD model with experimental data of

the most relevant rheology. By the courtesy of Zhigarev et al., experimental and simulation

data were obtained for comparison of the cases [61].

Rheological Properties

For the experiments that were carried out by Zhigarev et al., the three drilling fluids were

prepared and consisted of a composition of components provided by M-I Swaco, Schlum-

berger Company. The rheological properties were determined with a rotational viscometer

with fluid shear rates varying from 50 to 1022 s−1. The mud density was 1100 kg /m3.

Table 6.1.: Rheological parameters of drilling mud 1, 2, 3 (Zhigarev 2011).

Drilling Mud Flow behaviour index, n Consistency Index, k

1 0.4871 0.2240
2 0.4317 0.5289
3 0.4300 0.8900

The rheological properties are seen in Fig. A.1, as shear rate vs. shear stress curves. As seen

from Table. 6.1, the drilling fluids exhibit the same characteristics as that of Power-law fluids,

due to the absence of yield stress.
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Concentric Annulus

Figure 6.1.: Generated mesh for a concentric case.

The computational domain generated for the concentric annulus was generated in ANSYS

Meshing where the geometry was 0.021 m for the outer diameter and 0.0125 m for the inner

diameter. Settings for the grid generations is described in Appendix. A.2.1.

With rheology data and flow variables available, seven simulations for each mud were per-

formed varying the mass flow rate. The CFD results are compared with the calculations per-

formed with Zhigarev et al. and experimental data. A comparison of calculated pressure

drop versus mass flow rate can be seen in Fig. 6.3.

To further compare and analyze the deviation of computed pressure drop versus the pressure

drop found from the experiments of Zhigarev et al., an error-estimation plot was created,

with a 5% error line. Both the calculated results of Zhigarev and the simulated pressure drop

from CFD yields reasonable results, showing an accuracy of ±5% for the specific case. It

can be shown that the deviation increases with decreasing flow rates. The same trends are

observed from the results of Zhigarev et al.

Figure 6.2.: The flow domain of annular flow problems.
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Figure 6.3.: Pressure drop for simulated and experimental data for the different
mud varying with mass flow compared with Zhigarev (2011).
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Figure 6.4.: Computed vs. measure pressure drop for results from the present
CFD simulations, as well as that of Zhigarev (2011).
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Eccentric Annulus

A model validation for the effects of eccentricity was also desirable to obtain. Five different

simulations are performed with eccentricity varying from 0 to 1 with a 0.25 increment. This

was done with the drilling fluid 3 with a constant mass flow rate of 0.473 kg /s. The results are

plotted against the results of Zhigarev et al. in Fig. 6.5. The same procedure for comparison

was performed for the eccentricity cases, as seen in Fig. 6.6. It is seen that the simulations

for eccentric cases agree well with the experimental data.

Figure 6.5.: The effects of eccentricity of the pressure drop shows agreement
with the experimental data for both Zhigarev (2011) and the

performed simulations.

Figure 6.6.: The results from the eccentricity study shows that the model shows a
low degree of deviation from the experiments.
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6.2. Model Validation: Mesh Independence

To analyze the validity of the mesh and quantifying the number of cells needed for the simu-

lations, a mesh convergence study was performed. Seven simulations were performed, start-

ing from 106 number of cells with an increment of 5 ·105, and ended up on 5 ·106 cells.

The basis for the case was for the CFD model validation cases, discussed in Sec. 6.1, for the

zero eccentricity case with a flow rate of 0.473 kg/s and same rheology as discussed previ-

ously.

As seen in Fig. 6.7, it was found that the measured parameter of pressure drop showed a

converged solution at 3 ·106 cells. As a result, the eccentricity cases, which will be discussed

in the following section, would be based on a cell count from this study. Moreover, as seen

from the trend of pressure drop, fewer cells may yield inaccurate results, since the important

flow parameter of pressure has not converged for cells less than 3 ·106. In addition, seeing

that the pressure did not vary, implies that total mesh count based on this study can be above

3 ·106 without affecting the results in any extent.

Figure 6.7.: Mesh independence study performed, where pressure drop vs.
number of cells is computed.

93



6.3. SINGLE-PHASE: ECCENTRICITY ANALYSIS

6.3. Single-phase: Eccentricity Analysis

In order to perform analysis of flow displacement for component analysis, it was necessary

to conduct a detailed study of the annulus of interest. The simulations were performed with

a constant flow rate of 8 BPM, similar to the operational pumping conditions during primary

cementing. The well geometry of interest is 9-5/8" casing in a 12-1/4" open-hole, which is

the longest section for common well architectures in oil production. A customary rheology

for the cement and pumping operations for 9-5/8" primary cementing are developed and

specified by Schlumberger.

The aim of this study is to specify flow characteristics during operational conditions. Main

parameters of interest are to analyze the effects of eccentricity and its effect on flow param-

eters such as high- & low-side velocities, velocity profile and pressure drop. The secondary

goal is to compare the non-Newtonian Herschel-Bulkley rheology with Newtonian rheol-

ogy.

Approach

As a step for evaluating the effect of eccentricity, 3D simulations are performed with a lam-

inar flow model with a non-Newtonian Herschel-Bulkley model and with the Newtonian

model for single-phase simulations. Several benchmark cases for both rheological models

were performed to ensure that important flow characteristics were captured before a para-

metric study could be performed. This involved adjusting the cell-count of the mesh, varying

the domain length in axial-direction, adjusting discretization-settings and modifying solver-

settings. When a sufficient model had been developed with a corresponding adequate mesh,

the parametric study was performed.

Assumptions and clarification

It is necessary to highlight the assumptions being made and uncertainties which come with

the modelling assumptions before simulation set-up is considered.

Assumptions
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• Steady-state flow

• Laminar flow

• Isothermal process

• Constant flow rate

• Symmetry along mid-plane of the annulus

• No-slip conditions at walls

• No hydraulic roughness at walls

Uncertainties

1. Casing simplification

The increased diameter at each end of the casing, there exists the male and female

connections for connecting casings together to form a string of casings. For the geom-

etry, this is smoothed out such that the casing is modelled as with a uniform smooth

pipe.

2. Wellbore simplification

In a realistic wellbore, the walls of the open-hole are never completely straight and

have different wall roughness due to different formations, drillbit types, ROP and many

other factors. This is modelled as a uniform smooth pipe.

3. Rheology

Rheological data are taken from rotational viscometer, performed by Schlumberger.

Any experimental error will lead to deviation from the cement pumped in the well.

Moreover, the viscometer tests were taken for six ranges of shear rate and implemented

in the derived script for obtaining the rheological parameters and implemented into

a rheology model in the CFD model. Such a model will not be completely accurate,

and any shear rates beyond the highest shear rate during viscometer tests will result in

inaccurate fluid modelling.

4. Downhole Pressure

The downhole pressures are not evaluated for the simulations. Taking into account

the formation pressure on the column of fluid makes the case simulation being only

valid for different condition and wellbore sections. Neglecting this enables a general

case-study possible since the TVD is not taken account for.
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Model Validation

The basis of CFD model is the same as has been validated against the Zhigarev et al. which

performed an analysis of eccentricity for drilling mud with both CFD and experiments [32].

The result and model deviated is stated previously in Section. 6.1. It must be noted that

since the rheology used for the present case is not the same as the model validation case,

the degree of accuracy is only present to a certain extent. The reasoning for this was that

experimental data for the present case is not available.

Geometry

The geometry for the simulations is generated in CAD-environment, SolidWorks. The geom-

etry of interest is the outer diameter, dictated by the drilled open-hole of 12-1/4", and the

inner diameter of being the outer rim of 9-5/8" casing joints.

Due to symmetry, the computational domain was split at the midplane in the axial direction,

resulting in a half-section of an annulus as the geometry.

Five different geometries were created for the corresponding five eccentricities. The dimen-

sions of the outer and inner diameter were fixed, varying only the distance along the vertical

axis at which the center for the diameters coincide. This can be visualized in Fig. 6.9. The

different cases can are shown in Table. 6.2.

Table 6.2.: Parameters of geometry for the eccentricity cases.

Case Eccentricity Low-side gap

1 0 33.34 mm

2 0.25 25.00 mm

3 0.5 16.67 mm

4 0.75 8.33 mm

5 1 0 mm
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Mesh

The mesh for the eccentricity cases where generated on the basis of high-quality cells for

capturing the flow characteristics of the flow problems. Having a computational grid be-

ing able to satisfy desired numerical accuracy, converge and computational time were also

important factors.

Generation of the mesh resulted in a computational domain containing 3.000.000 cells, struc-

tured in the flow direction for most cases. For 0% stand-off case, mesh refinement had to be

performed due to the extremely small gap in the low-side of the annulus. Using the same

grid generation technique, as have been done for all cases, yielded a mesh of 5.697.699 cells.

The sweeping method has been used to create the mesh, where a specific number of cells

have been chosen for the outer diameter, inner diameter, and symmetry phases at the high-

and low-side of the annulus. Details regarding the grid generation can be seen in Appendix.

A.2.1.

The mesh generation was performed in ANSYS Meshing, which is an integrated grid gen-

eration tool in the ANSYS environment. All cells satisfied the mesh metrics criteria, stated

in Sec. 5.2. Further detail regarding mesh settings and mesh statistics can be found in Ap-

pendix. A.2.1. In Fig. 6.8, a visual presentation of the mesh can be seen.

(a) Front-view. (b) Isometric view.

Figure 6.8.: An example of generated mesh, here visualized for the 0.5 eccentricity case.
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Rheology

Rheological parameters were obtained with a basis of rotational viscometer test performed

by Schlumberger for their customized cement. The six-range viscometer data where im-

ported into a MatLab-script developed for obtaining non-Newtonian rheology data with re-

spect to yield point, flow behaviour, and consistency index. The rheological parameters im-

plemented in the CFD model is shown in Tab. 6.3. Further details of the rheology analysis of

the cement can be seen in Fig. A.2.

Table 6.3.: Rheological parameters of 9-5/8" tail cement.

Rheology model Yield Point, τ0 [Pa] Flow behaviour

index, k [Pa·sn]

Consistency index,

n [ ]

Newtonian 0 0.1468 1

Herschel-Bulkley 2.2634 0.7688 0.5582

Boundary Conditions

The constant operational flow rate of the pump is 8 BPM, which yields a velocity inlet of

0.7286 m/s for the specific case. The boundary conditions implemented are shown in Tab.

6.4. Since the flow conditions were the same for all cases, these settings remained fixed.

A velocity inlet/pressure outlet condition was chosen for obtaining the operational condi-

tion of constant flow rate in the annulus, and also due to CFD practices explained in Sec.

Figure 6.9.: An illustration of the modelling domain for CFD analysis.
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4.4.1.

For the computational domain for the faces and cell-zones, boundary conditions are as-

signed was stated during the meshing-phase in ANSYS Meshing, which is an integrated mesh-

ing software in the ANSYS environment. Assigning this at the integrated mesher in ANSYS,

results in less effort stating boundary conditions in Fluent, where only the scalar quanti-

ties are applied. This also makes it possible performing parametric studies, since the outer

boundaries for this internal flow problem already are defined.

Table 6.4.: Boundary conditions used for eccentricity cases.

Boundary Boundary Type Value

Inlet Velocity inlet 0.72862 m/s
Outlet Pressure outlet 0 Pa
Wall No-slip condition -

Symmetry Symmetry plane -

6.3.1. Solver Settings

Details regarding the solver settings are shown in Table. 6.5, below.

Table 6.5.: Solver settings for eccentricity cases.

Properties Settings

Software ANSYS Fluent 19.0
Calculation Steady State
Solver Type Pressure-Velocity Coupling

Solver Algorithm SIMPLE

Discretized Equations Differencing scheme

Gradient Least squares cell-based
Pressure Second-order Upwind

Momentum Second-order Upwind

From the first benchmark cases, high residuals were observed when non-Newtonian rheol-

ogy model was used. Therefore, refining and generating a high-quality mesh were performed

in conjunction with lowering the URF’s for the discretized pressure and momentum equa-

tions. Details of URF setting used is shown in Table 6.6.

The stopping criteria were set for 1000 iterations. Due to the fact that the residuals varied for
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the Newtonian and Non-Newtonian cases, the simulations were run with the same stopping

criteria. After the few benchmark simulations where run individually, a parametric study

algorithm where applied such that all simulations were performed in a sequential manner,

at the same time. This is a function available in the ANSYS environment for CAE analysis.

This resulted in a time-efficient way of running the all the respective cases.

Table 6.6.: Under-relaxation factors implemented for eccentricity cases.

Under-Relaxation Factors Settings

Pressure 0.2
Density 1.0

Body forces 1.0
Momentum 0.6
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6.3.2. Schematic of present CFD set-up

Figure 6.10.: Schematic of CFD set-up in Fluent for performing single-phase
simulations.
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6.3.3. Results

Figure 6.11.: Illustration of the effect of eccentricity yielding inproper cement
displacement.

For all simulation performed, double-precision using higher-order discretization, in addi-

tion to a large computational domain was applied, resulting in a computational time of ap-

proximately 8 hours until the stopping criteria were reached. The Newtonian cases took

around 2 hours less than the non-Newtonian cases. This was performed with 6 cores on a

3.2 GHz quad-core processor with 16GB RAM.

For multiple visual observations seen from Fig. 6.12-6.21, 3D and 2D velocity plots show

the velocities and velocity profiles for eccentricities ranging from 0 to 1. CFD analysis was

performed for five cases with a 0.25 increment, for each rheology model. Data for high- and

low-side parameters were acquired from the midsection between wellbore and casing. The

data for fully developed flow were extracted at 8 m from the inlet for eccentricities 0, 0.25,

0.50 and at 10m for eccentricities of 0.75 and 1.0.

For the two latter cases, an increase of the domain in the axial direction has to be performed,

due to the flow not reaching steady-state with an outlet placement 10 m from the inlet. In-

creasing the domain length showed that the flow reached steady-state for both Newtonian

and non-Newtonian compared to a 10 m domain.
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Flow Velocities in Eccentric Annuli

(a) Newtonian (b) Non-Newtonian

Figure 6.12.: Comparison of Newtonian and Non-Newtonian (Herschel-Bulkley Model with
eccentricity = 0, visualized with a 3D velocity plot.

For eccentricity = 0, it can be observed that the velocity distributions are equal, due to con-

centricity. However, it can be observed that the velocity profiles for the two rheological mod-

els differ. This can be viewed in Appendix, A.4. The difference of magnitude of maximum

velocity is with 7%, where the Newtonian case has a peak velocity of 1.092 m/s where for

Herschel-Bulkley modelling a peak of 1.010 m/s. It is observed that the velocity profile is the

same everywhere in the annulus, due to concentricity.

(a) Newtonian (b) Non-Newtonian

Figure 6.13.: Comparison of Newtonian and Non-Newtonian (Herschel-Bulkley Model with
eccentricity = 0, visualized with a 2D velocity plot.
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(a) Newtonian (b) Non-Newtonian

Figure 6.14.: Comparison of Newtonian and Non-Newtonian (Herschel-Bulkley Model with
eccentricity = 0.25, visualized with a 3D velocity plot.

For eccentricity = 0.25, the effect of eccentricity is visualized in Fig. 6.14a for Newtonian,

but not as present for the Herschel-Bulkley modelling seen in Fig. 6.14b. The velocity dis-

tributions throughout the annulus are seen in Fig. 6.15, which highlights what have been

described previously. For Newtonian rheology, the peak high-side velocity is 1.4144 m/s,

where for Herschel-Bulkley it is 0.9379 m/s. For low-side velocities, these are 0.7236 m/s

and 0.7836 m/s for Newtonian and Herschel-Bulkley. The peak-velocity difference between

low- and high-side of the annulus is 0.6908 m/s for Newtonian and 0.1543 m/s for Herschel-

Bulkley. The velocity profile in the annulus can be seen in Fig. A.16.

(a) Newtonian (b) Non-Newtonian

Figure 6.15.: Comparison of Newtonian and Non-Newtonian Herschel-Bulkley Model with
eccentricity = 0.25, visualized with a 2D velocity plot.
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(a) Newtonian (b) Non-Newtonian

Figure 6.16.: Comparison of Newtonian and Non-Newtonian (Herschel-Bulkley Model with
eccentricity = 0.50, visualized with a 3D velocity plot.

For eccentricity = 0.5, the gap at the high-side of the annulus is double of the low-side gap.

Thus, the eccentricity effects are now clear for both cases, seen for 3D in Fig. 6.14. The

peak velocities for Newtonian rheology are 1.5700 and 0.4660 m/s for high- and low-side,

respectively. Difference in peak-velocity are 1.1040 m/s. The peak velocities for Herschel-

Bulkley are 1.0895 m/s at the high-side and 0.6753 m/s at the low-side, yielding a difference

of 0.4142 m/s. Velocity profile for both rheologies is shown in Fig. A.18

(a) Newtonian (b) Non-Newtonian

Figure 6.17.: Comparison of Newtonian and Non-Newtonian (Herschel-Bulkley Model with
eccentricity = 0.50, visualized with a 2D velocity plot.
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(a) Newtonian (b) Non-Newtonian

Figure 6.18.: Comparison of Newtonian and Non-Newtonian (Herschel-Bulkley Model with
eccentricity = 0.75, visualized with a 3D velocity plot.

For eccentricity = 0.75, the geometry exhibits highly eccentric behaviour, which affects the

flow characteristics. The velocity shape can be seen in Fig. 6.14 and velocity distribution in

Fig. 6.19. For the Newtonian case, the high-side peak velocity is 1.5803 m/s, whereas the low-

side is 0.3505 m/s. This gives a difference 1.2298 m/s between the maxima and minima in

the annulus. For the Herschel-Bulkley case, high-side peaked at 1.1083 m/s and low-side at

0.5184 m/s giving a difference of 0.5899 m/s. The difference of high-side velocities between

Newtonian and Herschel-Bulkley are significant and can be observed in Fig. A.16.

(a) Newtonian (b) Non-Newtonian

Figure 6.19.: Comparison of Newtonian and Non-Newtonian (Herschel-Bulkley Model with
eccentricity = 0.75, visualized with a 2D velocity plot.
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(a) Newtonian (b) Non-Newtonian

Figure 6.20.: Comparison of Newtonian and Non-Newtonian (Herschel-Bulkley Model with
eccentricity = 1, visualized with a 3D velocity plot.

For eccentricity= 1, the 3D-shape of the velocity profile is shown in Fig. 6.20. Cross-sectional

velocity distribution can be seen in Fig.6.21. These velocity representations show the differ-

ence of flow characteristics, where laminar flow exhibit a sharp parabolic velocity form for

the Newtonian model (Fig. A.19), whereas the Herschel-Bulkley model exhibits a more flat

plug-shaped form. From the 2D-velocity distributions, it can be seen that velocities sur-

rounding the casing, moving in negative y-direction, are greater for the Herschel-Bulkley

model. The low-side velocities are not present, thus high-side velocities dominating the flow

behaviour in the entire annulus, with peak velocities of 1.5803 m/s and 1.3062 for Newtonian

and Herschel-Bulkley. The velocity profiles can be seen in. Fig A.19.

(a) Newtonian (b) Non-Newtonian

Figure 6.21.: Comparison of Newtonian and Non-Newtonian (Herschel-Bulkley Model with
eccentricity = 1, visualized with a 2D velocity plot.
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Pressure drop in Eccentric Annuli
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Figure 6.22.: Simulation results for pressure drop [Pa/m] for the various
eccentricity cases.

In Fig. 6.22, pressure drop, in [Pa/m], can be observed for all cases. The Newtonian cases

show a lower pressure drop, with an almost linear behaviour for eccentricities ranging from

0.25− 1. The Herschel-Bulkley cases exhibit an even more linear behaviour for increasing

eccentricity. Comparing the two rheology models, the Newtonian yields approximately 500

Pa/m lower pressure drop than the Non-Newtonian for all eccentricities.
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6.3.4. Assessment of Pressures in Annuli with Correlated Models
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Figure 6.23.: Comparison of pressure drop computed from the present CFD
simulations vs. eccentricity for Newtonian rheology model with

correlation from the work of Haciislamoglu & Langlinais (1990) and
Madlener et. al.(2009).

As discussed in Sec. 2.2, there exist models which can be used to compare with the CFD

simulations. Fig. 6.23 shows a comparison with the slot approximation (Fredrickson & Bird

1985) and the analytical solution for laminar Newtonian flow. Both cases have been cal-

culated for concentric annulus and thereafter been subject to the correlation presented by

Haciislamoglu & Langlinais (1990), discussed in Sec. 2.2, and mathematically described with

Eq. 2.5. As observed, the correlated slot-approximation shows an agreement with the CFD

results, where the analytical solution also shows a similar trend. It is seen that the correlated

models over-predict the pressure drop for fully eccentric annulus. However, the correlations

under-predict the pressure drop everywhere else but showing minor deviations.

For the Herschel-Bulkley cases, a comparison has been performed against three different

models, seen in Fig. 6.24. The correlated slot approximation (Fredrickson & Bird 1985) de-

scribes an analytical solution where the non-Newtonian effects are implemented in the gen-

eralized Reynolds number representation (Madlener et al. 2009), in Eq. 2.4. For the two an-

alytical correlations, the Reynolds number for Herschel-Bulkley and generalized Herschel-

Bulkley number, previously presented in Eq. 2.1 (Madlener et al. 2009), was used in the
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analytical solution for pressure drop for laminar flow and correlated with the basis of Haci-

islamoglu & Langlinais for estimating with increasing eccentricity.

The results observed in the graph show a much different result than that observed for Newto-

nian rheology. The slot approximation and analytical Herschel-Bulkley greatly underpredicts

the pressure drop compared to the CFD results. On the other hand, the analytical solution

in conjunction with the generalized Herschel-Bulkley Reynolds number correlated into Eq.

2.1, shows a better coinciding for the three models used for comparison.

This shows that a more accurate representation of the Reynolds number of the flow can be

used as a suitable tool to predict pressure drops in eccentric annular flow, for non-Newtonian

Herschel-Bulkley fluids. It is also much more time-efficient, since calculating the Reynolds

number and inserting it into the analytic equation can be done in a short time.
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Figure 6.24.: Comparison of pressure drop computed from the present CFD
simulations vs. eccentricity for non-Newtonian Herschel-Bulkley

rheology model with correlation from the work of Haciislamoglu &
Langlinais (1990) and Madlener et. al.(2009).
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6.3.5. Effects of Eccentricity

From the simulation results, the following observation are identified for the effects of eccen-

tricity:

• Low Eccentricity

Low degree of variations in velocity distributions for Herschel-Bulkley and Newtonian

behaviour. Highest pressure drop due to the overall higher velocities present in the

annulus.

• Intermediate Eccentricity

Due to the eccentricity effects, the velocity distribution may be categorized into two

parts, where the high-side show a plug flow behaviour and low-side show a lower de-

gree of varying velocity. The effect is significantly higher for Newtonian fluids, where

Herschel-Bulkley shows a more distributed velocity contour. Lower pressure drop through

the annulus.

• High Eccentricity

The low-side flow is absent, indicating a stagnant flow. All the momentum is at the

high-side of the annulus. Newtonian flow shows a sharp laminar profile, whereas

Herschel-Bulkley flow exhibits a plug flow behaviour. Lowest pressure drop through

the annulus.

Comparing the concentric case against the eccentric cases, eccentricity effects cause velocity

components to have both radial and axial velocity components, were for a concentric case

only has axial velocity components. Furthermore, since the Herschel-Bulkley rheology ex-

hibit yield stress behaviour, the flow can form quasi-solid domains in the flow where stresses

are below the yield stress of the fluid. These effects are especially prominent in areas next to

the walls for high eccentricity.

It is observed that the pressure drop monotonically decreases as the eccentricity decreases

for all fluids, seen in Fig. 6.22. Unlike Newtonian fluids or fluids exhibiting yield stress prop-

erties, the pressure drop for the Herschel-Bulkley fluids cannot be lower than the value of

the yield stress of the fluids. This is one of the factors that indicate the average pressure drop
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deviation between the two cases.

Comparing velocity profiles, seen in Fig. A.16, the deviation in profiles are imminent. The

Newtonian exhibit sharp peak, whilst the Herschel-Bulkley model shows the cement flow

with plug characteristics in high-velocity areas and high gradients in the proximity of the

open-hole and casing walls. It can be observed that the velocity gradient for both rheology

models is quite similar near the walls. The shape of the velocity profiles coincides with the

theory for both rheologies [36], as discussed in Sec. 3.1 and visualized in Fig. 3.2.

6.3.6. Assessment of Herschel-Bulkley Modelling of

Non-Newtonian Flow

From the study performed, it is clear that numerical simulation of yield shear-thinning fluids

based on Herschel-Bulkley model may provide valuable characteristics of the flow. However,

there are several problems which need to be addressed to ensure numerical simulation with

sufficient accuracy.

Firstly, developing a more robust iterative solution algorithm should be analyzed further to

give a better representation of the shearing flow in flow regions with plug- and yield be-

haviour. This is due to the deformation and elastic action of Herschel-Bulkley fluids, which

may express a constraint for the boundaries between regions where the geometry exhibits

high eccentricity. The linear interpolation with the gradient method implemented in the

CFD model may not capture the deviation of velocity gradients. Ultimately, loss of informa-

tion may occur due to its crude approximation. For more accurate representations of the

physical actions present in the flow, a mechanism-based method should be employed for

estimating the correction of the boundary locations where the gradients may be high.

Secondly, as shown for the 3D velocity distributions in Fig.6.14b, 6.16b, 6.18b, and 6.20b, the

numerical solution shows a stable plug flow structure. However, this shape may be mechan-

ically unstable for realistic cases, where the steady-state operation will not be as idealized as

performed in the present CFD simulations. If any fluctuations are present in the flow, the

plug shape may break into sections and dissipate, which cannot be physically captured with

a steady-state flow. Thus, for an in-depth analysis of the dynamic flow behaviour and flow
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patterns, simulations based on time-dependent studies should be considered.

Lastly, the numerical analysis should be validated against experimental data that are exactly

tailored with the exact rheologies and geometries such that the simulation result will have

a better validity. For instance, the pressure drops based on flow rates and eccentricity does

not reveal differences in terms of a mesoscopic physics that may occur due to the complex

nature of the non-Newtonian flow. Experiments with measurement and visualization tech-

niques of high precision are also ideal. The difficulty in this aspect lies with the problem of

having fluids showing sufficient transparent properties such that methods like Particle Im-

age Velocimetry and other advanced image techniques such as Laser Doppler Anemometry,

may yield more information of perturbations, turbulent effects, and flow structure in transi-

tion regions.
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In the following, the study of the multiphase flow of mud-spacer-cement in annulus will

be presented. The results of the operational procedure, an assessment of the displacement

efficiency, as well as a discussion and comparison with literature will be presented.

7.1. Multiphase: Drilling Mud, Spacer & Cement

Introduction

For this study, an analysis of fluid displacement was performed for the fluid train of drilling

mud, spacer, and cement, respectively. The simulations were performed in accordance with

actual drilling schedules, developed by Schlumberger. The operational target of 900 LPM

flow rate was pumped into the well geometry of interest, which is 9-5/8" production casing

in a 12-1/4" wellbore. The three rheologies exhibited Herschel-Bulkley behaviour and were

modelled accordingly, for immiscible fluid-interaction, which is discussed later.

The aim of this study is to analyze the fluid train and quantify displacement efficiency for

the fluid introduced to the annulus, in a specified eccentric configuration of 50% stand-

off.

Approach

For the analysis, 3D simulations are performed for transient flow, laminar flow model, non-

Newtonian rheology modelling, with a Euler-Euler approach using Volume-Of-Fluid (VOF)

multiphase model.
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Several benchmark cases were performed in advance to ensure convergence for mud and

spacer, and spacer and cement. Due to the complexity of the CFD model for a large com-

putational domain, high-performance computing (HPC) on NTNU’s supercomputer, Vilje,

was utilized to handle the complex simulations and for reducing the total computational

time. With HPC capabilities available, four nodes were used, each containing 16 CPU’s, with

a processor speed of 2.6 GHz. Using four nodes yields a memory of 32 GB per node.

Assumptions and clarification

In the following, a list of the assumptions made, as well as uncertainties of the CFD model

are considered:

Assumptions

• Transient simulation

• Laminar flow

• Isothermal process

• Interpenetrating continua (immiscible fluids)

• Constant flow rate

• Symmetry along mid-plane of the annulus

• No-slip conditions at walls

• No hydraulic roughness at walls

Uncertainties regarding multiphase modelling

1. VOF model

The multiphase model assumes that the fluids are immiscible and avoids any disper-

sion and intermixing beyond the interface. This may yield inaccurate results compared

to real operations.

2. Interfaces between fluids

Due to computational complexity, the donor-acceptor schemes were used. The inter-

face is modelled between the immiscible fluids in a crude way, which will affect the

front of the displaced fluid.
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3. Course mesh

Due to computational time and convergence, the grid size mesh is coarse. This may

affect the simulation results.

4. Time step

The time step for the simulation may be too large which can affect the simulation re-

sults.

Geometry

Figure 7.1.: Rendering of CAD representation of the geometry for multiphase
cases.

The geometry for the computational domain is dictated by an eccentric annulus of a 12−1/4"

open-hole and 9− 5/8" casing, where the eccentricity is fixed by a centralizer. The blade-

height of the centralizer gives an eccentricity of 0.5, or 50 % stand-off. The centralizer is

not included in the computational domain but used as a geometric restriction during the

creation of the CAD-model.

The length of the domain is 24 m, to re-create a wellbore-section of two casing joints. The

domain is split in half, due to symmetry, and for reducing computational time in half.

Mesh

For the geometry of the domain, the grid generation resulted in 4.500.000 cells, structured

with hex-cells. The mesh is generated with a sweeping method after specifying the desired

amount of cells of the outer perimeter, inner perimeter, and high- and low-side symmetry
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faces. A trial-and-error approach was performed to create a mesh with high-quality cells.

Details of the mesh statistics and mesh metrics can be seen in Appendix. A.2.2.

(a) Front-view. (b) Isometric view.

Figure 7.2.: The generated structured hex-mesh for the multiphase cases.

Rheology

Datasheets for viscometer experiments, which were performed by Schlumberger and MI-

Swaco, contain a six-range viscometer data for each fluid of interest. Importing the experi-

mental data of the rheologies gave the result seen in Table. 7.1.

The result from the tests shows that all three rheologies gave best coinciding with the Herschel-

Bulkley model, of the four rheological models that were compared. This can be observed in

Fig. A.1, where rheology analysis was performed for all three fluids, using a self-developed

code in MatLab for obtaining the rheology data.
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Table 7.1.: Rheological parameters of drilling mud (WBM), spacer (Mudpush II) and cement
(9-5/8" tail cement).

Fluid Density, ρ

[kg/s]

Yield Point, τ0

[Pa]

Flow

behaviour

index, k [Pa·sn]

Consistency

index, n [ ]

Mud 1258 5.1367 0.8864 0.5188

Spacer 1200 4.6962 0.6342 0.4926

Cement 1900 2.2634 0.7688 0.5582

Boundary Conditions

To simulate the desired operational volumetric flow rate of 900 LPM, this was converted to

constant velocity inlet of 0.5183 m/s. Due to modelling three different fluids, a time was set

for the injection of each fluid. Before solution initialization, the first fluid for the fluid train,

which was the drilling mud, the fluid was initialized throughout the domain. Starting the

calculation was done by introducing the spacer from 0 to 800 seconds. The inlet velocity

distribution was uniform at the face of the inlet. Cement was introduced after 800 seconds

until the stopping criteria of 1860 seconds. For the outlet, a pressure of 0 Pa was used by

employing a pressure outlet. All boundary conditions used can be seen in Table. 7.2.

Table 7.2.: Boundary conditions used for eccentricity cases.

Boundary Boundary Type Value

Inlet Velocity inlet 0.5183 m/s
Spacer injection 0s < t < 800s

Cement injection 800s < t < 1860s
Outlet Pressure outlet 0 Pa
Wall No-slip condition -

Symmetry Symmetry plane -
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7.1.1. Solver Settings

Details regarding the solver settings are shown in Table. 7.3.

Table 7.3.: Solver settings for eccentricity cases.

Properties Settings

Software ANSYS Fluent 19.0
Calculation Transient
Solver Type Pressure-Velocity Coupling

Solver Algorithm Transient SIMPLE
Time Step 10−5 seconds

Maximum Iterations 30 per time step

Discretized Equations Differencing scheme

Gradient Least squares cell-based
Pressure Second-order Upwind

Momentum Second-order Upwind
Volume Fraction Second-order Upwind

From the initial two-phase cases run, divergence and convergence issues were preeminent.

To solve this, change of cell-sizes and time-step were performed in conjunction with a change

of URF’s. The chosen values of URF are seen in Table. 7.4.

Table 7.4.: Under-relaxation factors implemented for multiphase case.

Under-Relaxation Factors Settings

Pressure 0.2

Density 1.0

Body forces 1.0

Momentum 0.45

Volume Fraction 0.4

Due to the desired fluid train simulation, the flow initialization for the displacing fluids,

spacer, and cement, is seen in Table. 7.2, where the stopping criteria were set for the cement

after 1860 seconds of physical time.
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7.1.2. Schematic of present CFD set-up

Figure 7.3.: Schematic of CFD set-up in Fluent for performing three-phase
simulations.
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7.1.3. Results
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Figure 7.4.: Inflow of mud, spacer and cement vs. elapsed time.

For the data acquisition from the simulations, the inflow of the fluids was tracked, in order

to ensure that simulations were performed correctly. This is seen in Fig. 7.4. As observed,

the mass flow of mud is zero at the inlet. The simulation was initialized with the drilling mud

throughout the domain. The simulation started with the inflow of spacer fluid, and after the

specified time, inflow of cement.

0 200 400 600 800 1000 1200 1400 1600 1800

Time [s]

0

5

10

15

20

25

30

M
a

s
s
 F

lo
w

 [
k
g
/s

]

Mud

Spacer

Cement

Figure 7.5.: Outflow of mud, spacer and cement vs. elapsed time.
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The outflow of fluids was also tracked, seen in Fig. 7.5. After 36 seconds, the mass flow

rate and drilling mud started to decline, indicating the mud exiting the domain of 24m. It

is observed that the mass flow of mud does not reach a minima until after around 500 sec-

onds. Initialization of spacer displacement and cement breakthrough was observed at 820s

elapsed time, whereafter the spacer flow rate rapidly declines. As a result, this indicates that

the displacement of cement is propagating through the annulus, reaching the outlet.

Table 7.5.: Volume Fraction of the three-phases at 31min.

Fluids Volume Fraction

Mud 0.0014

Spacer 0.0033

Cement 0.9953

The displacement of the volume fraction can be observed in Fig. 7.6. The spacer break-

through is at the time 0 s and rapidly increasing until the spacer plateau is reached. It is

observed that the spacer plateau is not retained for long due to the cement breakthrough

at 800s elapsed time. As the cement is displaced, the cement plateau region is reached at

approximately 1500s. Furthermore, the presented graphs show no instabilities, indicated by

the smooth transition in Fig. 7.4, 7.5 and 7.6.
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Figure 7.6.: Displacement of mud, spacer and cement vs. elapsed time.
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(a) Solution at 150 seconds.

(b) Solution at 200 seconds.

(c) Solution at 240 seconds.

(d) Solution at 400 seconds.

Figure 7.7.: Displacement of mud by spacer for the elapsed solution time for a section of the
annulus.

123



7.1. MULTIPHASE: DRILLING MUD, SPACER & CEMENT

In Fig. 7.7, four snapshots give a representation of the displacement profile, interface, and

fluid transportation for mud and spacer at given times from an outside point-of-view. This

representation is created because the displacement near the wellbore wall is of importance.

At inspection, the interface between the two fluids shows the moving front, with character-

istics of the same velocity profiles seen for the single-phase case in Fig. A.17 for the 50 %

stand-off case. The viewpoint is tilted such that the low-side of the annulus is available for

visual observation. Even though the front shows a marked velocity deficit, the front on the

low-side is still significant enough in order to displace the mud. Overall, it can be seen that

the mud-spacer displacement is of an important effect.

In Fig. 7.8, the displacement of spacer-cement can be observed. As for the mud-spacer,

the spacer-cement representations are taken at four time-instances, to see the displacement

and flow propagation. It is observed that the interface, or front, of the cement, displacing

the spacer, shows larger velocity profile, which means that the eccentricity effects are more

significant for spacer-cement, compared to mud-spacer. As observed previously, the low-

side flow propagation shows the same effects for spacer-cement displacement, where the

cement velocities at the low-side are significant enough to displace the spacer fluid. It can

also be seen that the interface at the low-side exhibits a sharper contour compared to the

mud-spacer case, where it was more rounded. It displays the effects of the computation at

the interface struggle to compute the smooth profile, seen previously for the single-phase

case in Fig. 6.16b.

For the different fluids, the relevant Reynolds numbers based on Madlener et al. is seen in

Tab. 7.6.

Table 7.6.: The Reynolds numbers computed for the three different fluids, where the second
column is the conventional Reynolds number calculation, and the third and forth
is based on the expressions presented by Madlener et al.

Fluid Re ReHB ReGenHB

Mud 1499 279 74
Spacer 1476 368 105

Cement 447 241 97
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(a) Solution at 920 seconds.

(b) Solution at 980 seconds.

(c) Solution at 1020 seconds.

(d) Solution at 1200 seconds.

Figure 7.8.: Displacement of spacer by cement for the elapsed solution time for a section in
the annulus.
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7.1.4. Displacement Efficiency

For the specific mud-spacer-cement displacement analysis, the displacement efficiency is

listed in the Tab. 7.7, below.

Table 7.7.: Displacement efficiency of the fluid train at 31min.

Fluids Displacement Efficiency

Mud-Spacer 98.43 %
Spacer-Cement 99.53 %

As presented, the displacement efficiency shows satisfactory results for mud-spacer and

spacer-cement fluid interaction. With the stand-off of interest, the effect of eccentricity does

not inhibit the displacement efficiency of the fluid train. As observed previously, the eccen-

tric configuration has an impact on the velocity profile of the moving front, where higher

channelization is observed for spacer-cement and less for spacer-cement. Overall, the ef-

fects of channelization are present to a significant degree.

These results show that with the operational procedure that is analyzed, exhibit no signifi-

cant displacement issues in a horizontal wellbore of 9−5/8" casing in a 12−1/4" open-hole

occur. This may be due to several factors, that will be discussed below.

From the results of Zulqarnain & Tyagi, their fluid-fluid analysis, utilizing the VOF method,

showed a high degree of instability effects of the fluids of interest. As seen in Fig. 7.9, the dis-

placement of the fluid train is quantitatively different from the results of the present study.

It can be observed that displacement of the near-wall effects contributed to inadequate dis-

placement, which may result in a poor bonding of cement in the annulus.

It can be mentioned that the presented case is for a 2D CFD analysis of concentric an-

nuli with fluids exhibiting power-law behaviour, which is quite different from the Herschel-

Bulkley model, due to the absence of the yield stress parameter in the fluid.

126



7.1. MULTIPHASE: DRILLING MUD, SPACER & CEMENT

Figure 7.9.: Results from one of the cases performed by Zulqarnain & Tyagi for
mud-spacer-cement analysis showing instabilities.

Zulqarnain & Tyagi discuss the role of interfacial instability, such as Rayleigh-Taylor instabil-

ities, due to the displacement of fluids with a high difference in density, and Saffmann-Taylor

instabilities, due to the displacement of fluids with different viscosity which, may result in

viscous fingering in at the interface. These instabilities are also highly dependent on the flow

regime of the flow. The authors also observed fluctuations as the Reynolds number was over

400, where the volume fraction showed instability effects in the annulus.

For the present studies, these effects were not present which may be a result of the satisfac-

tory fluid composition of the mud, spacer, and cement. The rheology characteristics may

have been tailored in a proper way, such that the fluid interaction and dispersion between

two fluids are kept to a minimum. It can be noted that the effects of this may also be due

to insufficient CFD modelling, which does not capture these effects with the present CFD

model presented in this study. Some of the issues with resolving the interface due to unsat-

isfactory CFD implementation may stem from three sources which will be addressed.

Firstly, the pressure interpolation scheme that was chosen. As long as the pressure varia-

tion between cells is smooth, the linear interpolation scheme will yield accurate pressure

predictions. However, if there is a presence of large gradients in the source in the momen-

tum terms between the cells, the pressure profile may exhibit in high gradients. If this is to

occur, the chosen interpolation scheme may give poor results. With improper pressure in-

terpolation, the effect may be an under-prediction or over-prediction the velocity. This will
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consequently change the profile of the interface. A higher-order interpolation scheme may

result from issues of predicting the pressure gradient at these locations. Another source of

error may also be the assumption of zero pressure gradient at the wall. The assumption is

valid in the presence of boundary layers but may result in errors for high body forces and

curvature, which consequently affect the pressure gradient. The failure to account for the

wall pressure gradient will influence the velocity in the proximity of the wall.

Secondly, the mesh used for the multiphase case. Based on the assumptions discussed

above, a refined mesh in regions of high-gradients may resolve the pressure variations more

adequately. Due to computational time and diverging simulations, generation of a suitable

mesh and selecting a proper time step was proven to be a difficult task. More effort should

have been spent on mesh refinement for a stable converging simulation which may have

yielded better interface prediction.

Lastly, a better-suited method for calculating the interface should be considered. The cho-

sen donor-acceptor method resolves the interface in a much more effective way in terms of

computational costs, but at the sacrifice of accuracy. A more suitable method will be the

geometric reconstruction method, which interpolates the interface with a higher degree of

accuracy. It can be mentioned that computational time may be a limiting factor, due to the

complexity of multiphase modelling. This should be kept in mind when choosing more ac-

curate methods. Furthermore, since the displacement efficiency is not directly correlated to

detailed interface calculations, it was expected to be as a less important factor for the simu-

lations.
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Conclusion 8

Based on the CFD simulations performed and literature surveyed in this thesis in order to

understand the primary cementing process, the following conclusion may be stated:

1. A CFD approach for 3D analysis may yield a satisfactory representation of the flow

characteristics of non-Newtonian fluids exhibiting Herschel-Bulkley behaviour. Veloc-

ity profiles, pressure drop, and flow development can be readily acquired for analysis

of the flow.

2. The eccentricity/stand-off should be kept at an tolerated limit, as it highly affects the

flow characteristics in the annulus. For annular flow with eccentricities above 0.5,

high-side channeling and plug flow behaviour was observed for Herschel-Bulkley flu-

ids.

3. The frictional pressure drop estimation may be calculated with the basis of CFD re-

sults of a concentric annulus in conjunction with the correlation factor presented by

Haciislamoglu [27] and Madlener et al. [25] for quick calculations of pressure drop for

eccentric annuli.

4. An increase of geometry complexity, such as wall roughness and non-smooth wellbore

may capture the effects of displacement issues, which was not observed with the as-

sumption of smooth walls for the present study. A more realistic representation of the

geometry of the wellbore may reveal effects which will influence the displacement to a

higher degree.

5. Further increase of modelling the complexity of the proposed CFD models may yield
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more accurate results and a better flow representation of multiphase effects and insta-

bilities. Furthermore, the flow regimes at a higher Reynolds number which is under

the limit of fracture pressure should be studied further.

6. Validation of proposed CFD models against experimental data of the same case should

be obtained for increased confidence in the CFD results. For any experimental set-up,

a focus on proper rheology composition is of importance, since the flow behaviour

highly depends on the rheology parameters.

7. CFD-based correlations may be an adequate tool to quantify displacement efficiency,

but need further investigation to enhance accuracy and applicability for operational

conditions.
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Appendix A

A.1. Rheology Analysis
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Figure A.1.: Strain rate vs. shear stress plot for the drilling fluids for Oswald de
Waele model for the validation case.
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Figure A.2.: Rheology analysis performed for cement (9-5/8" Tail Slag, viscometer data by Schlumberger).
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Figure A.3.: Rheology analysis performed for WBM (viscometer data by MI-Swaco).139
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Figure A.4.: Rheology analysis performed for Spacer (Spacer-Mudpush II, viscometer data by Schlumberger.)
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A.2. Mesh Settings and Mesh Statistics

A.2.1. Single-Phase - Eccentricity Case

Table A.1.: Mesh Settings and Statistics for: Stand-off 100%.

Mesh Settings Parameter

Grid Classification Structured
Cell Type Hexahedron
Method Sweep

Sweep size 25 mm
Relevance center Fine

Maximum face size 10 mm
Minimum face size 1e-003 mm

Mesh Statistics Value

Number of Elements 2 000 000
Maximum Skewness 0.001 (Excellent)

Minimum Orthogonal Quality 0.99988 (Excellent)

Table A.2.: Mesh Settings and Statistics for: Stand-off 75%.

Mesh Settings Parameter

Grid Classification Structured
Cell Type Hexahedron
Method Sweep

Sweep size 25 mm
Relevance center Fine

Maximum face size 10 mm
Minimum face size 1e-003 mm

Mesh Statistics Value

Number of Elements 2 000 000
Maximum Skewness 0.18086 (Excellent)

Minimum Orthogonal Quality 0.95992 (Excellent)
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Table A.3.: Mesh Settings and Statistics for: Stand-off 50%.

Mesh Settings Parameter

Grid Classification Structured
Cell Type Hexahedron
Method Sweep

Sweep size 25 mm
Relevance center Fine

Maximum face size 10 mm
Minimum face size 1e-003 mm

Mesh Statistics Value

Number of Elements 2 000 000
Maximum Skewness 0.35323 (Very good)

Minimum Orthogonal Quality 0.84999 (Very good)

Table A.4.: Mesh Settings and Statistics for: Stand-off 25%.

Mesh Settings Parameter

Grid Classification Structured
Cell Type Hexahedron
Method Sweep

Sweep size 25 mm
Relevance center Fine

Maximum face size 10 mm
Minimum face size 1e-003 mm

Mesh Statistics Value

Number of Elements 3 000 000
Maximum Skewness 0.54989 (Good)

Minimum Orthogonal Quality 0.63797 (Very good)

Table A.5.: Mesh Settings and Statistics for: Stand-off 0%.

Mesh Settings Parameter

Grid Classification Structured
Cell Type Hexahedron
Method Sweep

Sweep size 25 mm
Relevance center Fine

Maximum face size 10 mm
Minimum face size 1e-003 mm

Mesh Statistics Value

Number of Elements 5 697 699
Maximum Skewness 0.59036 (Good)

Minimum Orthogonal Quality 0.22908 (Good)
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A.2.2. Multiphase - Three-phase Case

Table A.6.: Mesh Settings and Statistics for: Three-phase case.

Mesh Settings Parameter

Grid Classification Structured
Cell Type Hexahedron
Method Sweep

Sweep size 25 mm
Relevance center Fine

Maximum face size 10 mm
Minimum face size 1e-003 mm

Mesh Statistics Value

Number of Elements 4 500 000
Maximum Skewness 0.35323 (Very good)

Minimum Orthogonal Quality 0.84999 (Very good)
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A.3. RESULTS - ECCENTRICITY CASES: PRESSURE & VELOCITY DEVELOPMENT

A.3. Results - Eccentricity Cases: Pressure & Velocity

Development

(a) Newtonian (b) Non-Newtonian

Figure A.5.: Comparison of pressure development for the eccentricity = 0 cases.

(a) Newtonian (b) Non-Newtonian

Figure A.6.: Comparison of velocity development for the eccentricity = 0 cases.

(a) Newtonian (b) Non-Newtonian

Figure A.8.: Comparison of velocity development for the eccentricity = 0.25 cases.
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A.3. RESULTS - ECCENTRICITY CASES: PRESSURE & VELOCITY DEVELOPMENT

(a) Newtonian (b) Non-Newtonian

Figure A.7.: Comparison of pressure development for the eccentricity = 0.25 cases.

(a) Newtonian (b) Non-Newtonian

Figure A.9.: Comparison of pressure development for the eccentricity = 0.5 cases.

(a) Newtonian (b) Non-Newtonian

Figure A.10.: Comparison of velocity development for the eccentricity = 0.5 cases.
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A.3. RESULTS - ECCENTRICITY CASES: PRESSURE & VELOCITY DEVELOPMENT

(a) Newtonian (b) Non-Newtonian

Figure A.11.: Comparison of pressure development for the eccentricity = 0.75 cases.

(a) Newtonian (b) Non-Newtonian

Figure A.12.: Comparison of velocity development for the eccentricity = 0.75 cases.

(a) Newtonian (b) Non-Newtonian

Figure A.13.: Comparison of pressure development for the eccentricity = 1 cases.
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A.3. RESULTS - ECCENTRICITY CASES: PRESSURE & VELOCITY DEVELOPMENT

(a) Newtonian (b) Non-Newtonian

Figure A.14.: Comparison of velocity development for the eccentricity = 1 cases for.
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A.4. Results - Eccentricity Cases: Velocity Profiles
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Figure A.15.: Comparison of velocity profiles for the eccentricity cases between
Newtonian and Herschel-Bulkley rheology modelling for

eccentricity=0.
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Figure A.16.: Comparison of velocity profiles for the eccentricity cases between
Newtonian and Herschel-Bulkley rheology modelling for

eccentricity=0.25.
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Figure A.17.: Comparison of velocity profiles for the eccentricity cases between
Newtonian and Herschel-Bulkley rheology modelling for

eccentricity=0.5.
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Figure A.18.: Comparison of velocity profiles for the eccentricity cases between
Newtonian and Herschel-Bulkley rheology modelling for

eccentricity=0.75.
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Figure A.19.: Comparison of velocity profiles for the eccentricity cases between
Newtonian and Herschel-Bulkley rheology modelling for

eccentricity=1.
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A.5. RESULTS: RESIDUALS

A.5. Results: Residuals

Residuals from: Single-phase Eccentricity Cases for Newtonian Model

Figure A.20.: Residuals for simulation of Newtonian model with 0 eccentricity.

Figure A.21.: Residuals for simulation of Newtonian model with 0.25 eccentricity.
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A.5. RESULTS: RESIDUALS

Figure A.22.: Residuals for simulation of Newtonian model with 0.50 eccentricity.

Figure A.23.: Residuals for simulation of Newtonian model with 0.75 eccentricity.
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A.5. RESULTS: RESIDUALS

Figure A.24.: Residuals for simulation of Newtonian model with 1 eccentricity.

Residuals from: Single-phase Eccentricity Cases for Herschel-Bulkley Model

Figure A.25.: Residuals for simulation of Herschel-Bulkley model with 0
eccentricity.
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A.5. RESULTS: RESIDUALS

Figure A.26.: Residuals for simulation of Herschel-Bulkley model with 0.25
eccentricity.

Figure A.27.: Residuals for simulation of Herschel-Bulkley model with 0.50
eccentricity.
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A.5. RESULTS: RESIDUALS

Figure A.28.: Residuals for simulation of Herschel-Bulkley model with 0.75
eccentricity.

Figure A.29.: Residuals for simulation of Herschel-Bulkley model with 1
eccentricity.
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A.6. CFD IMPLEMENTATION

A.6. CFD Implementation

A.6.1. Schematic of Approach for problem solving with CFD

Figure A.30.: Schematic of the general algorithm using CFD.
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A.6. CFD IMPLEMENTATION

A.6.2. Schematic of CFD Flowchart for Fluent

Figure A.31.: Schematic of the complete process in Fluent for solving CFD
problems.
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A.6. CFD IMPLEMENTATION

A.6.3. Schematic of Solver

Figure A.32.: Schematic of the modified solver process for SIMPLE.
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A.7. Fundamentals of Fluid Dynamics

The governing equations of fluid flow represents mathematical statements of the conserva-

tion laws of physics, which are the following:

• Conservation of Mass: The mass of a fluid is conserved.

• Conservation of Momentum: From Newton’s Second Law, the rate of change of mo-

mentum equals the sum of the forces on a fluid particle.

• Conservation of Energy: From the first law of thermodynamics, the rate of energy

is equal to the sum of the rate of heat addition and the rate of work done on a fluid

particle.

The fluid is regarded as a continuum. This means that the analysis of the kinematics and

mechanical behaviour of material is modelled as a continuous mass, rather than as discrete

particles, which was formulated by Cauchy.

For analysis of fluid flow, macroscopic length scales are assumed such that for molecular

structures of matter in a microscale, the molecular motions are neglected. With the uti-

lization of macroscopic properties, description of fluid behaviour can be reduced velocity,

pressure, density and temperature, respectively. By the assumption of macroscopic point-of-

view, properties are assumed to be averages over number of molecules. Consequently, a fluid

particle becomes the smallest element possible, describing the fluid properties [15].

A.7.1. Mass Conservation of a Fluid Element

Figure A.33.: Fluid element for Conservations laws
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Considering an element of fluid with sides δx, δy and δz. The fluid element is assumed to

be infinitesimal, visualized in Fig. A.33, which takes account of changes of mass, momen-

tum and energy due to flow across its boundaries. The properties of the fluid element are

functions of time and space, where the properties are a function of x, y , z and t , respec-

tively.

Figure A.34.: Mass flows in and out of a fluid element.

Considering the conservation of mass for a fluid element, the mass conservation states that

the rate of change of mass in the fluid element has to be equal to net rate of flow of mass into

the fluid element. This can mathematically be represented as:

∂

∂t
(ρδxδyδz) = ∂ρ

∂t
δxδyδz (A.1)

The net rate of mass flow into an element across its boundaries, graphically shown in Fig.

A.34 may be rearranged such that the mass conservation can be expressed as the follow-

ing:

∂ρ

∂t
+ ∂ρu

∂x
+ ∂ρv

∂y
+ ∂ρw

∂z
= 0 (A.2)
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or in a compact vector notation:

∂ρ

∂t
+∇· (ρu) = 0 (A.3)

, where u is the velocity vector for u, v and w in three-dimensions. The first term of eq. (A.3)

describes the local rate of change in density and the second term describes the convective

flow of mass across the boundaries of the domain.

Equation (A.3) is the unsteady, three-dimensional mass conservation, also known as the con-

tinuity equation at a point for a compressible fluid. Applying the assumption of incompress-

ible fluid, i.e no change of density with respect to time yields:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (A.4)

which in vector notation is expressed by:

∇·u = 0 (A.5)

This presented expression may also be called the incompressibility constraint, which a fluid

element must satisfy to be referred to as an incompressible fluid.

A.7.2. Momentum Equation in Three-Dimensions

The second governing physical law, which is Newton’s second law, states that the rate of

change of momentum of a fluid particle is equal to the sum of forces on a particle. The forces

that affects fluid particles can be distinguished into two types. That is, surface forces and

body forces. The surface forces consists of pressure forces, viscous forces and gravity force,

and the body forces consists of centrifugal, Coriolis and electromagnetic force [15].

The state of stress of a fluid element is defined in terms of the pressure and nine viscous

stress components. Pressure stresses, denoted P , and viscous stresses denoted by τ. The
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magnitude of a force resulting from a surface stress is the product of stress and area. The net

force in an arbitrary direction is the sum of the force components acting in that direction on

the fluid element. All the stress components can be graphically presented for a volume, as

presented earlier, seen in Fig. A.35.

Figure A.35.: Stress components in a fluid element

The body forces is not discussed in further detail, but their overall effect can be included by

defining a source, SM , where the index M presents the source contribution from the mo-

mentum, where the source is momentum per unit volume per unit time.

LetΨ be a any arbitrary direction of, x, y , or z. The momentum equation for theΨ-direction

can be found by setting the rate of change of momentum of the fluid particle equal to the

total force in the direction of the element, plus the rate of increase of the momentum due to

sources. For example, withΨ= x, we get

ρ
Du

Dt
= ∂(−P +τxx)

∂x
+ ∂τx y

∂y
+ ∂τzx

∂z
+SM x (A.6)

, where D
Dt is the material derivative, in the x-direction.

The accounts of surface stresses are accounted explicitly. The source terms SM include con-

tributions due to body forces.
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A.7.3. Equations of State

The dynamics of fluids can be described by a system of five PDEs: The mass conservation,

the momentum equations in x-, y- and z-direction, and the energy equation. For these fun-

damental fluid equations, there exist four thermodynamic variablies, that is ρ, P , e and T ,

which represents the density, pressure, specific internal energy and temperature, respec-

tively. In the following, a brief discussions is presented in order to explain the link between

these four variables.

The connection of the thermodynamic variables can be obtained by the assumption of ther-

modynamic equilibrium. The velocity components of a fluid element may be of significant

magnitude, but usually varies in a low degree for a infinitely small change of position in

space. Thus, the fluid will have the ability to thermodynamically adjust to the new set of con-

ditions, which effectively are assumed instantaneous. In other words, a fluid element will al-

ways remain in thermodynamic equilibrium. Although, there exist exceptions, such as flows

with the presence of shockwaves. Usually for these physical problem, a near-equilibrium

assumption will be a reasonable approximation.

The state of a substance in thermodynamic equilibrium can be described by means of three

state variables. These equations of state relate one variable to the other two state variables.

Using the density and temperature as state variables, the state equations for pressure and

specific internal energy or obtained and may be expressed as:

P = P (ρ,T ) (A.7) e = e(ρ,T ) (A.8)

For an ideal gas, the following, well-known, equation of state are:

P = ρRT (A.9) e =Cv T (A.10)
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In compressible flow, the equations of state provides a link between the energy equation and

mass and momentum conservation equations. This linkage arises due to density variations

as a results of pressure and temperature variations in the flow field.

For liquid and gases at low subsonic speeds (M ≤ 0.3), all fluids behave as an incompress-

ible fluid. Without the presence of density variations, there are no link coupling the state

variables. Therefore, the flow field can often be solved by solving the mass and momentum

conservation.

A.7.4. Navier-Stokes Equations for Fluid Flow

In the following, isothermal flow is considered, i.e the energy conservation equation is not

included, due to its non relevance for this thesis.

The conservation equation of momentum contain more unknowns represented as the vis-

cous stress components, τi j . An useful attribute is to express the viscous stresses as local

deformation rates, also known as strain rates. In 3D flow analysis, the strain rates consists of

linear and volumetric deformation rates.

Assuming isotropic liquids and gases, the rate of deformation of a fluid element becomes lin-

ear and has nine components in three-dimensions, of which six are independent in isotropic

fluids [62]. Denoted by si j , where the suffix system is identical to that for stress components.

The three linear elongating deformation components given by the following:

sxx = ∂u

∂x
sy y = ∂v

∂y
szz = ∂w

∂z

as well as six shearing linear deformation components:

sx y = sy x = 1

2

(
∂u

∂y
+ ∂v

∂x

)
sxz = szx = 1

2

(
∂u

∂z
+ ∂w

∂x

)
sy z = sz y = 1

2

(
∂v

∂z
+ ∂w

∂y

)
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Volumetric deformation may be expressed as:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
=∇u (A.11)

For Newtonian fluids, the viscous stresses are proportional to the deformation rate. Newton’s

law of viscosity in three dimension, involves two constant of proportionality. Firstly, the dy-

namic viscosity, µ, which relates stresses to linear deformations, and the second viscosity, λ,

which relates the volumetric deformation to a difference between mechanical and thermo-

dynamic pressure [63]. Enforcing this, we get nine viscous stress components, whereas six

are independent given as in tensor notation:

τi i = 2µ
∂ui

∂xi
+λ∇u , i = j (A.12)

and

τi j =µ
(
∂ui

∂x j
+ ∂u j

∂xi

)
, i 6= j (A.13)

, where the stress tensor here is represented with index notation.

The second viscosity, λ, has a small effect in practice [15]. For gases a reasonable approxi-

mation is the set the second viscosity as λ=−2
3µ [62]. Since most liquids are incompressible,

the mass conservation states that ∇u = 0, and the viscous terms a function of the local rate

of linear deformation and dynamic viscosity.

By substituting the stresse into Eq. (A.6), yields the famous Navier-Stokes equations in the

most useful form:

∂(ρu)

∂t
+∇· (ρu⊗u) =−∇P +µ∇·τ+SM (A.14)

The continuity equation, momentum equations, energy equation, and equations of state
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constitute the governing equations of fluid flow.
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