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Abstract

Deep artificial neural networks are showing a lot of promise when it comes to tasks
involving images, such as object recognition and image classification. In recent
years, there has been a steady increase in computing power, which has opened for
the possibility of training deeper and more complex artificial neural networks. This,
in addition to improved training methods, has been a major contributing factor
for creating a new wave of AI within computer science. However, as artificial
intelligence becomes more complex, it gets increasingly harder to explain an AIs
reasoning. It is intriguing that computers achieve human-like results for image
classification tasks, but from a research point of view, the reason why it performs
so good might be even more interesting.

In this thesis, we aim to get a better understanding of deep convolutional neural
networks. We attempt to increase our knowledge of these networks by creating
a platform where one can apply different visualization methods on different pre-
trained network architectures. First, we introduce the concept of convolutional
neural networks, and how they work. We then give an introduction to the field of
visualizing neural networks by explaining several state-of-the-art methods which
aim to give a better understanding of neural networks. After introducing multi-
ple methods, we explain our implementation of a selected few. We also give an
introduction to the platform we created for handling the different visualization
techniques. Included in this platform is a user interface, which simplifies the pro-
cess of applying visualization techniques to different networks and retrieving the
results. Finally, we examine the implemented techniques, while trying to explain
their behavior and what information they can give us about a convolutional net-
work. Additionally, we try to combine different visualization methods, to see if they
offer any useful information beyond what each method offers individually.

Interpreting the results of visualizations proved to be a challenging task, but we
still feel like there was some information to be gained from each distinct method.
Certain techniques showed results which could be useful for troubleshooting faulty
networks, while others indicated features which might be vital for correctly classi-
fying images. Combining different techniques yielded results that were difficult to
interpret clearly, but could prove to be a path worth researching further.
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Sammendrag

Dype kunstige nevrale nettverk har begynt å vise stort potensiale n̊ar det kom-
mer til oppgaver som omhandler bilder. Eksempler p̊a slike oppgaver er objek-
tgjenkenning, og klassifisering av bilder. I løpet av de siste årene har mengden
med tilgjengelig databehandlingskraft økt, noe som har åpnet for muligheten til å
trene dypere og mer komplekse kunstige nevrale nettverk. I tillegg har metodene
for trening av slike nettverk blitt forbedret. Disse fremskrittene innenfor kunstig
intelligens har vært store faktorer som har bidratt til å skape en ny bølge med
kunstig intelligens innenfor datavitenskap. En ulempe relatert til mer komplekse
modeller er at det blir vanskeligere å forst̊a en AIs virkemåte og resonering. Det
er spennende å se at maskiner oppn̊ar resultater p̊a samme niv̊a som mennesker,
men fra et vitenskapelig synspunkt er det enda mer interresant å forst̊a hvordan
og hvorfor de oppn̊ar s̊a gode resultater.

I denne masteroppgaven ønsker vi å oppn̊a en bedre forst̊aelse av konvolusjonære
nevrale nettverks virkem̊ate. Vi forsøker å øke forst̊aelsen av disse nettverkene ved
å lage en platform hvor man kan bruke forskjellige visualieringsmetoder p̊a forskjel-
lige forh̊ands-trente nettverksarkitekturer. Først introduserer vi konseptet konvo-
lusjonære nevrale nettverk og hvordan de fungerer. Videre vil vi gi en introduksjon
til visualisering av nevrale nett, ved å forklare forskjellige metoder for visualisering.
Disse metodene prøver å utdype forst̊aelsen for hvordan nevrale nettverk fungerer.
Etter dette vil vi gi en forklaring av hvordan vi har implementert noen av metodene.
Vi vil ogs̊a gi en introduksjon til platformen vi laget, som h̊andterer de forskjellige
visualiseringsmetodene. Platformen inkluderer et brukergrensesnitt for å fremstille
resultatene fra de forskjellige visualiseringsteknikkene. Til slutt vil vi undersøke
resultatene til de forskjellige visualiseringsteknikkene for å se hva slags informasjon
de kan gi oss om et nevralt nettverk. Vi vil ogs̊a prøve å kombinere forskjellige
visualiseringsteknikker for å se om det kan brukes til å hente ut informasjon som
forklarer nettverkets oppførsel.

Å tolke resultatene fra de forskjellige visualiseringsteknikkene viste seg å være en
vanskelig oppgave, men vi mener at det var mulig å hente ut relevant informasjon
med hver enkelt metode vi implementerte. Enkelte av teknikkene ga resultater
som kan være til bruk i forbindelse med feilsøking av nevrale nett, mens andre ga
en indikasjon p̊a hvilke trekk ved et objekt som var viktige for at nettverke skulle
kunne klassifisere objektet. Kombinering av visualiseringsteknikker ga resultater
som var vanskelige å tolke, men som ogs̊a ga inntrykk av at det potensielt kunne
vært spennende å utforske dette omr̊adet videre.
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Chapter 1

Introduction

This chapter presents a high-level introduction to the research field of convolu-
tional neural networks and describes the motivation that lies behind this thesis.
It also contains the primary research goal which serves as the cornerstone of our
research. In order to achieve this goal, several research questions are introduced.
By answering the research questions, we hope to come closer to the research goal
and advance our understanding of convolutional neural networks.

1.1 Research Motivation

With recent technological improvements and new innovative ideas, deep artificial
neural networks have begun to outperform humans in certain problem areas(He
et al., 2015). This includes tasks that are easily solvable for humans but were
previously thought to be computationally infeasible for machines. With a way to
represent information inspired by research into the human brain, and a way to
generalize based on a set of examples, deep neural networks are able to make sense
out of complex, noisy and nonlinear data. These networks can be used to tackle
a wide array of difficult problem areas, from recommendation systems to object
detection and image classification.

A particular class of deep neural networks called convolutional neural networks
(CNN) are especially good at analyzing visual imagery. What separates convolu-
tional networks from other deep neural networks is the use of layers called convo-
lutional layers throughout the network. These layers are taking into consideration
the spatial information from the layer before so that they can represent differ-
ent features of objects found in images. A convolutional neural network will try
to learn a hierarchical representation of the input-images it has been trained on,
where each layer in the network represents increasingly complex features. In the
very first layers, these features are usually just simple concepts such as edges and

1



2 CHAPTER 1. INTRODUCTION

corners, while deeper down in the network, simple features are being combined in
such ways that we are able to represent complex features like eyes and ears and
so forth. Going even further, we can combine these into really high-level features
such as faces or different types of animals.

In the last couple of years, we have seen convolutional neural networks achieve
increasingly impressive results when it comes to object detection. The most recent
winners of the ILSVRC competition(Russakovsky et al., 2015) have even been able
to surpass human-level performance on several pattern recognition tasks. Seeing
as these state-of-the-art models are able to classify images as well as humans, if
not better, it has become an important question to discern how they are able
to learn such intricate concepts. Due to its non-linear nature, it can be a hard
problem to understand the correlation between input and output in an artificial
neural network.

This problem has often been referred to as the black-box problem(Castelvecchi,
2016) of artificial neural networks. Although a deep neural network in theory
is capable of approximating advanced non-linear functions, merely observing its
structure and weights usually won’t give much insight into how the function is
being approximated. When the number of parameters is becoming really large,
which is often the case with deep neural networks, it does not make things any
easier. This is also the case with convolutional neural networks. Looking at the
VGG-16 network(Simonyan and Zisserman, 2014) for example, a commonly used
convolutional network for image recognition, it contains more than a 160 million
different parameters. This is why we need smart techniques in order to properly
visualize the inner workings of these networks, to gain further insight into how they
operate.

Knowing how and why a convolutional network behaves the way it does and how
decisions are being made is important for a multitude of reasons. Maybe the
most obvious one is trying to understand how mistakes occur in order to prevent
them. If an autonomous car, being driven by a deep neural network looking at
visual input from a front-camera suddenly swerved into a tree at the side of the
road, knowing why would obviously be of great interest. If we can grasp what
parts of the network that constitutes different parts of the decision-making process,
we might also get hints to whether or not the structure of the network could be
optimized, by building upon it or getting rid of unnecessary parts. There could also
be unforeseen insights to be gained by a deeper understanding of these networks.
Seeing as artificial neural networks were inspired by biological processes in the
brain, we might even be able to draw some parallels to the way the humans are
processing visual information.

The quest for a better understanding of neural networks has yielded several vi-
sualization techniques(Alexander Mordvintsev, Christopher Olah and Mike Tyka,
2015; Erhan et al., 2009; Montavon et al., 2017; Olah et al., 2017; Yosinski et al.,
2015; Zeiler and Fergus, 2014), which aim to visualize the internal workings of
ANNs. Each method provides interesting visualizations for a given neural network,
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displaying interaction between the learned weights in different ways. How useful
would it be to have multiple visualization techniques easily available for trained
CNNs, in order to see what the networks have learned, why images receive their
classifications and what is really happening inside the networks?

1.2 Research goal

The main goal of this thesis is to be able to better understand a CNNs inner
workings by creating a platform on which a user can explore a convolutional neu-
ral network using several different visualization techniques. Using said platform,
the user should be able to better understand the relationship between an input
image and predicted classification of said input. In addition, it should be possi-
ble to dive further into a network’s architecture, and discover how the network
represents the information it has collected through the training process. The vi-
sualization techniques we wish to implement are Feature visualization(Olah et al.,
2017), DeepDream (Alexander Mordvintsev, Christopher Olah and Mike Tyka,
2015), Activation Visualization(Yosinski et al., 2015) and Deep Taylor Decompo-
sition(Montavon et al., 2017). We want to apply these methods to different CNN
architectures, in order to see what kind of information that can be gained from
visualizing convolutional neural networks.

1.3 Research questions

In order to concretize the objectives for this project, we defined a set of research
questions which we hope to answer with our research, and to help maintain con-
tinuity throughout our project without derailing towards unrelated tasks and sub-
jects.

Can we create a platform where users can apply different visualization
techniques on networks with different architectures? In order to evaluate
different visualization techniques, we want to create a system with a user interface,
where one can try out and switch between different visualization methods, and
compare their results. The system should support multiple convolutional networks
with different architectures out-of-the-box, implying that the user has to do no ad-
ditional modifications when switching between different architectures. For this the-
sis we limit ourselves to two different network architectures; Inception V1(Szegedy,
Liu, et al., 2015) and VGG-16(Simonyan and Zisserman, 2014).

Does utilizing visualization techniques yield any information which can
be used to explain a neural networks behavior, and if so what does it tell
us? There exist several methods for visualizing neural networks, but an important
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question remains as to how useful the retrieved information is, and what it implies.
We want to answer the question if the results from visualizing neural networks can
be used for practical purposes, such as troubleshooting a faulty neural network or
improving an existing architecture.

Is there any additional information to be gained by combining different
visualization techniques? Each visualization technique gives its own piece of
information about a network. We wish to see if there is any additional information
to be gained by utilizing a combination of different visualization techniques. In
particular, we want to see if Deep Taylor Decomposition can be used to guide
feature visualizations in order to make the results easier to interpret.

1.4 Outline

This section gives a short introduction to each of the following chapters and de-
scribes the overall structure of the thesis.

Background contains all information which we deemed necessary for under-
standing the field of visualizing neural networks. This chapter includes an in-
troduction to basic concepts in neural networks, as well as related work in the
field.

Method describes the implementation details for the platform we created. Here
we explain how the system is structured, and how different visualization methods
were implemented.

Results and Discussion holds the results of utilizing the different methods
we implemented, as well as our evaluation of said results. Each method and its
contributions towards our research questions are evaluated on their own before we
look at the results of combining different techniques.

Conclusion wraps up our research in relation to our research goal and research
questions. We review what we have learned from our research, and to which degree
we were able to contribute to the field of visualizing neural networks. We present
a few directions for future work, which look promising and intriguing.



Chapter 2

Background

This chapter contains an introduction to a few central concepts, network archi-
tectures, and technologies that would be useful to understand, as the rest of the
project is built upon these. For this thesis, we assume the reader has prior knowl-
edge when it comes to artificial neural networks and their capabilities. We give
a short introduction to ANNs, in order to explain the terminology used in later
sections and to refresh the readers understanding of neural networks. Following the
explanation of neural networks, we explain one special category of ANNs, known
as convolutional neural networks. This class of neural networks is used in partic-
ular for tasks involving image data. After giving an introduction to convolutional
networks, two different network architectures are explained in detail. These two
network structures are used as examples when exploring different visualization tech-
niques and are therefore explained thoroughly. Also introduced in this chapter are
a few technologies accompanied by a short explanation of why we selected these
technologies instead of other alternatives.

The related works section explores the research area of visualizing CNNs by pre-
senting several papers which describe different methods for achieving a better
understanding of how convolutional networks work. The section aims to give a
perspective on the current state-of-the-art visualization techniques and introduce
techniques which are implemented in later sections of this thesis.

2.1 Artificial neural networks

This section gives a short introduction to what artificial neural networks are, how
they work and how they are trained. A basic understanding of neural networks is
crucial for understanding the work done in this thesis.

Artificial neural networks are a type of system used in machine learning, which is

5
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inspired by the human brain. When we mention neural networks in this thesis,
we refer to artificial neural networks and not their biological counterparts, unless
specified. Neural networks in biology consist of multiple neurons. A neuron has one
or several parent neurons to which it is connected, as well as one or several children.
When a neuron receives a signal from its parents, it can choose to propagate the
signal to its children. Artificial neurons aim to mimic this behavior.

2.1.1 Artificial Neurons

f(∑xiwi)

x1

x2

x3

y

Figure 2.1: Illustration of an artifical neuron.

An artificial neuron has several input connections, an activation function, and one
output connection. Each input connection xi has a corresponding weight wi. In
order to determine if the neuron should fire, it performs the calculation shown
inside the neuron in Figure 2.1. The weighted input values are summed together,
before being passed through a function f(x), also known as an activation function.
The activation function determines the value which the neuron will output.

An artificial neural network is utilizing several neurons in groups known as layers.
Usually, a neural network consists of one input layer, several ”hidden” layers and
one output layer.

Input Hidden layers Output

Figure 2.2: Illustration of an artificial neural network.

If all neurons in one layer share their outputs with all neurons in the next layer, we
call it a fully connected layer. By utilizing a structure of neurons, we can create a
system which can represent advanced non-linear functions or tasks. In Figure 2.2
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there is only one neuron in the final layer. In networks performing classification
tasks, there usually exists one neuron for each distinct class.

2.1.2 Activation functions

The most primitive activation function is the linear activation, where f(x) = x.
The output of a linearly activated neuron will always be equal to the sum of all
weighted input values. However, using a linear activation function makes it hard
for the model to generalize for non-linear data. This is where non-linear activation
functions come in.

1

2

3

-3 -2 -1 1 2 3

-1

x

y

Figure 2.3: A graph illustrating the ReLU activation function. x represents the
input, and y the output. The green line represents the ReLU function.

For this thesis the only relevant activation functions are the ReLU(Glorot et al.,
2011) function which is defined as f(xi) = max(0, xi), and the softmax function,
defined in Equation 2.1. ReLU is used as an activation function for hidden neurons,
while softmax is used at the output layer in classification tasks.

f(xi) =
exi∑
j e
xj

(2.1)

2.1.3 Training neural networks

In order for a neural network to be able to perform a certain task, one needs to
”train” the neural network. This is done by adjusting the weights of the network
until the network is sufficiently ”good” at its task. The training process of standard
neural networks is performed through what we refer to as supervised learning.
We have a set of training examples, consisting of a set of input values, and the
corresponding values that we want the network to output. The first thing that
happens is called a forward pass, which is to send the input values from one training
sample through the network and then calculate the output value. The correct
output from the example, along with the actual output from the network are used
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to calculate the training error also known as loss, by using a loss-function. The goal
of the training process is to minimize this function. In order to adjust the weights
in a way which minimizes the error, we use the backpropagation algorithm. To
measure how well a network does, one splits the training data into a training set
and a test set. After each training epoch, the test set is evaluated using the trained
model. The accuracy one achieves when evaluating the test set shows how well
the trained model generalizes for previously unseen data. If the accuracy of the
test set starts to decrease compared to previous iterations, the system could be in
the process of over-fitting. Over-fitting occurs when a model is too complex and is
formed to only predict the training data really well, rather than generalize for all
possible data.

2.1.4 The backpropagation algorithm

In order to minimize the loss-function, gradient-descent is used. The global mini-
mum of the loss-function is not known, but we can approximate it using the gradient
of the loss function.

Weights

Lo
ss Global

Minimum

Figure 2.4: Illustration of gradient descent converging towards the global minimum.

First, we initialize the network with random values for all weights. This is what
we refer to as our starting point. Gradient descent calculates the gradient of the
loss function with respect to the weights. Since we have several different weights in
the network, the gradient is a set of partial derivatives with respect to the weights.
The algorithm then adds a fraction of the gradient to the initial starting point.
The size of the fraction is what we refer to as learning rate. This will reduce the
value of the loss function. By repeating this process we move closer towards the
global minimum of the loss function.

Backpropagation is a method which can be used to calculate the gradients in a
neural network efficiently. When training neural networks, backpropagation is used
along with gradient descent. Calculating all partial derivatives at once is a complex
task. Instead, backpropagation propagates the value of the loss-function backwards
layer by layer and calculates the derivative of the loss with respect to the weights
at each layer.
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2.1.5 Learning-rate and Optimization algorithms

The amount we choose to alter the weights in each iteration has a huge impact on
how fast we reach the global minimum of the loss function. A system with a high
learning-rate might never reach the global minimum, while a system with a low
learning-rate can get ”stuck” in a local minimum, as seen in Figure 2.5.

Weights

Lo
ss

Weights
Lo

ss

High learning-rate Low learning-rate

Figure 2.5: Illustration showing gradient descent with a high and low learning-rate.

In order to combat these issues, there exist several methods which utilize dynamic
learning-rates. These methods are also referred to as optimization algorithms or
optimizers.

Adam

Adam(Kingma and Ba, 2014) is an example of such a method, which uses a form
of momentum to guide the learning process, with adaptive learning-rates for each
individual weight. It is shown to work well in practice, outperforming other learning
algorithms using adaptive learning-rates. The update rule in the Adam algorithm
is computed with the equation below, where θ represents the weights, η the learning
rate and ε a small number, typically 10−8:

θt+1 = θt −
η√
v̂t + ε

m̂t (2.2)

The change in each individual parameter is affected by both the decaying averages
of past gradients, represented by m̂t and the decaying averages of past gradients
squared, represented by v̂t. These values are computed with the following equa-
tions, where gt is the gradient we get from the backpropagation algorithm at step
t :

m̂t =
mt

1− βt1
, mt = β1mt−1 + (1− β1)gt (2.3)
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v̂t =
vt

1− βt2
, vt = β2vt−1 + (1− β2)g2t (2.4)

We often refer to mt as the first moment (mean), and vt as the second moment
(variance). The two beta parameters are used as decay-rates for each of these terms,
with the recommended default values set to be β1 = 0.9 and β2 = 0.999.

2.1.6 Regularization techniques

As the complexity of networks increases, so does the possibility for over-fitting.
Regularization techniques are methods which aid in the training process of neural
networks in order to help the model generalize better.

L2 regularization

L2 regularization(Ng, 2004) is a regularization technique which is often used to
combat over-fitting. The idea is to add an additional term to the loss-function of
a network which combats high magnitude weights, something that often occurs in
over-fitted networks.

Loss = L+ λ
∑
i

w2
i (2.5)

Equation 2.5 shows how the error is calculated. L is equal to the error before
applying L2 regularization.

∑
i iterates over all weights in the entire network.

Only a fraction of the sum of squared weights is added to the loss, and λ is used
to define the size of this fraction. If the total weights in the network increase in
magnitude, so does the total loss of the model.

2.2 Convolutional networks

Recent increases in computational power, and improvements on training neural
networks, such as using the GPU for training(Steinkraus et al., 2005) have resulted
in deeper and more advanced models being used within machine learning. Con-
volutional networks(LeCun et al., 1998) are a subset of neural networks, in which
at least one layer of the network performs convolutional computations of its input,
which are then passed onto the next layer. A convolution in this context is the
process of applying a filter to the input tensor. The filter corresponds to what in
a conventional neural net is referred to as weights. A filter can be seen as a three-
dimensional tensor. Its size may vary, but its dimensions are smaller than those
of the input, and usually the width and height are the same. The filter is used by
applying it to one section of the input, calculating the value by multiplying the
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input within the section with the filter and moving the filter to its next position
before calculating the next value. This process goes on until the filter has reached
the end of the input. The pacing of which the filter is moved is called the stride.
A stride of [2,2] would suggest that the filter moves two steps at a time in the X
direction of the input until it reaches the end of dimension X. Then it moves two
steps in the Y direction before it starts moving along the X-axis once more.

Figure 2.6: Example of a convolutional layer, presented like an ordinary neural
network.

Convolutional neural networks exploit two principles; sparse connections and pa-
rameter sharing. Sparse connections reduce the number of weights the network
has to learn. Parameter sharing further decreases the number of parameters and
gives the ability to recognize patterns in multiple locations. Figure 2.6 visualizes
these two principles. The network illustrated uses a stride of [1,1]. Each output
node has only a number of input values equal to the total filter size, as opposed
to using all inputs which would make it a fully connected layer. Each weight has
a unique color, which is used to show how the parameters are shared between
different nodes.

Lets say we have an input I, a filter F with dimensions [n,m,d] and an output O.
The value of Oi,j,l would then be

Oi,j,l = (

d−1∑
z=0

m−1∑
y=0

n−1∑
x=0

Ix+a,y+b,z ∗ Fx,y,z,l) +Bl (2.6)
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Where l is the filter index, i and j represents the coordinates of the output, B is the
bias for the filter and [a,b] are the offsets generated by moving the filter according
to the stride. With a stride of [e,f] the values of a and b would be

a = e ∗ i (2.7)

b = f ∗ j (2.8)

The calculations below show how the value in Figure 2.7 is calculated.

O0,0,0 =

1∑
z=0

1∑
y=0

1∑
x=0

Ix,y,z ∗ Fx,y,z,0 (2.9)

O0,0,0 = (1 ∗ 2 + 2 ∗ 0 + (−5) ∗ 2 + 4 ∗ 0) + (2 ∗ 1 + 0 ∗ (−1) + 3 ∗ 1 + 6 ∗ 1) = 3 (2.10)

Figure 2.7: Example of a simple convolution, with a 5x5x2 input, a 2x2x2 filter, a
stride of [1,1] and no bias.

The result of the convolution is a 4x4x1 tensor. An ordinary convolution operation
reduces the dimension of the input, in this example from 5x5 to 4x4. As this is
not always desired, one can apply a method called padding on the input to achieve
an output with the same dimensions as the input. An example of this is shown in
Figure 2.8.

Convolutional layers are usually followed by a ReLU activation function. In addi-
tion, there is also another type of layer found in CNN’s known as a pooling layer.
This layer reduces the dimensions of the input by pooling a region of the input.
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Figure 2.8: An example of how the input dimensions are retained when using zero-
padding before a convolution. The top figure shows a convolution without padding,
while the bottom figure uses zero-padding. This particular convolution uses a stride
of 2.
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Figure 2.9: Example of pooling operations with a 2x2 pooling region illustrated as
the blue boxes. The top figure shows a max-pooling operation, while the bottom
figure displays a average pooling operation.

The most used type of pooling layer is known as max-pooling, in which the layer
selects the highest value within the pooling region, which is then passed onto the
output. Another type of pooling layer is average pooling. This operation returns
the average value of the pooling region. Average pooling is often used after the last
convolutional layer, in order to transition from convolutional layers to fully con-
nected layers. Examples of pooling operations are displayed in Figure 2.9.

A CNN can be seen as two operations. The first operation is feature extraction, us-
ing convolutions. The second operation is classification, where the learned features
are mapped to the output of the network. In a regular convolutional network, this
is done by ”flattening” the input to a 1x1xN tensor and then applying one or sev-
eral fully-connected layers, often followed by a layer utilizing the softmax-activation
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function.

2.2.1 Matrix operations

In most neural network libraries, convolutions are done using matrix operations.
As these operations are used in Section 3.4 it would be an advantage to understand
the basic concept. Figure 2.10 shows an example of the input, weights and output
of a convolution.

Input Weights
a11 a12 a13

a23a21
a31 a32 a33

a22
w11 w12

w21 w22

y11 y12
y21 y22

Output

Figure 2.10: Figure showing an input, weight and output matrix. This example
uses a stride of 1.

In order to utilize matrix operations, we first need to write the input matrix as a
vector I. Then we create a sparse matrix from the initial set of filter weights which
we call V . Calculating V I will give us the convolution of said input and weights.
This process can be seen in the example Equation 2.11. Each element in the final
vector corresponds to Equation 2.9. The final vector can be reshaped into a 2x2
matrix.


w11 w12 0 w21 w22 0 0 0 0
0 w11 w12 0 w21 w22 0 0 0
0 0 0 w11 w12 0 w21 w22 0
0 0 0 0 w11 w12 0 w21 w22





a11
a12
a13
a21
a22
a23
a31
a32
a33



=


a11 ∗ w11 + a12 ∗ w12 + a21 ∗ w21 + a22 ∗ w22

a12 ∗ w11 + a13 ∗ w12 + a22 ∗ w21 + a23 ∗ w22

a21 ∗ w11 + a22 ∗ w12 + a31 ∗ w21 + a32 ∗ w22

a22 ∗ w11 + a23 ∗ w12 + a32 ∗ w21 + a33 ∗ w22

 =


y11
y12
y21
y22



(2.11)

Computing the gradient of a convolution is done in similar fashion. It is still a
convolutional operation, but the weights and input change.

The input is a zero-padded version of the output from the original convolution, and
the weights have been rotated 180 degrees.
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00
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Figure 2.11: Example of input, weights and output when computing the gradients
of a convolution.

2.2.2 Convolution activations

The output of a neural network layer is often referred to as its activation. The ac-
tivations of a convolutional layer differ from those of a conventional fully connected
layer in a special way, which one can exploit. In a fully connected layer, the order
of the activations is irrelevant. In a convolutional layer, Each filter creates one
two dimensional output, as shown in Figure 2.7. These activations retain spatial
information and can therefore be displayed graphically. This representation is used
in (Stutz, 2014) to get a better understanding of what happens inside of a convo-
lutional network. The details of how to visualize the activations are described in
Section 3.3

2.3 Network architectures

This section aims to give an understanding of two particular convolutional network
architectures. These two architectures are both state-of-the-art CNNs with high
accuracy when it comes to classifying images. A drawback of using state-of-the-art
architectures is the computing power needed for the training process. The creators
of the Inception network (described in Subsection 2.3.2) spent two weeks training
their network, utilizing multiple high-class GPUs. Luckily there exist pretrained
versions of both networks, which are compatible with our choice of deep learning
framework, which is discussed more in Subsection 2.4.1.

Before we explain the two architectures, we give a short introduction to the Im-
agenet dataset(J. Deng et al., 2009). Imagenet is a database of images, order by
different classes. The Imagenet dataset is a subset of the image database, used in
the ILSVRC(Russakovsky et al., 2015), which is a competition for creating the best
large scale system for image recognition. Through the last years of the ILSVRC,
the dataset has remained unchanged. Table 2.1 shows the number of images for
the different subsets in the Imagenet dataset.

There are a total of 1000 different categories of images. The validation and test
set are hand labeled, thus ensuring the correctness of the label assigned to each
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total number of classes/categories 1000
Training set size 1.2 million images
test set size 150 000 images
validation set size 50 000 images

Table 2.1: A table displaying the properties of the Imagenet dataset.

image. The balance of the dataset is not stated, meaning the dataset could be
unbalanced by having more images for certain categories. All external images used
in this thesis are extracted from the Imagenet dataset. In order to use the images
in our research, we had to comply with the Imagenet terms of access 1.

2.3.1 VGG-16

The VGG-16 architecture is a result of the paper Very deep Convolutional Net-
works for large-scale image recognition(Simonyan and Zisserman, 2014) in which
the authors aim to evaluate the benefit of increasing the depth of a convolutional
neural network. The paper implements several networks with a different number
of weighted layers. VGG-16, as the name suggests has 16 weighted layers. The
structure of the network is shown in Figure 2.12. Images fed into the network are
preprocessed by subtracting the mean RGB value of the training set. Convolutional
layers are using a padding size which keeps the output dimensions equal to the in-
put dimensions. Max-pooling is performed using a 2x2 window with a stride of 2.
All convolutions are performed using a filter size of 3x3 with a stride of 1.

1http://www.image-net.org/download-images#term

http://www.image-net.org/download-images#term
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224x224x64

112x112x128

56x56x256

28x28x512

14x14x512

1x1x4096

1x1000

Convolution

Max Pool

Fully connected layer

Softmax/Output
layer

1x1x1000

Input image

Figure 2.12: Illustration showing the VGG-16 architecture. The numbers show
the size of each layer. The first two numbers indicate the width and height when
training. The third number indicates the number of filters used in each layer.
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Earlier CNNs used larger receptive fields than the VGG network. In this context,
the receptive field is the dimensions of the weights used in a convolution. The
convolutions in the VGG network all use filters with dimensions 3x3, which means
they have a 3x3 receptive field. The paper from which the architecture originates
argues that by stacking convolutional layers with small receptive fields they achieve
the same result as a higher level receptive field. Stacking several smaller receptive
fields has several advantages over using one large receptive field. Each convolution
is followed by a ReLU function, which makes the decision function more discrim-
inative. Having more layers will increase the use of the ReLU function, thereby
making the decision function even more discriminative. The number of parameters
needed is also reduced, which is another advantage.

2.3.2 Inception V1

Going deeper with convolutions(Szegedy, Liu, et al., 2015) describes an image
classification system created and used by Google, that was also used in their open
source release of DeepDream(Alexander Mordvintsev, Christopher Olah and Mike
Tyka, 2015). The system, which has received the code name ”Inception” was used
in the ILSVRC 2014 Classification Challenge(Russakovsky et al., 2015). One issue
with convolutional neural networks is attempting to use all existing computation
power available efficiently. The most effective methods use dense matrix multipli-
cation, while CNN’s often are sparsely connected, and therefore are represented by
sparse matrices. Google’s team solved this issue by clustering sparse matrices into
smaller more dense sub-matrices which are then used for computations.

The structure of the network can be seen as a composition of multiple modules.
The main module of the network is referred to as an ”Inception-module.” This
module consists of multiple operations which are run in parallel. At the end of
the module, the results of all parallel operations are concatenated and sent to the
next layer of the network. The operations that run in parallel are 1x1, 3x3 and
5x5 convolutions, in addition to a max-pooling operation. In the earlier layers of
the network, correlated activations/pixel values can often be found close together
in concentrated regions. These units will be picked up by the 1x1 convolutions. In
addition, there are some correlations which are not as concentrated, to which the
3x3 and 5x5 convolutions will respond. The max-pooling is justified by arguing
that it works well in similar networks, and therefore also should work well in this
architecture.

The output-dimensions of an inception-module increase rapidly when chaining to-
gether several modules. This results in a lot of computations for the next layer,
which then will increase the depth even further. To combat the increasing com-
putational amount, a 1x1 convolution is run before the 3x3, 5x5 and max-pooling
operations. The 1x1 convolution, which is sometimes referred to as a Network
in Network(Lin et al., 2013) layer, is used to reduce the dimensions of inputs for
computationally expensive operations. In order to better understand this concept,
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we can look at a practical example in the Inception V1 network. The first Incep-
tion module has an output dimension of 28x28x256. Feeding this output straight
into the 3x3 and 5x5 convolutions in the next Inception module would be com-
putationally expensive. Instead one can apply a 1x1 convolution with 128 filters,
thereby reducing the dimensions to 28x28x128. Finally, after each convolutional
operation, the system uses a ReLU-activation function in order to introduce non-
linearity.

Figure 2.13 shows a visual representation of the layers within an inception module.
The red nodes perform a convolutional operation followed by a ReLU activation,
while the blue node performs max-pooling. The yellow nodes denote the input and
output of the module.

Figure 2.13: Illustration of an Inception module.

In addition to the Inception-module, the network also consists of a few ordinary
conv-net operations in the early layers. This is due to memory restrictions in
the training process, as the team realized it would be expensive to implement the
Inception module in the early layers. Another enhancement which is implemented
in the system are two auxiliary classifiers. These are connected to modules in the
middle of the network, and predict the output based on its input, much like the
final prediction layer. The loss of these outputs is then added to the total loss of the
system. This encourages discrimination in the earlier layers of the system, as well as
adding regularization and increasing the gradients during backpropagation.

The team behind the Inception architecture has created several iterations of the
Inception-net(Szegedy, Vanhoucke, et al., 2015). Later iterations involve more
complex inception modules with a higher number of filters and convolutional layers.
The networks with their trained weights are available for use to the public. For
this thesis, the first iteration of the Inception network was used. The architecture
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is sufficiently complex, meaning the network is able to learn different features and
concepts from the training dataset. At the same time is the architecture still
relatively simple to explain, compared to later iterations.

Input image

28x28x480

14x14x512

28x28x256

56x56x64

112x112x64

14x14x528

14x14x832

7x7x832

7x7x1024

1x1x1000

1x1000

Convolution

Max/Average Pool

Fully connected layer

Softmax/Output
layer

Inception module

Input/Concatenation

Inception module

Figure 2.14: Model of the Inception V1 network.

Figure 2.14 shows a model of the first Inception network. The first convolutional
layer uses a 7x7 filter with a stride of 2, and no padding. This convolution reduces
the input size from the original 224x224 to 112x112. The next convolutional layers
use 3x3 filters with a stride of 1x1 and padding which retains the original dimen-
sions. All pooling layers apply max-pool with a size of 3x3 and a stride of 2, except
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for the last layer, which applies average pooling on a size of 7x7 and a stride of 1.
The auxiliary classifiers from the original model are excluded from this illustration,
as they are only relevant during the training process.

2.4 Technologies and frameworks

This section gives a short introduction to the different programming languages and
frameworks used in this thesis. In addition, we give an explanation for choosing
each technology.

2.4.1 Python

Python is a high level, object-oriented programming language. It was used for
this project as it supports a wide range of machine learning frameworks. A High-
level language refers to a language with a high level of abstraction from machine
language. This simplifies the process of working with neural networks, as one can
write code on a model level, rather than a machine level. The best alternative to
Python would have been C++, but neither of the authors had previous experience
using it. In addition, it is much closer to machine language, which was another
argument favoring Python. Java was also considered as an alternative, but the
support for machine learning frameworks is lacking, and the structure of Java
projects is more complex compared to Python, which seemed like an unnecessary
burden given the relatively small scale of our project.

TensorFlow

Tensorflow(Mart́ın Abadi et al., 2015) is an open-source library for numerical com-
putations using data flow graphs. The process of creating and training neural
networks is made a lot simpler with the built-in methods of Tensorflow. The sys-
tem was created by the Google Brain team, whose goal is to improve machine
intelligence. Tensorflow comes with several APIs in different programming lan-
guages such as Python, C++, Java and Go. For this project, the Python API was
used, as it is the official release, and the team felt comfortable using it as a result of
previous experiences. The choice of API does not influence the run-time of the code
since all APIs compile their code to C++ at the lower levels. Tensorflow allows for
running computations using one or several GPUs, which reduces the time spent on
executing computations, and leaves more time for research and testing.

Tensorflow operates by chaining together operations on tensors, creating a com-
putational graph which can then be executed using what Tensorflow refers to as
a session. Figure 2.15 shows an example of Tensorflow code, which generates and
executes a Tensorflow graph.
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import tensorflow as tf

A = tf.placeholder(tf.int16)

B = tf.placeholder(tf.int16)

C = tf.constant(5, tf.int16)

D = tf.add(A, B)

E = tf.multiply(C, D)

with tf.Session () as sess:

Y = sess.run(E, feed_dict ={A: 2, B: 3})

Figure 2.15: Example of creating and executing a Tensorflow graph. Executing the
code will result in the variable y being equal to 25.
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Figure 2.16: The mathematical graph resulting from running the code in Figure
2.15.

First three tensors, A, B, and C are defined. A and B are added together, before
being multiplied with C. Tensorflow has three general types of tensors; placehold-
ers, constants, and variables. When initializing a tensor, one needs to define the
variable type of the tensor, such as integer, float and so forth. If the tensor has
a multidimensional shape, the shape has to be passed into the initializing func-
tion as well. Placeholder tensors, as the name suggests, need to be fed a value
when executing the computational graph. The values for placeholder tensors are
submitted using a parameter called feed dict as shown in Figure 2.15. Constants
are defined once, and therefore need their value defined in the initializing function.
Variable tensors hold a state, which is changeable within an initialized session. It
requires an initial value in addition to a shape and type. An example of the usage
of the variable tensor are the weights within a neural network. The strides and
padding of a convolution would be constant tensors, while the input image would
be a placeholder.

When training a neural network in Tensorflow, all weights are stored as Tensorflow
variables. At the end of the training session, the values of all weights can be
stored in a checkpoints file. The trained network can then be restored at a later
point.
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There are several alternatives to Tensorflow, such as Torch2, PyTorch 3, Keras4,
Theano5 and Caffe6. All these frameworks deliver much of the same features and
methods. The decision to use Tensorflow was based on several criteria. First,
Tensorflow is a low-level implementation, when compared to other systems such
as Keras. This allows for more flexibility and space to create a tailored solution
for the project. The team thought the option of spending some time to learn
Tensorflow was better than using a higher level system, which in later stages could
prove to lack features needed for the project. Additionally, the team had previous
experience with using Tensorflow for generating neural networks.

A byproduct of Tensorflow being created by employees at Google was extensive
documentation of its APIs, as well as tutorials and guides from members of the
machine learning community. This was important as it would make it easier to
fully understand the framework, implementing desired features and solving common
problems which others had encountered before.

Flask

Flask7 is a micro web framework for Python. A micro-framework is a framework
which is not dependent on any distinct libraries. Flask delivers basic functionality
needed to create a simple web server. It offers support for extensions which can add
new functionality to the application, or extend existing functions. As the selected
Tensorflow API uses Python, it was only natural to select a web-framework which
did the same, in order to simplify the communication between the Tensorflow model
and the server.

2.4.2 Javascript

Javascript, CSS and HTML are the core technologies for creating web-pages. In
this thesis several Javascript libraries are used which combine HTML, CSS and
Javascript.

Node

Node, also known as Node.js is an open-source Javascript run-time environment.
It can be run on all common platforms, including Windows and Linux. For this
thesis, Node is used for development of the user interface. Node comes with a
package manager, which makes it easy to acquire and manage different packages

2http://www.torch.ch/
3https://pytorch.org/
4http://keras.io
5http://deeplearning.net/software/theano/
6http://caffe.berkeleyvision.org/
7http://flask.pocoo.org/

http://www.torch.ch/
https://pytorch.org/
http://keras.io
http://deeplearning.net/software/theano/
http://caffe.berkeleyvision.org/
http://flask.pocoo.org/
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needed for development. Node is also used to host the user interface, in order to
make it accessible to the end user.

React

React8 is a library written in JavaScript, which is used for creating user interfaces.
The library is written and maintained by Facebook. It is widely used in different
projects, ranging from small hobby projects to large websites such as Instagram9.
As a result of being developed by Facebook, React has a huge following, which in
turn created a big community with guides and libraries for use with React. React
is flexible as it can be used to create a standalone user interface only written in
react, or be used in combination with other libraries.

A standalone React application is also called a single-page application. React works
by manipulating the Document Object Model, or DOM for short. This is done by
maintaining a virtual DOM in addition to the actual DOM, and only changing the
real DOM when changes occur in the virtual DOM, as opposed to recreating the
entire DOM each time a change occurs.

import React , { Component } from "react";

class HelloWorld extends Component {

state = {

text: "",

}

showText () {

this.setState ({

text: "Hello world",

})

}

render (){

return(

<div>

<p>{this.state.text}</p>

<button

label = "button"

onClick = { this.showText }

/>

</div>

)

}

}

Figure 2.17: Example of a react component.

8https://reactjs.org/
9https://www.instagram.com/

https://reactjs.org/
https://www.instagram.com/
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Figure 2.17 Shows an example of a react component written in Javascript. This
component displays a button. Upon pressing the button, a text will appear with
the value ”Hello world.” The component consists of an internal state, a function
showImage, which changes the internal state, and a render function, which re-
turns JSX code. JSX is an abbreviation for Javascript XML, and is an extension
of HTML with Javascript. Upon clicking the button, the function showText is
invoked, which changes the internal state. Each time the state of a component
changes, the render function is called. When comparing React to the Model-view-
controller architecture(Krasner, Pope, et al., 1988), a component entails both the
view as well as the controller, thereby simplifying the data flow within the appli-
cation. For this project we had no need for an advanced user interface, we only
needed to be able to display the results from our model, as well as to hold a basic
state within the application. This constraint made React the best choice of library,
compared to other alternatives such as Django10 or Angular11. Another reason for
choosing React was that both team members had prior experience using it.

Material UI is a library built on top of React. It offers a set of predefined
components such as buttons, text fields, loading bars and other UI-elements. It
implements Googles Material design guidelines12 using React Components, which
simplifies the process of maintaining said guidelines for the entire project. In
addition, it allows one to generate CSS within React components, which reduces
the total number of files and makes it easier to keep track of the CSS for individual
graphical elements.

2.5 Related work

This section highlights research which we deemed relevant to our research goal.
The intention of this section is to give an overview of methods which aim to give a
better understanding of convolutional networks. We summarize a few papers which
contain relevant work that is either important, interesting or both. We also present
several papers which explain various visualization methods that we implement or
take inspiration from in this thesis. This section gives an impression of the current
state of visualizing neural networks, as well as a basic understanding of the methods
we implement.

2.5.1 Visualizing and Understanding Convolutional Networks

Throughout the previous years, convolutional neural networks have displayed an
impressive performance on tasks such as image classification, and object detection.

10https://www.djangoproject.com/
11https://angular.io/
12https://material.io/guidelines/

https://www.djangoproject.com/
https://angular.io/
https://material.io/guidelines/
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(Zeiler and Fergus, 2014) is a paper in which the researchers wish to achieve a better
understanding of why convolutional networks do so well, and how to improve their
performance even further. They do this by using a system that visualizes features
learned in different layers of a convolutional neural network. The paper explains a
technique which projects the output of any layer in a convolutional network back to
the pixel space. The technique is called Deconvolution(Zeiler, G. W. Taylor, et al.,
2011). This method has been used several times(Mohan, 2014; Noh et al., 2015;
Stutz, 2014), both for visualization and other purposes such as image segmentation.
The idea is to have one layer in the deconvolutional network for each layer in the
original network. Each of the new layers will reverse the actions of its neighbor
in the convolutional network. In order to analyze the output of one neuron, the
output of the other neurons in the layer is set to zero. Afterwards, the deconv-
network is run using the feature map of the selected layer. The deconv network will
then output an image which shows what triggers the selected activation.

Figure 2.18 shows an example of a convolutional network with its deconvolutional
counterpart. The original network consists of three convolution and pooling oper-
ations, and the deconvolutional network consists of layers undoing the operations
from the original network. Each operation generates a new tensor, denoted as white
squares in the figure. The figure does not show the ReLU activations which follow
after each convolutional operation, in order to keep it simple.

Figure 2.18: Illustration of a deconvolutional network structure, inspired by the
illustration in (Noh et al., 2015).

Un-pooling layers reverse the process of max-pooling. When one executes a max-
pooling operation many values are lost in the process, as only the highest values
are saved in the output of the layer. The solution is to save the spatial location of
each value and to set all other values to zero when performing un-pooling.

As we can see in Figure 2.19 the local maximum in each pooling region is preserved.
The deconvolutional layer applies a transposed convolution(Dumoulin and Visin,
2016) to its input values. Afterwards the output is run through a ReLU activation-
function. In order to create a visualization for one particular filter one has to set
all output values not connected to the particular filter to zero, and pass the output
into the corresponding layer of the deconvolutional network.

The authors recreate the architecture described in (Krizhevsky et al., 2012), and
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Figure 2.19: Example of an un-pooling performed on a max-pooling operation.
The original Max-pool uses a pooling region of 2x2 with a stride of 2.

explain how to improve that architecture by analyzing the visualization of the
network. They are able to achieve an increase in accuracy of 1.7% compared to the
original network. The visualization showed that the features learned are far from
random, and have certain desirable properties such as compositionality, increasing
invariance and class discrimination. The paper also showed that the network was
sensitive to structure within the input, by occluding certain parts of the input
image. Another feat of the paper was showing that the trained network would
generalize rather well for usage on other datasets such as Caltech-256(Griffin et al.,
2007).

2.5.2 Understanding Neural Networks Through Deep Visu-
alization

This paper(Yosinski et al., 2015) presents two different methods for visualizing and
understanding convolutional networks. The first method uses a real-time input to
visualize the activation of every filter within a trained convolutional network. The
writers of the paper created a system that used a webcam as input for a trained
neural network. The system shows the activations of all nodes within the network,
sorted by the different layers. This representation makes it easier to understand
what kind of input activates the different filters.

The second system which is used for visualization is more similar to backpropaga-
tion. The basic concept of the system is to change the input image in such a way
that it achieves a higher activation value for a given layer. This in itself is not a new
idea, but the paper introduces a set of regularization techniques with which the
authors achieve images that are easier to interpret. Earlier attempts to visualize
preferred activation patterns often resulted in images which did not resemble any
natural images, and therefore did not offer any better understanding of what the
network had learned, or how it interpreted images. L2 regularization(explained in
Subsection 2.1.6) is introduced as a method for suppressing single high activation
values. While such values might increase the activation value, they do not occur
in natural images and are also not helpful for visualization.

Gaussian blur is used to penalize areas with high-frequency information. Similar
to high-value pixels these areas do not help with the visualization process.
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After applying L2 regularization and Gaussian filtering, the image will consist of
smaller and smoother values. Two types of clipping methods are introduced to
improve the final visualization further. In the first method, clipping with small
norms is performed, where a norm is calculated for each pixel, and pixels with
small norms are set to zero. An alternative clipping method is clipping pixels with
a small contribution. The method approximates how much a single pixel influences
the final activation. Pixels with a small influence are set to zero.

2.5.3 Regularization techniques and image priors

In recent years, a plethora of papers have been released (Goodfellow et al., 2014;
Mahendran and Vedaldi, 2014, 2015; Wei et al., 2015; Yosinski et al., 2015), de-
scribing new inventive ways of improving the feature visualization explained in the
section above. These techniques range from performing simple regularization dur-
ing optimization, such as the blurring and L2 penalization already mentioned, to
learning complex image priors in order to achieve visualizations which resemble
actual objects to a much greater extent.

Expanding on the concepts introduced in (Yosinski et al., 2015), Google released
an article in 2015 titled ”Inceptionism”(Alexander Mordvintsev, Christopher Olah
and Mike Tyka, 2015). It describes a method they aptly named DeepDream, which
gained a lot of fame after producing ”dreamed” images of what has later been
referred to as algorithmic pareidolia (DeepDream - Wikipedia n.d.). Just as in
previous feature inversion techniques, the method alters the inputs to a trained
CNN in order to maximize activation-values from a given layer. What separated
DeepDream from its predecessor(Yosinski et al., 2015), was the fact that they
used actual images as inputs. This, in turn, made the optimization process look
for features already present within an image, before enhancing them. A bush
looking like a dog could turn more dog-like etc. They also introduced a few new
regularization-techniques, such as running the algorithm over multiple scales of the
image called ”octaves”, and shifting the gradient over by some pixels, ”jittering”
it, before applying it to the image.

When we talk about natural image priors, we are taking into consideration cer-
tain heuristics, statistical properties or ”rules” that are usually present in natural
images. These can vary greatly in complexity. When implementing such image
priors into the feature visualization process, the priors could either be crafted by
hand or learned, by for example extracting some type of information from a data-
set of images. Some simple priors, like the fact that sharp noise does not occur
in natural images, could be achieved with regularization methods like blurring.
By simply maximizing activations without taking into consideration properties of
natural images, one might end up with something similar to adversarial images,
sort of ”fooling” the network(Goodfellow et al., 2014). Examples of handcrafted
priors include clipping and/or suppressing large values(Yosinski et al., 2015), blur-
ring(Yosinski et al., 2015), jittering(Mahendran and Vedaldi, 2015), increasing to-
tal variation(Mahendran and Vedaldi, 2014), and normalizing gradients(Wei et al.,
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2015).

Learned priors, on the other hand, are not simple heuristics, but instead mod-
els that have been generated on the basis of some available data. GANs(Nguyen,
Dosovitskiy, et al., 2016) (Generative Adversarial Networks), being trained to cre-
ate natural looking images is an example of one approach to learning such priors.
Some papers concerning feature visualization have described simpler learned priors,
taking information more directly from the dataset of images that have been used
to train the CNN. In the paper (Nguyen, Yosinski, et al., 2016), the authors are
trying to visualize possible sub-classes of a trained CNN. Their approach is to first
cluster similar images from the dataset from within the same class, adding them
together, creating a mean image, before running the feature visualization on top of
this image, sort of like in DeepDream. The resulting images look a lot like actual
objects, but one could argue that this is a form of cheating. A better example of a
learned prior was mentioned in a comprehensive article about feature visualization
(Olah et al., 2017), where they exploited correlations between colors in the dataset
to further enhance the visualizations.

Learned priors can be powerful tools, but there is a caveat to using some of these
methods. We may no longer know what information that comes directly from the
network we are trying to visualize, and what information that was just taken from
the prior. There needs to be a balance between using the appropriate amount
of suitable priors, so we do not end up with adversarial images, but are able to
interpret the visualizations correctly. We have intentionally avoided too many
learned priors in our platform and instead focused on some really efficient hand-
crafted ones.

2.5.4 Visualizing and comparing convolutional neural net-
works

(Yu et al., 2014) aims to give a better understanding of deep convolutional net-
works. Their method for achieving this goal is by visualizing patches in the inter-
nal representation space of the network, and by visualizing the information kept
in each layer. In addition, they compare two CNNs with different depth and show
the advantage of having a deep network. The first visualization technique uses the
activation values to find patches within the original image. A patch in this context
is a subsection of an image, that is equal to the selected filter size. The patches are
then arranged in a two-dimensional array utilizing t-SNE(Laurens van der Maaten
and Geoffrey Hinton, 2008). For visualizing the information kept within the net-
work, the authors use deconvolutional networks(Zeiler, G. W. Taylor, et al., 2011),
which are explained in Subsection 2.5.1.

The paper explains the architecture of two networks of different depth. The first
network, AlexNet(Krizhevsky et al., 2012) is relatively shallow, having only five
convolutional and three fully connected layers. The second network named VGG-
16(Simonyan and Zisserman, 2014) has 16 weighted layers, as mentioned in Sub-
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section 2.3.1. In addition to depth variations, the filter size and stride also differ
between the networks.

The comparison of the two networks was done by looking for differences within the
visual representations. The information extracted by the deconvolutional networks
showed that insignificant features within the image were gradually removed, while
discriminant features would stand out more. The results show that the more shal-
low CNN retains more irrelevant information than its deeper counterpart. Shallow
in this context refers to having fewer layers and parameters. The AlexNet is re-
ferred to as shallow while the VGG-16 network is referred to as deep. In addition,
the deeper network would have a higher level of sparsity within its high-level layers.
The sparsity was measured by the proportion of zero activations of a layer.

2.5.5 The LRP Toolbox for Artificial Neural Networks

When used in the context of classifying images with convolutional networks, layer-
wise relevance propagation(Bach et al., 2015) or LRP for short is a method for
tracing a prediction back to the input pixels. In other words, the method shows to
which degree each input pixels contributed to the final prediction. The contributed
amount in this context is also called relevance. This method is very similar to Deep
Taylor Decomposition(Montavon et al., 2017) and can be seen as an alternative,
which is also discussed in (Bach et al., 2015). The main difference between these
two techniques is that Deep Taylor Decomposition linearly approximates the con-
tribution of each pixel while LRP applies a propagation rule in order to propagate
the relevance from the output of the network to the input pixels. Both methods
satisfy the constraints for heatmapping described in Subsection 2.5.6.

The LRP Toolbox(Lapuschkin et al., 2016) provides an implementation of the LRP
algorithm in Python and Matlab. The goal was to be able to familiarize users with
the algorithm, and to explain the prediction of pre-trained networks. A demo is
provided in the form of a website13 which retrieves the heatmap of a user-selected
image. The user has the possibility to choose between different LRP-formulas and
adjust the parameters of the selected formula.

Figure 2.20 shows an example of relevance propagation. The original network has
three input variables A, B and C, and one output node. A set of input values is
fed into the network, which results in a value in the output node. This value is
then propagated backwards through the network, and each node is assigned a value,
based on its contribution to the final output. The sum of values in each layer equals
the value in the output layer. Each output node in the LRP graph corresponds to
one input node (X to A, Y to B, etc.). As we can see from the example the value of
the variable C had the highest contribution to the final output value of the original
neural network.

13https://lrpserver.hhi.fraunhofer.de/image-classification

https://lrpserver.hhi.fraunhofer.de/image-classification
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Figure 2.20: Example of relevance propagation in an ordinary neural network.

2.5.6 Explaining NonLinear Classification Decisions with Deep
Taylor Decomposition

This paper(Montavon et al., 2017) explains how to apply Taylor Decomposition
in order to achieve a better understanding of the classification process happening
within convolutional neural networks. The method exploits the first order Taylor
expansion to create a formula for approximating the contribution of each input
pixel to the final classification. The Taylor series expresses a function as a sum of
its derivatives at some point a. First order Taylor expansion, as the name implies
only uses the first order derivative to express the function.

The final distribution of relevance upon the input pixels can also be referred to
as a heatmap. A heatmap is a visual representation of data, where different data
values correspond to different colors. Since each pixel in the original image has
a corresponding value in the relevance heatmap, the relevance scores can also be
visualized as an image. In order to create a heatmap, two constraints have to be
satisfied.

First, a heatmap has to be conservative. This constraint implies that the sum of
all relevances in one layer has to be equal to the total amount of relevance found.
For a network utilizing a softmax function, the sum of all output nodes equals one.
In other words, a network using softmax as its final layer should have a relevance
which sums up to one, in all hidden layers.

Another constraint is that all values forming the heatmap have to be greater than or
equal to zero. With this constraint the heatmap will only be zero in the absence of
an object to be detected, i.e. the heatmap would display zero relevance for all pixels.
Without this constraint, the heatmap would also display zero if there was as much
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positive relevance as there was negative relevance. The LRP function described
in Subsection 2.5.5 is another example, besides Deep Taylor Decomposition, which
satisfies these constraints.

By utilizing the first order Taylor expansion, the authors of the paper establish a
set of formulas which propagate the relevance backwards one layer at a time. The
different formulas correspond to different constraints on the input parameters. For
convolutional networks utilizing the ReLU-activation function, two formulas are
relevant. The equations calculate the Relevance R for a node i using the weights
between the two layers, w, the activations x from the layer which i is a part of,
and the relevance from the previous layer Rj .

z+-Rule

When using ReLU activation functions, the output of one layer is restricted to
X ⊂ Rd+. As the layers are chained together the output of one layer becomes the
input of the next. Therefore we can say that the input of a convolutional layer holds
the same restriction. The accompanying relevance propagation rule is expressed in
Equation 2.12.

Ri =
∑
j

z+ij∑
i′ z

+
i′j

∗Rj (2.12)

In Equation 2.12 z+ij = xiw
+
ij where w+

ij = max(0, wij). Also,
∑
i′ z

+
i′j equals the

sum of all activations going in to node j.

zB-Rule

The first layer of the neural network has a stricter constraint on its input than
the other layers, as it takes in the original image. The separate pixel values are
restricted to be within a certain range. This creates a new Equation for propagating
the relevance.

Ri =
∑
j

zij − liw+
ij − hiw

−
ij∑

i′ zi′j − li′w
+
i′j − hi′w

−
i′j

∗Rj (2.13)

In this equation z+ij = xiwij , w
+
ij = max(0, wij) and w−ij = min(0, wij). li and hi

are equal to the lowest and highest pixel values for the selected dimension. One
dimension in this context refers to one color channel in the RGB color space. li
and hi hold the following constraint: li ≤ 0 ≤ hi. The elements −liw+

ij and −hiw−ij
help maintaining a positive value for the fraction in the equation and restrict the
relevance to Ri ≥ 0
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Utilizing matrix operations

In order to efficiently calculate the relevance for all nodes in a layer, matrix op-
erations are used. Algorithm 1 corresponds to Equation 2.12 while Algorithm 2
corresponds to Equation 2.13. Both algorithms are taken from the Appendix of
(Montavon et al., 2017)

Algorithm 1 z+-Rule

Input:
Weight matrix W = {wij}
Input activations X = {xi}
Upper-layer relevance vector R = {Rj}

Procedure:
V← W+

Z← V>X

return X� (V · (R� Z))

Algorithm 2 zB-Rule

Input:
Weight matrix W = {wij}
Input activations X = {xi}
Upper-layer relevance vector R = {Rj}
Lower-bound L = {li}
Upper-bound H = {hi}

Procedure:
U← W−

V← W+

N← R� (W>X− V>L− U>H)
return X� (W · N)− L� (V · N)− H� (U · N)

� stands for element-wise multiplication, while � denotes element-wise division.
Both of these algorithms satisfy the heatmap constraints mentioned earlier. The
total amount of relevance is preserved from one layer to the next one, which com-
plies with the conservative constraint. Algorithm 1 only uses the positive part of
the weights, while Algorithm 2 constrains its values to be positive or zero, thereby
satisfying the positive constraint.
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Chapter 3

Method

In this chapter, we explain several visualization techniques which we have imple-
mented. Each method originates from articles or papers presented in Section 2.5.
We also give a short explanation of how we designed our platform for experimenting
with different networks and visualization techniques.

3.1 Application design

The core application was implemented following the client-server architecture. This
architecture divides the structure of the system into a service provider, known as
the server, and one or several service requesters, known as clients. The server offers
several services or resources which the clients can take advantage of. Predicting
the class of a given image is an example of a service. In order to let users interact
with the services provided one implements a user interface which acts as a mediator
between the user and the server, and displays the resources provided by the server
to the user in an understandable and intuitive way. In this project, we refer to the
server side as the backend, while the client side is called the frontend.

Figure 3.1 presents the data flow within the application. The server receives a
request which is processed and yields a call to the model. The model processes the
request from the server, and grants a response, which the server sends in return to
the client.

35
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Client Server Model
Get/Post Request Model Request

Get/Post Response Model Response

Figure 3.1: Illustration of the dataflow within the application

3.1.1 Backend

The backend core was implemented in Flask. It is modeled after the REST-API
architecture. The server has a set of endpoints, which the client can access using
HTTP-requests. The client requests a certain resource of service using HTTP. The
server makes use of two types of requests; GET and POST. The client can use a
GET request to ask for a resource. If the client needs to submit certain data along
with the request, this can be done using a POST request. An example of a POST
request could be submitting an image which is to be classified.

Each endpoint returns a JSON-object. This simplifies the transition from backend
to frontend, as the frontend is written in JavaScript, which excels at handling
JSON-objects.

3.1.2 Frontend

The user interface is implemented using React in combination with Material-UI.
The frontend uses two main functions for interacting with the server’s resources.
One function performs a GET request, and the other performs a POST request, as
explained earlier. These functions are implemented as asynchronous operations as
one does not wish to lock up the entire user-interface while waiting for the response
to a request. A global state is stored within the user interface, in order to preserve
the state of the application throughout a session. Reloading the user interface will
reset the state. The frontend is explained further in Section 3.6 where we elaborate
on the functionalities and our thoughts behind them.

3.2 Feature visualization

This section will go through the techniques we have implemented as part of the fea-
ture inversion functionality of the visualization platform. “Features” in this context
is just a word used to describe the concepts and patterns (of varying complexity)
that the hidden layers inside convolutional neural networks learn during training.
A more accurate description of what a feature actually is can be found under Sec-
tion 1.1. Feature inversion is a technique with similarities to the backpropagation
algorithm explained in Subsection 2.1.4, but can be used to produce images de-
picting approximations of features. There exist many different tricks to improve
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the inversion process. Several of these are presented throughout Subsection 2.5.3.
After considering all current techniques, we have aimed to achieve state-of-the-art
results, both in regards to obtaining natural looking, accurate feature visualiza-
tions, in addition to keeping the time spent as low as possible. Choosing another
domain for the optimization process, as described in Subsection 3.2.4 and 3.2.5
seemed to make an especially significant improvement.

3.2.1 The naive approach

The simplest ”naive” approach to implementing feature inversion is very similar
to backpropagation which is carried out during each step when training a neural
network. The difference lies in the fact that instead of adjusting weights inside the
network, we instead compute how much we need to change the values of the inputs
in order to minimize some loss function. Examples of such loss functions, based on
activation values from within hidden layers of the network can be seen in Equation
3.1 and 3.2. Although there are better alternatives to this naive approach, we
implemented it our platform in order to get a baseline for judging the quality of
visualizations. In addition, we wanted to give users full control over the inversion
process, to allow for experimentation and for the sake of scientific curiosity.

In the first step of the naive approach, the input into the network will be an array
representing an image, filled with random values within some normal distribution.
Including randomness in the initial image, makes it easier for the optimization
process to form features and patterns, compared to starting with an image con-
sisting of only one color. The initial input could also be an actual image. This is
what Google did with their ”DeepDream” technique, which gained fame after they
created a blog post explaining the steps of the algorithm(Alexander Mordvintsev,
Christopher Olah and Mike Tyka, 2015). Using an actual image, the patterns that
are already present in the image will then be enhanced throughout the optimization
with regards to the layer chosen. The resulting optimized image when using the
same method as in DeepDream is often referred to as the “dreamed” image.

After loading in a trained neural network and the random image array which will be
used as input, we can start the backwards propagation step of computing gradients.
The process of computing gradients is made much simpler thanks to the built-in
functions of Tensorflow. First, the tensor for the output-layer whose activations
will be maximized during the run is selected. After choosing the layer, we can also
pick out one or more specific channels (filters) from this layer, or try to maximize
the output for the entire layer. When a single channel is used, the loss function
will be based on the mean value across all the activations from the two spatial
dimensions, which also can be seen as the x and y dimensions. When maximizing
for more than just a single channel, we can use the same mean as before for every
channel, and then add them together to find the mean across all of these loss
functions. Given that the selected output-layer is a standard convolutional layer,
the following expressions show the steps to deriving loss-functions that can be
minimized during feature inversion.
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The expression below shows a single activation value, as defined in Equation 2.6
(notation remains the same):

Oi,j,l = (

d−1∑
z=0

m−1∑
y=0

n−1∑
x=0

Ix+a,y+b,z ∗ Fx,y,z,l) +Bl (3.1)

For a single channel, where t represents the index of the input and r is the total
number of inputs, the loss function can be written as:

Lossc = −(
1

i ∗ j ∗ l ∗ r

r−1∑
t=0

(Oi,j,l)t) (3.2)

The expression inside the outer parenthesis describes the mean output across one
channel. This activation value is supposed to be maximized, which is why we
negate it in order to turn it into a loss function.

For an entire layer, where c represents the channel number, and q is the total
number of channels in the layer, the loss function can be written as:

Loss =
1

q

q−1∑
c=0

Lossc (3.3)

One of these Loss-functions can then be used to compute the gradient (∆θ) :

∆θ =
∂Loss

∂Input
(3.4)

The Input variable in Equation 3.4 refers to the actual pixel values of the image we
are optimizing. To compute the gradient in practice, we first insert a tensor that is
equivalent to one of the cost functions above, in addition to the input tensor itself
into the gradients-function supplied by Tensorflow. The function will return the
computational graph for the derivative of the loss-function with respect to the input
tensor. This graph, together with actual input data, will be used in a Tensorflow
session whenever we need to compute the gradient. The exact form of the loss
functions will be slightly different if the layer or collection of neurons we want to
maximize is of a different type. This feature inversion process is not limited to just
convolutional layers, but can also be applied to all kinds of other layers, such as
max-pooling or fully connected layers.

Before applying the gradient directly to the image, it can be useful to first normalize
the gradient by dividing it by its standard deviation. This avoids very large or
small values in the gradient and ensures a smoother gradient ascent. Finally, the
gradient is multiplied with the step size (η) and added to the pixel values of the
input tensor. This whole process is run over many iterations to create the final
optimized/dreamed image.

Inputt+1 = Inputt + η ∗∆θt (3.5)
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3.2.2 Transformations

When we are training convolutional neural networks on datasets of images, as
described in Subsection 2.1.6, different transformations techniques are some of the
simplest forms of regularization methods that can be applied. Even though they
are quite simple, they can improve classification by a wide margin (L. Taylor and
Nitschke, 2017). In order to make convolutional neural networks more robust and
better at recognizing variations of the same object, it is normal to perform various
transformations on the images themselves before feeding them into the network.
These types of transformations include scaling the images, rotating them, cropping
them, slightly changing the colors and so forth. Some built-in randomness in this
process is also beneficial. Since these methods are used when training CNN’s it
makes sense to use similar techniques when trying to achieve the most accurate
depictions of features, during feature inversion.

Using simple transformations can have a huge impact when it comes to achieving
beautiful images, where the actual feature we are trying to visualize is easier to
recognize. One way they can be included in the aforementioned feature inversion
process is to transform the gradient before applying it to the optimized image. An-
other manner of approaching the problem is by transforming the optimized image
itself before computing the gradient and then applying this gradient to the same
transformed image. The second method is used in our implementation because
it fits nicely with the rest of the TensorFlow structure described in Subsection
3.2.3.

Jitter

The transformation that usually made the largest impact on quality during opti-
mizing is referred to as jitter, a term used by Google in their Deep Dream im-
plementation1. By “jittering” an image we mean to shift it over by a set number
of pixels, so the dimensions stay the same, but the start of the image might now
reside on the other side of where it was originally. An example of an image that
has been “jittered” along the x-axis by -15 pixels can be seen in Figure 3.2.

Figure 3.2: Example of the jitter-transformation applied in the x-direction.

Performing this operation on an image-array can be done using the rollover function

1https://github.com/google/deepdream

https://github.com/google/deepdream
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in NumPy2, a Python library. We wanted to execute it using a Tensorflow tensor
instead, but unfortunately, there does not exist any equivalent to the rollover yet
in the Tensorflow library. There does exist a random-crop tensor, however, which
turned out to serve much of the same purpose. The most important aspect of this
transformation is that it stops the gradient from starting at the same place every
time, which will, in turn, saturate single pixels and certain elements of the feature
in the optimized image too much. An example of the difference jittering by some
random number between 1 and 10 makes, can be seen in Figure 4.8 under the
results presented in Subsection 4.1.2.

Scaling

Another useful transformation that has been implemented is scaling of the opti-
mized image, by some random factor. This random factor should not be far above
or below 1. With a scaling factor that is either too large or small, the resulting
gradients will turn out a bit poor, due to the changes in resolution. The scaling
method we have used is bilinear and is performed with a Tensorflow tensor. An
example with and without scaling is displayed under results in Figure 4.10. When
applying scaling during feature inversion, we might end up with an image that has
enhanced feature(s) of many different sizes. Depending on the layer chosen, we
might also end up seeing patterns within patterns.

Rotation

While jittering the optimized image helps reducing noise and removing unwanted
artifacts, rotating the image by a random angle within a specified range may be
even more useful in order to get accurate feature-depictions. When the image is
optimized at exactly the same angle every time, depending on the filter, there is
a risk that the optimization will get stuck on a repeating pattern. Allowing the
image to be rotated too much, however, will result in various degrees of cyclic
symmetry within the emerging patterns. These resulting images might look pretty
but are often missing aspects of the actual features. Figure 4.9 shows the impact
the rotation transformation has during optimization.

Padding

The last transformation we have implemented into the system pads the image. The
tensor used in this operation adds n grey pixels in the x and y-direction. Padding
the image serves only one purpose. With sufficient space around the image, we
avoid some of the artifacts that might occur at the very edges of the image. These
artifacts say very little about the feature in question, since the straight lines at
the edges, which affect the gradient during optimization, rarely occur in natural

2http://www.numpy.org/

http://www.numpy.org/
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images. The number of pixels that we pad should not exceed the minimum required
amount by much. It is important to remember that increasing the input dimensions
will also exponentially increase the gradient computation time.

3.2.3 Utilizing TensorFlow for faster visualization

Executing mathematical operations with the help of TensorFlow tensors can be
a great tool for speeding up computation time. This holds especially true if the
system has powerful GPUs available, which are designed to run calculations in
parallel. A more in-depth description of TensorFlow can be found under Subsection
2.4.1.

Because the input is just a collection of parameters we are trying to optimize
towards an objective, instead of feeding slightly different input into the network
each time (see Subsection 3.2.1), representing the input as a trainable variable-
tensor makes a lot more sense and speeds up the entire process. With the rest of
the weights in the graph frozen, the optimization process can be carried out by
simply training the network. Considering this, we realized that the entire feature-
visualization actually could be accomplished through a single TensorFlow graph.
The template graph we ended up with consists of four interchangeable sub-graphs,
which are connected in sequence as seen in Figure 3.3

The first graph, which contains the only trainable tensors, represents the parameter
space we are trying to optimize. In the naive implementation, this would be a
single trainable tensor with the shape: (width, height, color channels). The output
of this sub-graph is then used as the input to the next, which handles all of the
transformations mentioned in the previous subsections. This graph uses tensors
with built-in randomness to apply all of the image-transformations that we want
to include. The output of the transformation graph is subsequently used as the
input into the actual convolutional network. This is the network that has been
trained on a dataset of images and is the part of the graph that contains the actual
information that we are trying to extract and visualize. From one or more selected
tensors within the pre-trained network, we connect one last sub-graph, which is
used to compute the desired loss function. This loss function is used as the input
to a chosen optimizer. Running the optimizer-tensor in a Tensorflow-session for one
step will optimize the parameter space in the input by a small amount, depending
on the optimizer’s learning rate. The entire flow of the visualization graph can be
seen in figure Figure 3.3. In our implementation, we have created a class named
graph builder, which sets up the two first sub-graphs according to a wide array of
parameters.
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Figure 3.3: The four interchangable sub-graphs, making up the Tensorflow graph
structure used in feature inversion.

3.2.4 Alternative parametrization spaces

The most straightforward, naive way to do feature inversion as described in Sub-
section 3.2.1 is not the only way to optimize an image. Instead of looking at the
RGB-values of the pixels themselves as parameters we want to change, we can in-
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stead try to look for alternative parameterization spaces. There exist many other
commonly used spaces we can utilize to represent an image. These spaces are often
used in various image-filtering processes. An image represented in the RGB-space
is first transformed into the new parameter space, e.g., the Fourier space. Some of
the values are altered to achieve the desired filter effect, and finally, the inverse of
the previous transform is applied to go back again to an image representation in
the standard RGB-space.

We only perform the last two steps during our feature inversion. The first tensor of
our graph represents the alternative parameter space, which will be the only train-
able variables in the Tensorflow-graph. The next step is to transform it through
Tensorflow-tensors into a RGB-image, which is then used as the input to the trans-
formation sub-graph. A small change in one parameter space can have a significant
impact on the resulting image we end up with after we perform the transformation
into the RGB-space. This can speed up the optimization considerably.

Optimizing in the Fourier space

One of the parameter spaces that resulted in the most natural-looking visualizations
and fastest training times during feature inversion turned out to be the Fourier
space. It is often referred to as the frequency domain due to the nature of the
Fourier transformation. The standard way to represent images, with pixel-values,
is called the spatial domain. Instead of representing images by the pixel values
in the spatial domain directly, we look at the rate at which the pixel values are
changing within the spatial domain, hence the frequency term. The FFT (Fast
Fourier Transform) algorithm is used to convert between the domains because of
the significant improvement in speed θ(n ∗ log(n)), compared to directly using
the DFT (Discrete Fourier Transformation) algorithm, which runs in θ(n2) for n
points.

Before the feature inversion can start, we first need to initialize the frequency
domain with random values within a small normal distribution. In order to know
the appropriate dimensions for this space, it is important to know some of the
details as to how the 2D-FFT algorithm is computed. It works by first taking the
FFT of one row at a time, which results in an intermediate array of the same size.
We then take the FFT over all the columns of this new array. We only need to
compute half of the values of each column, due to the symmetric properties of the
FFT(Guo et al., 1998). In case of an odd number of elements inside each column,
half means taking the floor division of elements plus one.

The dimensions of the parameter space are thus set to be (2, 3, r freq, c freq),
where the two last dimensions represent the frequencies over the rows and columns
of the image. If we want the resulting image to be of dimensions (n, m), then
r freq = n, while c freq = floor(m) + 1. The second dimension is of size 3, since
we run the Fourier operation over each color channel separately, while the first
dimension size is 2, because each point in the frequency domain is made up of a



44 CHAPTER 3. METHOD

real and an imaginary part.

After initializing the parameter space, the real and imaginary sub-arrays are com-
bined into a single array of complex numbers. We also have to scale this array
by 1/frequency-bins, in order to get values to be optimized correctly. The 2D
array of frequency bins is computed by taking the frequency bins in both direc-
tions using NumPys fftfreq function and combining them using Euclidean distance:√
r bins2 + c bins2. After properly scaling the complex array, it is fed into an

inverse 2D-FFT tensor, from the Tensorflow library. The equation for doing the
inverse 2D fast Fourier transformation is shown in the formula below:

f(x, y) =

m−1∑
u=0

n−1∑
v=0

F (u, v)ej2π(
ux
m + vy

n ) (3.6)

F(u, v) is the notation used for the transformation into the Fourier space, so in
this context it denotes a single point in the randomly initialized frequency domain
described above. m and n represent spatial dimensions, while j is the imaginary
unit.

Optimizing in the Laplacian pyramid space

Another promising parameter space that was implemented into the platform is
based on Laplacian pyramids. This is yet another way to represent an image,
where a small change in a single parameter can make a big difference in the actual
image. In a pyramid representation of an image, the original image is blurred and
downsampled n times, until we end up with n smaller versions of the original image.
Stacking them on top of each other in a visual representation of the space will create
a pyramid with n levels, hence the name. In the case of Laplacian pyramids, the
differences between each level are saved, to be used for various applications such
as image compression. It is these kinds of arrays, containing the differences on
each level, that make up the parameter space we are optimizing during the feature
inversion.

In order to initialize this parameter space, we start out by creating a tensor with
the desired dimensions of the final optimized image. This tensor will be one of n
trainable variables and is initialized with random values from a normal distribution.
For the next iteration, we create a new variable tensor with the spatial dimensions
being half the size of the spatial dimensions of the previous tensor. The dimensions
for iteration n is in other words set to be the original dimension sizes divided by
2n. It is initialized with random values, before being scaled up to the dimension of
the previous tensor, using bilinear upsampling. This process of creating a smaller
tensor, initializing it and upsampling it is repeated until we have gone through all
n levels.

Every time we create a new tensor, we also add it to an overarching pyramid-tensor,
which will contain the sum of all the (upsampled) tensors from every level. This
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Figure 3.4: All the levels of a Laplacian pyramid with n = 3 are upsampled and
combined into the optimized image on the right. Optimization objective chosen for
this example was channel: 134 from layer: mixed 4c in the Inception net.

is just a simple add operation. Since all these tensors represent the differences be-
tween every sub-sampling in a Laplacian pyramid, adding them all together should
naturally result in the ”original” high-resolution image. The Figure 3.4 shows three
levels added together, during the beginning of an actual run. Small changes in pix-
els of low-resolution levels will naturally change many pixels in the high-resolution
image. Because of this, the optimization can be sped up considerably. One thing
to notice is that if we only use one layer, this parameter space becomes equivalent
to just optimizing using the naive approach.

3.2.5 Decorrelating color channels

Colors within natural images are often correlated. What we mean by this is that
if we plotted all the RGB-values for each pixel in a photo onto a 3D space, a lot
of points would most likely fall somewhere along a diagonal line from (0, 0, 0)
to (255, 255, 255). This is partly caused by the fact that light and darkness are
common attributes of natural images, causing RGB-values to not stray too far from
each other. More complex correlations between colors in natural images exist as
well.

When training a neural network on a set of data, it is usually not optimal to
have inputs that are correlated. If there exist correlations between input variables,
these can be learned by a network during training and ultimately be represented by
combinations of weights inside hidden layers. This encoding might be completely
redundant though if the correlations are known beforehand. In other words, if we
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already know correlations that exist between variables, we should probably take
advantage of this knowledge before feeding the data into the network. This is
called decorrelating. By first measuring the explicit correlations between variable
pairs in the training data, we can compute a symmetrical covariance matrix. After
performing a single value decomposition on this matrix, we end up with three
matrices: UΣV ∗, where U represents eigenvectors. Multiplying the input data
with U will decorrelate the results.

A trick we can apply to generate even more natural looking, faster feature visualiza-
tions is to decorrelate the color-channels. This can be achieved by using a learned
prior, in this case, a 3x3 covariance matrix based on the colors within the Imagenet
dataset(J. Deng et al., 2009), which the CNNs we use as examples (see Subsection
2.3.2 and 2.3.1) have been trained on. Multiplication of U is performed with a ten-
sor within the parameterization sub-graph from Figure 3.3. An important aspect
to note when decorrelating input variables is that the basin of attraction during
training should not really move too much, but instead change its shape. What this
means is that the training can speed up considerably, but the ”most correct” model
should preferably still remain the same. In practice, when performing feature vi-
sualization with decorrelation of colors, we achieve natural looking images with
less saturated colors faster than if we did not decorrelate. This can be seen under
Subsection 4.1.3 of results. In theory, both approaches should hopefully be able to
converge towards the same objective with enough training(Halkjær and Winther,
1997).

Even though the implementation of this color decorrelation is hard-coded into the
platform, with correlation values extracted directly from the Imagenet dataset,
it should probably work well for most other CNNs trained on natural images.
This holds true, assuming Imagenet contains enough images, with enough variety
and only negligible biases concerning the colors within images contained in the
dataset.

DeepDream

In the special case of DeepDream, where we run feature-visualization over an actual
image, we were able to take advantage of the decorrelation described above. The
resulting dreamed images using this technique ended up looking a lot better, having
not altered the underlying colors of the original image too much. This can be seen
under results in Subsection 4.1.5. To implement decorrelation in DeepDream, we
need to first multiply the input image with the inverse: U−1, before using these
values to initialize the parameterization space. This parameterization space will
be multiplied by U afterwards, as described previously.



3.2. FEATURE VISUALIZATION 47

3.2.6 Training the neural network

In earlier sections, we have described the implementation of the first three sub-
graphs, handling the parameterization space (3.2.4), the transformations (3.2.2)
and the pre-trained network (2.3), but it is the last part that actually trains the
network during visualization. The loss function in the final implementation, which
is derived from a linear combination of layers and channels is still computed the
same way as explained in the naive implementation in Subsection 3.2.1. This loss
function is then passed to an optimizer tensor provided by the TensorFlow library.
After testing out most of the built-in optimizers, we chose Adam as the default,
since it produced both fast and pretty feature-visualizations. An explanation of
how Adam works can be found in the background Subsection 2.1.5.

In the main function that takes care of the feature inversion, the optimizer is one
of the passable parameters, for easy configuration. The learning rate passed as
a parameter to the optimizer is also an important factor in the training process.
Depending on the optimizer and the chosen parameterization of the input space,
the appropriate learning rate differs a lot as well.

We made sure it was possible to pass an entire list of n different optimization
objectives into the visualization function at once, in case images of multiple different
feature inversions are required at the same time. In order to save time between
each separate feature inversion, only the minimal required steps are taken between
each of these runs. This includes the initialization of the trainable parameter space
values. If Adam is used as optimizer, we also need to retrieve and initialize some of
its own beta-parameters, due to a bug in TensorFlow3. A new loss function, based
on the n’th optimization objective will also need to be created at the start of each
run.

3.2.7 Multiple optimization objectives

Up until now, we have mostly described optimization in relation to a single objec-
tive. Either trying to maximize the output of an entire layer or a specific channel
inside a layer. The loss function which drives the optimization can, however, in-
clude an unlimited amount of different objectives based on every little part that
makes up the network. After selecting multiple objectives, they can be freely com-
bined in any kind of linear fashion. If someone wants to know how two different
filters would interact with each other, they can add the two objectives together as
seen in Equation 3.7.

Loss =

N−1∑
n=0

αnLossobjn (3.7)

3https://github.com/tensorflow/tensorflow/issues/8057

https://github.com/tensorflow/tensorflow/issues/8057
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The alpha factor can be used to put a larger emphasis on one objective over an-
other. Some filters are slightly faster to optimize than others, so changing this
parameter is a way to produce images that capture the essential elements from
multiple objectives.

The way feature-mixing has been implemented is similar to the way multiple vi-
sualizations has been implemented in the system. By sending a list of objectives
(but now also coupled with alpha values) into the visualization function, they will
automatically be combined into a single loss.

3.2.8 Fine-tuning parameters

In our final implementation of the visualization platform, we made sure that it was
easy for users to alter and fine-tune the most relevant parameters that affect the
results of the feature inversion process. A listing of all these parameters can be
found under Subsection 3.6.3, which also gives a description of the graphical user
interface. We wanted to offer users all this freedom for multiple reasons. There exist
a lot of uncertain factors that can play a role during the training process described
in the previous paragraph. The structure of the trained convolutional network,
magnitude of weights and so forth can play a part in finding the optimal settings,
which is why they are available to modify. However, the settings that were found to
generally produce the best results in reasonable time, with the example CNNs, are
selected by default. There is also a trade-off between making optimized images that
are pleasing to the eye and resemble actual objects, vs. finding the actual “raw”
feature that the network has learned. This concept is elaborated on in Section 4.1.
Another important trade-off is time usage. Adding extra transformation tensors,
lowering the learning rate and using a slow parameter space for optimization will
slow the process down considerably.

One last reason for giving users the freedom to set most of the parameters is to
facilitate the creation of artistic images. This aspect has not been a big focus
throughout this project, but is more of a byproduct of the underlying tools. Es-
pecially with the DeepDream component, it is possible to create dreamed images
with a lot of artistic merit.

3.2.9 Fetching image-examples of features

When looking at the result of a feature inversion, it might not always be that easy
to decipher what feature the generated image is supposed to represent. A simple
way to make it a little clearer can be to fetch actual examples of real images that
maximize the same neurons as the feature in question. The way we implemented
this was by feeding a lot of small images into the CNN during a TensorFlow session.
Using the same loss function as we would in feature inversion, we can get a loss
value for each image that we fed into the network and rank the images accordingly.
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The top ten images with the lowest loss values can be computed and displayed next
to a feature-visualization in the platform with the push of a button.

The dataset of images we have used for this feature was taken from the ” ImageNet
Large Scale Visual Recognition Challenge 2017”4. We used the test-set which
contains 5500 images of various sizes. n patches of size 64x64 were extracted at
random locations from each image. These patches are the small images we feed
into the network and give scores depending on how well they represent the feature.
Even though there exist image datasets where every image is 64x64 and part of
a class, we chose to perform this random cropping on larger images instead, since
features are likely to appear as part of an image, rather than appearing throughout
an entire image representing a class.

3.3 Activation visualization

As mentioned in Subsection 2.2.2 the output, also known as the activations of a
convolutional layer can be displayed graphically. The output can be seen as a set
of two-dimensional arrays, each one corresponding to a filter in the convolutional
layer. By constraining the values of all two-dimensional arrays to be in the range
[0,255], we can display them as gray-scale images. This method is expressed in
Algorithm 3.

Algorithm 3 Constraining activation values

Input:
Convolutional activation Y = {yij}

Procedure:
A← x

max(Y)Y

return 255 ∗ A

max() returns the maximum value of a given matrix. The returned matrix can
then be displayed as an image using an image library for Python.

3.4 Deep Taylor decomposition

This section gives an explanation of how we implemented Deep Taylor Decompo-
sition with Tensorflow. As each layer in a convolutional neural network is unique,
so is the propagated relevance. In order to propagate the relevance backwards
through a convolutional network, one has to construct a reverse network using the
functions described in Subsection 2.5.6. This process is similar to that of a decon-
volutional network(Zeiler and Fergus, 2014) since each layer in the original network

4http://image-net.org/challenges/LSVRC/2017/download-images-1p39.php

http://image-net.org/challenges/LSVRC/2017/download-images-1p39.php
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will have a corresponding layer in the Deep Taylor network. The simplest way to
generate a Deep Taylor graph is to iterate backwards through the network and
add a new layer to the new graph, for each new layer encountered in the original
CNN. Iterating backwards through a single network was a relatively simple task,
as one would know the order in which the layers would appear. Creating a general
method, however, proved to be more of a challenge than first anticipated. This
problem and its solution are described more thoroughly in Subsection 3.4.3.

3.4.1 Generating a Deep Taylor graph

In order to generate a Deep Taylor graph, we needed to create opposing layers
for all different types of layers found within a CNN. The opposing layer to a fully
connected layer is created by implementing Algorithm 1 from Subsection 2.5.6.
The sharing of weights in a convolutional layer made the backpropagation a bit
more tricky. We used Algorithm 4, which is an extension of Algorithm 1 in order
to propagate backwards through convolutional layers.

Algorithm 4 Relevance propagation in convolutional layers

Input:
Weight matrix W = {wij}
Input activations X = {xi}
Upper-layer relevance vector R = {Rj}
Epsilon ε = 10−10

Procedure:
V← W+

Z← Conv(X, V) + ε
S← R� Z

C← BackpropConvInput(V, S)
return X� C

Conv() represents a convolutional operation, and BackpropConvInput() represents
the operation of calculating the gradients of a convolution with respect to the input,
as explained in Subsection 2.2.1. � and � denote element-wise multiplication and
division, as in Algorithms 1 and 2. ε is added to all elements of the convolution, in
order to avoid dividing by zero in the next step of the algorithm.

Relevance propagation through pooling layers is done in similar fashion. The only
difference is replacing the convolutional operation with a pooling operation. This
holds true for both max-pooling and average-pooling.

In Algorithm 5, ε is added once again to avoid dividing by zero. The Pooling
operation in this algorithm can be either max-pooling or average pooling. For this
thesis, we decided to use average-pooling for all pooling layers, regardless of the
operation in the actual convolutional network. This was done to avoid single high
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Algorithm 5 Relevance propagation in pooling layers

Input:
Input activations X = {xi}
Upper-layer relevance vector R = {Rj}
Epsilon ε = 10−10

Procedure:
Z← Pool(X) + ε
S← R� Z

C← BackpropPoolInput(S)
return X� C

values in the final heatmap. This created more even heatmaps which are easier to
interpret, as can be seen in Figure 3.5.

Input image Max-pool Average-pool
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Figure 3.5: Figure displaying heatmaps when using max-pool and when using
average pool.
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The first two examples in Figure 3.5 are heatmaps generated using the VGG-16
network. The last two examples are generated using the Inception V1 network. It is
easier to spot the difference between max and average-pooling in the examples from
the Inception network. The reason for this explained in Subsection 4.3.1.

When propagating the relevance from the first convolutional layer to the input
image, the zB-Rule expressed in Equation 2.13 is utilized. The values of li and
hi might vary from network to network, depending on how the original image is
preprocessed before being fed into the network.

In order to generate a Deep Taylor Graph, we started from the output layer and
generated one layer corresponding to each layer in the original CNN. This was
simplified by the use of Tensorflow, as Tensorflow holds a virtual version of the
mathematical graph which we utilized.

3.4.2 Heatmap generation

The final output of the relevance propagation graph will be a three-dimensional
matrix of relevance values. The input image consists of three color channels, red,
green, and blue. Each of these channels receives their own map of relevances.
Layers deeper within the network will have one relevance map for each filter in
that layer. In order to create a heatmap, the maps are summed together, before
using Algorithm 3 to constrain the values. At this point, one could save the image
as grayscale. In order to create a colorful heatmap, we apply a colormap as seen in
Figure 3.6, which holds one unique color for each value in the range [0, 255].

0 255

Figure 3.6: The colormap used when creating heatmaps.

The colors in Figure 2.7 are ordered from lowest to highest, i.e., from 0 to 255. This
method can also be applied to layers which are not the final layer of the relevance
propagation. The only difference is the number of heatmaps which are summed
together. Examples of such heatmaps can be found in Section 4.3.

3.4.3 Challenges

Inception modules

Propagating the relevance through Inception modules proved to be a challenge,
as the modules consist of several convolutional operations which are performed
in parallel. The solution was to create a function which split up the Inception
module, and propagated through each convolution separately, before combining
the resulting relevance values back together.



3.5. COMBINING VISUALIZATION TECHNIQUES 53

Generalizing for usage with multiple networks

Implementing Deep Taylor Decomposition for several networks proved to be a big-
ger task than first anticipated. The main issue was to back-propagate through
the network. Different networks have different architectures for their convolutional
layers. The Inception network, for instance, utilized batch-normalization(Ioffe and
Szegedy, 2015) after each convolution, before applying the ReLU activation func-
tion. As mentioned earlier the Inception modules also needed a unique function
for propagating the relevance. All in all, it proved to be hard to create a general
function which would work for all network architectures without any modifica-
tions.

3.5 Combining visualization techniques

In both VGG-16 and Inception V1 there exist hundreds of filters in each convo-
lutional layer. It is possible to visualize each filter, but often the results are very
abstract and hard to interpret. The activation of a convolutional layer contains one
subset of values for each filter in the layer, as explained in Subsection 2.2.2. When
we generate a heatmap of an image, we assign relevance values to each of these
subsets. By summing up the relevance values for a subset, we get a relevance score
for each group of activation values. As each group is generated by one particular
filter, the relevance score displays how much a given filter contributed to the final
classification.

...
0.0120.011 0.0150.012

Figure 3.7: Illustration of the process used for calculating relevance scores. The
heatmap in this example is generated by a hidden layer in the VGG-16 network.

Figure 3.7 shows how the score for each filter is generated. The set of relevance
values is split into one set for each filter. Then the sum of all values within each
subset is calculated, which represents the score for the subset. By utilizing this
process, we can generate a relevance score for all filters which contribute to a given
image. Filters which contribute to the final classification should have some relation
to the classification. This could be of use when trying to interpret the result of using
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feature-visualization to visualize particular filters, which is something we attempt
in Section 4.4.

3.6 Graphical user interface

In order to be able to switch between different functionalities, we created a sep-
arate page for each method. At the top of the page, we created a set of tabs,
which lets the user switch between the different functionalities of our platform.
Since React allows for components to hold a state, one can switch tabs without
having to reload previous results upon re-entering a previously used tab. This
section shows the different components which exist on each tab and explains their
functionalities.

Figure 3.8: Screenshot of the initial page of the user interface.

The page shown in Figure 3.8 holds one information box for each page in the user
interface. Each box contains a short explanation of what the page does, as well as
two buttons. The leftmost button displays an extended description of the selected
page, while the button on the right links to an external source of information on
the subject. Each box also holds an image which serves as a preview of the method
which the page uses. The user can navigate to the different pages, either by clicking
the boxes or by using the tabs in the header f the page. In order to switch between
networks, the user can click the button on the left side of the header. This will
open a sidebar, where the user can select between different pre-trained networks.
Additonal screenshots of each page in the user interface can be found in Appendix
C.
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3.6.1 Prediction

On the prediction page, the user is shown an image which will be submitted to the
CNN for classification. It is also possible to upload a new image using the ”Upload
image” button. After the classification is computed, the top 5 classes with their
corresponding confidence are displayed. It was essential to be able to evaluate any
given image, as this is the primary task of the neural network. Knowing the top
five classes of an image gives an early indication of what the network is looking for
within the image.

Figure 3.9: Screenshot of the component handling predictions.
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3.6.2 Activation visualization

The component for visualizing activations is displayed in Figure 3.10. The user
first has to select a layer from the convolutional neural network. When clicking
the ”Select layer” button, the user is presented with a visual representation of the
Network, as shown in Figure 3.12 and 3.13. Here the user can click on any layer in
the neural network. Upon selecting a layer, the properties of the selected layer are
displayed in the top part of the modal.

Figure 3.10: Screenshot of the component for activation visualization.

The user can choose how many activations to visualize. Upon pressing ”Get Acti-
vations,” the user interface will request a number of activations chosen by the user.
We decided to be able to limit the number of activations, as we would observe that
lower ranked activations would be less interesting. This is discussed more in detail
in Section 4.2.

Figure 3.11: Screenshot of the component which displays visualized activations.

The resulting visualizations are displayed as shown in Figure 3.11. Each result has
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an ID. The ID corresponds to the index in the output of the selected layer. In
this particular example, the top 10 activations from three layers in the VGG-16
network are displayed.

Figure 3.12: Screenshot of graphical representation of the selected network, which
in this case is the Inception network.

In Figure 3.12 the different colors correspond to different kinds of layers in neural
networks. Red corresponds to convolutional layers, blue is equal to pooling layers,
and purple equals Inception modules. The Inception modules can be further ex-
panded, showing the distinct layers within a selected Inception module. At the top
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of the visualization rests a box containing information such as stride, output shape
and so forth. In Figure 3.12 the selected layer is a pooling layer. The infobox dis-
plays the pooling size, stride and output shape of the selected pooling layer. As the
selected model has quite a few number of layers, we decided to utilize a scrollbar,
in order to fit all layers into one component. The expanded Inception-module in
Figure 3.13 is presented the same way as it is in Figure 2.13.

Figure 3.13: Screenshot of an expanded Inception module in the visual representa-
tion of the network.

3.6.3 Feature visualization

The component we created for Feature Visualization, is displayed in Figure 3.14.
To use this component, one needs to select a layer in the same way as displayed
in Subsection 3.6.2. The channel field can be used to select one or more channels
to be visualized. If more than one channel is selected and the ”visualize” button
is pressed, multiple visualizations will be generated, one for each channel. The
visualizations will be displayed on the right side of the component. By pressing
the ”mix” button instead, with multiple channels specified, all channels will be
combined into a single loss, and the feature inversion will only produce a single
optimized image. If the text field for specifying channels is empty, the entire layer
that was chosen will be used for the loss function, as described in Section 3.2.1.
There are several different parameters available to alter, which will impact the
inversion process in various ways. A list of all available parameters, with short
explanations, can be seen in Table 3.1.

In addition to visualizing features by training the visualization network, we also
added a ”find image examples” button for providing extra clarity regarding the
feature in question. Pressing this button will retrieve images that give off the
highest activation values with respect to the feature, during prediction as described
in Section 3.2.9. By pressing this button, the top 10 image-patches from a dataset
of images will be displayed next to the feature visualization itself.
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Figure 3.14: Screenshot of the component for setting parameters during feature
inversion. Results appear on the right side of the screen. This component can also
be used to mix different channels into the same loss function for a ”mixed” feature
inversion, or to fetch sample images of the specified objective.
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Parameter Description Default Value

Layer Name
The name of the layer we want to
visualize. The value is selected
through a popup-window

None

Channel(s)

The index of one or more
comma-separated channels we
want to visualize or mix to-
gether. If no channels are speci-
fied, the entire layer is visualized

None

Parameterization
space

Radiobuttons used to choose be-
tween different parameterization
spaces

Fourier space

Decorrelate
colors

Checkbox used to decorrelate the
color channels if checked

Checked

Size
The height and width dimensions
of the optimized image

128

Learning-rate
The learning rate used by the op-
timizer training the network

Naive = 0.2,
Fourier = 3.0,
Laplacian = 0.05

Steps
Number of steps the optimizer
should perform

200

Padding
Number of pixels to pad the pa-
rameterization space

12

Jitter
The upper pixel limit that can be
used when randomly jittering x
and y in both directions

8

Rotation
The upper degree that can be
used when randomly rotating the
image

5

Scale
The upper and lower percent
that the image can be randomly
scaled by

0.1

Table 3.1: All the different parameters that can be tuned in the GUI component
created for Feature Visualization.
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DeepDream

We also created a component for running the DeepDream algorithm over an up-
loaded image. A screenshot of this component can be seen in Figure 3.15. It is
relatively similar to the feature visualization component described above, seeing as
it shares a lot of the same parameters. This is caused by the fact that these com-
ponents share a lot of the same backend functionality when they are used to set up
and train their visualization networks. Some of the parameters are removed since
they are either irrelevant or not fully compatible with DeepDream in the current
implementation.

Figure 3.15: Screenshot of the component for setting parameters when creating a
”dreamed” image. Results appear on the right. Different channels can be mixed
together here as well, in order to create a loss function based on multiple objectives.
The uploaded (global state) image, which will be used as input is displayed at the
top.
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3.6.4 Deep Taylor Decomposition

In order to preview the relevance in the network, we created a component which
displays one heatmap for each layer in the convolutional network. Figure 3.16
shows the main component. The user can choose a number of ranked filters, be-
fore retrieving the heatmaps. Each Heatmap will be followed by a list of filters,
the size equal to what the user chose. The filters will be ranked by their total
relevance score. These filters can be used in combination with the technique for
feature visualization described in 3.2. This is discussed in detail throughout Section
4.4.

Figure 3.16: Screenshot of the component for generating relevance heatmaps.

The heatmap for each layer is displayed in a separate component, as shown in
Figure 3.17. Beneath the heatmap is the list of ranked filters. By clicking the
arrow on the right one can either hide or show the list of filters. The button on the
left lets the user copy the IDs of all filters in the list to the clipboard. The IDs can
be used together with feature visualization, as mentioned earlier. Copying them
all independently was perceived to be a tedious task, as one sometimes would like
to have up to 100 ranked filters. The score displayed in the list equals the total
sum of relevances for the corresponding filter. The ID corresponds to the index of
the filter in the weight matrix of the original convolution.
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Figure 3.17: Screenshot of the component for displaying relevance heatmaps. In
this case two components are displayed, from two different layers in the VGG-16
network.

3.6.5 Challenges

The biggest obstacle when creating the user-interface was the support for multiple
neural networks. The graphical layer-selection component, as seen in Figure 3.12
had to be adjusted to fit the different network structures. This included making a
custom component for the Inception modules, as seen in Figure 3.13. This was not
a huge challenge in itself, but it limits the possibility of creating a general system
which works for all network architectures.

3.7 Loading pretrained networks

As previously mentioned, training convolutional networks is a time-consuming pro-
cess which takes a lot of computing power. Since the methods we implemented
focused on visualization, we decided to use pretrained networks for our research. It
would have been interesting to visualize throughout the training process, but that
was not our point of focus for this thesis. The models used were recreations of the
original networks, trained on the 2012 version of the ILSVRC image classification
dataset. The two networks we chose to use were the Inception V1 and the VGG-16
network. Both architectures are described in detail in Section 2.3. They achieved
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accuracies as seen in Table 3.2. Top-1 accuracy refers to how many percentages of
the test set were classified correctly on the first try. Top-5 accuracy refers to how
often the correct classification was within the five highest scoring classes.

Network Top-1 accuracy Top-5 accuracy
Inception V1 69.8% 89.6%
VGG-16 71.5% 89.8%

Table 3.2: A table displaying the accuracies of the chosen networks.

The models were both retrieved from the Tensorflow Github page5. Both of these
models were chosen since they arguably are two of the most simple, yet sufficiently
deep network architectures, which were available online, and ready to use in com-
bination with Tensorflow. Both mainly consist of two files; one file recreating the
architecture in Tensorflow, and one file containing the weights for the pretrained
network. In theory, one could easily swap out the weights for another set of weights
trained on a different dataset. However, we were not able to find any other pre-
trained weights of sufficient quality, likely due to the amount of time it takes to
train the networks. In order to be able to quickly switch between the two networks
in our user interface, we implemented a simple drop-down menu, which lets the
user choose which network to use.

As the networks used were recreations of the original architectures, there were some
differences. The biggest difference we observed was that the 5x5 convolutions inside
each Inception module had been replaced with 3x3 convolutions. In addition, there
were some abnormalities within the Inception V1 network, which are discussed
further in Chapter 4. When evaluating the results of Deep Taylor Decomposition
in Section 4.3 we make use of another version of the Inception V1 network. This
version is retrieved from the Tensorflow documentation6.

5https://github.com/tensorflow/models/tree/master/research/slim
6https://www.tensorflow.org/versions/r1.0/extend/tool_developers/

https://github.com/tensorflow/models/tree/master/research/slim
https://www.tensorflow.org/versions/r1.0/extend/tool_developers/


Chapter 4

Results and Discussion

In this chapter, we present our findings and evaluate the results in relation to our
research questions. We present the result of each visualization method and show
examples of how they can be used to analyze and understand a given convolutional
neural network. Finally, we evaluate the effect of combining the visualization tech-
niques.

4.1 Feature visualization

When we are teaching a deep neural network to make predictions by training it on
a labeled dataset and altering the weights along the way, these weights will over
time become more than just their individual values. Patterns emerge and neurons
grouped together will after a while start to represent actual concepts of varying
complexity. Such encoded concepts appear within hidden layers simply because it
is the efficient way of compressing the most important information gathered from
the dataset.

In most cases, there are just too many parameters within the hidden layers, and
the ways in which they interact with each other to encode information are far too
complex for humans to derive something intelligible from. This is what we call
the ”black box” problem of deep neural networks. Luckily, weights within hidden
layers of CNNs automatically structure themselves in such a way that many of the
learned concepts can become reasonably comprehensible to humans. We refer to
these concepts as features.

Feature inversion, as described throughout Section 3.2 is currently our best ap-
proach for depicting features. We apply this method to get a closer understanding
of what concepts a certain part of a CNN has learned during training. These are
naturally the same concepts the network is looking for when performing predictions

65
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as well. In our implementation, we have utilized several techniques in order to im-
prove the depictions of features. By improving depictions, we attempt to make the
fundamental qualities of the feature more comprehensible to humans. This sec-
tion will go through interesting results from the visualization platform, and look
at how the aforementioned techniques impact the quality of generated images of
features.

4.1.1 Features in Inception and VGG-16

This section goes through some examples of feature inversions performed on the
two sample CNNs, using loss functions based on different types of objectives. As
mentioned in Section 3.7, these sample networks are recreated versions of the orig-
inal Inception and VGG-16 networks, taken from the tf-slim library1. Because of
small differences in architectures and randomness during training, the weights and
features are not the same as in the original networks. Using this platform, we have
found a few issues with these recreated networks, which will be elaborated upon
throughout the chapter. All results presented under this subsection are generated
using the default parameters we regarded as the optimal.3.1

Visualizing layers and channels

In the early layers of most CNNs, there are fewer number of filters used than further
into the network. With our visualization graph created in TensorFlow, we are able
to visualize every channel from an entire early layer within reasonable time, a
couple of minutes at most for <100 channels. These computations were performed
using a GPU with 2GB of memory. With more powerful machines running the
backend server, simple visualizations could be performed close to real-time.

Figure 4.1 and 4.2 shows visualizations based on entire layers, together with visu-
alizations of every single channel inside the layers, from each respective network.
The layers chosen for these examples both appear early in their respective net-
works, which is why the depicted features appear to be such simple patterns. The
next section explores the increasing complexity of features throughout CNNs more
in-depth. We can see from these illustrations that only visualizing a layer by itself
will give us very limited information about what features the network has learned
up to this point. Channels that generally output larger activation values, or have
neighboring channels that are visually similar, will naturally appear more promi-
nent in the visualizations of the entire layer. The randomness in the initialization
of the parameter space will also have a large impact on the visualization, especially
if the loss function is made up of many smaller parts. In other words, singling out
specific channels will give us much more useful information than looking at entire
layers.

1https://github.com/tensorflow/models/tree/master/research/slim

https://github.com/tensorflow/models/tree/master/research/slim
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Figure 4.1: Visualization of Conv2d 2b 1x1 from the Inception network. Loss
functions are based on the entire layer (a) vs. the 64 individual channels that
makes up the layer (b).

Figure 4.2: Visualization of Conv1 2 from the VGG-16 network. Loss functions
are based on the entire layer (a) vs. the 64 individual channels that makes up the
layer (b).

If we inspect the visualizations of each separate channel, there might be some
unforeseen insights to be gathered. In Figure 4.1 one of the channels located in
the bottom right (index: 58) appears entirely grey, meaning it barely could have
optimized for the channel at all. Looking at output activations from this specific
channel, using the activation visualization tool in our platform as described in
Section 3.3, we can inspect it further. Using a lot of different input images, we
observed that this channel outputted very small values on all kinds of images,
meaning it probably doesn’t have a lot of impact on prediction results. We can
assume that this channel/neuron is close to being ”dead,” which means the training
process the network has gone through might have room for improvement. Looking
at other channel visualizations in the early layers of the networks, we can observe
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several features which look similar but are rotated 90 degrees. Utilizing some kind
of rotation invariant filters might be a way to improve training time and shrink the
number of parameters.

Different levels of abstraction

A neat property of CNNs is the fact that features throughout the network become
structured in a hierarchical fashion during training. A feature representing the
concept of ”trees” is presumably made up of a combination of features from the
previous layer, representing concepts like ”leaves,” ”bark,” ”branches” and so forth.
These features are again made up of simpler ones from earlier layers, representing
concepts like shapes, colors, basic patterns and so on. The hierarchical structure of
CNNs can be demonstrated in practice by visualizing features from layers located
at different depths.

In Figure 4.3 and 4.4 we have generated feature inversions of the 5 first channels
(index: 0-4) from every convolutional layer throughout VGG-16, located at increas-
ing depth. The last three, fully connected layers are not included. Every example
is run for 200 iterations, with the same parameters as defined in Table 3.1. Since
CNNs operate the way they do, with filters being run over every channel from the
previous layer, there is no special relation between channels with the same index in
neighboring layers. The exception is the pooling layers, max pooling in this case,
which keeps the number of channels the same, but retains only the most ”impor-
tant” aspects from each channel. The visual impact of the max-pool operation can
be observed by comparing the pooling layers in Figure 4.3 and 4.4 to the layers
that came directly before.

A property of the VGG-16 network that can be observed is that, as we go further
into the network, the features seem to care less and less about which colors they
consist of. The visualizations become more colorful as we move closer to the output
layer. This is probably an indication that these layers care more about textures
and shapes than simple colors at this point. Other CNNs, such as the Inception
network keep more color information within the features, even at later layers. The
exact causes of these differences are hard to pin down, but the differences in the
architectures might be a good starting point. A paper researching the role of colors
in deep convolutional networks (Engilberge et al., 2017), also demonstrated that
deeper into the network, features become more color invariant.

We can also draw some parallels between the hierarchical structure of CNNs and
the way the brain processes visual information. Some aspects of the human visual
cortex, which is the closest biological equivalent to CNNs, may become easier to
explain through the help of deep neural networks (Khaligh-Razavi and Kriegesko-
rte, 2014). The human brain is still an incredibly complex system compared to
the computer algorithms that are inspired by it, but new connections between the
brain and deep convolutional neural networks are still being discovered (Kuzovkin
et al., 2018)
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Figure 4.3: Feature visualization of the first 5 channels from the earliest layers
(1-10), throughout VGG-16. Features becomes more sophisticated as we go deeper
into the network.
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Figure 4.4: Feature visualization of the first 5 channels from layer 11-18 throughout
VGG-16. Features becomes more sophisticated as we go deeper into the network.

Visualizing classes

The last layer in a CNN usually represents classes, with one output node for each
class. We can visualize these classes exactly the same way we perform visualizations
of every other feature inside the network. It is important not to choose the very last
layer if it performs a soft-max operation. This is because the soft-max operation
suppresses the probabilities of all the other classes, which is not something we want
during feature inversion. We select the previous layer instead, which often contains
logit values for each class. Using a loss function based on the activations from
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one of the neurons in this layer, and we can get a glimpse into what the CNN
believes a certain object looks like. By recreating the feature of a class, we might
gain some insight into the attributes within the class concept, which plays a role
during prediction. In Figure 4.5 we have used our platform to visualize various
classes in both the Inception network and in VGG-16. This is one of the few
”fair” methods of comparing two CNNs with different architectures against each
other, using feature inversion. The last layers have the same dimensions in both
networks since they both have been trained on the same set of classes. Looking
at features in hidden layers will tell us something about the network itself, but it
can be difficult to make reasonable comparisons of two networks with a different
number of parameters.

Figure 4.5: Class-visualizations from two different CNNs generated through the
platform. Inception on the left and VGG-16 on the right

As we can observe in Figure 4.5, these two networks use vastly different representa-
tions of class-objects, even though they both have been trained on exactly the same
dataset. The class visualization from the VGG-16 network appears to encompass
diverse color schemes, no matter the class. Once again, this might have something
to do with the fact that VGG-16 is a much deeper network than Inception, so the
layers probably become more color-invariant. Some of these visualizations, such as
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VGG-16’s version of the barn spider class look a lot like the actual object. Others,
like Inception’s interpretation of a cheeseburger, appears to be just a mess of dif-
ferent cheeseburger features. The latter is to be expected though, since CNNs that
perform image classifications do not concern themselves with the actual structure of
objects, only whether the relevant features are present. A dog with multiple heads
would still be classified as a dog, to the same degree as a normal dog would.

Figure 4.6: Traffic light class from VGG-16 visualized. A lot of cloud-like features
seem to have appeared in the background as well.

Visualizing classes this way can sometimes give us new insights about the different
attributes that have become associated with a particular class during training. In
Figure 4.6 we have tried to visualize the traffic light class from VGG-16, but ended
up with an image containing plenty of clouds in addition to the traffic lights. While
it seems the network has been learning the ”wrong” attributes of a class, it could
be argued that it is advantageous to learn these wrong attributes. If the purpose
of the network is to predict the presence of object A in an image, which happens
to have a large correlation with the presence of object B, then B should probably
be a part of A’s concept. This will naturally improve classification of new images,
as long as the correlation is still there.

Combining features

As explained in Subsection 3.2.7, we can mix together loss functions based on
different parts of the network in any kind of linear fashion. By combining multiple
features, we end up discovering even more features. With this in mind, there is an
unlimited number of features contained within a trained CNN. The only difficult
part is knowing what combinations that might produce interesting results. Figure
4.7 shows examples of multiple features, combined into new ones. Each is based on
different channels from the same layer in the inception network, mixed 3b.
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Figure 4.7: Randomly selected features from the layer mixed 3b in the Inception
network combined into new features.

When mixing different features together to see how they interact with each other,
one might need to give a more significant emphasis to certain elements. In the
visualization of channel 44 plus channel 162, as shown in Figure 4.7, we had to
multiply the output of channel 162 by a factor of 6 to see them both appear in
the combined feature. This is caused by different magnitudes in the filter weights
and the complex ways filters might interact with each other during optimization.
The factor 6 used in this example was just found through trial and error. Some
features encompass more sophisticated concepts than one might expect at first by
just taking a look at its visualization. Looking at the feature from channel 239, it is
able to make other features appear in black and white. By looking at its activation
value when feeding it gray-scale images as well, we can almost certainly say that
this is a channel especially trained to recognize black and white images. In addition
to better understanding the internals of a CNN, mixing features can also be a great
tool for creating computer-generated artworks, especially with high-level features
representing more complex objects.

4.1.2 More robust visualizations with stochastic transforma-
tions

As explained in Section 3.2.2, we have implemented the option of adding various
transformation tensors to the visualization graph, before the input to the pre-
trained CNN. These work as regularizers, meant to create more robust feature
inversions. Visible improvements, utilizing different transformations can be seen in
the results presented below. Every example is created using the same loss function
and the same seed when randomly initializing the parameter space. The differences
here are only caused by the transformations on the image tensor during optimiza-
tion, through the transformation graph shown in Figure 3.3. The optimization was
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run for 500 iterations with a learning rate of 3, in the Fourier space, with colors
decorrelated.

Figure 4.8: Feature inversions from left to right:
jitter = 0, jitter = 1, jitter = 10.

The loss function used for these visualizations is based on (layer: mixed 4c, chan-
nel: 191) from the inception network. This feature seems to be depicting dog eyes
and snouts among fur. This can be difficult to deduce however, by only looking at
the leftmost visualization in Figure 4.8. The image shows the baseline visualiza-
tion, using no transformations at all. By running the same filters over exactly the
same parts of the image multiple times, we get noisy artifacts and saturated pixels
throughout the visualization. This can easily be remedied by jittering the image by
a random number of pixels. Figure 4.8 shows the ”smoothing” effect jittering the
image has, which we utilize to generate more natural looking visualizations.

Figure 4.9: Feature inversions from left to right:
angles = 0, angles = (−5◦, ..., 5◦), angles = (−180◦, ..., 180◦).

In addition to jittering the image, we can also rotate it by random angles as depicted
in Figure 4.9. By slightly rotating the image we are more likely to see additional
aspects of the feature while mitigating the chance of getting stuck on a few repeating
patterns. This is more of a problem on earlier/simpler layers than the one chosen
here though. We need to be careful not to rotate too much, however, as seen in the
rightmost image which has been rotated randomly at all angles. While the result
might possess some artistic qualities, the cyclic symmetries are not representative
of the actual feature.

While still jittering by 10 pixels, and rotating by 5◦, we can try to stochastically
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Figure 4.10: Feature inversions from left to right:
scales = 1.0, scales = (0.8, ..., 1.2), scales = (0.1, ..., 1.9).

scale during the optimization as well. Scaling the image will have a clear visual
impact as the depicted feature will begin to appear in various sizes. For the same
reasons as we were applying rotation, it can help to scale up and down by a small
factor like 10%. After extensive testing, it is still a bit unclear whether this transfor-
mation is as useful as the jittering and rotation however, in order to make features
more comprehensible. Figure 4.10 demonstrates how scaling influences the results,
as there appears both smaller and larger dog eyes in the rightmost image.

Figure 4.11: Feature inversions from left to right: padding = 0, padding = 12.

In order to avoid the parts close to the edges ending up looking different than the
rest of the image, we can add padding. The padding is applied at the beginning
as part of the parameter space and is cropped out by another tensor to achieve a
more even result as seen in Figure 4.11.

4.1.3 Advantages of alternate parameterization spaces

One of the techniques we applied that seemed to make the largest difference in
both speed and quality of visualizations was using a different parameter space.
The implementation of these alternative spaces is explained throughout Subsection
3.2.4. The speedup can be easily accounted for by the fact that individual variables
in the parameter space now contribute to changes in more than just the color of
a single pixel inside the image we optimize. Pixels located spatially close to each
other are now more likely to contain similar colors, which is an obvious property



76 CHAPTER 4. RESULTS AND DISCUSSION

of natural images. This also helps the quality of feature visualizations, making the
features easier to recognize.

Figure 4.12: Feature visualization at various steps, utilizing different parameteriza-
tion spaces. Learning-rates are set to: Standard = 0.2, Laplace = 0.05, Fourier =
3.0. The loss function is based on layer: mixed 4c, channel: 134, from the Inception
network.

A comparison of three implemented parameter spaces can be seen in Figure 4.12.
The feature in this example depicts tufts of hair in various colors. While using a
Laplacian Pyramid space is a clear improvement over the standard naive space,
it is the frequency space of the Fourier transformation that consistently resulted
in the most natural-looking results. It should be noted that it is hard to do a
completely fair comparison of convergence rates because of the individual learning
rates used in these examples, chosen with respect to the different parameter spaces.
The learning rates that were chosen are the ones that gave the most similar, natural
looking visualizations after 200 iterations.

Decorrelating colors

Another way we alter the parameter space is by decorrelating the colors, as de-
scribed in Subsection 3.2.5. When applying decorrelation, we are pointing the
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colors in the right directions during optimization by exploiting correlations be-
tween colors found in natural images. It is important to keep in mind that we are
not making the feature visualizations any more correct, seeing as the layer/channel
activation’s we try to maximize doesn’t increase any by decorrelating. What we
instead obtain, are feature visualizations that look more like natural images. This
can be observed in Figure 4.13 which shows how the decorrelation alters the opti-
mization. One of the most striking differences we can gather from this example is
that decorrelating helps to keep pixel values from getting too saturated, creating
too bright, ”unnatural” color schemes. To make sure the technique was better
than simply suppressing high values, we also compared the decorrelation to using
L2-Regularization (Subsection 2.1.6) in the loss-function, suppressing very high or
low pixel values within the image.

Figure 4.13: Feature inversion after 200 steps, using the same parameters as speci-
fied in Figure 4.12. By utilizing decorrelation of colors, as seen in the bottom three
visualizations, we get more natural-looking images.
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4.1.4 Fetching examples from a dataset of images

In some cases, the optimized image produced through feature inversion might not
always be that easy to interpret by itself. This is why we wanted to include a
method for fetching images that activated a chosen feature to a large degree as
well. By observing the visualization of the feature together with examples of images
similar to the feature, the concept encoded into the feature might become easier
to interpret. Figure 4.14 shows a few results from this functionality, implemented
into the platform as part of the feature visualization component.

160.87

209.27 197.33 195.55 187.28 187.05

176.50 173.30 166.08 160.69

Inception, Layer: mixed_4b, Channel: 176

Inception, Layer: mixed_4c, Channel: 111

180.60 157.58 111.26 104.74 99.55

94.18 77.85 77.54 75.33 73.01

Figure 4.14: Top 10 randomly extracted image-patches taken from the
ILSVRC2017 test-set, that had the highest activation values for different chan-
nels in the Inception net. The mean output value from the channel is displayed
under each image-patch.

The first feature visualization in Figure 4.14, which is based on channel 111, from
layer mixed 4c presents a pattern of uneven circles and other strange artifacts. It
might be difficult to interpret what kinds of objects or textures this channel reacts
positively to in practice. With the method described in Section 3.2.9, we can fetch
sample images that activated this feature to a large degree. By looking at the small
images to the right of the visualization, we know that the channel reacts positively
to curved white stripes.

Unfortunately, the results often turned out a bit poor. The second example shows
another feature with corresponding images that almost look random. They all
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activated the feature somewhat, but the images will not make it easier to find
a semantic description of the feature in question. The ”randomness” is caused
by the limited number of images and extracted patches used, due to time issues.
We extracted and scored 30 patches from all images in the dataset, which took a
considerable amount of time. With more powerful GPU’s, it would speed up the
process, but achieving good enough results in the platform in anything close to
real-time is not realistic.

4.1.5 DeepDream

While implementing various techniques in order to improve feature inversion, we
realized that these techniques also could be useful in the creation of ”dreamed”
images, generated through the DeepDream algorithm. Implementing the algorithm
into the platform was a fairly simple task, since we could use similar visualization
graphs as the ones used in feature inversion. The creation of these dreamed images
is more applicable to the field of computer-generated arts than being especially
useful in exploring a CNN for scientific reasons. We still wanted to include it into
the platform, since there could be unforeseen insights to be gained by feeding actual
images into the feature inversion optimization. A few examples of DeepDream run
over an example image to create ”dreamed” images can be seen in Figure 4.15
below.

These DeepDream examples have been created while making use of the color decor-
relation technique in order to achieve more natural colors during optimization.
Without altering the colors of the original image too much, we can achieve artis-
tic effects that look a lot like images created with the ”Neural Style Transfer”
algorithm, described in the paper (Gatys et al., 2015). As explained earlier in Sub-
section 4.1.1, we miss out on many of the learned features by performing feature
inversion using an entire layer, instead of the individual elements that make up
the layer. When visualizing a layer through DeepDream instead, more concepts
within the layer will usually start to appear. This is because there exist a lot of
”features” in the image already, which the algorithm will start enhancing, causing
the optimization process to be more diverse in terms of underlying features. This
can sometimes reveal biases in the training set. If a lot of dogs or dog-like fea-
tures suddenly started appearing, this could be an indication that the training set
contains a large portion of dog images.

4.1.6 Applications and usefulness

Throughout this section, we have displayed feature inversion results created with
the platform, applying different techniques in order to improve the interpretabil-
ity, while also looking at various types of loss functions. An important question
remains as to how useful these techniques would be for actual practical purposes,
like debugging a CNN. While the tools we have created related to feature inversion
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Figure 4.15: Examples of the DeepDream algorithm run over an image of a flower
bouquet, using various loss functions from both Inception and VGG-16. The small
image in the bottom right of each example shows the corresponding feature visu-
alization using the same loss function.

works great for exploring CNNs, simply for the sake of scientific curiosity, or with
the intention of creating computer generated art, it can be harder to find real use
cases for these tools by themselves.

One step we could take to make the internals of a pre-trained network more intel-
ligible using the tools above, would be to create a dictionary containing semantic
translations of each feature. By visualizing a feature, in addition to fetching sam-
ple images that activates it, we could probably give good semantic explanations
to most features, although some are quite abstract. Examples of such translations
would be phrases like ”feathers,” ”red and blue vertical stripes,” ”black and white
image” and so forth. Depending on the size of the network, this task would prob-
ably take a while, but still be feasible in a reasonable amount of time. With such
a dictionary in place, we could derive more information about the underlying rea-
soning behind predictions in real-time. Just as an example, we could know that
an image was classified as a traffic light because the ”cloud feature” had a high
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activation, if a cloud feature had been discovered and given a name.

While performing experiments with the feature inversion tools by themselves, one
can stumble over various new insights, discover biases in the training set, redundant
filters and other details about the network one might not expect. It might be
unreasonable to expect someone to utilize a tool to look for ”unforeseen” insights.
A better approach would be to perform feature inversions with specific goals in
mind. As mentioned in Subsection 4.1.1, we can combine features present in the
network in any linear fashion we want to. In other words, we got an incredibly
vast feature-space to navigate through when creating a loss function for a new
feature. Employing techniques that explore the relationships between channels
from different layers, looking at how activation values are propagating throughout
the network and other relations, would help in finding more meaningful directions in
the feature space. An attempt to do exactly this can be found under Section 4.4.2.
Feature inversion by itself may not be all that useful in improving a convolutional
network, but combined with other techniques used to navigate the feature space
and guide the feature inversion, we believe there is a potential to learn a lot more
about ”the black box” of CNNs.

4.2 Activation visualization

Visualizing the activations of each layer in a convolutional network gives an im-
pression of how the output changes from layer to layer. As we can see in Figure
4.16 the output goes from being similar to the input image to only having high
activation values in certain regions. The final activations in the VGG-16 network
have high activations in regions which correspond to the head of the parrot in the
original image. In the Inception network whose activations can be seen in Figure
A.1, the region with the highest activation is more evenly adjusted over the entire
bird.

This technique can also be used to identify dead neurons. In the context of neu-
ral networks the term ”dead neuron” refers to when a neuron outputs the same
value, regardless of input, and therefore the gradient of the neuron becomes zero.
When this happens, the neuron is not contributing to classifying the input image.
Dead neurons often occur in combination with the ReLU-activation function, as a
negative input always yields a zero value. Many dead neurons might be an indi-
cation of using the wrong parameters during the training process, such as a high
learning-rate. When looking at the visualized activations, images which are all
black, i.e., have no activation values above zero, indicate a dead set of neurons,
referred to as a dead-filter. It would not be sufficient to make assumptions from
looking at the activations of one single input image, as the filter might respond to
features which are not present in that image. A possible drawback of this technique
is its scalability with the increasing depth of a neural network. When increasing
the amount of filters in a convolutional layer, it becomes increasingly difficult to
interpret the resulting activations. Certain filters might only react to features in
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Figure 4.16: Example showing the top 10 activations from all layers. The input
image shows an African grey parrot, and was classified correctly as such. The
activations are taken from the VGG-16 network.

one particular class, which might result in them appearing as ”dead-filters.” Addi-
tionally, it might be difficult to distinguish which feature a filter reacts to, as there
might be several different features within an image. Despite these drawbacks, Ac-
tivation Visualization still appears as a solid technique for exploring convolutional
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networks.

4.3 Deep Taylor Decomposition

By utilizing Deep Taylor Decomposition, we were able to get a better impression
of which parts of an image were responsible for the resulting classification. Ad-
ditionally, we observed a certain arrangement of relevance values, often referred
to as checkerboard artifacts. We were also able to find some abnormalities in the
pre-trained version of the Inception V1 network.

Figure 4.17 shows several heatmaps generated using Deep Taylor decomposition.
All input images were correctly classified by both networks. The heatmaps gener-
ated by the VGG-16 network appear to be clearer and more readable than those
generated by the Inception network. The heatmaps from the Inception network
seem to have a certain pattern to them, which is explained in Subsection 4.3.1.
When looking at the heatmaps originating from the first image, one can see a re-
gion of high values residing around the eye of the dog, as well as the nostrils. This
would suggest that the network has learned the concept of eyes and nostrils, and
recognizes it in new, previously unseen images.
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Input Image VGG16 Inception V1

Figure 4.17: Example of heatmaps generated with Deep Taylor Decomposition.
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4.3.1 Checkerboard artifacts

The pattern seen in the heatmaps of the Inception V1 network is often referred to
as checkerboard artifacts. This can be explained by looking at the structure of the
Inception network. The first three Max-pool layers use a pooling region of [3,3],
with a stride of 2. When propagating the relevance certain output values will be
part of several pooling regions, meaning they receive relevance more often than
other output values, as seen in Figure 4.18.

Figure 4.18: Figure displaying how checkerboard artifacts occur.

Figure 4.18 shows the operation of propagating relevance through a pooling layer.
The original input is of size [2,2]. The pooling operation uses a pooling region of
[3,3] with a stride of 2. as one can observe, the center pixel is part of all four
pooling regions, giving it relevance from all four input values. When doing the
same operation with an input of bigger size, one will get the pattern shown in the
last part of the figure.

Checkerboard artifacts have also been observed in other visualization techniques,
such as Deconvolutional Networks(Odena et al., 2016). The reason we experience
them can be traced back to an adjustment we made in our implementation. As
mentioned in Subsection 3.4.1 we chose to propagate relevance through max-pooling
layers by treating them as if the were average-pooling layers. When looking at
Figure 3.5 we can see that this choice greatly influenced the heatmaps generated
by the Inception network. However, we still argue that the heatmaps generated
with average-pooling are more readable. An example of this is the first set of
penguin heatmaps from Figure 3.5. The heatmap generated with max-pool shows
the outline of the penguins, but it is hard to interpret why it received its label.
Also, there is a lot of noise between the different penguins. In the second heatmap
created utilizing average-pooling, it is easier to spot that the center penguin holds
most of the relevance. Especially the neck and head of the penguin received a lot of
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relevance, as these are distinct features of this particular species of penguin.

4.3.2 Abnormalities in the Inception Network

When looking at the heatmaps generated from the Inception network, one can
observe that there often is a small region with high values in the corners. This
seems odd, as the corners do not seem to contain any valuable information. There
is no clear link between the actual classification and the region of high values
in the corner. The high activations in seemingly irrelevant parts of the image
make it harder to interpret which part of the image are actually relevant for the
classification.

In order to confirm that the issue was related to the particular network used, we
generated alternative heatmaps using another version of the Inception V1 network.
The basic network structure is the same in both networks. However, the alternative
version of the Inception network uses the correct 5x5 convolutions, instead of 3x3
convolutions as mentioned earlier.
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Figure 4.19: Comparison of heatmaps from both versions of Inception V1.

Figure 4.19 shows the heatmaps generated by both versions of the Inception V1
network. Original refers to the original network as seen in Figure 4.17, while alter-
native refers to the other version of the Inception network, which uses the correct
5x5 convolutions. The alternative heatmaps show a considerable improvement in
terms of readability. The heatmap values are more concentrated, and there is no
trace of high values in the corner regions of each heatmap. The difference in qual-
ity between the generated heatmaps is most likely a result of using 3x3 instead of
5x5 convolutions. There is no real benefit in having a second 3x3 convolutional
operations in each inception module, instead of increasing the number of filters in
the first one. Another possibly relevant factor is differences in the training pro-
cess. There is no information accessible on how the networks are trained and which
parameters were used, such as batch-size and number of epochs.
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4.3.3 Recognizing general features using heatmaps

The generated heatmaps seem to highlight parts of the image which are vital in
order to classify it correctly. If a feature in an image is vital for its classification,
it should be highlighted in other images from the same class. In order to verify
this statement, we looked at the heatmap of eight different images from the class
African grey parrot.

Figure 4.20: Images and resulting heatmaps. Each image is classified as an African
grey parrot.

All heatmaps in Figure 4.20 are generated using the VGG-16 network. A distinct
feature which all heatmaps share is highlighting the eye of the parrot. The nostrils
of the parrots also seem to be highlighted in images where they are clearly visible.
There is no significant difference in confidence for images with and without high-
lighted nostrils. All images are classified as African grey parrot with a confidence
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between 99 and 100%. Another often highlighted feature is the edge between the
beak and the head. From these examples, it seems pretty clear that the network
has learned to recognize different features which combine to form the concept of
African grey parrot.

4.3.4 Relevance through all layers

In order to better understand the propagation of the relevance throughout the layers
of a CNN, we generated one heatmap for each layer in the network. These heatmaps
show the propagation of the total relevance from the first to the last convolutional
layer, in reverse order, i.e., the order in which the relevance is propagated through
them.

As seen in Figure 4.21 the first heatmap is an indistinguishable collection of heatmap
values, with no clear patterns. As the dimensions of the heatmap increase, a con-
tour of objects appears. It does not take long before the highest heatmap values are
distributed on the penguins in the original image. As we come closer to the input
layer of the original network, more details appear in the generated heatmaps. It
becomes apparent that the head of the penguin, along with its unique color around
the neck area are features which are relevant in order to classify the image as a
penguin.
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Figure 4.21: Heatmaps showing the relevance layer-by-layer. The first image is the
original input image. The relevance starts at the first convolutional layer closest
to the output layer, and ends at the input-layer of the network.
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4.3.5 Generating heatmaps for wrongly classified images

In order to evaluate Deep Taylor Decomposition further, we decided to look at the
heatmaps of images which received the wrong classification. We utilized a labeling
interface2 for the ILSVRC, in order to retrieve 300 images for which the network
would fail to generate the same classification as the Imagenet database. The set of
images can be roughly divided into four groups.

• Similar class - A few of the wrongly classified images received a label which
was closely related to the correct class. For instance, the network would
classify an image as one type of dog, while the correct class was another type
of dog.

• Multiple objects - Some images contained several objects. In these images
it was hard to identify which object to classify. Even for humans, it was
sometimes not trivial which object yielded the correct classification for the
image.

• Wrong label - Another group of wrongly classified images were those with
faulty labels in the Imagenet database. For some images, the Imagenet clas-
sification was outright wrong. Other times the image contained an object
which looked similar to the Imagenet classification but still was mislabeled.

• Other - The last group contained images where there was no trivial correla-
tion between the image and the classification generated by the network.

Figure 4.22 shows one example for each class mentioned above. Table 4.1 shows
the Imagenet label for each image, along with the label generated by the neural
network. For these examples, we used the VGG-16 network to classify the images,
and generate heatmaps.

id Imagenet classification Generated classification
1 Common Iguana Green Lizard
2 Airship Traffick light
3 Tick black and gold garden spider
4 Toilet Paper washbasin, washbowl

Table 4.1: List of classifications for the images in Figure 4.22. The Imagenet
classification is what the image is labeled as in the Imagenet database. Generated
classification is the class generated by the network.

The first image received a classification which is similar to the Imagenet class.
The relationship between the Imagenet classification and the generated label is
understandable, as they both are animals from the same species. The second image
contains both the Imagenet class and the generated classification. However the view
of the airship is obstructed, and therefore the traffic-light is assumed as the most
relevant object within the image. This assumption is supported by the heatmap

2https://cs.stanford.edu/people/karpathy/ilsvrc/

https://cs.stanford.edu/people/karpathy/ilsvrc/
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Figure 4.22: Examples of images which were wrongly classified, along with their
corresponding heatmaps.

of the image, where one can see that the traffic-light receives a lot of high values.
In the third image the original image is classified wrongly as a tick. However,
the network seems to have learned the correct classification. Additionally, the
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heatmap shows a high relevance score for features of the spider, which supports the
assumption that the network has learned to classify this class correctly. The final
image is classified as Toilet Paper in the Imagenet Database. However the VGG-16
network generates the classification Washbasin, Washbowl, and there seems to be
no elementary reason why. The heatmap of the generated image does not offer
any direct information as to why the image was wrongly classified. A possible
explanation is that the image contains certain objects or features which also exist
in images containing a washbasin, such as the mirror and the general color-scheme
of the image. However, there is no further proof to support this theory.

Most of the wrongly classified images belong within the three first groups of images.
A significant percentage of the images were either wrongly classified, or contained
several different objects, making it hard to determine which was the true class of
the image. There were also a lot of images which received closely related classes,
especially when the object was an animal. This can be presumed to be a result of
animals sharing several features, such as eyes and limbs.

4.3.6 Applications and usefulness

Creating heatmaps by utilizing Deep Taylor Decomposition shows promising re-
sults when it comes to identifying features which a network has learned in order to
distinguish between different classes. Visualizing the relevance layer-by-layer offers
an understanding of how the relevance is distributed to create the final heatmap.
Often one can get an initial assumption on why an image received a wrong classifica-
tion. Generating a heatmap for such an image can reinforce the initial assumption,
by establishing which parts of the image were important for the generated classifi-
cation. However, for certain images the heatmap does not offer a lot of additional
information.

4.4 Combining visualization techniques

This section displays the results from attempting to combine different visualization
techniques, in order to explain the results of feature visualization. The results
from visualizing different filters in Section 4.1 were intriguing but sometimes hard
to interpret. We attempted to use relevance propagation as guidance for feature
visualization, in order to select which filters we wanted to visualize.

4.4.1 Visualizing individual filters

First, we calculated relevance scores for each filter in each layer, using the method
explained in Section 3.5. After calculating all scores, we visualized the filters in
each layer which had the highest relevance values. An example of this can be seen
in Appendix B. The class of the original image was King Penguin. One can argue
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that the visualizations of layer Conv5 2 show some resemblance to features of a
penguin, such as the eyes and beaks, but not enough to draw any conclusions.
In general, utilizing relevance scores to choose which filters to visualize showed
close to no improvement towards interpreting the generated visualizations. The
visualizations still consist of seemingly random patterns, with no straightforward
relation to the classification of the image used for relevance propagation. It seems
like the lower layers, which hold more abstract concepts, to some degree resemble
features present in the original image, but there is not enough evidence present
to support this claim. We believe one reason for this is the fact that each filter
has a relatively low relevance score, ranging from 1-3% of the total relevance.
It seems intuitive that a combination of different filters is needed to generate a
classification.

4.4.2 Combining relevant filters

Figure 4.23 strengthens the theory mentioned in the previous subsection. The
graph shows the sum of relevance for all filters within one layer, starting from
highest ranked to lowest ranked filter. Even the filters with the highest relevance
values only account for a fraction of the total relevance within the layer. The
accumulated relevance for the first 100 filters is approximately 50% of the total
relevance in Figure 4.23. In total there are 512 different filters in the layer conv5 2,
and only a small portion have received a relevance score of 0. Instead of looking
at the visualization of single filters, a better approach would be to combine the
visualization of several filters together to produce a single visualization.
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Figure 4.23: Graph showing the accumulated relevance for layer Conv5 2 in the
VGG-16 network.
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In Figure 4.24 one can see an example of optimizing for several filters at once.
The early layers are still not easy to explain and show seemingly random patterns.
However, as we reach the later layers of the network, the patterns start to show some
resemblance to the class king penguin, such as beaks, eyes and the general shape
of king penguins. In general, the relation to the original class seems more clear
compared to the results of optimizing for single filters. However, the visualizations
are still open to interpretation, and it can be challenging to identify features within
the generated visualizations.
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Figure 4.24: Example of visualizing for multiple filters combined. In this example
the top 100 filters in each layer where used.
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4.4.3 Applications and usefulness

Using Deep Taylor Decomposition as a guide for feature visualization is arguably
slightly better than visualizing random filters. The networks we use are trained to
recognize features for thousand different classes. By utilizing Deep Taylor Decom-
position, we attempted to limit the number of features, and give a classification
which is related to the results of feature visualization.

Visualizing single filters proved to be less useful than first anticipated. One can ar-
gue that features which exist in the original classification are visible in the resulting
visualizations, but it is hard to find any conclusive evidence. Combining several
relevant filters to create a visualization shows how a concept emerges throughout
a CNN. The results are still hard to interpret, but they are to some degree relate
to the image used to create the relevance scores. All in all, it seems like a good
approach in order to be able to explain visualized features better, but there is still
a lot of room for improvement.
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Chapter 5

Conclusion

The goal of this thesis was to create a platform where a user could explore dif-
ferent convolutional neural networks by utilizing different visualization techniques
for CNNs. We built a web-based platform to perform this task and presented re-
sults for each visualization technique we implemented. Each result was discussed
individually, and we evaluated its usefulness in the context of achieving a better
understanding of convolutional neural networks. In addition, we applied several
visualization methods in order to evaluate the potential of combining visualization
techniques.

Can we create a platform where users can apply different visualization
techniques on networks with different architectures?
Creating a platform for visualizing convolutional networks was an achievable task.
Generalizing for multiple networks, however, proved to be more complicated than
first anticipated. Every visualization technique we implemented can be used inde-
pendently of the network architecture, at least in theory. In practice, networks are
assembled differently from architecture to architecture. An example of this is the
Inception V1 network, which runs several convolutional operations in parallel. This
feature made LRP more complicated and had to be solved by creating a unique
module for this particular network. Another issue we encountered was the prepro-
cessing needed for different network architectures. Different architectures may have
different sizes for their input, and different preprocessing operations which have to
be executed before the network can process an image. To sum up our experience,
it is possible to visualize almost any given network architecture, but given the wide
range of possible designs, it is a complicated task to create a general system which
can visualize any network out-of-the-box.

Does utilizing visualization techniques yield any information which can
be used to explain a neural networks behavior, and if so what does it
tell us?
We limited ourselves to four methods of visualization; Activation Visualization,
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Deep Taylor Decomposition, Feature Visualization and DeepDream. Each method
tries to visualize the network in a unique way, but they all try to give a better
understanding of artificial neural networks.

Visualizing activations in each layer shows which filters in a given layer have the
highest activation values. It can be used to identify filters in a convolutional layer
which react to certain features in an image. Another use-case for Activation Visu-
alization is to identify ”dead filters” which do not contribute to classifying images.
One drawback of this method is how well it scales with deep neural networks. Deep
neural networks often have hundreds of filters and output-classes which makes it
hard to distinguish between a dead filter, and a filter only reacting to one particular
feature.

Deep Taylor Decomposition was one of the more interesting visualization tech-
niques, which had a lot of potential. This method excelled at highlighting features
which were relevant for the generated classification. The heatmaps generated using
this method can be used to identify which features a network uses to identify an
object, and which parts of an object the network has learned to recognize. The
method can also be used to reinforce claims to why an image received a wrong clas-
sification. Interpreting the highlighted features, and how they correspond to the
generated classification is not always a trivial task, and is not guaranteed to be a
useful tool, but in general it proved to be a good method for exploring CNNs.

Feature Visualization generated images that proved to be good indications of the
underlying features within a trained CNN. By selecting a specific group of neurons
for the visualization process, we were able to get a better understanding as to how
information had been encoded into hidden layers during training. We were also
able to see how different parts of the CNN interacted with each other to form new
features. Applying various techniques, such as adding stochastic transformations
and the introduction of alternate parameter-spaces showed a remarkable improve-
ment in terms of comprehensibility. Compared to naive feature inversion with no
image priors, the optimized images were much easier to recognize as actual objects
and concepts.

DeepDream works similarly to feature visualization, but is run over an actual
image. This made the algorithm enhance features already present in the picture.
While there exist a few use-cases were this could come in handy to better un-
derstand a CNN, this method is probably better suited to be used in the field of
computer-generated art.

Is there any additional information to be gained by combining different
visualization techniques?
By combining Feature Visualization and Deep Taylor Decomposition, we attempted
to create a bridge between the result of Feature Visualization and the different
classes of a CNN. The idea was to make it easier to recognize features in the results
of feature visualization by having a class which the features belong to. Using Deep
Taylor Decomposition, we created a method for assigning a relevance score to each
filter, depending on the classification generated by a CNN. The results were of
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varying quality. The higher levels of the network seemed to correspond to random
patterns, which were hard to link to the corresponding classification. In the lower
layers, more abstract features appeared, which one could interpret as being related
to the classification. By combining these visualization techniques we were able to
create feature visualizations within a context which made them easier to interpret,
but there still remains a lot of uncertainty and room for improvement.

We were able to create a platform which implemented several different visualization
techniques into one system. By utilizing these visualization techniques, we explored
two different convolutional neural networks and were able to better explain the
correlation between an image and the classification generated by a CNN. We were
also able to visualize the internal representation of features within a neural network,
and to some extent improve the interpretability of the results.

5.1 Future work

Visualizing convolutional neural networks proved to be an interesting research area,
with many possibilities. As we worked towards achieving our research goal we
encountered many paths which seemed interesting to follow. In this section we list
a few general areas which could potentially be interesting to research further.

5.1.1 Training convolutional neural networks

One of the most intriguing directions to follow would have been to train networks,
and visualize them during and after training. The pretrained networks we worked
with were able to distinguish between 1000 different classes. This meant that
they had learned several different features for a wide range of distinct classes. By
training our own networks, we could limit the number of different classes to a more
manageable number, which could make it easier to interpret the results of feature
visualization. In addition, we would have full control of all training parameters,
which would include things such as learning rate and the dataset used to train the
network. By controlling the dataset, we could train the same network on a range of
different classes, and perform a comparison between networks trained on different
datasets. Visualizing during training could be a possible method for monitoring
the training process. It could also give insight into how representations within the
network are formed.

5.1.2 Further improving the interpretability of feature visu-
alization

While we have used a lot of different techniques in order to generate feature visu-
alizations that were easy to interpret, there is still room for improvement in this
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area. Including additional image priors to the optimization process could improve
the interpretability even further. It should be noted that heuristics used to make
results more natural-looking usually go against trying to optimize for activation
values alone. The future work in this area should therefore also focus on keeping
the essential aspects of the ”raw” features present in the visualizations.

5.1.3 Smart selection of neuron-groups for feature visualiza-
tion

As demonstrated throughout this thesis, visualizing individual filters inside a CNN
will give us a better understanding of how the weights are able to encode complex
information, and the relations between different elements within the hidden layers.
Whenever a CNN performs a prediction, every single weight inside the network is
playing a small role in the final output. There is reason to believe that groups
of neurons, possibly spanning multiple layers, are able to represent more high-
level concepts than the individual parts. Discovering smart ways to navigate the
vast feature space of a deep convolutional network, selecting interesting groups of
neurons to visualize could be an interesting area to explore further.
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Figure A.1: Example showing the top 10 activations from all layers. The input con-
tained an African Grey parrot and was classified correctly as such. The activations
are taken from the Inception V1 network.
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Figure B.1: Visualizing the top 5 filters with the highest relevance scores for layers
1-6 in the VGG-16 network.
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Figure B.2: Visualizing the top 5 filters with the highest relevance scores for layers
7-12 in the VGG-16 network.
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Figure B.3: Visualizing the top 5 filters with the highest relevance scores for layers
12-18 in the VGG-16 network.



Appendix C

Screenshots of user interface

This chapter contains a set of screenshots from the various pages within our plat-
form, with the exception of the front page, which was displayed in Figure 3.8. In
addition, a short caption is given, explaining what each screenshot contains, as well
as the functionality of the selected page.

Figure C.1: Screenshot of the prediction page. Here a user can upload an image
and make the network predict its classification. The top five results are displayed,
along with the network’s confidence for each class.
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Figure C.2: Screenshot of the feature visualization page. The settings component
is displayed on the left. It has three buttons at the bottom, for visualizing one or
more features, visualizing a combination of features or fetching images resembling
the feature. The results from the feature inversion appear in the top right, while
the fetched images in the bottom right.

Figure C.3: Screenshot of the DeepDream page. A settings component for tuning
parameters in the algorithm is displayed on the left, while the final result appears
on the right side.
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Figure C.4: Screenshot of the page for visualizing activations. In this example,
the top ten activations for several layers are displayed, along with their ID, which
translates to their index in the original matrix of output values.

Figure C.5: Screenshot showing the module for selecting layers within the network.
This module is used in Three pages; Activation Visualization, Feature Visualization
and Deep-Dreaming. The user clicks a layer to select it. Afterwards, information
about the selected layer, such as stride and output-dimensions are displayed at the
top.
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Figure C.6: Screenshot displaying the page for Deep Taylor Decomposition. The
page displays one heatmap for each layer in the selected CNN. The original image
can be seen and changed on the prediction page.
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