
FPGA Development in The Cloud Using
The IDE8 Developer Framework

Kristian Aalde

Master of Science in Electronics

Supervisor: Per Gunnar Kjeldsberg, IES
Co-supervisor: Joar Rusten, Trådløse trondheim

Department of Electronic Systems

Submission date: June 2018

Norwegian University of Science and Technology

Master Thesis Assignment

Candidate name:

Kristian Aalde

Assignment title:

FPGA development in the cloud using the IDE8 developer framework

Assignment text:

This assignment shall focus on designing an FPGA stack for IDE8. IDE8

(https://ide8.io) is a generic web based development environment that can be

customized for different programming languages and paradigms.

IDE8 is composed of two main components: the Integrated Development Environment,

and the IDE8 Agent. The IDE8 Agent enables development boards to connect to the

Internet where they can be picked up by IDE8.

As part of the assignment the student shall:

Study state-of-the-art FPGA development tools and methodologies with particular

focus on how interfaces between tools can be implemented.

Get an overview of the IDE8 developers framework and the IDE8 API extension

points, and discuss their suitability for an FPGA stack.

Get an overview of the IDE8 Agent and discuss its suitability with respect to netlist

programming, debugging and instrumentation of an FPGA.

Discuss which tools are required in an FPGA stack in IDE8.

Build a working, proof of concept, FPGA stack with basic functionality including

programming a suitable FPGA via the IDE8 Agent, and evaluate the proposed concept

with ease of use, resource requirements, and scalability in mind.

Assignment proposer:

Joar Rusten at Tr̊adløse Trondheim

Supervisor:

Per Gunnar Kjeldsberg

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Abstract

Faculty of Information Technology and Electrical Engineering

Department of Electronic Systems

Electrical Engineering Graduate Student

by

Cloud computing has become a large industry over the last decade. Furthermore, com-

panies like Amazon Web Services (AWS) has begun to integrate FPGAs into their cloud

infrastructure, allowing customers to build software applications that utilize FPGAs to

accelerate computations. However, with regards to FPGA development, they only offer

the Xilinx tool Vivado, and the development experience is very similar to traditional

local development. Furthermore, because the FPGA boards are physically integrated

with the AWS servers, they are unsuited to use for a normal FPGA design process for

embedded systems. IDE8 is a cloud solution that aims to provide a web-based develop-

ment environment for electronics. Offering FPGA development on this platform can be

a way of making FPGA development more accessible and efficient. In this thesis, it has

been developed a prototype of an FPGA tool chain by utilizing Docker containers and

open source FPGA tools, that can be deployed on the IDE8 platform. The tool chain

utilizes the open source tools from Project IceStorm, which is a set of tools for perform-

ing synthesis, place-and-route, and bitfile generation on the Lattice iCE40 FPGA. The

tool chain was built in three different ways, by being split up into 1, 2 and 3 containers.

By splitting up the tool chain into multiple containers, the disk space required to store

the Docker images could be reduced. This is because when the solution is scaled over

multiple virtual machines (VM), splitting up the tool chain allows one to copy over only

parts of the tool chain to the new VM. Furthermore, by utilizing multi-stage builds, the

image size of the Arachne-pnr and IceStorm containers were reduced by 73% and 51%

respectively. It was tested if the three solutions behaved differently given the same mem-

ory and CPU constraints, but no significant difference was detected. It was concluded

that the best solution was the 3-container solution, as it provides much more flexibility

with regards to adding and changing components in the tool chain later on and provided

the most scaling benefits with regards to image size.

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)

iii

Furthermore, the AWS FPGA developer AMI (Amazon Machine Image) was tested

in this thesis and compared to IDE8. It is clear that IDE8’s web-based development

environment is very different from the development environment provided by AWS.

The web-based environment is a lot simpler to start using, as it does not require any

infrastructure management. This also makes IDE8 much easier to use than AWS’s IaaS

solution, especially for small projects and for students.

The FPGA tool chain developed in this thesis was also integrated into the IDE8 envi-

ronment. Tests were performed, showing that it functioned as intended. For simplicity,

the 1-container architecture was used for this.

Preface

This thesis is in part based on a report I made in the fall of 2017 [1]. A few of the

relevant pieces of background information provided in Chapter 2 and Chapter 3 in this

thesis are fetched from that report. I would like to thank Wireless Trondheim for their

help throughout this process, with special thanks to Joar, for helping me staking out a

good path for this thesis and for advising me throughout the semester, and Jon Anders,

for integrating the solution into the IDE8 platform and for providing technical tips and

insight. Furthermore, I would like to thank my supervisor, Per Gunnar, for following up

on the progress of this thesis work and providing insight that has (hopefully) helped me

produce a good report. I hope that the work done in this thesis will be useful, and that

the FPGA stack will be continued to be worked on and improved, as I genuinely believe

that this could be a very good way of offering FPGA development tools and make FPGA

development more accessible. To help making the further development process easier,

the code has been made available on Bitbucket [2]. I apologize in advance for the messy

file structure and code of the repository.

This has been a very interesting project to work on, and I have come across many

new technologies and learned a lot. However, it has also at times been a cumbersome

process, and finding good tools to get accurate measures of containers resource usage

was a difficult task. I do feel however, that I have been able to get through, or at least

around, many of the obstacles that I have faced, even though there still are other things

that I had wished to investigate further.

iv

Contents

Project Assignment i

Abstract ii

Acknowledgements iv

List of Figures vii

List of Tables ix

Abbreviations xi

1 Introduction 1

1.1 Motivation . 1

1.2 Objective, Limitations and Approach . 2

1.3 Main Contributions . 3

1.4 Report Structure . 4

2 Background 5

2.1 Virtual Machines . 5

2.2 Containers . 6

2.3 Microservices . 7

2.4 Cloud Computing . 8

2.4.1 History . 9

2.4.2 Public Cloud . 9

2.4.3 Private Cloud . 10

2.4.4 Hybrid Cloud . 10

2.4.5 The Different Service Levels . 11

2.4.6 Security . 12

2.4.7 VM- and Container Placement . 14

2.5 FPGA Development . 16

3 Previous Work 19

3.1 Docker . 19

3.2 IDE8 . 23

3.3 AWS EC2 F1 and Developer AMI . 25

3.4 FPGA Infrastructure Solution . 30

v

3.5 Project IceStorm . 31

3.5.1 Yosys . 32

3.5.2 Arachne-PNR . 33

3.5.3 IceStorm . 33

3.6 Other Open Source Tools . 33

4 FPGA Tool Chain Solution 35

4.1 Stack Components . 35

4.2 Development Environment . 36

4.3 FPGA Tool Chain . 37

4.3.1 Monolithic Approach . 37

4.3.2 Microservice Approach . 39

4.3.3 Microservice Approach 2 . 42

4.4 Comparison of the Different Implementations 44

4.4.1 Image Size . 46

4.4.2 Performance . 50

4.4.3 Sources of Inaccuracy, Limitations and Challenges 61

5 IDE8 Integration and Evaluation of AWS FPGA Development 65

5.1 Integrating Project IceStorm with IDE8 65

5.1.1 Functionality . 66

5.1.2 Board Agent . 69

5.2 Testing The AWS FPGA Developer AMI 70

6 Discussion 73

6.1 IDE8 vs Amazon and The FPGA Infrastructure Solution 73

6.2 Which Architecture is Best Suited for IDE8 77

7 Conclusion 81

7.1 Future Work . 82

A Dockerfiles and Shell Scripts 85

Bibliography 93

List of Figures

2.1 Comparison of VMs and containers from [3] 6

2.2 Comparison of microservice and monolithic applications [4] 7

2.3 Responsibility models for cloud security 13

2.4 Development process for FPGAs [5] . 16

3.1 Docker Engine [6] . 19

3.2 An overview of how a Docker image is divided into layers and can be used
by multiple containers [7] . 20

3.3 An example of multi-stage builds [8] . 22

3.4 Overview IDE8 architecture [9] . 24

3.5 Overview of Workspace Agent components [9] 25

3.6 Summary of the AWS FPGA shell interface [10] 28

3.7 Summary of the AWS FPGA software [11] 29

3.8 Overview of solution processes [12] . 31

3.9 Overview of the Project IceStorm design flow 32

4.1 Dockerfile for building the IceStorm project in a Docker container (mono-
lithic approach) . 38

4.2 Instructions for running and creating a binary file from the rot.v Verilog
example [13] . 39

4.3 Dockerfile for building the container with the Yosys tool 40

4.4 Dockerfile for building the container with the IceStorm and Arachne-PNR
tools . 40

4.5 Dockerfile for building the container with the IceStorm and Arachne-PNR
tools, utilizing multi-stage build . 41

4.6 Dockerfile for building the container with the Arachne-PNR tool 42

4.7 Dockerfile for building the container with the IceStorm tools 43

4.8 Dockerfile for building the container with the IceStorm tools, utilizing
multi-stage build . 43

4.9 Dockerfile for building the container with the Arachne-PNR tool, utilizing
multi-stage build . 43

4.10 Overview of image sizes when stored on the same machine 47

4.11 Total disk space required for each Docker image 48

4.12 Plot of image sizes of the showing how single-stage builds compares to
multi-stage builds . 49

4.13 Top level test script for Yosys . 53

4.14 synth test.sh for yosys container . 53

4.15 synth test.sh for monolithic container . 54

4.16 Results from running multiple syntheses 55

vii

4.17 Results from running multiple place-and-routes 56

4.18 Results from changing the CPU utilization limit with synthesis 58

4.19 Results from changing the CPU utilization limit with place-and-route . . 58

4.20 Results from changing the memory limit with synthesis 59

4.21 Results from changing the memory limit with place-and-route 60

5.1 Available stacks in IDE8 . 66

5.2 Available examples in the IceStorm stack 66

5.3 Files included in an example . 67

5.4 Example options . 67

5.5 View of the output terminal after running the build command 67

5.6 All files generated from the build . 68

5.7 Live video feed of the hx8k board . 69

5.8 Overview of Board Agent connecting an FPGA to a Workspace 70

5.9 Startup screen for the FPGA developer AMI 72

6.1 Example of integrating both the 1- and 3-container solution with other
microservices . 80

List of Tables

3.1 Specifications for F1 instances [14] . 26

4.1 Improvement for multi-stage build compared to single-stage 50

4.2 Results from running the rot example on each container 51

4.3 Summary of results from running the rot example on each solution 52

4.4 Summary of what tests that were executed and the parameters used . . . 55

4.5 Summary of what tests that were executed and the parameters used . . . 57

4.6 Summary of what tests that were executed and the parameters used . . . 59

ix

Abbreviations

AFI Amazon FPGA Image

AMI Amazon Machine Image

API Application Programmable Interface

AWS Amazon Web Services

BLIF Berkeley Logic Interchange Format

CPU Central Processing Unit

DMA Direct Memory Access

EC2 Elastic Compute Cloud

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

HDK Hardware Development Kit

HDL Hardware Description Language

HLS High-Level Synthesis

IaaS Infrastructure as a Service

IDE Integrated Development Environment

LUT Look Up Table

OS Operating System

PaaS Platform as a Service

PNR Place-and-Route

RTL Register Transfer Level

SaaS Software as a Service

SDK Software Development Kit

SO Security Objective

VM Virtual Machine

xi

Chapter 1

Introduction

1.1 Motivation

In today’s modern world, there is a constantly increasing need for computational power.

Because of this, over the last ten years, cloud computing has become a major industry.

At the same time, hardware designs are becoming more complex, where even creating

and synthesizing fairly simple designs, require advanced tools and a lot of computational

power. Recently, people have realized that utilizing the cloud for FPGA (Field Pro-

grammable Gate Array) development has a lot of potential. Furthermore, FPGAs have

become useful in many new ways, particularly software acceleration, most noticeably in

the form of AWS’s EC2 F1 instances (Amazon Web Services Elastic Compute Cloud

FPGA instances). However, there are still many unexplored possibilities of utilizing the

cloud for hardware development.

The cloud offers virtually unlimited amounts of computational power at a fairly low

cost. The cloud would hence be a great environment for running the advanced and

heavy syntheses and simulations that are required in modern FPGA development. The

cloud is also a great environment for integrating and bundling services together. Hence,

integrating project management tools and other tools with the hardware development

tools is a possible future feature of cloud-based FPGA development. The cloud’s pay-

as-you-go payment model, where one is only charged for the actual usage of a service,

will contribute to break down the cost barriers of starting a new hardware development

project.

1

2

FPGAs are also likely to become more utilized in several different fields in the future.

Compared to traditional software execution, FPGAs possess the ability to run tasks

with a much higher degree of parallelism and much faster than normal CPUs (Central

Processing Unit) and even GPUs (Graphics Processing Unit). The reprogramability of

FPGAs also make them able to adapt to new tasks and to be upgraded with little to no

additional costs. There is also being made great advances in tools for HLS (High-Level

Synthesis), which makes it possible for software developers to write high level code like

C or C++ to be executed on FPGAs.

Wireless Trondheim has a newly created cloud based development platform named IDE8,

which aims to provide a development environment for electronics, that can be accessed

via a web browser. Adding functionality for FPGA development into this platform would

be a substantial addition to the platform. Docker is a technology that is used to create

software containers, which is a way of running applications in an isolated and stable

environment in the cloud, while still being efficient and scalable. Therefore, utilizing

Docker containers to build an FPGA tool chain on the IDE8 platform can be a way of

providing easy access to FPGA development tools, for a large number of people.

1.2 Objective, Limitations and Approach

This master thesis is partially based on a project assignment [1] that was completed

during the fall of 2017. In that report, different cloud-based solutions were presented

and discussed. This thesis aims to build on the findings from that report and build a

working prototype of a cloud-based FPGA development stack. The objective of this

thesis is also to assess how well the IDE8 developer’s framework is suited for an FPGA

development stack.

Since it has already been specified that the IDE8 cloud framework will be used in this

project, this report will focus less on different general aspects of cloud computing as

opposed to the report from the project assignment, but if there are certain parts of

the IDE8 framework that should be changed to better suit the needs for an FPGA

development flow, suggestions for how to improve this will be presented.

The practical work of this assignment will mainly consist of finding existing software for

FPGA development, that preferably are open source, and link them together to take

3

advantage of the cloud, to build the FPGA development stack. The goal is not to build

new development tools from the ground up.

This thesis will primarily focus on the core functionality of an FPGA tool chain and less

on extra features like debugging, waveform viewer and other visualization tools. Some

additional features will be mentioned and discussed, but they will not be included in the

FPGA tool chain that is developed in this thesis work.

It will mainly be looked into utilizing open source tools for this thesis. This is mainly

due to the flexibility and freedom one often gets with open source software, which gives

more room for experiments and modification. This thesis will however, also look into

the state-of-the-art tools that are used today and are already available in the cloud. In

particular, the Vivado tool offered by Xilinx, and how it is utilized in the AWS FPGA

developer AMI (Amazon Machine Image) will be investigated.

1.3 Main Contributions

The main contributions of this thesis are:

Developing an FPGA tool chain using Docker containers. Three different architectures

were created, and they were tested in terms of memory usage and CPU usage, along with

the image size, to see which architecture performed the best. Also, several other quali-

tative aspects of the architectures were taken into consideration. It was then concluded

what solution that would be the best suited for IDE8.

Evaluating the IDE8 cloud platform with regards to FPGA development and compare it

to the AWS FPGA service and another proposed approach. To do this the AWS FPGA

developer AMI was tested.

With a lot of help from the IDE8 team, the FPGA tool chain prototype was integrated

with the IDE8 platform. This thesis explores some possibilities for further integration

and present some possible ways of improving the FPGA tool chain in the future.

4

1.4 Report Structure

This report consists of the following chapters:

Chapter 2 contains explanations of all the concepts and background theory that is nec-

essary to understand the work, choices, and discussions that have been done in this

report.

Chapter 3 contains examples of work that has been done in the same field as this report,

or work that can be relevant to use in this thesis. It also contains descriptions of work

that this report heavily depends on, like the IDE8 framework.

Chapter 4 describes the implementation of the FPGA tool chain prototype. It presents

different architectures, shows how they were implemented and presents results obtained

from testing the different architectures.

Chapter 5 is explaining how the tool chain from Chapter 4 is integrated with IDE8,

and how it may be developed further. Furthermore, the AWS FPGA developer AMI is

tested.

Chapter 6 further discusses and evaluates the solutions from chapter 4, both in the

context of the results obtained from the simulations and in the context of how to most

efficiently integrate the tool chain with IDE8. The IDE8 FPGA solution is also compared

to the AWS FPGA solution and another proposed approach, which is referred to as the

FPGA infrastructure solution in this thesis.

Chapter 7 concludes on which architecture is the most favorable, and how the IDE8

FPGA solutions stands compared to AWS and the other proposed solution. It also

contains propositions for future work that can be done with the IDE8 FPGA tool chain.

Chapter 2

Background

This chapter will contain information about different concepts and technologies used in

this project. Here, it will be described how the different concepts and technologies work,

and what benefits and challenges there are when using them will be outlined.

2.1 Virtual Machines

A virtual machine (VM) is a concept introduced as early as in the 1960’s. A Virtual

machine can be defined as an efficient, isolated duplicate of a real machine [15]. That

the VM is efficient, indicates that a VM is able to utilize a significant part of the host

machines instruction set directly, which is different from for example an emulation or

simulation of a machine [15]. In modern computer systems, a virtual machine is a

software duplication of a physical machine, with its own virtual CPU, memory, storage,

and OS (Operating System). The software used to create and manage virtual machines

is called a hypervisor [16]. A hypervisor will have the ability to create several virtual

machines running concurrently on the same physical machine. This ability is one of

the key features that make virtual machines very useful in modern cloud computing, as

it provides multiple isolated environments to run applications on the same hardware,

which may lead to a much higher utilization of computer resources. Furthermore, it

provides isolated environments for running applications, so they don’t interfere with one

another, and applications that are meant to run on different OS’s may now run on the

same hardware instance.

5

6

2.2 Containers

Containers are a different way of providing virtual and isolated computer environments

compared to VMs. While a VM creates an entire machine with a complete OS running

on top of it, a container shares the OS with the host [17]. This approach is a lot

more lightweight than using VMs, as each instance of a virtual machine requires a lot of

overhead in the form of its own OS that can be several GB in size, which in turn requires

a lot of memory to run. A container only requires a few MB of overhead to run in its

simplest form, hence it is much simpler to run multiple containers at once compared to

virtual machines.

Figure 2.1: Comparison of VMs and containers from [3]

In Figure 2.1, a simple overview of the architectural differences between containers and

VMs are shown. One can see that there are no hypervisor or guest OS needed for

containers to operate. A container only consists of one or more applications and the

binaries and libraries needed to run them, while utilizing the kernel of the host OS.

A container can also run inside a VM and utilize the kernel of the OS on the VM. Since

containers are so lightweight on overhead and memory usage, it is also possible to run

containers within a container.

7

2.3 Microservices

Microservices or ”Microservice Architecture” describes a way of designing software ap-

plications as several smaller independent services [18]. There are few precise definitions

that explains in detail what a microservice architecture is, but one simple way of defin-

ing it is [4]: “At its simplest, the microservices design approach is about a decoupled

federation of services, with independent changes to each, and agreed-upon standards for

communication.”

The traditional way of designing applications is referred to as ”Monolithic Architecture”

[4]. A monolithic design is typically divided into functional tiers, but the tiers are much

more tightly coupled together than with a microservice architecture.

Figure 2.2: Comparison of microservice and monolithic applications [4]

Figure 2.2 shows an overview of monolithic and microservice design and scaling. The

figure has four different sub-figures:

1. In a monolithic application, there is domain-specific functionality. The application

is usually divided into functional layers, such as web, business and data, but the

different functionality is tightly coupled together.

2. A monolithic application is scaled by cloning it onto multiple servers, VMs or

containers. The entire app must be cloned each time.

8

3. In a microsevice application, all functionality is separated into smaller services,

that may run independently from each other.

4. A microservice application is scaled by deploying each service independently over

different servers, VMs or containers. So, an application can be spread over multiple

servers, VMs or containers.

There are many advantages with microservice architectures over monolithic architec-

tures [4]. One of the greatest advantages is the improved scalability. As shown in

Figure 2.2, when a monolithic application is scaled up, the entire application has to

be cloned, but with a microservice architecture, each individual service can be copied

independently from the other ones, this leads to much less overhead by ensuring that

only the service that is needed is running. Another advantage with microservices, is

the improved flexibility when developing and updating an application. Since all ser-

vices run independently, each service can be updated and developed without affecting

the other services in the application, as long as the communication interface between

the services remain consistent. However, one disadvantage of a microservice architec-

ture is this added need for communication between the different services, which may be

significantly more complicated than with a monolithic architecture.

2.4 Cloud Computing

Today, instead of each company having to spend large amounts of resources on acquiring

and maintaining their own servers and building platforms that connects its employees

and customers to this hardware, several IT companies have specialized in providing these

services to other companies and individuals. This solution, where companies rent out the

computation power and storage, is called the cloud. There is no short and explicit way

of defining what cloud computing is, but a part of The National Institute of Standards

and Technology’s (NIST) definition is [19]:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers, stor-

age, applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction.”

9

Cloud computing utilizes the benefits of operating on a large scale. Large cloud providers

such as Microsoft and Amazon Web Services (AWS) own hundreds of thousands of

servers that they have placed in data centers around the world.

Being a cloud provider is about more than just offering pure data storage and com-

putational power. The cloud platform, that allows the users to connect and use the

available resources in an efficient way, is just as important. Most cloud providers today

also provide many different services within their cloud solution, such as machine learning

software, big data processing services, and development platforms [20]. A cloud plat-

form provides its resources to the user by utilizing virtualization, which were explained

in Section 2.1 and 2.2. These platforms and techniques are really what separates a cloud

from just a computer cluster.

2.4.1 History

The cloud computing concept was introduced as early as in the 1960s by John McCarthy

[21, 22]. The history of why or how the word ”cloud” came in to use is not clear though.

In the early 1970s the first types of cloud computing became available. Companies could

submit jobs to for example IBM and have them handle the computation. At that time

computers were large and expensive, so for most companies it would have been difficult

to acquire their own resources for computing. As computer technology improved, more

and more businesses were able to acquire their own servers and computers. Even though

work was still being done in the field of cloud computing, the modern form of cloud

computing as we know today did not start to gain traction until the second half of the

2000s. Amazon released its Elastic Compute Cloud in 2006 [23], and in the following

years, other competitors started to release their own cloud platforms.

2.4.2 Public Cloud

When people think about the cloud, most people probably think about the public cloud.

This is when a company offers computer resources to customers and handles all the

management of the physical servers. Customers typically connects to the cloud service

via a web interface. The two major cloud providers are Microsoft and Amazon.

10

There are many advantages with a public cloud service [24], some of them were briefly

mentioned earlier. A major advantage is that one does not have to manage and update

the hardware as this is taken care of by the cloud provider. Another advantage is the

low startup cost. Acquiring sufficient hardware resources is expensive, especially for

small start-up companies, this can be difficult. When utilizing a public cloud provider,

it is possible to dynamically scale how much computation resources that are being used,

which cannot be done in the same way with a private data center.

2.4.3 Private Cloud

A private cloud implies that one owns and manages one’s own servers instead of letting a

cloud provider do it. It is possible to purchase cloud stack software from cloud providers

to put on top of one’s own servers like Azure Stack [25], and it is also possible to use

open source cloud stacks such as CloudStack [26]. A software stack can be defined as

[27]: “A software stack is a group of programs that work in tandem to produce a result

or achieve a common goal. Software stack also refers to any set of applications that

works in a specific and defined order toward a common goal, or any group of utilities or

routine applications that work as a set. Installable files, software definitions of products

and patches can be included in a software stack.” A cloud stack refers to all the software

components that is needed to build a cloud service.

Although utilizing a cloud stack on one’s own servers seems good, it also appears that

most of the advantages of the cloud disappears when utilizing a private cloud. It is true

that one does limit a lot of the scaling capabilities one gets with a public cloud service,

and one has to deal with the acquisition and management of the servers. However, in the

long term it might be cheaper to own one’s own hardware, granted that the computation

power needed is somewhat stable or at least somewhat predictable. The main reason

however, for why companies chose a private cloud over the public cloud is security and

control [28].

2.4.4 Hybrid Cloud

As the name suggests, hybrid cloud is a combination of both private and public cloud

[29]. The hybrid cloud is an important thing to be aware of, as it enables a company

11

to gain all the benefits of the cloud. Highly sensitive information can be kept in-house,

while other less sensitive systems and information can be kept in the public cloud to

allow for maximal scalability and availability.

2.4.5 The Different Service Levels

Cloud computing is a service that can be provided in different ways and on different

levels. Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software

as a Service (SaaS) are the expressions most commonly used. Although there is no

clear academic definition to separate the different levels, and different vendors have

different definitions [24], it is still valuable to get an idea of the different terms in

order to characterize services and understand what goes into them. One of the better

explanations of the terms is provided in [30] and is summarized here.

IaaS is the lowest level of service a cloud provider can offer. As the name implies, infras-

tructure as a service means that the infrastructure is provided by the cloud provider.

Here the customer has the ability to rent for example CPU power and storage space,

without having to maintain or purchase the physical hardware. Usually the infrastruc-

ture is provided in the form of a virtualization platform, where the users have the pos-

sibility of creating virtual machines with configurable amounts of computational power,

RAM, and storage. This is a service typically used for things like hosting web sites

and backing up data. IaaS is mainly used by businesses, but it can also be used by

individuals.

PaaS is a type of service that in addition to providing the hardware, also provides an

application stack. In software programming, the developer often has to spend a lot of

time on handling caching, asynchronous messaging and so on [30]. PaaS includes these

kinds of services so that the time can be spent on developing the main functionality.

Obviously, relying on such a platform limits the possibilities for optimization, as the

developer can only use the application stack that the platform provides. So, optimizing

things such as memory access is difficult and maybe even impossible. Often, the platform

user cannot decide how much resources that are allocated to the application neither,

but as the cloud computing and PaaS industry matures, the development platforms

becomes more transparent for the users, and they begin to support a larger variety

12

of programming languages. Many companies use PaaS, for both business analysis and

development, but it is also used by individuals.

SaaS is the highest level of service a cloud provider can offer. Here fully developed

software programs can be utilized without having to update the software, and with just

a minimal amount of configuration. The software will usually be available to the user

through a web browser. The user pays for the program typically through a monthly

subscription plan. A typical example of SaaS could be Microsoft Office 365, where one

can access the newest versions of Microsoft Office without having to install the program

onto your own PC. Other programs that are typically offered as SaaS are accounting

services for enterprises, and other things that take care of non-core functionality in a

business. SaaS cannot be used in a private cloud environment, as the cloud provider will

have to for example update the software and would not be able to access it in a private

cloud [31].

2.4.6 Security

Security of data has previously been mentioned as one of the major challenges with the

cloud. Not being careful when utilizing the cloud can have severe consequences, for

example in 2014, when the company Code Spaces was forced to give up after a security

breach on their AWS account [32].

Gartner has pointed out some of the things that a potential cloud user should investigate,

and be aware of, before choosing a cloud provider [33]. It is obviously important to be

aware of how the cloud provider protects your data and separates it from its other

customers. To know that the cloud provider has experienced encryption specialists,

and that they use state of the art encryption methods is something one should look

into beforehand. Cloud security really have two sides to it though, the first one is as

previously stated, how well they protect your data from others, the other one is how safe

is your data from being lost entirely. For example, in the event of your cloud provider

going bankrupt, or if an entire data center is damaged beyond repair. One should be

aware of the cloud providers plans for your data if it goes broke, and that the company

has recovery plans for your data in case of disaster.

13

The main security issue, that potential cloud users are the most afraid of, is probably

cyber-attacks. Obviously, cyber-attacks are not exclusive to cloud computing, but there

are several security considerations and threats that are introduced, or applies to a much

higher extent, with cloud computing. The six SOs (Security Objectives) confidentiality,

integrity, availability, multi-trust, auditability, and usability are defined in [34].

One example of how one of these SOs, integrity, can be compromised, is with a man-

in-the-middle-attack, which can be defined as: “An adversarial computer between two

computers pretending to one to be the other” [35]. An attack like this allows a third

party to snoop on data being sent between two parties, for example, a cloud server and

an office desktop.

A big misconception regarding cloud computing is that it is the cloud providers fault

every time there is a security breach. In most cases, cloud accounts are hacked because

of bad security practices by the user [36], and many cloud users are not entirely aware

of how to protect themselves in the cloud [37]. Cloud security is really a shared effort

between the cloud provider and the user.

(a) Overview of Amazon’s shared responsibility model
[38]

(b) Azure’s responsibility
distribution for the different

service levels [39]

Figure 2.3: Responsibility models for cloud security

In Figure 2.3a Amazon’s shared responsibility model is shown. This figure states what

aspects of security that they are responsible for, and what the customer is responsible

for. Figure 2.3b gives an overview on how Azure distribute the security responsibility

between them and the customer. Here one can also see how the different service types

have different responsibility distributions.

14

From both parts of Figure 2.3, it is clear that the cloud provider has the responsibility

of assuring the physical security of the cloud, i.e. the data centers. This is an aspect

of security that may be better with the cloud, compared to private data centers. Cloud

providers take great care in making sure that their data centers are secure. The build-

ings are hard to get into, and if someone were to get in, it would be much harder to

extract any useful data. Even though cloud data centers may seem like more desirable

targets because of the huge collection of data, they are much easier to protect in a cost-

effective manner [34]. From these figures, it is also clear that much of the security is the

responsibility of the users, especially with IaaS and PaaS.

2.4.7 VM- and Container Placement

Power consumption is one of the largest costs of operating a cloud data center, at about

42% of the total cost [40]. Hence, it is important for cloud providers to optimize their

data centers for power efficiency. As stated previously, cloud providers utilize VMs and

containers to offer computing resources to their customers, therefore, it is important to

optimize the placement of VMs and containers in a data center. That is, how to optimally

distribute the virtual computational resources over the physical hardware available in

the data center. Furthermore, it is important for customers of cloud providers to have

power and resource efficient solutions, as utilizing inefficient solutions can increase the

infrastructure costs significantly. If a company wishes to make a solution available to

multiple users, it is important that for each added user, the amount of resources needed

to facilitate the new user is as low as possible. Otherwise, it will be difficult to scale a

solution to multiple users.

There has been done a lot of research on this topic. Equation 2.1 [41] shows an objective

function that can be used to minimize the overall cost of leasing a certain number of

VMs and deploying a certain number of containers onto those VMs. The equation is

used with the IBM CPLEX Optimizer [42], in order to decide which container cd should

be deployed onto which VM kv, this is done via the decision variable x(cd,kv ,t) which is

set by the optimizer.

15

min

∑
v∈V

cv · γ(v,t) +
∑
d∈D

∑
cd∈Cd

∑
v∈V

∑
kv∈Kv

(
(1− z(d,kv ,t)) · (x(cd,kv ,t) ·∆d)

)

+
∑
v∈V

∑
kv∈Kv

ωR
f · f(R,kv ,t) +

∑
d∈D

∑
cd∈Cd

∑
v∈V

∑
kv∈Kv

(
ωs · s(i,cd,t) · x(cd,kv ,t)

) (2.1)

The model takes a set of different VM types (V = {1, ..., v#}) and container types

(D = {1, ..., d#}) as input. v and d correspond to a different type of VM and container

respectively, while kv and cd refers to a specific instance of a VM or container respectively.

The objective function consists of four terms. In the first term

∑
v∈V

cv · γ(v,t)

the overall VM leasing cost is computed. γ(v,t) is the number of VM instances of type v

with cost cv and they are leased at a time t. The second term

∑
d∈D

∑
cd∈Cd

∑
v∈V

∑
kv∈Kv

(
(1− z(d,kv ,t)) · (x(cd,kv ,t) ·∆d)

)
.

finds the total time needed to deploy a container (∆d) on a VM (kv). This is important

to take into account, because if a specific container type cd is deployed on a VM for

the first time, the container data needs to be downloaded from the container registry to

the VM. However, once the data has been downloaded, it is cached (in the memory) of

the VM throughout its lifespan. Therefore, if a container of the same type as before is

needed again, this VM will not have to download the data again, hence it will save some

time. So, it is clearly beneficial to utilize the same VM for the same type of container.

If this is the case, then z(d,kv ,t)=1 which makes the product inside the sum 0. In term

three ∑
v∈V

∑
kv∈Kv

ωR
f · f(R,kv ,t)

the amount of free resources (f(R,kv ,t)) are summed up. This term ensures that available

resources are used instead of just leasing new VM instances, provided that there are

enough resources available in the VM to create another container. ωR
f ensures that this

16

term is weighted correctly compared to the other terms. The fourth term

∑
d∈D

∑
cd∈Cd

∑
v∈V

∑
kv∈Kv

(ωs · s(i,cd,t) · x(cd,kv ,t))

sums up all of the deployed containers at a time t. This term aims to provide the

minimal amount of resources to each container, while still giving each container enough

resources to work. ωs is the weight of the term.

2.5 FPGA Development

FPGA development is a complex task which requires advanced tools. In this section,

the steps in FPGA development will be outlined.

Figure 2.4: Development process for FPGAs [5]

Figure 2.4 shows an overview of the development process. The first step is defining the

functional specification of the circuit. After one has defined the circuit specification, one

has to write the RTL (Register Transfer Level) code that fulfills the specification in a

HDL (Hardware Description Language), typically VHDL or Verilog. There are several

17

ways of verifying the functionality of the HDL code, typically it is done by writing test-

benches that provides inputs and checks for correct outputs of a design, and by viewing

the waveform of the signals in the circuit to see that they are behaving correctly. The

next step in the process is synthesis, which is the process of converting the code into

a netlist of FPGA components like for example LUTs [43]. After synthesis is done

one can do post-synthesis simulations and get estimates on, for example, power usage

and maximal possible clock frequency, and one can see if the results are within the

boundaries of the specification. Often, this is not the case, hence one has to go back

and make improvements to the HDL code. This is commonly done several times, hence,

synthesis is often run multiple times before place-and-route. Once it appears that the

circuit meets the demands of the specification, one can move on to the place-and-route,

where the component list obtained from the synthesis is mapped to a specific FPGA.

After this, one performs static timing analysis, where one verifies that the design actually

meets the timing requirements. Then the design is assembled into a binary file, which

is downloaded onto the FPGA.

Chapter 3

Previous Work

In this chapter, both commercial products and academic work that this thesis is either

related to or based on will be explained. The explanations provided in this chapter are

mainly intended to give an overview of the tools that are used in this project and how

they are used. Therefore, several details on how the some of the technologies work are

omitted.

3.1 Docker

Docker [44] is a software designed to create containers, which were explained in Section

2.2.

Figure 3.1: Docker Engine [6]

19

20

Figure 3.1 shows how the Docker engine works as a foundation for the Docker containers.

However, it is important to notice that the Docker engine does not work the same way

a hypervisor does. A hypervisor manages all calls from a VM to the host OS, while the

Docker engine only handles the building and lifetime management of a container. The

Docker engine does not handle calls from a container to the host, the removal of this

link is one of the reasons why containers are more efficient than VMs.

A Docker container is created from a Docker image. An image is a read-only, executable

package, it contains everything needed to run an application [45]. Images are usually

created in such a way that everything needed to run an application is prebuilt. Therefore,

creating a container instance to run an application is an almost instantaneous process.

A Docker image is built up in layers. Each new layer in a Docker image is added on top

of the other layers. This means that if one has one or more layers that make up an OS

like Ubuntu 14.04, and then in the next layer, installs for example Python, Python will

be installed in the Ubuntu environment.

Figure 3.2: An overview of how a Docker image is divided into layers and can be used
by multiple containers [7]

Figure 3.2 shows how the Ubuntu 15.04 image consist of four layers. It also shows how

multiple Docker containers utilize the same image to run simultaneously. As already

stated, a Docker image is read-only, a container only consists of a small read/write-layer

on top of the Docker image, allowing one to access and use the applications within the

21

Docker image. All Docker images are stored in the same place and managed by the

Docker engine, along with this, the layer-architecture of Docker images also allows for

efficient use of disk space. If one, for example, has two different images that both utilize

Ubuntu 14.04, then one of the images has Apache web server installed, while the other

one only has Python installed, each layer in the images is only stored once This means

that the Ubuntu 14.04 image is only stored once, regardless of how many images that

depends on it.

To say that only one Docker image is needed once, and that each layer in the images

is stored only per machine, is somewhat of a simplification. In actuality, each layer

is stored once per Docker engine, of which there is typically only one of per machine.

However, to scale Docker containers to multiple users, often multiple Docker engines are

needed. Because, even though there can be multiple Docker containers running on top

of the same image, when enough containers try to access the same image at the same

time, there will be latency. Docker Swarm [46] is a software that is able to do handle this

and create multiple Docker engines and copy over the necessary images to each engine.

A Docker image is created from a Dockerfile. A Dockerfile defines the environment

inside a container, and hence, how the Docker image should be built [47]. Each line

in the Dockerfile adds one or more layers to the Docker image, it always starts with

the FROM expression which indicates the basis of a new image. For example, writing

the line “FROM ubuntu 14.04” will create an image that is based on the Ubuntu 14.04

image that already exists. It is also possible to use the expression ”FROM scratch” if

one wish to create a new image entirely, but this is not very common. The images that

already exist are often fetched from a website called docker hub [48], which is a page

where companies and individuals can publish Docker images.

There are a handful of expressions used in Dockerfiles [49], in this thesis only a few

of them are explained. The FROM expression has already been covered. Another

important instruction is RUN. It is the instruction that is used to run any command

within the Docker image. Each time the RUN Instruction is used a new layer is created

on top of the current image. One more instruction to be aware of is WORKDIR, which

changes the working directory within the image. One can say that using the WORKDIR

instruction is the Dockerfiles way of using the cd command in a terminal.

22

Multi-stage build is a technique used in Dockerfiles to create Docker images. As previ-

ously mentioned, each new line in a Dockerfile adds a new layer to the Docker image.

Hence, all packages and files used in a Dockerfile will be in the final image. Even if they

are removed or uninstalled and hence will not be available inside a container once it is

running, the image will still not be reduced in size. This may lead to an unnecessary

large image, as it will typically be full of tools that were only needed to install the appli-

cation inside the image but serves no function once the application has been installed.

To avoid this problem, one can utilize multi-stage builds [8]. Multi-stage builds are cre-

ated by using multiple FROM statements in the same Dockerfile. A typical way of doing

this, is to make the first image in the file very much like one would do in a single-stage

build, with all installation tools included. Then, bellow the first image, create a new

image where one only copies the necessary parts from the first image. In Figure 3.3 an

example of a multi-stage Dockerfile is shown.

Figure 3.3: An example of multi-stage builds [8]

The figure here is both an example of how a Dockerfile looks in general as well as

what multi-stage builds are. On the first line, it is shown that the base image used

is the golang:1.7.3. Note that the software used in this Dockerfile example, will not be

elaborated on here. The Dockerfile then changes the working directory, runs a command,

copies an application file (app.go) and then uses another RUN statement to install it.

To minimize the size of the image, in the second build stage, it is used another FROM

statement that utilizes the alpine base image instead of the golang image. In the second

to last line it copies the folder where the app is installed from the previous image. The

“–from=0” flag indicates that this image copies from the image created with the first

23

FROM statement. Each sub-image in a multistage image is numbered, starting from 0.

It is also possible to tag each sub-image with a name to make it easier to see what image

one is copying from.

When using Docker, one can use the “docker build” command to create a new image

from a Dockerfile. One can either specify a path to the Dockerfile, or the docker build

command will automatically detect the Dockerfile if there is one in the current directory.

To run a container, one can use the ”docker run” command. To measure the resource

usage of containers, Docker has a command ”docker stats” [50]. The command displays

real-time resource usage from all running containers. It can also be used along with

other software to collect stats over a period of time. The stats that are displayed are

CPU usage, memory usage, network I/O and block I/O.

3.2 IDE8

IDE8 is a cloud-based development environment. It makes it easy to develop products

and services based on electronics and mechatronics. It is a relatively new development

platform, developed by Wireless Trondheim. IDE8 can be defined as a PaaS, as it offers

many different development platforms. It is important to notice that IDE8 is still in

very early stages of development. Therefore, new features are constantly added, and a

lot of functionality within IDE8 is subject to change.

The development environment of a user in IDE8 is called a Workspace. One developer

can have multiple Workspaces. Each Workspace is created from one of the predefined

stacks found in the IDE8 library. A stack defines what tools and services that will be

available to the user within the Workspace. A Stack can be optimized for a product like

an Arduino or a Lattice FPGA, an application, e.g. a heart rate sensor, an event, e.g.

an IOT hackathon, or a group of people, e.g. students.

The other important part of IDE8 is the IDE8 board agent. The agent connects a device,

for example a development board or an oscilloscope, to a user’s Workspace. This agent

can be downloaded to a local PC allowing the user to connect his or her own device to

his or her own IDE8 Workspace. Wireless Trondheim also has several devices already

connected to the IDE8 site, that are free to use for anyone.

24

Figure 3.4: Overview IDE8 architecture [9]

Figure 3.4 shows an overview of the IDE8 architecture. On the left side of the figure

we see that the user accesses IDE8 through a web browser, and it is also shown that

the physical boards and instruments are connected to the board agent over the public

network. The connected devices can either be the user’s own device connected directly

to the user’s PC, or it can be one of the aforementioned devices that IDE8 already has

connected to the API GW (Application Programmable Interface GateWay). On the right

side, we see the internal workings and structure of IDE8. The Backend microservices

box is the backend infrastructure that IDE8 runs on, which is provided by the IaaS

provider Digital Ocean [51]. On the bottom right, it is shown that the Workspace Agent

is connected to the infrastructure, user, and Board Agent through the two different

APIs, it is also shown that the Workspace contains both the Stack and the user’s own

files. There is also a Runner connected to the backend which controls the lifespan of the

containers within IDE8.

A stack in IDE8 is a build environment inside a Docker image. IDE8 default Workspace

stack uses a Debian stretch image, a Linux based OS, as its base image, along with some

additional tools like git and make [9]. A custom stack like an Arduino stack runs on top

of the default Workspace stack. The definition of a stack must be put in a file named

stack.yaml located in the /ide8/ directory of the base image. This is done to describe

the commands that can be run in the stack and what examples that are available.

25

Figure 3.5: Overview of Workspace Agent components [9]

Figure 3.5 shows some of the details of the IDE8 Workspace agent. The Workspace agent

is the name of the system that creates a Workspace. One can see that the user is exposed

to two different set of files in the web browser. The directory called “files” are the user’s

own files, typically the source code for a specific project. The other folder, “examples”,

are specified in the stack.yaml file and then fetched from the Stack files. These examples

can be imported to the user files if the user wishes to try out the examples. Each stack

comes with a different set of examples. The command runner is accessed from the

webSocket [52], which is a communication protocol for two-way communication over the

web, and as mentioned previously, the commands must be defined in stack.yaml. The

multiplexer (Mux) in the figure, is there so that the webSocket can perform other tasks

as well, they are however, omitted in this figure.

3.3 AWS EC2 F1 and Developer AMI

In 2016 Amazon Web Services (AWS) started a collaboration with Xilinx, one of the two

major FPGA providers [53]. Xilinx FPGAs have been integrated into some of AWS’s

data centers. The instances have been made available for AWS users, allowing them

to utilize FPGAs to accelerate computations. These FPGA instances are named EC2

F1 (Elastic Compute Cloud F1). The F1 instances consist of one or more FPGAs and

a virtual machine. Along with these instances, AWS has created the FPGA developer

AMI (Amazon Machine Image), which is a software package that can be used with any of

26

AWS’s VM instances, and provides Xilinx’s Vivado development tool, along with some

additional features.

EC2 is the general name of AWS virtual machine instances, of which there are many

[54]. Each instance type has a given set of specifications: RAM, CPU cores, storage

and also several other attributes. In the case of F1 instances, they come in two different

types with different attributes which are listed in table 3.1

Table 3.1: Specifications for F1 instances [14]

Instance FPGAs
DDR-4

(GiB)
vCPUs

Memory

(GiB)

Storage

(GiB)
Bandwidth

f1.2xlarge 1 4x16 8 122 1x480 10 Gbps Peak

f1.16large 8 32x16 64 976 4x960 30 Gbps

Notice that GiB is used here and not GB. GiB, or Gibibyte, is per definition 230 bytes

while a GB, or Gigabyte, is part of the SI standard, with the value of 109 bytes [55].

It is shown that the smaller one of the F1 instances only comes with one FPGA, while

the large one comes with eight. The eight FPGAs on the larger instance are also in-

terconnected and can communicate directly with each other. The FPGAs on the F1

instances have the following specs [53]:

• Xilinx UltraScale Plus 16nm FPGA

• 64 GiB DDR4 ECC-protected memory

• dedicated PCIe x16 connection

• 2.5 million logic elements

• 6800 Digital Signal Processing engines

• Virtual JTAG interface for debugging

The table also shows that each FPGA has 4 times 16 GiB of DDR4 memory attached,

which sums up to 64 GiB per FPGA. This allows the FPGAs to store quite large amounts

of data without having to communicate with the processor of the VM. Each VM of the

27

smaller and the larger instances has 8 and 64 virtual CPU cores respectively, also 122

and 976 GiB of Memory and 480 and 3840 GiB of Storage. The large instance also has

a network bandwidth of 30 Gbps while the small one only has a peak bandwidth of 10

Gbps.

The F1 instances are intended to be used for running applications that utilize FPGAs for

accelerated computing. They are not however, normally used for developing the FPGA

design. As seen earlier, the F1 instances comes with rather heavy specs and are hence

very expensive to run. The larger one of the F1 instances has, as of May 2018, an hourly

renting price of $13.2 [56], making it one of the most expensive out of all EC2 instances

offered by AWS. To develop FPGA designs, one typically uses a smaller instance type,

with specs closer to that of a normal desktop computer, for example the t2 instance

which is priced in the range from $0.006 to $0.37, depending on the amount of memory

and CPU cores that are needed. The t2 instance does not have an FPGA connected to

it, but for most of the design process this is not needed. It is typically enough to utilize

simulation and debugging tools.

When developing an FPGA design in AWS, one will utilize the AWS FPGA developer

AMI [57]. AMI is short for Amazon Machine Image, which is an already configured

software package that can be run on a VM. It is similar to Docker images for containers,

but instead of describing how a container should be, it defines how a VM should run. It

contains the OS the VM should run, and the software packages which will be installed on

the machine. The FPGA AMI runs CentOS 7.4 which is a Linux/Unix based operating

system, and it comes with the Xilinx FPGA developer tool Vivado and the AWS-FPGA

HDK (Hardware Development Kit). The HDK and SDK (Software Development Kit)

is available on GitHub [58].

The HDK is a set off tools that is designed to make it easier to integrate and deploy

the FPGA design on F1 instances. The HDK contains the tools needed to create an

AFI (Amazon FPGA Image) from an FPGA design. An AFI is similar to an AMI, but

instead of containing a setup for a VM, it contains the design that is to be implemented

on an Amazon F1 FPGA. An AFI can also utilize more than one FPGA, as previously

stated the largest F1 instance has eight FPGAs available, and one can use the same

AFI to deploy a design that utilizes more than just one of the FPGAs. The HDK also

28

contains the FPGA shell interface [10], which is the logic interface used to communicate

between the FPGAs and the peripherals, like the DDR4 memory and the PCIe.

Figure 3.6: Summary of the AWS FPGA shell interface [10]

Figure 3.6 contains a detailed overview of the shell interface. The figure will not be

explained in detail here, but some of the main points will be explained. The figure

shows two large boxes, the top box is labeled SH for shell and the bottom one is labeled

CL for custom logic, which is the actual FPGA logic created by the FPGA developer.

The main part of the Shell is the PCIe interface, but the figure also shows that there is

an interface between the FPGA and the DDR4 memory. In addition to this, if one is to

use the f1.16xlarge instance with eight FPGAs, the shell also includes an interface for

inter-FPGA communication.

The SDK is found on the same git repository as the HDK. The SDK is made for managing

the AFIs, not create them.

29

Figure 3.7: Summary of the AWS FPGA software [11]

Figure 3.7, provides an overview of how the SDK is used to manage and work with the

FPGAs. At the top of the figure is the Linux Userspace, which is the management tools

and runtime communication tools that the developer uses to access the FPGA. A, B

and C on the figure makes up the FPGA management interface. Point A on the figure

is Linux shell commands which can be used to do operations like loading and removing

AFIs and also activate the virtual JTAG to do on-chip debugging. Point B is a C-library

which is to be compiled with a developer’s C/C++ application. Point C is a library with

the OpenCL runtime library pre-integrated. The points D, E, F and I are all different

libraries used for different types off runtime communication with the FPGA. D, E and

F are for C/C++ applications, while I is for Open CL. G is the DMA (Direct Memory

Access) driver that is needed for E and F to work.

The development process can be summarized in four steps [14]. The first step is to

launch an AWS virtual machine with the FPGA developer AMI and do the necessary

configurations for the HDK. The second step is the actual development of the design,

where one utilizes the Vivado software to write either Verilog or VHDL code. One

can also utilize HLS (High-Level Synthesis) with OpenCL [59]. These tools should be

used along with the HDKs FPGA shell to create the full logic design. After the design

is complete, and synthesizing and simulations are done, the third step is to do the

place-and-route which generates a design checkpoint file (DCP). The DCP contains the

complete design which again can be turned into an AFI, which is encrypted. Then in

30

step four, the AFI can be loaded onto a F1 instance. The AFI can then be managed

with the AFI management tools in the SDK. The FPGA developer AMI can also be

used for normal FPGA development, not aimed at the F1 instances.

The AWS marketplace is a service where AWS users can offer their custom made AMIs

and AFIs to other AWS users. Also, AWS offers their official AMIs like the FPGA

developer AMI through the marketplace. There are several businesses that now uses the

AWS marketplace to distribute their solutions. One example is the company Mipsology,

which were one of the first to offer a solution which utilized FPGAs. The application they

offer uses an FPGA for inference of neural networks, which is used for image classification

[60]. However, the solution is offered as an AMI not an AFI, this is because the solution

contains the entire setup for the VM, so the AFI is included in the AMI.

3.4 FPGA Infrastructure Solution

In the paper Using Clouds for FPGA Development - A Commercial Perspective [12], an

alternative solution to AWS’s FPGA developer AMI and F1 instances was presented.

They also had a look at current cloud-based FPGA products, including the AWS F1

instances. They examined, on a theoretical level, the possibilities of having the cloud

providers invest into an FPGA farm and deliver FPGAs as an IaaS.

This solution is mainly intended for companies that does not have FPGA development

as one of their primary focus areas but needs it as a part of a bigger system, for example

an encryption accelerator on a System on Chip (SoC) design. These companies may not

have much experience with FPGA testing, so acquiring hardware and setting up a test

environment can be cumbersome. Furthermore, they may need several FPGAs to test

different things at once. This solution will enable faster and less expensive testing, as

the user would be able to test on multiple FPGAs at once, without having to acquire or

deal with additional hardware. Their paper outlines further details on this solution and

provides an estimate for how long it will take to develop this service.

31

Figure 3.8: Overview of solution processes [12]

Figure 3.8 shows a schematic overview of the solution. The solution works quite similar to

other cloud solutions. The registration and resource management are done through a web

portal (1), and the interaction between the user and the cloud resources is done through

an interactive virtual environment (4)(5). This virtual desktop which is displayed to

the user will contain necessary tools like an IDE to develop the project, much like how

the AWS FPGA developer AMI works. After the user is done with the project, or

at least wishes to test it, the project can be launched for synthesis, place-and-route,

and bit stream generation inside the cloud (6)(7). This process will be done in the

background, allowing the user to continue working on other projects or other parts of a

design while the project is being built. As mentioned earlier, the provider’s cloud also

contains FPGAs, allowing the design to be tested on physical hardware.

3.5 Project IceStorm

Project IceStorm is a fully open source design flow, from Verilog to bitstream, for the

Lattice iCE40 FPGA [13]. It consists of three different parts, the synthesis tool Yosys,

the place-and-route tool Arachne-pnr and the IceStorm toolkit.

32

Figure 3.9: Overview of the Project IceStorm design flow

Figure 3.9 shows a simple overview of how the Project IceStorm flow works. It functions

by utilizing the synthesis tool Yosys to take in the verilog file (design.v) and producing

a design.blif file. This file together with a pin constraint file (design.pcf) is processed by

the place-and-route tool Arachne-pnr. This produces an ASCII file (design.asc) which

the IceStorm tool icepack converts to a design.bin bitstream which is used to program

the FPGA.

3.5.1 Yosys

Yosys is the synthesis tool that is used in the IceStorm Project. It was developed

around 2013-2014, prior to the development of the rest of the IceStorm project, but by

the same project lead, Clifford Wolf [61]. The synthesis tool can take in verilog files

and outputs a BLIF file (Berkeley Logic Interchange Format). The BLIF file format, is

used to describe logic-level hierarchical circuits in a textual form [62]. This tool is not

specifically designed for the Lattice iCE40 FPGA, as both the verilog input code and

the BLIF output representation are hardware independent, but since the Arachne-pnr

tool takes a BLIF file as an input, the tool is simple to integrate with the rest of the

Project IceStorm design flow.

33

3.5.2 Arachne-PNR

Arachne-pnr is the tool that takes care of the place-and-route step in the FPGA com-

pilation process [63]. It has several dependencies to the IceStorm software, and hence

it also targets the Lattice iCE40 FPGAs. The tool takes in a BLIF file and outputs a

textual representation of a bitstream. It uses a simulated annealing-based algorithm to

execute the place-and-route operation.

3.5.3 IceStorm

The IceStorm tool contains several different tools. The two main tools in the design

flow are the icepack and the iceprog tools. The icepack program converts ASCII files

into .bin files, which is the raw bitsream format that is used to program the FPGA. The

iceprog tool is a small driver program for the programmer that is used on the iCEstick

and HX8K development boards.

One other tools that is included is the IceUnpack program which converts a file from

.bin to .asc, which can be useful since all the other Ice-tools utilize the ASCII file format.

3.6 Other Open Source Tools

There are several other open source tools available for FPGA development. The tool,

Odin II [64], is another synthesis tool for for Verilog code. It produces a BLIF netlist as

an output, which is the same format as Yosys. Icarus Verilog [65] is another synthesis

tool for Verilog. this tool can generate netlists in several formats. Another place-and-

route tool that is available is VPR [66].

Chapter 4

FPGA Tool Chain Solution

The main objective of this thesis work is to build a working prototype of an FPGA

tool chain that can be run in the cloud (IDE8). In this section, there will first be

explained the different parts of the stack that are needed, along with some optional

components that could be interesting to add in the future. Then, the main functionality

of the solution will be explained. The FPGA tool chain was implemented with Docker

containers in three different ways. In Section 4.3 the implementations will be explained,

and in 4.4, the different implementations of the solution will be compared. Note that,

throughout the rest of this thesis, it will be referred to both the FPGA tool chain and

FPGA stack. While the tool chain mainly referrers to the actual FPGA tools, and the

stack referrers to the FPGA tools wrapped in Docker containers, the two terms can be

used interchangeably.

4.1 Stack Components

In Section 3.5, the open source tool chain, Project IceStorm, was explained. This is the

tool chain that will be used in this implementation.

There are several reasons why Project IceStorm was considered to be a good option. The

main reason is that it is an open source solution, without any license issues. Deploying

for example Vivado or Lattice Diamond in a cloud solution would require permission

from the software providers, which could be a time consuming and cumbersome process,

but this will be discussed further in Chapter 6. There are multiple open source options

35

36

in existence, as stated in Section 3.6, but Project IceStorm was still deemed the best

choice, as it takes care of the entire flow from Verilog to bitstream. Even though it is

fully possible to exchange for example the Yosys synthesis tool with Icarus Verilog, it

would require some additional work. Without any substantial indication that swapping

out any of the tools would lead to a performance improvement and because of the limited

time frame of this project, it was not deemed necessary to try any other components.

As explained in Section 3.5, Project IceStorm consist of three different software compo-

nents, Yosys for synthesis, Arachne-pnr for place-and-route and IceStorm for assembling

and various other minor functions. These will be the main components of the stack, and

the only components used in this thesis. The details on how the stack is implemented

is described in Section 4.3.

A fully functioning FPGA development environment however, requires several other

components than the ones provided with Project IceStorm. The IDE is of course pro-

vided in the Workspace in IDE8, but there are several other tools as shown in Section

2.5. There is a need for tools for debugging, simulation, and visualization. By visual-

ization it is referred to functionality such as schematic view and layout of the design

and waveform viewing. Furthermore, another feature that would be interesting to add

is HLS (High-Level Synthesis), this will be discussed further in Chapter 6.

4.2 Development Environment

This section will explain the development environment that was used to implement the

FPGA stack, as all the development was done locally before being tested with IDE8.

How testing and integration with IDE8 was done, is explained in Chapter 5.

To build and test the FPGA stack, a Linux based OS was used since Docker containers

are mainly Linux based, even though support for containers based on other OSs does

exist. Furthermore, IDE8 is utilizing Linux based containers. To create an isolated

development- and testing environment, a Virtual Machine (VM) was used. We used

an Ubuntu 16.04 64-bit OS on the VM [67]. To generate and manage the VM the

VirtualBox software [68] was used.

37

The FPGA stack was developed utilizing Docker containers. As explained in Section

3.1, Docker container are running instances of Docker images, and Docker images are

read-only executable packages that fully define the environment of the container. The

image contains all the files needed to run the container and the application within the

container, and a Docker image is defined and built from a Dockerfile. The Docker

community edition (CE) software was installed on the VM [69], so that the Docker

images could be built, and the containers could run. The Dockerfiles are typically not

very large in terms of lines of code, so there was no need for any type of special IDE

with debugging features to write the code. However, to build an image from a Dockerfile

can take some time, since everything that is put into a Docker image has to be installed.

A nice feature in Docker however, is that the different layers of the image are cached,

so that if one has to make small changes to an image, one might not have to build the

entire image from scratch again.

4.3 FPGA Tool Chain

The implementations of the FPGA tool chain are based on Docker containers to make

the solutions scalable and functional in the cloud. One does not have to utilize containers

to run software in the cloud, but it provides a good way of making sure that the software

behaves correctly in different environments as explained in Section 2.2 and 3.1.

The Project IceStorm software has here been installed to run in containers in three differ-

ent configurations, one monolithic approach and two different microservice approaches.

4.3.1 Monolithic Approach

The first architecture that was implemented was the monolithic approach. In this ap-

proach, the entire tool chain, from synthesis to bitfile generation, was put in the same

image. When all the tools are put in the same environment, the process of building the

Docker image is quite similar to installing the tool on a normal desktop.

38

Figure 4.1: Dockerfile for building the IceStorm project in a Docker container (mono-
lithic approach)

Figure 4.1 shows the Dockerfile that builds the Docker image containing the tool chain.

The Dockerfile defines all the steps necessary to create the image with the desired at-

tributes.

The first line in the Dockerfile defines the base-image used to build the environment.

As explained in Section 3.1, all Dockerfiles must begin with a FROM statement. Be-

cause Project IceStorm is designed to be installed on Ubuntu 14.04, this was clearly the

simplest base-image to use, as it would be able to support all the features of Project

IceStorm and hence, reduce the risk of bugs appearing when both creating the Docker

image and running the FPGA software in the container.That the Ubuntu image is used,

might seem as if the advantages of running a container is removed, as it now appears

that an entire OS has been added to the container, making it very similar to a VM.

However, this Ubuntu image is not the same as a full OS, this image only contains the

binaries and libraries of Ubuntu 14.04, hence, making it a lot more lightweight than a

full OS. The size of the Ubuntu image is approximately 220 MB, while the full desktop

Ubuntu image is approximately 1 GB in size and requires a lot more disk space than

that once it is installed. So, an Ubuntu Docker image is not the same as a full version

of Ubuntu. The next two RUN statements on line 3 and 4, are commands run within

the Ubuntu 14.04 environment. The first line updates the package list, and the second

installs all the packages necessary to install and run the FPGA tools. These commands

were available from the installation guide on the Project IceStorm website [13]. The

only change done on these two commands were that the -y flag was added on the second

command so that one did not have to manually agree to install the packages while the

39

Docker image was being built. The rest of the Dockerfile handles the installation of the

FPGA tools. All of these instructions are also from the Project IceStorm website. On

line 7, 11 and 15, the git repositories of each of the software components are cloned into

the Docker image. On lines 8, 12 and 16, the WORKDIR command is used, as explained

in Section 3.1, this command is used instead of the Linux command “cd” to change the

directory. Then the tools are installed using Make [70]. Due to the installation order,

we can here see that Yosys is installed within the arachne-pnr directory which is again

installed within the icestorm directory. This is not necessary, but it also does not cause

any problems. Hence, it was deemed unnecessary to change it.

To test that the tools were functioning properly, a simple Verilog example that is included

in the Arachne-pnr git repository was used. The example is a simple Verilog script rot.v

along with a placement constraint file, rot.pcf, which blinks the LEDs on the Lattice

iCE40 iCEStick development board in a rotating manner.

Figure 4.2: Instructions for running and creating a binary file from the rot.v Verilog
example [13]

Figure 4.2 shows the instructions used to execute synthesis, place-and-route, bitfile gen-

eration and programming the FPGA. These were the commands used to verify that the

containers were working.

4.3.2 Microservice Approach

The second tool chain implementation is the microservice approach. Here, it is at-

tempted to run Project IceStorm by installing and running the different software com-

ponents in different containers. However, Arachne-pnr depends on several files from the

IceStorm tool to be installed so it would be difficult to run these two programs in dif-

ferent containers. Therefore, the design flow will here only be split into two containers

instead of three. The first container will contain the Yosys synthesis tool, while the

second will contain both Arachne-pnr and IceStorm

40

Figure 4.3: Dockerfile for building the container with the Yosys tool

Figure 4.3 shows the Dockerfile describing the image containing the Yosys tool. To

create it, the same approach as in the monolithic case is taken. The same base-image,

ubuntu:14.04, is used, and all the same packages are installed. It is not given that all of

the packages are needed here, but for simplicity, all the packages were installed. Further-

more, only the Yosys git repository is cloned and installed, contrary to the monolithic

case.

Figure 4.4: Dockerfile for building the container with the IceStorm and Arachne-PNR
tools

Figure 4.4 shows the Dockerfile used to create the image with both Arachne-pnr and

IceStorm installed. The Dockerfile is also built up very similar to the monolithic file.

Here the cloning of the Yosys git repository and installation is simply omitted.

In Section 3.1 a technique called multi-stage builds was explained. This technique is

used by having multiple ”FROM” statements in the same Dockerfile. Hence, creating

multiple images in the same Dockerfile and only keep certain things from each sub-image

in the final image.

41

Figure 4.5: Dockerfile for building the container with the IceStorm and Arachne-PNR
tools, utilizing multi-stage build

Figure 4.5 shows the Dockerfile that creates the image containing Arachne-pnr and

IceStorm by utilizing multi-stage builds. We see that the first part of the Dockerfile,

from line 1 to 15, is almost identical to the Dockerfile in Figure 4.4, the only difference

being line 1, where it was added “as builder”. This is just a way of naming the different

stages in a multi-stage build, which makes it easier to see what sub-image is used to

create the final image. The second build stage starts at line 18, this stage also utilizes the

Ubuntu 14.04 base-image. Then the image uses the COPY command in order to copy

only the necessary folders from the previous sub-image. Notice the flag “–from=builder”

refers to the first sub-image, which was named builder. To get both Arachne-pnr and

IceStorm working in the new image, the icestorm and the arachne-pnr directories are

copied into the new image. On line 21 the IceStorm binary files that are generated during

the installation are copied into the new image as well. Utilizing the full ubuntu 14.04

base-image in the final image might not be necessary, there are other more lightweight

Linux based base-images that probably could have been used, hence produced even less

overhead, but to test this further was not prioritized in this thesis.

The Yosys installation process is quite complex and generate several files in several

different locations, which makes it difficult to find all the necessary files to bring over

to the next build stage. Hence, reducing the image size of the Yosys image utilizing

multi-stage builds proved to be a difficult task. Therefore, it was not done in this thesis.

42

For the same reason, the monolithic approach was not improved with multi-stage builds,

as it would be difficult to get Yosys to function properly.

4.3.3 Microservice Approach 2

In the previous approach, it was stated that Arachne-pnr relies on files from IceStorm

to be installed. However, it is still possible to separate the two programs into different

containers. Hence, the Project IceStorm FPGA tool chain is split into three containers.

Since the only change done in this approach is the splitting of the container containing

both Arachne-pnr and IceStorm, the Yosys image used in this approach is the same as

in the previous microservice approach. Both the single-stage and multi-stage solution

will be shown.

Figure 4.6: Dockerfile for building the container with the Arachne-PNR tool

In Figure 4.6, it is shown how the Dockerfile is written in order to create a Docker image

containing only Arachne-pnr. The method used is quite simple. Since the IceStorm files

are only needed to install Arachne-pnr, one can simply install IceStorm first, then install

Arachne-pnr and uninstall and remove IceStorm afterwards. This procedure can be seen

in the Dockerfile, as the first 15 lines are identical to the first 15 lines in Figure 4.5. Then

the next 4 lines uninstalls IceStorm, and then removes the files. One should notice that

line 11 changes the working directory back to the root directory so that Arachne-pnr

is not installed within the icestorm directory like in the monolithic approach. This

would obviously not work, as the arachne-pnr directory would be removed along with

the icestorm directory.

43

Figure 4.7: Dockerfile for building the container with the IceStorm tools

Figure 4.7 shows the how the image containing only IceStorm was created. This was very

simple as one only needed to install the IceStorm software in the exact same environment

as in all of the previous images.

The multi-stage build technique was also applied to this these images. Also, due to how

Docker images are built, as explained in Section 3.1, each new instruction executed in

a Dockerfile adds another layer to the Docker image. Therefore, it can only increase in

size, even if the files are removed from the image, as it is stored in the previous layer. The

files that are removed will not be available in the container, but the information is stored

in the image. Therefore, multi-stage builds will be extra important here, compared to

the previous approach, to remove the unnecessary IceStorm files from the final image.

Figure 4.8: Dockerfile for building the container with the IceStorm tools, utilizing
multi-stage build

Figure 4.9: Dockerfile for building the container with the Arachne-PNR tool, utilizing
multi-stage build

Figure 4.8 and 4.9 shows how the multi-stage versions of the images were created. For

simplicity, only the second build-stage in each Dockerfile is shown. In the IceStorm

44

image, the icestorm directory, as well as the binary files created from the installation is

created, while in the Arachne-pnr image, only the arachne-pnr directory is copied over.

4.4 Comparison of the Different Implementations

In this section, it will be examined how the three solutions compare to each other. It has

already been verified through a simple test that the solutions work correctly, meaning

that it has been verified that all the solutions can execute synthesis, place-and-route, and

bitfile generation. Here, the solutions will be investigated further to discover if there

are any potential differences in how the solutions scale. As this solution is intended

to be deployed in the cloud and can potentially be used by a large number of people

simultaneously, it is important that the solution has the ability to scale efficiently. This

is the reason the tool chain was built in three different ways, so it could be evaluated

whether a microservice solution was more effective in a cloud setting. A microservice

architecture also provides more freedom when it comes to updating and maintaining the

different components in the tool chain. However, when the tool chain is split up, it may

introduce more overhead and complexity.

Section 2.4.7 introduces an objective function that aims to place a set of containers onto a

set of VMs in the most efficient way possible. There are too many uncertainties regarding

the underlying infrastructure to use this function directly in this thesis, and it is unlikely

the cloud infrastructure provider, Digital Ocean, utilizes this specific function to handle

VM and container placement. However, as explained in Section 2.4.7, the function

consists of four terms, some of which can be analyzed qualitatively to see that there is

a possibility that the microservice architecture will provide a more efficient solution.

In the second term of the function

∑
d∈D

∑
cd∈Cd

∑
v∈V

∑
kv∈Kv

(
(1− z(d,kv ,t)) · (x(cd,kv ,t) ·∆d)

)
.

∆d refers to how long it takes to deploy a container. It is possible that smaller containers

will deploy faster, hence saving costs. Furthermore, term three and four

∑
v∈V

∑
kv∈Kv

ωR
f · f(R,kv ,t)

45

∑
d∈D

∑
cd∈Cd

∑
v∈V

∑
kv∈Kv

(ωs · s(i,cd,t) · x(cd,kv ,t))

aims to minimize the amount of free resources on each VM, and allocate the minimal

amount of resources to each container respectively. By splitting up the architecture into

smaller images, it is possible have a higher utilization of each VM, and if the smaller

containers can utilize less resources than the larger one, the benefit will be even greater.

To investigate the scaling capabilities of the solutions, a few parameters were analyzed.

The first one is the size of the Docker images. As Docker images can be quite large, it

is important to investigate if any of the solutions will take up less disk space than the

others. Furthermore, it is interesting to see if the images which were created by utilizing

multi-stage builds, yields any significant improvement to the image size. If the image

size is reduced this will contribute to reduce the f(R,kv ,t) function, which sums up the

free available resources. Hence the cost function will be decreased. Furthermore, if an

image is smaller, it will take a shorter amount of time to fetch it onto a VM for the first

time. Hence, ∆d could also be reduced from smaller image sizes.

After investigating the image sizes, the performance of the containers was measured,

with regards to execution time, CPU utilization and memory usage. Execution time

means how long it takes to execute a given set of tasks. CPU utilization referrers to

how much CPU time a given set of tasks need, or in other terms, how much of the

CPU’s capacity must be used to execute a given set of tasks. Memory usage means

how much RAM that is used to execute a given set of tasks. It was first investigated

how the execution time of the Yosys container compared to the monolithic container

when performing synthesis, and the how Arachne-pnr container and the Arachne-pnr

+ IceStorm container compared to the monolithic when place-and-route was executed.

This was done to see if there were any significant difference in the time it takes to create

a container from a smaller image than from a larger image. If it turns out that, for

example, the monolithic container utilizes more time than the Yosys container to start,

execute synthesis, and then stop, it shows that ∆d is smaller for the Yosys container,

hence it is a more desirable choice. Furthermore, the execution time was measured for

the containers when they were given restrictions on how much memory and CPU time

they could use. This was done to further investigate if any of the containers, based on

the smaller images, would require more or less memory and CPU time to get the same

execution time as the monolithic container. If any of the containers that were executing

46

the same task needed less memory and CPU time than the others, it would contribute

to reduce the f(R,kv ,t) function.

Regarding the actual size of the containers, meaning the thin R/W-layer that is created

for each container, which was explained in Section 3.1, the size for one such layer was

in the range of a few hundred KB. Therefore, they are not included in any of these

comparisons, as they are so small that they can be neglected.

4.4.1 Image Size

The first attribute of the architectures that was measured, was the image size. As ex-

plained in Section 3.1, a Docker image is only needed once to create multiple containers.

However, to have enough computing power and memory for multiple users in a cloud

environment, a solution like IDE8 will usually be run on multiple virtual machines.

Each one of these machines would need a copy of the Docker image to create containers.

Therefore, making images as small as possible will make the solution require less disk

space, hence, scale better over multiple VMs. Furthermore, a single Docker image can

be quite large. It is therefore, important to be aware of how much disk space a single

Docker image require, so that IDE8 can choose the best underlying infrastructure. It

is also, very interesting to see how the multi-stage builds compare to the single-stage

builds and see how much overhead that was removed.

Also explained in Section 3.1, a Docker image consist of layers, and if multiple images

have the same layers within them, the layer is only stored once. Therefore, if all con-

tainers are stored on the same machine, simply adding together the total size of each

image would be an inaccurate way of measuring the total size of a solution. To measure

the total image size correctly in this case, one has to identify what layers all containers

in a solution have in common and be sure to only add them once to the overall sum.

47

Figure 4.10: Overview of image sizes when stored on the same machine

Figure 4.10 shows how much disk space each of the solutions require when all the images

of a solution is stored together. The figure shows that the monolithic, and the two single-

stage microservice solution all use the same amount of disk space at 1.79 GB. This is

not very surprising, as as the solutions consist of all the same components, and all have

the same base-image. Both of the multi-stage builds have the same size, at 1.69 GB,

about 100 MB less than the single-stage builds. Since the Yosys image did not utilize

multi-stage, which was explained in Section 4.3.2, a lot of the advantages disappears,

because all the installation tools that were needed, still exist in the Yosys image. If one

were able to utilize multi-stage on the Yosys image, the overall disk space required, could

probably be significantly reduced. This would also allow for the monolithic image to

utilize multi-stage, which would mean that the total size of the monolithic image would

be reduced to the same size as the other multi-stage solutions.

Furthermore, Figure 4.10 shows in detail, how many GB each individual image adds to

the solution, and how many GB that is shared between all images. The single-stage

solutions have a lot more shared layers than the multi-stage solutions. This is because

the multi-stage Arachne-pnr and IceStorm images does not have all the packages that

were installed so that the Project IceStorm software could be installed. In the multi-

stage images these packages still exist in the Yosys image however. Therefore, the Yosys

image appears to be much larger in the multi-stage solution than in the single-stage.

Furthermore, it is clear that both the IceStorm tools and the Arachne-pnr tool does not

require a lot of disk space compared to Yosys. In the multi-stage builds, IceStorm an

Arachne-pnr only adds approximately 110 MB and 30 MB respectively.

48

For each layer in a Docker image to only be stored once, all the images of a solution

have to be stored on the same machine. As stated previously, for a cloud solution with

multiple users, there will probably be several machines in use at once. Therefore, it

is meaningful to examine the total size of each Docker image. If, for example, a VM

is only used for running Arachne-pnr, the machine would require all the layers of the

Arachne-pnr image.

Figure 4.11: Total disk space required for each Docker image

Figure 4.11 shows the total image sizes for each solution. Each colored bar in this graph

hence represent how much disk space is needed to store each one of the Docker images

on separate machines.

To clarify how this actually works, a simple example will be used. If there, for example,

are three VMs used to handle all the users of the tool chain, and it is assumed that one

machine will handle all the syntheses, one will do the place-and-route, and on will do

the bitfile generation. If the monolithic approach is used, each machine would need the

monolithic image, hence requiring at total of 3×1.79GB = 5.37GB of storage, while the

“microservice 2” approach would only need 1.53GB + 0.91GB + 0.68GB = 3.12GB of

storage. The multi-stage solution would require even less space as it would only require

1.53GB + 0.25GB + 0.33GB = 2.11GB.

This example might not be the most realistic use-case, as stated in Section 2.5, synthesis

is done a lot more, and as it will be shown later, require a lot more resources than,

for example, bitfile generation. However, as shown in Figure 4.10, if each VM would

require all images, it would still only require the same amount of disk space as the

49

monolithic solution. Hence, the microservice architectures are always at least as good

as the monolithic solution in terms of storage space.

Figure 4.12: Plot of image sizes of the showing how single-stage builds compares to
multi-stage builds

Figure 4.12 shows how the total size of the multi-stage builds compare to the single-

stage builds, and Table 4.1 shows how much the image size was reduced. This shows

that utilizing multi-stage builds can offer a significant improvement. Because of the way

Docker images are built in layers, adding a new layer to the image cannot reduce the

size of the image. This is best shown in the Arachne-pnr image, where both IceStorm

and Arachne-pnr were installed, and then IceStorm was uninstalled. The image size

however, remained the same as the container with both Arachne-pnr and IceStorm.

Therefore, without multi-stage builds, this approach would be rather useless compared

to the solution where IceStorm and Arachne-pnr were in the same image. However,

with multi-stage, only the files needed can be copied over to the final image, allowing

for even better memory utilization with a 3-container solution. If one looks at a similar

example as the one earlier in this section, the 3-container solution would only need

0.25GB+ 0.33GB = 0.58GB to utilize two VMs, where one is running Arachne-pnr and

the other is running IceStorm. The solution with Arachne-pnr and IceStorm in the same

container would need 2× 0.36GB = 0.72GB to do the same.

50

Table 4.1: Improvement for multi-stage build compared to single-stage

Image Size reduction [%]

Arachne and IceStorm 60%

Arachne 73%

IceStorm 51%

There are two key results to take from these comparisons. The first one is that, utiliz-

ing multi-stage builds is a good approach for reducing image sizes, as shown here, the

Arachne-pnr container benefited immensely from this, and got reduced by 73%. How-

ever, it is important to notice that how much multi-stage builds can help is extremely

case specific. Therefore, one cannot make any claims as to how much multi-stage builds

can help in general. It is only possible to say that, in this specific case, it was a very

good approach.

The other result is that dividing the tool chain into several containers can result in more

efficient use of disk space, which can reduce both the f(R,kv ,t) function and ∆d. Because

of how each layer in a Docker image is only stored once per machine, the solutions that

were divided into two and three containers will never take up any more total disk space

than the monolithic solution. Furthermore, as shown in the examples in this section,

there are cases where the total disk size required would be reduced significantly by

utilizing a microservice architecture when the solution is run on multiple VMs. This is

consistent with Section 2.3, where it is stated that microservices scale more efficiently

when deployed on multiple machines.

4.4.2 Performance

The image size is an important metric, as it is important to minimize the storage cost of

a cloud solution. However, the image is only needed once to generate several containers,

and disk space is not the most expensive resource. Therefore, measuring how much

memory and CPU a container needs to function properly is arguably more important

than the image size, since the goal of the cloud solution is to scale to several thousand

users, and each user needs a separate container to run in his or her Workspace.

51

To get an overview of how the containers performed, first a simple test was performed.

Each container used the rot example, which was mentioned in Section 4.3.1, and executed

one or more of the instructions in Figure 4.2. For example, the monolithic container

executed all the steps, the Yosys container executed the synthesis and so on. The “docker

stats” command, explained in Section 3.1 was used to monitor the memory usage and

CPU usage of the containers. The peak values of the memory and CPU usage was

then noted. Furthermore, the memory usage when the containers were idle was also

noted. The purpose of this test was only to get an understanding of what components

in the tool chain that required the most computing resources, to evaluate if there were

any components that could be ignored in future tests. As this test is quite inaccurate,

and peak values can vary a lot, this test cannot be used to get any accurate difference

between the different solutions.

Table 4.2: Results from running the rot example on each container

Container CPU peak [%] Memory Peak [MiB] Default Memory

Monolithic 50 56.3 1 MiB

Yosys 40 7.5 1 MiB

Arachne + IceStorm 55 58.7 1 MiB

Arachne-pnr 50 55.5 1 MiB

IceStorm 6 1.0 1 MiB

Table 4.2 and 4.3 displays the results from running the rot example. From Table 4.2, it

is clear that the Arachne-pnr tool is the most memory hungry, as all the containers that

ran the place-and-route has a peak memory usage of over 55 MB, while the Yosys and

IceStorm containers used very little memory.

When it comes to CPU utilization, it is clear that Arachne-pnr and Yosys both have

relatively high CPU utilization. However, the CPU utilization is quite an unstable

metric, which can vary quite a lot from each execution. Therefore, the main result to

take away from this measurement, is that the IceStorm tool icepack utilizes much less

CPU power than the other tools.

The last metric that is included here is the default memory usage, which refers to

the memory a container utilizes when it is not executing any task. This could be an

important metric, as a container would often be left running without doing anything for

52

large amounts of time. So, if any of the containers had a much larger memory usage in

idle mode than the others, this could possibly be an obstacle when the service is being

used by multiple people. However, from the table it is clear that all the containers utilize

about the same amount of memory when they are not being used. The memory usage

in idle mode is also very low compared to the peak values.

These results could vary quite a bit as mentioned. Therefore, one should not put too

much weight on the actual values. However, it is clear from these results that IceStorm’s

icepack tool is using an insignificant amount of CPU and memory compared to Arachne-

pnr and Yosys. Therefore, when the next tests are conducted, the icepack tool will not

be included.

Table 4.3: Summary of results from running the rot example on each solution

Architecture CPU peak [%] Memory Peak [MiB]

Monolithic 50 56.3

Microservice 1 55 58.7

Microservice 2 50 55.5

Table 4.3 displays some of same data as in Table 4.2, except here the architectures

are merged together, providing a more clear image of how each of the architectures

performed on these metrics. There is little difference in memory usage and CPU usage

between the solutions. Therefore, no conclusion can be made regarding which solution

is better.

After conducting the initial tests of the containers, three new tests were conducted to

further explore how the tools behaved under different constraints. This would provide

more insight into whether there would be any difference between the solutions, with

regards to performance, when they are scaled to be used by multiple users. Furthermore,

in the previous test, it was discovered that the icepack tool utilized an insignificant

amount of memory and CPU time, and will therefore, not be included in these tests.

To achieve accurate time measurements, with as little possibility for interference and

human error, the execution of the tests was automated with shell scripts.

53

Figure 4.13: Top level test script for Yosys

Figure 4.13 shows the top level script used to execute the test for the Yosys container.

The script for testing the monolithic container is identical to this one, except line 3

contains a different path to execute a different synth test.sh script. These tests have

three different parameters that are going to be examined, the number of syntheses or

place-and-routes executed sequentially, and the amount of CPU time and memory the

container is allowed to use. The script takes these values as input on line 2. Then, on

line 4 the actual test-script is executed with the three parameters. The script is also

executed with the “time” command, which is used to measure the execution time of the

synth test script.

Figure 4.14: synth test.sh for yosys container

The test script for the Yosys container is shown in Figure 4.14, which referrers to the

synt test.sh script on line 4 in Figure 4.13. The script executes a routine, designed

to examine the execution time of the Yosys container. The script starts up the Yosys

container and executes synthesis a given number of times, which is specified in the

script in Figure 4.13. The container is started with the “docker run” command on line

7. Several flags are used when starting the container. The -i flag is used to run the

container in interactive mode, this connects the STDIN of the bash terminal window

to the container, allowing one to view the output text from the container while it is

running, making it easier to confirm that the container is executing its tasks correctly.

It is also run with the –cpus and the -m flags, these are the flags used to specify the CPU-

and memory limitations of the container. Also, the container is given the name yosys,

making it easy to stop and remove the container after it has executed the synthesis.

54

The container is built from the Yosys image, described in Section 2.3. The container

is also provided the command ”yosys -p ”synth ice40 -blif rot.blif” rot.v”, which is the

command used to run the synthesis on the rot.v example. This command will execute

immediately after the containers has become active. After the container has executed

the synthesis, it is stopped and removed.

Figure 4.15: synth test.sh for monolithic container

The test shown in Figure 4.15 is the equivalent test for the monolithic container. It

performs the exact same routine as the previous script, but instead of running the

Yosys container, it utilizes the monolithic container. These tests were made for all the

containers, so that both synthesis and place-and-route could be run. Here, a full list of

all test, is provided:

• yosys test- executes synthesis with the Yosys container

• monolithic synth test- executes synthesis with the monolithic container

• arachne and ice test- executes place-and-route with the Arachne-pnr + IceS-

torm container

• arachne pnr test- executes place-and-route with the Arachne-pnr container

• monolithic pnr test- executes place-and-route with the monolithic container

The first test aimed to investigate whether there was any overhead when starting a

container from a larger image compared to a smaller image. However, containers are

lightweight, and are supposed to have short startup and shutdown time. Therefore, to

detect any overhead difference between the containers, they would have to be started

and stopped multiple times. In this test, the execution time for the containers is mea-

sured when they are started, executes synthesis or place-and-route, then stopped, up to

250 times. This test is done for both synthesis and place-and-route. However, in the

55

place-and-route test, the container containing both Arachne-pnr and IceStorm was not

tested, as it would suffice to only compare the monolithic container and the Arachne-pnr

container. This is because it is suspected that creating containers from larger images

would have more overhead. Hence, it would be enough to only test the smallest and the

largest image. As stated in Section 2.5, synthesis is typically performed a lot more than

place-and-route. Therefore, the difference between the monolithic container and the

Yosys container could be more important than the difference between the Arachne-pnr

container and the monolithic container. However, the Yosys and monolithic container

are quite similar in size. Therefore, the Arachne-pnr container is also tested, as it is

much smaller than the others and could possibly provide clearer results. Table 4.5 shows

a summary of which tests that were run and parameters that were used.

Table 4.4: Summary of what tests that were executed and the parameters used

Test Number of iterations Memory limit [MB] CPU limit [%]

monolithic synth test 1-250 100 80
yosys test 1-250 100 80
monolithic pnr test 1-250 100 80
arachne pnr test 1-250 100 80

Figure 4.16: Results from running multiple syntheses

56

Figure 4.17: Results from running multiple place-and-routes

Figure 4.16 and 4.17 display the results from the multiple syntheses and place-and-

route tests. As the graph shows, there are little difference between the execution time

when utilizing the monolithic and the microservice containers. When 250 syntheses

are executed, it does appear that the monolithic version is slightly slower than the

microservice version, but this is probably due to small variations in the VM the tests

were run in. So, it does not appear to be any difference in the time it takes to start and

stop the Yosys and monolithic container or the monolithic compared to the Arachne-pnr

container. Hence, if there is any overhead at all related to creating containers from larger

images, it is much less than the execution time of the synthesis and place-and-rout of a

very simple design and can therefore be ignored.

The two final tests measured and compared the memory- and CPU usage of each of

the containers. These tests were conducted in order to examine whether the different

solutions would perform differently given the same constraints. It could for example be

the case that the monolithic container would require more memory and CPU time, as

it is created from a larger Docker image than the container only containing Yosys. The

previous test would not have detected this, as there were no strict constraints put on the

container, which means that even though they were able to achieve the same execution

time, they might have had different memory- and CPU usage. If this test is able to

detect that any of the containers uses more time than the others, this could potentially

mean that each instance of this container would require more resources when created

57

in the cloud. Hence, the solution would require more resources, and therefore, be less

scalable.

These tests will compare the execution time of the Monolithic container and Yosys

container, when they perform synthesis on the rot example. Furthermore, the monolithic

container, the Arachne-pnr container and the container containing both Arachne-pnr and

IceStorm, will be compared when performing place-and-route on the rot example.

To execute these tests, a top-level test-script, like the one in Figure 4.13, was created

for each container, which is shown in the list earlier. Furthermore, each container had

its own version of the script in Figure 4.14 and 4.15, that were called in the top-level

scripts.

First, the CPU utilization was varied, while the memory limit was kept constant. The

memory limit was kept at 100 MB which is well above the peak values detected in Table

4.2. The CPU utilization was decreased in steps of 10 percentage points from 90% to

20% for the containers running place-and-route, and from 60% to 10% for the containers

running synthesis. The reason these limits differ from each other, is that from Table

4.2, it appears that Yosys needs slightly less CPU time, and was therefore, not tested

at any higher level than 60%, while Arachne-pnr needed more, and it was not deemed

necessary to go all the way down to 10%. Table 4.5 shows a summary of which tests

that were run and parameters that were used.

Table 4.5: Summary of what tests that were executed and the parameters used

Test Number of iterations Memory limit [MB] CPU limit [%]

monolithic synth test 1 100 60-10
yosys test 1 100 60-10
monolithic pnr test 1 100 90-20
arachne and ice pnr test 1 100 90-20
arachne pnr test 1 100 90-20

58

Figure 4.18: Results from changing the CPU utilization limit with synthesis

Figure 4.19: Results from changing the CPU utilization limit with place-and-route

Figure 4.18 and 4.19 shows the execution time of the synthesis and place-and-route as

the CPU limit was changed. From both of the figures, it is clear that execution time

for the different containers are almost identical. In Figure 4.18, the execution time of

both the monolithic and the Yosys container start to increase when the CPU limit is

at 30%, and they both increase quite similarly as the CPU limit goes down towards

10%. In Figure 4.19, all the containers start to increase in execution time when the

CPU limit is at 40%. Also here, the execution time increases quite similarly. From these

results, it appears to be no difference in how the containers behave, given the same CPU

limitations.

In the final test, the CPU limit and number of iterations are kept constant. The CPU

utilization limit is kept at 0.8 (80%), which one can see from the previous test, is

59

high enough to not have any impact on the execution time. From the test results,

shown in Table 4.2, one can see that the peak memory utilization of the containers is at

approximately 55 MB for Arachne-pnr. Hence, it is expected that the execution time

should start to increase around this value. The measurements for place-and-route were

started with a limit of 70 MB and decreased in intervals of 10 MB down to 20 MB. The

Yosys container had a very low memory peak, at under 10 MB. However, it is tested

from 50 MB to 10 MB, as it is suspected that the memory usage could be higher. Table

4.5 shows a summary of which tests that were run and parameters that were used.

Table 4.6: Summary of what tests that were executed and the parameters used

Test Number of iterations Memory limit [MB] CPU limit [%]

monolithic synth test 1 50-10 80
yosys test 1 50-10 80
monolithic pnr test 1 70-20 80
arachne and ice pnr test 1 70-20 80
arachne pnr test 1 70-20 80

Figure 4.20: Results from changing the memory limit with synthesis

60

Figure 4.21: Results from changing the memory limit with place-and-route

The results of the final tests are plotted in Figure 4.20 and 4.21. As in the previous

experiment, with CPU utilization, the execution time is almost identical for the contain-

ers as the memory limit is reduced. The execution time starts to change significantly

when the limit is set at 50 MB for the place-and-route containers. These results are

in line with the initial test conducted on the containers, where it was noted that the

peak memory usage of all the different containers were a little over 50 MB. However, for

the containers running synthesis, the execution time started to increase already at 20

MB, but also here, the containers are almost identical in terms of execution time. This

experiment also indicates that there is no significant performance difference between the

architectures. Therefore, based on these tests, no conclusion can be made regarding the

different solutions ability to scale to multiple users.

To summarize the results from these test, it is quite clear that there is no reason to

believe that taking the microservice approach will yield any performance and scaling

improvements with regards to memory- and CPU usage. These experiments aimed to

see if running containers from larger images would introduce any significant overhead

with regards to memory- and CPU utilization. However, it is clear that this is not the

case. If there is any overhead introduced by utilizing larger images, it is insignificant

compared to the memory- and CPU usage of the FPGA tools within the containers.

61

4.4.3 Sources of Inaccuracy, Limitations and Challenges

The test and measurements presented in Section 4.4 provides a good understanding of

how the different solutions performed, and if there would be any significant differences

when scaling them to be used by multiple users simultaneously. However, there are still

many untested scenarios regarding these architectures, some of which might provide

valuable insight into the architectures, that has not been discovered in this thesis. This

section will briefly cover some of the main sources of inaccuracy and limitations of the

tests conducted here, as well as describing some possible additional tests that could

be interesting to conduct. Furthermore, there were several challenges that arose while

testing the solutions, it will also be explained what some of these were, as well as how

they limited the examination of the different architectures done in this thesis.

There are a few sources of inaccuracy in these measurements. When it comes to image

size, the different architectures were all implemented with the Ubuntu 14.04 base-image.

However, when the image was created, the latest version of the Ubuntu image was always

used. This image is constantly updated, and because the images were not all created

at the same time, the base-images can vary slightly from each other. However, the

base-image only varied with about 2 MB over the implementation period, so it is not a

significant source of inaccuracy. Measuring the peak memory values and CPU utilization,

can be quite inaccurate, and it may vary significantly. However, this measurement was

only done to get an overview of how the containers performed, and both memory- and

CPU utilization was investigated more in depth later. Therefore, no further action was

taken to achieve more accurate results with this particular experiment. However, it

is clear that the results displayed in Figure 4.16, 4.17, 4.18, 4.19, 4.20 and 4.21, are

all susceptible to local variations, as there were small deviations in all measurements

even in the flat areas of the graphs. These deviations are probably due to variations

in background tasks being executed on the host desktop, but these deviations should

be quite small and would not have been able to conceal any significant performance

difference. Also, the flag -i that was used to attach STDIN to the container could

also affect the run-time, as the container now has to print text. However, this operation

should be insignificant to the actual synthesis or place-and-route, especially if the design

that is used is bigger than the rot example.

62

Due to time limitations and some difficulties, there were some possible tests that could

have been conducted in order to provide an even better understanding of how the con-

tainers functioned. One of the main limitations with all the container tests that were

executed here was that only the small rot example was used. It would have been inter-

esting to do the some of the same tests with a much larger FPGA design to see how

this would have affected the execution time of the different architectures. However, as

mentioned previously, it is unlikely that it would have yielded any different results with

regards to how the containers compare to one another, as the other tests already showed

that the monolithic container and the microservice containers had a similar startup and

shutdown time. Therefore, testing a larger design would only have shown how the ac-

tual FPGA tools performed, and would not have provided any more insight into how the

different containers behaved. However, it would have provided more insight into how

much memory and CPU is needed to allocate to each container when run in the cloud.

It would also have been valuable to test how the solutions actually scaled by creating

multiple instances of the containers and having them running in parallel. This would

have provided even more insight into how the different architectures scaled.

In Section 3.1, the scaling tool, Docker Swarm, was mentioned, which can create multiple

Docker engines, so that multiple instances of the same images are available to create

containers from. An experiment that should be executed in the future, to test further

how the solutions actually scales, is to run multiple containers of the same type, for

example the Yosys container, on the same VM. Then having the them all try to run

synthesis in parallel and measure the execution time. This should be done with a varying

number of containers until one begins to see significantly longer execution times. The

same should be done for the monolithic container, and then, the execution times should

be compared. This test would show if there is any difference in the performance reduction

when multiple containers are run from the same image. This would show if there is any

difference in how many container instances that can be run from the same image. If,

for example, the monolithic image is able to have more containers running on top of

it than the other containers, this could possibly negate the disk size benefits that the

microservice architecture has, as one would need more copies of the images to achieve

the same performance. However, there are not anything in the background material

used in this thesis, that indicates that any of the containers would perform significantly

better than the others on such a test, but nonetheless, it is still worth looking into.

63

As mentioned, there were a few challenges along the way, which limited the tests that

could be conducted. When it came to a larger FPGA design, it proved to be difficult

to find a design that was large, but at the same time simple enough in terms of file

structure and modules, to actually use with the open source tools. One of the other

major difficulties, was finding a good way of collecting and measuring the memory and

CPU usage of the container. In the experiments that were conducted here, the data

collection process was limited to “docker stats” and “time”. However, it was attempted

to utilize other tools to collect data in a more sophisticated manner. By utilizing a

plugin from a service named SignalFx [71], it was possible to collect and plot real-time

data from the containers. However, it was difficult to collect data with a high enough

resolution for the results to be usable. Furthermore, the plugin used a lot of CPU and

memory itself, which would have made it difficult to run multiple containers in parallel,

and it would have introduced a great source of inaccuracy in the CPU measurements.

Therefore, if one wished to test multiple containers at once, this would have to be run

in, for example the cloud, but the time frame of the project did not allow for this to be

done.

Chapter 5

IDE8 Integration and Evaluation

of AWS FPGA Development

In this chapter, it will be looked into the IDE8 cloud solution. It will be shown how the

solution from the previous section is integrated with IDE8, and how it can be integrated

further with IDE8. Furthermore, the AWS FPGA developer AMI (Amazon Web Services

FPGA developer Amazon Machine Image) is tested in this chapter.

5.1 Integrating Project IceStorm with IDE8

The solutions presented in the previous chapter was developed and tested locally on

a desktop. However, once the initial design was finished, it was tested in the IDE8

environment. Because the stack had to be integrated with the backend system of IDE8,

and this had to be done by an IDE8 developer, it was only attempted to integrate the

monolithic solution with IDE8, and only basic functionality was added. How this was

done is not included in this thesis, as it was done by others. In this thesis work, it

was verified that the solution functioned properly, and that it was usable. Furthermore,

some proposals were made regarding how to integrate the board agent with the tool

chain.

65

66

5.1.1 Functionality

Here, it will be shown and explained the different features that are currently available

with the IDE8 FPGA stack. All the Figures shown in this section are screen shots from

the IDE8 website [72].

Figure 5.1: Available stacks in IDE8

Figure 5.1 displays the different development stacks that are currently available with

IDE8. The IceStorm stack is the one developed in this thesis.

Figure 5.2: Available examples in the IceStorm stack

Figure 5.2 shows the different file directories available to the user. The “Files” directory

and “Examples” directory were explained in Section 3.2. There is also a directory named

“Resources”, but it is currently not used in the IceStorm stack. The figure also shows

the examples that are available in the IceStorm stack. All the examples come from the

IceStorm git repository and are made available for the user to experiment with.

67

Figure 5.3: Files included in an example

In Figure 5.3, the hx8kboard example has been imported into the users file directory.

This allows the user to use the files and perform operations on them. The example

comes with a verilog file example.v, hx8kboard.pcf, which is the placement constraint

file used to map outputs correctly on the HX8K development board, and a Makefile used

to build the project.

Figure 5.4: Example options

Figure 5.4 shows some of the options that are available when right clicking on the

example. If one presses the “Build” option, the Makefile will be executed and the

example will go through synthesis and place-and-route.

Figure 5.5: View of the output terminal after running the build command

68

In Figure 5.5, it is shown the output window that appears once the build option is

chosen. The output window shows all the output from all the tools used in the build

process, such as the output information from Yosys and Arachne-pnr.

Figure 5.6: All files generated from the build

After the build is finished, if one looks at the example folder again, one can see that all

the files that were created during the build are available to the user. The files that are

made available are, example.blif, which is the Yosys output, example.asc, which is the

output from Arachne-pnr, example.bin, which is the binary file generated by icepack,

and the example.rpt file which is a timing report generated by the icetime tool.

However, when a user is in the midst of a project, as stated in Section 2.5, one typically

does not build the entire project, and one does a lot of quick testing that would be

impractical to put in a Makefile. Hence, it is important to be able to interact with the

individual tools. In IDE8, the user can open a bash terminal window, allowing the him

or her to interact with the tools inside the container.

Some of the basic functionality however, is yet to be implemented into the IDE8 FPGA

solution. The main part that is still missing is the integration with the Board agent,

which allows one to connect and download the design onto an FPGA. This will however

be explained in more detail in Section 5.1.2.

Even though the board agent does not support the IceStorm stack yet, there has already

been set up a development board that is connected to IDE8.

69

Figure 5.7: Live video feed of the hx8k board

Figure 5.7 shows the Lattice hx8k development board that is connected to a raspberry pi,

at the IDE8 office. For all the stacks available, IDE8 has one or more devices connected

to it, allowing users to test their design. Each device has a live video feed so that one can

watch the development board, to, for example, verify that LEDs are blinking correctly.

5.1.2 Board Agent

An essential part of the FPGA development work flow is the possibility to test the design

on an actual FPGA. This is one of the features IDE8 aims to offer. In the previous

section, it was mainly focused on the Workspace Agent integration. In this section,

integration with Board Agent will be discussed. As previously stated, this feature has

not yet been implemented into IDE8.

There are three essential components involved in downloading code to an FPGA: the

FPGA itself or development board, the binary design file and the iceprog program.

Iceprog is the driver for a FTDI based programmer, mentioned in Section 3.5.

70

Figure 5.8: Overview of Board Agent connecting an FPGA to a Workspace

Figure 5.8 shows a diagram of how the programming of the FPGA could work. The

iceprog driver will be installed in the Project IceStorm stack, regardless of which ar-

chitecture from Chapter 4 that is chosen. The design.bin file is located in the users

file directory, as shown in Figure 5.6. To connect to the FPGA development board,

there will be a virtual USB connection from the FPGA to the Workspace agent. The

virtual USB connection will go through the physical USB connection from the FPGA

to the Board agent, which will expose the USB connection over the WebSocket to the

Workspace agent, and hence, the iceprog driver. This method is quite similar to how

other stacks connect to for example an Arduino, the main difference being that it is the

iceprog driver that needs access to the development board, which is obviously not the

case for an Arduino.

5.2 Testing The AWS FPGA Developer AMI

To get a better understanding of how the AWS (Amazon Web Services) FPGA developer

AMI (Amazon Machine Image) compares to IDE8, getting hands-on experience was

necessary. Hence, it was created an AWS account, where a VM with the FPGA developer

AMI was set up. The AWS F1 instances, which were the virtual machine instances

with FPGAs connected to them, were not tested, as it requires quite some work to

create an FPGA design, and integrate it with the FPGA shell explained in Section 3.3.

Furthermore, the main function of the F1 instances is FPGA utilization, meaning to

use FPGAs in production to accelerate computations, and not development, meaning

71

it is a feature that the IDE8 FPGA development tool chain does not aim to compete

with, at least in the short term. How AWS and IDE8 compares will be discussed further

in Chapter 6, this section will only explain the process of setting up the AWS FPGA

developer AMI, and how the user experience was.

AWS mainly provides IaaS; hence the user has to manage his or her own infrastructure.

When setting up the FPGA developer AMI, one has to go through the same steps to as

when setting up any other VM. The first step is to choose the FPGA developer AMI,

which is available on the AWS marketplace. Then one has to configure the desired VM.

As explained in Section 3.3, the FPGA developer AMI is made by AWS, contains Xilinx

Vivado, and there are no costs associated with utilizing the software. However, there

may be costs associated with renting the underlying infrastructure. In this test, it was

decided to try the only VM that could be used for free, the t2. micro, which has just 1

GiB of memory.

After one has chosen the AMI and what VM instance to run it on, there are a few

steps that are needed to configure the VM. These steps are not exclusive to the FPGA

developer AMI, but are general for all AWS VMs, hence they will not be explained

in detail here. There are several settings for managing the security of the VM, as

shown in Figure 2.3a in Section 2.4.6, when one is utilizing an IaaS, it is mainly the

users responsibility to manage the security. However, AWS has several default security

options, so that one can set up the VM without having to know the intricate details of

the security settings. One also has to choose a storage medium, like an SSD disk, to

store a snapshot of the AMI, so that the files created within the VM can be stored. A

snapshot essentially stores the entire VM and its state, so that it can be easily accessed

at all times. The disk size for the FPGA developer AMI has to be at least 70 GB.

To have secure access to the VM one must also generate private keys, that are used to

connect to it.

Once the VM is launched one can connect to it. To connect to the VM one has to use

a tool named Putty [73].

72

Figure 5.9: Startup screen for the FPGA developer AMI

After one has connected to the VM using Putty and logged in, one is presented with

the startup screen shown in Figure 5.9. Here, one is presented with the file locations

of the installation scripts to install the Vivado GUI. The AMI already comes with the

command line tools for Vivado pre-installed, but if one wish to utilize the GUI, one has

to run setup gui.sh

After the GUI was installed, it was needed to download the Xming tool [74] to be able to

use the GUI on a Windows computer. The GUI is the same as if one were to utilize the

already free Vivado software. However, to run the GUI on the t2. micro instance proved

to be a slow and unpleasant experience. Therefore, if one wishes to use the Vivado GUI,

one should use a more powerful VM instance. Other than that, to summarize, the user

experience of the FPGA developer AMI was very similar to running Vivado locally on

a desktop.

Chapter 6

Discussion

6.1 IDE8 vs Amazon and The FPGA Infrastructure Solu-

tion

There have been presented two other options other than IDE8 in this thesis, the AWS

FPGA developer AMI and the FPGA infrastructure solution presented in Section 3.4.

Here, it will be discussed what their differences are, and what advantages and disad-

vantages IDE8 has compared to them, and also if there are any features that could be

taken from any of these solutions and be implemented into the IDE8 FPGA stack in the

future.

Regarding the AWS solution, it is important to notice that it consist of two separate

parts. The main part of the AWS solution is the AWS F1 instances, which provides a

VM combined with high-performance FPGAs to be used to accelerate computational

tasks. The other part is the FPGA developer AMI, which is an FPGA development

environment that can be run on any AWS VM. As the IDE8 platform is mainly meant

to be a development platform, the F1 instances are outside the scope of the IDE8 FPGA

tool chain. Therefore, only the FPGA developer AMI will be discussed.

The FPGA infrastructure solution described in Section 3.4, is obviously IaaS (Infras-

tructure as a Service), and this goes for AWS as well. Both solutions will require the

user to manage his or her own infrastructure. The IDE8 solution works more as a PaaS

(Platform as a Service), implying that the underlying infrastructure is managed by the

73

74

cloud provider. Managing the infrastructure offers a lot of flexibility, but also adds some

complexity. For a hardware developer, configuring VMs may be somewhat unfamiliar

territory, which may lead to inefficient use of resources. If one wishes to gain the full

benefits of utilizing an IaaS, one should be able to utilize multiple types of VMs for

different steps in the development process. One example could be to switch from a more

general-purpose machine to a more compute optimized machine when one is ready to

run synthesis and place-and-route on a design. Even if one is able to set up a simple

VM and use it for FPGA development, it is a more difficult task to manage VMs in

an effective manner, to optimize for cost and time for a project. For smaller projects,

this extra layer of complexity and management may not be desired. The FPGA infras-

tructure solution aims to remove some of this complexity, by having the compilation

and build of a project handled in the background. Hence, the user does not have to

manage several VMs that are designed for different aspects of the design process, and

only manage a single VM instance, which is the one used for writing code and doing

behavioral verification. With the IDE8 solution, one does not have to manage any in-

frastructure. The development environment is available through a web browser, and the

user’s Workspace is instantly available once the user has logged in. This is one of the

advantages of utilizing containers to create the Workspace, as they can be started much

quicker than a VM. However, with this simplified process, compared to an IaaS solution,

the user cannot manage how much computing power is allocated to perform task such as

synthesis and place-and-route. Currently the limits of how much memory a container is

allowed to use is set in the backend system. However, it would be possible to allow the

user to set these limits, or at least present the user with some performance options, for

example high, medium, or low speed synthesis. This would allow the user to get some of

the same flexibility as with an IaaS solution without introducing any more complexity.

The AWS FPGA developer AMI provides Xilinx’s Vivado tool for FPGA development,

with several features. The FPGA infrastructure solution does not specify what tools

or development environment that is going to be included in their solution. However,

their general idea is that the developer should be able to choose from several tools

from different FPGA providers. The IDE8 FPGA stack is based on the open source

project, Project IceStorm. The FPGA development space is primarily dominated by

closed source and proprietary technology. The two largest FPGA providers Intel and

Xilinx, both have their own closed source tools, Quartus and Vivado. Creating open

75

source tools for all FPGAs without the help of the FPGA providers is probably an

impossible task. Project IceStorm was made possible by reverse engineering the bit

stream of the Lattice iCE40 FPGA, which in and of itself is a complex task. When one

also factors in that the Lattice FPGA was chosen specifically because it is one of the

simpler FPGAs without a lot of custom functionality, it becomes clear that to do the

same for e.g. the Xilinx UltraScale FPGA used in AWS’s F1 instances is impossible

to achieve, at least in a timely fashion. Hence, the tools available with AWS are a lot

more to viable to be used, especially for the industry, compared to IDE8. For student

use, and to gain development experience, the IceStorm tools provided with IDE8 may

be sufficient. However, as stated earlier, the goal of this thesis was to get a working

prototype, and it manly focused on the core elements of the FPGA development flow,

namely synthesis, place-and-route and assembling. To get a more usable solution, more

tools are needed, for example behavioral- and post-synthesis simulation tools. There

exist open source tools for this, which are possible to integrate into IDE8.

Another type of tool that is included with Vivado, hence AWS, is Vivado HLS. It has

become clear over the last few years that High-Level Synthesis is becoming more and

more popular. Several large-scale projects utilize HLS and end up saving huge amounts

of time and only losing a little bit of performance. So, it is necessary to ask whether

traditional HDL development will cease to exist. For many commercial applications, it

is probably true that the need for verilog and VHDL programmers will be significantly

reduces as HLS tools keep improving. However, there is always going to be a need for

someone to understand the underlying hardware, and especially for educational purposes

traditional low-level programming will still be a vital part of the curriculum in order for

students to gain an understanding of how digital circuits works. Hence, especially for

student users, which is IDE8 main user group at the moment, the IDE8 FPGA stack

does not need to include HLS tools to be relevant. However, there does exist several

open source HLS tools that could be integrated with IDE8.

It is clear that it will be hard to compete in the FPGA development market with only

open source tools. Therefore, another approach entirely for IDE8, is to have the FPGA

tool providers build their own stacks in the IDE8 framework. This is a possibility that

is already being looked into with other stacks within IDE8. This approach is somewhat

similar to the one proposed with the FPGA infrastructure solution, where one can

choose between different development environments. The approach would have to be

76

modified, as IDE8 is web-based, while the FPGA infrastructure solution aims to provide

the development environment through virtual desktops like AWS. The GUI components

of the tools would have to be made compatible for web viewing, but several features of

the GUI could be removed, as IDE8 already provides some of the features like an IDE

and a file directory overview. How feasible a solution like this is, is unknown, but it

could certainly provide a lot of benefits to the FPGA development process.

The final feature that separates the different solutions, is the ability to test the design

on an actual FPGA. The closest one can get to this with AWS, are the F1 instances.

However, they are not intended for testing, but for being used for computations. To

utilize the F1 units one has to integrate the design with the AWS shell, found in the AWS

FPGA HDK, to be able to communicate with the FPGA. For testing purposes, this is

not a desired approach. One of the FPGA infrastructure solution s major proposals was

that the cloud provider should invest into an FPGA farm that is available for the users

to test their design. It is proposed that multiple types of FPGAs should be available,

with different sizes and from different vendors. IDE8 utilizes the board agent, that will

in the near future be able to connect a remote FPGA to the IDE8 platform. This feature

allows the user to both access remote FPGAs managed by IDE8, or to download the

agent to a desktop, and then connect a local device to the IDE8 platform. This method

allows for a solution much like what the FPGA infrastructure solution aims to provide,

IDE8 can connect and manage multiple devices and allow users to access them. As

shown in Figure 5.7, IDE8 provides live video feed to the devices, so that visual tests,

such as LED blinking, may be conducted. Each device that is connected to the IDE8

platform and is managed by IDE8 needs a raspberry Pi or something equivalent to run

the board agent and the video feed. Since the board agent can run in such a lightweight

environment, the costs of scaling to multiple devices is not very large. However, it

remains untested, how well the entire solution would scale if one were to add hundreds,

maybe thousands of devices, not just regarding FPGAs, but all types of devices. The

current IDE8 architecture does probably not support the bandwidth required to have

that many devices connected to it.

As stated in section 2.2, containers are a much more lightweight way of providing virtual

computer environments than virtual machines. Because the stacks in IDE8 are container-

based, it is possible to scale IDE8 to more users, and use a significantly smaller amount

of storage space than with AWS. In Section 5.2, it was explained that one needs at least

77

70 GB of storage to store a snapshot of the users development environment (VM) in

AWS. This means that for each user of the FPGA developer AMI, at least 70 GB of

storage is required, even though AWS might have some backend solution to dynamically

adjust how much storage a user actually needs. IDE8’s web-based container solution

will require much less than 70 GB. AWS’s VM solution provides a separate copy of the

Vivado tools for each user, while IDE8’s container solution allows several users to share

the same copy of the tools (Docker image). Even if multiple copies of the tools have

to be made, the total size of the tools would still be a lot less than what is required

with AWS. To estimate the storage space an additional user in IDE8 would require is

difficult, as it has not been entirely decided which of the solutions from Chapter 4 that

is going to be used. Furthermore, it is not clear what tools that are going to be added

to the solution in the future.

To summarize, it is clear that the FPGA tools provided with the AWS FPGA developer

AMI (Vivado), are a lot more powerful than the tool chain currently available in IDE8.

However, in the future many of the features, such as HLS, can be offered in IDE8

with open source tools. For IDE8 to be able to keep up with the FPGA industry,

proprietary closed source tools are probably needed. To achieve this, a collaboration

with the FPGA vendors could be a possibility. It is clear that providing a web-based

development environment for FPGAs has a lot of merit to it. It is significantly simpler for

a user to get started developing than with a VM-based solution like AWS. Furthermore,

IDE8’s container-based solution will probably require less resources to facilitate a user

base of a given size.

6.2 Which Architecture is Best Suited for IDE8

In Chapter 4, the Project IceStorm components were installed in Docker containers in

three different ways.

The results obtained from measuring and analyzing the image sizes, clearly shows that

splitting the tool chain into multiple containers is beneficial. Utilizing the 3-container

solution will never cost more disk space than the 1-container solution, and in most

cases, the 3-container solution would take up significantly less space. Furthermore, it

was clear that utilizing multi-stage builds provided even more efficient disk utilization.

78

Hence, in terms of overall image size, it is clear that the 3-container solution, which

utilizes multi-stage, is the better choice.

One test that was executed in this thesis in order to detect any performance difference

between the solutions, was the test comparing the execution time of solutions when

the number of syntheses and place-and-routes was increased. This test executed an

increasing amount of syntheses and place-and-routes, from 1 to 250. What this test was

designed to figure out was to see if there were any difference in execution time when a

container was deployed from a smaller image, compared to the monolithic image. There

were however, not discovered any significant differences in the results, hence showing

that the 1-container solution did not perform any worse than the Yosys container or

the Arachne-pnr container. This test shows that the startup and shutdown time of the

containers are very similar. Hence, this test did not provide any clear arguments for or

against any of the solutions. This was not too unexpected, as containers are supposed

to be lightweight and should be able to start rapidly.

To further compare the different architectures, their CPU and memory utilization was

measured, or rather how fast the containers were able to perform synthesis or place-

and-route, given certain memory and CPU constraints. The goal of this test was to

examine if there was any significant difference between the monolithic architecture and

the microservice architecture. For example, if the monolithic container, made from a

larger image, would require more memory and CPU than the microservice containers.

From the tests conducted here, it was concluded that this is not the case, there were no

clear trends that indicated that one of the solutions were more efficient than the other.

One potential drawback of a solution consisting of multiple containers is the additional

complexity to the overall FPGA development solution. With a monolithic approach, all

files generated inside a container, such as a blif file from Yosys, can be instantly used by

the other tools inside the container. In a microservice solution, the file must be sent from

the container to the users file directory, and then sent into the new container for further

processing. With larger design files this could introduce some latency in the system. One

example of how the microservice architecture can be more difficult to implement is the

build functionality, shown in Figure 5.4. The build option finds the Makefile of a project

and uses it to build the project. When all the tools used are in different containers, the

build process becomes a lot more complex since IDE8 has to find the correct container

79

for each instruction in the Makefile. However, during a FPGA design process, there are

not done a lot of synthesis and place-and-route operations consecutively. Therefore, the

overall impact this will have on a project is small. However, when more features are

introduced, there might be more file transfers between containers, and if there is any

noticeable latency in the file transfers, this may provide a worse user experience.

Even though there were no significant difference in the resource usage of the monolithic

container compared to the other containers, there are several other benefits of utilizing a

microservice approach compared to a monolithic approach. One of the main advantages

is the flexibility one gets, as services can be added and removed without affecting the

other services in the solution. However, it is very important to be aware of that even

though the 1-container solution has been referred to as a monolithic solution, it could still

be considered a microservice, as there is no strict definition of how small a microservice

has to be. The 1-container solution can still have other microservices attached to it.

In a more holistic view of IDE8, each stack within IDE8 can be seen as a microservice,

regardless of how it is built up internally.

It is difficult to conclude which of the architectures that would be the optimal one to use

in IDE8, as there were no scaling differences detected with regards to resource usage.

With regards to image storage space, there is a clear benefit of utilizing a solution with

multiple containers. It is furthermore, clear to see that in order for the FPGA tool chain

to be usable, there has to be more features added. Hence, a microservice approach would

be the best way to go, as it allows for simpler integration with other services later on.

However, as mentioned previously, in a larger sense, there is no problem with defining

the 1-container solution as a microservice, the service would just be a bit larger than

in the case with 2 or 3 containers. This means that there are no problems with adding

other microservices to the 1-container solution.

80

(a) (b)

Figure 6.1: Example of integrating both the 1- and 3-container solution with other
microservices

Figure 6.1 shows a simple illustration of how additional microservices can be connected

to both the 1- and 3-container solution. Therefore, the question becomes whether the

tool chain needs to be split up into more than 1 container. As stated previously, one

benefit of utilizing microservices, is to ability to add, remove and exchange services

efficiently. Splitting the tool chain into three parts would allow for IDE8 to experiment

further with for example other synthesis tools like Icarus Verilog. Furthermore, if a new

place-and-route tool for other FPGAs is created, it would be much easier to include it

in the tool chain. Also, considering the typical use patterns of FPGA tools, referring

to that synthesis, place-and-route, and bitstream generation is rarely executed in quick

succession, it is unlikely that any performance improvement gained from not having

to transfer files between containers would come into play very often. The advantages

regarding flexibility with further development of the FPGA tool chain, combined with

the improved utilization of disk space that the smaller images provide, makes it clear

that the 3-container solution is the best choice going forward.

Chapter 7

Conclusion

In this thesis, it has been developed an FPGA tool chain by using Docker containers,

allowing it to be integrated with the IDE8 developer framework. Three different con-

figurations of the tool chain were built and compared with regards to image size, and

execution time with different CPU and memory constraints. The results show that the

solutions consisting of more containers can utilize less disk space due to how layers in

Docker images are only stored once. Furthermore, by utilizing multi-stage builds, the

image size of the Arachne-pnr and IceStorm containers was reduced by 73% and 51%

respectively. Furthermore, the container containing both Arachne-pnr and IceStorm

was reduced in size by 60%. The results obtained from testing the CPU and memory

utilization of the containers however, shows that there is no significant difference in how

much resources the different solutions require.

There are several other advantages of a microservice approach compared to a monolithic

approach. By utilizing a microservice approach, it becomes a lot simpler to add new

services. The FPGA tool chain built in this thesis is far from complete, several features

needs to be added. Therefore, a microservice solution will be the preferred approach.

However, as stated earlier, the 1-container solution can still be considered a microser-

vice, so it is still not clear that dividing the tool chain built in this thesis is favorable.

However, running the synthesis, place-and-route and assembling in different containers

will provide increase freedom in interchanging the components. There has not been

done any comparison of different open source tools in this thesis. It is therefore possible

that one wishes to for example switch Yosys with Icarus Verilog at some point. This

81

82

would be a lot easier and can be done quite seamlessly if the components are run in

separate containers. Therefore, it is concluded with that splitting up the tool chain into

3 containers would be the best solution going forward, as the flexibility of running the

components in separate containers, combined with the improved disk space utilization,

is a significant advantage.

In this thesis, it was also looked into other cloud-based FPGA tools, primarily the AWS

FPGA developer AMI and F1 instances. Also, another paper [12] was discussed, as it

proposed some alternative ways of offering FPGA development in the cloud. However,

it is clear that IDE8 can offer a very different way of developing FPGAs in the cloud,

as it is a web-based PaaS solution compared to the VM-based IaaS solution that AWS

offers. The IDE8 board agent is also a good way of allowing users to utilize both their

own FPGAs, as well as IDE8’s FPGAs. However, it remains to be tested how this board

agent scales, if IDE8 wishes to offer a larger number of devices. It is also concluded that

if IDE8 wishes to compete with the industry, open source tools are rather limited, and a

cooperation with FPGA tool providers could be one way of offering better FPGA tools.

7.1 Future Work

There have been mentioned a few components in this thesis that can be used in the

tool chain, like debugging and verification tools. These are essential tools for FPGA

development. However, here we have only focused on implementing a solution with the

main components: synthesis, place-and-route and assembling. To further develop this

solution, and make it more of a viable product, it should be investigated further if these

tools, or if there exist other tools, that could be integrated with this solution.

In this thesis, only the Ubuntu 14.04 base image was used for the different Docker

configurations. With its size of approximately 220 MB it generates introduces quite a

bit of overhead. On docker hub, there exist an abundance of various Linux images, some

which are considerably more lightweight than the image used here. If one were to find

a smaller image that still contains all the necessary components for the IceStorm tools

to function, this could significantly reduce the overall image sizes.

As mentioned in Section 4.4, the tests done in this thesis has some limitations with

regards to measuring the actual scalability of the architectures. Hence, conducting tests

83

where multiple containers are run in parallel and the memory usage and CPU usage

is along with execution time is measured, would provide a much clearer view of how

the different solutions scales and could possibly discover bottlenecks that has not been

thought of or detected in this thesis.

Furthermore, to build a complete solution, the Board Agent should be integrated with

the IceStorm Stack. This would be a very important step in providing a complete

FPGA tool chain solution. However, as with most of the tool chain integration with

IDE8, this is a job that probably has to be done by the IDE8 developers. Furthermore,

the 1-container solution that is currently used in IDE8, should be swapped out with the

3-container solution.

Appendix A

Dockerfiles and Shell Scripts

This appendix includes all the Dockerfiles and shell scripts created and used in this

thesis. The repository containing all the code is available at [2]. However, the repository

is a little difficult to navigate and contains several branches, and several unused files.

Therefore, the code that was actually used is included here.

Note that the variable “number of synth” in the top-level tests is also used in the tests

that execute place-and-route. The variable just sets the amount of iterations, regardless

of what operation is executed within the for-loop.

Monolithic Dockerfile:

FROM ubuntu:14.04

RUN sudo apt-get update

RUN sudo apt-get -y install build-essential clang bison flex libreadline-dev \

gawk tcl-dev libffi-dev git mercurial graphviz \

xdot pkg-config python python3 libftdi-dev

RUN git clone https://github.com/cliffordwolf/icestorm.git icestorm

WORKDIR icestorm

RUN make -j$(nproc)

RUN sudo make install

RUN git clone https://github.com/cseed/arachne-pnr.git arachne-pnr

WORKDIR arachne-pnr

RUN make -j$(nproc)

RUN sudo make install

RUN git clone https://github.com/cliffordwolf/yosys.git yosys

85

86

WORKDIR yosys

RUN make -j$(nproc)

RUN sudo make install

Yosys Dockerfile:

FROM ubuntu:14.04

RUN sudo apt-get update

RUN sudo apt-get -y install build-essential clang bison flex libreadline-dev \

gawk tcl-dev libffi-dev git mercurial graphviz \

xdot pkg-config python python3 libftdi-dev

RUN git clone https://github.com/cliffordwolf/yosys.git yosys

WORKDIR yosys

RUN make -j$(nproc)

RUN sudo make install

Arachne + IceStorm single-stage Dockerfile:

FROM ubuntu:14.04

RUN sudo apt-get update

RUN sudo apt-get -y install build-essential clang bison flex libreadline-dev \

gawk tcl-dev libffi-dev git mercurial graphviz \

xdot pkg-config python python3 libftdi-dev

RUN git clone https://github.com/cliffordwolf/icestorm.git icestorm

WORKDIR icestorm

RUN make -j$(nproc)

RUN sudo make install

RUN git clone https://github.com/cseed/arachne-pnr.git arachne-pnr

WORKDIR arachne-pnr

RUN make -j$(nproc)

RUN sudo make install

Arachne + IceStorm multi-stage Dockerfile:

FROM ubuntu:14.04 as builder

RUN sudo apt-get update

RUN sudo apt-get -y install build-essential clang bison flex libreadline-dev \

87

gawk tcl-dev libffi-dev git mercurial graphviz \

xdot pkg-config python python3 libftdi-dev

RUN git clone https://github.com/cliffordwolf/icestorm.git icestorm

WORKDIR icestorm

RUN make -j$(nproc)

RUN sudo make install

WORKDIR /

RUN git clone https://github.com/cseed/arachne-pnr.git arachne-pnr

WORKDIR /arachne-pnr

RUN make -j$(nproc)

RUN sudo make install

FROM ubuntu:14.04

COPY --from=builder /icestorm /icestorm

COPY --from=builder /arachne-pnr .

COPY --from=builder /usr/local/bin/i* /usr/local/bin/

Arachne single-stage Dockerfile:

FROM ubuntu:14.04

RUN sudo apt-get update

RUN sudo apt-get -y install build-essential clang bison flex libreadline-dev \

gawk tcl-dev libffi-dev git mercurial graphviz \

xdot pkg-config python python3 libftdi-dev

RUN git clone https://github.com/cliffordwolf/icestorm.git icestorm

WORKDIR icestorm

RUN make -j$(nproc)

RUN sudo make install

WORKDIR /.

RUN git clone https://github.com/cseed/arachne-pnr.git arachne-pnr

WORKDIR arachne-pnr

RUN make -j$(nproc)

RUN sudo make install

WORKDIR /icestorm

RUN make -j$(nproc)

RUN make uninstall

WORKDIR /.

88

RUN rm -f -r icestorm

Arachne multi-stage Dockerfile:

FROM ubuntu:14.04 as builder

RUN sudo apt-get update

RUN sudo apt-get -y install build-essential clang bison flex libreadline-dev \

gawk tcl-dev libffi-dev git mercurial graphviz \

xdot pkg-config python python3 libftdi-dev

RUN git clone https://github.com/cliffordwolf/icestorm.git icestorm

WORKDIR icestorm

RUN make -j$(nproc)

RUN sudo make install

WORKDIR /.

RUN git clone https://github.com/cseed/arachne-pnr.git arachne-pnr

WORKDIR arachne-pnr

RUN make -j$(nproc)

RUN sudo make install

FROM ubuntu:14.04

COPY --from=builder /arachne-pnr .

IceStorm single-stage Dockerfile:

FROM ubuntu:14.04

RUN sudo apt-get update

RUN sudo apt-get -y install build-essential clang bison flex libreadline-dev \

gawk tcl-dev libffi-dev git mercurial graphviz \

xdot pkg-config python python3 libftdi-dev

RUN git clone https://github.com/cliffordwolf/icestorm.git icestorm

WORKDIR icestorm

RUN make -j$(nproc)

RUN sudo make install

IceStorm multi-stage Dockerfile:

FROM ubuntu:14.04 as builder

89

RUN sudo apt-get update

RUN sudo apt-get -y install build-essential clang bison flex libreadline-dev \

gawk tcl-dev libffi-dev git mercurial graphviz \

xdot pkg-config python python3 libftdi-dev

RUN git clone https://github.com/cliffordwolf/icestorm.git icestorm

WORKDIR icestorm

RUN make -j$(nproc)

RUN sudo make install

FROM ubuntu:14.04

COPY --from=builder /icestorm .

COPY --from=builder usr/local/bin /usr/local/bin

Monolithic synthesis top-level:

#!/bin/bash

read number_of_synth cpu_limit mem_limit

cd ../monolithic_architecture/

time ./synth_test.sh $number_of_synth $cpu_limit $mem_limit

Monolithic synthesis test:

#!/bin/bash

for ((i=1; i<=$1; i++))

do

echo "iteration $i"

sudo docker run -it -m $3 --cpus $2 --name monolithic monolithic \

yosys -p "synth_ice40 -blif rot.blif" /rot.v

sudo docker stop monolithic

sudo docker rm monolithic

done

Yosys top-level:

#!/bin/bash

read number_of_synth cpu_limit mem_limit

90

cd ../microservice_architecture/yosys/

time ./synth_test.sh $number_of_synth $cpu_limit $mem_limit

Yosys test:

#!/bin/bash

for ((i=1; i<=$1; i++))

do

echo "iteration $i"

sudo docker run -it -m $3 --cpus $2 --name yosys yosys \

yosys -p "synth_ice40 -blif rot.blif" rot.v

sudo docker stop yosys

sudo docker rm yosys

done

Monolithic pnr top-level:

#!/bin/bash

read number_of_synth cpu_limit mem_limit

time ./pnr_test_3.sh $number_of_synth $cpu_limit $mem_limit

Monolithic pnr test:

#!/bin/bash

for ((i=1; i<=$1; i++))

do

echo "iteration $i"

sudo docker run -it -m $3 --cpus $2 --name monolithic monolithic \

arachne-pnr -d 1k -p /rot.pcf /rot.blif -o rot.asc

sudo docker stop monolithic

sudo docker rm monolithic

done

Arachne and IceStorm top-level:

#!/bin/bash

91

read number_of_synth cpu_limit mem_limit

time ./pnr_test_2.sh $number_of_synth $cpu_limit $mem_limit

Arachne and IceStorm test:

#!/bin/bash

for ((i=1; i<=$1; i++))

do

echo "iteration $i"

sudo docker run -it -m $3 --cpus $2 --name arachne_pnr arachne_and_ice_multi \

arachne-pnr -d 1k -p /rot.pcf /rot.blif -o rot.asc

sudo docker stop arachne_pnr

sudo docker rm arachne_pnr

done

Arachne top-level

#!/bin/bash

read number_of_synth cpu_limit mem_limit

time ./pnr_test_1.sh $number_of_synth $cpu_limit $mem_limit

Arachne test:

#!/bin/bash

for ((i=1; i<=$1; i++))

do

echo "iteration $i"

sudo docker run -it -m $3 --cpus $2 --name arachne_pnr arachne_pnr_multi \

arachne-pnr -d 1k -p /rot.pcf /rot.blif -o rot.asc

sudo docker stop arachne_pnr

sudo docker rm arachne_pnr

don

Bibliography

[1] Kristian Aalde. Cloud based toolchain for hardware development. 2017. December.

Project report. NTNU.

[2] Kristian Aalde. Ide8 fpga stack. URL https://bitbucket.org/KristianAalde/

ide8-fpga_stack. bitbucket repository containing the code of this project.

[3] Jose De la Rosa and Kent Baxley. Lxc containers in ubuntu server 14.04 lts.

URL http://en.community.dell.com/techcenter/os-applications/w/wiki/

6950.lxc-containers-in-ubuntu-server-14-04-lts. Last visited: 06.02.18.

[4] Microsoft. Why a microservices approach to building applications?,

2018. URL https://docs.microsoft.com/en-us/azure/service-fabric/

service-fabric-overview-microservices. Last visited: 20.02.18.

[5] Xilinx. Fpga vs. asic design flow, December 2017. URL https://www.xilinx.com/

video/fpga/fpga-vs-asic-design-flow.html.

[6] Rick Mak. Dockerizing our python stack. URL https://code.oursky.com/

dockerizing-our-python-stack/.

[7] Docker. About storage drivers, . URL https://docs.docker.com/storage/

storagedriver/#container-and-layers. Last visited: 31.05.18.

[8] Docker. Use multi-stage builds, . URL https://docs.docker.com/develop/

develop-images/multistage-build/#use-multi-stage-builds. Last visited:

03.05.18.

[9] Jon Anders Haugum. Ide8 architecture, 2018. Personal communication.

93

https://bitbucket.org/KristianAalde/ide8-fpga_stack
https://bitbucket.org/KristianAalde/ide8-fpga_stack
http://en.community.dell.com/techcenter/os-applications/w/wiki/6950.lxc-containers-in-ubuntu-server-14-04-lts
http://en.community.dell.com/techcenter/os-applications/w/wiki/6950.lxc-containers-in-ubuntu-server-14-04-lts
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices
https://www.xilinx.com/video/fpga/fpga-vs-asic-design-flow.html
https://www.xilinx.com/video/fpga/fpga-vs-asic-design-flow.html
https://code.oursky.com/dockerizing-our-python-stack/
https://code.oursky.com/dockerizing-our-python-stack/
https://docs.docker.com/storage/storagedriver/#container-and-layers
https://docs.docker.com/storage/storagedriver/#container-and-layers
https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds
https://docs.docker.com/develop/develop-images/multistage-build/#use-multi-stage-builds

Bibliography 94

[10] Amazon Web Services. Aws shell interface specification, . URL

https://github.com/aws/aws-fpga/blob/master/hdk/docs/AWS_Shell_

Interface_Specification.md. Last visited: 02.05.18.

[11] Amazon Web Services. Aws fpga: Programmer’s view of the custom logic, .

URL https://github.com/aws/aws-fpga/blob/master/hdk/docs/Programmer_

View.md. Last visited: 02.05.18.

[12] Laurentiu A Dumitru, Sergiu Eftimie, and Ciprian Racuciu. Using clouds for fpga

development-a commercial perspective. Journal of Information Systems & Opera-

tions Management, page 42, 2017.

[13] Clifford Wolf and Mathias Lasser. Project icestorm. URL http://www.clifford.

at/icestorm/.

[14] David Pellerin. Fpga developer ami. URL https://www.slideshare.net/

AmazonWebServices/deep-dive-on-amazon-ec2-f1-instance-may-2017-aws-

online-tech-talks. Last visited: 02.05.18.

[15] Gerald J Popek and Robert P Goldberg. Formal requirements for virtualizable

third generation architectures. Communications of the ACM, 17(7):412–421, 1974.

[16] Joo-Young Hwang, Sang-Bum Suh, Sung-Kwan Heo, Chan-Ju Park, Jae-Min Ryu,

Seong-Yeol Park, and Chul-Ryun Kim. Xen on arm: System virtualization using

xen hypervisor for arm-based secure mobile phones. In Consumer Communications

and Networking Conference, 2008. CCNC 2008. 5th IEEE, pages 257–261. IEEE,

2008.

[17] EN Preeth, Fr Jaison Paul Mulerickal, Biju Paul, and Yedhu Sastri. Evaluation

of docker containers based on hardware utilization. In Control Communication &

Computing India (ICCC), 2015 International Conference on, pages 697–700. IEEE,

2015.

[18] Martin Fowler and James Lewis. Microservices a definition of this new architectural

term. URL https://martinfowler.com/articles/microservices.html. Last

visited: 11.04.18.

[19] Peter Mell, Tim Grance, et al. The nist definition of cloud computing. 2011.

https://github.com/aws/aws-fpga/blob/master/hdk/docs/AWS_Shell_Interface_Specification.md
https://github.com/aws/aws-fpga/blob/master/hdk/docs/AWS_Shell_Interface_Specification.md
https://github.com/aws/aws-fpga/blob/master/hdk/docs/Programmer_View.md
https://github.com/aws/aws-fpga/blob/master/hdk/docs/Programmer_View.md
http://www.clifford.at/icestorm/
http://www.clifford.at/icestorm/
https://www.slideshare.net/AmazonWebServices/deep-dive-on-amazon-ec2-f1-instance-may-2017-aws-online-tech-talks
https://www.slideshare.net/AmazonWebServices/deep-dive-on-amazon-ec2-f1-instance-may-2017-aws-online-tech-talks
https://www.slideshare.net/AmazonWebServices/deep-dive-on-amazon-ec2-f1-instance-may-2017-aws-online-tech-talks
https://martinfowler.com/articles/microservices.html

Bibliography 95

[20] Amazon Web Services. Cloud solutions, . URL https://aws.amazon.com/

solutions/?nc2=h_ql_s&awsm=ql-2. Last visited: 04.06.18.

[21] VV Arutyunov. Cloud computing: Its history of development, modern state, and

future considerations. Scientific and Technical Information Processing, 39(3):173–

178, 2012.

[22] John L. Hennessy and David A. Patterson. Computer architecture A quantitative

approach. Morgan Kaufmann, 5 edition, 2012.

[23] Amazon Web Services. Announcing amazon elastic compute cloud (amazon ec2) -

beta, August 2006. URL https://aws.amazon.com/about-aws/whats-new/2006/

08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/.

[24] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz,

Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A

view of cloud computing. Communications of the ACM, 53(4):50–58, 2010.

[25] Microsoft. What is azure stack? URL https://azure.microsoft.com/nb-no/

overview/azure-stack/. Last visited: 30.05.18.

[26] Apache cloudstack. URL https://cloudstack.apache.org/. Last visited:

30.05.18.

[27] Technopedia. Software stack. URL https://www.techopedia.com/definition/

27268/software-stack. Last visited: 31.05.18.

[28] Sumant Ramgovind, Mariki M Eloff, and Elme Smith. The management of security

in cloud computing. In Information Security for South Africa (ISSA), 2010, pages

1–7. IEEE, 2010.

[29] Rackspace. The difference between private and public cloud, December 2017. URL

https://www.rackspace.com/cloud/cloud-computing/difference.

[30] Michael J Kavis. Architecting the cloud: design decisions for cloud computing

service models (SaaS, PaaS, and IaaS). John Wiley & Sons, 2014.

[31] Microsoft. What is a private cloud?, November 2017. URL https://azure.

microsoft.com/en-us/overview/what-is-a-private-cloud/.

https://aws.amazon.com/solutions/?nc2=h_ql_s&awsm=ql-2
https://aws.amazon.com/solutions/?nc2=h_ql_s&awsm=ql-2
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://azure.microsoft.com/nb-no/overview/azure-stack/
https://azure.microsoft.com/nb-no/overview/azure-stack/
https://cloudstack.apache.org/
https://www.techopedia.com/definition/27268/software-stack
https://www.techopedia.com/definition/27268/software-stack
https://www.rackspace.com/cloud/cloud-computing/difference
https://azure.microsoft.com/en-us/overview/what-is-a-private-cloud/
https://azure.microsoft.com/en-us/overview/what-is-a-private-cloud/

Bibliography 96

[32] Beth Pariseau. Code spaces goes dark after aws cloud security hack, Novem-

ber 2017. URL http://searchaws.techtarget.com/news/2240223024/Code-

Spaces-goes-dark-after-AWS-cloud-security-hack.

[33] Jon Brodkin. Gartner: Seven cloud-computing security risks. Infoworld, 2008:1–3,

2008.

[34] Prasad Saripalli and Ben Walters. Quirc: A quantitative impact and risk assess-

ment framework for cloud security. In Cloud Computing (CLOUD), 2010 IEEE 3rd

International Conference on, pages 280–288. Ieee, 2010.

[35] Yvo Desmedt. Man-in-the-Middle Attack, pages 759–759. Springer US, Boston,

MA, 2011. ISBN 978-1-4419-5906-5. doi: 10.1007/978-1-4419-5906-5 324. URL

https://doi.org/10.1007/978-1-4419-5906-5_324.

[36] 9 ’worst practices’ to avoid with cloud computing, November 2017. URL

https://www.forbes.com/sites/joemckendrick/2014/01/29/9-worst-

practices-to-avoid-with-cloud-computing/#37356db3378c.

[37] 2nd watch cloud security survey: Shared responsibility model confuses cloud cus-

tomers, Sep 28 2017. URL https://search.proquest.com/docview/1943524163?

accountid=12870. Copyright - Copyright NASDAQ OMX Corporate Solutions,

Inc. Sep 28, 2017; Last updated - 2017-09-28.

[38] Amazon Web Services. Shared responsibility model, November 2017. URL https:

//aws.amazon.com/compliance/shared-responsibility-model/.

[39] Microsoft. What does shared responsibility in the cloud mean?, November

2017. URL https://blogs.msdn.microsoft.com/azuresecurity/2016/04/18/

what-does-shared-responsibility-in-the-cloud-mean/.

[40] Andreas Berl, Erol Gelenbe, Marco Di Girolamo, Giovanni Giuliani, Hermann

De Meer, Minh Quan Dang, and Kostas Pentikousis. Energy-efficient cloud com-

puting. The computer journal, 53(7):1045–1051, 2010.

[41] Philipp Hoenisch, Ingo Weber, Stefan Schulte, Liming Zhu, and Alan Fekete. Four-

fold auto-scaling on a contemporary deployment platform using docker contain-

ers. In Alistair Barros, Daniela Grigori, Nanjangud C. Narendra, and Hoa Khanh

http://searchaws.techtarget.com/news/2240223024/Code-Spaces-goes-dark-after-AWS-cloud-security-hack
http://searchaws.techtarget.com/news/2240223024/Code-Spaces-goes-dark-after-AWS-cloud-security-hack
https://doi.org/10.1007/978-1-4419-5906-5_324
https://www.forbes.com/sites/joemckendrick/2014/01/29/9-worst-practices-to-avoid-with-cloud-computing/#37356db3378c
https://www.forbes.com/sites/joemckendrick/2014/01/29/9-worst-practices-to-avoid-with-cloud-computing/#37356db3378c
https://search.proquest.com/docview/1943524163?accountid=12870
https://search.proquest.com/docview/1943524163?accountid=12870
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://blogs.msdn.microsoft.com/azuresecurity/2016/04/18/what-does-shared-responsibility-in-the-cloud-mean/
https://blogs.msdn.microsoft.com/azuresecurity/2016/04/18/what-does-shared-responsibility-in-the-cloud-mean/

Bibliography 97

Dam, editors, Service-Oriented Computing, pages 316–323, Berlin, Heidelberg,

2015. Springer Berlin Heidelberg. ISBN 978-3-662-48616-0.

[42] IBM. Cplex optimizer. URL https://www.ibm.com/analytics/data-science/

prescriptive-analytics/cplex-optimizer. Last visited: 02.06.18.

[43] Poul Lumholtz. Fpga briefing part ii fpga development. URL www.teknologisk.

dk/_root/media/24224_FPGA_briefing_part_2.pdf. Last visited: 13.05.18.

[44] Docker. What is docker, . URL https://www.docker.com/what-docker. Last

visited: 09.04.18.

[45] Docker. Get started, part 1: Orientation and setup, . URL https://docs.docker.

com/get-started/#docker-concepts. Last visited: 13.04.18.

[46] Docker. Swarm mode overview, . URL https://docs.docker.com/engine/

swarm/. Last visited: 04.06.18.

[47] Docker. Get started, part 2: Containers, . URL https://docs.docker.com/get-

started/part2/. Last visited: 13.04.18.

[48] Docker hub. URL https://hub.docker.com/.

[49] Docker. Dockerfile reference, . URL https://docs.docker.com/engine/

reference/builder/. Last visited: 04.04.18.

[50] Docker. Runtime metrics, . URL https://docs.docker.com/config/

containers/runmetrics/#docker-stats. Last visited: 03.05.18.

[51] Digital Ocean. Digital ocean. URL https://www.digitalocean.com/. Last visited:

11.04.18.

[52] Ian Fette. The websocket protocol. 2011.

[53] Amazon Web Services. Amazon ec2 f1 instances, September 2017. URL https:

//aws.amazon.com/ec2/instance-types/f1/.

[54] Amazon Web Services. Amazon ec2 instance types, . URL https://aws.amazon.

com/ec2/instance-types/. Last visited: 02.05.18.

[55] Gibibyte. URL https://no.wikipedia.org/wiki/Gibibyte. Last visited:

31.05.18.

https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
www.teknologisk.dk/_root/media/24224_FPGA_briefing_part_2.pdf
www.teknologisk.dk/_root/media/24224_FPGA_briefing_part_2.pdf
https://www.docker.com/what-docker
https://docs.docker.com/get-started/#docker-concepts
https://docs.docker.com/get-started/#docker-concepts
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/get-started/part2/
https://docs.docker.com/get-started/part2/
https://hub.docker.com/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/config/containers/runmetrics/#docker-stats
https://docs.docker.com/config/containers/runmetrics/#docker-stats
https://www.digitalocean.com/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://no.wikipedia.org/wiki/Gibibyte

Bibliography 98

[56] Amazon Web Services. Amazon ec2 pricing, . URL https://aws.amazon.com/

ec2/pricing/on-demand/. Last visited: 02.05.18.

[57] Amazon Web Services. Fpga developer ami, . URL https://aws.amazon.com/

marketplace/pp/B06VVYBLZZ. Last visited: 01.05.18.

[58] Amazon Web Services. aws-fpga, September 2017. URL https://github.com/

aws/aws-fpga.

[59] Amazon Web Services. Use opencl development environment with ama-

zon ec2 f1 fpga instances to accelerate your c/c++ applications, also f1

instances are now available in us west (oregon) and eu (ireland) regions,

. URL https://aws.amazon.com/about-aws/whats-new/2017/09/use-

opencl-development-environment-with-amazon-ec2-f1-fpga-instances-

to-accelerate-your-c-c-plus-plus-applications-also-f1-instances-

are-now-available-in-us-west-oregon-and-eu-ireland-regions/. Last

visited: 01.05.18.

[60] Zebra on 1 fpga (image classification). URL https://aws.amazon.com/

marketplace/pp/B0719156K8?qid=1525272059272&sr=0-2&ref_=srh_res_

product_title. Last visited: 02.05.18.

[61] Clifford Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/.

[62] University of California Berkeley. Berkeley logic interchange format (blif). https:

//www.cse.iitb.ac.in/~supratik/courses/cs226/spr16/blif.pdf, July 1992.

[63] Cotton Seed. Arachne-pnr, 2015. URL https://github.com/cseed/arachne-pnr.

Last visited: 20.02.18.

[64] Odin ii. URL http://docs.verilogtorouting.org/en/latest/odin/. Last vis-

ited: 14.05.18.

[65] Icarus verilog. URL http://iverilog.icarus.com/. Last visited: 14.05.18.

[66] Vaughn Betz and Jonathan Rose. Vpr: A new packing, placement and routing tool

for fpga research. In International Workshop on Field Programmable Logic and

Applications, pages 213–222. Springer, 1997.

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/marketplace/pp/B06VVYBLZZ
https://aws.amazon.com/marketplace/pp/B06VVYBLZZ
https://github.com/aws/aws-fpga
https://github.com/aws/aws-fpga
https://aws.amazon.com/about-aws/whats-new/2017/09/use-opencl-development-environment-with-amazon-ec2-f1-fpga-instances-to-accelerate-your-c-c-plus-plus-applications-also-f1-instances-are-now-available-in-us-west-oregon-and-eu-ireland-regions/
https://aws.amazon.com/about-aws/whats-new/2017/09/use-opencl-development-environment-with-amazon-ec2-f1-fpga-instances-to-accelerate-your-c-c-plus-plus-applications-also-f1-instances-are-now-available-in-us-west-oregon-and-eu-ireland-regions/
https://aws.amazon.com/about-aws/whats-new/2017/09/use-opencl-development-environment-with-amazon-ec2-f1-fpga-instances-to-accelerate-your-c-c-plus-plus-applications-also-f1-instances-are-now-available-in-us-west-oregon-and-eu-ireland-regions/
https://aws.amazon.com/about-aws/whats-new/2017/09/use-opencl-development-environment-with-amazon-ec2-f1-fpga-instances-to-accelerate-your-c-c-plus-plus-applications-also-f1-instances-are-now-available-in-us-west-oregon-and-eu-ireland-regions/
https://aws.amazon.com/marketplace/pp/B0719156K8?qid=1525272059272&sr=0-2&ref_=srh_res_product_title
https://aws.amazon.com/marketplace/pp/B0719156K8?qid=1525272059272&sr=0-2&ref_=srh_res_product_title
https://aws.amazon.com/marketplace/pp/B0719156K8?qid=1525272059272&sr=0-2&ref_=srh_res_product_title
http://www.clifford.at/yosys/
https://www.cse.iitb.ac.in/~supratik/courses/cs226/spr16/blif.pdf
https://www.cse.iitb.ac.in/~supratik/courses/cs226/spr16/blif.pdf
https://github.com/cseed/arachne-pnr
http://docs.verilogtorouting.org/en/latest/odin/
http://iverilog.icarus.com/

Bibliography 99

[67] Ubuntu 16.04.4 lts (xenial xerus). URL http://releases.ubuntu.com/16.04/.

Last visited: 01.05.18.

[68] Virtualbox. URL https://www.virtualbox.org/. Last visited: 01.05.18.

[69] Docker. Get docker ce for ubuntu, . URL https://docs.docker.com/install/

linux/docker-ce/ubuntu/. Last visited: 01.05.18.

[70] Gnu make. URL https://www.gnu.org/software/make/. Last visited: 21.05.18.

[71] Signalfx. docker-collectd. URL https://github.com/signalfx/docker-

collectd. Last visited: 24.05.18.

[72] Ide8. URL https://staging.ide8.io/. Last visited: 04.06.18.

[73] Putty. URL https://www.putty.org/. Last visited: 21.05.18.

[74] Xming. URL https://sourceforge.net/projects/xming/. Last visited:

21.05.18.

http://releases.ubuntu.com/16.04/
https://www.virtualbox.org/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://www.gnu.org/software/make/
https://github.com/signalfx/docker-collectd
https://github.com/signalfx/docker-collectd
https://staging.ide8.io/
https://www.putty.org/
https://sourceforge.net/projects/xming/

	Project Assignment
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Objective, Limitations and Approach
	1.3 Main Contributions
	1.4 Report Structure

	2 Background
	2.1 Virtual Machines
	2.2 Containers
	2.3 Microservices
	2.4 Cloud Computing
	2.4.1 History
	2.4.2 Public Cloud
	2.4.3 Private Cloud
	2.4.4 Hybrid Cloud
	2.4.5 The Different Service Levels
	2.4.6 Security
	2.4.7 VM- and Container Placement

	2.5 FPGA Development

	3 Previous Work
	3.1 Docker
	3.2 IDE8
	3.3 AWS EC2 F1 and Developer AMI
	3.4 FPGA Infrastructure Solution
	3.5 Project IceStorm
	3.5.1 Yosys
	3.5.2 Arachne-PNR
	3.5.3 IceStorm

	3.6 Other Open Source Tools

	4 FPGA Tool Chain Solution
	4.1 Stack Components
	4.2 Development Environment
	4.3 FPGA Tool Chain
	4.3.1 Monolithic Approach
	4.3.2 Microservice Approach
	4.3.3 Microservice Approach 2

	4.4 Comparison of the Different Implementations
	4.4.1 Image Size
	4.4.2 Performance
	4.4.3 Sources of Inaccuracy, Limitations and Challenges

	5 IDE8 Integration and Evaluation of AWS FPGA Development
	5.1 Integrating Project IceStorm with IDE8
	5.1.1 Functionality
	5.1.2 Board Agent

	5.2 Testing The AWS FPGA Developer AMI

	6 Discussion
	6.1 IDE8 vs Amazon and The FPGA Infrastructure Solution
	6.2 Which Architecture is Best Suited for IDE8

	7 Conclusion
	7.1 Future Work

	A Dockerfiles and Shell Scripts
	Bibliography

