
A Normative Study on Applying Deep
Learning to Native Language
Identification

Iselin Bjørnsgaard Erikssen

Master of Science in Informatics

Supervisor: Björn Gambäck, IDI

Department of Computer Science

Submission date: June 2018

Norwegian University of Science and Technology

i

Abstract

This thesis is a normative study on various approaches within native lan-
guage identification (NLI), with the intention of highlighting the shortcom-
ings and strong points of implementing deep neural networks for this task.
NLI is the task of identifying a person’s first language (L1) based solely on
written and/or spoken output produced in a learned language (L2). The
research is mainly based around the NLI shared tasks, which are workshops
where different teams participate to produce solutions that aims at bettering
NLI performance. The dataset TOEFL11: A Corpus of Non-Native English,
which was distributed in the context of these tasks, will also be used for
the scope of this thesis. Deep neural networks, also commonly referred to
as deep learning, have proven useful in many applications, including other
related fields in natural language processing (NLP). In the most recent NLI
shared task, there proved to still be many unanswered questions regarding
the usefulness of deep neural networks in the field, and how to better utilise
the available data. Through experiments and by studying related work, this
publication aims to bring light to these questions using variations of recur-
rent neural networks as the classification models, specifically long short-term
memory (LSTM) and gated recurrent units (GRU).

iii

Sammendrag

Denne masteroppgaven er en normativ studie p̊a forskjellige tilnærminger
innenfor feltet native language identification (NLI), med den hensikt å bel-
yse og kartlegge de temaene som er mer og mindre brukbare i forhold til
effektiv utnyttelse av dype nevrale nettverk. NLI tar for seg identifisering
av en persons morsmål (L1) bare ved å bruke deres egenproduserte skrifter
og/eller tale i et sekundært spr̊ak (L2). Oppgaven er spesielt inspirert av
forskning gjort i sammenheng med NLI shared task, som er en workshop
hvor forskjellige forskningsteam deltar med sine egne løsninger for å forsøke
å bedre forskningen innen NLI. Datasettet TOEFL11: A Corpus of Non-
Native English som ble distribuert i sammenheng med disse workshoppene
er den samme som brukes i denne masteroppgaven. Dype nevrale nettverk,
ogs̊a ofte kalt for deep learning, har vist seg nyttige i nærliggende felt slik
som naturlig spr̊akprosessering, og det har nylig vært optimisme for å un-
dersøke hvorvidt dette ogs̊a kan gjelde for NLI. I NLI shared task i 2017 var
det et par løsninger som baserte seg p̊a nevrale nettverk, men det gjenstod
fortsatt mange spørsm̊al rundt hva som skal til for å øke prestasjonen. Gjen-
nom eksperimenter, og studie av tidligere verk, skal denne oppgaven forsøke
å belyse dette ved å implementere variasjoner av recurrent neural networks,
spesifikt long short term memory (LSTM) og gated recurrent units (GRU).

Preface

Identifying the origins of an unknown author of a text, or automatic evalu-
ation of second language acquisition works and other similar problem areas
are all theoretically achievable by native language identification. While it is
a relatively young area of research, there has been a big growth of interest
in recent years, and thanks to the NLI shared tasks the field has advanced
considerably. The driving force behind this thesis is to help improving the
field, by focusing on a so far little documented approach; deep neural net-
works in the context of NLI. The most recent contributions to the NLI shared
task 2017 has shown that it is still the traditional approaches that perform
best, and this thesis wants to explore how deep neural networks may perform
better and why they are currently insufficient.

Acknowledgements

A big thanks to Björn Gambäck who kindly agreed to supervise this thesis,
and his continuous help and support throughout the process. A thank you to
the organisers of the NLI shared tasks for creating an arena for this research
field to thrive and improve. And last but not least a thank you to ETS, the
creators of the TOEFL11 dataset, for making this valuable resource for native
language identification research. It is important to note that the opinions
set forth in this publication are those of the author and not ETS.

v

Contents

1 Introduction 1
1.1 Background and motivation 1

1.1.1 The NLI shared task 2
1.2 Goals and research questions 3

1.2.1 Research method . 4
1.2.2 Thesis structure . 4

2 Background Theory 7
2.1 Natural language processing 7
2.2 Native language identification 8
2.3 Machine learning . 9

2.3.1 Artificial neural networks (ANN) 10
2.3.2 Deep neural networks (DNN) 11
2.3.3 Recurrent neural networks (RNN) 12
2.3.4 Long short-term memory (LSTM) 13
2.3.5 Gated recurrent units (GRU) 14
2.3.6 Support vector machines (SVM) 15

2.4 Text preparation . 15
2.4.1 Tokenisation . 15
2.4.2 Stop words . 16
2.4.3 Stemming . 16
2.4.4 Word embeddings . 16
2.4.5 Sequence padding . 18

2.5 Features . 18
2.5.1 N-grams . 18
2.5.2 Part of speech tagging 19

2.6 Tools . 20
2.6.1 Python . 20

vii

viii CONTENTS

2.6.2 TensorFlow . 20

2.6.3 Keras . 21

2.7 Evaluation . 21

2.7.1 F1-score . 21

2.7.2 K-fold cross validation 21

2.8 Dataset . 22

2.8.1 TOEFL11 dataset . 22

2.8.2 Essay data . 23

2.8.3 Speech data . 23

3 Related Work 25

3.1 CEMI (Ircing et al., 2017 . 25

3.2 ETRI-SLP (Oh et al., 2017) 26

3.3 L2F (Kepler et al., 2017) . 26

3.4 ItaliaNLPLab (Cimino & Dell’Orletta, 2017) 27

3.5 UnibucKernel (Ionescu & Popescu, 2017) 27

4 Methodology 29

4.1 Classifiers models . 29

4.1.1 Model environment . 30

4.2 Data preparation . 31

4.2.1 Essay data . 31

4.2.2 Speech transcription data 32

4.2.3 i-vector data . 33

4.3 Features . 33

4.3.1 N-grams . 33

4.3.2 POS tag . 34

4.4 Feature extraction . 34

4.4.1 Word embeddings . 34

4.4.2 i-vector . 35

4.5 Experiment plan . 35

4.5.1 Experiment flow . 35

4.5.2 Separate testing . 36

4.5.3 Fusion testing . 36

4.5.4 Word embeddings . 37

4.5.5 Sequence padding . 37

4.5.6 Evaluation . 38

CONTENTS ix

5 Experiment Results 39
5.1 Fused Classifier . 39
5.2 Structure . 39

5.2.1 GRU vs. LSTM . 42
5.2.2 Early stopping . 42
5.2.3 K-fold cross validation 42

5.3 Essay data . 43
5.3.1 Preparation is key . 43
5.3.2 Word n-gram comparison 43

5.4 Speech data . 44
5.4.1 Speech transcriptions 44
5.4.2 Abnormality preservation 45
5.4.3 Characters and words 45
5.4.4 i-vectors . 45

5.5 Word embeddings . 46
5.5.1 tf-idf vectorisation . 46
5.5.2 Word2Vec . 46

5.6 Word padding . 48
5.7 Language performance . 48

6 Discussion 51
6.1 LSTM vs. GRU . 51
6.2 Importance of good word embeddings 51
6.3 Transcriptions not informative enough 52
6.4 Näıve word padding works . 53
6.5 Sequence length is important 54
6.6 Fusion . 54

6.6.1 Essay + Transcript + i-vector 54
6.6.2 Overfitting . 55

6.7 Language confusion . 55
6.8 Comparison to the related works 56

7 Conclusion and Future Work 59
7.1 Conclusion . 59
7.2 Future work . 60

7.2.1 Speech transcription re-evaluation 60
7.2.2 Other classifier models 61

7.3 Encountered problems . 61

x CONTENTS

7.4 Learning outcome . 61

Bibliography 63

List of Figures

2.1 A simple shallow artificial neural network with one hidden layer. 11
2.2 A deep neural network with four hidden layers. 11
2.3 An example of the inner architecture of an LSTM node. 13
2.4 An example of the inner architecture of a GRU node. 14
2.5 Character and word n-grams between the values of 1 to 3. . . 18
2.6 An example of part-of-speech tagging of a short sequence. . . . 19
2.7 The average length of essays by language. 24
2.8 The average length of speech transcripts by language. 24

4.1 The general step by step process of supervised machine learning. 36

5.1 Architecture of the fusion model that had the best score among
the experiments. 41

5.2 The resulting confusion matrix from the best fusion system,
which is the highlighted model in Table 5.1. 49

xi

List of Tables

4.1 Parameters that define the classification environment for LSTM
and GRU. 30

4.2 Features for use in the experiments per data type. 37

5.1 The most prominent results from the different models’ perfor-
mance on the development set. 40

5.2 A comparison of different word n-grams made from the essay
data. 44

5.3 The difference between cutting the sequences before or after
training the Word2Vec model. 48

5.4 Results of word padding essay and speech data, compared to
zero padding. 48

6.1 A comparison of the experiments’ best system and the related
works. 57

xiii

Chapter 1

Introduction

Though processing and analysis of text is nothing new, the research field
of native language identification (NLI) is still young. NLI is the task of
identifying the native language (L1) of a person based solely on their texts,
and speech, produced in a learned language (L2). Being able to identify this
trait of an author is of great interest in several fields, such as authorship
identification, second language acquisition (SLA) research, and recognition
of possible multi-authored texts. This master’s thesis aims to improve the
results in this field by researching the possibilities of applying deep neural
network models, otherwise known as deep learning.

1.1 Background and motivation

When trying to distinguish the difference between texts produced by different
people, there are several traits to one’s choice of expression that separates
one individual from another. The idea that you are able to identify the native
language of an author is based on the belief that speakers of the same lan-
guage will lean towards similar habits, and make the same types of mistakes
when expressing themselves in a L2 language. Fortunately, the advances and
research in and around the field has shown results indicating that this theory
holds truth. There has been shown that there are several traits and patterns
that emerge when people of the same, or similar languages, produce texts in
another language, according to Malmasi and Dras [2017]. For example that
speakers of L1s that have words similar, but not identical, to those of an L2
might be more prone to misspell these as mentioned by Ircing et al. [2017].

1

2 CHAPTER 1. INTRODUCTION

Or other telling features such as leaving out certain pronouns, or erroneous
word conjugations.

1.1.1 The NLI shared task

The NLI shared task is a collaborative event where, based on a common
dataset, different teams with different backgrounds submit their solutions to
contribute to improving research and results in the field. It has so far been
held twice, in 2013 and 2017, with a smaller speech only contribution as a part
of the 2016 Interspeech conference. In the latest 2017 shared task there were
three available tracks to choose from; essay, speech and fusion. By making
more data available, the organisers of the 2017 NLI shared task had hopes for
experimentation with deep learning, which recently has shown great results
in many other areas of natural language processing (NLP) [Malmasi et al.,
2017]. The best performing solutions so far in the shared tasks have been
based on traditional feature based machine learning, such as support vector
machines (SVM) that has been the overall winner. There were also some deep
neural network approaches, however, none of these performed particularly
well compared to the more conventional machine learning solutions. There
has, as far as related papers go, not been pinpointed an exact reason for
these results. Below are descriptions of the three different tracks.

Essay track

The essay track is the task of identifying a candidate’s L1 based only on their
written English essays. In the 2017 shared task the training data was based
on the training and development data used in the 2013 shared task, while
the test data used new and previously unreleased data from the TOEFL11
dataset [Malmasi et al., 2017].

Speech track

The speech track was based on solely utilizing spoken 45-second English
responses of the candidates in order to identify their L1. Since the raw
data of the voice recordings could not be obtained, other means of data
representations had to be used. This was distributed as texts transcribed
from the speech responses, created manually by humans. To enhance the

1.2. GOALS AND RESEARCH QUESTIONS 3

accuracy of the speech systems there were also i-vectors provided in place of
the raw recordings, which was available for the teams who requested them
[Malmasi et al., 2017].

Fusion track

The fusion track is, as the name suggests, a combination of the two earlier
tracks, which means that one is free to use both speech- and essay data.

Since the more data the better, resulting in the possibility to make more
accurate systems, this thesis will focus on the fusion track, which allows the
use of all the shared task data, and has shown great results in the most recent
shared task [Malmasi et al., 2017]. The L1s in question for this classification
task are French, Spanish, German, Turkish, Italian, Arabic, Hindi, Telugu,
Chinese, Korean and Japanese. All the data is collected from the same data
source, the Test of English as a Foreign Language (TOEFL) test, which
evaluates a candidates written and spoken level of English. This data was
released as what is known as the TOEFL11 dataset, where eleven represents
the number of different L1s, and was available to all researchers participating
in the 2017 NLI shared task.

1.2 Goals and research questions

Goal: Improve the performance of deep learning in NLI.

The goal of this thesis is to improve the accuracy of deep learning solutions
in NLI by first locating the reasons for the poor performance until now, and
then try to accommodate these. The following research questions are the
main topics that will be discussed and solved in this work.

Research question 1: What can we learn from the previous shared tasks
about the performance differences between neural networks and conventional
machine learning?

To properly understand the state-of-the-art and the current state of deep
neural nets in NLI it would be wise to utilise the findings of the earlier
shared tasks and their proposed solutions.

4 CHAPTER 1. INTRODUCTION

Research question 2: How can we expand the dataset in a meaningful way
to avoid overfitting?

All effective deep learning applications require a huge amount of data in or-
der to train properly. The bigger the dataset, the better neural network can
be produced. Many have posed questions especially regarding the usefulness
of transcribed speech, which some mean is limited due to the short length.
But in a small field like NLI with limited data available, how can a larger
data collection be acquired?

Research question 3: What features are the most valuable when applying
deep learning to NLI?

All models are different, and there might be some differences in which feature
types and data processing is best suited for each. This thesis will try to
identify some of these, based on the results from the previous shared tasks
and the experiments performed in relation to this thesis.

1.2.1 Research method

To achieve these goals the following research will take an experimental ap-
proach to the effectiveness of expanding the dataset to see if it can boost the
performance of deep learning in NLI. Further, there will be experimentation
with different data representations, models and feature types. The 2017 NLI
shared task has essay, speech and mixed tracks available, with appropriate
data for all of the categories. For the scope of this thesis it is deemed ap-
propriate to utilise data from all of the categories in order to ensure as good
performance as possible. Thus this thesis will fall under the fusion category,
and experiment with all of the available data in an ensemble system.

1.2.2 Thesis structure

Chapter 2 will explain and clarify different concepts, theories and technolo-
gies relevant to this thesis.

Chapter 3 is an introduction to other solutions and works related to our
topic, and will also explain the current state of the art.

1.2. GOALS AND RESEARCH QUESTIONS 5

Chapter 4 presents a description of the experiment environment, setup and
planning.

Chapter 5 is a description of the results of the experiments.

Chapter 6 will present a discussion of the experimental results in relation
to the research questions.

Chapter 7 concludes the thesis, presenting the final outcome of the research
and what still lies ahead for future work.

Chapter 2

Background Theory

In order to fully understand and grasp the concepts and technologies related
to the thesis, this chapter will briefly explain the most important ones. The
topics brought up are the surrounding problem fields, the methods that are
used to solve these, and last but not least a presentation of the dataset.

2.1 Natural language processing

Natural Language Processing (NLP) is a broad field in computer science
in the crossing of artificial intelligence and computational linguistics with a
mixture of different disciplines. This field is concerned with the task of mak-
ing computers understand human language, also known as natural language.
This is backed with the desire to achieve speech recognition, text analysis,
text generation and many more tasks that traditionally were believed to be
a mastery limited to humans. Native Language Identification is a sub-task
within this field, and therefore share many similarities and techniques with
other NLP fields.

NLP and NLI should, however, not be mistakenly interchanged as being
the one and the same thing. NLP is the general field as a whole, whereas
NLI is a small sub-scope which requires its own techniques and methods in
order to work. For example, comparing native English texts to one another,
and non-native to non-native require different mindsets. But to be able to
make meaningful results of an NLI solution, knowledge about NLP and its
conventions is required.

7

8 CHAPTER 2. BACKGROUND THEORY

2.2 Native language identification

Native Language Identification (NLI) is a field within the language processing
realm that aims to solve the problem of identifying a person’s first language
(L1) based solely on their expressions in a learned language (L2). The first
known work addressing the task of NLI was performed by Tomokiyo and
Jones [2001], which focused on identifying whether utterances in English
were made by native or non-native speakers by using a näıve Bayes classifier.

The main principle which this field builds upon is the assumption that a
person’s L1 will dispose them towards certain patterns in a learned L2 lan-
guage, which can be identified generally for people of the same L1 [Ircing
et al., 2017]. This phenomenon is broadly discussed as language transfer,
and has been a controversial topic for a long time in fields such as second
language acquisition (SLA), due to lack of quantitative research on a wide
range of different L1s in regard to practices on the same L2 [Odlin, 2013].
However, based on the success of NLI, and other related work, the theory
seems to hold. While at the same time showing the difficulties when dealing
with languages of similar linguistic origins, and distinguishing between these
in an NLI setting.

A workshop known as the “NLI shared task” is the biggest recent contributor
to this field of research and has been held twice; April 2013 and September
2017 [Tetrault et al., 2013, Malmasi et al., 2017]. There was also a sub-
challenge in the INTERSPEECH 2016 Computational Paralinguistics Chal-
lenge dedicated to NLI, but covered only that which equals scope of the
speech track [Schuller et al., 2016]. Different datasets have been used for this
task, however, with the release of the new dataset known as TOEFL11, the
task of NLI has become easier to carry out. The dataset will be discussed
more thoroughly in Section 2.8.

It is worth to mention that even though the shared task and many other works
mentioned here are made with consideration to English as the L2 in question,
there has recently been several studies on other languages as well. Examples
of these are Norwegian by Malmasi et al. [2015], as well as three other works
covering Arabic, Chinese and Finnish [Malmasi and Dras, 2014a,b,c].

2.3. MACHINE LEARNING 9

2.3 Machine learning

Giving computers the ability to learn by themselves, and achieve artificial
intelligence has been a desirable achievement among humans for quite some
time. This dream resulted in the birth of what we today know as machine
learning. A field which has a long history, which strictly speaking has roots
back to 1763 when the famous statistician Thomas Bayes described what we
today know as Bayes’ Theorem [Bayes, 1763], a probability theorem which
deals with the problem of making optimal decisions. Today this theorem is
widely used in applications for machine learning, especially intelligent learn-
ing systems [Zoubin, 2004].

However, the kick off for machine learning as we know it today started around
1943 when McCulloch and Walter Pitts proposed a model of artificial neu-
rons, and Marvin Minsky and Dean Emonds in 1951 built the first Neural
Network Machine that was capable of learning [Russel and Norvig, 2016].
The field is therefore not an entirely new invention, but it has grown dras-
tically in the most recent years. Machine learning is based upon statistical
techniques and algorithms, giving computers the ability to learn from data.
This data can for example be text, numbers or images, and is useful for re-
ducing cost and optimising tasks that before could only be achieved through
human labour. Examples of such tasks are automatic classification and la-
belling, which are important for fields such as for example NLP, and this
very thesis. Traditionally slow and expensive tasks performed by humans,
can and has been made more efficient by utilising machine learning methods,
resulting in quick and precise possibilities for classification in a wide range
of different fields [Gupta, 2018].

Machine learning methods can generally be classified as belonging to either
one of two categories; supervised or unsupervised.

Supervised learning

Supervised learning regards the situations where a model is presented with a
set of examples, the training set, along with a corresponding set of labels or
tags to help the model decide how to classify the data. The model is able to
connect observations in the examples to the tags, associating certain kinds
of input with specific outputs. Therefore these models are best suited for

10 CHAPTER 2. BACKGROUND THEORY

classification applications with expected and pre-defined labels.

Unsupervised learning

The unsupervised learning models are instructed to analyse and classify data
without any given prior knowledge of potential describing labels or tags. This
way the model has to decide by itself, only based on the data and its features,
how to classify and interpret the information in the dataset. These kinds of
models are good for when the goal is to extract information from unclassified
data, for example when searching for features and patterns that are hard for
humans to detect otherwise.

2.3.1 Artificial neural networks (ANN)

To be able to understand the concept of deep neural networks, one should
first understand the workings of artificial neural networks; an application of
machine learning, which by utilizing a network of neurons that are connected
to one another by weights of importance can be used to analyze and classify
data. The acquired data is stored in the connections in the network based
on a biologically motivated idea which implies that it is possible to learn
data implicitly. The weights of importance are shifted as the system acquires
more data, deciding what is important or not by itself. That is one of the big
differences between ANNs and the traditional machine learning, where the
knowledge is modelled explicitly according to a set of rules. Though solid and
efficient input encoding applied by the developer is crucial for a functioning
ANN, the remarkable ability of an ANN is that it is, like a human, able
to find its own solutions through analysing patterns [Deco and Obradovic,
1996]. This means that unlike conventional machine learning, they can to
some extent make features by themselves.

Though the neural networks have been inspired by the functions of the hu-
man brain, it is important to understand that they are usually not meant to
represent a realistic model of the brain itself. Rather, as described by Good-
fellow [2016] it is more reverse engineering of the brain in order to attain
desirable functionality of the brain to use in applications. Humans are very
gifted at certain tasks, such as classification and image recognition, which
traditionally have been very difficult to achieve in computers. Next we will

2.3. MACHINE LEARNING 11

Figure 2.1: A simple shallow
artificial neural network with
one hidden layer.

Figure 2.2: A deep neural net-
work with four hidden layers.

describe an extension of ANNs which is becoming an increasing hot topic;
deep neural networks, also known as deep learning.

2.3.2 Deep neural networks (DNN)

Deep learning is a hot topic among not only experts, researchers and com-
puter enthusiasts, but also increasingly among the general public as a buzz
word of sorts. They are, simply put, ANNs literally expanded a few steps
deeper, and are also therefore known as deep neural networks (DNN). Where
ANNs traditionally consist of an input layer, one or two hidden layers and
an output layer such as shown in Figure 2.1, DNNs expand this by further
applying even more hidden layers as illustrated in Figure 2.2. The idea of
expanding the number of hidden layers is that it will be possible to achieve
more accurate classification by deepening the network of information, which
is why DNNs often are referred to as deep learning. Feature extraction and
transformation is performed, and each successive layer uses the information
from the previous ones as input. As a result you have achieved a method
which works somewhat like the human brain, and is in theory able to learn
and distinguish data by its own reasoning.

Since the learning and processing of the data is updated between the hidden
layers of the neural network as it adapts and learns, a neural network is for
the most part a black box method. This means that except for the input,
and the resulting output, the researchers know very little of what is going
on during the learning process. The result is that after using a deep learning

12 CHAPTER 2. BACKGROUND THEORY

method, there is left little knowledge of exactly what was actually useful for
the model, which is one of the main criticisms of this approach. However,
on the beneficial side, the ability that deep neural networks have of finding
patterns and to some extent automatically finding features in data without
specific human output has shown great results [Trivedi, 2016].

But, since this approach requires huge amounts of data in order to achieve
any good results, DNNs were put off for a long time, since adding even just a
few layers to the traditional ANNs did not produce worthwhile results, while
requiring more computational power than what was available. For each layer
added to a neural network, the complexity and cost of running such a model
increase along with the need of even larger datasets. Now that there is more
data and computational power is available, deep learning has caught wind
and has been seen to be put to good use in several applications, including the
NLP field. And as described by Andrew Ng, the co-founder of Google Brain
project, the performance of deep learning applications scale with increasing
data amounts much better than older machine learning algorithms [Ng, 2015].
When it comes to NLP related tasks, there are in general two main types
of models that are widely used today; convolutional neural networks (CNN),
and recurrent neural networks (RNN). The model types of choice within this
thesis are variations of the RNN methodology.

2.3.3 Recurrent neural networks (RNN)

The novel application of RNNs is deep learning based on sequential data,
and presumes that these inputs are dependent on each other in some way.
This is fundamentally different from vanilla RNNs that assume the inputs
to be independent, which might be a disadvantage if you want to build un-
derstanding on sentence and language structures. The RNNs operate by
utilising loops, allowing memory to persist when analysing new data. By
doing this the network can use understanding of previous sequence patterns
to understand new ones.

This makes this deep learning method a go-to for many NLP tasks, since it
excels at sequential tasks that benefit from keeping track of previous infor-
mation, such as for example text interpretation. But, even though RNNs
in theory can work on as long sequences as one would like, they can in
reality only hold memory of a few steps back in time. Known as the van-

2.3. MACHINE LEARNING 13

Figure 2.3: An example of the inner architecture of an LSTM node.
The figure is taken from https://colah.github.io/posts/2015-08-

Understanding-LSTMs/, and used by permission from Crisopher Colah.

ishing/exploding gradient problem, this is an inconvenience when the goal is
to make strong and robust language models, and has been solved by long
short-term memory (LSTM) models, and more recently with gated recurrent
units (GRU) models.

2.3.4 Long short-term memory (LSTM)

LSTMs are an extension of vanilla RNNs, that are able to capture long-
term dependencies and were for the first time introduced by Hochreiter and
Schmidhuber [1997]. According to their paper, the LSTMs can bridge much
longer time intervals, without loss of short time lag capabilities, which is
achieved by using a gradient-based algorithm. It works by utilising gate
units, which are called input gate, forget gate and output gate. The process
starts with the cell state, which content will be determined by those gates.
The input gate controls what information flows from the input to the cell
state, and what should be blocked. The forget gates’ job is to decide which
information should stay and which should go, by assigning 0s and 1s to each
number in the cell state. The output gate is the last to come into play, and is
responsible for filtering the now updated cell state before releasing it to the
network. The network has to learn which error signals to keep, and which
to get rid of by learning from previous layers and iterations by running sev-
eral times. In Figure 2.3 the general architecture of a normal LSTM node is
presented. The horizontal line at the top is the cell state, which is controlled
and eventually updated by the gates below before it is released into the next

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

14 CHAPTER 2. BACKGROUND THEORY

Figure 2.4: An example of the inner architecture of a GRU node. It is slightly
different than that of an LSTM, as one can see here. The figure is taken
from https://colah.github.io/posts/2015-08-Understanding-LSTMs/,
and used by permission from Crisopher Colah.

part of the network through the output gate.

2.3.5 Gated recurrent units (GRU)

A GRU model is a variation of the LSTM presented by Cho et al. [2014],
where instead of three gates, it has two. This is because it merges the forget
and input gates into a single update gate. This model has grown increasingly
popular, much because it is much quicker to train than the LSTM, and be-
cause it performs well in cases working with less data.

As can be seen in Figure 2.4 the structure of a general GRU node is very
similar to the LSTM node presented in the previous section. In Figure 2.3
there are two separate gates on the left side, the input and forget gate, which
in the GRU has been simplified into one pipeline. The resulting structure is
two gates, and a simpler structure which has lead to faster training times.

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

2.4. TEXT PREPARATION 15

2.3.6 Support vector machines (SVM)

Support vector machines (SVM) are a popular approach in NLI, and also
the main ingredient in the best performing systems in the 2013 and 2017
NLI shared tasks. SVMs are supervised learning models especially made for
classification and regression analysis. The general inner workings is that the
model assigns examples to each category, creating a mapping space where the
gap between each category is as wide as possible. Usually these models oper-
ate by classifying data as one of two categories, otherwise known as binary,
based on whether the data falls on one side or the other of a hyperplane.
However, it is also possible, which has also been shown in the shared task
submissions, to use SVMs to classify data into multiple classes.

This classifier is effective when it comes to text classification and is quite
reliable thanks to the simple decision boundary, making it little prone to
overfitting. Additionally the low computational cost, rigidness, and ease of
use has made this a popular approach in many classification tasks.

2.4 Text preparation

Usually when working with raw text it is common to analyze and process the
text in order to extract the most useful features to use for later application.
This is because depending on the use case for the data, there are usually
many aspects of the text that are less useful and can be removed in exchange
for better performance. In addition to this, there are some steps that are
required in order to be able to use the data in a machine learning setting.
Some of these methods will be described in the following section.

2.4.1 Tokenisation

When analysing texts, it is often of interest to split the longer texts into
sentences or words. This way it becomes possible to look at inter level word
relations, vocabulary, grammar and much more. Tokenisation is one such
method that segments raw text into what is referred to as tokens. This is a
very common pre-processing step in natural language processing that takes
place early on in the information extraction process.

16 CHAPTER 2. BACKGROUND THEORY

There are many different ways to create these tokens, with different rules
for how and where to split text depending on the later intended usage of the
tokens. The most common standard approach is to split text based on white-
space, thus usually producing word tokens. Though it is important to keep
in mind that this the tokenization approach can be fundamentally different
depending on the target text language. For example Chinese, Japanese and
Thai text splitting on white-spaces would be meaningless as these languages
have no such feature [Trim, 2013].

2.4.2 Stop words

In most NLP or information retrieval (IR) applications stop words are a part
of sentences that is considered disposable, since they are not very useful for
distinguishing between documents. Removing them makes the data less com-
putationally expensive, and reduces the dimensionality, making the analysis
faster [Vijayarani et al., 2015].

2.4.3 Stemming

Stemming is another pre-processing method which is popular in NLP and
IR, which reduces the words to the stem form in order to reduce the time
complexity and save memory space. This means that the sentence “The
flowers bloomed in different colours” would become “The flower bloom in
differ colour”. Thus the system does not need to consider as many different
word variations, since all variations of a word will be represented as the same
word stem.

2.4.4 Word embeddings

The meaning of the term word embeddings is simply to represent words ac-
cording to the environment they are in. In the context of texts in computer
science, this is usually the act of transforming raw strings into representa-
tions of numbers. Many learning machines are incapable of reading strings
when analysing natural language, which means that they have to be trans-
lated to something it understands better; numbers or binary codes. Therefore
creating word embeddings is a crucial pre-processing stage, which in some
cases has to be done in order to get a learning model running at all. These
representations of the words will be used for the computer to capture the

2.4. TEXT PREPARATION 17

semantic relationships and contexts in the sequences they are given. There
are in general two different approaches to word vectorization; frequency- and
prediction based.

Frequency based

Frequency based word embeddings are usually pretty simple, where the
length of each vector equals the number of unique tokens in the vocabu-
lary extracted from the data. The idea behind these methods is generally
to compute the frequency of terms in a dataset, and then use this data to
determine the importance and/or relations between said terms. Examples
of such methods are count vectorisation and tf-idf vectorisation, where the
latter is largely the first concept taken a step further and the one used in
the experiments of this thesis. It stands for term frequency-inverse document
frequency, and uses the occurrences of words in the entire corpus to deter-
mine the importance of these. It penalises the most common words in order
to pick up on the more unique and informative words, which is expected to
better interpret the content of a text.

Prediction based

A newer approach to creating word vectors, which has risen in popularity,
is prediction based vectors. Instead of having vectors that are as long as
the vocabulary, these methods calculate the probabilities of the words and
transform the sequences to vectors representing only the words in that exact
sequence. This produces shorter vectors than the frequency based approach,
however, they are much more computationally expensive because they work
by using unsupervised shallow neural networks. Some of these methods are,
for example, revolutionary in the way that it now is possible to make compu-
tations on the words, such as woman + king - man = queen. There are two
different methods within prediction based vectors; Continuous bag of words
(CBOW) and skip grams.

CBOW aims to predict the probability of a given word or term based on its
context. This means that given the other surrounding words you can pre-
dict which word is most likely to come next. These are in general quite quick
to train compared to skip grams, and perform well on finding frequent words.

18 CHAPTER 2. BACKGROUND THEORY

Figure 2.5: Character and word n-grams between the values of 1 to 3.

Skip grams are the opposite of CBOW, which means that provided a word it
will predict the context. These are slower to train, and in general represent
rare words and phrases well if you are working with small amounts of data
Mikolov [2013].

2.4.5 Sequence padding

Sequence padding is performed to ensure that all sequence vectors are of
the same length. When using machine learning, many models require that
all sequences fed into the machine are of the same length in order to make
comparisons and calculations. One of the usual methods of padding is to
add 0s in to the end or the start of the sequences until they reache the target
length specified by the program. It is also possible to pad sequences by using
other symbols, or words, instead.

2.5 Features

Before feeding the data to the learning model, it is common practice to apply
some feature extraction to the data beforehand. This is the first step in text-
mining; the basis of successful information retrieval systems.

2.5.1 N-grams

An n-gram is a sequence of tokens, where n is the number of tokens combined
in each unit. These are usually extracted from text or speech data, and are
useful for identifying sentence structures and grammar. They were the overall
best performing feature type in the 2017 shared task [Malmasi et al., 2017],
and is a central approach in natural language processing. Among the n-
grams, there are two types that are particularly popular; character based
and word based.

2.5. FEATURES 19

Figure 2.6: An example of part-of-speech tagging of a short sequence. Notice
that the last word spring can have several possible tags depending on context.
An automatic POS tagger could classify this as either a verb, adjective or a
noun with each tag indicating quite different meanings.

Character n-grams

Character n-grams are made by splitting the input string into individual
characters, spaces included, and then collecting these in sequences of length
n. Usually these take up much less storage space than word n-grams, and in
general also hold less information. But they have proven to be especially use-
ful for anomaly detection, such as spelling differences, errors and L1 specific
sequence patterns. Look to Figure 2.5 for an example of character n-grams
from 1 to 3.

Word n-grams

The word n-grams are made similarly to the character n-grams, but instead
of splitting the strings into individual characters they are split into individual
words. They are useful for capturing sentence structures, relations between
words and context. L1 specific words and sequences are also traits that could
be revealed by using these features. An example of word n-grams between 1
to 3 can be seen in Figure 2.5.

2.5.2 Part of speech tagging

Part of speech tagging, commonly referred to as POS tagging, is the process
of classifying words into their specific part of speech and labelling them
thereafter. A words part of speech is based on the basic word classes present
in languages, such as for example verbs and nouns, and therefore signifies
the syntactic role of a word. By giving the words their grammatical tags, the
idea is to capture the grammatical structure of sentences, which can be very
useful for fields such as language identification. An example of a POS tagged
sequence can be seen in Figure 2.6. It is important to keep in mind that
since there are several words that can have different meanings depending on

20 CHAPTER 2. BACKGROUND THEORY

context. Even though a sentence has been POS tagged it is not necessarily
semantically correct. But despite this weakness, POS features have proven
to produce good results, given that they are still considered an important
and widely used method in NLP research.

2.6 Tools

This section will explain the main tools that have been used for realising the
experiments in this thesis.

2.6.1 Python

As a simple and straightforward programming language, Python is high-
level, general-purpose, very adaptive and easy to work with. Python is very
popular, and widely used in both NLP and NLI, as it is a fairly fast and very
convenient method to apply both string processing and machine learning
algorithms. The integrated development environment (IDE) of choice for
this thesis has been Spyder run in the Anaconda environment [Raybaut, 2009,
Anaconda, 2012]. This platform allows for convenient analysis of variables
and functions, with a built-in console, detailed variable overview, and editor
in one.

2.6.2 TensorFlow

The DNN models will be made using TensorFlow, which is a framework
built by Google [2015], which facilitates development of machine learning
and deep learning research. It is a very popular option for many companies
and researchers, and makes it easier for everyone to create machine learning
applications.

The technology is based on numerical computation by using data-flow graphs,
and serves as a framework that simplifies the handling of these computations.
TensorFlow is compatible with Python, and can therefore fit comfortably in
a Python project.

2.7. EVALUATION 21

2.6.3 Keras

Keras is a high-level application programming interface (API) written in
Python for creating neural networks, especially for those focusing on fast
implementation and running experiments [Chollet, 2015]. It is able to run
on top of TensorFlow, and is also supported by Google’s TensorFlow team.
Since Keras is made for Python, it is quite straightforward to use and very
extensible. This is very convenient for building the deep learning models for
carrying out the experiments.

2.7 Evaluation

In order to measure the performance of an application, it is important to
evaluate it based on the criteria used in the respective field. This section
will describe the methods used to evaluate applications within NLI, that also
apply to the models in this thesis.

2.7.1 F1-score

Though accuracy is a very common metric used to measure a system’s per-
formance, the 2017 NLI shared task decided to use f1-scores as their official
evaluation metric, with accuracy as an addition for completeness [Malmasi
et al., 2017]. The F1-score is a harmonised mean of precision and recall,
which takes both false negatives and false positives into account. Where ac-
curacy only considers the amount of correct results compared to the total
number of objects, f1 scores give a more complete picture of the performance
of a classifier system. The formula for calculating the f1-score is as follows:

F1 = 2 · precision · recall
precision + recall

2.7.2 K-fold cross validation

K-fold cross validation is a popular model evaluation method, that divides
the training data into k smaller subsets, and withhold parts of the dataset
for testing purposes. It repeats this process k times, imitating the seen vs.
unseen data scenario several times [Schneider, 1997]. This is because one of
the problems with training machine learning models, is the uncertainty of

22 CHAPTER 2. BACKGROUND THEORY

how it will perform on unseen data. The k-fold cross validation method al-
lows for the model to repeat this process, giving the developer the possibility
to make a more realistic measure of the models true performance in the wild.

When it comes to deep learning models, the k-fold method might be slightly
inconvenient as an evaluation method since these models are notoriously time
consuming. K-fold cross validation is useful when dealing with relatively
small datasets, but deep learning uses a lot of data and computational power
and therefore tend to avoid using the k-fold method if possible.

2.8 Dataset

This section will describe the TOEFL11 dataset and its origins. This is the
only dataset that will be used in this thesis.

2.8.1 TOEFL11 dataset

The dataset which was recently used by the 2017 NLI shared task, as well
as the earlier 2013 shared task, leading to great results as seen in the report
by Malmasi et al. [2017], will also be used in the solution of this thesis. The
official name is ETS Corpus of Non-Native Written English, also known as
TOEFL11, and was developed by Educational Testing Service with native
language identification being its intended use [Blanchard et al., 2014]. This
is the only corpus to date which is specifically made for NLI research, and
also the largest available dataset suitable for this task. Before this corpus
came to be, the most common dataset used in earlier NLI research relied on
the International Corpus of Learner English (ICLE). However this dataset
was not made with NLI in mind, and is therefore quite topic biased, in ad-
dition to only having seven different L1s [Blanchard et al., 2013].

TOEFL11 offers eleven different L1s, and has been distributed evenly among
all the different languages as much as the dataset allows in order to prevent
bias. The different languages are Korean (KOR), Chinese (CHI), Japanese
(JPN), Telugu (TEL), Hindi (HIN), Arabic (ARA), Turkish (TUR), French
(FRE), German (GER), Spanish (SPA) and Italian (ITA). The data was col-
lected between 2006 and 2007 from a high-stakes college-entrance test known
as the Test of English as a Foreign Language (TOEFL), which is a standard-

2.8. DATASET 23

ised test used to measure a candidate’s English proficiency [Blanchard et al.,
2013]. These standardised tests consist of one part which involves writing
essays based on a given task, and another which requires the participant
to answer a questions orally in English. It was released in 2013, however,
shortly after the initial release, an additional 1100 candidates were added
with corresponding essays and speech to the corpus, bringing the total up to
13,200 different elements.

In the 2013 shared task, each row in the provided dataset labels file consisted
of the candidate test takers id, essay prompt, their L1 and the overall perfor-
mance on the test. However, in the 2017 version, the one used in this thesis,
the candidate performance data has been removed, and speech prompts have
been added instead. The distributors of the dataset have split the dataset
into training, development and test sets with a ratio of 83.3%, 8.3% and 8.3%
respectively. This means that there are 1100 data elements from each lan-
guage in the training data, and 100 of each in the development and testing
data. All the texts, both essays and speech transcriptions, are presented in
UTF-8 format, with both tokenised and original raw texts available. The
test data was not available for use in this thesis.

2.8.2 Essay data

The essay data has been used in both of the previous NLI shared tasks, and
was the only available dataset in 2013 where the shared task focused solely
on using essay data.

The length of each essay text is quite long compared to the speech ones,
and the average sequence lengths also vary between the languages. However,
according to the dataset creators, they represented the data as evenly as the
available data allowed. The average essay length can be seen in Figure 2.7.
The longest text in the essay dataset is 799 words long and the shortest is 2,
with an average of 315 words per essay.

2.8.3 Speech data

Speech data was first used in the context of the NLI shared task at the In-
terspeech conference in 2016 [Schuller et al., 2016], and later at the 2017
NLI shared task. In the 2016 Interspeech there were raw audio files available

24 CHAPTER 2. BACKGROUND THEORY

Figure 2.7: The average length of
essays by language.

Figure 2.8: The average length of
speech transcripts by language.

for use, but this was not the case for the 2017 NLI shared task [Malmasi
et al., 2017]. The speech data available for use consists of manually writ-
ten transcripts of 45 second long audio recordings, with associated i-vectors.
Participants of the TOEFL exam had to perform both written and oral ex-
aminations, and the speech data is therefore related to the same participants
as the essay data.

As mentioned briefly previously, the speech transcriptions are on average very
short compared to the essay ones, which can be seen in Figure 2.8. This
is allegedly caused by the short answering time of this test, and the longest
speech transcript is 202 words long while the shortest is 0. The average
length across all the transcripts is 90 words.

I-vectors

Due to privacy concerns, i-vector acoustic features were distributed to make
up for the absence of the raw audio files. The term i-vector is an abbreviation
of identity vector, and represents speech signals. The i-vectors provided by
the NLI shared task are 800-dimensional, and they each represent frame-level
acoustic measurements extracted from the speech responses [Malmasi et al.,
2017].

Chapter 3

Related Work

In the field of Native Language Identification there are already several so-
lutions available. This section will present some of the works most relevant
to the scope of this thesis. The relevant works described here were all made
by teams participating in the 2017 NLI shared task, and the overview of all
the contributions and complete results can be found in Malmasi et al. [2017].
Based on the results achieved during the shared task of 2017, the teams were
placed in a ranked group according to their performance with rank 1 as the
best and rank 5 as the worst. There were a total of five ranks, and the
number of teams in each group was based on the proximity of performance
rather than a predetermined amount. Each track had their respective list of
rankings. Results of shared tasks prior to the one in 2017 can be found in
Tetrault et al. [2013] and Schuller et al. [2016].

3.1 CEMI (Ircing et al., 2017

CEMI participated in all three different tracks, and achieved rank 1 in the
speech and fusion tracks with F1 scores of 0.8607 and 0.9257, respectively.
For the written essay task, their F1 score of 0.8536 landed them in the rank
2 category, which means that this team performed well overall in the shared
task. They accredit their best result to a feed forward neural network, using
mainly i-vector features for speech and a large variety of n-grams for the
essays. For both essays and transcripts they extracted unigrams, bigrams
and trigrams, however, ended up only using the n-grams extracted from the
essays. Character n-grams ranging from 3 to 5, and POS n-grams from 1 to

25

26 CHAPTER 3. RELATED WORK

5 [Ircing et al., 2017].

In the CEMI paper published in the 2017 shared task it was recommended
to leave out the speech transcripts, and rather focus more on i-vectors that
seemed to overshadow both POS and character n-grams based on transcripts.
Further they reported that speech and text features compliment each other
well, which is also reflected by the results.

3.2 ETRI-SLP (Oh et al., 2017)

ETRI-SLP also participated in all three tracks, with their best performance
in the fusion track. In essay-only they placed in rank two with an F1 score of
0.8601, speech-only as rank 1 with 0.8664 and fusion as rank 1 with 0.9220.
The features used in the system were latent semantic analysis (LSA) and lin-
ear discriminant analysis (LDA) features based solely on word 1- to 3-grams
and character 4- to 6-grams for both the essay data and the speech transcript
data, with an addition of normalised i-vectors with LDA feature extraction
for the fusion track. They experimented with two distinct approaches, one
performing late fusion between the textual features and the i-vectors and the
other with early fusion before feeding the data into a DNN [Oh et al., 2017].

3.3 L2F (Kepler et al., 2017)

The L2F team participated solely in the fusion track, where their system
placed in the rank 3 category with an F1 score of 0.8377. Wishing to avoid
heavy use of hand-crafted features, the focus was on using simple word and
sub word features. The conference paper (Kepler et al. [2017]) reported that
by utilizing ANN and DNN methods for learning, in their case GRU, one can
avoid having to rely on specially engineered features to achieve good results.
Further, both n-grams and i-vectors were considered great contributors to
the systems’ performance.

However, like most of the deep learning approaches, this system did not
perform particularly well in the shared task, reflected by the fact that it
ended up as the seventh best out of eight teams above the baseline in the
fusion track. The team comments in the paper that while i-vectors without

3.4. ITALIANLPLAB (CIMINO & DELL’ORLETTA, 2017) 27

a doubt is a state-of-the-art approach to NLI, the simple approach in this
solution did not work in their favour when using neural networks.

3.4 ItaliaNLPLab (Cimino & Dell’Orletta, 2017)

The best performing essay track team in the 2017 NLI shared task was
the ItaliaNLPLAB team with an F1 score of 0.8818 thanks to a 2-stacked
sentence-document architecture. In the paper [Cimino and Dell’Orletta,
2017] the main novelty of this systems approach is described to be that it is
able to exploit both local sentence information and a rich amount of features
from the documents themselves by combining sentence and document classi-
fiers. The features used were linguistic description, lexical, morpho-syntactic,
and syntactic information.

The team advocates for the importance of sentence level classifiers and uti-
lizing local information, which is also reflected in the work submitted for the
task. This might be useful results showing that in NLI it is important to
focus on the smaller details which can be found in the sentences, since these
can hold useful information in identifying a specific L1.

3.5 UnibucKernel (Ionescu & Popescu, 2017)

The only team to participate in all three tracks and reaching a rank 1 level
in each was UnibucKernels multiple kernel learning system. Achieving an
F1 score of 0.8695 in the essay track which put this system as the 6th best
submission out of 17. In the speech and fusion tracks it placed as number
one in both, with F1 scores of 0.8755 and 0.9319 respectively. This makes
UnibucKernel the overall best performing team in the 2017 NLI shared task,
mainly basing the solution on character n-grams and i-vectors. The speech
transcripts did not provide enough information to accurately distinguish the
L1s, and speech did not seem to benefit from long n-grams. On the other
hand the essay data responded best to n-gram values between 5-9, and the
best performing solution which was submitted to the shared task combined
5-9 n-gram essay data with i-vectors and 5-7 n-gram speech data [Ionescu
and Popescu, 2017].

28 CHAPTER 3. RELATED WORK

These findings could prove useful for identifying that speech transcripts might
be much too short compared to the essays to be as useful to extract informa-
tion, which was also mentioned earlier by CEMI. Character n-grams, which
this system was based the most upon, might also be less useful in speech
transcripts because they are written by more proficient, if not native, En-
glish speakers. The comments in UnibucKernels’ paper show how important
it is to include the i-vectors in order to properly utilise the speech data.

Chapter 4

Methodology

Description of the experiment environment setup, components and methods,
and the plan for these experiments.

4.1 Classifiers models

NLI is a discipline which deals with classification of user input, as well as
being a supervised training problem. This means that we have the luxury
of labels describing the dataset elements, which can be used to instruct the
model how to classify a language. Supervised learning methods are therefore
very fitting for the problem task, and the classifiers of choice for the experi-
ments are long short term memory (LSTM) and gated recurrent unit (GRU).
As mentioned in Section 2.3.3, these are popular neural networks in NLI and
NLP, and they were also used in the 2017 NLI shared task in for example
the solution of the L2F team presented in Section 3.3 [Kepler et al., 2017].

By looking at the research conducted by Yin et al. [2017], it seems that GRUs
outperform LSTMs at almost every NLP task they tested, even if just by a
small margin. And even though as mentioned by Kepler et al. [2017], GRUs
are in general faster to train, the experiments will still be tested with both
LSTMs and GRUs since they are almost identical to implement.

29

30 CHAPTER 4. METHODOLOGY

Parameters Values
Layer type Dense, LSTM, GRU, Dropout
Input shape batch size, sequence length, input size
Number of hidden layers 0-many
Number of units per layer 1-many
Output shape 1-many

Table 4.1: Parameters that define the classification environment for LSTM
and GRU. The values provided are the standard values and ranges.

4.1.1 Model environment

There are many different parameters and features that are essential for how
the model trains on the dataset. This goes from, for example, the number of
layers, number of units in each of these layers, and the layer types. Different
tasks require different tweaking, combinations and setup of these. Table
4.1 shows the parameters deemed the most important to keep in mind for
creating the classification models for this thesis.

Layer types

The LSTM and GRU layers, as described in Chapter 2 in Section 2.3.4 &
2.3.5, are the ones the model uses to perform the core operations on the data.
Dropout layers are used for regularisation, where you randomly deactivate
certain units in order to avoid overfitting. This might be an important step,
especially since LSTMs are known for being prone to overfitting. Last, but
not least, the dense layer changes the vector dimensions. This layer is con-
nected to all the units in the previous layer, and is important especially to
create the output layer, which in the case of this task is of the size of the
number of L1s in the dataset.

Hyperparameters

The input shape will vary between the input types, for example, that the
i-vectors are 800 dimensional, while maybe the transcriptions would be 100
dimensional. How deep the model is depends on the number of hidden layers
that make up the black box between the visible input and output layers as
described in Chapter 2 Section 2.3.1. Each hidden layer has a number of
units, also known as neurons, that decide how complex models can be made

4.2. DATA PREPARATION 31

from the data. This amount is reliant on the dimensionality of the input
shape, and therefore may change drastically between different tasks. The
amount of neurons will be the same for each layer in the respective models.

4.2 Data preparation

Before converting the data to vectors or performing other feature extraction
methods, there are a few precautions that have to be made that can have
an impact on the efficiency of the classification later on. These, along with
observations of the data itself will be presented here.

4.2.1 Essay data

Out of all the text data used in the NLI shared tasks, the essays have shown
to give the most significant improvements to good language classification.
This may be because they hold many important features describing different
L1s, and the following will describe some hypotheses on what these might be
and should be used for in the experiments.

Misspellings

When inspecting the essay data, it becomes clear that there are many mis-
spellings, as well as semantic errors, that are important for choosing the
text pre-processing methods. Because of these misspellings, no stemming
will be applied, even though this is a common step as mentioned in Section
2.4.3, since these misspellings by themselves are features of different language
backgrounds.

Lowercase vs. uppercase

Transforming all words to lowercase is another common pre-processing step,
which is done automatically by many off-the-shelf solutions, and is usually
when dealing with text processing a smart move in terms of memory effi-
ciency. When working with normal text processing systems, the capitali-
sation of a certain word may not be of much significance. But for native
language identification, this could be another feature one can use to identify
specific languages.

32 CHAPTER 4. METHODOLOGY

Punctuation and stop words

There will be no removal of punctuation symbols, especially commas, since
some L1s have very different rules from one another. Stop words will not be
removed either, for the same reasons as punctuation.

The experiments will not make much pre-processing on the texts, since they
hold many features that may be important for the model. But there will
be experiments on preserving uppercase words, to see if this has as much
to say in the identification of a language as previously hypothesised or not.
Tokenisation, as described in Section 2.4.1, will also be applied.

4.2.2 Speech transcription data

The speech data is quite different from the essay data, in more ways than
just document lengths as pointed out in Section 2.8.3. By inspecting the
data, there were several strange occurrences that will be pruned from the
texts. Like the essay texts, tokenisation will be applied.

Missing tokens

These occurrences are all similar, in the format of numbers, percentage sym-
bols or combinations of both between inequality signs, and seem to represent
missing tokens. Probably, these are traces of some sort of automatic system
that has handled the files, and they were present in all of the files that were
empty as well as in place of seemingly missing words mid-sentence. These
will be removed before any further processing of the raw texts.

Stammering and hesitation

Since the transcriptions are directly reflecting the spoken responses, there
are occurrences of words such as “um” and “uh”, and unfinished words that
are also present represented by a single single hyphen at the end of the word.
There will be made two versions of the texts, one with the “um” and “uh”
and one without. The stammering will be left out this time, to limit the
scope of the thesis.

4.3. FEATURES 33

High level of English

While the speech has very distinct vocabulary and grammar usage, the tran-
scriptions themselves are clearly transcribed by someone with high level
knowledge of English, which was also pointed out by Ionescu and Popescu
[2017]. The words are mostly correctly written, in contrast to the essay data
where the grammar might be tidier but the words are written strangely. How
to write a word based on a speech transcription is harder to determine, unless
there is some clear mispronunciation. Because of this, preservation of cap-
italised words will be overlooked, however, stemming will not be performed
since the transcriptions the utterances are still sometimes strangely conju-
gated.

4.2.3 i-vector data

Given the good results achieved by utilising i-vectors, as mentioned in the
related work in Chapter 3, it would be wise to include these in the exper-
iments. The data consists of 800-dimensional vectors, which when read by
humans do not make much sense. There will be no specific pre-processing
performed on these, other than testing feature extraction with LDA, inspired
by the work of Oh et al. [2017] and Ircing et al. [2017], and feature selection
with a tree classifier.

4.3 Features

The features used for the experiments will be presented here, and further
reading on these can be found in the previous Chapter 2 in Section 2.5.

4.3.1 N-grams

Word- and character n-gram features will be extracted from both the essay
texts and the speech transcriptions. These have shown to be the most infor-
mative and useful features, and have in some manner been used by most of
the participants in the 2017 NLI shared task [Malmasi et al., 2017]. There
will be extracted n-grams of range 1 to 4 from both text data types, and
these will be used in different combinations in the experiments.

34 CHAPTER 4. METHODOLOGY

4.3.2 POS tag

Initially it was planned to extract POS tags as an additional feature to be
used. This will be dropped in favour to the n-grams, because they have
proven to be less useful than both word and character n-grams as described
by Ircing et al. [2017]. Ionescu and Popescu [2017] also pointed out that POS
tags are inferior to character and word n-grams, especially for the transcrip-
tion data. For the sake of limiting the scope, the POS tags were therefore
dropped in favour of other features.

4.4 Feature extraction

Since the data is the core which gives meaning to the whole system, it is
important to handle it with care. How to process the data before training,
extract the appropriate features, and how to feed it into the model are all
important steps that must be considered when using machine learning. Fea-
ture extraction is the process of preparing the data for further processing at
later stages.

4.4.1 Word embeddings

The word embedding methods that will be used in these experiments will
be from both frequency based and prediction based approaches, explained
in Section 2.4.4, with one from each. For the frequency based solution the
tf-idf vectoriser method will be applied, while Word2Vec will represent the
prediction based approach. Due to limited time, the experiments will be
limited to these two methods.

Word2Vec

The Word2Vec method is a popular approach to prediction based word vec-
tors, and is either built by using CBOW or skip gram methods. There will
be experimentation with Word2Vec using both skip gram and CBOW, to see
which method has the greatest impact on this task.

4.5. EXPERIMENT PLAN 35

tf-idf vectoriser

Explained briefly in Section 2.4.4, the tf-idf approach is a frequency based
word embedding method that intends to reflect how important a word is to a
document. It achieves this by measuring the frequency of all the terms in the
documents, and then penalising words that are too common while trying to
find the words that are more distinctive. Because of this, the tf-idf vectoriser
was chosen as the frequency based method for the scope of this thesis, over
the simpler word count vectoriser.

4.4.2 i-vector

The i-vector data is very different from the raw texts provided in the dataset.
However, they have proven useful, and many of the participants in the 2017
shared task found ways of utilising these. As mentioned earlier in 4.2.3, a
seemingly successful approach has been applying LDA to the i-vectors. A
tree classifier known as the ExtraTreesClassifier will be applied to evaluate
the effects of using other methods on the i-vector data.

4.5 Experiment plan

The experimental plan will be presented, along with the underlying argu-
ments for these choices.

4.5.1 Experiment flow

When working with supervised learning, there is a common setup for how
to run from training to the final performance result. In Figure 4.1 this flow
of operations is described. For all models tested during these experiments,
this is the step-by-step process that shall be followed. All models train from
scratch in order to clearly distinguish the effectiveness of the different models.
The experiments will be created by using the Python programming language,
utilising TensorFlow and Keras to build the models. More information on
these can be found in Section 2.6.

36 CHAPTER 4. METHODOLOGY

Figure 4.1: The general step by step process of supervised machine learning.
The original diagram was made by Steven Bird et al., distributed under the
creative commons licence, and can be found at http://www.nltk.org/book/
ch06.html#fig-supervised-classification.

4.5.2 Separate testing

Before experimenting on the full fusion system, experiments will be con-
ducted individually on each type of data to find the model environments
that work best. This is because the data types are fundamentally different
in many aspects, and will require different preparation and training environ-
ments. In addition, training deep neural networks is notorious to be a time
consuming task, so locating the individual optimal parameters ahead should
be favourable. In Table 4.2 the different features, and the n-range they will
be extracted in, is described. Experimenting with tweaking the parameters
presented in Table 4.1 for each respective data type model is done in order to
examine what parameters are the most useful when creating the fusion model.

4.5.3 Fusion testing

The scope of the thesis is to evaluate the neural network methods against
as much data as possible, and since the data is of different dimensions and
types, the data shall first be input separately, trained separately, and then
be concatenated to produce the end result which will be referred to as fusion
testing.

http://www.nltk.org/book/ch06.html#fig-supervised-classification
http://www.nltk.org/book/ch06.html#fig-supervised-classification

4.5. EXPERIMENT PLAN 37

Category n-gram

Essay
Character 1-4
Word 1-4

Speech
Character 1-4
Word 1-4

i-vector
LDA
ExtraTreesClassifier

Table 4.2: Features for use in the experiments per data type.

4.5.4 Word embeddings

During the testing process the best method between frequency or prediction
methods that produce the best results is decided. After this decision has
been made, the most effective method will be applied to further tuning and
changes. The earlier mentioned concerns about capitalisation and removal
of certain parts of the transcription data shall also be determined after the
choice of embedding method.

Further there will be tests with the parameters within the word embeddings
themselves as well. For the Word2Vec approaches this means tweaking vector
length, minimum word occurrences and whether or not it is using skip gram
or CBOW. In the case of tf-idf vectorisation this is related to deciding the
maximum number of features.

4.5.5 Sequence padding

Researching methods for enriching or increasing the data in some way has
been described as one of the topics of further work as described by Malmasi
et. al. in the conclusion of the 2017 shared task. This has also been described
in the second research question in Section 1.2, and will for the experiments
of this thesis be conducted through sequence padding experiments. Näıve
padding of the essay and speech datasets will be performed, which means
appending parts of the same sequence to the end in order to bring shorter
sequences to the target sequence length.

38 CHAPTER 4. METHODOLOGY

4.5.6 Evaluation

For evaluating the models there will be two methods used; recall/accuracy
and f1 score. As described in Section 2.7.1, the f1 score is the official metric
that was used in the 2017 NLI shared task, and therefore also relevant to
the experiments of this thesis. The macro averaging method, that was used
by the shared task participants, is also the one to be used in this thesis.
Accuracy is included for clarity, and because it is the standard result metric
when using Keras to build neural network models.

The second evaluation method is k-fold cross validation, presented in Section
2.7.2, and will be used at the end of the experiment phase to measure the
performance. This method is often avoided in deep learning, however, since
it is relatively small dataset the k-fold method could still be useful.

Chapter 5

Experiment Results

Following the methodology chapter, this chapter will describe in detail the
actual execution and results of the experiments. In depth discussion, and
reflection on these results will be presented in the next chapter.

5.1 Fused Classifier

After testing each of the data types individually, they were concatenated and
trained together in a stacked classifier. First the fused classifier is presented,
followed by the other experiments that led up to these results.

5.2 Structure

After testing each data type individually, the most optimal model structure
that was found is presented in Figure 5.1. The system which proved to give
the best results was a GRU network with 3 hidden layers with 100 nodes each
for the essay data, 2 hidden layers with 60 each for the speech data, and last
but not least 1 hidden layer with 60 nodes each for the non-processed i-vector
data. After performing 4 fold cross validation on the best model measuring 2
and 3 hidden layers, it appears that the difference in performance with using
3 hidden layers instead of 2 is an increase by approximately 3%. Regarding
the number of nodes, the desirable number for the essays seem to be between
100 to 200 nodes, while the speech data responded best to between 40 to 60
nodes.

39

40 CHAPTER 5. EXPERIMENT RESULTS

R
N

N
m

o
d
e
l

co
m

p
a
ri

so
n
s

W
o
rd

2
V

e
c

ac
c

f1
da

ta
cl

as
si

fi
er

hi
dd

en
la

ye
rs

n
od

es
pe

r
la

ye
r

sg
/

cb
ow

em
be

d.
le

n
gt

h
se

qu
en

ce
le

n
gt

h
fe

at
u

re
s

42
.0

9%
-

e,
s,

i
L

S
T

M
2/

1/
2

40
/1

0/
10

sg
20

0/
10

0
20

0/
10

0
w

1
42

.3
6%

41
.4

3%
e,

s,
i

G
R

U
2/

2/
1

10
0/

60
/1

0
cb

ow
10

0/
10

0
35

0/
15

0
w

1
35

.5
4%

-
e,

s,
i

G
R

U
3/

2/
2

10
0/

60
/1

0
cb

ow
20

0/
10

0
45

0/
15

0
w

1
57

.9
0%

57
.6

7%
e,

s,
i

G
R

U
3/

2/
1

10
0/

60
/6

0
cb

ow
20

0/
10

0
35

0/
15

0
w

1
34

.0
9%

-
e,

s
L

S
T

M
3/

2
10

0/
60

sg
10

0/
10

0
35

0/
15

0
w

1
49

.0
0%

48
.4

1%
e,

s
G

R
U

3/
2

10
0/

60
sg

10
0/

10
0

35
0/

15
0

w
1

55
.0

9%
55

.4
9%

e,
s

G
R

U
3/

2
10

0/
60

cb
ow

10
0/

10
0

35
0/

15
0

w
1

45
.9

9%
-

e
L

S
T

M
3

20
0

cb
ow

10
0

20
0

w
12

3
46

.0
9%

-
e

L
S

T
M

2
20

0
cb

ow
10

0
20

0
w

12
3

44
.0

9%
-

e
L

S
T

M
2

20
0

cb
ow

10
0

40
0

w
12

34
30

.6
7%

-
s

G
R

U
2

40
cb

ow
10

0
15

0
w

1
36

.1
4%

-
s

G
R

U
2

40
cb

ow
10

0
15

0
w

1c
6

tf
-i

d
f

ac
c

f1
da

ta
cl

as
si

fi
er

hi
dd

en
la

ye
rs

n
od

es
pe

r
la

ye
r

m
ax

fe
at

u
re

s
se

le
ct

se
qu

en
ce

le
n

gt
h

fe
at

u
re

s

11
.2

7%
-

e,
s

G
R

U
3/

3
10

0/
30

20
0/

10
0

T
40

0/
10

0
w

1
10

.0
0%

-
e

G
R

U
3

90
30

0
F

35
0

w
1

9.
72

%
-

e
G

R
U

3
15

0
60

0
F

35
0

w
1

9.
81

%
-

e
G

R
U

3
15

0
60

0
T

35
0

w
1

Table 5.1: The most prominent results from the different models’ perfor-
mance on the development set. The marked feature cells indicate lowercase
essay features.

5.2. STRUCTURE 41

Figure 5.1: Architecture of the fusion model that had the best score among
the experiments. The grey layers represent the hidden layers, while the white
ones are the visible layers; input and output. It was trained for 150 epochs
with a batch size of 60.

For the i-vector data there did not seem to be much improvement when in-
creasing the number of layers, and therefore final model for the i-vector was
chosen to be a shallow 1 hidden layer structure with 60 nodes.

Since all the data required different dimensions in order to produce worth-
while results, the last layer of all the individual models had to be connected
to dense layers before concatenating. There were several attempts to ap-
ply RNN or LSTM on the concatenated data, however there was no solution
found during this time due to the dense layers producing two dimensional vec-
tors, while RNNs require 3 dimensional ones. The output layer has been the
same through all of the experiments, with 11 different classification outcomes
with a softmax activation function. Most of the single feature experiments
were trained for 150 epochs, using early stopping as a regulariser to prevent

42 CHAPTER 5. EXPERIMENT RESULTS

overfitting.

5.2.1 GRU vs. LSTM

There were experiments made using both GRU and LSTM classifiers, where
the GRU models tended to be faster, and the LSTM models seemed to per-
form slightly worse across most of the experiments. Since the GRUs were
much faster to train, and with seemingly no sign of loss in performance, most
of the experiments were made with GRUs. The best performing system was
also made up of a GRU, as can be seen in Table 5.1.

5.2.2 Early stopping

Machine learning models that train for too long will start memorising the
data by learning all the small noisy features instead, losing the ability to
generalise. The experiments showed clear signs of overfitting, by reporting
good loss and accuracy on the training set, but poorly on the development
set. To battle this, early stopping with patience two was applied, which
purpose was to make the model stop training should the loss not improve
for more than two epochs. Doing this increased the performance on the
development data by 8%, as well as the overall training speed, but the model
was still overfitting since the training accuracy increased with about the same
amount.

5.2.3 K-fold cross validation

At the end of the experiments, k-fold cross validation was performed in or-
der to evaluate the performance of the best performing model, since no test
set was available. Performing cross validation is quite time consuming, and
therefore 4-fold cross validation was executed on the model with the best
score.

The best performing model had Word2Vec word embeddings of length 200,
which resulted in a memory error when the k-fold cross validation was per-
formed. Therefore the word embedding length was set to 150 instead, and
the number of epochs per run was set to 60. The results were worse than the
non cross classified model by about 10%, but on the other hand the results

5.3. ESSAY DATA 43

showed that the validation score during k-fold training, and prediction of the
development data, only differed with about 3%.

5.3 Essay data

In the previous 2017 shared task, the essay track was the one with the best
results between essay and speech standalone models. The experiments con-
ducted in this thesis were no exception. This section will describe the results
of the essay standalone model, which has been important for the model se-
lection for the fusion system. The most significant results from these exper-
iments are presented in Table 5.1.

5.3.1 Preparation is key

Except for cutting the raw text to specific lengths, the only pre-processing
step which differed between experiments was whether or not to preserve
capital letters in words. As expected, the lowercase versions had a smaller
vocabulary, and were also quicker to train and later transform the data. But,
contrary to the initial theory there was no profitable results in preserving the
uppercase words.

The order for cutting the sequences and training the Word2Vec also had a
seemed to play a significant role in the performance of the models. When
training the Word2Vec on the full sequences, and then cutting the sequences
to the desired length afterwards, increased the performance by 2%. The
reason might be that training the Word2Vec not only lets it learn more
word dependencies, but also increases the vocabulary, which helps when later
classifying new data.

5.3.2 Word n-gram comparison

When comparing the efficiency of the different word n-grams to one another,
the word uni-grams won by quite the margin as can be seen in Table 5.2.
The results indicate that when using systems that only use normal word
uni-grams are the better option, if one decided to settle for using just one
type of word n-grams. The standalone essay systems in Table 5.1 that used
combinations of different word n-grams were very slow to train, and did not

44 CHAPTER 5. EXPERIMENT RESULTS

N-gram comparisons

f1 data
hidden
layers

nodes
per layer

sg /
cbow

embed.
length

sequence
length

feature

53.62% e,s,i 3/2/1 100/60/100 cbow 100/100 350/150 w1
46.05% e,s,i 3/2/1 100/60/100 cbow 100/100 350/150 w2
38.07% e,s,i 3/2/1 100/60/100 cbow 100/100 350/150 w3

Table 5.2: A comparison of different word n-grams made from the essay
data. The systems tested were GRU fusion models where the speech data
was normal word uni-grams, and LDA was applied to the i-vectors.

serve very useful compared to single word n-gram features.

When comparing single word n-grams, it was the word unigram feature that
performed best by a large margin as shown in Table 5.2. As the n increased,
the score decreased by almost 8% for each experiment. Based on these results,
it was assumed that the word unigram feature was the superior choice for
the final model.

5.4 Speech data

For the speech data there were two separate types to consider, the transcrip-
tions and i-vectors, and therefore tested individually in the early phases. The
most significant results are documented in Table 5.1.

5.4.1 Speech transcriptions

The speech transcription sequences are quite a bit shorter than the essay
data, and was therefore trained separately from the essay data in all the
experiments. For the speech transcriptions there were tests with values be-
tween 50 to 200, which is the maximum length of the training transcription
data. The best performing transcription length proved to be 150 words, a
bit longer than the average transcription length.

5.4. SPEECH DATA 45

5.4.2 Abnormality preservation

Concerning preservation of abnormal occurrences in the transcription data,
there were two textual features that were especially experimented on. The
removal of stuttering words ’uh’ and ’um’, and both complete removal and re-
placement of foreign tokens. By removing the stuttering there was a decrease
in the performance by approximately 2%, and another 2% for the removal of
the foreign tokens described in Section 4.2.2. When replacing these same to-
kens with 0s, there was no significant increase in performance. Therefore the
best performing speech system preserves both features, leaving no additional
pre-processing to the speech other than transforming into lowercase.

5.4.3 Characters and words

Though the amount of n-grams that were tested were less complex than the
initial experiment plan, just adding a character 6-gram to the speech stan-
dalone model increased the accuracy by about 5.5%, while also increased
the training time by several minutes for each epoch. Comparing this to the
results of increasing the number of n-grams in the essay standalone shows
that adding different features could be more fruitful when the computational
power is limited and only a few features can be chosen. The combination of
character- and word n-grams did, however, not make it to the last ensem-
ble classifier, since these results were discovered by the end of the project
deadline.

5.4.4 i-vectors

Following the earlier works in NLI, especially focusing on the work of ETRI-
SLP (Oh et al. [2017]) and CEMI (Ircing et al. [2017]), it was decided to keep
the original vector length of 800. For extracting features the linear discrim-
inant analysis (LDA) was mainly used, which has been used by for example
the ETRI-SLP team among others. The i-vectors seemed to do well during
the training phase, but the prediction on the development set told a differ-
ent story. In an attempt to improve the i-vector performance, an extra tree
classifier was used for feature selection, with no better performance results.

The i-vectors gave the best results when they were used without any pre-
processing or feature selection, increasing the model f1 score from 55.49% to

46 CHAPTER 5. EXPERIMENT RESULTS

57.67%, which resulted in the ultimate best solution among the experiments.
This is illustrated in Table 5.1, where the first and second best performing
models have been highlighted in grey.

5.5 Word embeddings

As described in Section 4.4.1, there were two different main approaches to
performing vectorisation of the raw text data. This section will describe the
results from these in the experiments, first taking a look at the frequency
based tf-idf method, and then the prediction based Word2Vec results.

5.5.1 tf-idf vectorisation

By looking at Table 5.1, the tf-idf weighted embeddings performed sub par
in the experiments. Both experiments applying feature selection, and not
applying feature selection were carried out to measure the significance of the
feature selection method. For the feature selection, a tree classifier known as
the extra trees classifier was used since it is known for being able to estimate
the importance of different features. Recursive feature elimination (RFE)
was also used, but did not improve the performance. Feature selection using
the tree classifier did speed up the training, however, it did not do much to
change the outcome of the model predictions on the development data. Dur-
ing the training, the loss was decreasing steadily, but the results remained
on par with random selection of an L1.

There were several experiments performed to locate the reason for the low
performance of the tf-idf model, tuning and rewriting the model and data
settings. However, since the tf-idf approach did not seem to improve through
these efforts, most of the experimentation was carried out using Word2Vec
embeddings.

5.5.2 Word2Vec

These embeddings were the ones that produced the best results in all of the
models. And between CBOW and skip grams there were some noteworthy
differences as well. The CBOW method showed the overall best results,
and with the features used for these experiments there were not much of a

5.5. WORD EMBEDDINGS 47

difference in training speed. However, when working with 1-4 word n-grams
the training of the skip gram method was very slow and even resulted in
memory errors.

Minimum word appearance

For the Word2Vec embedding models it is standard to only count a word or
term into the vocabulary if it has appeared a minimum number of times. In
an attempt to see if rare words, that even only appear a few times, would
help distinguishing between the languages there was no requirement of min-
imum appearance in some experiments. Though not a vast difference in end
performance, keeping a minimum of at least 5 occurrences did increase the
prediction accuracy by approximately 0.7% in addition to speeding up the
training time of the embedding model. The final model used a minimum
appearance count of 5 for the essays, and 2 for the transcriptions.

Embedding length

When experimenting with different lengths of the embedded vectors, the
values varied between 50 and 200. Too small vectors did not give better
results, though it did make training much quicker. Pushing the length up to
200 resulted in memory errors in the early experiments when handling many
sequences, especially the essay data, however, when they were successfully
run they did not seem to be significantly much more useful than those of
length 100. The training time of the classifier increases significantly along
with the dimensionality of the input sequences, and long embeddings did not
seem to make up for the time and resources they required.

Train before you cut

For the RNNs to run, they require all the vectors to be of the same length.
Though this is not a problem for the tf-idf approach, the Word2Vec method
does require some form of padding. During the experiments there were differ-
ent sequence lengths used throughout, which meant that most of the time the
sequences would be cut to a certain size before used for the classifier train-
ing. Training the Word2Vec on the full sequences, and then cutting these
sequences to size before transforming them, increased the classifier accuracy
with by 1.36%, without sacrificing significant time. The results are reported
in Table 5.3.

48 CHAPTER 5. EXPERIMENT RESULTS

Cutting sequences before or after training

f1 padded
hidden
layers

nodes
per layer

sg /
cbow

embed.
length

sequence
length

cutting

53.29% GRU 3 100 cbow 100 350 before
54.65% GRU 3 100 cbow 100 350 after

Table 5.3: The difference between cutting the sequences before or after train-
ing the Word2Vec model. Both models were trained and tested on essay only
data, with lowercase word unigram features.

Zero padding vs. word padding

f1 data padded
hidden
layers

nodes
per layer

sg /
cbow

embed.
length

sequence
length

54.52% e,s,i 0 3/2/1 100/60/60 cbow 100/100 350/150
52.38% e,s,i e 3/2/1 100/60/60 cbow 100/100 350/150
55.67% e,s,i s 3/2/1 100/60/60 cbow 100/100 350/150

Table 5.4: Results of word padding essay and speech data, compared to zero
padding. The models were trained using GRU models using single word
unigrams of transcriptions and essays cut after embedding training. The
i-vectors were unprocessed.

5.6 Word padding

One of the research questions was how one could potentially enrich the limited
data available, which in these experiments was performed by naively adding
words to the end of shorter sequences until they reach the desired length.
Word padding on essay sequences of length 350, the best found length for
the essays, resulted in a worse performance than the zero padded vectors by
2.14%, as seen in Table 5.4. Padding the speech transcriptions resulted in a
1.15% increase in performance.

5.7 Language performance

As can be seen by the results in Table 5.1, the best performing system con-
sisted of essay, speech transcription and unprocessed i-vector data classified
by a 3, 2 and 1 hidden layer GRU, respectively. The resulting confusion
matrix in Figure 5.2 shows the performance of the final classifier for each

5.7. LANGUAGE PERFORMANCE 49

Figure 5.2: The resulting confusion matrix from the best fusion system, which
is the highlighted model in Table 5.1.

language. There are 100 candidates of each represented L1, and most of
them were right more than 50% of the time. Throughout the experiments
there has been a repeating pattern of which languages the model had the
most trouble to distinguish between.

Especially Japanese vs. Korean and Hindi vs. Telugu seem to be mistaken
for each other the most. For the first group, Japanese has been classified
right the highest number of times, and for the right side it is Telugu. Other
languages that often were confused was the Italian vs. Arabic vs. Spanish
group.

Chapter 6

Discussion

Here the experiment results will be interpreted, while discussing these results
in relation to similar works, and the research questions.

6.1 LSTM vs. GRU

There seems, like stated earlier, to be very little difference between the two
methods. They have been dubbed to be almost identical in accuracy, but in
the experiments the GRUs generally performed significantly better than the
LSTMs. This might be because during the experiments there was ultimately
very little data used compared to what was planned, and that GRUs perform
better with less complicated and smaller networks. Because of the short
training times and comparably similar results of the GRU, it could prove to
be one of the go-to methods for future deep learning with RNN in NLI and
NLP. This is also supported by the research done by Yin et al. [2017], which
showed that the GRUs in general performed better at most tasks. However,
both models must be tested on larger NLI systems as well to be able to make
a proper evaluation of the two models.

6.2 Importance of good word embeddings

Word2Vec proved to be more efficient than the tf-idf vectoriser in all the ex-
periments, and within the Word2Vec experiments there was also differences
depending on which method was used. The CBOW approach showed much
greater results in the standalone experiments, and also in the fusion task.

51

52 CHAPTER 6. DISCUSSION

CBOW specialise in predicting words based on the context, and based on
the overall dominion over the skip grams, the most useful word embeddings
for distinguishing different languages might lie in the sentence context rather
than specific, rare words.

Looking at the performance of the implementation of Word2Vec vs. tf-idf
shows how important it is to use a good word embedding method. Not only
is it important to choose an appropriate embedding method, it also proved
to be important to consider the data which they are trained on. You do not
speak like you write, and neither do you write like you speak, which was
also shown when attempting to predict speech data with an essay classifier.
Therefore embedding the essays and transcripts separately might be the best
way to go, considering that the these text data types are quite different in
nature. Among the related works, both the Ionescu and Popescu [2017], and
Ircing et al. [2017] teams reported that essay and transcriptions data require
different types of n-grams, and that ultimately the speech transcriptions were
better left out. Treating the essays and transcriptions as data types of differ-
ent natures with different features could increase the usability of the speech
transcriptions, but this is a task left for future works.

Tf-idf were the chosen word embedding method for several of the 2017 NLI
shared task, including Ircing et al. [2017] and Oh et al. [2017], that were
the second and third best fusion models respectively. The success of tf-
idf in the related tasks and fields means that the tf-idf method is viable.
Therefore the cause for the failure of tf-idf for this thesis might be related
with particularities of the implementation. On the other hand, the tf-idf
vectors could also be less suited for RNN models than Word2Vec or other
similar prediction based methods.

6.3 Transcriptions not informative enough

As seen in the previous chapter, there is a large dissonance between the train-
ing results and the results from development data predictions. This might
be caused by factors such as very short sequences as mentioned by other
works [Malmasi et al., 2017], but since essays at the same length as speech
transcripts gave better results it also indicates that the data itself might be
a bit tricky. There were some abnormal occurrences found in the training

6.4. NAÏVE WORD PADDING WORKS 53

data, which might improve the transcript data performance if fixed.

On the other hand, as all neural networks are known for being constantly
hungry for more data, it could be the model choice or the chosen hyper-
parameters that are at fault for the poor results. But the gap between the
essay track in the shared task, and the inferiority compared to the i-vectors
in the related works speak otherwise.

6.4 Näıve word padding works

By applying a näıve word padding method to the speech transcriptions, the
model performance improved by 1.15%, which means that enriching the tran-
scription data is possible. It is uncertain why the difference between padding
the transcriptions and essays would be as much as 3.29%, considering that
the transcriptions on average would be padded more than the essays. As
stated in Section 2.8.1, the average length of a transcript is 90 words long,
while the essays are on average 315 words long.

When word padding the transcripts to a length of 150, it means an aver-
age of 60 words are padded per sequence. For the essays this would be 35
words in order to reach a length of 350. Yet, even though the transcripts
were padded with more redundant information than the essays, the end re-
sult was significantly better. This could mean that the transcriptions would
respond better to word specific features, and that the essays are more suited
for context features. It has been reported by several teams in the 2017 NLI
shared task that there are concerns regarding language bias when it comes
to the prompt topics. Because of the environment the data was captured,
many participants mention key words regarding their country of origin when
answering the questions. Repetition of these in a näıve word padding exper-
iment like performed in this thesis could have enforced these features on the
short sequences, and therefore made that model perform better. For future
works, it seems like padding of sequences can artificially enrich the data, and
experimentation with more sophisticated word padding methods could be an
interesting approach.

54 CHAPTER 6. DISCUSSION

6.5 Sequence length is important

During the standalone essay and transcription experiments, the length of
the sequences was a central parameter regarding the overall results of the
RNN models. Using the full length of the sequences ended with less good re-
sults than shorter sequences. The probable cause of this is that even though
there are essays with around 600-800 words, the majority of all essays lay
between 300-400 words. Meaning that if the sequence length is longer than
500, around 90% of the essays have to be padded in some manner. And
among these 90%, approximately 50% of these are padded to the double of
their length or more.

Because of the extensive padding, the model ended up underfitting on the
data, probably due to the sequences being mostly zeros. Word padding the
full length sequences ended in horrible overfitting, which most probably was
caused by the large amounts of redundant information. Therefore, unless
some more sophisticated word padding method can be utilised, the sequence
lengths should be kept around the average length across the data set.

6.6 Fusion

Here the results of the attempt at fusing the different data will be discussed.
This track was the most successful at the 2017 NLI shared task, and was also
deemed at the beginning of this research to be the one to produce the most
fruitful results.

6.6.1 Essay + Transcript + i-vector

Even though the system in the end only used word unigram features for classi-
fication, the performance was better than the standalone models. Compared
to the 2017 shared task, however, there was a strange development connected
to the i-vectors. According to the earlier tasks, it seems to be the most popu-
lar conclusion that the i-vectors are what brought the speech systems to new
levels. Yet when used in the systems produced through the experiments,
they did not give any significant improvement to the results.

6.7. LANGUAGE CONFUSION 55

The best performing model among the experiments did not perform any pre-
processing or feature selection on the i-vectors. In the related works using
i-vectors, there were no systems that utilised only RNNs to perform classi-
fication on this data, so it is difficult to locate the exact reason for the low
performance. Though the error might be in poor handling of the i-vector
data itself causing poor results, it could indicate that RNNs are not well
suited for this data type. Therefore for RNNs used in future work, it could
prove fruitful to classify the i-vector data using a different classifier in an
ensemble system.

Only lowercase word unigram features, with zero padded Word2Vec cbow
embedding models trained before cutting the sequence lengths were used for
the final best performing model. But, the optimal last experiment would have
been to use word padded speech data on top of the current best performing
model, however, that will be something that has to be left for the future.

6.6.2 Overfitting

In almost all of the models there has been a problem with overfitting. This
is most probably because of not feeding the model enough data, however,
just having a lot of data does not do the trick either. When attempting to
increase the amount of data, by appending the remainder of sliced sequences
to the data, the training took a lot of time while producing no better re-
sults than the best single word unigram system. The model did overfit less,
but the growth stagnated at the same accuracy as the simple word unigram
system. Because of this observation, it seems it would be more fruitful to
include several features of short sequence lengths, rather than just increasing
the amount of data.

6.7 Language confusion

The confusion matrix that resulted from the best fusion model is very similar
to those of related works. Many have speculated that the difficulty of distin-
guishing Hindi and Telugu is caused by the fact that they have received the
same English education through the Indian school system. Korean was often
misinterpreted as Japanese, but not so much the other way around. Confu-

56 CHAPTER 6. DISCUSSION

sion between these two is also not uncommon across related works, and has
been credited to the fact that the languages are quite close to one another.

It is interesting that Japanese scored the best among all the L1s, considering
that it is the language with the lowest average length of both speech tran-
scriptions and essays as described in Section 2.8.1. Italian is the language
with the third lowest transcription and essay average length, but also ranked
as the third best classified L1. This might indicate that these languages
have some very prominent features, given the results showing that they can
classify quite well based on a below average amount of data.

6.8 Comparison to the related works

By taking a look at Table 6.1, it is clear that the best performing model from
this thesis has much lower performance than the related works presented in
Chapter 3. Even the baseline, that was trained by using a linear SVM on
word unigrams, had achieved much better results. One of the first major
differences between the thesis model and the related works would be that,
except for the baseline, they all used several features. For the thesis model,
only word unigrams and raw i-vectors were used, but the related works pre-
sented in this thesis all used several features. The thesis model did not use
any sophisticated features, and neither were there enough tests evaluating
the efficiency of diverse features, which is probably one of the main reasons
why the results were not particularly good.

Combining several different classifiers in ensemble systems also seem to be a
solid approach. The L2F team also used GRUs, combining them with feed-
forward layers, and achieved much better results. Further, shallow networks
seem to be the overall best performing on the data and among the top sys-
tems. Oh et al. [2017] and Kepler et al. [2017] used more than three hidden
layers for their models, but they used different layer types than the ones in
this thesis. Most of the experiments showed little improvement of using deep
models with three hidden layers compared to just using one or two. But,
since the experiments used relatively little data, this should be explored in a
deep GRU network with more input data.

The related works were ultimately tested on the test set provided by the

6.8. COMPARISON TO THE RELATED WORKS 57

Comparison to the related works
essay + transcript + i-vector

team acc. f1 approach
Unibuckernel 93.18% 93.19% Kernel-based learning
CEMI 92.55% 92.57% Feed-forward NN
ETRI-SLP 92.18% 92.20% Vanilla DNN with early fusion
L2F 83.91% 83.77% Feed-forward + GRU
Baseline e,s,i 79.09% 79.01% Linear SVM on word unigrams + i-vectors
Thesis solution 57.90% 57.67% GRU
Baseline random 9.10% 9.10% Randomly selects a L1

Table 6.1: A comparison of the experiments’ best system and the related
works. The baselines are taken from Malmasi et al. [2017], which was used
to evaluate the team solutions in the 2017 NLI shared task.

2017 NLI shared task, but where unfortunately not available for this the-
sis. Therefore the results of this thesis cannot be directly compared to the
related works. But, since the cross validation showed that there were simi-
lar behaviour in the validation data and the development data, the results
should still be relevant for highlighting some of the important features to
keep in mind when working with RNNs in NLI.

Chapter 7

Conclusion and Future Work

To wrap it all up, this chapter will present the conclusion and what should
be considered for future works.

7.1 Conclusion

The experiments conducted in this thesis were not on par with the previous
NLI research, especially with regards to the previous shared task. Compared
to the baselines described in Malmasi et al. [2017], neither the LSTM nor the
GRU models reached these goals. However, there have been discovered some
methods that might prove useful to increasing the performance of future deep
learning approaches in NLI, and some methods that might be better left out.

It seems that prediction based word embedding methods overall perform
better than frequency based ones. And among the prediction based word
embedding approaches in Word2Vec, the choice between CBOW and skip
grams are also important to take into consideration when building a deep
learning RNN model.

The models benefited from going from shallow networks of 1 or 2 hidden
layers, also showing good results at 3. Going past 3 layers did not contribute
to noticeably better results for any of the data, just causing longer training
times. An environment that uses more variables and more data is more prob-
able to benefit from deep neural networks compared to the environment of
this thesis, and perhaps even combinations of several neural network models

59

60 CHAPTER 7. CONCLUSION AND FUTURE WORK

could be a good approach.

The relatively good results of the fusion model on only word unigrams could
prove that if future works could input more data into a similar model, the
results would improve. Having considered the related work and the experi-
ments conducted in this thesis, it does seem that there is a bright future for
deep neural networks in NLI.

7.2 Future work

Based on the results from the experiments conducted in this thesis, and
knowledge from related works, the problems that are left for future works
will be presented.

7.2.1 Speech transcription re-evaluation

Even though the speech transcriptions in theory could give valuable informa-
tion, especially in the form of semantic features, such as word placement and
choice of vocabulary, they have been hard to use effectively. Both from con-
ducting the experiments, reading related papers, and inspecting the dataset,
it is clear that transcriptions does not perform well compared to the essay
text data. Since the texts are short, they seem especially ill fitted for deep
learning approaches, and it also seems that lack of useful content might be
an underlying serious issue. Padding the transcription sequences with words
showed some improvement in performance, meaning that this is a topic worth
considering further with more sophisticated word padding in future works.

Stammering and repetition of words sometimes make up a lot of the speech
transcriptions, and might be a sign of stress due to the examination setting,
instead of an actual L1 bias. For future work it could be a good idea to
either find ways to use this stammering for something useful, or find a way
to extract the L1 features by pre-processing them so that they can become
more useful. Concatenation, as also mentioned by Malmasi et al. [2017],
will probably also be an important addition to the transcriptions since they
are very short, especially if stammering, or the word repetitions, would be
removed.

7.3. ENCOUNTERED PROBLEMS 61

7.2.2 Other classifier models

based on the sub-par results produced by the RNNs in the experiments, it
might be that that other deep neural network models might fare better. In
other related works the i-vector data proved to be very useful, which makes
it strange that they would be so little useful in this thesis if the system was
optimal. Experimenting with convolutional neural networks, or other deep
neural networks, while also taking into consideration the differences between
speech and essay handling could be an interesting task for future work.

7.3 Encountered problems

One of the biggest, and most expensive, problems faced was the grave error
in time estimation. Planning the finish of the experiments by the middle of
March, when in reality the basic environment itself was not in place before
that very self set deadline.

Following that, another problem which deep learning is famous for, RNNs
require a lot of computational power. The RNN models cost much more at
earlier stages than expected in the planning process. Such as memory con-
straints, and several hours required for one training run. This was overcome
by time as the implementation became more efficient, but the optimisation
was too late for all the planned experiments to be executed in time. Training
with more than one n-gram unit per data type proved to take a great toll on
the computer, with using up to four features increasing the training time to
a whole day.

7.4 Learning outcome

As the peak of my education so far, it has gone past my expectations in many
ways. Through the last year I have achieved things that I had never dreamt
of at the start of my masters, and I have tasted some of the hardships and
perks of doing a one man academic research project for a year.

I did not have any experience with native language identification or imple-
menting deep learning prior to choosing this specific thesis. But, what is the

62 CHAPTER 7. CONCLUSION AND FUTURE WORK

point of a masters thesis if not to challenge oneself and one’s abilities? After
this year, I am eager to continue working with something similar. Even if not
as a job, I have already started to plan my next hobby project on language
identification.

The scope of the project became maybe a little broader than what would be
possible for me in that time frame, which was much due to panic and sudden
impulses on something else that could be interesting to add or examine. This
has made me very aware of how important it is to stick to one’s schedule, not
to underestimate time constraints, and always make sure to keep frequent
backup of your work.

Bibliography

I. Anaconda. Anaconda Documentation. https://docs.anaconda.com/,
2012.

T. Bayes. An Essay Towards Solving a Problem in the Doctrine of Chances.
Philosophical Transactions, pages 370–418, 1763. doi: 10.1098/rstl.1763.
0053. Accessed on 8. December 2017.

D. Blanchard, J. Tetrault, D. Higgins, A. Cahill, and M. Chodorow.
TOEFL11: A Corpus of Non-Native English. 2013. Retrieved May 7th,
2018.

D. Blanchard, J. Tetrault, D. Higgins, A. Cahill, and M. Chodorow. ETS
Corpus of Non-Native Written English. https://catalog.ldc.upenn.

edu/LDC2014T06, 2014. Retrieved December 19th, 2017.

K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Machine Translation. arXiv preprint
arXiv:1406.1078, pages 1–15, 2014.

F. Chollet. Keras. https://keras.io, 2015.

A. Cimino and F. Dell’Orletta. Stacked Sentence-Document Classifier Ap-
proach for Improving Native Language Identification. In Proceedings of the
12th Workshop on Building Educational Applications Using NLP, pages
430–437, Copenhagen, Denmark, September 2017. Association for Com-
putational Linguistics.

G. Deco and D. Obradovic. Preliminaries of Information Theory and Neu-
ral Networks. An Information-Theoretic Approach to Neural Computing,
pages 7–27, 1996.

63

https://docs.anaconda.com/
https://catalog.ldc.upenn.edu/LDC2014T06
https://catalog.ldc.upenn.edu/LDC2014T06
https://keras.io

64 BIBLIOGRAPHY

I. Goodfellow. Deep Learning, chapter Introduction, pages 1–12. Adaptive
computation and machine learning. MIT Press, 2016.

Google. TensorFlow. https://www.tensorflow.org/, 2015. Last visited
March 12th, 2018.

S. Gupta. Automated Text Classification Using Machine Learning.
https://towardsdatascience.com/automated-text-classification-

using-machine-learning-3df4f4f9570b, 2018. Retrieved April 22nd,
2018.

S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural com-
putation, 9(8):1735–1780, 1997.

R. T. Ionescu and M. Popescu. Can string kernels pass the test of time
in Native Language Identification? In Proceedings of the 12th Workshop
on Building Educational Applications Using NLP, pages 224–234, Copen-
hagen, Denmark, September 2017. Association for Computational Linguis-
tics.

P. Ircing, J. S̆vec, Z. Zaj́ıc, B. Hladká, and M. Holub. Combining Textual and
Speech Features in the NLI Task Using State-of-the-Art Machine Learning
Techniques. In Proceedings of the 12th Workshop on Building Educational
Applications Using NLP, pages 198–209, Copenhagen, Denmark, Septem-
ber 2017. Association for Computational Linguistics.

F. Kepler, R. F. Astudillo, and A. Abad. Fusion of Simple Models for Native
Language Identification. In Proceedings of the 12th Workshop on Building
Educational Applications Using NLP, pages 423–429, Copenhagen, Den-
mark, September 2017. Association for Computational Linguistics.

S. Malmasi and M. Dras. Arabic Native Language Identification. In Proceed-
ings of the EMNLP 2014 Workshop on Arabic Natural Langauge Process-
ing (ANLP), pages 180–186, Doha, Qatar, October 2014a. Association for
Computational Linguistics.

S. Malmasi and M. Dras. Chinese Native Language Identification. In Pro-
ceedings of the 14th Conference of the European Chapter of the Association
for Computational Linguistics, pages 95–99, Gothenburg, Sweden, April
2014b. Association for Computational Linguistics.

https://www.tensorflow.org/
https://towardsdatascience.com/automated-text-classification-using-machine-learning-3df4f4f9570b
https://towardsdatascience.com/automated-text-classification-using-machine-learning-3df4f4f9570b

BIBLIOGRAPHY 65

S. Malmasi and M. Dras. Finnish Native Language Identification. In Proceed-
ings of Australasian Language Technology Association Workshop, pages
139–144, Melbourne, Australia, November 2014c.

S. Malmasi and M. Dras. Native language identification using stacked gen-
eralization. arXiv preprint arXiv:1703.06541, pages 1–33, 2017.

S. Malmasi, M. Dras, and I. Temnikova. Norwegian Native Language Identifi-
cation. In Proceedings of Recent Advances in Natural Language Processing,
pages 404–412, Hissar, Bulgaria, September 2015.

S. Malmasi, K. Evanini, A. Cahill, J. Tetrault, R. Pugh, C. Hamill, D. Napoli-
tano, and Y. Qian. A Report on the 2017 Native Language Identification
Shared Task. In Proceedings of the 12th Workshop on Building Educational
Applications Using NLP, pages 62–75, Copenhagen, Denmark, September
2017. Association for Computational Linguistics.

T. Mikolov. word2vec. https://code.google.com/archive/p/word2vec/,
2013. Last visited April 23rd, 2018.

A. Ng. What data scientists should know about deep learn-
ing. https://www.slideshare.net/ExtractConf/andrew-ng-chief-

scientist-at-baidu, 2015. Retrieved April 11th, 2018.

T. Odlin. Crosslinguistic Influence in Second Language Acquisition. The
Encyclopedia of Applied Linguistics, pages 1–6, 2013.

Y. R. Oh, H.-B. Jeon, H. J. Song, Y.-K. Lee, J.-G. Park, and Y.-K. Lee.
A deep-learning based native-language classification by using a latent se-
mantic analysis for the NLI Shared Task 2017. In Proceedings of the 12th
Workshop on Building Educational Applications Using NLP, pages 413–
422, Copenhagen, Denmark, September 2017. Association for Computa-
tional Linguistics.

P. Raybaut. Spyder Documentation. https://pythonhosted.org/spyder/
#, 2009.

S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach, Global
Edition, chapter The History of Artificial Intelligence, pages 16–28. Pear-
son Education Limited, 2016.

https://code.google.com/archive/p/word2vec/
https://www.slideshare.net/ExtractConf/andrew-ng-chief-scientist-at-baidu
https://www.slideshare.net/ExtractConf/andrew-ng-chief-scientist-at-baidu
https://pythonhosted.org/spyder/#
https://pythonhosted.org/spyder/#

66 BIBLIOGRAPHY

J. Schneider. Cross Validation. https://www.cs.cmu.edu/~schneide/

tut5/node42.html, 1997.

B. Schuller, S. Steidl, A. Batliner, J. Hirschberg, J. K. Burgoon, A. Baird,
A. Elkins, Y. Zhang, E. Coutinho, and K. Evanini. The INTERSPEECH
2016 Computational Paralinguistics Challenge: Deception, Sincerity & Na-
tive Language. In Interspeech 2016, pages 2001–2005, San Francisco, USA,
September 2016.

J. Tetrault, D. Blanchard, and A. Cahill. A Report on the First Native
Language Identification Shared Task. In Proceedings of the Eight Workshop
Innovative Use of NLP for Building Educational Applications, pages 48–57,
Atlanta, USA, June 2013.

L. M. Tomokiyo and R. Jones. You’re Not From ’Round Here, Are You?:
Näıve Bayes Detection of Non-Native Utterance Text. In Proceedings of the
second meeting of the North American Chapter of the Association for Com-
putational Linguistics on Language technologies, pages 1–8, Pittsburgh,
USA, June 2001. Association for Computational Linguistics.

C. Trim. The Art of Tokenization. https://www.ibm.com/developerworks/
community/blogs/nlp/entry/tokenization?lang=en, January 2013.
Retrieved March 9th, 2018.

A. Trivedi. Transfer Learning and Fine-tuning Deep Neural Networks.
https://www.slideshare.net/PyData/py-datasf, 2016. Retrieved
April 11th, 2018.

S. Vijayarani, J. Ilamathi, and M. Nithya. Preprocessing Techniques for
Text Mining - An Overview. International Journal of Computer Science
& Communication Networks, 5(1):7–16, 2015.

W. Yin, K. Kann, M. Yu, and H. Schütze. Comparative Study of CNN
and RNN for Natural Language Processing. arXiv:1702.01923, pages 1–7,
2017.

G. Zoubin. Bayesian Machine Learning. http://mlg.eng.cam.ac.uk/

zoubin/bayesian.html, 2004. Retrieved December 12th, 2017.

https://www.cs.cmu.edu/~schneide/tut5/node42.html
https://www.cs.cmu.edu/~schneide/tut5/node42.html
https://www.ibm.com/developerworks/community/blogs/nlp/entr y/tokenization?lang=en
https://www.ibm.com/developerworks/community/blogs/nlp/entr y/tokenization?lang=en
https://www.slideshare.net/PyData/py-datasf
http://mlg.eng.cam.ac.uk/zoubin/bayesian.html
http://mlg.eng.cam.ac.uk/zoubin/bayesian.html

	Introduction
	Background and motivation
	The NLI shared task

	Goals and research questions
	Research method
	Thesis structure

	Background Theory
	Natural language processing
	Native language identification
	Machine learning
	Artificial neural networks (ANN)
	Deep neural networks (DNN)
	Recurrent neural networks (RNN)
	Long short-term memory (LSTM)
	Gated recurrent units (GRU)
	Support vector machines (SVM)

	Text preparation
	Tokenisation
	Stop words
	Stemming
	Word embeddings
	Sequence padding

	Features
	N-grams
	Part of speech tagging

	Tools
	Python
	TensorFlow
	Keras

	Evaluation
	F1-score
	K-fold cross validation

	Dataset
	TOEFL11 dataset
	Essay data
	Speech data

	Related Work
	CEMI (Ircing et al., 2017
	ETRI-SLP (Oh et al., 2017)
	L2F (Kepler et al., 2017)
	ItaliaNLPLab (Cimino & Dell'Orletta, 2017)
	UnibucKernel (Ionescu & Popescu, 2017)

	Methodology
	Classifiers models
	Model environment

	Data preparation
	Essay data
	Speech transcription data
	i-vector data

	Features
	N-grams
	POS tag

	Feature extraction
	Word embeddings
	i-vector

	Experiment plan
	Experiment flow
	Separate testing
	Fusion testing
	Word embeddings
	Sequence padding
	Evaluation

	Experiment Results
	Fused Classifier
	Structure
	GRU vs. LSTM
	Early stopping
	K-fold cross validation

	Essay data
	Preparation is key
	Word n-gram comparison

	Speech data
	Speech transcriptions
	Abnormality preservation
	Characters and words
	i-vectors

	Word embeddings
	tf-idf vectorisation
	Word2Vec

	Word padding
	Language performance

	Discussion
	LSTM vs. GRU
	Importance of good word embeddings
	Transcriptions not informative enough
	Naïve word padding works
	Sequence length is important
	Fusion
	Essay + Transcript + i-vector
	Overfitting

	Language confusion
	Comparison to the related works

	Conclusion and Future Work
	Conclusion
	Future work
	Speech transcription re-evaluation
	Other classifier models

	Encountered problems
	Learning outcome

	Bibliography

