
Durability in a data-flow storage system

Lars Martin Bævre Ek

Master of Science in Computer Science

Supervisor: Kjetil Nørvåg, IDI

Department of Computer Science

Submission date: June 2018

Norwegian University of Science and Technology

Abstract

Traditional database systems do not meet the throughput demands of today’s web
applications. Mitigation strategies on the form of intricate cache hierarchies and manual
view materialization solve parts of the performance equation, at the cost of increasing
complexity. Soup is a new structured storage system that scales to millions of reads per
second on a single machine, without the architectural complexity seen in other storage
deployments. By propagating updates through a data-�ow graph, where pre-computed
state is incrementally maintained at materialized nodes throughout the graph, Soup
moves the majority of the processing work from reads to writes.

Soup stores all data in volatile main-memory and relies on a write-ahead log for dura-
bility. While fast memory access is crucial for frequently accessed materialized views, it
is a cumbersome requirement for Soup’s base tables, which only serve read requests at
rare occasions. By implementing a disk-resident index structure on top of the RocksDB
storage engine, this thesis moves Soup from a pure main-memory database to a struc-
tured storage system capable of handling datasets larger than its memory size, with
only a small decrease in overall write throughput.

With its base tables stored safely on durable storage, Soup can recover from fatal failures
by gradually building up its partially materialized views as needed. Similar to a system
that recovers with an empty cache, this reduces initial performance while live requests
slowly build up Soup’s memory-based state. To completely remove the performance
degradation of recovery, this thesis also implements a method of performing a global
checkpoint of Soup’s materialized state. By approaching the data-�ow graph as a
distributed system, the method performs a coordinated snapshot of all local state,
allowing Soup to recover in about a tenth of the time.

i

Sammendrag

Tradisjonelle databasesystemer møter ikke prestasjonskravene sa� av dagens webap-
plikasjoner. Kompromisser i form av intrikate mellomlagringshierarkier og manuell
materialisering av data løser deler av hastighetsproblemet, på bekostning av økt komplek-
sitet. Soup er et ny� strukturert lagringssystem som skalerer til millioner av lesninger
per sekund på én maskin, uten over�ødigheter observert i andre lagringsoppse�. Ved å
propagere oppdateringer gjennom en data�ytsgraf, hvor forhåndsberegnede resultater
opparbeides inkrementelt ved nodene i grafen, beveger Soup mye av prosesseringsar-
beidet fra lesing til skriving.

Soup lagrer all data i �yktig hovedminne og skriver oppdateringer til en logg�l for å
vedlikeholde data ved fatale feil. Selv om rask minnelesingshastighet er essensielt for
mellomlagrede verdier som aksesseres o�e, er det et tungvint krav for kjernetabellene,
da disse gjerne sjelden svarer på leseforespørsler. Ved å implementere en diskbasert
indeksstruktur over RocksDB-lagringsmotoren, tar denne avhandlingen Soup fra å være
et rent minnebasert system, til et strukturert lagringssystem kapabelt til å håndtere
mer data enn det har plass til i minne, med kun en minimal nedgang i skrivegjennom-
strømning.

Med kjernetabellene lagret trygt på disk, kan Soup gjenoppre�es e�er feil ved gradvis
oppbygging av partielt materialiserte resultater. I likhet med mellomlagringssystemer
som starter uten innhold, fører de�e til redusert initiell hastighet. Hastigheten økes
sakte, men sikkert, e�ersom forespørsler e�er data fyller opp de minnebaserte mellom-
lagringslokasjonene. Med mål om å vedlikeholde samme hastighet, implementerer også
denne avhandlingen en metode for å gjennomføre et globalt kontrollpunkt av lokal
tilstand i Soup. Ved å se på data�ytsgrafen som et distribuert system, tar metoden et
koordinert lagringsbilde av data i systemet, slik at Soup kan gjenoppre�es på en tiendel
av tiden ved feil.

ii

Preface

�is thesis was wri�en as the �nal deliverable for the Master’s of Science in Computer
Science program at the Norwegian University of Science and Technology. �e program
includes a master’s thesis—presented here—and a preliminary project, where the former
builds upon research of the la�er, which was completed in December 2017. Both the
preliminary project and this thesis contributes to the Soup research project at MIT’s
Parallel and Distributed Operating Systems Group and is advised by Kjetil Nørvåg at
NTNU’s Department of Computer Science.

Acknowledgments

Neither this thesis, nor the research performed in the preliminary project, would have
seen the light of day without the steadfast support, advice, and feedback from Jon
Gjengset, Malte Schwarzkopf, and the rest of the Soup team at MIT’s Parallel and Dis-
tributed Operating Systems Group. �ank you for proposing interesting challenges,
providing servers for benchmarks, following up on both technical and academic ques-
tions, and most importantly, for le�ing me contribute to Soup—it has been a privilege.

Finally, I would like to thank Kjetil Nørvåg for both excellent advice and guidance
throughout the last year.

iii

iv

Contents

1 Introduction 1
1.1 From main-memory to durable storage 2
1.2 Snapsho�ing materialized views . 2
1.3 Outline . 3

2 Background 5
2.1 Soup . 6

2.1.1 Data-�ow . 6
2.1.2 Operators . 10
2.1.3 Eventual consistency . 13
2.1.4 Architecture . 14
2.1.5 Interacting with Soup . 15
2.1.6 MySQL Protocol Translation . 18

2.2 SQLite . 19
2.2.1 B-trees . 19
2.2.2 Rollback journal . 20
2.2.3 Write-ahead log . 20
2.2.4 Interacting with SQLite . 20
2.2.5 SQLite from Rust . 21

2.3 RocksDB . 22
2.3.1 MemTables . 22
2.3.2 Static sorted tables . 23
2.3.3 Write-ahead log . 23
2.3.4 Basic operations . 24
2.3.5 Compactions . 24
2.3.6 Bloom �lters . 25
2.3.7 Iteration . 26
2.3.8 Column Families . 26
2.3.9 Customizing the MemTable implementation 26
2.3.10 Customizing the SS-table implementation 28

v

2.3.11 RocksDB from Rust . 28
2.4 Rust . 29

2.4.1 Foreign Function Interface . 30
2.5 bincode . 31
2.6 Pro�ling . 32

2.6.1 CPU . 32
2.6.2 Memory . 33

3 Related work 35
3.1 Indexing . 36

3.1.1 Secondary indices with LSM-trees 36
3.2 Recovery . 38

3.2.1 Recovery in main-memory databases 39
3.2.2 Snapsho�ing in distributed systems 40

4 Benchmarks 43
4.1 Hardware . 44

4.1.1 Server setup 1: SSD . 44
4.1.2 Server setup 2: EC2 NVMe SSD 44
4.1.3 Server setup 3: EC2 RAM Disk 44

4.2 Lobsters . 44
4.3 Vote . 45

4.3.1 Open-loop . 46
4.4 Replay . 46
4.5 Recovery . 47

5 Persistent base tables 49
5.1 In-memory state . 51

5.1.1 Adding indices . 51
5.1.2 Operations . 51

5.2 Requirements . 53
5.2.1 Write throughput . 53
5.2.2 Point query performance . 53
5.2.3 Support both primary and secondary indices 53

5.3 Embedding an existing storage engine 53
5.3.1 State interface . 54
5.3.2 Ownership of data from State 55

5.4 Persistent state with SQLite . 58
5.4.1 Schema . 59
5.4.2 Adding indices . 59
5.4.3 Operations . 60
5.4.4 Replacing the Soup write-ahead log 61
5.4.5 Relaxing SQLite’s durability guarantees 64

5.5 Persistent state with RocksDB . 66
5.5.1 Secondary index scheme . 66
5.5.2 Pre�x iteration . 69

vi

5.5.3 Separating indices . 72
5.5.4 Ensuring unique keys for secondary indices 72
5.5.5 Following index pointers: space versus performance 74
5.5.6 Operations . 75
5.5.7 Replacing the Soup write-ahead log 77
5.5.8 Building new indices . 78
5.5.9 Background threads . 79

6 Recovery 81
6.1 Write-ahead log . 82

6.1.1 Log based recovery . 82
6.2 Persistent base nodes . 83
6.3 Snapsho�ing . 83

6.3.1 Challenges . 84
6.3.2 Algorithm . 84
6.3.3 Implementation . 89
6.3.4 Performing snapshot requests 91
6.3.5 Receiving snapshots con�rmations 91
6.3.6 Logging and snapsho�ing . 92
6.3.7 Recovering from a snapshot . 92
6.3.8 Serialization and deserialization of snapshots 93
6.3.9 Snapshot compression . 93
6.3.10 Persisted data . 94
6.3.11 Diamonds in the data-�ow graph 94

7 Evaluation 97
7.1 Write-performance . 98

7.1.1 MemTable format . 100
7.2 Read-performance . 101

7.2.1 SS-table format . 101
7.3 Mixed workload . 102

7.3.1 Computational overhead . 103
7.3.2 I/O overhead . 103

7.4 Recovery . 104
7.4.1 Snapshot compression . 105
7.4.2 Write-performance with snapsho�ing 106

8 Conclusion 109
8.1 Persistent base tables . 110
8.2 Snapsho�ing . 110
8.3 Conclusion . 111
8.4 Future work . 111

8.4.1 Snapsho�ing and persistent bases 111
8.4.2 PersistentState serialization 112
8.4.3 Uncoordinated snapshots . 112
8.4.4 Incremental snapshots . 112

vii

A Contributions 115
A.1 distributary . 116
A.2 distributary-mysql . 116
A.3 nom-sql . 117
A.4 RocksDB . 117
A.5 rust-rocksdb . 118

viii

Chapter 1
Introduction

Building sophisticated web applications while scaling to potentially millions of users
forces developers to compromise between performance, user requirements, and appli-
cation complexity. Whereas traditional relational databases logically are able to ful�ll
the increasingly complex storage demands of today’s internet businesses, they are far
from able to do so at the scale and performance required. To continue serving requests
at increasing throughput targets with low latency, developers introduce mitigation
strategies ranging from complex cache hierarchies [60] to denormalized schemas [68].

�ese methods are usually used to drastically improve read performance, while penaliz-
ing write throughput and increasing application complexity. Soup [38] sets out to solve
this dilemma once and for all, with a structured storage system capable of horizontally
scaling to millions of reads per second, without the need for complex cache deployments
or manual maintenance of materialized views.

Soup achieves this through use of an incrementally maintained data-�ow graph. New
updates propagate through the graph at write-time, with pre-computed results stored at
selected materialized nodes throughout the graph. �is moves the bulk of the workload
from reads to writes, by giving read operations direct access to computed state from
materialized nodes further down the graph.

Soup ensures durability by persisting all updates to a write-ahead log before they
are injected into the data-�ow graph. While appending entries to a �le is good for
performance, recovering from an ever-growing log a�er a failure is far from feasible. �is
thesis improves Soup’s durability situation with two main contributions: it moves Soup’s
otherwise in-memory table structures to durable storage and implements snapsho�ing
of Soup’s materialized views. Both contributions were implemented in the open-source
Soup prototype wri�en in the Rust programming language, and a list of the changes is
available in appendix A.

1

CHAPTER 1. INTRODUCTION

1.1 From main-memory to durable storage

A�er updates are persisted to Soup’s write-ahead log, they are injected into the �rst
nodes in the data-�ow graph: the base tables. Unlike the partially materialized nodes
further down the data-�ow graph, the base tables can never be evicted from, and must
together always contain a full representation of a Soup application’s state. On the other
hand, the base tables should only be responsible for serving a small part of Soup’s read
queries. �e rest should be handled by materialized nodes towards the bo�om of the
graph, using state that was pre-computed when the updates propagated through the
data-�ow graph.

�is makes volatile main-memory a poor destination for Soup’s base table data. Appli-
cations where data is continuously inserted would cause Soup’s memory footprint to
grow continuously over time, until eventually reaching its host system’s memory limit.
Moving the base tables to durable storage avoids this problem, while reducing Soup’s
overall memory usage.

Storing base tables on durable storage also improves Soup’s recovery situation, by
avoiding the need to replay the entire write-ahead log a�er failures. With all updates
safely persisted to and readily available from durable storage, recovery is instead a
ma�er of replaying data from the base tables when needed.

1.2 Snapshotting materialized views

With durable base tables, Soup recovers signi�cantly faster than by having to replay
the entire write-ahead log. �is is not without downside however: whereas log-based
recovery brings all nodes in the data-�ow graph back to a pre-failure state, durable base
tables leave partial nodes empty, resulting in a latency penalty for initial read-queries.
Instead, we would like to periodically write snapshots of the materialized state at each
node to durable storage, ensuring a speedy recovery process for both base tables and
materialized views alike.

To snapshot nodes individually while maintaining consistency, it is crucial that all nodes
snapshot the same window of updates. For a given update at any given time, said update
must either be contained in every snapshot across the graph, or neither of them. While
updates are processed synchronously within a single domain in Soup (a partition of
nodes), data �ows asynchronously between domains, where the boundaries can be both
within a local machine and across a network. At the same time, taking a snapshot should
not incur a signi�cant pause in processing, which would result in lower throughput all
around.

By approaching the problem from the viewpoint of snapsho�ing in a distributed system,
this thesis implements a snapsho�ing method capable of creating a logically consistent
snapshot across the data-�ow graph, with a focus on maintaining as much of Soup’s
performance guarantees as possible.

2

1.3. OUTLINE

1.3 Outline

�e rest of this thesis is structured as follows:

• Chapter 2 introduces core theory behind fundamental concepts used in the rest
of this thesis.

• Chapter 3 reviews ideas from research and industry relevant to the thesis’ main
contributions.

• Chapter 4 describes new and existing benchmarks used throughout the thesis.

• Chapter 5 outlines the requirements for a persistent base table implementation,
followed by two implementation iterations.

• Chapter 6 gradually builds up a snapsho�ing implementation.

• Chapter 7 evaluates the resulting implementations from the two previous chap-
ters, using the benchmarks introduced in chapter 4.

• Chapter 8 presents possible next steps towards a production-ready Soup while
concluding on the results presented earlier in the thesis.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2
Background

�is chapter describes various concepts relevant to the rest of this thesis, starting with
an introduction to the system the contributions are implemented in, Soup. A�erwards,
and outline of the Rust programming language follows, together with a look at the
bincode serialization library and a few other core technical concepts used throughout
the thesis. Finally, an overall view of the two di�erent storage engines SQLite and
RocksDB, used to implement the durable index structure described in chapter 5, is given.

5

CHAPTER 2. BACKGROUND

2.1 Soup

Soup [38] is an on-going research project at the Parallel and Distributed Operating
Systems1 group at MIT CSAIL. �e current Soup prototype is wri�en in the Rust
programming language and made available as open-source code on GitHub2.

�is section introduces Soup’s core concepts.

2.1.1 Data-�ow

Applications using Soup de�ne base table schemas and a set of queries ahead of time.
Whereas the former is common in traditional relational database management systems,
the la�er is not, and is the primary source of Soup’s read performance improvements.
A relational database computes the result of queries on-the-�y, by building a query-
graph, which it then executes. �is requires potentially costly computations to be
performed multiple times for separate queries, while throwing away intermediary
results that could be re-used. Soup instead builds a data-�ow graph from its pre-de�ned
queries, propagating each update through it at write-time. Computations can then be
incrementally maintained on each write, reducing the work needed by a read-operation
to something more similar to a simple key-value read in a caching system.

CREATE TABLE Car (id int, brand varchar(255), PRIMARY KEY(id));

QUERY CountCars: SELECT COUNT(*) FROM Car WHERE brand = ?;

Listing 2.1: An example base table with a corresponding query.

Implemented naively, incrementally maintaining a data-�ow graph for each query
would have disastrous storage consequences. Each query would need a separate graph,
duplicating data across a range of nodes. Instead, Soup builds a single data-�ow graph
from all of its queries, recognizing common sub-expressions where possible [34]. �at
still leaves the issue of what state to incrementally maintain. With queries consisting
of a potentially large amount of nodes, materializing data at each step would lead to
signi�cant overlap between nodes. Instead, Soup only materializes and incrementally
maintains state at nodes it considers stateful, with other nodes referring upwards in the
graph to its closest materialized ancestor node.

1https://pdos.csail.mit.edu/
2https://github.com/mit-pdos/distributary/

6

https://pdos.csail.mit.edu/
https://github.com/mit-pdos/distributary/

2.1. SOUP

Figure 2.1: A simpli�ed version of a Soup data-�ow graph for a program that counts
the number of people with the same name. Insertions propagate from top to bo�om,
where data is materialized at the necessary points. While all rows are stored in the
People base node, the aggregation operator (γ) only retains the total count for each
name, enabling e�cient reads.

�e state at these materialized nodes is also kept partial whenever possible. Instead
of storing the results for all queries—like a materialized view does—Soup only retains
state for records in the application’s working set, evicting rarely used data. �eries for
missing keys result in ancestor queries (replays) to nodes further up the graph. Similar
to cache misses in other systems these eventually propagate all the way up to the base
nodes, where a full copy of the state is always maintained.

7

CHAPTER 2. BACKGROUND

Figure 2.2: �eries for missing keys, in this case X, are ful�lled by requesting replays
from ancestors in the data-�ow graph. Subsequent requests for X will be ful�lled by the
reader directly, avoiding the need for further replaying.

Migrations

Schema migrations are inevitable in long-running applications: business requirements
change, projects are refactored, and new features are added. Performing migrations in
traditional database systems, without downtime, is on the other hand far from trivial [36,
80]. While Soup requires both the schema and all queries to be de�ned ahead of time, it
handles changes in both seamlessly.

8

2.1. SOUP

Figure 2.3: To extend the program from �gure 2.1 with a query selecting rows by ID,
Soup adds a projection operator and a reader to the existing data-�ow.

Added queries extend the existing data-�ow with additional nodes, while reusing as
much as possible of the existing graph. New partially materialized nodes can start
serving requests right away, by fetching data from ancestor nodes if necessary. �is is
not the case with fully materialized nodes, which require a full representation of their
state at all times. To bring these nodes online, Soup incurs a full replay of the state
needed, potentially delaying new requests until all replays have completed. Review
of the migrations performed during the lifetime of the HotCRP conference review
program [48]—which uses MySQL—showed that these delays were rare, with Soup
being able to transition 95% of schema changes without downtime.

Changes to the base table schema happen in-place, and Soup’s base nodes retain a full
history of columns for each table. �is ensures that both existing and new requests
can be served alongside each other, allowing the data-�ow graph to transition without
downtime.

Domains

Soup’s data-�ow graph is partitioned into domains, each containing a series of nodes.
Updates are processed at separate domains asynchronously, in di�erent computational
units—threads, or other machines altogether for distributed Soup. Within a single
domain, packets are processed synchronously, one at a time, removing the need for
locking within domains. Packet processing at domains include both regular updates
and other types of packets, such as replay requests.

Domains are separated by egress and ingress nodes, responsible for maintaining com-
munication across domain boundaries using a bu�ered channel. When Soup is run

9

CHAPTER 2. BACKGROUND

in a distributed fashion, communication between separate domains happen over TCP
sockets, between the egress and ingress nodes.

Sharding

Distributing domains across computational units lets Soup divide its processing load
between a cluster of machines. �is is only an improvement if the load is uniformly
spread across all domains. When that is not the case, and a majority of the data is
skewed towards a single domain, Soup is le� to processing most of the requests in a
single computational unit. �is is where sharding comes in. By spli�ing the atom that
is a single domain into multiple shards, both the computational load and the data stored
at that domain can be spread between multiple computational units.

Balancing the data across a cluster is essential in scaling Soup to larger datasets. Without
sharding, Soup’s capabilities would be capped at the memory size of the largest machine
in the cluster. Soup shards data by hash-partitioning keys statically. �is is unfortunate
for workloads skewed towards a small key subset, where only a few domains might end
up serving most of the requests received. Dynamic sharding would evenly re-balance
the workload across the shards, and is a future implementation goal for Soup.

When necessary, a sharder node is inserted between domains, translating between
sharding schemes in separate domains. �is allows nodes further down the graph to
remain partial, at the cost of having to replay state across domains.

Eviction

To ensure that partial state does in fact remain partial over time, Soup evicts data
when necessary. Currently this happens when Soup’s memory-limit goes beyond an
application-de�ned limit. �is triggers an eviction notice sent to the largest domain—
measured in state-size—which then takes care of propagating this eviction notice down-
stream in the graph to any nodes that might depend on the evicted state.

�e keys to evict at a speci�c node are picked randomly. In the future, this could be
improved through more sophisticated eviction strategies, such as only evicting the least
recently used records.

2.1.2 Operators

Soup’s data-�ow graph consists of relational operators, where each operator emits either
the Positive or the Negative records required for downstream nodes to maintain
their state accordingly.

10

2.1. SOUP

Base nodes

Every packet that reaches Soup is �rst injected into an appropriate base node, similar to
a table in a relational database. �is is where external API requests are translated into
a language the rest of the data-�ow graph understands. While clients might issue e.g.,
deletion requests by key, the base nodes translate the request into a Negative record
for the entire row, which the rest of the data-�ow graph can use to invalidate removed
state. Update requests are likewise �rst translated into a Negative record, followed by
a Positive record containing the new row.

Whereas other stateful nodes can keep their state partial, choosing which records to
maintain and which to discard, base nodes always remain fully materialized at all times.

Stateless operators

Stateless operators process updates with no regard for prior events, without maintaining
any state at all. �e operators that fall within this category are pure functions, such as
the projection and �lter operators. �e former picks out one or more �elds from each
incoming row, while the la�er determines if a row should be forwarded through the
data-�ow graph or not.

While Soup is free to insert operators into its data-�ow graph as it sees �t, both projec-
tions and �lters can o�en be mapped directly to a part of an SQL query. SELECT name

... would result in the projection shown in �gure 2.4, while a WHERE-clause on the
form of WHERE age < 10 would produce a �lter operator emi�ing only records where
age < 10 is true.

Figure 2.4: A projection operator responsible for picking out the name column of
incoming records.

Stateful operators

Whereas stateless operators resemble their counterparts in relational databases [17],
Soup’s stateful operators compute results incrementally by maintaining internal state

11

CHAPTER 2. BACKGROUND

between updates. �is saves Soup from re-doing potentially expensive computations,
by instead mutating the previous result when a new record arrives. �e count operator—
produced by a SQL COUNT-clause—is an example of a stateful operator, where Positive
and Negative records incur an addition or subtraction of the current count, respectively.
Another example is the top-k operator, produced by e.g., an ORDER BY-clause coupled
with a LIMIT to determine the k most signi�cant or insigni�cant elements.

Figure 2.5: �e max operator emits both a negative and a positive record when its state
changes: the former to signal that its previous state should be invalidated, the la�er to
inform downstream nodes of the new result.

Joins

Finally, Soup supports joining together multiple paths of the data-�ow graph. �is is
made possible using ancestor queries. Whenever a record arrives at a join operator, it
queries its other ancestors for the records required to produce a single, uni�ed update.
To make sure that this is completed in an e�cient manner, join operators force their
ancestors to retain indices on the �elds that they need to be queried for.

12

2.1. SOUP

Figure 2.6: An ancestor query is performed to the right side of the join to produce a
uni�ed record for the update received from the le�.

2.1.3 Eventual consistency

Databases are o�en considered the source of truth for applications, and anomalies
here could have disastrous consequences. Whereas fatal failures are easy to recognize,
unexpected behavior at the data layer could be the exact opposite. �is is a convincing
argument for strong consistency, where the result of all operations can be reasoned
about from the ordering and type of operation performed.

Regardless, companies scaling web applications to large amounts of users o�en opt
for systems with lesser consistency guarantees [18, 20, 79]. While the performance of
strongly consistent systems have taken a turn for the be�er with the introduction of
horizontally scalable systems with clearly de�ned consistency guarantees [14, 19], the
race is still far from even when compared to systems with lesser consistency guarantees.
At the same time, the question of whether strong consistency is actually a requirement
for most applications remain. Analysis of live requests at Facebook [53] showed the
opposite: only 0.0004% of reads would have returned di�erent results in a strongly
consistent system with total ordering. �ese cases could then be handled explicitly,
avoiding the need to penalize the performance of an entire system for a fraction of the
requests.

Soup targets applications where eventual consistency is su�cient, and would not be able
to provide the performance it does without it. Eventual consistency avoids the need for
explicit synchronization on every update, while allowing Soup to scale in a distributed
fashion without a total ordering of writes. Clients receive write acknowledgments
for writes when updates have been safely persisted to durable storage, a�er which
they are propagated through Soup’s data-�ow graph asynchronously. Reads access

13

CHAPTER 2. BACKGROUND

double-bu�ered hash tables directly [37], without the need for locks. Writes update one
of the bu�ers and expose updated content to the readers with an atomic swap.

2.1.4 Architecture

Soup is composed of a series of components and runs distributed on an arbitrary number
of machines. Each Soup cluster elects a single controller, which serves as an entry point
for further communication. �e bulk of the processing work happens within workers
and readers.

Figure 2.7: Clients communicate directly with readers and mutators for reads and
writes.

Controller

At the heart of Soup lies a replicated controller, with a leader elected using ZooKeeper [42].
�e controller is the �rst point of contact for Soup’s external APIs, and is responsi-
ble for managing Soup’s data-�ow graph. In the face of a migration, the controller
issues commands to the workers, to modify the graph as necessary to continue serving
requests.

Souplets

Processing of updates happen within the Souplets—Soup’s worker nodes. Each Souplet
includes a pool of threads which together go through the incoming packets for its
domains. While maximum one thread can process updates for a domain at once, multiple
domains can process updates in parallel. Earlier versions of Soup ran domains in separate

14

2.1. SOUP

threads altogether, resulting in a core-constrained system when the number of domains
went far beyond the host’s CPU core count.

Communication between the Souplets and the controller happens over TCP, at the
coordination layer.

Mutators

A�er contacting the controller to construct a mutator, clients inject updates directly
into the Soup data-�ow graph, without further controller communication. Each base
node requires a separate mutator. �e mutator API includes methods for inserting,
deleting, and updating records. Clients receive acknowledgments when writes have
been successfully persisted to Soup’s write-ahead log and durability can be ensured.

Readers

Soup’s reader nodes make use of double-bu�ered hash tables to make it possible to read
and write to a single data structure at the same time, without locks. To prevent high
throughput write processing from slowing down reads, read requests are processed by
separate threads—readers. Whenever a reader lacks state for a speci�c key, it issues a
replay request to its ancestor nodes, which will be served on Soup’s regular update path.
Finally, the completed replay updates a reader’s state by swapping the double-bu�ered
tables.

2.1.5 Interacting with Soup

Applications using Soup de�ne a base table schema and a set of corresponding queries.
�e query syntax resembles that of prepared statements in relational databases, where
placeholders are replaced with values when the query is used in a read operation. Both
the schema and the queries can be modi�ed and extended later on, through Soup’s
external API.

15

CHAPTER 2. BACKGROUND

/* Base table schemas: */

CREATE TABLE Article (aid int, title varchar(255),

url text, PRIMARY KEY(aid));

CREATE TABLE Vote (aid int, uid int);

/* Intermediate view (not exposed through the client): */

VoteCount: SELECT Vote.aid, COUNT(uid) AS votes

FROM Vote GROUP BY Vote.aid;

/* Read query: */

QUERY ArticleWithVoteCount:

SELECT Article.aid, title, url, VoteCount.votes AS votes

FROM Article, VoteCount

WHERE Article.aid = VoteCount.aid AND Article.aid = ?;

Listing 2.2: Soup schema with two base tables and an external query.

Writing to and reading from Soup is done through mutators and ge�ers. Both are built
by going through the controller, a�er which writes can go directly to the domain and
reads can access readers directly.

// Build mutators and getter.

let mut article = blender.get_mutator("Article").unwrap();

let mut vote = blender.get_mutator("Vote").unwrap();

let mut awvc = blender.get_getter("ArticleWithVoteCount").unwrap();

// Insert a new article:

let aid = 1;

let title = "new article";

let url = "https://ntnu.edu";

article

.put(vec![aid.into(), title.into(), url.into()])

.unwrap();

// Vote for the article:

let uid = 123;

vote

.put(vec![aid.into(), uid.into()])

.unwrap();

// Read the vote count:

println!("{}", awvc.lookup(&[aid.into()], true));

Listing 2.3: Soup example usage, where an article and a vote is inserted, followed by a
read of the vote count.

16

2.1. SOUP

Data-�ow graph

As an example, let us consider the data-�ow graph Soup generates for the program in
listing 2.2, shown in �gure 2.8. Each box in the graph denotes a node, and a separate
color is used for each domain. Updates are injected into a base node—either Article or
Vote—before they propagate through the graph. Both base nodes are fully materialized
and serve as the source of truth for all data inserted into Soup. Continuing, we arrive
at the egress and ingress nodes shown on the second level. �ese act as connectors
between separate domains, and facilitate communication either within a single Souplet
or across machines if Soup is distributed.

Figure 2.8: �e data-�ow graph produced by Soup for the example program shown in
listing 2.2. Nodes are marked with either (full) or (part.), depending on whether
their state is fully or partially materialized.

�e third label shows the �rst operator in the data-�ow graph, an aggregator. Described
by the gamma symbol (γ), it performs the work of our COUNT(uid) clause. �e aggrega-
tion is incrementally maintained, and the rest of the graph is noti�ed of changes in the
total count when the operator �rst emits a negative record—stating that the previous

17

CHAPTER 2. BACKGROUND

count is no longer valid—followed by a positive record for the updated value. �e fourth
level contains a projection operator, responsible for picking out the correct �elds in the
correct order from its parent node.

Moving along, we reach the join operator responsible for combining rows from the
Article and the Vote tables. Notice that the node is neither partially nor fully
materialized—it contains no state at all. Whenever an update arrives from one of
its parents, it requests the rows necessary to perform a join from the other. Similar to
the aggregation, the join node is also followed by a projection, which in this case simply
emits all the �elds from the join.

Finally, we reach the reader node at the bo�om of the graph labeled with the external
query it serves requests for: ArticleWithVoteCount. While updates begin at the base
nodes at the top, reads begin at the bo�om. �e reader here is partially materialized,
le�ing it serve subsequent requests for the same key without further ado. Reads for
keys missing in its state result in replays, which will propagate upwards through the
graph until a node with materialized state for the speci�c key is reached. �e replay
then �ows downwards again, until it reaches the reader, where the result is returned to
the client.

2.1.6 MySQL Protocol Translation

Soup supports a decent subset of SQL in its query de�nitions. Regardless, using Soup
in an application requires signi�cant changes: all queries have to be de�ned ahead of
time, and interactions with Soup have to go through Soup’s external API. Soup’s MySQL
shim [64] makes this easier by le�ing applications communicate with Soup using the
MySQL binary protocol.

mysql client

distributary-mysql

distributary

INSERT INTO Person (id, age) VALUES (1, 50)

person.put([1, 50])

Figure 2.9: distributary-mysql translates SQL-queries to appropriate Soup API-calls.

�e MySQL shim acts as a separate service, which clients interact with over TCP.
Received queries extend the Soup data-�ow graph if needed, before they are forwarded
to an appropriate Soup worker for execution.

18

2.2. SQLITE

2.2 SQLite

SQLite [72] is by far the most widely deployed database ever wri�en. Used in everything
from smart phones to cars, with an estimated user count in the magnitude of multiple
billion users, SQLite is everywhere3. SQlite is an embedded database, and requires no
extra processes, or even threads, to run.

In a world of unreliable so�ware, SQLite is stable as a rock. It has 100% branch test
coverage, with a test suite containing millions of di�erent test cases. SQLite is, and
always has been, available in the public domain. As the name implies, SQLite provides
an SQL interface to developers, with decent support for everything from indices to
views. �e library itself is wri�en in about 130 thousand lines of C code.

While the main usage of SQLite is as a persistent application store (e.g., in browsers
and mobile applications), SQLite is also popularly used as an engine in other databases.
One such example is the recently open-sourced FoundationDB [4], which provides a
distributed database with full ACID transactions, where each shard makes use of SQLite
at its core.

2.2.1 B-trees

Similar to a signi�cant amount of other relational databases, SQLite makes use of B-
trees [7] for its on-disk index structures. �is is with good reason: B-trees are well
suited for mediums that perform be�er with larger blocks of data, such as traditional
spinning hard drives. While it has never been o�cially decided what the B in B-tree
stands for, a B-tree is a self-balancing binary tree data structure.

Unlike other tree structures, such as binary search trees, each node in a B-tree holds
multiple values. By keeping the amount of values in a node—the node size—close to the
size of a block on disk, most of a B-tree’s operations can be performed in O(logb n) disk
reads, where b is the maximum number of entries per block, and logb n the height of the
tree. With traditional storage mediums, where a single disk seek might take multiple
milliseconds, this is extremely important.

When the term B-tree is used in database systems today, it is usually used to refer to an
improved version of the traditional data structure, and known as a B+tree. Whereas
the former stores values in all levels of the tree, the specialized version only does so
at the leaf level, with the internal nodes only containing copies of the keys. Actual
records can then be stored in a di�erent on-disk data structure, with pointers from the
leaf nodes, and by introducing sibling pointers at the leaf node level, range queries can
be e�ciently executed by walking the bo�om of the tree horizontally.

3Who uses SQLite? https://www.sqlite.org/mostdeployed.html

19

https://www.sqlite.org/mostdeployed.html

CHAPTER 2. BACKGROUND

2.2.2 Rollback journal

SQLite implements support for atomic transactions through the use of a rollback journal.
A historic copy of values prior to changes are kept in a separate �le—the rollback
journal—so that they can be copied back to the actual database �le in the event of a
ROLLBACK. Similarly, this �le can be deleted a�er a COMMIT of the transaction.

With a rollback journal, SQLite requires a full exclusive lock to be held for the duration
of all mutations to prevent �le corruption, blocking any potential readers from accessing
the database. �is is the main reason SQLite is commonly not used as the storage system
for applications that require high-performance concurrent access to their database (e.g.,
web application backends with multiple active users): only a single write operation
could be performed at the time. �is is not the case with reads, which hold shared locks.

2.2.3 Write-ahead log

In version 3.7.0, SQLite introduced an alternative to the traditional rollback journal: the
write-ahead log [73]. Maintaining the same atomicity and durability guarantees, the use
of a WAL signi�cantly improves write performance by catering to more sequential disk
access. Additionally, reading can now co-exist with writing, as writers do no longer
block read access.

�e original rollback journal format writes directly to the database �le, while maintaining
old values in the rollback journal. SQLite in WAL-mode does the opposite. Updates are
appended to the WAL, and copied over to the main database �le when a checkpoint is
taken. �is is also the reason readers can continue to access the database while writes
are happening, as the database �le itself is not mutated, only the WAL.

�is introduces a slight performance penalty for reads, however, as there are now
potentially two sources of truth for all content: the main database �le, and the WAL—
until a checkpoint happens. �e longer the WAL is, the more time has to be spent
searching through it by reads.

2.2.4 Interacting with SQLite

Most applications interact with SQLite through its C-API, compiling SQL queries into
prepared binary statements, which can then be executed e�ciently with di�erent
arguments, as shown in listing 2.4.

20

2.2. SQLITE

sqlite3 *db;

sqlite3_stmt *statement;

char *err_msg = 0;

sqlite3_open("test.db", &db);

sqlite3_exec(

db,

"CREATE TABLE data (id INTEGER PRIMARY KEY)",

NULL,

NULL,

&err_msg

);

// Compile a prepared statement:

sqlite3_prepare_v2(

db,

"INSERT INTO data VALUES (?1)",

-1,

&statement,

0

);

// Then insert a single row with the value 10:

int id = 10;

sqlite3_bind_int(statement, 1, id);

Listing 2.4: Simple SQLite C-example showing how to write a single row (error handling
ignored for brevity)

In addition, most programming languages have at least one popular library for accessing
SQLite, abstracting away the need to directly call into the C-bindings through more
idiomatic APIs for each language. SQLite also provides a command-line interface, which
can be used for reads and modi�cations.

2.2.5 SQLite from Rust

Accessing SQLite from Rust can be done through the excellent rusqlite library [35],
which provides a Rust API on top of SQLite’s C-bindings.

21

CHAPTER 2. BACKGROUND

let conn = Connection::open("test.db").unwrap();

conn.execute(

"CREATE TABLE data (id INTEGER PRIMARY KEY)",

&[],

).unwrap();

// Compile a prepared statement:

let statement = conn.prepare("INSERT INTO data VALUES (?1)").unwrap();

// Then insert a single row with the value 10:

let id = 10;

statement.execute(&[&id]).unwrap();

Listing 2.5: SQLite example using rusqlite showing how to write a single row.

2.3 RocksDB

RocksDB is an embedded key-value store optimized for modern �ash storage. RocksDB
started out at Facebook, with the goal of making a version of Google’s LevelDB that
performed well on modern hardware. Today, RocksDB is used at the heart of a wide
variety of databases, such as CockroachDB [14], MyRocks [31] and TiDB [65].

Traditional B-tree based database systems are o�en faced with poor write performance as
a result of random writes, which perform worse than sequential writes on both magnetic
and �ash-based storage mediums. RocksDB, on the other hand, achieves impressive
write performance through the use of immutable log-structured merge trees [61] (LSM-
trees), avoiding the need for random writes to persistent storage altogether.

Writes are initially only wri�en to a persistent write-ahead log (WAL) and in-memory
data structures referred to as memtables. Later, these memtables are �ushed to their
equivalent data structures on disk, Static Sorted Tables (SST). �e la�er is done by
background threads, allowing regular processing to continue without ge�ing blocked by
slow writes to persistent storage. Both of these components originate in Patrick O’Neil’s
original paper on LSM-trees [61], where the in-memory data structure is referred to as
C0, and the on-disk structures C1..n .

2.3.1 MemTables

All writes are initially synchronously wri�en to an in-memory data structure—a memtable—
which is later �ushed to disk at the point of �lling up. Both the size and the number of
memtables can be con�gured at runtime.

RocksDB’s default memtable implementation is a skiplist, with an O(logn) bound on
inserts, searches, and deletes. �is can be changed to a series of hash based implementa-

22

2.3. ROCKSDB

tions, which o�er be�er performance if all operations are done within a pre-speci�ed
key pre�x.

2.3.2 Static sorted tables

A�er a memtable reaches a certain size, RocksDB’s background threads takes over
and �ushes it to persistent storage. �is will generate one or more SS-tables on disk,
where each �le is sorted. SS-tables are immutable: a new SS-table is always created, and
existing ones are never updated. �is ensures that writes remain sequential.

2.3.3 Write-ahead log

RocksDB achieves durability through the use of a write-ahead log (WAL). Without it,
data in memtables would be lost at the event of a crash. By default, every Put operation
results in a write to the RocksDB WAL, with the optional possibility of waiting for the
write to be fully synchronized to the WAL before returning.

Each memtable corresponds to a WAL-�le, which is marked as obsolete when the
memtable has been safely persisted to disk. Each WAL-�le includes a sequence number,
and the �les are iterated through in order during recovery. �e WAL itself is built up of
a sequence of records, where each record includes a computed cyclic redundancy check
hash over the payload, to maintain integrity [33].

Optionally, the WAL can be wri�en to a di�erent disk than the regular database �les.
�is is essential for production systems that want to maintain a high write throughput:
compactions and memtable �ushes can then utilize the full disk capacity without slowing
down the throughput of WAL writes. Even more drastically, the database �les could be
wri�en to faster, volatile storage, relying solely on never-archived WAL-�les for (albeit
much slower) recovery.

let batch = WriteBatch::default()

batch.put("a", "1");

batch.put("b", "2");

let opts = WriteOptions::default();

opts.set_sync(true);

db.write(batch, &opts);

Listing 2.6: Rust code for safely persisting a batch of writes to RocksDB and its write-
ahead log.

Put operations can also be batched into a WriteBatch (as shown in listing 2.6), to
amortize the cost of synchronizing the WAL over a larger amount of write operations.
�is is an atomic operation: either all the writes in the write batch succeed, or none do.

23

CHAPTER 2. BACKGROUND

2.3.4 Basic operations

Akin to other key-value databases, RocksDB o�ers a familiar API of Put(key, value),
Get(key) and Delete(key), operating directly on bytestream values. Both insertions
and deletions are purely sequential: subsequent Put operations of the same key never
backtrack and overwrite existing keys, and deletions insert tombstone markers to avoid
having to randomly read and mutate previously wri�en values.

Whereas both memtables and SS-tables are sorted, each tree structure has the possibility
of overlapping with another. �is is a result of the immutability property, and newly
created SS-tables might contain key ranges already included in existing structures. �is
means that read operations in RocksDB, and other LSM-tree based storage systems,
have to iterate through each tree structure—starting with the memtables—in an a�empt
to �nd the key in question. Reads within each sorted tree structure can be done in
O(logn) through a binary search. Going through a potentially large amount of SS-tables
on disk is costly however, and RocksDB employs a series of tricks to avoid doing so.

2.3.5 Compactions

To maintain immutability, new SS-tables are always created without modifying existing
on-disk content. Two writes to the same key can thus co-exist in di�erent SS-tables, even
if only the last wri�en key is relevant to the system. �is is quite wasteful, and would
lead to worse and worse read performance over time. �e original LSM-paper [61] solves
this through merging existing LSM-trees into new ones at regular intervals. RocksDB
does so in background threads, where it is referred to as compaction.

During compacting, multiple SS-tables are merge-sorted into a single new structure.
�is process also removes duplicate keys, retaining only the last value for future use.
Tombstones are also �ltered out, together with any values they might have deleted.

24

2.3. ROCKSDB

Figure 2.10: SS-tables from initial levels are compacted into the next [30].

In RocksDB, compactions are triggered when the previous level reaches a certain size.
Referred to as leveled compaction, this was one of the original contributions of LevelDB.
As described in [30], compactions are usually initiated when the SS-table count at the
�rst level, level 0, goes beyond a certain amount. �is in turn might cause the next level
to go beyond its size limit, resulting in a compaction to the next level again, and so on.
Unlike LevelDB, RocksDB also supports doing compactions in parallel, as long as there
are enough available background threads to do so.

2.3.6 Bloom �lters

Iterating through every SS-table available to �nd a single key is ine�cient. Instead,
we would like to ask the question “can this key possibly exist here?” for each of the
SS-tables we go through, and only operate on the ones where the answer is a�rmative.
With a regular hash-based data structure this would be quite costly in terms of space, as
we would need to maintain such a structure for every SS-table in our database. Instead,
RocksDB, and many other systems like it, rely on a probabilistic data structure known
as a bloom �lter [9] to do so.

Instead of knowing with 100% certainty whether a key exists in a set, a bloom �lter
would let us know if that key might possibly be in the set, or if it is de�nitely not. �e
third option, of possibly not being in the set, is impossible. �e positive trade-o� here
is that it uses signi�cantly less space, allowing it to be used for every SS-table in the
system.

25

CHAPTER 2. BACKGROUND

2.3.7 Iteration

One of the essential features of RocksDB compared to other key-value stores is that its
data is sorted, and that it can be queried as such through iterators. �is opens for a wide
variety of possibilities that would not have been feasible with a regular key-value store,
such as range queries. RocksDB supports iterating both forwards and backwards.

Similar to with reads, performing a fully ordered scan in an LSM-tree storage engine is
far from optimal: every tree-structure, or SS-table in RocksDB, needs to be considered,
and as key ranges may overlap between di�erent �les, sorted.

A lot of applications do not rely on completely random scans of keys however, and
only need support for ordered queries within a speci�c key pre�x. Developers instruct
RocksDB on how to retrieve a speci�c pre�x from each key, which RocksDB then
internally uses to organize the data in such a manner that iterating through keys within
a speci�c pre�x is e�cient: either by storing bloom �lters for each pre�x, or by managing
a hash-based index structure based on the pre�x.

2.3.8 Column Families

RocksDB supports the equivalent of tables from a traditional database through column
families4. Separate column families share the same write-ahead log but have their own
MemTables and SS-tables. Maintaining the same WAL makes it possible to atomically
write across multiple column families, while keeping independent LSM-tree components
open for the possibility of con�guring di�erent column families separately—an important
di�erence from tables in SQL databases.

Column family support was not added until version 3.0 of RocksDB. To maintain
backwards compatibility, the default API methods operate on the same column family,
“default”, with separate methods taking in an additional column family argument.

2.3.9 Customizing the MemTable implementation

RocksDB provides multiple implementations of its in-memory MemTable5, which can be
changed between through factories. Di�erent implementations have di�erent advantages
and disadvantages, with the default being the all around safest choice.

Skip list

�e default implementation uses a skip list, a data structure with comparable per-
formance guarantees to a binary search tree—O(logn) for searches, insertions and
deletions—but with far be�er support for concurrent operations. �is makes the default

4https://github.com/facebook/rocksdb/wiki/Column-Families
5https://github.com/facebook/rocksdb/wiki/MemTable

26

https://github.com/facebook/rocksdb/wiki/Column-Families
https://github.com/facebook/rocksdb/wiki/MemTable

2.3. ROCKSDB

skip list implementation the only MemTable factory capable of concurrent insertions.
Flushing a skip list MemTable to disk is also considerably faster compared to the other
factories, with a much lower memory overhead.

Hash skip list

RocksDB provides two hash-based MemTable factories, where keys are organized in
buckets based on their extracted pre�x. �is implies that the hash based implementations
are only usable when a pre�x extractor is de�ned, and that they only support e�cient
iterations within a speci�c pre�x. At the same time, the hash-based implementations are
also considerably more e�cient when that is the case, providing O(logk) performance,
where k is the number of keys within a speci�c pre�x (which is o�en quite low).

"ab""ab"

a

b
"bc"
"bb"
"ad"
"ac"

"ab""ab""ab"

"bc"
"bb"

"ad"
"ac"

Keys Buckets

Figure 2.11: In the hash table MemTable implementations, keys are bucketed based on
a pre-de�ned pre�x extractor. �e �gure here uses the �rst character of each key as its
pre�x.

Hash linked list

Similar to the skip list based hash table, RocksDB also provides a hash-based imple-
mentation where each bucket is maintained as a linked list instead of a skip list. �is is
similar to a traditional hash table with chaining as its collision resolution, and maintains
close to constant time performance guarantees as long as the elements in each bucket is
kept low. �is comes with signi�cantly lower memory overhead compared to the skip
list based hash table but with naturally lower performance when the amount of keys
per pre�x starts to grow. Because of this, the buckets in a HashLinkList are implicitly
converted to a skip list when its element count exceeds a certain threshold (256 by
default).

Vector

Finally, RocksDB also provides a MemTable factory heavily tuned for random insertions,
with abysmal performance for everything else. �is makes it only useful for bulk loading
data as fast as possible.

27

CHAPTER 2. BACKGROUND

2.3.10 Customizing the SS-table implementation

�e default SS-table implementation is based on the original format from LevelDB,
BlockBasedTable6. As the name implies, data is stored in separate blocks, where each
�le’s initial block is a �lter on the rest of the contents. �e size of a single block is
usually �xed and can be con�gured by the application. Read operations always read an
entire block into memory, before searching for a speci�c record. Previously read blocks
are maintained in an in-memory cache—a block cache.

RocksDB also provides an improved format designed for low query latency on mod-
ern storage media, PlainTable7. �e format was initially developed for in-memory
databases, but performs well on other high performance mediums as well. Unlike
BlockBasedTable, PlainTable addresses records by row, and uses a hash-based in-
memory index for e�cient reads. Similar to the hash-based MemTable formats described
in section 2.3.9, it uses pre�x extraction to place keys into separate buckets. �is also
limits seek-based iteration to a single pre�x.

2.3.11 RocksDB from Rust

While RocksDB is wri�en in C++, it provides a separate API through its C-bindings,
which are used to call into it from a variety of di�erent languages8. �is thesis makes
use of a modi�ed version of the rust-rocksdb9 wrapper library, used to call into
the RocksDB API from Rust. �e majority of the modi�cations required to make
rust-rocksdb work with Soup are listed in appendix A.

let db = DB::open_default("db_path").unwrap();

let key = b"key";

let value = b"value";

db.put(key, value).unwrap();

match db.get(key) {

Ok(v) => assert_eq!(*v.unwrap(), value),

Err(e) => panic!("failed reading from rocksdb: {}", e),

}

Listing 2.7: Simple example usage of rust-rocksdb
6https://github.com/facebook/rocksdb/wiki/Rocksdb-BlockBasedTable-Format
7https://github.com/facebook/rocksdb/wiki/PlainTable-Format
8https://github.com/facebook/rocksdb/blob/master/LANGUAGE-BINDINGS.md
9https://github.com/spacejam/rust-rocksdb

28

https://github.com/facebook/rocksdb/wiki/Rocksdb-BlockBasedTable-Format
https://github.com/facebook/rocksdb/wiki/PlainTable-Format
https://github.com/facebook/rocksdb/blob/master/LANGUAGE-BINDINGS.md
https://github.com/spacejam/rust-rocksdb

2.4. RUST

2.4 Rust

Rust10 is an open-source systems programming language spearheaded by Mozilla, where
it is used to build Servo—a next-generation browser engine11. Rust provides memory
safety without the runtime overhead of e.g., garbage collection, making it a suitable
language for everything from embedded systems to web service backends.

When choosing a programming language, developers are o�en forced to compromise
between higher level abstractions and performance. Large and latency sensitivity
projects like databases o�en opt for the la�er, through low-level languages like C.
Rust removes this dilemma altogether by providing developers with both the �ne-
tuned control and performance they are used to in low-level languages, while o�ering
abstractions developers might be familiar with from interpreted languages.

fn suffix(input: &mut String) {

input.push_str(" is a String!");

}

fn output(input: String) {

println!("Hello: {}", input);

}

fn main() {

// Construct a mutable String, from a string literal (str):

let mut input = String::from("Hi!");

// Pass a mutable reference to suffix:

suffix(&mut input);

// Finally, move our input variable into the output function:

output(input);

// println!("This line would not compile: {}", input);

}

Listing 2.8: �e example shows the basics of Rust’s move semantics. �e input variable
cannot be used a�er the call to output(), as it has been moved into the function.

One of Rust’s key features is providing compile-time safety both in terms of types
and memory. �e la�er is done through an ownership model which lets developers
program mostly without thinking about memory allocation and deallocation, without
the lowered performance of using something like a garbage collector. Each variable
in Rust is assigned one and only one owner, and the variable is deallocated when that
owner goes out of scope.

10https://www.rust-lang.org/
11https://servo.org/

29

https://www.rust-lang.org/
https://servo.org/

CHAPTER 2. BACKGROUND

2.4.1 Foreign Function Interface

Rust has excellent support for calling into C programs, which lets developers access the
myriad of libraries wri�en in C, together with C++ programs that provide C interfaces.
To call external programs, developers de�ne each external function in a foreign function
interface12, through use of the extern keyword, which also supports linking to external
libraries.

extern "C" {

fn rand() -> i32;

}

fn main() {

unsafe {

println!("Random number: {}", rand());

}

}

Listing 2.9: By de�ning rand from the C standard library as an external function, we
can call it from our Rust program.

Note that the call to rand in listing 2.9 needs to be wrapped in an unsafe block. While
Rust can ensure the safety of Rust code at compile time, it cannot not do so for third-
party applications wri�en in other languages. By introducing the unsafe keyword, the
blocks of code the developer is forced to maintain the safety of is isolated to the smallest
possible region.

In the same manner, Rust supports de�ning an interface that can be called from other
languages, such as C, as shown in listing 2.10. �is is especially useful for libraries that
require functions as arguments, e.g., callbacks.

#[no_mangle]

pub extern "C" fn multiply(a: i32, b: i32) -> i32 {

a * b

}

Listing 2.10: �e multiply functions can be called through the C-calling convention by
other programs. �e no mangle pragma ensures the multiply name stays unmodi�ed
by the compiler.

12https://doc.rust-lang.org/book/first-edition/ffi.html

30

https://doc.rust-lang.org/book/first-edition/ffi.html

2.5. BINCODE

2.5 bincode

bincode [63] is a binary serialization library, used heavily throughout both this thesis
and in Soup, for everything from RPC communication to persisting data to durable
storage. In short, bincode takes an arbitrary Rust object and turns it into a series of
bytes—an encoded object. �e size of the resulting byte stream is usually either less
than, or the same as, the size of the source object. bincode builds on top of the Serde13

serialization framework.

As the encoded format is of relevance to later sections, we will brie�y go through it
here. Primitive values, such as numbers, are encoded directly using Rust’s Writer trait,
with a few exceptions:

• isize and usize types, which have varying sizes depending on the OS, are
encoded as i32 and u64 correspondingly.

• Strings are encoded as the tuple (number of bytes, bytes), where the former
is a u64 and the la�er is a byte slice.

Compound types—enums, structs, vectors, and tuples—are encoded recursively, with
each of their �elds placed out in succession. With vector lengths not being determined
at compile time, vectors are pre�xed with a length �eld on the form of a u64. �is is not
necessary for the other compound types, as their sizes do not vary at runtime. An enum
instance can represent multiple types, and is pre�xed with a u32 tag used to determine
which enum variant it represents.

13https://serde.rs/

31

https://serde.rs/

CHAPTER 2. BACKGROUND

#[derive(Serialize, Deserialize, Debug, PartialEq)]

enum Number {

Positive(u64),

Negative(u64)

}

fn main() {

let values = vec![Number::Positive(3), Number::Negative(4)];

// This serializes as:

// vector length u64,

// + enum variant u32 + u64,

// + enum variant u32 + u64

// = u64, u32, u64, u32, u64

// = 32 bytes

let raw = bincode::serialize(&values).unwrap();

let deserialized: Vec<_> = bincode::deserialize(&raw).unwrap();

for (i, element) in values.into_iter().enumerate() {

assert_eq!(element, deserialized[i]);

}

}

Listing 2.11: Types implementing the Serialize and Deserialize traits can be
encoded and decoded using bincode.

2.6 Pro�ling

�is section describes various tools used to reason about performance bo�lenecks
throughout the thesis.

2.6.1 CPU

A large part of application performance tuning comes down to �guring out which
portion of a program is running slowly and why that is the case. �roughout this thesis
that is accomplished using perf14—a pro�ling tool that helps us answer the question
“What is the CPU spending time on?”.

perf collects information from both hardware counters and logical tracepoints. �e
la�er is especially useful for recording call graphs of a program, which in turn lets us
produce �ame graphs like the one in �gure 2.12, using tools such as FlameGraph15 and

14https://perf.wiki.kernel.org
15https://github.com/brendangregg/FlameGraph

32

https://perf.wiki.kernel.org
https://github.com/brendangregg/FlameGraph

2.6. PROFILING

FlameScope16. Flame graphs show time spent on the horizontal axis, while showing
the call graph vertically.

Figure 2.12: An example �ame graph from events recorded using perf.

2.6.2 Memory

Memory leaks become an issue when we continually allocate memory without freeing
it. �is can easily happen in languages without dynamic memory allocation, when a
programmer forgets to deallocate some portion of memory a�er using it. Not to say that it
is non-existent in garbage collected languages, where it instead o�en correlates to logical
errors, e.g., by continuously a�aching listener functions to an event system without
regard for previous subscriptions. Rust’s ownership system largely prevents issues of the
�rst kind from happening—variables that go out of scope are deallocated automatically.
Regardless, Rust supports calling into arbitrary C-programs (see section 2.4.1), where
memory can be allocated and deallocated without regard for safety.

To pro�le memory leaks, we use the Valgrind Massif17 heap pro�ler. Massif continuously
takes snapshots of the heap, recording what memory is used for, and where that memory
was allocated from. While this is subject to change in the future, the current version of
Rust, version 1.26.2, uses the jemalloc18 memory allocator instead of the system’s

16https://github.com/Netflix/flamescope
17http://valgrind.org/docs/manual/ms-manual.html
18http://jemalloc.net/

33

https://github.com/Netflix/flamescope
http://valgrind.org/docs/manual/ms-manual.html
http://jemalloc.net/

CHAPTER 2. BACKGROUND

default allocator. Unfortunately, memory pro�ling using Valgrind does not work well
with jemalloc. To resolve this we can instead force Rust to use the system allocator, at
least while pro�ling.

#![feature(alloc_system)]

#![feature(global_allocator, allocator_api)]

#[global_allocator]

static ALLOC: std::alloc::System = std::alloc::System;

Listing 2.12: Forcing Rust to use the system memory allocator makes it possible to
pro�le it using tools such as Valgrind Massif.

34

Chapter 3
Related work

�is section reviews ideas relevant to the main contributions throughout this thesis,
both from existing research and from various industry implementations. �e �rst
section investigates concepts crucial to building secondary indexing schemes on top
of key-value stores, implemented in chapter 5. �e second section looks at recovery
solutions for main-memory databases, followed by a dive into snapsho�ing techniques
in distributed systems, necessary for chapter 6.

35

CHAPTER 3. RELATED WORK

3.1 Indexing

Index structures are used by databases to facilitate e�cient retrieval. While a majority of
traditional database systems maintain indices separate from the data itself (which could
be stored in e.g., a heap �le [57, 75]), it has become increasingly common to co-locate
rows with the index—o�en referred to as a clustered index. Systems such as InnoDB [59]
and comdb2 [70] rely heavily on B-trees for both indexing and row storage, achieving
overall decent read performance on a wide variety of storage mediums.

At the same time, a gradual increase in write-intensive applications have resulted in
a myriad of log-structured merge tree based storage systems—a data-structure which
usually requires less write ampli�cation than B-trees [10]. While LSM-tree based systems
(e.g., Google Bigtable [12] and Apache HBase [78]) provide excellent availability and
scalability, their key-value based APIs are restrictive, and lack features such as secondary
indexing.

Key-value APIs are su�cient for many applications, while others require more advanced
features. Google Spanner [19] and its open-source competitors remove the need to
compromise between strong consistency and scalability, and provide an SQL-based query
interface to its users. While Spanner combines an implementation based on Bigtable
with Paxos [51] to provide distributed consistency, CockroachDB [14] and TiDB [65]—
both open-source—do the same with the LSM-tree key-value store RocksDB [29] and
the Ra� consensus algorithm [62].

Both CockroachDB and TiDB implement advanced features (e.g., replication and shard-
ing) as layered abstractions, with RocksDB’s ordered key-value API at the core. With
clever key schemes and heavy use of RocksDB’s iteration properties, CockroachDB and
TiDB can support secondary indices on top of RocksDB—a well-supported and heavily
tested library with reliable performance guarantees. Other projects, such as SLIK [46],
HyperDex [26], and Replex [76], implement secondary indexing as �rst-class citizens in
new distributed key-value stores built from the ground up.

3.1.1 Secondary indices with LSM-trees

LSM-tree systems achieve high write throughput in part by bu�ering updates in memory,
amortizing the disk write penalty across a batch of writes. AsterixDB [3] recognizes
the e�ectiveness of the LSM-tree approach, and applies the same technique to in-
place update index structures. �e process—which they refer to as LSM-i�cation—lets
AsterixDB build secondary indices using read-optimized data structures, e.g., B-trees.
While this is an interesting approach, on-disk data structures are far from trivial to
implement, and additional data structures undoubtedly increase a system’s overall
complexity—even if the data structures are built on the same components.

Another approach is to build index schemes on top of the existing APIs provided by LSM-
trees, notably the Get, Put, Delete, and Seek operations provided by systems such as
RocksDB. In [66], LSM-tree index structures are split into two categories: standalone

36

3.1. INDEXING

and embedded. �e former maintains secondary indices in separate key-spaces, while
the la�er embeds the necessary information without additional stored rows.

Standalone indices

In traditional relational database management systems, indices are usually maintained
as separate data structures (e.g., B-trees) with pointers to primary key values. Standalone
indexing in [66] stores pointers as well, either in the same key-space as regular updates
or in separate tables (o�en referred to as column families in LSM-based systems). �ese
pointers can be maintained either eagerly or lazily, e.g., either synchronously on the
main-path or asynchronously in the background. �e la�er introduces complexity to the
system, but o�ers potentially improved insertion and update performance in return [18,
77].

How the secondary index pointers are structured varies from scheme to scheme. �e
perhaps most obvious way of doing so is to maintain a serialized list of primary keys
for each secondary index key, which is then retrieved and updated on each insertion.
�is is referred to as a posting list in [66], and table-based secondary indexing in [23].
In the la�er, where a secondary index scheme is implemented on top of HBase [78],
a serialized TreeSet is maintained for each secondary index value. �e TreeSet is
updated synchronously on new insertions, which [66] refers to as eager indexing. �e
alternative, lazy indexing, would instead issue only an insertion for new values, and
take care of the concatenation either in the background or during read operations
(merge operator in RocksDB [28]). While the lazy alternative o�ers far greater insert
performance by avoiding random reads, it still requires potentially costly list serialization
and deserialization.

id brand color

1 volvo silver
2 volvo blue
3 audi red

key value

volvo [1, 2]
audi [3]

Table 3.1: A separate list of primary keys is maintained for each secondary index key.

Another alternative is to rely on the ordered iteration properties available in LSM-tree
based systems such as LevelDB [39] and RocksDB [27]. By su�xing secondary keys
with unique primary keys (composite keys in [66]), the pointers can be retrieved by
iterating through all keys that start with a given secondary index pre�x, removing the
need to store anything in the value portion at all. While this requires care to make sure
that values with the same pre�x are ordered next to each other, it completely removes
the need for random reads when inserting new values. �is is similar to how systems
such as Spanner [6], TiDB [71], and CockroachDB [15] implement secondary indices.

37

CHAPTER 3. RELATED WORK

id brand color

1 volvo silver
2 volvo blue
3 audi red

key value

volvo-1
volvo-2
audi-3

Table 3.2: Secondary index keys are su�xed with the primary key they point to, and
can be retrieved by iterating through all secondary index rows with the correct pre�x.

Embedded indices

Instead of storing separate index pointers for secondary indices, [66] presents an alterna-
tive where bloom �lters are used to determine whether an on-disk block contains rows
with a given secondary index a�ribute or not. �eries then iterate through all blocks,
referring to the in-memory bloom �lter to determine whether it requires scanning for
potential rows. To retrieve values from the LSM-tree memory bu�er, a separate B-tree
is maintained in-memory for each secondary a�ribute.

Embedded indexing reduces write-ampli�cation when inserting new rows—no extra
index data needs to be persisted to disk. In turn, it reduces read performance, as retrievals
now need to consider every block available, even if only ends up reading a small subset.

3.2 Recovery

Database researchers observed early on that users needed a way of performing a series
of operations as a unit, where the result would either be made available to concurrent
users as one, or not at all—a transaction [8]. At the same time, failures are inevitable
in any system, and ensuring that the result of previously commi�ed transactions still
remained a�er crashing was crucial. Together, these requirements formed a subset of
the ACID [40] principles (atomicity, consistency, isolation, and durability).

ARIES—Algorithms for Recovery and Isolation Exploiting Semantics [58]—has in-large
remained the gold standard in transaction recovery algorithms for three decades. ARIES
persists all changes—regardless of commit status—to a durable write-ahead log. During
recovery, ARIES �rst applies all missing updates from the log, before it �nally reverts
changes belonging to uncommi�ed transactions. �e former, REDO, maintains durability,
while the la�er, UNDO, upholds atomicity. By sequentially persisting all changes to the
log, ARIES systems are free to write dirty pages to durable storage at any point, and does
not need to do so prior to commi�ing. Referred to as correspondingly steal and no-force,
this allows for high throughput processing at the price of increasing complexity.

While the logging structure varies from implementation to implementation, the principle
of a write-ahead log remains the same. By appending changes to a persistent log prior
to updating index structures, we avoid the performance penalties of random writes

38

3.2. RECOVERY

to durable storage, while still ensuring durability in the face of a potential crash. To
maintain atomicity for transactions, we also log enough information to either safely
revert their changes, or fully persist them a�er recovering. With the introduction of fast
non-volatile memory, the age old wisdom of preferring sequential writes over random
updates might slowly go away [5, 13]. Regardless, to build systems that perform well on
hardware most users have access to—still in-large spinning and solid-state drives—the
arguments in-favor of write-ahead logging still remain.

3.2.1 Recovery in main-memory databases

Traditional relational database systems were never built with the goal of storing entire
datasets in main-memory. B-trees, concurrency control techniques, bu�er pools, and
other components were instead built with the opposite in mind—e�cient processing of
data residing on slow durable storage mediums. Today’s cheap access to vast amounts
of volatile main-memory requires di�erent thinking, which has given rise to a new type
of structured storage system: main-memory databases [21].

According to [41], the SHORE1 database system spends over 10% of its processing
time maintaining an ARIES-style log. For main-memory systems capable of processing
thousands of transactions per second, the penalty of writing to durable storage would
be far beyond 10%. Regardless, main-memory database systems still need to ensure
durability somehow, otherwise they would merely be large data structures. VoltDB
introduced the concept of command logging [54], where the operation performed is
logged instead of the results of its modi�cations.

Logging logical operations, e.g., SQL queries, reduces the amount of data wri�en to
durable storage. Whereas an ARIES-style log would have to write the results of the
operations performed, a command log would only need to persist the intent of the
operation itself. Maintaining a command log reduces the computational overhead of
durability, by removing the need to calculate before and a�er images of modi�cations.
VoltDB, HyPer [47], and Hekaton [22] group operations from multiple transactions
together in a single batch before writing to durable storage, amortizing the �xed cost of
syncing to persistent storage across multiple transactions. Since main-memory systems
never write dirty pages to disk, they do not have to make sure that log entries are
wri�en prior to commi�ing, as a failure would not require undoing changes on durable
storage. Instead, they have to delay write acknowledgments until the entire batch
has been persisted. Batching updates with a group commit scheme greatly increases a
system’s write throughput, at the expense of potentially increased latency of individual
operations.

Command logging does on the other hand increase the e�ort needed to recover from a
failure. Whereas an ARIES-style log contains the computed results of each operation,
a command log does not, and needs to redo potentially costly computations while
recovering. VoltDB, however, claims that failures are rare, and that the focus should
be on reducing run-time overhead, even if it comes at the cost of increased recovery

1http://research.cs.wisc.edu/shore-mt/

39

http://research.cs.wisc.edu/shore-mt/

CHAPTER 3. RELATED WORK

latency. Regardless, recovering from an ever-growing log of entries is not a feasible
choice. Applications with consistently high throughput would never be able to recover,
as they would have to redo all write operations previously performed by the system.

To avoid an in�nitely growing write-ahead log, main-memory databases checkpoint
their state at regular intervals [21, 22, 24, 44, 54]. While far from a new concept,
increasing performance demands have led to the development of more sophisticated
checkpoint methods [52, 67]. �e implementation details vary, but most systems agree
that checkpoints should be performed in an asynchronous manner, without blocking
the system, and without inducing a signi�cant performance penalty. From this, [67]
de�nes a few key properties:

1. Checkpointing should not signi�cantly slow down transactional throughput.

2. Checkpointing should not drastically increase regular processing latency.

3. Checkpointing should require as li�le extra memory as possible.

While the overhead of an algorithm following the aforementioned properties is minimal,
the asynchronous checkpoint method presented in [67] still introduces a window of
time where throughput degrades with 10%. To completely avoid the overhead of durable
storage, main-memory databases like H-Store rely on replication for durability [45]. By
replicating data to K +1 nodes, the system maintains transactional durability for up to K
failures. K-safety [74] is however naturally susceptible to total failures, e.g., in the event
that multiple data centers fail. As a compromise, some systems implement replication
together with checkpointing, limiting the amount of data lost in a total failure.

3.2.2 Snapshotting in distributed systems

Determining the global state of a distributed system is a useful property in scenarios
ranging from steady-state detection of deadlocks, monitoring, debugging, and �nally,
failure recovery [49]—the aspect of which snapsho�ing is used for in this thesis. By
combining local checkpoints across the Soup data-�ow graph, a global checkpoint—a
snapshot—can be formed, and later recovered from in case of failures.

To perform a global snapshot, each node needs to record their local state at the same
instant across the system, without sharing memory or access to a global clock. At the
same time, the snapshot should happen without pausing regular processing. Chandy
and Lamport �rst introduced the problem of acquiring a distributed snapshot in [11],
which has since been the source of inspiration for a wide variety of work within the
�eld. Chandy and Lamport presented a solution aimed at distributed systems using
�rst-in �rst-out channels, with preserved message ordering, by solving two main issues:
deciding when to take a snapshot, and which messages should be part of said snapshot.

40

3.2. RECOVERY

“�e state-detection algorithm plays the role of a group of photographers
observing a panoramic, dynamic scene, such as a sky �lled with migrating
birds—a scene so vast that it cannot be captured by a single photograph. �e
photographers must take several snapshots and piece the snapshots together
to form a picture of the overall scene. �e snapshots cannot all be taken at
precisely the same instant because of synchronization problems. Furthermore,
the photographers should not disturb the process that is being photographed; for
instance, they cannot get all the birds in the heavens to remainmotionless while
the photographs are taken. Yet, the composite picture should be meaningful.
�e problem before us is to de�ne “meaningful” and then to determine how
the photographs should be taken.”

Chandy and Lamport’s description of the global snapsho�ing problem.

Chandy-Lamport’s key insight was to introduce a marker message, used as a separator
between messages that should be included in the snapshot and messages that should
not. Processes that receive a snapshot marker should immediately take a snapshot of
all messages received prior to the marker, and forward the resulting state to a process
capable of assembling all its received local snapshots to a global view of the system. �e
channels’ FIFO property ensures the exclusion of messages arriving a�er the marker.
�e resulting algorithm requires O(e) messages to initiate a snapshot, where e is the
amount of edges in the graph. �e messages can be sent out in parallel, resulting in a
O(d) guarantee to complete the snapshot, where d is the diameter of the graph.

Later on, Speziale�i and Kearns improved the Chandy-Lamport algorithm by recognizing
that the combining phase of snapsho�ing could be performed concurrently across the
graph [56]. Instead of having all nodes send a snapshot to a single initiator, each node in
the graph would be assigned a parent which it would forward its local state to, forming
a spanning tree of initiators across the graph.

Chandy and Lamport’s algorithm is designed with FIFO channels in mind, and a second
class of snapsho�ing algorithms extend Chandy-Lamport in various ways for non-
FIFO channels. Lai and Yang [50] introduced a solution that removes the need for
explicit control messages, by including the required snapsho�ing information in existing
messages. To maintain consistency without explicit marker messages, Lai-Yang makes
use of a two-coloring scheme. Every process is initially white and turns red when
initiating a snapshot, while recording all messages since the last snapshot was taken.
Another alternative is the Ma�ern algorithm [55], which makes use of vector clocks to
perform global snapshots in non-FIFO environments.

Systems that uphold causal ordering of all messages open for a third category of snap-
sho�ing algorithms. A causally ordered system guarantees that for two messagesm1

andm2, if sent(m1) < send(m2) then deliver (m1) < deliver (m2) for any common des-
tinations of both m1 and m2. �is removes the need for Chandy-Lamport’s explicit
synchronization markers, and both Acharya-Badrinath [1] and Alagar-Venkatesan [2]
present snapsho�ing algorithms where the initiator requests a snapshot directly from
each node, reducing the required messages from O(e) to O(n).

41

CHAPTER 3. RELATED WORK

42

Chapter 4
Benchmarks

Soup includes a series of benchmarks designed to reproduce di�erent real world sce-
narios where usage of Soup might be appropriate. �e Lobsters and Vote benchmarks
existed prior to this thesis, while the Recovery and Replay benchmarks were explicitly
built to highlight the positive and negative impact the features developed in this thesis
have on Soup.

43

CHAPTER 4. BENCHMARKS

4.1 Hardware

�is section describes the various servers used to generate the results in chapter 7.

4.1.1 Server setup 1: SSD

Unless otherwise speci�ed, benchmarks are run on Dell PowerEdge R430 server with
two Intel Xeon E5-2660 v3 CPUs and a total of 20 physical and 40 logical cores. �e
server has 64GB of DDR4 RAM running at a speed of 2200MHz, with two solid-state
drives: a Samsung SSD 850 PRO and an Intel SSD S3710.

4.1.2 Server setup 2: EC2 NVMe SSD

Some of the benchmarks require the workload generator and clients to be separated on a
di�erent machine than Soup itself. For these cases, the benchmarks are run on Amazon’s
Elastic Compute Cloud (EC2) instances1, typically with the workload generator running
on a machine with a large number of cores and the Soup server itself running on a
server with fewer and faster cores.

When Soup needs access to fast durable storage, an m4.10xlarge instance is used for
the clients and an i3.4xlarge instance is used for the Soup workers. �e m4.10xlarge
server uses an Intel Xeon E5-2686 CPU with 40 logical cores and 160 GB of RAM. �e
i3.4xlarge uses the same CPU as the m4, but is backed by NVMe SSDs capable of
extremely high throughput I/O.

4.1.3 Server setup 3: EC2 RAM Disk

Similar to the setup in the previous section, the third setup makes use of two servers
hosted on Amazon EC2—this time without fast durable storage. Instead, an m5.12xlarge
and a c5.4xlarge is used. Both make use of newer Intel Xeon Platinum processors,
with 48 cores and 192GB RAM on the m5 and 16 cores and 32GB RAM on the c5.

4.2 Lobsters

Lobsters2 is a news aggregation website where users post, vote, and comment on links
and discussions. Soup uses Lobsters to showcase the performance advantages of Soup in
a real-world application. While Lobsters is built with Ruby on Rails, the Soup benchmark
runs MySQL queries normally issued by Lobsters directly against Soup, using the MySQL
protocol shim described in section 2.1.6. �is avoids the overhead of Ruby and Ruby on

1https://aws.amazon.com/ec2/instance-types/
2http://lobste.rs/

44

https://aws.amazon.com/ec2/instance-types/
http://lobste.rs/

4.3. VOTE

Rails, which quickly become bo�lenecks when the Lobsters tra�c is scaled beyond its
regular workload.

Whereas the other benchmarks focus on individual writes and reads, the Lobsters
benchmark is measured in page views, where di�erent pages execute a series of write
and read queries. �e distribution of page views is modeled a�er real Lobsters production
tra�c, to ensure the queries executed best resemble a real Lobsters setup.

Figure 4.1: A subset of the Soup data-�ow graph used to run the Lobsters benchmark.

�e regular Lobsters queries rely on manual materializations and other optimizations to
reach decent performance using MySQL. Part of Soup’s goal is to let developers write
“natural” queries, without caching or other denormalizing optimizations, and some of
the Lobsters queries have been rewri�en to be�er highlight this.

4.3 Vote

�e Lobsters benchmark includes a wide variety of di�erent queries, making it di�cult to
narrow down bo�lenecks in Soup’s query processing performance. �e vote benchmark
solves this by focusing on the most frequently run query in Lobsters, reading stories
and their corresponding vote counts.

45

CHAPTER 4. BENCHMARKS

CREATE TABLE Article (id int, title varchar(255), PRIMARY KEY(id));

CREATE TABLE Vote (article_id int, user int);

QUERY ArticleWithVoteCount:

SELECT Article.id, title, VoteCount.votes AS votes

FROM Article

LEFT JOIN (

SELECT Vote.article_id, COUNT(user) AS votes

FROM Vote

GROUP BY Vote.article_id

) AS VoteCount

ON (Article.id = VoteCount.article_id) WHERE Article.id = ?;

Listing 4.1: �e schema used by the vote benchmark.

�e database is prepopulated with a series of articles, le�ing the write portion of the
benchmark focus on writing votes, where each vote is assigned to an article following
a uniform distribution. �e vote benchmark runs either locally against a single Soup
instance, or against a cluster of Soup workers.

4.3.1 Open-loop

In a closed-loop benchmark, a new request is issued when the previous completes. With
open-loop, requests are instead issued independently, resulting in a model more closely
resembling a real-world scenario [69]. Soup’s vote benchmark relies on a partially
open-loop setup, where load is generated by clients based on a speci�ed distribution,
while maintaining a capped queue of outstanding requests. �is prevents reductions
in measurements during slower processing periods, where a closed-loop benchmark
would issue far fewer requests than an open-loop one.

Two latency measures are recorded during the vote benchmark: the time it takes for
a single batch to be processed (sojourn time), and the time it takes from the request is
generated to it completes (batch processing time). �e former is usually higher than the
la�er, as it includes the delay from the request is queued until it is processed by the
system.

4.4 Replay

Part of the promise of Soup is to avoid expensive computations for reads, by moving
most of the workload to the write portion of the system. Read queries trigger replays
for keys initially, while later requests are served directly by partially materialized state
further down the graph. �is makes it di�cult to reason about the read performance of

46

4.5. RECOVERY

Soup’s base nodes, as only a small portion of reads are bound to be served by the base
nodes at all.

�is is where the replay benchmark comes in. Instead of possibly reading the same
keys multiple times, the replay benchmark ensures that each key is only ever read once,
triggering a replay from the base nodes. Additionally, the schema is far simpler than in
the vote benchmark, with a single base node and di�erent variants of the same query.
�is avoids excessive computation in partial nodes in the lower portions of the graph,
and focuses the main portion of the benchmark on state processing at the base node
level.

CREATE TABLE TableRow (

id int, c1 int, c2 int, c3 int, c4 int,

c5 int, c6 int, c7 int, c8 int, c9 int,

PRIMARY KEY(id)

);

/* Primary key reads: */

QUERY ReadRow: SELECT * FROM TableRow WHERE id = ?;

/* Secondary key reads */

QUERY query_c1: SELECT * FROM TableRow WHERE c1 = ?;

/* .. */

QUERY query_c9: SELECT * FROM TableRow WHERE c9 = ?;

Listing 4.2: �e schema used by the replay benchmark.

While tri�ing for the regular Soup base node implementation, the di�erence between
reading from a primary and secondary index might be consequential with persistent
base nodes (see chapter 5). To correctly assess this di�erence, the replay benchmark
includes the possibility of reading either from a primary or a secondary index. �e row
size is also slightly larger than in the other benchmarks, ensuring that the base nodes
actually have to read a fair share of data from state.

Prior to reading, Soup is populated with a given number of rows, which it then reads a
uniform, and smaller, sample of. With persistent base nodes, the benchmark terminates
a�er prepopulation, followed by a recovery step, to ensure that data is served directly
from durable storage. �e �le system cache is also cleared a�er recovery and between
subsequent benchmark runs.

4.5 Recovery

�e �nal benchmark measures the recovery time of our voting application, using the
schema described in listing 4.1. �e database is �rst populated with a series of articles

47

CHAPTER 4. BENCHMARKS

and votes, before being shut down and recovered from. �e benchmark produces two
measures: initial and total recovery time. �e former records how long it takes for the
�rst read to return correct data, while the la�er only �nishes when up-to-date data is
returned from all keys.

48

Chapter 5
Persistent base tables

Updates begin their journey through the Soup data-�ow graph at the base nodes, a�er
being successfully persisted to Soup’s write-ahead log. While nodes further down in the
graph might be partial, the base nodes always contain every single record stored in a
Soup application. �is is crucial in maintaining a balance between e�cient read queries
and space usage: popular queries will be handled by partial state further down the graph,
while reads for infrequently accessed rows will be able to refer all the way up to the
source of truth, the base nodes, through what in Soup is called a replay. In comparison
to existing database systems, base nodes are closest to what otherwise might be known
as tables.

Figure 5.1: Updates enter the base nodes a�er being persisted to a write-ahead log.

While partial nodes can use eviction (see section 2.1.1) to keep their memory footprint

49

CHAPTER 5. PERSISTENT BASE TABLES

low, the size of the base nodes will continue to grow unbounded throughout a Soup
instance’s lifetime. In the short term this can be handled by sharding Soup’s data across
multiple machines in a cluster, however, this is infeasible in the long term: sustained
write workloads would continue to grow the base node state, regardless of whether the
data is accessed by queries or not.

To combat this, we would like to move either part or all of the state stored in base
nodes to durable storage. �is would reduce Soup’s overall memory usage, and perhaps
even more signi�cantly, transition Soup from a purely in-memory database to a system
that can store more data than its available memory. With data safely persisted to the
base nodes, recovery a�er a failure would also require less work, as partial nodes could
gradually recover when data is requested through replays. Summarized, introducing
persistence to Soup’s base nodes would achieve the following goals:

1. Prevent Soup’s memory usage from growing unbounded over time

2. Support larger-than-memory data sets

3. Reduce recovery time a�er failures

50

5.1. IN-MEMORY STATE

5.1 In-memory state

�e current in-memory state implementation provides a key-value API with support
for multiple indices. A separate state data structure is kept for each materialized node,
including base nodes. �e same data structure is used by both partially and fully
materialized nodes, but as base nodes always have to be fully materialized, this section
will omit describing details regarding the former. �e state data structure will be referred
to as State.

5.1.1 Adding indices

�e State::add key method introduces a new index to a speci�c State map, and
takes a set of columns as its argument. Additional indices do not lead to multiple
copies of the data, but rather contain pointers to the existing rows. �ese pointers are
held in separate data structures: each new index introduces a new hash map structure
responsible for answering queries for that speci�c set of columns. New indices have to
be built, as they are expected to answer queries for data that has already been inserted,
right away.

state = State()

// Initialize `state` with an index on the first column:

state.add_key([0])

// Then insert two rows:

state.insert([A, 1])

state.insert([B, 1])

assert_equal(state.lookup(A), [[A, 1]])

// Now, add an index on the second column:

state.add_key([1])

// ...which should return values that existed

// prior to the index being added:

assert_equal(state.lookup(1), [[A, 1], [B, 1]])

Listing 5.1: Pseudo-code test that shows the expected behavior for adding indices with
existing values.

5.1.2 Operations

Retrieval

A stateful map would not be useful without a method for retrieving data, which State

provides through State::lookup. �is takes a set of columns and a key as its argu-

51

CHAPTER 5. PERSISTENT BASE TABLES

ments, and make use of a single index to retrieve one or more existing values. Each
index is held in a separate hash map, and retrievals can thus be completed in constant
time.

�e fact that State::lookup can return more than one value is an important distinction
from most key-value stores, and is absolutely crucial in implementing secondary indices.
Without it, State would only be able to serve as an index structure for unique primary
keys.

Insertion

Naturally, to be able to read anything in the �rst place, we �rst need to insert data into
our stateful data structure. �is is done through the State::insert method, which
takes a single row as argument. State::insert is responsible for updating every index
in State, and has to loop through and insert pointers for each included index.

Removal

Similar to insertions, removals have to update all indices. Contrary to what one might
expect, State::remove takes a single row as argument, and not a key. �is is due to
how State is used in Soup: as an internal storage unit for partially and fully materialized
nodes alike. While it might make sense for a base node to only delete rows by key, other
nodes need support for deleting a single row, regardless of if its key is unique or not.
No ma�er, translating remove(row) to remove(key) is trivial, as shown in listing 5.2.

state = State()

state.add_key([0])

state.insert([A, 1])

row = state.lookup(A)

state.remove(row)

Listing 5.2: Deleting a row from a base node in Soup.

Updates

Similar to how State does not have a method for removing by key, State does not
include a method for updating a single row. Updates are instead handled by the base
node’s logic, by �rst emi�ing a negative record—to delete the existing row—followed by
a positive one to insert the new value.

52

5.2. REQUIREMENTS

5.2 Requirements

Random access memory is, and has been for years now, fast. Durable storage is un-
dergoing a similar transformation with the recent introduction of NVMe SSDs [81],
but is still orders of magnitudes slower than RAM. �is means that while introducing
persistent storage into parts of the Soup equation comes with many bene�ts, increased
performance is not likely to be one of them. Rather, the goal will be to maintain the
existing performance characteristics, while still achieving our three main goals.

5.2.1 Write throughput

Back�lls of missing state, replays, go through the regular update paths in the Soup
data-�ow graph. An increase in processing latency at the base nodes would not only
reduce the write throughput, but also have a signi�cant impact on reads that require a
replay to complete.

5.2.2 Point query performance

Base node queries should be a seldom occurrence, as most queries should be served by
nodes further down the graph. Still, when a query eventually makes it all the way up to
the base nodes, it is important that it can be completed fast enough to not signi�cantly
slow down the total read throughput of the system. Slightly higher latency is on the other
hand to be expected, as we are a�er all comparing persistent storage to an in-memory
hash map.

5.2.3 Support both primary and secondary indices

Similar to Soup’s existing State implementation, a durable replacement has to support
mapping a single key to multiple values, i.e., secondary indices.

5.3 Embedding an existing storage engine

On-disk data structures have wildly varying performance characteristics. A B+tree (see
section 2.2.1) might perform well on random reads, but get heavily out-performed by an
LSM-tree (see section 2.3) on sequential writes. At the same time, decades of changes
in hardware research have broadened the �eld further. A new NVMe SSD is able to
reach almost half a million random reads per second1, whereas a traditional spinning

1http://www.samsung.com/semiconductor/minisite/ssd/product/consumer/ssd960/

53

http://www.samsung.com/semiconductor/minisite/ssd/product/consumer/ssd960/

CHAPTER 5. PERSISTENT BASE TABLES

disk barely scratches the surface of a hundred2. �is makes building data structures for
durable storage non-trivial and time consuming.

On the other hand, there is a plethora of existing, open-source, storage backends
available today. Similar to their underlying data structures, di�erent backends are built
for di�erent use cases, with di�erent hardware in mind. �is provides an option to
implementing data structures from scratch, by instead making use of existing database
systems to test performance assumptions, which is exactly what this thesis will do: �rst
using SQLite, and later using RocksDB.

5.3.1 State interface

Before diving into the individual State operations, we need to pave the way for the
possibility of even having two di�erent state implementations: the existing in-memory
implementation, and the new persistent storage variant, from here on referred to as
MemoryState and PersistentState. �is is achieved by turning the existing State

implementation into an interface—a trait in Rust—which would then be implemented
by both the State variants. �is helps maintain the current status quo where State is
an abstract data type: internal Soup callers do not need to be aware of the location their
data is ge�ing stored—they can simply interact with the State trait as a black box.

pub trait State {

/// Add an index keyed by the given columns.

fn add_key(&mut self, columns: &[usize]);

/// Inserts or removes each record into State

fn process_records(&mut self, records: &Records);

/// Retrieve values from the index defined for `columns`.

fn lookup<'a>(

&'a self,

columns: &[usize],

key: &KeyType

) -> LookupResult<'a>;

/// Count the rows currently stored in `State`.

fn rows(&self) -> usize;

/// Return a copy of all records.

fn cloned_records(&self) -> Vec<Vec<DataType>>;

}

Listing 5.3: A segment of the main methods de�ned in our State trait.
2https://www.symantec.com/connect/articles/getting-hang-iops-v13

54

https://www.symantec.com/connect/articles/getting-hang-iops-v13

5.3. EMBEDDING AN EXISTING STORAGE ENGINE

As code is o�en more succinct than prose, a subset of the State trait is shown in
listing 5.3. �e rest of the methods have been omi�ed for clarity, as they are only
relevant to nodes that can be partially materialized—not base nodes. Similarly, some of
the methods take in extra arguments related to partial state—omi�ed here.

Comparing the trait in listing 5.3 to the operations described in 5.1 one might notice that
the insert and removal operations are gone. �ese have been abstracted into a higher
level method: process records. Every packet in Soup has the potential to contain
more than one record by being a merged packet, due to group commit (see section 3.2.1).
Because of this, the function responsible for materializing records in a node’s State
would go through a packet’s records, individually calling methods like State::insert
and State::remove. �is is completely valid for an in-memory implementation, where
each operation has the same cost—without any initial overhead. �is is not the case for
writes to potentially slower, durable storage. Here, batching is key, and an indicator to
the underlying methods that they can perform operations in one go is crucial.

5.3.2 Ownership of data from State

While other languages might implement memory safety through garbage collection or
manual memory management, Rust does the same through ownership, as described
in 2.4. Whenever a value goes out of scope, it is deallocated. In a garbage collected
system, this happens when there are no longer any references to the value. In Rust,
each value only has one owner, and any references need to live at least as long as the
value created by that owner.

On the other hand, values sometimes need to be owned by more than one location.
�is is o�en the case for data structures, and State is no exception here. Values stored
in MemoryState should not have to be cloned during retrieval, which would incur a
heavy performance penalty. Instead, retrieving values from State return dynamically
reference counted3 values, allowing shared ownership of a single value by counting
owners at runtime. Subsequent retrievals of the same value always point to the same
memory location, with the source of truth being stored in State.

3https://doc.rust-lang.org/std/rc/index.html

55

https://doc.rust-lang.org/std/rc/index.html

CHAPTER 5. PERSISTENT BASE TABLES

PersistentState

[0, 1, 0, 1,…]

Cow::Owned(["norway"])

Cow(["norway"])

["norway"]

Cow::Borrowed(["norway"])

MemoryState

Figure 5.2: Rows read from PersistentState are deserialized from their on-disk byte
representation, and returned in a form that transfers the ownership of the value to the
caller. Values in memory are not serialized, and MemoryState instead returns pointers,
removing the need to duplicate data. �e Cow Rust structure represents either an Owned

value, as in the �rst case, or a Borrowed value—a pointer.

What if, on the other hand, a row does not exist in memory to begin with? �is would be
the case when data is retrieved from durable storage: a�er reading a row in its on-disk
representation and de-serializing it to a value in Soup’s data format, where is that very
value stored? �e data used to create the value exists on disk, but the actual memory
representation of the value was just created. While MemoryState::lookup would
want to return a reference to an internally stored value, PersistentState::lookup
would rather want to hand over ownership of the value to the caller. Enter the Cow4 —a
clone-on-write pointer from Rust’s standard library that helps with this exact purpose,
by allowing data to be represented either as Borrowed in the case of MemoryState or
Owned for PersistentState.

Additionally, the rows returned from State::lookup are wrapped in a LookupResult
enum, representing either a found or a missing value. �e la�er is never relevant for
PersistentState, which is only used to represent fully materialized state. Note that
a miss does not signify that the value does not exist, it simply means that this particular
State does not have it, while a State instance further up the data-�ow graph does.

4https://doc.rust-lang.org/std/borrow/enum.Cow.html

56

https://doc.rust-lang.org/std/borrow/enum.Cow.html

5.3. EMBEDDING AN EXISTING STORAGE ENGINE

// Before:

pub enum LookupResult<'a> {

Some(&'a [Rc<Vec<DataType>>]),

Missing,

}

// After:

pub enum RecordResult<'a> {

Borrowed(&'a [Rc<Vec<DataType>>]),

Owned(Vec<Vec<DataType>>),

}

pub enum LookupResult<'a> {

Some(RecordResult<'a>),

Missing,

}

Listing 5.4: Prior to the introduction of PersistentState, reads from State would
always result in a borrowed, reference counted value. With PersistentState the
caller is instead responsible for retaining ownership of the value.

Using LookupResult

Introducing the potential of a returned row being either Borrowed or Owned has its
downsides. For one, callers would have to handle both branches, as the type contained
in a borrowed value is di�erent from the type in an owned one. In the former, callers
would always have to clone the value to hand it over to someone else, whereas in the
la�er, they could simply move it out. �e di�erence here comes from the expectations of
the value: a borrowed value implies that someone wants to retain ownership of it—e.g.,
it has to be cloned to give ownership to someone else—while an owned value is the
responsibility of the caller.

57

CHAPTER 5. PERSISTENT BASE TABLES

if rows.len() > 0 {

match rows {

RecordResult::Owned(mut rows) => {

out.push(Record::Negative(rows.swap_remove(0)))

}

RecordResult::Borrowed(rows) => {

out.push(Record::Negative((*rows[0]).clone()))

}

}

}

Listing 5.5: With RecordResult, returned values can be either Borrowed or Owned,
making callers responsible for handling both use cases.

As is o�en the case, this can be simpli�ed by looking at what the callers are actually
using the returned values for. �e unpacked rows variable in listing 5.5 is—as the name
implies—a list of rows. Taking this collection, and iterating over either all of, or a subset
of the rows, before returning a new iterator over the potentially modi�ed values, was
by far the most common operation. Instead of delegating the responsibility for doing so
to the callers, this can be implemented on RecordResult itself, greatly simplifying use
cases like listing 5.5.

if let Some(row) = rows.into_iter().next() {

out.push(Record::Negative(row.into_owned()));

}

Listing 5.6: �e option of turning a RecordResult into an iterator is used to simplify
the logic from listing 5.5.

5.4 Persistent state with SQLite

�e �rst iteration towards a durable state implementation uses SQLite as its storage
engine. Described in section 2.2, SQLite is a well-tested, heavily used system with a
track record in everything from applications to other databases. SQLite uses B+trees
internally—a reasonable, no frills data structure with easy-to-reason about performance
guarantees. �is makes it useful for an initial prototype, and will help us answering
the question of whether a B+tree based PersistentState is feasible following the
requirements de�ned in 5.2. We will use the Rusqlite [35] library for calling into SQLite
from Rust.

58

5.4. PERSISTENT STATE WITH SQLITE

5.4.1 Schema

SQLite is an embedded database, and requires no inter-process communication to
function. When persisting data, SQLite writes directly to durable �les. �is requires
exclusive locks to be held while writing (see section 2.2.2), eliminating the possibility of
simultaneous updates from parallel locations to the same database. �is is not an issue
for Soup and PersistentState. Soup’s State instances are completely standalone,
and each PersistentState instance can operate against a separate SQLite database,
avoiding the need for locks altogether.

SQLite—like SQL databases in general—require a strict schema to be de�ned at all times.
How this schema looks is usually a result of what kind of queries a database needs to
respond to, which in Soup’s case depends on the indices a speci�c State instance has
been given responsibility for. Each column in a Soup index will be given a column in
the SQLite table, allowing �exible read queries on any of the given indices. �e row
itself will be stored in a separate column, serialized using bincode (see section 2.5).

5.4.2 Adding indices

Each call to State::add key sets up that speci�c State instance for queries on the
given set of columns. �is primarily involves extending our SQLite schema with the
newly given columns, while creating an actual SQLite index on the column combination
itself. �e la�er is not strictly necessary: SQLite is able to retrieve data for any columns,
regardless of existing indices. �e performance would be exceedingly poor however, as
it would require scanning the entire table.

As an example, consider a Soup base node with the three columns (a, b, c). �eries
further down the graph dictate that the base node needs to be able to e�ciently read
rows by the columns (a, b), and by only c. A�er a series of inserts, our SQLite table
for the base node’s PersistentState might look something like table 5.1.

a b c row

1 cat norway bincode(1, cat, norway)

2 dog sweden bincode(2, dog, sweden)

3 �sh denmark bincode(3, fish, denmark)

Table 5.1: An underlying SQLite table in PersistentStore a�er a few inserts.
bincode() is used to signify that the value is serialized in the bincode binary seri-
alization format.

59

CHAPTER 5. PERSISTENT BASE TABLES

5.4.3 Operations

�is section describes how our PersistentState implementation translates its State-
interface methods into operations on top of SQLite.

Retrieval

A�er the hard work of building the indices has completed, a myriad of rows is only
a SELECT-statement away. PersistentState::lookup takes a set of columns and
values for those columns as arguments, which are then translated into a SELECT-query.
Considering the example in our previous section, the key (1, cat) for the columns (a,
b) would result in a query on the form of SELECT row FROM store WHERE index 0

= 1 AND index 1 = "cat", which SQLite can then complete in a timely manner due
to the index on (a, b).

Insertion

Given a vector of values, PersistentState has to �rst extract the columns necessary
for its current set of indices, so that their values can be translated to SQLite friendly types.
�ese can then be used to build an INSERT-query on the form of INSERT INTO store

(index 0, index 1, row) VALUES (...), where row is a binary representation of
the entire vector, serialized using bincode.

Removal

Similar to lookups, removals need to �rst build a WHERE-clause by extracting the index
column values from the target row, which can then be used to perform a DELETE-
statement on the form of DELETE FROM store WHERE index 0 = 1 AND index 1

= "cat".

Processing insertions and removals

All mutations need to be done within a transaction in SQLite, and operations per-
formed without an explicit transaction are implicitly given one. Performing a single
transaction is potentially expensive in SQLite given its strong durability guarantees,
where each transaction will incur a fsync operation to make sure updates are suc-
cessfully persisted before returning. Instead, PersistentState batches all mutations
required for a single packet (per base node) into one transaction. �is is done using the
State::process records method described in 5.3.1, as shown in listing 5.7.

60

5.4. PERSISTENT STATE WITH SQLITE

fn process_records(&mut self, records: &Records) {

let transaction = self.connection.transaction().unwrap();

for r in records.iter() {

match *r {

Record::Positive(ref r) => {

Self::insert(r.clone(), &self.indices, &transaction);

}

Record::Negative(ref r) => {

Self::remove(r, &self.indices, &transaction);

}

}

}

transaction.commit().unwrap();

}

Listing 5.7: Multiple insertions and removals are wrapped in a transaction.

Counting rows

An accurate count of the total rows in the database can be retrieved using an SQL
COUNT-query on the form of SELECT COUNT(row) FROM store.

5.4.4 Replacing the Soup write-ahead log

Soup already writes all updates to durable storage in the form of a write-ahead log.
A�er an unexpected failure, Soup replays entries in the log to recover its state to what
it was prior to crashing. �is is far from optimal for long running applications (which
most databases are), where recovery time would simply continue to grow unbounded.
Relying on SQLite for durability would let Soup recover directly from SQLite’s database
�les—a much faster operation than replaying the entire log.

Modern SQLite versions make use of a write-ahead log to ensure durability (see sec-
tion 2.2.3) while maintaining high write performance. Relying on SQLite’s WAL instead
of Soup’s requires some refactoring however: up until now Soup has sent out acknowl-
edgments of writes as soon as the write is merged into a batch by the group commit
protocol, prior to inserting the packet itself into Soup’s data �ow graph. Materialization
into PersistentState happens a�er later, while the packet is being processed by a
base node. �is comes with a minor write latency penalty regardless of the State

implementation, as more work needs to happen before an acknowledgment can be sent.

61

CHAPTER 5. PERSISTENT BASE TABLES

Figure 5.3: Write-only throughput measured using the vote benchmark. log relies
on Soup’s WAL for durability and stores base node state in-memory. sqlite wal uses
SQLite for durability, storing all base node state on persistent storage.

Intuitively, one might expect writes to SQLite to be at least somewhat slower than writes
to Soup’s regular write-ahead log, simply from the fact that the la�er needs to write less
data to disk. At the same time, the WAL implementation in SQLite is surely far more
sophisticated than Soup’s. SQLite’s WAL consists of a series of frames, allocated ahead
of time to avoid unnecessary resizing at every insertion. Soup’s WAL is on the other
hand purely an ever-growing sequential �le, where entries are appended to the end of
the �le for each new packet. So why—as shown in �gure 5.3—is SQLite so much slower?

Checkpointing

With an arsenal of pro�ling tools at our disposal, guessing is unnecessary. A �ame graph
built from pro�ling data recorded with perf quickly highlights the two main culprits:
checkpoints and B-tree updates. As mentioned in section 2.2.3, SQLite automatically
transfers data from the WAL to its main database �le once the WAL exceeds a certain
threshold. Checkpointing—similar to everything else in SQLite—is a synchronous opera-
tion, incurring a signi�cant latency penalty once it happens. Regardless, checkpointing
is a necessary evil. Up until the point of a checkpoint, reads have to refer to both the
content in the WAL and the content in the main database. Delaying the automatic
checkpoint operation does not make much of a di�erence either, as it results in more
content to copy over when the checkpoint �nally occurs.

62

5.4. PERSISTENT STATE WITH SQLITE

Figure 5.4: A �ame graph highlighting time consuming functions in PersistentState.

Does checkpoints have to happen synchronously, before a write acknowledgment is sent
to a client? In reality, they do not: taking a checkpoint does not make any di�erence in
terms of durability. Instead, PersistentState can issue a checkpoint manually a�er
a certain amount of time, but a�er acknowledging any outstanding writes. �is had a
minor e�ect on throughput, taking it from a measly 27k ops/s, to at least 42k ops/s—still
far too slow. �e checkpoints still happen synchronously, pausing processing at that
speci�c PersistentState instance for a signi�cant amount of time.

�at leads to the question of whether checkpoints have to happen in the same thread as
regular processing altogether. �e SQLite manual mentions the possibility of taking
checkpoints in a separate thread, by incurring manual checkpoints using the
sqlite3 wal checkpoint v2 method. While this sounds promising, it only helps if
regular processing can continue while the checkpoint is being taken. SQLite describes
four di�erent checkpoint modes5:

• SQLITE CHECKPOINT PASSIVE: Checkpoints as many frames as possible without
taking any locks.

• SQLITE CHECKPOINT FULL: Waits until any current database operations are �n-
ished, then holds an exclusive write-lock while checkpointing.

• SQLITE CHECKPOINT RESTART: Similar to the previous mode, but waits with
5https://www.sqlite.org/c3ref/wal_checkpoint_v2.html

63

https://www.sqlite.org/c3ref/wal_checkpoint_v2.html

CHAPTER 5. PERSISTENT BASE TABLES

�nishing the checkpoint until all readers are accessing the main database �le—and
not the WAL—forcing any new writers to restart the WAL.

• SQLITE CHECKPOINT TRUNCATE: Same as the RESTART mode, except it also trun-
cates the log �le before restarting.

While the last three checkpoint modes hold write locks throughout the duration of the
checkpoint, e�ectively resulting in the same operation as a synchronous checkpoint,
the PASSIVE mode does not. It also has the possibility of not checkpointing any frames
whatsoever either though, which is not very helpful. �is makes it heavily workload
dependent, as it requires a low enough throughput to allow “breaks” in the write
processing where a checkpoint can happen. Without that being the case the WAL will
simply continue to grow.

Updating indices

�e other issue highlighted in the �ame graph in �gure 5.4 is index updates. While
writing to a write-ahead log is purely sequential, updating B-trees is not. �is is a
signi�cant di�erence from Soup’s write-ahead log, where writes to the log only require
sequential writes, instead of the random reads and writes caused by inserting into a
B-tree. Even if maintaining SQLite’s B-tree indices could be postponed to the checkpoint
stage (which would likely degrade read performance), this would simply lead to a longer
checkpoint, which, as the previous section points out, still results in pauses in regular
write processing.

5.4.5 Relaxing SQLite’s durability guarantees

To ensure durability, SQLite waits until writes have been fully persisted to durable
storage before returning. Depending on the underlying storage medium, this might
come with a quite he�y latency penalty, as the previous sections have shown. Let us
now move to the other end of the spectrum, and investigate how SQLite fares with
minimal durability guarantees. Instead, we will rely on Soup’s regular write-ahead log
for durability, and only use SQLite to avoid having to store base node state in memory.

Synchronization

Whereas the previous experiments ran with SQLite’s synchronous option set to FULL,
which ensures that all writes are safely persisted before returning, we will now make
use of synchronous = OFF instead, which should signi�cantly decrease the latency
of writing to SQLite.

64

5.4. PERSISTENT STATE WITH SQLITE

Foregoing atomicity

SQLite provides two main options to ensure atomicity: a rollback journal (section 2.2.2)
and a write-ahead log (section 2.2.3). Whereas the previous section made use of the
la�er, we will now try a third option: no journal at all. Similar to synchronous = OFF,
this is far from safe in the event of crashing, but is altogether a more useful comparison
while relying on Soup’s WAL for durability. If this is still too slow, then chances are it is
going to be hard to achieve our requirements using SQLite no ma�er what.

Intermediary results

Whereas our SQLite WAL experiment only reached about 40k writes/s, the current setup
is at least able to push past 110k writes/s. While an improvement, this is still far slower
than Soup’s regular write-ahead log.

Figure 5.5: Write-only throughput measured using the vote benchmark, comparing
in-memory base nodes to persistent base nodes using SQLite—both examples use Soup’s
WAL for durability.

Closing remarks

�e fact that SQLite works well out of the box without a lot of tuning is de�nitely
one of its strengths. Regardless, there are a few options that can be tweaked, both
ahead of compilation and at runtime. While disabling SQLite features not needed for
PersistentState and removing all mutex code had a slight positive impact, the im-
provements were far from signi�cant enough to make a solid dent in the total throughput.
Maintaining SQLite indices—and thus randomly reading from and writing to disk—on
the main path is simply too slow. Does this imply that directly maintaining B-tree on-
disk index structures built speci�cally for Soup would perform poorly as well? Possibly.
While SQLite does have a lot of overhead needed to support a wide range of features,

65

CHAPTER 5. PERSISTENT BASE TABLES

and an even wider array of systems, pro�ling clearly shows that the bulk of processing
time is spent interacting with durable storage as a result of B-tree maintenance.

5.5 Persistent state with RocksDB

How do we improve upon SQLite’s low write throughput? One option would be to only
write to durable storage from background threads, avoiding the hit in latency that comes
from writing to disk. Instead, writes to PersistentState could �ll up an in-memory
queue structure, which would then later be �ushed to persistent storage by background
threads. Read operations could then retrieve data from both the in-memory queue and
the slower—but persistent—SQLite. �is might sound familiar, as it is e�ectively a naive
sketch of the log-structured merge-tree data structure described in section 2.3, where
writes are initially kept in an in-memory bu�er and later �ushed to disk by background
workers. �at leaves us with a good next step: embedding a storage engine that makes
use of LSM-trees internally, RocksDB.

While RocksDB and its LSM-trees should improve PersistentState’s write through-
put, it could at the same time introduce a further penalty to read latency. �is might
not be too problematic though, as reads from PersistentState should be more of a
rare occurrence than writes: every update Soup sees needs to be persisted to durable
storage, whereas only a subset of reads need to access PersistentState at all—most
results should be served by partial nodes further down the data-�ow graph.

5.5.1 Secondary index scheme

Whereas SQLite includes support for a large subset of SQL features, RocksDB’s API is
on a lower abstraction level. Limited to the functions necessary to maintain a sorted
key-value store, implementing support for secondary indices is more of a challenge
than with SQLite, where support for both primary and secondary indices is built in.
Building higher level abstractions on top of key-value stores is becoming more and
more common however, with plenty of inspiration to be found in existing projects, as
described in section 3.1. Both CockroachDB [14] and MyRocks [31] implement SQL-like
functionality on top of RocksDB, with sturdy indexing schemes at the core.

Prior to describing the �nal implementation, let us �rst iterate our way towards a work-
ing index scheme. �e next few sections describe separate, working, implementations,
where each step improves upon the last.

Collection of rows

Representing unique indices using a key-value store is fairly straight forward, as each
key maps to a single value. With secondary indices, this is no longer the case, and
a single key would need to represent multiple values. With key-value stores where

66

5.5. PERSISTENT STATE WITH ROCKSDB

subsequent insertions are still retrievable with a single read operation this would require
no further abstractions. In RocksDB however, each insertion e�ectively overwrites any
existing values that might exist for that key. So how do we emulate an API mapping a
single key to multiple values with the tools we have at hand? For a start, we could do
exactly that, and store multiple values in an array below each key. Insertions would
then retrieve the array of existing values, append the given value to that array, and
write it back to the same key—as shown in listing 5.8.

Lookup(key):

raw_values = Get(key)

deserialize(raw_values) or []

Insert(key, value):

Retrieve and deserialize existing values:

raw_values = Get(key)

values = deserialize(raw_values) or []

Append our new value, serialize the collection and put it back:

values += value

Put(key, serialize(values))

Listing 5.8: A naive secondary index implementation, where each key contains a collec-
tion of values.

Unfortunately, this comes with the same write performance penalty as SQLite’s B-tree
index structures: each write now has to �rst perform a random read before the new
value can be wri�en. �is completely removes any performance bene�ts we might gain
from RocksDB’s write-friendly LSM-tree structure.

Merge operator

In addition to the more common Get and Put operations, RocksDB supports an atomic
read-modify-write operation through the Merge method6. �is leads to the same result
as in our previous implementation—with each key mapping to a collection of values—
without any random reads while writing. Instead, RocksDB considers calls on the form
Merge(key, value) as an intent to merge the values, and persists it as such. �ese
intents can then be processed later, during background compactions (see section 2.3.5)
and read operations.

6https://github.com/facebook/rocksdb/wiki/Merge-Operator

67

https://github.com/facebook/rocksdb/wiki/Merge-Operator

CHAPTER 5. PERSISTENT BASE TABLES

Lookup(key):

raw_values = Get(key)

deserialize(raw_values) or []

MergeOperator(key, existing, operations):

Retrieve and deserialize existing values:

values = deserialize(existing) or []

Then, append all Merge(key, value) operations:

for op in operations

values += deserialize(op)

Finally, serialize and return the new list:

serialize(values)

Listing 5.9: A RocksDB merge operator, appending any given values to an array.

�is moves some of the work from writing to reading, as a read operation now has to
�nd all merge operands and process them before returning. Unfortunately, this also
introduces an unnecessary amount of serialization. RocksDB does not know how to
deal with anything but byte streams, and so both the input and output to the merge
operator have to be serialized, regardless of the fact that the �nal result will have
to be deserialized again when read by the caller. �is could potentially be improved
through a smarter serialization scheme, where values could be appended to the serialized
array without deserialization, but let us �rst consider an alternative without the merge
operator altogether.

Iteration

Up until now we have considered options where each index value takes up a single
key, through various methods of making the value portion of a key-value pair plural.
�is has shown to be quite sub-par, and it would certainly be an improvement if we
could avoid storing a collection below each key. �is is possible through iteration. By
varying keys slightly to ensure uniqueness, while still making sure keys corresponding
to the same index value are placed next to each other, we can seek to the �rst key for a
speci�c index value, and continue to iterate through its subsequent siblings until we
reach a separate key altogether. Retaining uniqueness among keys is not completely
straight forward, and while we will consider this in further detail in section 5.5.3, we we
will for now make do with a monotonically increasing sequence number, where each
subsequent insertion increments the sequence number and appends it to the original
key.

Consider an example table with three columns and two indices: (id, name, country),
with a primary index on id and a secondary index on country. Table 5.2 shows how

68

5.5. PERSISTENT STATE WITH ROCKSDB

the structured schema is converted to a �a�ened key-value space by inserting additional
rows for each index. Notice that the keys for the primary index do not need any
additional su�xes to ensure uniqueness—its keys are already unique.

id name country

1 ola norway
2 kari norway

key value

1 (1, ola, norway)
2 (2, kari, norway)
norway-1 (1, ola, norway)
norway-2 (2, kari, norway)

Table 5.2: Fla�ening a structured table with multiple index into a key-value scheme.

Lookup(key):

values = []

iterator = Iterator()

iterator.seek(key)

while iterator.valid():

(next_key, next_value) = deserialize(iterator.next())

if not next_key.starts_with(key):

break

values += next_value

values

Insert(key, value):

seq++

new_key = serialize(key + seq)

Put(new_key, serialize(value))

Listing 5.10: Implementing an indexing scheme using iteration.

5.5.2 Pre�x iteration

While iteration is a promising concept, the performance guarantees it provides are
potentially sub-par. Consider how an LSM-tree organizes its data: whereas each SS-
table is sorted, separate �les o�en overlap. �is implies that an iterator has to consider
every available �le in its tree while iterating. To improve upon this, we can provide
RocksDB with a way of partitioning out the areas that we want to iterate within, through
use of pre�x extractors. In our case, these partitions are separate index keys, such as
norway in the example shown in table 5.2.

69

CHAPTER 5. PERSISTENT BASE TABLES

With a de�ned way of extracting pre�xes, RocksDB is free to organize data how it
sees �t to optimize for pre�x iteration. While iteration usually guarantees a total order,
this guarantee is restricted to iteration within the same key when a pre�x extractor
is given. Bloom �lters (see section 2.3.6) can then be de�ned on pre�xes instead of
individual keys, greatly reducing the amount of SS-tables that have to be considered
when iterating. Additionally, developers can choose to replace RocksDB’s fundamental
LSM-tree structures with data structures optimized for pre�x iteration, such as hash
tables where each pre�x is a key.

Extracting a pre�x

What signi�es a pre�x varies wildly between di�erent applications. Instead of a�empting
a generalization, RocksDB leaves the extraction up to developers, through what is
referred to as a slice transform: a function on the form of S → S ′, where S is a key and
S ′ is a potentially modi�ed version of S . For PersistentState, S ′ corresponds to the
original key, with any appended su�xes stripped away, as shown in table 5.3.

key pre�x value

1 1 (1, ola, norway)
2 1 (2, kari, norway)
norway-1 norway (1, ola, norway)
norway-2 norway (2, kari, norway)

Table 5.3: �e extracted pre�xes strip away the previously appended key su�xes.

�is gives us the ability to iterate purely within a pre�x. Instead of having to manually
check whether our next iteration step reaches a sibling key, we can now seek directly to
the pre�x and RocksDB will ensure that all given keys stays within that pre�x. At the
same time, we do not have to take care to make sure that the �rst key—e.g., norway-1—is
ordered before any other keys: RocksDB ensures that our pre�x iterator steps through
all keys within that pre�x. To de�ne a correct pre�x extractor, RocksDB de�nes four
boolean properties that need to hold:

1. key.starts with(pre f ix(key))

2. Compare(pre f ix(key),key) ≤ 0

3. Compare(k1,k2) ≤ 0 =⇒ Compare(pre f ix(k1),pre f ix(k2)) < 0

4. pre f ix(pre f ix(key)) ≡ pre f ix(key)

Every key has to go through a de�ned slice transform at some point, so an e�cient
implementation is crucial. �is is not completely trivial though, as both the pre�x
transform’s input and output are byte streams. How do we separate out the index part

70

5.5. PERSISTENT STATE WITH ROCKSDB

of a key from a byte stream? A naive way to do so would be to �rst deserialize the key,
extract the index values, before �nally serializing and returning the pre�x in byte form
(shown in listing 5.11).

PrefixTransform(raw_key):

try:

key, suffix = deserialize(raw_key)

catch:

raw_key might already have gone through

a prefix transform (property 4):

return raw_key

serialize(key)

Listing 5.11: A naive implementation of a pre�x transform.

Deserializing the entire key just to strip o� the su�x requires an unnecessary amount
of allocations. In the current example the su�x is an integer sequence number, which
we always know the byte size o�, giving us the alternative of slicing away the last
X bytes from the key to build a pre�x, where X is the size of our integer su�x. �is
would help maintain the three �rst pre�x transformation properties, while failing the
last: how do we ensure that we only slice away the last bytes once when performing
pre f ix(pre f ix(key))? Additionally, as we will see in later sections, there are cases
where we would like the su�x to have a variable byte size.

�is leaves us with a requirement for a more generic solution, which we will solve by
slightly worsening the space complexity of our key scheme, through the introduction
of a size segment. Consider a 64-bit integer primary key, which bincode (see section 2.5)
uses 12 bytes to serialize. By pre�xing the key with the serialized size, 12, the slice
transform knows how many bytes correspond to the index value of the key, which it
can then use to remove any su�x values.

PrefixTransform(raw_key):

bincode uses 8 bytes to encode

the size value itself, a 64-bit integer:

size_offset = 8

key_size = deserialize(raw_key[..size_offset])

prefix_length = size_offset + key_size

Finally, strip away the suffix:

raw_key[..prefix_length]

Listing 5.12: With the byte size of the relevant portion of the key included,
PrefixTransform only needs to deserialize a single integer to be able to slice away
the su�x.

71

CHAPTER 5. PERSISTENT BASE TABLES

5.5.3 Separating indices

�e index scheme described so far has glossed over the potential for con�icts between
indices covering the same amount of columns, with the same types. Consider a table
with two integer columns, (a, b), and an index on each column. How do you separate
values pointed to by the index on column a from values pointed to by the index on b?
In the example shown in table 5.4 this would lead to a con�ict: both index a and index
b have at least one key with the same value.

a b

1 2
2 2

Table 5.4: Two indices with the same number and type of columns would collide under
a �at key-value space.

Both CockroachDB [16] and MyRocks [32] solve this by including a unique index ID
in the key (shown in table 5.5). �is is an elegant solution with low overhead—a small
integer value would be enough to cover a large amount of indices. Another option
would be to put each index in a separate column family—the RocksDB equivalent of a
table. Whereas a secondary index might have a large amount of values pre�x, a unique
index can have only one. With the option of opening each column family with di�erent
options, indices can be tuned di�erently based on similar pa�erns. Keeping a separate
column family per index also simpli�es the rare case where all rows in the system have
to be iterated through, as all the values can be retrieved from the �rst index, without
having to �lter out the pointers kept by other indices.

key value

0-1 (1, 2)
0-2 (2, 2)
1-2 (1, 2)
1-2-. . . (2, 2)

Table 5.5: Keys in CockroachDB and MyRocks are pre�xed with unique index IDs to
prevent collisions.

5.5.4 Ensuring unique keys for secondary indices

Up until now the secondary index keys have been su�xed with a monotonically increas-
ing sequence number. While this works well as an example, it has a few issues. For one,

72

5.5. PERSISTENT STATE WITH ROCKSDB

how does PersistentState know what sequence number to start at a�er recovering?
Recording the latest sequence number a�er each write would signi�cantly degrade
write throughput, while �guring out the last sequence number used upon recovering
would increase the time it takes to recover.

Instead, PersistentState includes an epoch with the sequence number, which it
increments and persists upon recovering. �is ensures that the sequence number can
start counting from zero a�er recovery, without any chance of collision. In short, the
pair (epoch, sequence number) is always unique for a single index.

Maintaining a (epoch, sequence number) pair for each index in every case is also
unnecessary. As long as keys are unique for the initial index—the primary index—the
secondary indices can make use of the primary key as a su�x to ensure uniqueness.
�is is shown in table 5.6, where the secondary index on country includes the primary
key as a su�x, to avoid collision. �is also greatly speeds up the speed of removals:
since secondary index keys can now be derived using the row and the primary key
value, no unnecessary retrievals are needed to remove rows.

key value

10 (10, bob, norway)
20 (20, anne, norway)
norway-10 (10, bob, norway)
norway-20 (20, anne, norway)

Table 5.6: �e primary key, ID, is used as a su�x for the secondary index on country to
ensure that separate keys are unique.

�is is also how CockroachDB [16] and MyRocks [32] handle secondary index keys.
What happens when the primary index does not have unique keys? While CockroachDB
and MyRocks recommend against it, it is supported by using an automatically generated
ID. �is is where our previously mentioned (epoch, sequence number) pair comes
in, by functioning as an automatically generated su�x to ensure uniqueness among
keys in the initial index. With the exception of the extra storage required for the keys,
this is completely free: unlike an incremented identi�cation number, no extra writes or
reads are incurred for our sequence number, as it is reset when recovering.

73

CHAPTER 5. PERSISTENT BASE TABLES

key value

bob-0-0 (bob, norway)
anne-0-1 (anne, norway)
norway-bob-0-0 (bob, norway)
norway-anne-0-1 (anne, norway)

Table 5.7: In this example the table has no unique primary key, and instead uses the
potentially duplicate name column as an initial index. Since name is not guaranteed
to be unique, it is su�xed by a (epoch, sequence number) su�x. Secondary index
keys are still su�xed with the entire key from the initial index to ensure uniqueness.

Recover:

epoch = ReadEpoch()

epoch++

PersistEpoch(epoch)

Listing 5.13: �e epoch is retrieved, incremented, and persisted again when
PersistentState recovers.

5.5.5 Following index pointers: space versus performance

Having covered the contents of the key portion of secondary index rows, let us now
consider the value. In MyRocks, retrieval of secondary index values require a subsequent
lookup of the primary key row, to avoid having to store the value multiple times. �is
opens for a completely empty value portion: the key already includes everything needed
to retrieve the full row.

An additional read for every secondary index lookup has the potential to be quite costly
for large indices. With PersistentState’s iteration scheme, rows covered by the same
index are co-located, opening for e�cient caching behavior when a single secondary
index key points to a large amount of rows. �is is less of an improvement if each of
the retrievals result in a second, and completely random, read. �e second lookup has
no such property and the values might be located anywhere. Other database systems
o�en utilize a covering index: when all the columns needed exist in either the key
portion of the primary or secondary index, no further reads are required. �is is not
possible for Soup, where nodes further down the query graph always require the full
row representation.

74

5.5. PERSISTENT STATE WITH ROCKSDB

key value

1 (1, ola, norway)
2 (2, kari, norway)
norway-1 NULL

norway-2 NULL

key value

1 (1, ola, norway)
2 (2, kari, norway)
norway-1 (1, ola, norway)
norway-2 (2, kari, norway)

Table 5.8: �e le�most table stores nothing for secondary indices and require an
additional lookup for each row. �e rightmost includes the entire row for each index
and does not.

Instead PersistentState trades write ampli�cation and space usage for read perfor-
mance, by storing the whole row for each index. Insertions now have to write the whole
row for every index, increasing the total storage size, but with the great advantage of
never having to read more than once to read from a secondary index.

5.5.6 Operations

�is section describes how the various PersistentState methods are implemented
on top of the RocksDB storage engine.

Retrieval

�e way retrieval is performed varies based on the index type. For unique primary key
indices, each key maps to a single row, where the row can be retrieved using a RocksDB
Get operation. Other indices need to use a pre�x iterator, as described in section 5.5.2,
to ensure that all of the corresponding values are retrieved.

Lookup(columns, key):

index = index_for(columns)

prefix = serialize_prefix(key)

if index.is_unique:

raw_row = Get(prefix)

deserialize(raw_row) or []

else:

prefix_iterator(prefix).map(value -> deserialize(value))

Listing 5.14: Retrieving one or more rows from PersistentState backed by RocksDB.

75

CHAPTER 5. PERSISTENT BASE TABLES

Insertion

�e di�erent parts of our key-value scheme comes together when inserting rows. A
unique primary key is built up, with an incremented sequence number su�x included if
its values are not unique by themselves. �en, a RocksDB Put operation is performed
once for each index, with the same value: the serialized representation of the row.

Insert(row):

Extract the key portion of the row:

primary_key = build_primary_key(row)

if has_unique_index:

The first index is unique, so no sequence number or epoch needed:

serialized_key = serialize_prefix(primary_key)

else:

Otherwise, increment the sequence number and use that in the key:

sequence++

serialized_key = serialize_key(primary_key, epoch, sequence)

serialized_row = serialize(row)

First write the primary key row:

Put(serialized_key, serialized_row)

Then insert a row for each secondary index:

for index in secondary_indices:

key = build_key(row, index)

serialized_key = serialize_key(key, serialized_key)

Put(serialized_key, serialized_row)

Listing 5.15: Insertions write one row per index.

Removal

Removals undo the work done by an insertion operation, by cleaning up rows for each
index maintained by a PersistentState instance. Note that a removal in Soup is
given the entire row, and not a key, with the expected outcome that it will delete a single
value. �is means that we need to take care to only remove that exact value—and any
references to it—for non-unique indices.

76

5.5. PERSISTENT STATE WITH ROCKSDB

PerformRemove(row, primary_key):

Delete the primary index row first:

Delete(primary_key)

Then delete any secondary index references:

for index in secondary_indices:

key = build_key(row, index)

serialized_key = serialize_key(key, primary_key)

Delete(serialized_key)

Remove(row):

primary_key = build_primary_key(row)

prefix = serialize_prefix(primary_key)

if has_unique_index:

PerformRemove(row, prefix)

else:

for (key, value) in prefix_iterator(prefix):

if deserialize(value) == row:

PerformRemove(row, key)

Listing 5.16: Removals clean up all the index references pointing to the given row, a�er
removing the row itself.

Counting rows

RocksDB, being a key-value store, does not have an equivalent of the COUNT operator
in SQLite. To retrieve an exact count of all rows, one would need to either maintain a
separate variable (which would then need to be persisted potentially on every write), or it-
erate through the entire collection of rows—a potentially costly operation. RocksDB does
on the other hand have an estimated internal property, rocksdb.etimate-num-keys,
which can be retrieved trivially. At the moment, a total row count is only needed for
debugging and statistical purposes in Soup, making an estimated count su�cient.

5.5.7 Replacing the Soup write-ahead log

Section 5.4.4 a�empted to replace Soup’s write-ahead log with SQLite’s, ensuring in-
sertions and removals were safely persisted to SQLite prior to sending out any write
acknowledgments. �is turned out to be too slow: in addition to writing records to
the WAL, SQLite also had to update its B-tree indices before returning. �is is not
the case with RocksDB, where data is �rst wri�en to an in-memory bu�er and only
later �ushed to disk by background threads. While this greatly reduces the gap be-
tween PersistentState and regular Soup, RocksDB still has to potentially write N
times more data to disk than Soup’s regular WAL, where N is the amount of indices

77

CHAPTER 5. PERSISTENT BASE TABLES

PersistentState maintains.

To prevent synchronizing to durable storage more than necessary, the records from a
single packet result in a single WriteBatch (see section 2.3.3)—persisted once towards
the end of PersistentState::process records.

5.5.8 Building new indices

Indices added a�er rows have already been inserted into PersistentState need to be
built, to ensure that they start serving reads for existing rows right away. �is is done by
iterating through all of the existing rows while inserting index pointers into the newly
created column family. Finally, meta information about the index itself is persisted to
RocksDB a�er building the index, preventing recovery from trying to rebuild the index
a�er a failure.

AddKey(columns):

if columns in existing_indices:

return

index_id = length(existing_indices)

column_family = create_column_family(index_id)

if index_id > 0:

for (primary_key, value) in all_rows():

row = deserialize(value)

key = build_key(row, columns)

serialized_key = serialize_key(key, primary_key)

Put(column_family, serialized_key, value)

existing_indices += columns

PersistMeta()

Listing 5.17: Adding a new index to PersistentState builds the index using any
existing rows, before �nally persisting the index to RocksDB.

It might be tempting to wrap the entire index construction in an atomic WriteBatch
for multiple reasons:

• �e index would either be completely built or not built at all.

• �e WAL would only have to be synchronized once—when commi�ing the
WriteBatch.

Unfortunately—at least for this particular case—a WriteBatch keeps all updates in
memory until it is commi�ed. �is raises a potential issue: an index could only be
built if all existing rows �t in memory. On the other end of the spectrum, commi�ing

78

5.5. PERSISTENT STATE WITH ROCKSDB

every row to disk incrementally (as in listing 5.17) would be incredibly slow. Instead,
we will reach for a compromise and create a new WriteBatch every N rows, where
N ∗ RowSize < MemorySize .

Separating the index building into multiple batches voids the guarantee of atomic index
construction. Consider the case where AddKey crashes while trying to build a new
index, a�er having created a new column family for it. If PersistentState continued
to use this partially built index a�er recovering, its returned results would be faulty. �is
is where PersistMeta() comes in. By only writing metadata about the index a�er it
has been built, we ensure that any future recovery processes know how to di�erentiate
a partially built index from a complete one. During recovery we can then check whether
the index count corresponds to the column family count, and if it does not, simply drop
the entire column family and rebuild the index again later.

5.5.9 Background threads

With the exception of its write-ahead log, RocksDB �rst bu�ers writes to an in-memory
MemTable before persisting data to durable storage. �is comes with performance
bene�ts, by avoiding the latency penalty that o�en comes from writing to disk. MemTa-
bles have to be �ushed to durable storage at some point however, which is handled by
background threads. �ese are also responsible for compacting on-disk SS-tables (see
section 2.3.5).

RocksDB’s background threads are shared across RocksDB instances within the same
process. �is is helpful for Soup, where a single Soup instance might contain a multitude
of sharded base nodes, leading to a core-constrained system if all nodes were given
a background thread each. RocksDB divides its background threads into two priority
partitions, where HIGH is reserved for �ushing memtables and LOW is assigned for
compactions. �e amount of threads in both is con�gurable, with di�erent hardware and
varying workloads requiring di�erent thread numbers. Soup—like RocksDB—defaults
to a single background thread per process, with a recommendation of increasing it le�
to its end-users.

79

CHAPTER 5. PERSISTENT BASE TABLES

80

Chapter 6
Recovery

�is chapter describes the current recovery scheme used in Soup, followed by a look at
how it improves when the base tables are stored on durable storage instead of in volatile
main-memory. Finally, the rest of the chapter is reserved for snapsho�ing—a signi�cant
improvement to Soup’s recovery capabilities.

81

CHAPTER 6. RECOVERY

6.1 Write-ahead log

Soup appends all updates to a durable write-ahead log prior to sending out write
acknowledgments. Packets are bu�ered up using a group-commit scheme [21] to
amortize the I/O cost of writing to durable storage. Commits result in a merged packet
injected into the data-�ow graph, ensuring that all changes are persisted to disk before
being accessed by readers.

Merging the data from multiple packets before writing to the WAL drastically increases
the throughput of the system. Instead of requiring a single write to durable storage per
packet, Soup only needs to write once per batch. At the same time, it reduces the total
amount of packets fed through the data-�ow graph, allowing each node to operate on a
larger batch of records at a time.

6.1.1 Log based recovery

In a traditional relational database management system, log recovery o�en involves
multiple phases. Following a system like ARIES (described in section 3.2), log recovery
is responsible for a wide variety of tasks, such as undoing aborted transactions. Log
recovery in Soup is much simpler, with log entries only including the operations to be
performed, and not the result they have on the database—a command log [54]. �ere
are no UNDO nor REDO phases either: only commi�ed transactions result in persisted
log entries.

Log recovery is then a ma�er of replaying the writes from the persisted logs by feeding
them into the data-�ow graph’s base nodes as if they were regular updates. Each line in
the log corresponds to a packet that was once injected into the Soup instance’s data-�ow
graph, now serialized using JSON.

[

[{"Positive": [{"Int": 1}, {"Int": 0}]}],

[{"Positive": [{"Int": 1}, {"Int": 1}]}],

[{"Positive": [{"Int": 1}, {"Int": 2}]}]

]

Listing 6.1: An expanded line from one of the log �les of a Soup application, corre-
sponding to a single batched update with three records.

Log entries are separated by a newline character, where each line in the log is valid JSON.
�is lets the recovery process handle one line at a time in a bu�ered fashion, avoiding
the need to store the entire log in memory. Similar to how the packets were created in
the �rst place, individual updates from each log entry are batched into chunks, before
�nally being turned into separate packets that are passed on to the rest of the data-�ow
graph. �is speeds up recovery performance by avoiding processing of a potentially
large amount of small log entries.

82

6.2. PERSISTENT BASE NODES

Figure 6.1: Log entries are �a�ened, then chunked into individual packets.

6.2 Persistent base nodes

RocksDB recovers content that resided in its in-memory MemTables at the time of a
crash by replaying entries from its write-ahead log. �is is a stark improvement from
recovery using Soup’s regular write-ahead log, where every entry from the beginning
of time has to be replayed. Data that is already persisted to durable SS-tables at the time
of a crash require no extra work—they can be read in the same manner a�er crashing as
before.

What happens to Soup’s partially materialized nodes? Similar to a regular caching solu-
tion, they start out completely empty a�er recovering. Subsequent requests gradually
restore the nodes to a state resembling the one they were in before crashing. Fully
materialized nodes require a complete view of the state at all times and need to be sent
a full copy of the state when recovering.

Both this, and the fact that partially materialized nodes start out empty, lead to reduced
initial performance—a target of improvement addressed in the next section.

6.3 Snapshotting

While PersistentState speeds up base node recovery, it comes with no improvement
for recovery of nodes further down the graph. Partial nodes have to trigger a large
amount of replays to restore their state early on, while fully materialized nodes need a
complete copy of the state altogether before serving any reads at all.

PersistentState lets base nodes instantly recover to a recent point in time, capping
recovery to the time it takes to go through recent updates. A similar solution for
all materialized state would let nodes recover to a recent checkpoint, followed by re-
application of log entries to become fully up-to-date. In short, we need to be able to
consistently snapshot the materialized nodes at any given point.

�e implementation in the rest of this section is based on an earlier version of this
thesis [25], submi�ed as a part of “TDT4501 Computer Science, Specialization Project”.

83

CHAPTER 6. RECOVERY

6.3.1 Challenges

Main memory systems like VoltDB leverage checkpointing by persisting the transac-
tional state of commi�ed transactions, using log sequence numbers to be able to track
which updates have been re�ected on disk [54]. In Soup, state is materialized at a variety
of nodes throughout the graph, and updates have no timestamps or sequence numbers
a�ached to them. Updates propagate through the graph asynchronously, and a speci�c
update is likely to reach di�erent points in the graph at separate times. Taking a global
snapshot of the entire graph simultaneously would mean capturing nodes at di�erent
logical points, as an update might be in the process of propagating throughout the graph
at the time that the snapshot is initiated.

Soup’s way of asynchronously propagating updates through its data-�ow graph re-
sembles the communication done in a distributed system. Being able to observe the
global state in a distributed system—where access to a common clock is rare—is an
immensely useful property, crucial to resolving a certain category of problems, such
as deadlock detection and global checkpointing. Section 3.2.2 introduces a series of
algorithms for snapsho�ing distributed systems, including the Chandy-Lamport [11]
method of propagating an explicit snapshot marker throughout the system to ensure
consistency, which we implement later in this chapter.

6.3.2 Algorithm

Taking a snapshot of a running Soup instance requires persisting the content of each
materialized node in the current data-�ow graph. �is needs to happen at the same
logical point in time across the graph—ensuring that every in-�ight update is either
propagated to all nodes in the graph—or none of them, leading to a consistent state
a�er recovering from a failure. At the same time, taking a snapshot should not incur a
too heavy performance cost on the running system and should de�nitely not stop the
system from processing updates completely—for any period of time. �is lets us derive
a few base rules for our snapsho�ing algorithm:

1. Snapshots need to include exactly the same updates across the graph.

2. Snapshots should not signi�cantly degrade the system’s throughput.

3. Snapshots should complete in a reasonable amount of time.

We can then use these rules to build a snapsho�ing algorithm in incremental steps,
starting from an example that fails to meet the de�ned criteria. Figure 6.2 shows an
update propagating through the Soup data-�ow graph. What would be the outcome if
both of the partially materialized nodes—shown in a blue color—would snapshot their
state at the exact moment shown in the graph? Whereas the le�most domain has had
time to process update A, the rightmost one has not. �e two domains are at di�erent
logical points in time, and the snapshots would fail our �rst rule.

What if the system as a whole instead waited for the update to completely propagate
through the graph before initiating the snapshot? �is would successfully follow the

84

6.3. SNAPSHOTTING

�rst rule, but fail the second: no new updates could be served until the snapshot has
completed across the graph, halting the system’s throughput.

Figure 6.2: An update X propagates through the domains in the graph in an asyn-
chronous manner. Domains B and C contain at least one materialized node and should
be snapsho�ed.

Synchronous snapshotting

Soup’s data-�ow graph forwards updates over ordered FIFO channels, making it possible
to rely on Chandy-Lamport’s marker technique to determine which updates should be
considered a part of a snapshot. Domains that receive the marker initiate the snapshot
process right away, without any further processing of updates. �is results in a global
snapshot taken at the same logical point in time, even if the actual snapshots were
instantiated at di�erent physical points.

Figure 6.3: An update X is propagated through the data-�ow graph, followed by a
snapshot marker to ensure that domains with materialized nodes snapshot at the correct
time.

85

CHAPTER 6. RECOVERY

�e controller initiates a snapshot by issuing a TakeSnapshot marker to each of its
base nodes, which is then propagated through the rest of the graph. A�er a snapshot
completes, the controller persists its snapshot id to durable storage, to ensure that it
can inform domains which snapshot to recover from a�er a failure.

InitializeSnapshot:

snapshot_id += 1

for node in base_nodes:

node.send(TakeSnapshot, snapshot_id)

for node in base_nodes:

node.wait_for_ack()

persist(snapshot_id)

Listing 6.2: Initiating a snapshot from the controller.

Domains that receive a snapshot marker proceed with the snapsho�ing process immedi-
ately. A�er persisting the snapshot, nodes notify the controller that they have done so,
le�ing it eventually discard log entries a�er con�rming that all materialized nodes have
successfully taken a snapshot of their state. Implemented naively, this would involve
serializing each node’s state at a domain and persisting these to disk—all while while
blocking updates from the rest of the system (shown in listing 6.3).

TakeSnapshot:

for node in nodes:

if node.is_materialized:

state = serialize(node.state)

write(state)

notify_controller(snapshot_id)

Listing 6.3: �e beginning of a snapshot implementation for domains.

Asynchronous snapshotting

Our synchronous snapsho�ing algorithm ful�lls the �rst snapsho�ing base rule through
use of Chandy-Lamport’s marker technique, by stopping further domain processing until
the snapshot has completed. �is involves writing the snapshot to durable storage—a
potentially slow operation. To prevent this from signi�cantly slowing down the system’s
throughput we would need to persist the snapshot in a separate computational unit,
such as a thread, allowing the domain to continue its regular processing without pause.

�e algorithm shown in listing 6.4 achieves this through a SnapshotWorker running in
a separate thread, where the received state is serialized and persisted to durable storage

86

6.3. SNAPSHOTTING

before the controller is noti�ed of its completion.

SnapshotWorker:

for event in listener:

state = serialize(event.state)

write(state)

notify_controller(event.snapshot_id, event.state)

TakeSnapshotAsync:

states = {}

for node in nodes:

if node.is_materialized:

states[node] = node.state.clone()

snapshot_worker.send(snapshot_id, states)

Listing 6.4: A SnapshotWorker serializes and persists snapshot in a thread separate
from the regular domain processing.

Delayed snapshotting

Compared to the synchronous snapsho�ing algorithm—where processing is parallelized
across all available domains—our asynchronous version restricts the number of parallel
units to a �xed set of snapsho�ing workers. �is number is likely to be far less than
the number of domains, introducing a trade-o� between snapshot completion time and
the extra load induced on the system. �e former is irrelevant as long as each snapshot
completes before the next request arrives, and the focus should without doubt be on
avoiding a potential performance hit to the processing throughput.

While the introduction of asynchronous snapshot workers move the bulk of the snapshot
processing out of the domains’ main thread, the state clone operation remains. �is is
a crucial part in maintaining the correctness of Chandy-Lamport’s marker technique,
and snapshots would not happen at the correct logical instant without it. Still, with
snapshots happening roughly at the same physical time across the graph, the pause
required from cloning a domain’s entire state could have a signi�cant impact on the
system’s total throughput.

Instead, we would like to amortize the performance penalty across a larger time range,
by delaying the snapsho�ing process at each individual domain. While snapshots would
still need to happen at the same logical point across the graph, the physical instant
could vary. Naturally, this could be achieved by cloning the state immediately and only
forwarding the result later on—without any gain at all. To actually spread out the cost
of snapsho�ing we would need to delay the clone as well.

A clone of a domain’s state has to be taken at some point, but preferably later than
when the snapshot marker arrives. �is would require the ability to travel back in time

87

CHAPTER 6. RECOVERY

from a state Sm to the original state when the marker arrived, Sn . In short, with Ln ..m
signifying the updates that arrived from n tom, Sn can be re-created through Sn −Ln ..m .
�e amount of work performed by a single domain would be higher, but in return the
individual clone operations performed across all domains could be delayed, preventing
a global performance penalty.

TakeSnapshotDelayed:

states = {}

for node in nodes:

if node.is_materialized:

current_state = node.state.clone()

states[node] = current_state - processed_updates[node]

snapshot_worker.send(snapshot_id, states)

Listing 6.5: A delayed implementation of TakeSnapshotAsync from listing 6.4. Up-
dates arriving a�er the marker are stored in processed updates.

Snapshot con�rmations

�e controller should be noti�ed of all completed snapshots, as shown in listing 6.6.
�e snapshots are already persisted to disk at this point, removing the need to include
data in the acknowledgment messages. �e messages should on the other hand include
the current snapshot identi�er, so that the controller eventually knows when the entire
graph has completed the same snapshot. At that point the snapshot identi�er can be
persisted to ZooKeeper, and any log entries for updates prior to the snapshot being
taken can be discarded. Recovery is then a ma�er of �rst loading each materialized
node’s state from their local snapshot, followed by replaying the rest of the log entries
available.

ReceiveSnapshotAck(domain_id, snapshot_id):

snapshot_ids[domain_id] = snapshot_id

if min(snapshot_ids) == snapshot_id:

persist_snapshot_id(snapshot_id)

Listing 6.6: �e controller listens for snapshot acknowledgments from snapshot workers,
updating an internal data structure with a mapping from domain to snapshot id on
each received con�rmation. When all domains have completed their snapshots, the
controller persists the snapshot id, so that it later on can be used for recovery.

88

6.3. SNAPSHOTTING

Failure before discarding the log

In the event of a failure a�er the controller has persisted the snapshot ID to ZooKeeper,
but before all nodes have managed to discard the correct log entries from durable storage,
duplicate replaying of those log entries upon recovery is a possibility. To prevent this
from happening, each log entry should include their domain’s current snapshot ID, so
that log entries corresponding to old snapshots can be ignored during recovery.

6.3.3 Implementation

�e snapsho�ing implementation roughly follows along the lines of the asynchronous
snapsho�ing algorithm described in section 6.3.2. Snapshots are initiated with a speci�c
marker sent by the controller, domains process snapshots by cloning their nodes’ state,
and snapshot workers are responsible for serializing and persisting the snapshots. Finally,
the loop is closed when the controller is noti�ed of each domain’s completed snapshots.

Initializing a snapshot

Snapshots are initialized by the controller using a special marker packet, TakeSnapshot.
�is happens at a regular interval, de�ned by the con�guration option snapshot timeout.
�e controller processes events in an event loop, and snapshots are triggered by emi�ing
an event to this internal loop. �is is done from a separate thread, which sleeps until it
is time to take a snapshot.

89

CHAPTER 6. RECOVERY

Figure 6.4: Snapshots are initialized when the controller sends a TakeSnapshot packet,
which is forwarded through the data-�ow graph by each domain.

When the controller’s main loop receives a request to initialize a snapshot, it �rst makes
sure that it has received all con�rmations from previous snapshots before proceeding.
�en it increments its snapshot id and �res o� a TakeSnapshot packet to each of
the base node domains in its data-�ow graph. No further blocking is required: snapshot
acknowledgments are handled separately.

Domain snapshotting

Whenever a domain receives a TakeSnapshot packet, it immediately clones the state of
each of its materialized nodes. Each domain then forwards the snapsho�ing packet to its
children, ensuring that all materialized nodes eventually get snapsho�ed. Finally, it sends
the cloned states to its SnapshotWorker, by issuing a PersistSnapshotRequest.

TakeSnapshot packets are forwarded to descendant domains through the egress nodes
in the data-�ow graph. Each domain is connected to its children through egress nodes
and its ancestors through ingress nodes. With domains running in separate computa-
tional units, the snapsho�ing process can complete out of order at di�erent domains.

Nodes and readers

�e snapsho�ing algorithm describes persisting the state of materialized nodes. Al-
though that is true, reality is slightly more nuanced. Materialized nodes in Soup can be

90

6.3. SNAPSHOTTING

both internal and external, where the la�er is represented by readers (see section 2.1.4).
Both the internal nodes and the readers can be either partially or fully materialized,
where only partial nodes require support from their parent nodes to ful�ll certain
queries.

Whether a node is partially or fully materialized does not make much of a di�erence
for the snapsho�ing algorithm. On the other hand, internal and external nodes require
slightly di�erent snapsho�ing and recovery methods. �is comes as a result of how
state is stored within the two: whereas the former use Soup’s own State data structure,
the la�er makes use of the evmap [37] library.

6.3.4 Performing snapshot requests

While each domain is responsible for gathering up the cloned copies of state needed to
eventually recover from a failure, the actual serialization and persisting of snapshots
happens in separate snapshot workers. �e current implementation utilizes one snapshot
worker per worker pool, resulting in one thread per running Soup instance. �is could
be increased as needed, but it is favorable that snapshots happen over a longer time to
prevent reducing the system’s throughput during the snapsho�ing process.

When a domain has �nished cloning the state of its materialized nodes, it noti�es its local
snapshot worker through an asynchronous and unbounded bu�ered channel1. �is
ensures that snapshot processing can continue separately, without blocking the domain’s
regular workload. �e snapshot workers receive and process PersistSnapshotRequest
events one by one. �e processing involves serializing the cloned state, persisting the
serialized state to disk, and �nally notifying the controller of a domain’s snapshot
completion.

6.3.5 Receiving snapshots con�rmations

�e controller listens for snapshot con�rmations on a TCP socket normally used for
coordination messages between the controller and its individual workers. Whenever
it receives an acknowledgment packet from a snapshot worker, it stores the given
snapshot id in a HashMap mapping each domain containing at least one materialized
node to their current snapshot ID. Note that domains can be sharded, so each instance
in the map represents an individual shard of a single domain.

1https://doc.rust-lang.org/std/sync/mpsc/fn.channel.html

91

https://doc.rust-lang.org/std/sync/mpsc/fn.channel.html

CHAPTER 6. RECOVERY

Figure 6.5: �e controller keeps track of each domain shard’s snapshot id as the
snapshot con�rmations arrive. When all shards have been snapsho�ed, the controller’s
snapshot id is persisted.

When all shards have completed its snapshot, the current snapshot id is persisted to
ZooKeeper, allowing the next snapshot to be initiated.

6.3.6 Logging and snapshotting

To be able to discern between log entries created before and a�er a given snapshot, log
entries are annotated with the ID of the last snapshot persisted for that speci�c node.
�is lets the recovery process ignore any log entries created prior to the snapshot being
restored.

[0, [[{"Positive": [{"Int": 1}, {"Int": 0}]}]],

[1, [[{"Positive": [{"Int": 1}, {"Int": 1}]}]]]

[1, [[{"Positive": [{"Int": 1}, {"Int": 2}]}]]]

Listing 6.7: Separate log lines for a given base node. Each line is on the format shown
in listing 6.1, with the addition of a pre�xed snapshot id.

�e snapshot ID used for log annotations is the ID of the latest snapshot initiated at
that domain, regardless if the global snapshot with that ID has �nished yet or not—it is
optimistic. In the event of a failure, any un�nished snapshots are simply ignored, and the
log entries are relied on instead. As an example, consider a domain that is in the process
of taking a snapshot with ID X . A failure occurring a�er that domain has snapsho�ed,
but before the entire graph has done so, would lead to each domain recovering the
snapshot with ID X − 1, ignoring any log entries with snapshot id < X − 1.

6.3.7 Recovering from a snapshot

Snapshot recovery comes as a supplement to the log based recovery described in sec-
tion 6.1.1. It is initialized when the controller sends a StartRecovery packet to each of
its base node domains, containing the ID of the snapshot that was last persisted across
the entire data-�ow graph. �e ID is read from ZooKeeper, ensuring that it survives
across failures.

92

6.3. SNAPSHOTTING

When the base node domains receive the recovery packets, they initialize the recovery
process by �rst restoring snapshots, before replaying any updates that are le� from log
entries. Before this, the recovery packet is forwarded to the rest of the graph. Unlike log
based replays, snapshots have to be restored at each materialized node across the entire
graph—not solely at the base nodes. Forwarding the recovery packet prior to replaying
log entries is crucial, as it ensures that snapshot recovery happens ahead of log based
recovery for every node—not just the base nodes.

6.3.8 Serialization and deserialization of snapshots

Snapshots are serialized representations of each node’s materialized state. �e state
itself is serialized from its Rust representation to a series of bytes using the bincode
library, as described in section 2.5 and shown in listing 6.8.

// Implementing the Serialize and Deserialize traits makes it

// possible for bincode to serialize and deserialize the State struct:

#[derive(Clone, Serialize, Deserialize)]

pub struct State<T: Hash + Eq + Clone + 'static> {

state: Vec<SingleState<T>>,

by_tag: HashMap<Tag, usize>,

rows: usize,

}

// Serialization:

let file = File::create(&filename)

.expect(&format!("Failed creating snapshot file: {}", filename));

let mut writer = BufWriter::new(file);

bincode::serialize_into(&mut writer, &state, bincode::Infinite)

.expect("bincode serialization of snapshot failed");

// And deserialization:

let file = File::open(&filename)

.expect(&format!("Failed reading snapshot file: {}", filename));

let mut reader = BufReader::new(file);

bincode::deserialize_from(&mut reader, bincode::Infinite)

.expect("bincode deserialization of snapshot failed")

Listing 6.8: State is serialized and deserialized using bincode [63].

6.3.9 Snapshot compression

Writing to and reading from disk is a signi�cant part of the work being done during
snapsho�ing and recovery. Both of these are naturally in�uenced by the performance

93

CHAPTER 6. RECOVERY

of the underlying storage medium. Compressing snapshots before they are persisted
would lower the amount of bytes being wri�en, at the expense of CPU cycles needed to
compress the data before doing so.

Compression in Rust can be done using the flate2 library2, which supports a series
of formats and backends. By working on streams, flate2 composes well with the
serialization library used for snapsho�ing, bincode.

// Serialization:

let file = File::create(&filename)

.expect(&format!("Failed creating snapshot file: {}", filename));

let buffered = BufWriter::new(file);

let mut writer = ZlibEncoder::new(buffered, Compression::default());

bincode::serialize_into(&mut writer, &state, bincode::Infinite)

.expect("bincode serialization of snapshot failed");

// And deserialization:

let file = File::open(&filename)

.expect(&format!("Failed reading snapshot file: {}", filename));

let buffered = BufReader::new(file);

let mut reader = ZlibDecoder::new(buffered);

bincode::deserialize_from(&mut reader, bincode::Infinite)

.expect("bincode deserialization of snapshot failed")

Listing 6.9: Serialization and deserialization of compressed snapshots using bincode

and flate2.

6.3.10 Persisted data

Soup persists data to both local �les and ZooKeeper as a part of the snapsho�ing and
recovery process. Individual snapshots are wri�en to durable storage locally at each
domain, while the ID of the last completed global snapshot is stored in ZooKeeper,
ensuring consensus between the replicated Soup controllers.

6.3.11 Diamonds in the data-�ow graph

A single Soup node can receive multiple snapshot markers if at least two nodes have a
common descendant in the data-�ow graph. �e snapshot implementation described
so far immediately snapshots when a marker is received and ignores subsequently
received snapshot markers. With packets propagating through the data-�ow graph
asynchronously, snapsho�ing a�er the �rst marker is received could produce inconsis-
tent snapshots. Consider the case in �gure 6.6, where the snapshot marker from node

2https://docs.rs/flate2/

94

https://docs.rs/flate2/

6.3. SNAPSHOTTING

B arrives at D ahead of the marker from C . Snapshots performed when the marker
from B arrives would not include the propagated update from C , while delaying the
snapsho�ing until the marker has arrived from C would potentially include update UY
in the snapshot, breaking the properties de�ned by the Chandy-Lamport algorithm.

Instead, D should wait with snapsho�ing until it has received the marker from both of
its parents, while blocking further updates from parents that it has already received the
marker from.

95

CHAPTER 6. RECOVERY

Figure 6.6: Updates propagate through the data-�ow graph asynchronously. To correctly
create a consistent snapshot, domainD should delay processing ofUY until it has received
the marker from both B and C .

96

Chapter 7
Evaluation

Neither persistent base nodes nor snapsho�ing lead to direct performance bene�ts for
Soup. Instead, they both come with a wide range of features and improvements in other
areas, further advancing Soup towards a production-ready storage system. Moving the
base node state to durable storage lets Soup operate on datasets larger than its memory
size, reduces its overall memory usage, and improves the system’s overall recovery
capabilities—a necessity if Soup is ever going to be usable for long running applications.
Snapsho�ing takes this a step further, and removes the performance penalty Soup sees
while its partial states are brought back to the state they were in prior to a fatal failure.

Regardless, Soup’s performance when faced with a large amount of concurrent requests
is still one of its main contributions. While a certain reduction in throughput and latency
might be inevitable, it is crucial that this penalty remains as insigni�cant as possible. �is
chapter �rst investigates the e�ects PersistentState has on performance, followed
by a look at the recovery bene�ts from both PersistentState and snapsho�ing.

97

CHAPTER 7. EVALUATION

7.1 Write-performance

Only a small subset of reads propagate all the way to the base nodes. Instead, they
are served by partially materialized nodes further down the graph, avoiding the need
for expensive computations on each read. �is is not the case with writes. Every
update that reaches Soup needs to be fully persisted to durable storage before a write
acknowledgment can be sent. With persistent base nodes, that involves materializing
the updates into PersistentState. With packets being processed synchronously at
each domain, even the smallest increase in write latency at the base nodes could have
disastrous e�ects for the overall write throughput of the system.

�e vote benchmark described in section 4.3 is used to measure write-performance.
While it is normally a mixed-load benchmark, where clients both write new votes
and read the existing vote counts of articles, we will run vote with a pure write-load,
removing reads altogether. Since we are measuring the impact of writing to durable
storage, Soup will run without sharding, resulting in a single domain writing new votes
to PersistentState. �e database is prepopulated with 100K articles and the inserted
votes are uniformly distributed across the existing articles.

Soup can be run both in a local and distributed fashion, and vote supports both. Writing
to durable storage is a penalty �xed per machine however, and benchmarking its
horizontal scalability makes li�le sense. Instead, we will use the local vote benchmark,
where both the clients and the Soup workers run on the same machine.

�e benchmark is run on the server described in section 4.1.1, with the write-ahead log
wri�en to one SSD and the database �les to another.

98

7.1. WRITE-PERFORMANCE

Figure 7.1: Write-only comparison of Soup’s regular write-ahead log and RocksDB.
�e topmost �gure shows the latency from when the request was initiated, while
the bo�ommost includes the time from the request was generated by the open-loop
benchmark (see section 4.3.1).

Materializing base node state to durable storage introduces a slight write-latency penalty
under load. �is eventually translates to about a 10% decrease in maximum write-
throughput, compared to the naive Soup log. Even though the RocksDB write-ahead
log is wri�en to a di�erent disk than its SS-tables, the amount of data that has to be
wri�en to the RocksDB WAL with PersistentState is still multiples more than with
the Soup log. �e former has to include entries for every index a base node maintains,
while the la�er only needs one entry for the update itself.

Additionally, writing to RocksDB’s in-memory bu�ers is not a negligible cost, espe-
cially considering serialization. Whereas the Soup log only serializes updates once,
PersistentState needs to do so, in-part, once for each index.

99

CHAPTER 7. EVALUATION

7.1.1 MemTable format

All writes to RocksDB are �rst placed in an in-memory bu�er—a MemTable. RocksDB
includes multiple MemTable implementations, and the advantages and disadvantages of
the di�erent data structures are described in section 2.3.9. To measure the impact of
changing the MemTable implementation, we make use of the vote benchmark from
the previous section, running on the same hardware.

Figure 7.2: Write-latency measured at di�erent throughput targets using the vote

benchmark, while comparing separate RocksDB MemTable implementations.

Changing from the default skip list implementation results in a signi�cant increase in
write-throughput. In reality, this is a comparison of theO(logn) performance guarantees
of a skip list and the closer to constant time guarantees of the hash-based implemen-
tations. RocksDB buckets keys based on the their pre�x, where the two hash-based
implementations use di�erent data structures to organize each bucket. Using a skip list
for the buckets result in O(logp) insertions, where p is the amount of keys within a sin-
gle pre�x. Linked list buckets improves this even further, with constant time insertions
and lower memory overhead.

While the write performance of the link list hash table is be�er than the skip list one, its
read performance is worse. �e former requires a linear search to �nd values, while the
la�er can do the same in logarithmic time. Fortunately, RocksDB turns link list buckets
into skip lists when they go beyond a certain amount of keys—by default 256. In the
vote benchmark this will likely happen for the Vote base table, which will have a large
index on article id, but not for the Article table where each pre�x maps to a single
key, a unique article.

100

7.2. READ-PERFORMANCE

7.2 Read-performance

When measuring the overall read-performance of Soup as a system, a read-heavy vote

benchmark is a good indicator. To analyze the impact of durable storage, we want to
ensure that we are measuring the read performance of the base nodes, and not the partial
nodes further down the graph. Instead, we will make use of the replay benchmark
described in section 4.4, where each row is read at most once, resulting in a full replay
from the base nodes.

�e database is prepopulated with 10 million rows, a�er which a small random subset of
the rows are read once. With PersistentState, Soup recovers existing data between
each test run, a�er �ushing the disk caches.

�e benchmark is run on the same server as the write-throughput benchmark (see
section 4.1.1).

Figure 7.3: �e replay performance of in-memory Soup compared to Soup with RocksDB.

Reading a small amount of rows result in less cache overlap when data is read from
durable storage, which in turn leads to higher read latency. When the benchmark
gravitates towards higher read counts, more data is bound to be served from the �le
system cache, reducing the overall latency of most reads.

7.2.1 SS-table format

RocksDB provides two separate SS-table implementations, BlockBasedTable and
PlainTable, as described in section 2.3.10. �e la�er imposes limitations that the
former does not have but promises lower read latency on fast storage mediums in
return.

101

CHAPTER 7. EVALUATION

Figure 7.4: Soup replay performance comparison between BlockBasedTable and
PlainTable.

Soup’s persistence base tables rely heavily on pre�x iteration—one of PlainTable’s
design goals1. �is results in signi�cantly lower overall read latency compared to the
traditional block-based format.

7.3 Mixed workload

�e Lobsters benchmark described in section 4.2 is used to measure the performance
of persistent bases in a real-world se�ing. �e benchmark issues queries used in the
real Lobsters web application, following a distribution modeled a�er the application’s
production tra�c. Whereas the previous benchmarks measure queries per second, the
Lobsters benchmark uses pages per second as its metric, where separate pages require
di�erent queries. A single page view can issue both read and write requests, through
insertions, lookups, and updates. As Soup translates updates to removals, followed by
insertions, the benchmark also measures deletion performance. �e latency measured is
the sojourn time of each request—the time from the request is generated until completion
(see section 4.3.1).

�e benchmark runs on two separate servers. SQL queries are issued by a workload
generator and translated to native Soup requests using the MySQL shim layer (see
section 2.1.6). �ese requests are handled by a separate server, running Soup. Before
initiating the benchmark, the database is prepopulated with a similar amount of data
to the real Lobsters application: 120,000 comments, 40,000 stories, and 9,200 users.
A�erwards, the benchmark issues requests following a target throughput goal.

Note that unlike the write-throughput benchmark, Soup’s write-ahead log is not used
here. Instead, the benchmark compares purely in-memory—and not durable—Soup, to
Soup with its base tables safely stored in durable RocksDB.

1rocksdb.org/blog/2014/06/23/plaintable-a-new-file-format.html

102

rocksdb.org/blog/2014/06/23/plaintable-a-new-file-format.html

7.3. MIXED WORKLOAD

7.3.1 Computational overhead

�e Lobsters benchmark is run on two separate hardware con�gurations. �e �rst, server
setup 2 (described in section 4.1.2), emulates durable storage using a RAM-disk2. �is
lets the benchmark focus on the computational overhead of storing Soup’s base tables
in RocksDB, while serving as a useful comparison to existing Soup benchmarks—which
make use of the same server setup.

Figure 7.5: �e 99th percentile sojourn latency of the Lobsters benchmark measured
at increasing throughput. �e soup target does not write any log �les, while the
rocksdb soup target persists all updates to RocksDB.

Figure 7.5 shows that Soup with its base tables stored in RocksDB performs just as
well as in-memory Soup. �e seemingly random �uctuations in latency exist for both
versions, and are not a result of whether the tables are stored in-memory or not.

7.3.2 I/O overhead

To measure the overhead of having to persist updates to a durable write-ahead log, the
same benchmark is run on an Amazon EC2 server with an NVMe SSD-drive3 (server
setup 2 in section 4.1.2). Similar to the write-throughput benchmark in section 7.1, the
write-ahead log and RocksDB database �les are wri�en to separate disks.

2https://manpages.debian.org/stretch/initscripts/tmpfs.5.en.html
3https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html

103

https://manpages.debian.org/stretch/initscripts/tmpfs.5.en.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html

CHAPTER 7. EVALUATION

Figure 7.6: 99th percentile sojourn latency of the Lobsters benchmark measured at
increasing throughput. �e rocksdb soup target writes to a durable NVMe SSD.

�e observed latency is slightly higher when Soup’s base tables are stored on durable
storage, but the di�erence is far from signi�cant. �e server used here is on the other
hand far slower than the one in the previous section, resulting in overall lower through-
put targets. While durable and non-durable Soup are quite equal here as well, the
di�erence would without doubt be more drastic on a server with slower storage media.

7.4 Recovery

�e recovery benchmark introduced in section 4.5 helps us compare the recovery impact
imposed by di�erent durability strategies. For every data point, the database is populated
with 10K articles and a varying amount of votes divided evenly between the articles.
A�er population, Soup is restarted, while the time it takes to recover is measured. �e
state is considered recovered when the total sum of votes returned from reading all
articles equal the actual amount of votes in the system—signi�ed as total in �gure 7.7.

Unlike the other durability methods, recovering with durable base nodes does not
a�ect the partial nodes further down the graph—they remain empty until future read
operations trigger ancestor queries to the base nodes. Snapsho�ing, on the other hand,
brings all materialized nodes in the graph back to the state they were in prior to crashing.
�is is the case for log-recovery as well, as updates from the WAL propagate through
the entire graph when recovering. To highlight this divide, the time it takes to read a
single key a�er recovering from a durable base node application is measured as well,
denoted as initial in �gure 7.7.

104

7.4. RECOVERY

Figure 7.7: �e recovery benchmark measures the time it takes to recover a�er a failure.
�e initial metric highlights the latency of reading a single key, while total requires all
reads to return the same result as prior to crashing.

�e results are pre�y much as expected. Snapsho�ing returns all the materialized nodes
in the graph to their correct state, avoiding the need to replay any state a�er recovering.
�e time it takes to recover still increases a�er a while, with more data to read from
disk. Log-based recovery needs to go through all updates since the beginning of time
before it is considered ready, resulting in poor performance. With durable base nodes,
each read requires a full replay from the bases—a signi�cant latency penalty when the
row count goes up.

With PersistentState, the base nodes do not have to process any updates at all when
recovering. Restoring PersistentState to the correct state is le� to RocksDB, which
puts a cap on recovery time by ensuring that its write-ahead logs never grow beyond a
given size. Recovering the actual database �les, the SS-tables, is “free”—no data needs to
be read into memory.

7.4.1 Snapshot compression

Compressing snapshots introduce a trade-o� between computation and storage overhead.
Depending on the underlying hardware, the penalty induced from having to compress
and decompress snapshots might be amortized by the reduced I/O usage. To measure
the impact on recovery performance, the benchmark used in the previous section is run
on the same hardware—with and without zlib compression.

105

CHAPTER 7. EVALUATION

Figure 7.8: �e total snapshot recovery time, with and without compression.

Recovering from compressed snapshots takes on average three times as long as recover-
ing from regular snapshots. �is is measured on a server with a SSD-drive, and the gap
would without doubt be less signi�cant on slower storage media. Regardless, with a
focus on reducing recovery time, this is not a trade-o� we are willing to make.

7.4.2 Write-performance with snapshotting

Snapsho�ing is a signi�cant improvement to Soup’s recovery situation and a step in
the right direction for Soup as a production-ready system. Regardless, it is only useful
if Soup manages to maintain much of the same write-throughput while performing
regular snapshots.

To measure the performance penalty of snapsho�ing, we make use of the vote bench-
mark described in section 4.3 and earlier in this chapter. �e benchmark compares the
batch write latency at increasing throughput targets, both with and without snapsho�ing.
�e benchmark runs for 60 seconds, performing a snapshot every 10 seconds.

106

7.4. RECOVERY

Figure 7.9: Write-latency comparison with and without snapsho�ing (with a snapshot
timeout of 10 seconds). Both use Soup’s regular write-ahead log.

Most of the snapsho�ing work is performed in standalone snapshot workers, running in
threads separate from Soup’s packet processing. Without this, the throughput penalty
would without doubt be much more signi�cant than the 10% observed in �gure 7.9. �e
penalty is a result of the full state clone incurred at each materialized node during a
snapshot.

Figure 7.10: 100th percentile comparison, with and without snapsho�ing.

�e �rst snapshot graph shows no increase in latency. With a snapshot timeout of 10
seconds and a benchmark runtime of 60 seconds, snapshot occurrences are probably
too rare for it to show up in the 95th percentile. Looking at the 100th percentile on the
other hand, we can see the latency spiking at a lower throughput than normal. At this
point the state size is reasonably large, resulting in non-trivial clone operations.

107

CHAPTER 7. EVALUATION

108

Chapter 8
Conclusion

�is chapter looks back at the results presented earlier in this thesis, drawing conclusions
from both the positive and the negative side-e�ects of the contributed implementations.
A�erwards, it takes a look at possible durability directions Soup might take in the future,
towards the eventual goal of becoming a production-ready system.

109

CHAPTER 8. CONCLUSION

8.1 Persistent base tables

Storing base tables on durable storage, instead of in volatile memory, lets Soup handle
continuously increasing quantities of data without having its memory usage grow
without bounds. With base tables stored safely on durable storage, Soup no longer needs
to replay all previous updates to recover a�er a failure. Read requests instead replay data
from the base tables when needed, eventually bringing Soup’s partially materialized
views back to a similar state they were in prior to the failure.

�e persistent base table implementation contributed throughout this thesis replaces
Soup’s in-memory index structure with a durable index structure built on top of
RocksDB—a ba�le-tested key-value storage layer developed at Facebook. Compared
to Soup’s previous ever-growing write-ahead log, the RocksDB-based implementation
decreases the raw write throughput with about 10%, while moving Soup from a pure
main-memory database to a storage layer capable of handling data larger than its resi-
dent memory size, with signi�cant bene�ts for both recovery and Soup’s overall memory
usage. �e implementation is currently used by the latest Soup prototype.

8.2 Snapshotting

With base tables persisted to durable storage, Soup can begin serving requests shortly
a�er recovering from a failure. Unfortunately, these requests will need to go through the
entire data-�ow graph before returning, with Soup’s partially materialized views starting
out empty a�er recovering. Akin to the performance penalty induced by a cold cache,
Soup performs read requests with higher latency until the application’s working set
again is present in the partially materialized nodes throughout the graph. Snapsho�ing
avoids this by restoring all materialized state, a�er which Soup can continue serving
read operations as if nothing happened.

Compared to log-based recovery, the snapsho�ing implementation described throughout
this thesis recovers in less than a tenth of the time, at the cost of a 10% overall penalty to
Soup’s write throughput. While rapid recovery is an important property for a database
system, the performance penalty induced here comes with considerably less bene�ts
than moving Soup’s base tables to durable storage, leaving the question of whether it
is a reasonable compromise open. At the same time, the e�ects of snapsho�ing over a
longer period of time have yet to be investigated and should be considered—especially
in regards to the proposed improvements to the current snapsho�ing method. All in all,
snapsho�ing is a promising concept, with the possibility of being an important part of
a production-ready Soup system in the future.

110

8.3. CONCLUSION

8.3 Conclusion

�is thesis presents the internals of the Soup structured storage system and the chal-
lenges faced by its current solution for maintaining write durability. Prior to the
contributions described throughout this thesis, Soup was a pure main-memory database,
incapable of handling datasets beyond the size of its available memory. Now, Soup
stores the majority of its data in durable index structures, while maintaining much of the
same performance guarantees as before. Finally, Soup recovers considerably faster a�er
failures, as it no longer has to go through and re-apply all updates from its previously
ever-growing write-ahead log.

8.4 Future work

�is section presents possibly paths of improvement for the two main contributions
presented throughout this thesis.

8.4.1 Snapshotting and persistent bases

�e PersistentState implementation described in section 5 removes the regular Soup
write-ahead log in favor of relying on RocksDB for durability. RocksDB maintains its
own WAL, which, unlike the Soup WAL, is discarded when its updates are safely �ushed
to durable storage. �is is far be�er for recovery purposes, as it avoids the need to go
through a seemingly endless stream of updates to restore Soup back to a pre-failure
state. It does, on the other hand, complicate ma�ers for snapsho�ing.

Snapsho�ing relies on Soup’s write-ahead log to recover updates that occur a�er a
snapshot is taken, prior to a failure. During recovery, the latest snapshot is �rst restored,
followed by log-based recovery for any remaining log entries. Together they make
sure that Soup recovers quickly, without degrading its durability guarantees. With
persistent bases the write-ahead log is maintained internally by RocksDB, together with
the decision of when to eventually discard prior log �les. Without the ability to replay
log entries, recovering using snapsho�ing would leave all other nodes than the base
nodes in an older state than before the crash.

Recovery using persistent bases leaves the partial nodes further down the graph empty.
�is works �ne because of Soup’s replay system: any missing reads will propagate all the
way to the base nodes, resulting in the partial nodes eventually reaching a similar state
to the one they were in prior to crashing. With snapsho�ing, the partial nodes would
end up in an old state, instead of empty. �is would prevent Soup from issuing base
node replays, e�ectively discarding the updates that happened a�er the last snapshot
was taken.

�at leaves the question of how to replay updates that happened a�er the last snapshot
was taken, while still relying on RocksDB’s write-ahead log for persistence. �e �rst

111

CHAPTER 8. CONCLUSION

step would be to ensure that RocksDB never discards WAL �les until all its updates are
included in a snapshot. Secondly, Soup’s recovery procedure would need to retrieve
updates that happened a�er the last snapshot was taken, directly from the RocksDB
write-ahead logs. By including the current snapshot identi�er in all persisted updates,
the recovery process would be able to discern between updates that happened before
and a�er the last persisted snapshot.

8.4.2 PersistentState serialization

Both the keys and values persisted to RocksDB are serialized using bincode (see sec-
tion 2.5). While bincode performs well compared to other serialization libraries, imple-
menting encoding techniques speci�cally for Soup’s use case would come with other
potential bene�ts. One example is speci�c sorting orders in PersistentState. With
the current implementation, keys would have to be deserialized before they could
be compared to each other, resulting in unnecessary allocations. �ese allocations
would be avoided by using an encoding scheme where keys could be compared without
deserialization, such as e.g., MyRock’s memcomparable format [32].

8.4.3 Uncoordinated snapshots

Coordinating a global snapshot across the entire data-�ow graph requires unnecessary
communication between the workers and the controller. Instead, the question of �nding
the last valid snapshot could be le� to the recovery process, e.g., by �nding Min(epoch)
across the nodes, or by following schemes such as [43].

8.4.4 Incremental snapshots

�e write-performance benchmark in section 7.4.2 showed a 10% decrease in overall
write throughput a�er introducing snapsho�ing. �e majority of the work is performed
in separate snapsho�ing threads, leaving the state clone operation as the culprit. To
avoid cloning altogether, snapshots would need to be maintained gradually, which could
be achieved by maintaining a bu�er of changes between snapshots, which could then be
forwarded to the snapsho�ing worker and applied there. While this avoids the need to
clone the entire state, snapshot workers would now need to keep an entirely duplicate
clone of the snapshot state in memory, e�ectively doubling Soup’s memory usage.

Instead, snapshots could be maintained incrementally directly on durable storage. �is
could make use of the same PersistentState implementation used by persistent base
nodes, either by having the snapsho�ing workers apply received updates to RocksDB,
or by doing so directly from each domain. �is would signi�cantly reduce the write-
ampli�cation required to persist a snapshot, by avoiding the need to write duplicate
data to disk again and again. Incremental snapsho�ing would also minimize the risk of
�lling up the snapshot workers’ queues, which could now happen if the time it takes

112

8.4. FUTURE WORK

to serialize and persist a single, possibly large, snapshot grows beyond the prede�ned
snapshot interval.

113

CHAPTER 8. CONCLUSION

114

Appendix A
Contributions

�e implementations described throughout this thesis have resulted in a series of
contributions to various open-source projects. �is appendix lists a selected subset of
the pull requests contributed to these projects, where a pull request is simply a proposed
unit of changes.

115

APPENDIX A. CONTRIBUTIONS

A.1 distributary

distributary is the prototype implementation of Soup, wri�en in Rust.

Title Pull request

RocksDB Persistence https://git.io/vhf7w (#72)
SQLite Base Node Indices https://git.io/vhf7B (#58)
Initial Snapsho�ing Implementation https://git.io/vhf79 (#54)
Recovery https://git.io/vhfbI (#37)
Arithmetic Expressions in Projections https://git.io/vhf7F (#35)
AUTO INCREMENT support https://git.io/vhf7b (#66)
Refactor LookupResult https://git.io/vhf5f (#76)
Remove generics from State https://git.io/vhf5k (#64)
Materialization status in graphviz https://git.io/vhf5L (#51)
Use appropriate names for
literals and arithmetic expressions https://git.io/vhf5m (#45)
Add tests for Extremum::MIN https://git.io/vhf5G (#33)

A.2 distributary-mysql

distributary-mysql is the MySQL protocol translation layer described in section 2.1.6.

Title Pull request

UPDATE and DELETE support https://git.io/vhfdi (#12)

116

https://git.io/vhf7w
https://git.io/vhf7B
https://git.io/vhf79
https://git.io/vhfbI
https://git.io/vhf7F
https://git.io/vhf7b
https://git.io/vhf5f
https://git.io/vhf5k
https://git.io/vhf5L
https://git.io/vhf5m
https://git.io/vhf5G
https://git.io/vhfdi

A.3. NOM-SQL

A.3 nom-sql

nom-sql is the SQL parser used by distributary and distributary-mysql, wri�en
in Rust.

Title Pull request

Add aliases to arithmetic expression https://git.io/vhf5D (#8)
Upgrade nom https://git.io/vhfdv (#13)
Move alias up to FieldExpression https://git.io/vhf5h (#15)
A�ach the table name to keys
and columns in CreateTableStatement https://git.io/vhfdZ (#16)
Implement fmt::Display
for ArithmeticExpression https://git.io/vhf5F (#12)

A.4 RocksDB

RocksDB is the key-value store described in section 2.3, which the durability layer in
Soup is implemented on top of.

Title Pull request

Add manual WAL �ushing to the C API https://git.io/vhfb8 (#3792)

117

https://git.io/vhf5D
https://git.io/vhfdv
https://git.io/vhf5h
https://git.io/vhfdZ
https://git.io/vhf5F
https://git.io/vhfb8

APPENDIX A. CONTRIBUTIONS

A.5 rust-rocksdb

rust-rocksdb is a Rust wrapper library for RocksDB.

Title Pull request

Add support for customizing
the memtable factory https://git.io/vhfAV (#180)
Support linking to other
compression libraries https://git.io/vhfAg (#185)
Add set memtable prefix ratio https://git.io/vhfAE (#181)
Make sure DB is dropped a�er all tests https://git.io/vhfAB (#183)
Add index type customization
to BlockBasedOptions https://git.io/vhfAl (#184)
Add DBOptions.set wal dir https://git.io/vhfN8 (#186)
Add disable cache method
to BlockBasedOptions https://git.io/vhfNC (#188)

118

https://git.io/vhfAV
https://git.io/vhfAg
https://git.io/vhfAE
https://git.io/vhfAB
https://git.io/vhfAl
https://git.io/vhfN8
https://git.io/vhfNC

Bibliography

[1] A. Acharya and B. R. Badrinath. “Recording Distributed Snapshots Based on Ca-
sual Order of Message Delivery”. In: Inf. Process. Le�. 44.6 (Dec. 1992), pages 317–
321.

[2] S. Alagar and S. Venkatesan. “An Optimal Algorithm for Distributed Snapshots
with Causal Message Ordering”. In: Inf. Process. Le�. 50.6 (June 1994), pages 311–
316.

[3] S. Alsubaiee, A. Behm, V. Borkar, Z. Heilbron, Y.-S. Kim, M. J. Carey, M. Dreseler,
and C. Li. “Storage Management in AsterixDB”. In: Proc. VLDB Endow. 7.10 (June
2014), pages 841–852.

[4] Apple. FoundationDB - the open source, distributed, transactional key-value store.
Apr. 2018. url: https://github.com/apple/foundationdb (visited on
03/17/2018).

[5] J. Arulraj, M. Perron, and A. Pavlo. “Write-behind Logging”. In: Proc. VLDB Endow.
10.4 (Nov. 2016), pages 337–348.

[6] D. F. Bacon et al. “Spanner: Becoming a SQL System”. In: Proceedings of the 2017
ACM International Conference on Management of Data. SIGMOD ’17. Chicago,
Illinois, USA: ACM, 2017, pages 331–343.

[7] R. Bayer and E. McCreight. “Organization and Maintenance of Large Ordered
Indices”. In: Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD) Workshop on
Data Description, Access and Control. SIGFIDET ’70. Houston, Texas: ACM, 1970,
pages 107–141.

[8] P. A. Bernstein and N. Goodman. “Concurrency Control in Distributed Database
Systems”. In: ACM Comput. Surv. 13.2 (June 1981), pages 185–221.

[9] B. H. Bloom. “Space/Time Trade-o�s in Hash Coding with Allowable Errors”. In:
Commun. ACM 13.7 (July 1970), pages 422–426.

119

https://github.com/apple/foundationdb

BIBLIOGRAPHY

[10] M. Callaghan. Read, write & space ampli�cation — B-Tree vs LSM. 2015. url:
http : / / smalldatum . blogspot . com / 2015 / 11 / read - write - space -

amplification-b-tree.html (visited on 04/05/2018).
[11] K. M. Chandy and L. Lamport. “Distributed Snapshots: Determining Global States

of Distributed Systems”. In: ACM Trans. Comput. Syst. 3.1 (Feb. 1985), pages 63–75.
[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T.

Chandra, A. Fikes, and R. E. Gruber. “Bigtable: A Distributed Storage System
for Structured Data”. In: Proceedings of the 7th Symposium on Operating Systems
Design and Implementation. OSDI ’06. Sea�le, Washington: USENIX Association,
2006, pages 205–218.

[13] J. Coburn, T. Bunker, M. Schwarz, R. Gupta, and S. Swanson. “From ARIES to
MARS: Transaction Support for Next-generation, Solid-state Drives”. In: Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. SOSP
’13. Farminton, Pennsylvania: ACM, 2013, pages 197–212.

[14] CockroachDB. CockroachDB. Jan. 2018. url: https://www.cockroachlabs.
com/ (visited on 04/20/2018).

[15] CockroachDB. CockroachDB Design. Mar. 2018. url: https://github.com/
cockroachdb / cockroach / blob / master / docs / design . md (visited on
04/10/2018).

[16] CockroachDB. Structured data encoding in CockroachDB SQL. Jan. 2018. url:
https://github.com/cockroachdb/cockroach/blob/master/docs/

tech-notes/encoding.md (visited on 04/20/2018).
[17] E. F. Codd. “A Relational Model of Data for Large Shared Data Banks”. In:Commun.

ACM 13.6 (June 1970), pages 377–387.
[18] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A.

Jacobsen, N. Puz, D. Weaver, and R. Yerneni. “PNUTS: Yahoo!’s Hosted Data
Serving Platform”. In: Proc. VLDB Endow. 1.2 (Aug. 2008), pages 1277–1288.

[19] J. C. Corbe� et al. “Spanner: Google’s Globally Distributed Database”. In: ACM
Trans. Comput. Syst. 31.3 (Aug. 2013), 8:1–8:22.

[20] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. “Dynamo: Amazon’s Highly
Available Key-value Store”. In: SIGOPS Oper. Syst. Rev. 41.6 (Oct. 2007), pages 205–
220.

[21] D. J. DeWi�, R. H. Katz, F. Olken, L. D. Shapiro, M. R. Stonebraker, and D. A. Wood.
Implementation techniques for main memory database systems. Volume 14. 2. ACM,
1984.

[22] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mi�al, R. Stonecipher, N.
Verma, and M. Zwilling. “Hekaton: SQL Server’s Memory-optimized OLTP En-
gine”. In: Proceedings of the 2013 ACM SIGMOD International Conference on Man-

120

http://smalldatum.blogspot.com/2015/11/read-write-space-amplification-b-tree.html
http://smalldatum.blogspot.com/2015/11/read-write-space-amplification-b-tree.html
https://www.cockroachlabs.com/
https://www.cockroachlabs.com/
https://github.com/cockroachdb/cockroach/blob/master/docs/design.md
https://github.com/cockroachdb/cockroach/blob/master/docs/design.md
https://github.com/cockroachdb/cockroach/blob/master/docs/tech-notes/encoding.md
https://github.com/cockroachdb/cockroach/blob/master/docs/tech-notes/encoding.md

BIBLIOGRAPHY

agement of Data. SIGMOD ’13. New York, New York, USA: ACM, 2013, pages 1243–
1254.

[23] J. V. D’silva, R. Ruiz-Carrillo, C. Yu, M. Y. Ahmad, and B. Kemme. “Secondary
Indexing Techniques for Key-Value Stores: Two Rings To Rule �em All”. In:
Proceedings of the Workshops of the EDBT/ICDT 2017 Joint Conference (EDBT/ICDT
2017), Venice, Italy, March 21-24, 2017. 2017.

[24] M. H. Eich. “Parallel Architectures for Database Systems”. In: edited by A. R.
Hurson, L. L. Miller, and S. H. Pakzad. Piscataway, NJ, USA: IEEE Press, 1989.
Chapter A Classi�cation and Comparison of Main Memory Database Recovery
Techniques, pages 417–424.

[25] L. M. B. Ek. “E�cient recovery in a data-�ow based storage system”. TDT4501
Computer Science, Specialization Project. Dec. 2017.

[26] R. Escriva, B. Wong, and E. G. Sirer. “HyperDex: A Distributed, Searchable Key-
value Store”. In: SIGCOMM Comput. Commun. Rev. 42.4 (Aug. 2012), pages 25–
36.

[27] Facebook. RocksDB Iterator. Mar. 2017. url: https://github.com/facebook/
rocksdb/wiki/Iterator (visited on 02/23/2018).

[28] Facebook Open Source. Leveled Compaction. Aug. 2017. url: https://github.
com/facebook/rocksdb/wiki/Merge-Operator (visited on 03/20/2018).

[29] Facebook Open Source. A persistent key-value store for fast storage environments.
Apr. 2018. url: http://rocksdb.org/ (visited on 04/20/2018).

[30] Facebook Open Source. Leveled Compaction. Apr. 2018. url: https://github.
com/facebook/rocksdb/wiki/Leveled-Compaction (visited on 04/20/2018).

[31] Facebook Open Source. MyRocks. Apr. 2018. url: http://myrocks.io/ (visited
on 04/20/2018).

[32] Facebook Open Source. MyRocks record format. Apr. 2018. url: https://github.
com/facebook/mysql- 5.6/wiki/MyRocks- record- format (visited on
04/20/2018).

[33] Facebook Open Source. Write Ahead Log Format. Apr. 2018. url: https://
github.com/facebook/rocksdb/wiki/Write-Ahead-Log-File-Format

(visited on 04/20/2018).
[34] S. Finkelstein. “Common Expression Analysis in Database Applications”. In: Pro-

ceedings of the 1982 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’82. Orlando, Florida: ACM, 1982, pages 235–245.

[35] J. Gallagher. Rusqlite. [Online; accessed 3-March-2018]. May 2018. url: https:
//github.com/jgallagher/rusqlite.

[36] GitHub. GitHub’s online schema migration for MySQL. May 2018. url: https:
//github.com/github/gh-ost (visited on 02/02/2018).

121

https://github.com/facebook/rocksdb/wiki/Iterator
https://github.com/facebook/rocksdb/wiki/Iterator
https://github.com/facebook/rocksdb/wiki/Merge-Operator
https://github.com/facebook/rocksdb/wiki/Merge-Operator
http://rocksdb.org/
https://github.com/facebook/rocksdb/wiki/Leveled-Compaction
https://github.com/facebook/rocksdb/wiki/Leveled-Compaction
http://myrocks.io/
https://github.com/facebook/mysql-5.6/wiki/MyRocks-record-format
https://github.com/facebook/mysql-5.6/wiki/MyRocks-record-format
https://github.com/facebook/rocksdb/wiki/Write-Ahead-Log-File-Format
https://github.com/facebook/rocksdb/wiki/Write-Ahead-Log-File-Format
https://github.com/jgallagher/rusqlite
https://github.com/jgallagher/rusqlite
https://github.com/github/gh-ost
https://github.com/github/gh-ost

BIBLIOGRAPHY

[37] J. Gjengset. evmap. url: https://github.com/jonhoo/rust-evmap (visited
on 02/14/2018).

[38] J. Gjengset. “Xylem: �exible and high-performance structured storage via dynamic
data-�ow”. In: SOSP Student Research Competition. 2017.

[39] Google. LevelDB Iteration. Mar. 2017. url: https://github.com/google/
leveldb/blob/master/doc/index.md#iteration (visited on 02/23/2018).

[40] T. Haerder and A. Reuter. “Principles of Transaction-oriented Database Recovery”.
In: ACM Comput. Surv. 15.4 (Dec. 1983), pages 287–317.

[41] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. “OLTP �rough the
Looking Glass, and What We Found �ere”. In: Proceedings of the 2008 ACM SIG-
MOD International Conference on Management of Data. SIGMOD ’08. Vancouver,
Canada: ACM, 2008, pages 981–992.

[42] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. “ZooKeeper: Wait-free Coordina-
tion for Internet-scale Systems”. In: Proceedings of the 2010 USENIX Conference
on USENIX Annual Technical Conference. USENIXATC’10. Boston, MA: USENIX
Association, 2010, pages 11–11.

[43] M. Isard and M. Abadi. “Falkirk Wheel: Rollback Recovery for Data�ow Systems”.
In: CoRR abs/1503.08877 (2015). arXiv: 1503.08877.

[44] H. V. Jagadish, D. F. Lieuwen, R. Rastogi, A. Silberschatz, and S. Sudarshan. “DalÍ:
A High Performance Main Memory Storage Manager”. In: Proceedings of the 20th
International Conference on Very Large Data Bases. VLDB ’94. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1994, pages 48–59.

[45] R. Kallman et al. “H-store: A High-performance, Distributed Main Memory Trans-
action Processing System”. In: Proc. VLDB Endow. 1.2 (Aug. 2008), pages 1496–
1499.

[46] A. Kejriwal, A. Gopalan, A. Gupta, Z. Jia, S. Yang, and J. Ousterhout. “SLIK:
Scalable Low-Latency Indexes for a Key-Value Store”. In: 2016 USENIX Annual
Technical Conference (USENIX ATC 16). Denver, CO: USENIX Association, 2016,
pages 57–70.

[47] A. Kemper and T. Neumann. “HyPer: A hybrid OLTP amp;OLAP main mem-
ory database system based on virtual memory snapshots”. In: 2011 IEEE 27th
International Conference on Data Engineering. 2011, pages 195–206.

[48] E. Kohler. HotCRP Conference Review So�ware. May 2018. url: https://github.
com/kohler/hotcrp (visited on 05/20/2018).

[49] A. D. Kshemkalyani, M Raynal, and M Singhal. “An introduction to snapshot
algorithms in distributed computing”. In: Distributed Systems Engineering 2.4
(1995), page 224.

[50] T. H. Lai and T. H. Yang. “On Distributed Snapshots”. In: Inf. Process. Le�. 25.3
(May 1987), pages 153–158.

122

https://github.com/jonhoo/rust-evmap
https://github.com/google/leveldb/blob/master/doc/index.md#iteration
https://github.com/google/leveldb/blob/master/doc/index.md#iteration
http://arxiv.org/abs/1503.08877
https://github.com/kohler/hotcrp
https://github.com/kohler/hotcrp

BIBLIOGRAPHY

[51] L. Lamport. “�e Part-time Parliament”. In: ACM Trans. Comput. Syst. 16.2 (May
1998), pages 133–169.

[52] A. P. Liedes and A. Wolski. “SIREN: A Memory-Conserving, Snapshot-Consistent
Checkpoint Algorithm for in-Memory Databases”. In: 22nd International Confer-
ence on Data Engineering (ICDE’06). 2006, pages 99–99.

[53] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song, W. Tobagus, S. Kumar, and
W. Lloyd. “Existential Consistency: Measuring and Understanding Consistency at
Facebook”. In: Proceedings of the 25th Symposium on Operating Systems Principles.
SOSP ’15. Monterey, California: ACM, 2015, pages 295–310.

[54] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker. “Rethinking main
memory OLTP recovery”. In: Data Engineering (ICDE), 2014 IEEE 30th International
Conference on. IEEE. 2014, pages 604–615.

[55] F. Ma�ern. “E�cient Algorithms for Distributed Snapshots and Global Virtual
Time Approximation”. In: J. Parallel Distrib. Comput. 18.4 (Aug. 1993), pages 423–
434.

[56] J. Mayo and P. Kearns. “E�cient Distributed Termination Detection with Roughly
Synchronized Clocks”. In: Parallel andDistributed Computing and Systems. IASTED/ACTA
Press, 1995, pages 305–307.

[57] C. G. Mike Ray, G. Milener, S. Stein, and B. Kess. Heaps (Tables without Clus-
tered Indexes). 2016. url: https://docs.microsoft.com/en- us/sql/
relational-databases/indexes/heaps-tables-without-clustered-

indexes?view=sql-server-2017 (visited on 03/05/2018).
[58] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. “ARIES: A Transac-

tion Recovery Method Supporting Fine-granularity Locking and Partial Rollbacks
Using Write-ahead Logging”. In: ACM Trans. Database Syst. 17.1 (Mar. 1992),
pages 94–162.

[59] MySQL. Appendix B InnoDB Source Code Distribution. 2018. url: https://dev.
mysql.com/doc/internals/en/files-in-innodb-sources.html (visited
on 03/05/2018).

[60] R. Nishtala et al. “Scaling Memcache at Facebook”. In: Presented as part of the 10th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 13).
Lombard, IL: USENIX, 2013, pages 385–398.

[61] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. “�e Log-structured Merge-tree
(LSM-tree)”. In: Acta Inf. 33.4 (June 1996), pages 351–385.

[62] D. Ongaro and J. Ousterhout. “In Search of an Understandable Consensus Algo-
rithm”. In: Proceedings of the 2014 USENIX Conference on USENIX Annual Tech-
nical Conference. USENIX ATC’14. Philadelphia, PA: USENIX Association, 2014,
pages 305–320.

[63] T. Overby. bincode. [Online; accessed 6-February-2018]. May 2018. url: https:
//github.com/TyOverby/bincode.

123

https://docs.microsoft.com/en-us/sql/relational-databases/indexes/heaps-tables-without-clustered-indexes?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/heaps-tables-without-clustered-indexes?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/indexes/heaps-tables-without-clustered-indexes?view=sql-server-2017
https://dev.mysql.com/doc/internals/en/files-in-innodb-sources.html
https://dev.mysql.com/doc/internals/en/files-in-innodb-sources.html
https://github.com/TyOverby/bincode
https://github.com/TyOverby/bincode

BIBLIOGRAPHY

[64] M. PDOS. MySQL/MariaDB protocol shim for Soup. Feb. 2018. url: https://
github.com/mit-pdos/distributary-mysql (visited on 02/04/2018).

[65] PingCAP. TiDB. Apr. 2018. url: https://github.com/pingcap/tidb (visited
on 04/20/2018).

[66] M. A. Qader, S. Cheng, and V. Hristidis. “A Comparative Study of Secondary
Indexing Techniques in LSM-based NoSQL Databases”. In: Proceedings of the 2018
International Conference on Management of Data. SIGMOD ’18. Houston, TX, USA:
ACM, 2018, pages 551–566.

[67] K. Ren, T. Diamond, D. J. Abadi, and A. �omson. “Low-Overhead Asynchronous
Checkpointing in Main-Memory Database Systems”. In: Proceedings of the 2016
International Conference on Management of Data. SIGMOD ’16. San Francisco,
California, USA: ACM, 2016, pages 1539–1551.

[68] G. L. Sanders and S. Shin. “Denormalization e�ects on performance of RDBMS”.
In: Proceedings of the 34th Annual Hawaii International Conference on System
Sciences. 2001, 9 pp.–.

[69] B. Schroeder, A. Wierman, and M. Harchol-Balter. “Open Versus Closed: A Cau-
tionary Tale”. In: Proceedings of the 3rd Conference on Networked Systems Design
& Implementation - Volume 3. NSDI’06. San Jose, CA: USENIX Association, 2006,
pages 18–18.

[70] A. Sco�i et al. “Comdb2 Bloomberg’s Highly Available Relational Database Sys-
tem”. In: Proc. VLDB Endow. 9.13 (Sept. 2016), pages 1377–1388.

[71] L. Shen. TiDB Internal (II) - Computing. 2017. url: https://pingcap.com/
blog/2017-07-11-tidbinternal2/#sqlonkv (visited on 03/03/2018).

[72] SQLite. SQLite. Apr. 2018. url: https://www.sqlite.org (visited on 03/04/2018).
[73] SQLite. Write-Ahead Logging. Apr. 2018. url: https://www.sqlite.org/wal.

html (visited on 03/04/2018).
[74] M. Stonebraker et al. “C-store: A Column-oriented DBMS”. In: Proceedings of the

31st International Conference on Very Large Data Bases. VLDB ’05. Trondheim,
Norway: VLDB Endowment, 2005, pages 553–564.

[75] H. Suzuki. �e Internals of PostgreSQL. 2018. url: http://www.interdb.jp/
pg/pgsql01.html (visited on 03/05/2018).

[76] A. Tai, M. Wei, M. J. Freedman, I. Abraham, and D. Malkhi. “Replex: AScalable,
Highly Available Multi-Index Data Store”. In: 2016 USENIX Annual Technical
Conference (USENIX ATC 16). Denver, CO: USENIX Association, 2016, pages 337–
350.

[77] Y. Tang, A. Iyengar, W. Tan, L. Fong, L. Liu, and B. Palanisamy. “Deferred Lightweight
Indexing for Log-Structured Key-Value Stores”. In: 2015 15th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing. 2015, pages 11–20.

[78] �e Apache So�ware Foundation. Apache HBase. 2018. url: https://hbase.
apache.org/ (visited on 06/01/2018).

124

https://github.com/mit-pdos/distributary-mysql
https://github.com/mit-pdos/distributary-mysql
https://github.com/pingcap/tidb
https://pingcap.com/blog/2017-07-11-tidbinternal2/#sqlonkv
https://pingcap.com/blog/2017-07-11-tidbinternal2/#sqlonkv
https://www.sqlite.org
https://www.sqlite.org/wal.html
https://www.sqlite.org/wal.html
http://www.interdb.jp/pg/pgsql01.html
http://www.interdb.jp/pg/pgsql01.html
https://hbase.apache.org/
https://hbase.apache.org/

BIBLIOGRAPHY

[79] W. Vogels. Eventually Consistent, Revisited. 2008. url: https://www.allthingsdistributed.
com/2008/12/eventually_consistent.html (visited on 03/10/2018).

[80] J. Xu. Online migrations at scale. Feb. 2017. url: https://stripe.com/blog/
online-migrations (visited on 02/02/2018).

[81] Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi, Z. Guz, A. Shayesteh, and
V. Balakrishnan. “Performance Analysis of NVMe SSDs and �eir Implication on
Real World Databases”. In: Proceedings of the 8th ACM International Systems and
Storage Conference. SYSTOR ’15. Haifa, Israel: ACM, 2015, 6:1–6:11.

125

https://www.allthingsdistributed.com/2008/12/eventually_consistent.html
https://www.allthingsdistributed.com/2008/12/eventually_consistent.html
https://stripe.com/blog/online-migrations
https://stripe.com/blog/online-migrations

	Introduction
	From main-memory to durable storage
	Snapshotting materialized views
	Outline
	Background
	Soup
	Data-flow
	Operators
	Eventual consistency
	Architecture
	Interacting with Soup
	MySQL Protocol Translation

	SQLite
	B-trees
	Rollback journal
	Write-ahead log
	Interacting with SQLite
	SQLite from Rust

	RocksDB
	MemTables
	Static sorted tables
	Write-ahead log
	Basic operations
	Compactions
	Bloom filters
	Iteration
	Column Families
	Customizing the MemTable implementation
	Customizing the SS-table implementation
	RocksDB from Rust

	Rust
	Foreign Function Interface

	bincode
	Profiling
	CPU
	Memory

	Related work
	Indexing
	Secondary indices with LSM-trees

	Recovery
	Recovery in main-memory databases
	Snapshotting in distributed systems

	Benchmarks
	Hardware
	Server setup 1: SSD
	Server setup 2: EC2 NVMe SSD
	Server setup 3: EC2 RAM Disk

	Lobsters
	Vote
	Open-loop

	Replay
	Recovery

	Persistent base tables
	In-memory state
	Adding indices
	Operations

	Requirements
	Write throughput
	Point query performance
	Support both primary and secondary indices

	Embedding an existing storage engine
	State interface
	Ownership of data from State

	Persistent state with SQLite
	Schema
	Adding indices
	Operations
	Replacing the Soup write-ahead log
	Relaxing SQLite's durability guarantees

	Persistent state with RocksDB
	Secondary index scheme
	Prefix iteration
	Separating indices
	Ensuring unique keys for secondary indices
	Following index pointers: space versus performance
	Operations
	Replacing the Soup write-ahead log
	Building new indices
	Background threads

	Recovery
	Write-ahead log
	Log based recovery

	Persistent base nodes
	Snapshotting
	Challenges
	Algorithm
	Implementation
	Performing snapshot requests
	Receiving snapshots confirmations
	Logging and snapshotting
	Recovering from a snapshot
	Serialization and deserialization of snapshots
	Snapshot compression
	Persisted data
	Diamonds in the data-flow graph

	Evaluation
	Write-performance
	MemTable format

	Read-performance
	SS-table format

	Mixed workload
	Computational overhead
	I/O overhead

	Recovery
	Snapshot compression
	Write-performance with snapshotting

	Conclusion
	Persistent base tables
	Snapshotting
	Conclusion
	Future work
	Snapshotting and persistent bases
	PersistentState serialization
	Uncoordinated snapshots
	Incremental snapshots

	Contributions
	distributary
	distributary-mysql
	nom-sql
	RocksDB
	rust-rocksdb

