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Abstract

Cooperative Intelligent Transport Systems (C-ITS) enable vehicles and
infrastructure to exchange information and provide users with an en-
hanced situation overview. It can provide early warning in potentially
dangerous situations, and help increase safety and efficiency on European
roads. This thesis explores the use of Public Key Infrastructure (PKI)
in a Cooperative Intelligent Transport System, and how it can be used
to achieve authentication within the system. The first part of the thesis
consists of a theoretical presentation of C-ITS and PKI. The overall struc-
ture of the trust hierarchy is discussed before the technical specifications
and requirements of the system are introduced.

The second part describes an experimental implementation of a PKI in a
C-ITS test network. By creating an ITS certificate hierarchy, and modi-
fying the configuration of the Dynniq ITS units, message authentication
was successfully introduced to the network. The certificate hierarchy was
generated using both OpenSSL and itssec, where the use of the itssec tool
proved successful. Multiple configurations were tested, and the results
were analyzed using supplied applications and Wireshark. After the
results were verified, the PKI was expanded to include an Authorization
Authority. The use of an HTTP file-server and the MQTT protocol
were explored in order to handle network authentication and certificate
distribution. Both options were assessed as viable candidates for more
extensive testing in the future.





Sammendrag

Kooperative Intelligente Transportsystemer (C-ITS) gir kjøretøy og in-
frastruktur muligheten til å utveksle informasjon for å oppnå et bedre
situasjonsbilde. Systemet kan gi brukere advarsler i potensielt farlige
situasjoner, og øke både sikkerheten og effektiviteten på europeiske veier.
Denne oppgaven utforsker bruken av PKI som sikkerhetssystem i koope-
rative intelligente transportsystemer. Den første delen av oppgaven gir en
teoretisk introduksjon til C-ITS, før den utforsker hvordan man kan in-
trodusere autentisering i nettverket ved hjelp av digitale sertifikater. Den
overordnede hierarkiske strukturen av sikkerhetssystemet blir presentert,
samt tekniske spesifikasjoner på protokoll-nivå.

Den andre delen av oppgaven er praktisk og består av en implementasjon
av PKI i et test-nettverk. Flere fremgangsmåter ble testet, før en vellykket
implementasjon ble gjennomført ved hjelp av verktøyet itssec. Resultatene
ble analysert i Wireshark, og flere tester ble gjennomført for å verifisere
funnene. En Authorization Authority server ble også innført i nettverket,
og to mulige løsninger ble testet. En HTTP-server og en MQTT-broker ble
konfigurert for å se på løsninger for nettverks-autentisering og distribusjon
av sertifikater. Begge løsningene ble vurdert som legitime kandidater for
videre testing.





Preface

This thesis marks the conclusion of my Master’s degree in Communication
Technology from the Norwegian University of Science and Technology.
The two years I have spent at the university has provided me with both
knowledge and memorable experiences, and I will remember my time
here as a combination of hard work and great fun.

Working with ITS has been very interesting, as I had little knowledge
about the topic beforehand. There is a saying which goes "planning is
everything, the plan is nothing." This was true during the work on this
thesis, and it taught me something about adapting the plan to the current
reality. I would like to thank my responsible professor, Peter Herrman,
and my supervisor, Bjørn Magne Elnes, for their support and guidance
during this thesis.





Contents

List of Figures ix

List of Acronyms xiii

1 Introduction 1
1.1 Scope & Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Aventi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Method 5

3 Cooperative ITS 7
3.1 Security in C-ITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Public Key Infrastructure 11
4.1 Public Key Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Digital Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Digital Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Public Key Infrastructure in C-ITS . . . . . . . . . . . . . . . . . . . 17
4.5 Public Key Infrastructure Specifications . . . . . . . . . . . . . . . . 18

4.5.1 Protocol Layers & Headers . . . . . . . . . . . . . . . . . . . 18
4.5.2 Secure Header & Trailer . . . . . . . . . . . . . . . . . . . . . 20
4.5.3 Authorization levels and QoS . . . . . . . . . . . . . . . . . . 22
4.5.4 Threat Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5.5 Cryptographic Requirements . . . . . . . . . . . . . . . . . . 24

4.6 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 PKI Implementation 29
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Test Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Greenflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 Packet analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vii



6 Authenticated CAM exchange 37
6.1 Test 0: Enable Secure Mode . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 Test 1: Secure mode using a certificate hierarchy (OpenSSL) . . . . 39
6.3 Test 2: Secure mode using a certificate hierarcy (ITSSEC) . . . . . . 41
6.4 Test 3: Verification of the authentication . . . . . . . . . . . . . . . . 51
6.5 Test 4: Intermediate CA . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Authorization Authority 53
7.1 Authorization Authority . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Apache HTTP Server . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3 MQTT Server using TLS . . . . . . . . . . . . . . . . . . . . . . . . 58

8 Discussion & Conclusion 67
8.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

References 71

Appendices
A OpenSSL Certificate Hierarchy 75

B Wireshark CAM packet 81

C AppendixC 83



List of Figures

3.1 C-ITS Scenario [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 DENM packet captured in Wireshark: vehicleBreakdown. . . . . . . . . 8

4.1 Public key message example. . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Generic Digital Signature Model [2]. . . . . . . . . . . . . . . . . . . . . 14
4.3 Digital certificate [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 CA hierarchy [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Trust model C-ITS [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.6 Protocols in a frame carrying a CAM payload. . . . . . . . . . . . . . . 18
4.7 BTP packet structure encapsulated in a lower layer frame [6]. . . . . . . 19
4.8 Security wrapping of CAM packet. . . . . . . . . . . . . . . . . . . . . . 20
4.9 Unsecured GeoNetworking packet structure [7]. . . . . . . . . . . . . . . 21
4.10 Secured GeoNetworking packet structure [7]. . . . . . . . . . . . . . . . 21
4.11 Digital Signature Operations in the protocol stack [8]. . . . . . . . . . . 21
4.12 Examples of ITS threats, attacks and countermeasures [7]. . . . . . . . . 23
4.13 Worst case scenario / stress test [8]. . . . . . . . . . . . . . . . . . . . . 24
4.14 NIST Recommended Key Sizes [9]. . . . . . . . . . . . . . . . . . . . . . 25
4.15 Authorization Tickets Framework [10]. . . . . . . . . . . . . . . . . . . . 27

5.1 Communication flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 C-ITS test network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Kapsch link test application. Three OBUs are visible. . . . . . . . . . . 32
5.4 Dynniq map display of ITS-units represented by blue dots in the Ngoron-

goro lab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 Show response: Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.6 Certificate overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.7 CAM packet broadcast from the Dynniq OBU. The OBU is configured as

a heavy truck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1 CAM section in its-facilities.conf. . . . . . . . . . . . . . . . . . . . . . 37
6.2 Simple PKI hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 Itssec generation of root key. . . . . . . . . . . . . . . . . . . . . . . . . 42

ix



6.4 Itssec generation of root certificate. . . . . . . . . . . . . . . . . . . . . . 43
6.5 Listing of available certificates. . . . . . . . . . . . . . . . . . . . . . . . 44
6.6 Verification of hex digest. . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.7 Generation of RSU key. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.8 Generation of RSU certificate. . . . . . . . . . . . . . . . . . . . . . . . . 46
6.9 The RSU certificate is not signed. . . . . . . . . . . . . . . . . . . . . . 47
6.10 The RSU certificate is now signed by root. . . . . . . . . . . . . . . . . . 47
6.11 Using secure copy to deploy the keys and certificates to the devices. . . 48
6.12 Greenflow certificate overview. . . . . . . . . . . . . . . . . . . . . . . . 49
6.13 Wireshark unsecure CAM message (left) and secure CAM message (right). 50
6.14 Un-signed certificate: State: invalid. . . . . . . . . . . . . . . . . . . . . 51
6.15 Signed certificate hierarchy. . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1 Authentication Authority Apache Setup. . . . . . . . . . . . . . . . . . . 54
7.2 Certificates hosted on the AA. . . . . . . . . . . . . . . . . . . . . . . . 55
7.3 MQTT design in the test network. . . . . . . . . . . . . . . . . . . . . . 59
7.4 Mosquitto MQTT broker running on port 1883. . . . . . . . . . . . . . . 60
7.5 MQTT Mosquitto verbose output. . . . . . . . . . . . . . . . . . . . . . 65

A.1 Verification of the root CA certificate. . . . . . . . . . . . . . . . . . . . 77
A.2 Partial view of the OBU certificate. The intermediate CA is listed as the

issuer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.1 The expanded headers in a secure CAM packet from Wireshark. . . . . 82







List of Acronyms

AA Authorization Authority.

AT Authorization Ticket.

BTP Basic Transport Protocol.

CA Certificate Authority.

C-ITS Cooperative Intelligent Transport Systems.

CRL Certificate Revocation List.

CSR Certificate Signing Request.

DSA Digital Signature Algorithm.

EA Enrolment Authority.

ECC Elliptic-curve cryptography.

ECDSA Elliptic Curve Digital Signature Algorithms.

ECTL European Certificate Trust List.

EDCA Enhanced Distributed Channel Access.

ETSI European Telecommunications Standards Institute.

HSM Hardware Security Module.

IoT Internet of Things.

ITS Intelligent Transport Systems.

ITS-S Intelligent Transport Systems Station.

LLC Logical Link Control.

xiii



MAC Medium Access Control.

MQTT Message Queuing Telemetry Transport.

OBU On-Board Unit.

PKI Public Key Infrastructure.

QoS Quality of Service.

RSA Rivest Shamir Adleman.

RSU Roadside Unit.

SDK Software Development Kit.

TLM Trust List Manager.

TLS Transport Layer Security.

TVRA Threat, Vulnerability and Risk Analysis.

V2I vehicle-to-infrastructure.

V2V vehicle-to-vehicle.

WLAN Wireless local area network.



Chapter1Introduction

Cooperative Intelligent Transport Systems (C-ITS) is a communication system
designed to allow road users to communicate with other vehicles and infrastructure.
The use of intelligent transport systems is aimed to increase the safety and efficiency
in traffic. By acting as a traffic management system, the aggregated information
from the C-ITS can help optimize the traffic flow in congested areas. By providing
situational awareness and decision support to road users, it can help to avoid accidents
and decrease the severity of those that occur. 25,670 people lost their lives on EU
roads in 2016, with 130,000 recorded as seriously injured [11]. In 2017 the European
Transport Security Council (ETSC) published a briefing on C-ITS, stating that new
technologies with clear road safety benefits are urgently needed [12].

The European Commission is acting as a coordinating authority in the effort to create
both a legal and a technical framework for the introduction of intelligent transport
systems on a large scale. An EU strategy on cooperative, connected and automated
mobility was adopted in 2016, stating that "talking" vehicles may be deployed on
European roads as early as 2019 [13]. Several major car manufacturers participate
in the development of C-ITS, through membership in a Car 2 Car Communication
Consortium [14]. This joint effort drives the development forward, facilitating the
introduction of C-ITS. The US also has ongoing projects working to introduce
similar systems, where the Department of Transportation is acting as a coordinating
authority. They have proposed making ITS vehicle-to-vehicle (V2V) equipment
mandatory in all new vehicles, making the deployment of this technology a clear
priority [15].

The messages sent between vehicles may contain information about velocity, accelera-
tion, heading, and position. Messages describing special events, such as accidents, will
also be communicated. This makes it very important to verify and authenticate the
messages, to avoid distribution of false information in the system, either by accident
or malicious exploitation. Security and privacy is consequently a prerequisite for the
deployment of a system of this caliber. The European Commission have together
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2 1. INTRODUCTION

with stakeholders in the C-ITS domain decided to adopt a collective security and
certificate policy, to facilitate the secure deployment and operation of C-ITS in
Europe [5].

The first objective of this thesis is to give a theoretical presentation of how to achieve
authentication and message integrity in C-ITS using PKI. Both C-ITS and PKI
will be examined, before tying the two together. The second objective is to use a
PKI to introduce authentication in a C-ITS test network. Using ITS equipment
provided by Aventi Intelligent Communication, a C-ITS communication network will
be configured. The primary focus of this thesis will be to create and implement a PKI
for this network and enable the units to communicate in a secure and authenticated
manner.

1.1 Scope & Limitations

For the first theoretical part, the scope is to provide an introduction to C-ITS and
PKI and present the current design of the security infrastructure, as prescribed by
the European Commission. There are several use-cases not covered in the policy
documents, and one might think of security issues not covered in the available
literature. These have been defined as out of scope, as the focus is on understanding
the current framework for PKI in C-ITS, rather than picking it apart. For the second
part, the objective is to implement a PKI in the C-ITS test network, using the
available ITS equipment and available software. The PKI described in the policy
documents is very comprehensive, and it is not likely that it can be reproduced in
full in this thesis. Therefore, functionality is introduced incrementally, dictated by
the overall progress of the implementation. The primary objective is to enable a
secure CAM exchange between ITS units, through the use of digital certificates. The
secondary objective is to expand the PKI to include entities handling authorization
and authentication to the network.

1.2 Aventi

Aventi Intelligent Communications AS is an Oslo based com-
pany specializing in, among other things, automation in trans-
port. Their ambition is to be ready to provide solutions
for autonomous traffic systems when the first autonomous
vehicles appear in commercial traffic on Norwegian roads. Aventi Intelligent Com-
munications, together with the Norwegian Public Roads Administration, NTNU,
and SINTEF will over the next five years perform R&D-projects to explore the
possibilities and potential for Intelligent Transportation Systems on Norwegian roads.
They are the proposing company of this thesis.
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1.3 Outline

– Chapter 2 Describes the methods used for both the theoretical and Practical
parts of this thesis.

– Chapter 3 Provides an introduction to C-ITS.

– Chapter 4 Opens with an introduction to PKI, before covering the use of PKI
in C-ITS.

– Chapter 5 Covers the C-ITS test network used in the practical part of the
thesis.

– Chapter 6 Covers the process of achieving authenticated CAM exchange in
the test network.

– Chapter 7 Introduces the Authorization Authority and the two solutions
(HTTP/MQTT) tested for certificate distribution.

– Chapter 8 Discusses the results and concludes the report.





Chapter2Method

The first phase of this thesis was a literature study on C-ITS and the proposed
security infrastructure. It was important to attain a satisfactory understanding of
the system before planning any further. The starting point was the policy documents
from EU, which outlines the framework and standards to be used in Europe. The
most important document in the initial phase was the Security Policy & Governance
Framework for Deployment and Operation of European Cooperative Intelligent
Transport Systems (December 2017)[5]. For clarification and elaboration on specific
key areas, papers discussing the topic were analyzed. The development of ITS has
been underway for decades, and the system has been a target for many scientific
publications. To ensure the relevance of the information found in the research
papers, material published in 2015 or later was prioritized. Standards published
by the European Telecommunications Standards Institute (ETSI) were used for
documentation on the protocols and analysis of packets.

For the practical part of this thesis, I chose to use the experimental method combined
with tests in an incremental process. The experimental method is used because of
the deterministic relationship between the inputs to the system, and the produced
output. The nature of the system is such that a cause (input) will always lead
to the same effect (output). By manipulating variables in the configuration, it is
possible to change the output, and later to recreate identical results. These system
attributes make the experimental method preferable over other methods. The tests
were conducted in order to confirm or refute the success of the implementation of
security features. The results of the tests were observed through the use of the
web-applications monitoring the system, providing quick feedback. Packet dumps of
the C-ITS communication were available on the Kapsch units, enabling analysis of
the communication flow in Wireshark.

One objective of the thesis is to implement a PKI in a C-ITS network. The initial state
of the system was unauthenticated, meaning the units would accept CAM/DENM
messages from all transmitting units in range. To reach the objective, functionality

5



6 2. METHOD

had to be introduced so that authenticated messages were identified and accepted.
A series of tests was conducted, aimed at introducing secure CAM exchange to the
network. After testing and verifying the secure mode, an Authorization Authority
server was configured, and two approaches to the distribution of certificates were
further explored. The secure CAM exchange and the Authorization Authority are
described in chapters 6 & 7.



Chapter3Cooperative ITS

Intelligent Transport Systems (ITS) describes the digital technology used either in
vehicles or transport infrastructure. Cooperative Intelligent Transport Systems focus
on the communication and interaction between these systems, be it vehicle-to-vehicle
(V2V), or vehicle-to-infrastructure (V2I)[12].

The underlying idea of C-ITS is for road users to send and receive valuable information,
which can be used to safely and effectively react to external events on the road.
Examples include potentially dangerous vehicle movement (collision avoidance), and
environmental hazards [16].

Figure 3.1: C-ITS Scenario [1]

7



8 3. COOPERATIVE ITS

Fig 3.1 illustrates different communication scenarios using various technologies to
implement C-ITS. This thesis focuses on the ITS-G5 standard (wireless short-range
communications), which uses the 5.9 GHz frequency band [17]. This technology
combined with GPS can provide users with a 360 degree overview of similarly
equipped vehicles with a communication range of approximately 300 meters.

Two essential components of a C-ITS network are the On-Board Unit (OBU) and
the Roadside Unit (RSU). The OBU will be integrated into the vehicle by the
manufacturer for new models, or retroactively fitted in older models. This is the
unit that will broadcast messages from the vehicle, and act as the user’s gateway to
the network. The RSUs will be deployed throughout the infrastructure and provide
information to the users, as well as collect information about the current traffic
situation. The term Intelligent Transport Systems Station (ITS-S) is used to describe
units equipped with either an OBU or an RSU. It is a collective term used to describe
units in the C-ITS network where further clarification of role is not necessary.

In C-ITS there are two main types of messages transmitted between users, Coop-
erative Awareness Messages (CAM), and Decentralized Environmental Notification
Messages (DENM). CAM messages are used by both OBUs and RSUs, and functions
as an underlying information message used by applications and services. They can
contain information about vehicle position, and basic vehicle data (acceleration,
path history, curvature, vehicle size). Each C-ITS equipped vehicle broadcasts CAM
messages continuously, and the sum of these messages form a situational picture
of the traffic situation in the near geographical area. RSUs can use received CAM
messages to estimate queue lengths at intersections, and provide a real-time image of
the traffic. DENM messages function as hazard warnings and are triggered by specific
events. They are only sent out for the duration of the triggering event. Examples of
DENM events are accidents, emergency vehicle approaching, or roadwork.

Figure 3.2: DENM packet captured in Wireshark: vehicleBreakdown.
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One scenario where these messages can potentially be lifesaving is in a multi-vehicle
collision on the freeway. A user hitting the brakes hard while on the freeway can
indicate that an accident is about to take place. This event can trigger the broadcast
of a DENM message, warning the drivers coming from behind. When receiving an
emergency message, the drivers can be alerted by either a visual message, an audio
alarm, or a vibration in the seat. The alert can provide vital time to react for users
not yet in visual range of the situation. The warning can quickly be propagated to
oncoming vehicles, decreasing the chance of a chain collision. RSUs receiving the
warnings can instantly alert authorities of the accident, decreasing their reaction
time for deploying emergency services.

3.1 Security in C-ITS

The nature of road transportation is such that any communication network must be
flexible and dynamic. The challenge in C-ITS is that any pair of vehicles will not
have any prior knowledge about each other. The task of establishing credentials for
authentication becomes complex, as strangers must decide whether or not to trust
each other in a very short span of time. The V2V communication in C-ITS is one-way,
with no handshake procedure to establish trust. Messages received are verified using
the attached signature scheme, and either accepted or discarded. It is clear from
reading the policy documents that security has been a requirement throughout the
design process, and that the use of a PKI architecture has been the primary focus.
The documents outline the objectives for the security system, but not how to achieve
them. In chapters 6 and 7 potential solutions are explored. The critical element
in C-ITS security is to assure the users that the received information comes from
another vehicle, and enable them to trust the correctness of that information [18].
Chapter 4 explores how PKI can achieve this.





Chapter4Public Key Infrastructure

This chapter opens with a general overview of some of the most important features
in a PKI, before focusing on how PKI can be implemented in C-ITS.

4.1 Public Key Cryptography

Public key encryption, also know as asymmetric encryption, is characterized by the
use of public/private key pairs. Each user has one or more unique key pairs, where
the private key is kept secret, and the public key is available to others. Through the
use of cryptographic algorithms, the public key is used to encrypt messages, and the
private key is used for decryption. In fig 4.1 Bob knows Alice’s public key. He uses it
to encrypt a message, and sends the ciphertext to Alice. She then uses the private
(secret) key to decipher the message, and receives the plaintext.

Figure 4.1: Public key message example.
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12 4. PUBLIC KEY INFRASTRUCTURE

One-way functions

This form of cryptography is possible because of one-way functions. One definition
of a one-way function as a function f is [19]:

1. The description of f is publicly known and does not require any secret infor-
mation for its operation.

2. Given x, it is easy to compute f(x).

3. Given y, in the range of f , it is hard to find an x such that f(x) = y.

A one-way function is therefore easy to compute in one direction and infeasible
to compute in the other direction [2]. Two examples which are used in public key
encryption are:

1. Factoring problem: f(p,q)=pq, for randomly chosen primes p,q.

2. Discrete logarithm problem:

f(p, g, x) =< p, g, gx(modp) > for g a generator of Z∗
p for some prime p.

Hash functions

Hash functions are a form of one-way functions used to provide message integrity,
i.e. detect any tampering or altering of the original message [20]. Cryptographic
hash functions are mathematical algorithms that takes input of arbitrary length, and
maps it to a fixed-length bit-string. The bit-string is called the hash or digest of the
input.
For example: Using the hash function SHA-256, the input ’This secret string’ has
the hash value of
’2eb1e57914a653e2addf59e0d2d43a49fe8adc0273b299ddeb4a71a6fe1c3785’.
The hash function is deterministic, i.e the same message will result in the same hash.
The sender can create a hash value of the message, and attach it to the message.
The receiver can perform the same hash function on the message and compare the
results. If the hash values are identical, the receiver knows that the message has not
been altered.
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Trapdoor functions

Some one-way functions are called trapdoor functions [21], due to their property
of being easy to compute in one direction, yet difficult to compute in the opposite
direction (finding its inverse) without some secret value. The secret value in such
functions is called the trapdoor.

This feature is utilized in public key cryptography, by using trapdoor one-way
functions to provide confidentiality and authentication for the users. When used for
encryption, the public key is used to encrypt the data using a one-way function. The
private key contains the trapdoor value, and can find the inverse of the function and
decrypt the data.

4.2 Digital Signatures

Since the private key is unique to the user, it can also be used for authentication in
the form of a digital signature. To generate a digital signature, the sender encrypts
the hash value of the message, using his private key. The recipient receives the
encrypted hash value (the digital signature) attached to the message. He then
computes the hash value off the message, and decrypts the digital signature using
the sender’s public key. If the two hash values match, the signature is considered
valid. A digital signature is used as confirmation that a message has not been altered
and as confirmation of the message sender’s identity. The private key of the sender
and the message contents are used as input to a cryptographic function to create the
digital signature. The receiver can use the public key of the sender to validate the
message contents, and to determine whether the message was sent by the claimed
sender [2].
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Suppose that Alice wishes to generate a signature on a message m [22].

Inputs:

– Alice’s private signing key, KS.

– The message m

Output: Signature s = Sig(m, KS).

Suppose that Bob wishes to verify a claimed signature s on the message m.
Inputs:

– Alice’s public verification key, KV .

– The message m

– The claimed signature s

Output: A boolean value Ver(m, s, KV ) = true or false

Based on the true or false output from the verification algorithm, the receiver can
accept or discard the message [22].

Figure 4.2: Generic Digital Signature Model [2].
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4.3 Digital Certificates

Digital signatures are key components in digital certificates. A digital certificate is
analogous to a traditional identification card. They are electronic credentials issued
by a CA (Certificate Authority), and they are used to certify the online identities of
individual users and organizations [3].

Figure 4.3: Digital certificate [3].

The use of CAs enable the formation a trust hierarchy, where a few trusted entities
(root CAs) on tier 1 signs of on CAs on tier 2, which can issue certificates, or sign off
on lower ranking CAs to expand the hierarchy. If a CA on tier three is compromised,
the intermediate CA on tier two can revoke its certificate, limiting the potential
damage.

Figure 4.4: CA hierarchy [4].
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Each user will have a list of trusted CAs, which it will use to validate other users. A
digital certificate will contain the signature of a CA, and if that CA is in the list of
trusted CAs, the authentication process can proceed.

Certificate Revocation

When signing a digital certificate, the signing authority always provides an expiration
date. Based on the purpose of the certificate, the validity period of a certificate can
vary from several years, to a few minutes. If a certificate is deemed not trustworthy
before the expiration date, the CA can add it to a Certificate Revocation List (CRL).
A CRL is a list of revoked certificates that has been issued, and then later revoked
by a CA [23].

In C-ITS, the highest authority regarding trust will be the Trust List Manager (TLM)
(fig 4.5). If any sub-tier CAs in the C-ITS PKI are compromised or fails meet the
security requirements, the TLM can revoke their verification. The certificates signed
by that CA will no longer be trusted.

The certificates used by vehicles will not be revoked by its corresponding CA [5].
These certificates will have a short lifetime, to minimize the risque of unauthorized
usage.
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4.4 Public Key Infrastructure in C-ITS

Public key infrastructure refers to a set of roles, policies, and procedures used to
create, manage, distribute, store, and revoke digital certificates [24].

The C-ITS PKI infrastructure involves several entities with different responsibilities,
required to provide the level of trust required in such a system. In the certificate
policy for C-ITS, a description of the high level trust model is provided [5].

Figure 4.5: Trust model C-ITS [5].

The ITS authority hierarchy consists of several entities, most notably the AA, EA,
and Root CA. The EA (Enrolment Authority) is responsible for issuing a proof of
identity authenticating an ITS-S. The ITS-S can use the proof of identity it received
from the EA to request services from the AA (Authorization Authority). Each
EA/AA hierarchy has a Root CA at the summit. This is the root of trust for all the
certificates in that hierarchy. In order to trust an incoming message, the ITS-S must
at least have access to the Root certificate of the hierarchy [25]. The trust hierarchy
used in the practical part of the thesis will be based on this trust model.

Above the Root CAs in the hierarchy is the Trust List Manager (TLM). The TLM
manages the European Certificate Trust List (ECTL), managing the trust relations
to all the Root CAs in the EU. The certificate management system for C-ITS will
be enormous, and it is not yet determined which entity will have the authority as
TLM. For interoperability between all the root CAs in this multinational system, a
standardized format for certificates called X.509 has been chosen, as well as a set of
cryptographic algorithms that must be supported [5].
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4.5 Public Key Infrastructure Specifications

Sections 4.1 and 4.2 have described the framework and qualities of a generic PKI.
In a new and complex system such as C-ITS, the design of the PKI must take into
account all the attributes and parameters of the specific system. A comprehensive
certificate policy have been published by the European Commission [5], outlining
the requirements and specifications of PKI in C-ITS. This section provides a more
detailed look at those specifications.

4.5.1 Protocol Layers & Headers

The structure of a frame carrying a CAM payload is depicted in 4.6. It is taken from
a packet capture file during transmission without authentication.

Figure 4.6: Protocols in a frame carrying a CAM payload.

The lowest layer in this protocol stack is the physical layer using the IEEE 802.11
standard. This standard is widely used for implementing WLAN communication in
computer networks, commonly known as WiFi. To accommodate the requirements
in wireless vehicular communication systems, an amendment called 802.11p was
introduced. The amendment defines enhancements needed to support ITS, such
as communication between high speed vehicles [26]. The second layer is the data-
link layer which is divided into two sub-layers; medium access control (MAC) and
logical link control (LLC). The MAC sub-layer interfaces with the physical layer
and provides flow control and multiplexing. 802.11p uses the Enhanced Distributed
Channel Access (EDCA) protocol, which can provide Quality of Service (QoS) for
prioritized transmissions [27]. The LLC sub-layer interfaces with the network layer
and provides flow control and multiplexing for the logical link. In ITS, these two
layers are collectively referred to as the access layer [28]. The ITS-G5 standard covers
the technology used in the access layer, designed to support data exchange between
mobile stations in ad-hoc mode. The 5,855 - 5,925 GHz frequency band has been
allocated to the use of ITS in Europe [28].
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The GeoNetworking protocol is the network layer protocol in the stack, providing
ad-hoc networking based on geographical addressing. The position input is provided
by GPS. The policy documents outlining the use of the GeoNetworking protocol
in C-ITS specify that the protocol shall provide secure communication, including
authentication, authorization, integrity and non-repudiation. The GeoNetworking
protocol supports cryptographic protection through the use of digital signatures and
certificates [29].

The Basic Transport Protocol (BTP) provides an end-to-end, connection-less trans-
port service in the ITS ad-hoc network. BTP is a lightweight protocol with a 4-byte
header containing information about source and destination ports. The protocol
allows services at the ITS facilities layer (CAM/DENM) to access the GeoNet-
working protocol [6]. The payload in fig 4.6 is an unauthenticated CAM packet,
interchangeable with DENM packets and other facility layer services.

Figure 4.7: BTP packet structure encapsulated in a lower layer frame [6].
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4.5.2 Secure Header & Trailer

The implementation of authentication and secure transmission is done at the network
level, introducing a security header and trailer to the GeoNetworking protocol. The
security header holds information used by the security layer when processing the
packet, such as signer_info, encryption_parameters, and recipient_info. The trailer
contains the information needed to verify the message integrity and authenticity [7].
The structure of both the header and trailer are defined in the standard ETSI TS
103 097 [30].

Figure 4.8: Security wrapping of CAM packet.

The signature is calculated after the GeoNetworking header is added, and consists of
input from:

– Security header

– GeoNetworking header

– Basic Transport Protocol header

– Payload (CAM/DENM)

– First part of the security trailer
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After the signature is calculated, it is stored in the security trailer. The receiver
uses the information in the security trailer to authenticate the sender, and ver-
ify the integrity of the message. The security wrapper (fig 4.8) is a part of the
GeoNetworking protocol, which contains information about the geographical position
of the transmitting unit. The header is split into three sub-headers to facilitate
the application of the security wrapper. When transmitting in secure mode, the
GeoNetworking protocol adds a fourth secure header after the basic header.

Figure 4.9: Unsecured GeoNetworking packet structure [7].

Figure 4.10: Secured GeoNetworking packet structure [7].

Figure 4.11 shows an overview of the digital signature operations, generation and
verification, and how it is handled by the protocol layers. The facilities and application
layers are unaware of security measures provided by the lower layers.

Figure 4.11: Digital Signature Operations in the protocol stack [8].
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4.5.3 Authorization levels and QoS

Some applications and services in ITS require a higher level of authorization. This
can for example be emergency services requesting the right of way and priority at a
traffic light. The certificate determines its user’s privileges and permissions to send
certain types of messages, using the ITS-Application Identifier (ITS-AID) to indicate
the authorization level [31]. The receiver accepts a signed CAM if the certificate is
valid and the CAM is consistent with the ITS-AID in its certificate. Time-sensitive
transmissions can be prioritized by the access layer using QoS. The use of Enhanced
Distributed Channel Access in ITS-G5 introduces priority classes, making it possible
for the network to reserve resources for critical transmissions [27].



4.5. PUBLIC KEY INFRASTRUCTURE SPECIFICATIONS 23

4.5.4 Threat Analysis

When implementing a security infrastructure in a communications system, it is
important to be aware of the potential threats towards the system. The European
Telecommunications Standards Institute (ETSI) conducted a Threat, Vulnerability
and Risk Analysis (TVRA) for communications in an Intelligent Transport System.
The analysis considered vehicle-to-vehicle and vehicle-to-roadside network infrastruc-
ture communications services in the ITS [32].
In the report, they focused on five key categories and some of their associated attacks.

Figure 4.12: Examples of ITS threats, attacks and countermeasures [7].

The two most important categories for this thesis are authenticity and integrity.
The motivation for implementing a PKI security protocol is to ensure that only
authenticated users have access to the ITS resources, and that messages are received
correctly. The ITS messages will be broadcast and can be received by any ITS station
within range of the signal. The content of a broadcast message is assumed to be of
little interest to an eavesdropper, and encryption and decryption of the messages
would add costly overhead. Therefore, the CAM and DENM packets are broadcast
without confidentiality, with an attached digital signature scheme. The decision not
to prioritize confidentiality in the design of the security affects the privacy settings
in the system. This is addressed in section 4.6.
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4.5.5 Cryptographic Requirements

All ITS stations shall be able to use the private key for signing operations, in addition
to verification of received messages. CAM and DENM messages are broadcast, and in
congested areas each ITS station will have to generate signatures and verify incoming
messages at a very high rate. Fig. 4.13 shows a scenario designed to stress test the
capacity of an ITS station. It is a worst case scenario with a traffic-jam on a four-lane
intersection, where all the cars in communication range (300 m) are broadcasting
ITS-messages.

Figure 4.13: Worst case scenario / stress test [8].

In this scenario with 800 cars in range, each generating a CAM message every 300 ms
[8], the unit must be able to verify 2400 messages per second. This affects the design
of the system, putting hard demands on the hardware and software handling the
cryptographic processing. The ITS devices installed in vehicles and infrastructure
might have limited computational capacity and memory available. The OBU used
in the test-network of this thesis uses an ARMv7 quad core CPU and has 1 GB of
RAM available, significantly less than an ordinary laptop computer. It is therefore
critical to select effective digital signature schemes, minimizing time spent processing
messages.
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The processing time of the safety header and trailer THT (M) (Fig 4.11) is defined as
[8]:

THT (M) = Tsign(M) + Ttx(SignP rKv[M ]) + Tverify(M).

– Tsign(M) is the attachment of time stamp T .

– Ttx(SignP rKv[M ]) is the time needed to transfer a signed message including
addition of certification data from the CA.

– Tverify is the time needed to verify a signature.

Both Ttx(SignP rKv[M ]) and Tverify are affected by the algorithm used in these
operations. In section 6.1.4 of the certificate policy document [5], several crypto-
graphic algorithms are specified for use in generating keys and verification. They are
all Elliptic Curve Digital Signature Algorithms (ECDSA), a variant of the Digital
Signature Algorithm (DSA) which uses elliptic curve cryptography [2]. ECDSA has
short key lengths compared to RSA1 and other DSA schemes. For the same level of
security, an RSA key length of 1024 bits corresponds to an ECDSA key length of
160 bits [33]. The short key lengths and computational complexity make ECDSA
cryptographic schemes well suited for use in ad-hoc vehicular networks such as C-ITS
[8].

Figure 4.14: NIST Recommended Key Sizes [9].

1The Rivest-Shamir-Adleman (RSA) scheme has since [its publication] reigned supreme as the
most widely accepted and implemented general-purpose approach to public-key encryption [2].
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4.6 Privacy

The privacy of the users is a big concern when implementing C-ITS. It’s not hard to
imagine how a system receiving information about position from vehicles could be
used to track individual users. The travel pattern of a private vehicle can reveal a lot
of personal information, so naturally people are sensitive about sharing their location
at all times. The EU has with the introduction of GDPR [34] signalized an increased
focus on user data protection, and privacy is a key point in the design of C-ITS.

CAM and DENM messages contain information which can be linked to position and
IDs of users, making it necessary to implement features to preserve the data privacy.
One approach to this issue is to introduce pseudonymity, which can be described as
the ability to use a resource without revealing the user’s identity, but maintaining
accountability for the use of the resource [18]. To achieve pseudonymity of ITS-users,
the C-ITS PKI is designed to utilize Authorization Tickets (AT). ATs are certificates
generated by an Authentication Authority, used by the vehicles to authenticate to
the C-ITS network without disclosing sensitive information. Data that can be used
to identify a single user is called Personal Identifiable Information (PII), and use of
ATs in the PKI shall ensure that PII linking an ITS-station to the real identity of
the user is not broadcast during regular use of an ITS-station. The implementation
of pseudonymity through ATs is intended to prevent tracking of users, either by the
authorities managing the system, or by illicit actors using broadcast information for
unauthorized surveillance [10].
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This design requires that an ITS unit must have some information available before
it can start the process of joining the C-ITS network [25]. This initial information
includes, but is not limited to:

– A canonical identifier which is globally unique.

– Public/private key pair for cryptographic purposes.

– Contact information for the EA and AA which will issue certificates for the
ITS-S.

In addition, the EA must have access to a permanent unique identifier of the ITS-S,
and its public key [25]. How the distribution of this information will be handled is not
clear, but one likely scenario is that the manufacturer of an ITS-S, e.g vehicle, will
be responsible for providing the required information for the initial authentication.

Figure 4.15: Authorization Tickets Framework [10].
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In C-ITS PKI architecture, it is the Authorization Authority (AA) that provides
the vehicles with pseudonymous ATs. Figure 4.15 illustrates the message flow. The
Enrolment Authority (EA) authenticates the user, and provides a token in the form
of an Enrolment ID. The user uses this token to authenticate himself to the AA, and
receives Pseudonymous Authorization Certificates in return. Since the EA and AA
are two separate entities, both physically and organizationally, the ATs will not be
directly linkable to the real identity of the users.

In the documents describing privacy and security in C-ITS, one solution of how to
utilize ATs in practice has been outlined [10]. The general idea is to separate each
trip into three unlinkable segments, and to modify the identity of the ITS-station
during movement [18].

– The first segment from the start of a trip, i.e. a location relevant to an
individual, to the mid segment.

– The mid segment, where location data are anonymous because they cannot be
associated to a location relevant to an individual.

– The last segment that connects the mid segment to the end of the trip, i.e. a
location relevant to an individual.

This means that during a single trip, a vehicle will use multiple ATs in order to
preserve pseudonymity. In the current design, the vehicle manages a pool size of 100
ATs with a validity period of 1 week [10]. The ATs are selected randomly from the
pool with equal probability and without replacement. The pool re-starts when it is
completely empty. In chapter 7 two solutions for the AA have been explored.

Quick Summary

C-ITS is a vehicular ad hoc network designed to allow the exchange of digital
information between vehicles and traffic infrastructure. The network requires security
which is introduced through the use of public key cryptography. The public key
infrastructure in C-ITS will use digital certificates signed by certificate authorities
to enable message authentication and integrity. The security is implemented in the
GeoNetworking protocol on the network layer, using a secure header and trailer. The
signature scheme is based on Elliptic Curve Cryptography, and privacy is maintained
with pseudo anonymous Authorization Tickets.
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5.1 Introduction

The purpose of the theoretical presentation of C-ITS in part one was to explore the
design and requirements of a C-ITS security system, and illuminate how PKI can help
solve security-related challenges. The introduction of intelligent transport systems
on EU roads faces many complex issues, and security is one of the most important
ones. By presenting the need for authentication in C-ITS, and outline how PKI can
enable an authenticated exchange of information, the practical implementation in
part two has hopefully been adequately motivated.

The ambition of the practical portion of this thesis is to explore how to introduce a
PKI to an established C-ITS test network, and demonstrate how authentication can be
achieved through the use of signed digital certificates. Three central communication
flows in the PKI were identified. They are, in order of priority:

1. Authenticated CAM exchange between OBUs/RSUs.

2. Certificate exchange between ITS-S and Authorization Authority.

3. Authentication request/reply between ITS-S and EA.

29
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The C-ITS PKI uses the communication flows to authenticate and authorize users. I
will use the test network to explore how this design can be realized.

Figure 5.1: Communication flows.

5.2 Test Network

The test network initially consisted of two OBUs and one RSU from Kapsch1. These
units were set up in the lab, and some time was spent testing and researching how to
enable authentication in their communication. After some time it became clear that
the Kapsch equipment did not have firmware supporting authentication through the
use of certificates. Aventi decided to acquire new equipment, this time from Dynniq,
so that the work could continue.

1The Kapsch Group is an international Road Telematics, Information Technology and Telecom-
munications Company.
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After receiving the equipment from Dynniq, it was added to the existing network
and made ready for further testing. In addition to the RSU and two OBUs already
in place, one OBU and one RSU were added to the test network.

Figure 5.2: C-ITS test network.

Both the Kapsch and the Dynniq units arrived pre-configured, ready to transmit
C-ITS messages. As background and documentation, Aventi provided an installation
and configuration manual. After connecting the units to a power source, they were
ready to transmit CAM packets. Before they would transmit, however, the GPS
antennas had to have a signal. The antennas were placed in the window frame in the
lab, to provide the best possible conditions for the GPS signal. The Kapsch units also
provided a Bluetooth interface, which was used to connect the OBUs to a monitoring
application. This application (fig 5.3) was used to monitor the configuration, and
verify that the units were communicating through CAM messages.
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Figure 5.3: Kapsch link test application. Three OBUs are visible.

The Kapsch units are as previously mentioned not able to authenticate messages by
using certificates. It was decided to keep them in the network, to have a basis for
comparison for when enabling a secure mode of communication.
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All the ITS-stations in the test network have a web interface, which can be reached
by connecting the ITS-PC to the unit with a network cable. The Dynniq equipment
was configured on a different subnet than the Kapsch units, making it necessary to
change the IP-address of the ITS-PC, depending on which network it was connected
to.

IP Network
Unit Name IP address
Kapsch OBU 1 192.168.2.74
Kapsch OBU 2 192.168.2.172
Kapsch RSU 192.168.2.54
Dynniq OBU 172.16.1.2
Dynniq RSU 172.16.1.4
ITS-PC (Kapsch) 192.168.2.202
ITS-PC (Dynniq) 172.16.1.6

Table 5.1: IP addresses used in test network.

After pinging the units from the server to verify the connection, SSH was used to
access the units and view the configuration.

– #ssh root@172.16.1.2

– #password: *********

The description of the configuration of the units was not very detailed from the
manufacturer’s side. Before any tests could be performed, a lot of time was spent
trying to understand the file system, and how the configuration was built up. The
root user has read and write permissions, and the text editor vi was used to edit
configuration files. After the initial configuration of setting up the test network, no
changes were made on the Kapsch units. All further work was performed on the
Dynniq units.



34 5. PKI IMPLEMENTATION

5.3 Greenflow

The Dynniq units come with a web interface with an application called Greenflow.
It is useful for diagnostics, and provides a status overview of the system. To access
the web interface, the address of the unit along with port number for the service was
entered in a browser on the server. The Greenflow application from Dynniq is hosted
at port 8082.

Figure 5.4: Dynniq map display of ITS-units represented by blue dots in the
Ngorongoro lab.

The application also provides a live feedback of data, listing the received units, and
the associated parameters.

Figure 5.5: Show response: Feedback
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Figure 5.6: Certificate overview.

The Greenflow certificate overview displays the
available certificates on the device. The devices
does not come with any certificates pre-installed.

5.4 Packet analysis

The Kapsch units log the C-ITS messages in
pcap (packet capture) files, available through the
Kapsch web interface. Before being able to view
the CAM and DENM packets in Wireshark, it was necessary to install a packet
dissector provided by Aventi.

Figure 5.7: CAM packet broadcast from the Dynniq OBU. The OBU is configured
as a heavy truck.

After verifying that all ITS-units were transmitting CAMs in un-authenticated mode
and that all applications and web interfaces were functioning correctly, the work to
implement authentication began.





Chapter6Authenticated CAM exchange

The primary objective of the practical work is to implement a PKI to the test
network, enabling an authenticated exchange of CAM messages. Test scenarios were
formulated to determine the progress of the PKI implementation. The purpose of
these tests is to evaluate the results objectively and to ensure that the process is
thoroughly documented.

In the manuals describing the configuration of the Dynniq OBU, there is a section
about the file its-facilities.conf, and some of the variables in that file. The full path
is /etc/its-facilities.conf. The file contains a section regarding CAM messages:

Figure 6.1: CAM section in its-facilities.conf.

37
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One of the variables in this section is called secure, and this indicates whether or
not the CAM service is in secure mode (using certificates).This variable has two
states, true or false, with false as default.

6.1 Test 0: Enable Secure Mode

Before creating any certificate hierarchy, I wanted to see the effect of changing the
value from false to true. The test network was put in the operational state, with
both the Kapsch Link Test App and the Dynniq Greenflow App displaying the OBU
units.

Status before changes made: with the variable set to false, the Kapsch units
are shown in the Dynniq overview, and the Dynniq units are shown in the Kapsch
display. Packets originating from the Dynniq OBU are present in the packet capture
files.

Changes made: In the Dynniq OBU, the secure variable is set to true, and the
configuration file saved under the same name.

Status after changes made: the immediate effect is that the Dynniq RSU loses
contact with the Dynniq OBU. The OBU in secure mode is not visible on any
platform.

This indicates that the its-facilities.conf file affects the CAM messages. The
initial theory after this observation was that the secure mode was activated, but
the packets dropped by the RSU because of the lack of certificates. This theory
was later discarded after analyzing the packet capture files, where no CAM packets
from the Dynniq OBU were present. The conclusion was that with no keys or
certificates present, the OBU would not send any CAMs in secure mode. This was
later supported by a Dynniq engineer. The next step was to create a simple certificate
hierarchy, deploy it on the devices, and repeat the test.
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6.2 Test 1: Secure mode using a certificate hierarchy
(OpenSSL)

To further test the secure parameter in the Dynniq configuration, a simple certificate
hierarchy was created using OpenSSL. OpenSSL is an open-source general-purpose
cryptography library, which can be used to create cryptographic keys and certificates.
The objective is to observe any changes in the messages when a simple PKI is in
place, and the secure mode is enabled. The hierarchy consisted of a self-signed root
CA, and two device certificates, signed by the root CA.

Figure 6.2: Simple PKI hierarchy.

The certificates were deployed on the OBU and RSU, respectively. The keys and
certificates were placed in the associated folders:

– etc/its-security/keys

– etc/its-security/certs

The OBUs/RSUs contain a Hardware Security Module (HSM) where the keys will
be stored to protect against tampering. This must be unlocked by the manufacturer
(Dynniq), and was not prioritized for this thesis. After deploying the certificates
and rebooting the system, the secure mode for CAM was enabled on the units. The
status in the certificate listing was unchanged (fig 5.6), indicating that the system did
not register the addition of the certificates. The RSU did not register any incoming
CAM messages from the OBU, and no CAM packets originating from the OBU were
present in the pcap file. The conclusion was that the system is not able to utilize
the OpenSSL certificates, and therefore the status is the same as for the initial test,
where no certificates were present. The results of this test were negative, and the
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next step was to inquire the Dynniq engineers about the certificate formats used by
the system.

Double Certificate Bug

At this point, I was informed that some of the older OBU/RSU software versions
required two pairs of certificates/keys before functioning correctly. The test using
OpenSSL was repeated with second pairs deployed, with no change in the results. All
following test involving certificates were performed with double sets of certificates/keys
to mitigate this bug.

A detailed description of how the keys and certificates were generated
using OpenSSL is available in Appendix A.
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6.3 Test 2: Secure mode using a certificate hierarcy
(ITSSEC)

The certificates generated with OpenSSL did not register with the devices, and I
was not able to make progress with that approach. After seeking help from the
Dynniq engineers through Aventi, I received a program called itssec. Itssec is a Linux
command line tool which can generate keys and certificates used in the ITS PKI. To
use itssec, four files must be present:

– itssec (executable file)

– libclientapi.so

– libitssecurity.so

– libjsonrpc.so.

Itssec can be used by placing the files in an empty directory, and issuing the com-
mand:
"export LD_LIBRARY_PATH=.".
Trying to run the executable at this stage yielded this response:
./itssec: error while loading shared libraries: libcrypto.so.1.0.0: cannot
open shared object file: No such file or directory
This issue was resolved by downloading the package libssl1.0.0, which contains
libcrypto.so.1.0.0.
https://packages.debian.org/jessie-backports/amd64/libssl1.0.0/download
The downloaded package was placed in the same folder as the itssec files and installed:

dpkg -i /path/to/downloaded-deb-file.deb

At this stage the itssec tool was executable. To be able to use the secure mode,
where the messages will use authentication as specified by ETSI, a PKI needs to be
available. In its simplest form, it can consist of a self-signed root CA, and unit level
certificates (RSU/OBU). The next section describes how the itssec tool was used to
generate a self-signed root CA, and two root-signed device certificates (RSU/OBU).

https://packages.debian.org/jessie-backports/amd64/libssl1.0.0/download
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Creating keys and certificates

First, we create folders for the keys and certificates: mkdir -p keys certs

Creating a root key pair: itssec –genkey myrootkey

Figure 6.3: Itssec generation of root key.
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This command creates two keys, one public (.pub) and one private (.prv), and places
them in the keys folder. Next, we create a self-signed certificate using the root key:
itssec –gencert myrootkey selfsigned

Figure 6.4: Itssec generation of root certificate.
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The public key is now part of the root certificate. The private key must be kept secret
at all times. For the tool to be able to “sign” subsequently generated certificates, it
is necessary to give the private root key the same name as the root certificate.

We can use the following command to view the certificates:
itssec –listcerts

Figure 6.5: Listing of available certificates.

The name of the certificate is the last eight bytes of a SHA-256 operation over the
certificate. In fig 6.6 Python is used to verify the name by creating a SHA-256 digest
using the root certificate as input. The last 8 bytes marked in red matches the
certificate name from fig 6.5.

Figure 6.6: Verification of hex digest.

The file name of a private key must start with the hash of the certificate in capital
letters. The following commands create a symbolic link from the private key, with
the same name as the certificate.
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cd keys/
ln -s myrootkey.prv 4171E30041BF9E9D.prv

This operation was repeated on the devices for the private keys of the RSU/OBU.
In this test PKI we skip the intermediate CA and create certificates for the devices
using the root CA.

Generating a key pair for the RSU:
itssec –genkey rsukey

Figure 6.7: Generation of RSU key.
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Now we can create a certificate based on the self-signed root certificate that we
created before.
itssec –gencert rsukey 4171E30041BF9E9D

Figure 6.8: Generation of RSU certificate.
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This will produce a certificate that needs to be signed by the Root-CA. The listcerts
command shows us the status of the certificates:
itssec –listcerts

Figure 6.9: The RSU certificate is not signed.

We see that a new certificate (10A810909C1F405B) is in the list. That is the one
that needs to be signed by the root CA.
itssec –signcert 10A810909C1F405B

itssec –listcerts

Figure 6.10: The RSU certificate is now signed by root.



48 6. AUTHENTICATED CAM EXCHANGE

We see the change in status, and the verification of the signature on the RSU
certificate. Signing the certificate changes the hash value, and the name of the
certificate and the private key must be changed to reflect the new value. The same
process is repeated to create an OBU certificate. The keys and certificates were
generated on the ITS-PC and deployed to the devices using secure copy (SCP).

Figure 6.11: Using secure copy to deploy the keys and certificates to the devices.

The root certificate, the device certificate, and the private key (named after the
corresponding certificate) of the device must be deployed. The public key of the
device is included in the device certificate. The files were placed in the associated
directories:
/etc/its-security/keys and /etc/its-security/certs on the RSU and OBU.
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The itssec-generated certificates and keys were deployed in the associated directories,
and the system rebooted. When accessing the certificate overview in the Greenflow
application, the imported certificates are available.

Figure 6.12: Greenflow certificate overview.

There are now one self-signed root certificate and two root-signed authorization
tickets (RSU certificates) on the RSU. All the parameters are default values. ECDSA
with SHA-256, as according to the specifications, is used to generate the digital
signature.
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After verifying that the certificates were loaded, the secure mode was enabled in the
CAM section of the configuration file. The results were positive, as the RSU received
messages from the OBU in trusted mode. In the feedback module in Greenflow the
parameters of the OBU (uri: 0xbcccd2a7ed3cde2) confirmed the status:

{"uri":"geonet://0xbcccd2a7ed3cde21",
"time":1519592632230,
"security":{"key":"D3A7ED3CDE218A7B",
"state":"trusted"}

D3A7ED3CDE218A7B is the name of one of the keys loaded on the Dynniq OBU.
Using the interface on the OBU, we can view the status of the RSU CAM messages:

{"uri":"geonet://0xbcccc61de13a3509",
"time":1526030952779,
"security":{"key":"C71DE13A3509CAA9",
"state":"trusted"}

The change was also visible in the pcap files analyzed in Wireshark. The CAM
messages from the OBU now contained a secure header and trailer, as referenced in
fig 4.10.

Figure 6.13: Wireshark unsecure CAM message (left) and secure CAM message
(right).

A figure showing the complete content of the secure header and trailer is available in
Appendix B, figure B.1.
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The CAM messages sent from the Dynniq OBU are marked as "trusted" in the RSU,
while the CAM messages from the Kapsch units are still displayed without any
certificates. In the Kapsch Link Test app, only the units transmitting unsecured
messages are displayed. This is because of the Kapsch equipment’s lack of support for
authentication. In conclusion, the test results were positive, as the units were able to
communicate with each other in secure mode, using the certificates for authentication.

6.4 Test 3: Verification of the authentication

The objective of this test is to verify that the devices verify the signature of the
certificates. By using unsigned certificates on the OBU, and signed certificates on
the RSU, we can observe how the system reacts to invalid credentials.
Two certificate/key pairs were generated, but not signed by the root CA. The unsigned
pairs were deployed on the OBU. From the certificate status in Greenflow, we can
view the loaded certificates.

Figure 6.14: Un-signed certificate: State: invalid.

From the feedback module in the RSU Greenflow we can see status of the security
parameter:
security": "key":"9B8CB3DFADF75C05","state":"invalid"
The unsigned certificates are marked as "invalid", indicating that the signatures are
verified by the devices.
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6.5 Test 4: Intermediate CA

The objective is to test the secure mode when the PKI has a chain of trust through
an intermediate CA. The RSU remains signed by the root CA, while the OBU now
is signed by the intermediate CA.

Figure 6.15: Signed certificate hierarchy.

The certificates and keys are deployed on the devices. For the first part, the
intermediate certificate is only deployed on the OBU. When enabling the secure
mode, the messages from the OBU are marked as "invalid", even though they are
signed by the Intermediate CA. This status indicates that since the RSU does not have
access to the Intermediate CA’s information, it can not authenticate the messages
sent from the OBU.
For the second part, the intermediate certificate is deployed on both the RSU and the
OBU. The messages are now marked as "trusted". The RSU can validate the signature
on the OBU messages against the intermediate certificate. The test indicates that
devices can authenticate messages signed by a different entity in the trust hierarchy,
as long as they have access to the certificates used in the chain of trust.
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7.1 Authorization Authority

The secure mode of the units have been tested and verified, and the units can
exchange C-ITS messages using authentication. The objective now changes to adding
features to the infrastructure, imitating the framework described in fig 4.5, within the
confines of this thesis. The next step is to explore communication flow 2, between the
ITS-S and the AA. During the tests of the secure CAM exchange, the certificates have
been created on the ITS-PC (5.2) and manually copied to the devices. In a real-world
scenario, this process would happen without the operator of the vehicle being involved.
One plausible scenario is that the system initiates resupply of authentication tickets
after a set amount of time, initiated by either the ITS-S or the AA.

From fig 4.15 we can see that it is the Authorization Authority which handles the
distribution of ATs used by the vehicle. The communication flow between the ITS-S
and the AA should provide authenticated users access to new ATs, to be used in the
C-ITS network. Two possible approaches have been considered in this thesis:

– An Apache HTTP server.

– An MQTT Broker/Client architecture.

The two protocols were chosen because they were assessed to be viable candidates,
and because they have contrasting characteristics. Both protocols are used in large-
scale systems today (Internet/IoT), providing large amounts of documentation and
experiences from previous implementations. In the following sections, the process of
implementing and testing the solutions are described.
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7.2 Apache HTTP Server

The Authorization Authority can distribute the ATs by hosting them on an HTTP
server and allowing authenticated users to download them when necessary. This
test will emulate a scenario where an ITS-S requires a new set of ATs, and contacts
the AA for a resupply. The objective is to identify strengths and weaknesses of this
approach. An Apache HTTP server was configured and made accessible on the local
network to test this approach.

Figure 7.1: Authentication Authority Apache Setup.

The OBU/RSU have only one Ethernet interface, used to connect them to the
ITS-PC. The ITS-PC has two network interface cards, eth1 with internet access, and
eth0 connected to the OBU. To allow the OBU to communicate with the server, the
ITS-PC was configured to share its internet access with the OBU.

– ITS-PC eth1: 129.241.208.204

– ITS-PC eth0: 172.16.1.6

– OBU eth0: 172.16.1.2
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The OBU was configured to use the ITS-PC as a gateway:

route add default gw 172.16.1.6

The ITS-PC was configured to act as a NAT router for the OBU:

modprobe iptable_nat
echo 1 > /proc/sys/net/ipv4/ip_forward
iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE
iptables -A FORWARD -i eth0 -j ACCEPT

At this stage, the OBU was able to ping the Apache server.

Setting up the Server

The server was configured on a dedicated Linux machine using the Apache HTTP
Server. The default configuration was used, making it available on the local network.
A simple web page was created, hosting certificates for the ITS-S to download:

Figure 7.2: Certificates hosted on the AA.
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SSL was enabled to provide server-side authentication and the use of HTTPS (HTTP-
Secure). OpenSSL was used to generate the certificate hierarchy. When configuring
an Apache server, it is not enough to enable SSL in order to provide security [35].
However, a full implementation of the recommended security measures was not
prioritized for this test. The Apache server can provide user authentication and
access control, which can be included if it is decided to move forward with this
approach.

Using Python, a simple script was created on the OBU to download the new certifi-
cates:

############################################################

import u r l l i b , u r l l i b 2 , u r lpar s e , s s l

u r l = ’ https : / /129 . 241 . 208 . 204/ C e r t i f i c a t e s /E3DE8CDB39FA786F
. c e r t ’

s p l i t = u r l pa r s e . u r l s p l i t ( u r l )

f i l ename = s p l i t . path . s p l i t ( ’ / ’ ) [−1]

print " Downlading␣new␣Author i zat ion ␣Ticket : " + f i l ename
context = s s l . _create_unver i f i ed_context ( )
# The con tex t i s c rea t ed f o r t e s t i n g purposes . Not s a f e

us ing un v e r i f i e d in r e a l l i f e .
re sponse = u r l l i b 2 . ur lopen ( ’ https : //129 . 241 . 208 . 204/

C e r t i f i c a t e s /E3DE8CDB39FA786F . c e r t ’ , context = context )

c e r t = response . read ( )

f = open( ’ /home/ root / s i nd r e / c e r t s / ’+ f i l ename , ’w+’ )
#sav ing the c e r t and keep ing the f i l ename
f . wr i t e ( c e r t )

f . c l o s e ( )
############################################################
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In this design, the communication flow is initiated by the ITS-S, requesting the
resources hosted on the server. The targeted certificate is downloaded and placed
in the specified directory on the OBU. The script is very basic and is meant as an
illustration of how ATs can be distributed to the OBUs.

An alternative to the python script is to use wget, an open-source tool for down-
loading files from web-servers.

wget -r -np -R ’index.html*’ -P home/sindre/certs/

’https://129.241.208.204/Certificates/’

The wget command downloads the files present in the ’Certificates’-directory on the
server and places them in the ’cert’-directory on the OBU, ignoring all ’index.html’-
files.

A recurring challenge when working with the HTTP-server was the lack of support
for downloading all files in a specific directory. Python supports modules which
makes the process easier, but the overall impression was that of putting a square peg
in a round hole.
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7.3 MQTT Server using TLS

Another solution for realizing certificate distribution is to use the MQTT protocol.
MQTT (Message Queuing Telemetry Transport) is a lightweight protocol designed to
use a minimum of network bandwidth and device resources, making it popular in the
world of IoT (Internet of Things) [36]. The protocol uses a broker/client architecture,
where clients can publish and subscribe messages to and from a broker. HiveMQ [37]
uses these definitions:

– Client: An MQTT client is any device from a microcontroller up to a full-
fledged server, that has an MQTT library running and is connecting to an
MQTT broker over any kind of network.

– Broker: The broker is primarily responsible for receiving all messages, filtering
them, decide who is interested in it and then sending the message to all
subscribed clients.

The publish/subscribe mechanism is useful in scenarios where you want to push
messages to multiple clients in an effective way. A C-ITS scenario where this is
relevant is in the case of Certificate Revocation Lists. The protocol is also scalable,
as new clients can subscribe to an existing broker, without the need for altering
the broker’s configuration. The broker uses topics to sort and distribute messages.
Topics are hierarchical strings consisting of multiple levels separated by a forward
slash, e.g., "Certs/test_network/OBU/OBU1". In this case, a connected client
subscribing to the sub-topic "OB1" would receive messages published to that topic.
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In the C-ITS test network, the OBUs and RSUs act as subscribing clients, with the
AA functioning both as a broker and publisher of files (ATs). The idea is that the
AA creates the ATs, and then uses a Mosquitto client to publish the files to the
broker. The broker uses topics to sort and distribute the ATs to the subscribers.

Figure 7.3: MQTT design in the test network.

MQTT does not provide security in itself, but security protocols in the underlying
layers can provide encryption. MQTT is based on TCP/IP, and supports the use of
TLS (Transport Layer Security). For authentication of broker and clients, digital
certificates are used. The added overhead this imposes is a necessary trade-off for
confidentiality.
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MQTT configuration

Up until this point no new software has been installed on the OBU/RSU. The tests
have been conducted by changing configuration and using tools already present on the
units. When trying to install the necessary MQTT software on the OBU, I was faced
with some challenges. No packet manager was available, and many commands usually
found on a Linux system were unavailable. After struggling with the implementation
for some time, it was decided to use the ITS-PC (running a more familiar version
of Linux) to simulate the OBU. I perceived it as more pertinent to complete a test
of MQTT as a certificate distribution protocol for the AA, rather than working on
Linux distribution specific problems. My reasoning was that if the solution proved
viable, more resources could be allocated to implementing it on the OBU.

For the tests involving MQTT an open source MQTT broker called Mosquitto
was used. Mosquitto also provides clients, mosquitto_sub and mosquitto_pub,
making the implementation user friendly. To install the broker and clients, these
commands were issued on the ITS-PC:

– sudo apt-add-repository ppa:mosquitto-dev/mosquitto-ppa

– sudo apt-get update

– sudo apt-get install mosquitto

– sudo apt-get install mosquitto-clients

The Mosquitto broker can be initiated with the default configuration by typing
"mosquitto" in a terminal window.

Figure 7.4: Mosquitto MQTT broker running on port 1883.
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The default Mosquitto configuration will run the broker on port 1883 with no security.
Any client can connect to the broker and publish or subscribe to topics. To introduce
authentication to the broker the following main steps were followed:

1. Create a CA key pair

2. Create a CA certificate and use the CA key from step 1 to sign it.

3. Create a broker key pair (no password)

4. Create a broker certificate request using the key from step 3.

5. Use the CA certificate to sign the broker certificate from step 4.

6. Copy the CA certificate to the client.

7. Edit the Mosquitto configuration file to enable authentication and reference
the certificates created in previous steps.

OpenSSL was used to create the keys and certificates, following the procedure
described in Appendix A. The default listening port was changed from 1883 to 8883
(Secure MQTT), and the use of certificates was enabled. The following lines in the
configuration file were uncommented, and the certificates and keys were placed in
the directories they reference:

– capath /etc/mosquitto/ca_certificates

– keyfile /etc/mosquitto/certs/server.key.pem

– certfile /etc/mosquitto/certs/server.cert.pem

The installation was performed on the AA and the ITS-PC connected to the OBU.
After verifying that the default settings were functioning, client scripts allowing file
transfer through the broker were created.
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The client publisher script uses an MQTT client to connect to a broker hosted at
129.241.208.204 (AA), and publish the content of the directory "pub" to the topic
"Cert/Obu". The payload of the publish message is in this example two certificates
hosted on the AA.

MQTT publisher script
############################################################
import paho . mqtt . c l i e n t as mqtt
import time
import os

broker_address=" 129 . 241 . 208 . 204 " #Broker on AA
c l i e n t = mqtt . C l i en t ( "AA" ) # Sta r t MQTT Cl i en t
c l i e n t . t l s_ s e t ( " /home/ s i nd r e /ca_new/ c e r t s / ca . c e r t . pem" )

#Used f o r Server au t h en t i c a t i on
c l i e n t . t l s_ in s e cu r e_se t (True )
#Allows connect ion i f name on c e r t does not match s i gna tu r e

(ONLY USED FOR TESTING)

c l i e n t . connect ( broker_address , 8883 , 60)# Connect to broker

c l i e n t . l oop_start ( ) # i n i t i a l s t a r t b e f o r e loop

while True :
for f i l e in os . l i s t d i r ( ’ /home/ s i nd r e /pub ’ ) : #Pub l i sh a l l

f i l e s in d i r e c t o r y
c u r r e n t_ f i l e = os . path . j o i n ( ’ /home/ s i nd r e /pub ’ , f i l e

) #Spec i f y a f i l e to proces s
i f os . path . i s f i l e ( c u r r e n t_ f i l e ) :

#pr in t c u r r en t_ f i l e For t e s t i n g
data = open( cu r r en t_ f i l e , ’ rb ’ ) #Open f i l e r

= read b = binary
#pr i n t data . read () For t e s t i n g
c e r t i f i c a t e = data . read ( )
byteArray = bytes ( c e r t i f i c a t e ) #Convert to

by t e s t r i n g
c l i e n t . pub l i sh ( t op i c=" Cert /Obu" , payload=

byteArray , qos=0) # pub l i s h to t o p i c

time . s l e e p (20) # Wait
############################################################
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The subscriber client connects to the same broker, and subscribes to the topic
"Cert/Obu". The payloads are published as byte arrays of the certificates, and the file
names are not transferred. For the OBU to be able to use the published certificate,
the name must be equal to the last eight bytes of a SHA-256 operation over the
certificate. The subscriber-script therefore takes the received payload and performs
the operation, and appends the ".cert" extension. The file is then saved with the
correct name in a designated directory.

MQTT subscriber script

############################################################

import paho . mqtt . c l i e n t as mqtt
import time
import hash l i b
import b i n a s c i i

def on_message (mosq , obj , msg) :
#Function to r e t r i e v e f i l e when re c e i v ed

hex = msg . payload
m = hash l i b . sha256 ( ) #The name on the c e r t must be

the l a s t 8 b y t e s o f a SHA256−d i g e s t o f the
pay load

binary = b i n a s c i i . unhex l i f y (hex)
m. update ( binary )
hash = m. hexd ige s t ( )
certname_lower = hash [ −16 : ] #Seperate the l a s t 8

b y t e s
certname = certname_lower . upper ( )+’ . c e r t ’ #Make the

s t r i n g uppercase and append . c e r t
#pr i n t certname

with open( ’ /home/ s i nd r e /Documents/ ’+certname , ’wb ’ )
as fd : #Path and f i l ename fo r the f i l e

fd . wr i t e (msg . payload )

#port = 8883
c l i e n t = mqtt . C l i en t ( "OBU_1" )

#Sta r t MQTT Cl ient , ID = OBU_1
c l i e n t . t l s_ s e t ( " /home/ s i nd r e /ca_new/ c e r t s / ca . c e r t . pem" , " /

home/ s i nd r e /ca_new/ c l i ent_sub . c e r t . pem" , " /home/ s i nd r e /
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ca_new/ pr i va t e / c l i ent_sub . key . pem" )
#c l i e n t . t l s_ s e t ("/home/ s indre /ca_new/ c e r t s /ca . c e r t . pem")

#used f o r s e r v e r auth .
c l i e n t . t l s_ in s e cu r e_se t (True ) #used f o r t e s t i n g , a l l ow ing

insecure connect ion (mismatch wi th name on c e r t )
c l i e n t . connect ( " 129 . 241 . 208 . 204 " , 8883 , 60)
#Connect to server , por t , k e e p a l i v e
c l i e n t . sub s c r i b e ( " Cert /Obu" ,0 ) #Subscr i b e to t o p i c

c l i e n t . on_message = on_message #This c a l l s the func t i on

while True : #Loop and wai t f o r next f i l e
c l i e n t . loop (20)

############################################################
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The message exchange can be viewed by starting the broker with the -verbose option:

Figure 7.5: MQTT Mosquitto verbose output.

1. The publisher (AA) connects to the broker on secure port 8883.

2. The subscriber (OBU_1) connects on 8883.

3. The broker receives a PUBLISH method from AA.

4. The broker sends a PUBLISH method to OBU_1, containing the certificate.

5. The certificate has now been copied from the publisher to the subscriber using
MQTT secured with TLS.

In this test scenario, two certificates were placed in the "pub" - directory on the
AA. The publishing client then pushes the content of the directory to the broker,
which distributed the certificates to the specified topic. The ITS-PC subscribes to
the topic and downloads the certificates. The ITS-PC simulates the OBU, but the
scenario still illustrates how MQTT can be used in the C-ITS PKI. The MQTT
protocol’s lightweight design and publish/subscribe mechanisms makes it a viable
alternative for use in the certificate distribution. Combined with TLS and server/client
authentication it provides a flexible, scalable and secure way of distributing ATs to
users. The task of administrating the topics and ensuring that the ITS-S receives
new ATs in a timely matter will be very comprehensive, but I believe that would be
true for all possible solutions.
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8.1 Discussion

The security system outlined in this thesis aims to provide authentication and message
integrity through the use of a Public Key Infrastructure. It is not hard to imagine a
future where all vehicles have access to the internet. Adopting the security technology
that has been tried and tested on the world wide web for the C-ITS security enables
the designers to use the blueprint from previous implementations. The characteristics
of C-ITS and vehicular ad-hoc networks requires the security system to be fast and
flexible, as vehicles communicating at high velocities may have a small window for
communication. The overhead from the security header and trailer must be as low as
possible. This concern has been reflected in the choice not to include confidentiality
for the CAM/DENM messages, and in the choice of cryptographic algorithms (ECC).
The introduction of PKI in the network adds overhead, as we can see in the frame-size
in fig 6.13, but this is considered a necessary trade-off for authentication and message
integrity.

The use of PKI is also known to many users from experiences using online banking,
shopping and so forth, making the trust process easier to demonstrate. The security
system has been developed with a heavy focus on ensuring the privacy of the users.
With the use of ATs and the separation of the entities handling user information, it
is plausible that tracking individual users through the C-ITS system will prove more
difficult than using already existing methods. There are several unknown factors
regarding the administration of this system, such as how the CA hierarchy will be
established, and if the system will become mandatory in the future. However, the
PKI implementation in the test network shows that the security system is capable
of facilitating authenticated communication. The results from packet analysis in
Wireshark are consistent with the design presented in the literature, and the units can
read and verify the certificates. Having this in place is a step in the right direction
towards realizing a full-scale PKI for C-ITS.
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The manual generation and transfer of certificates is not a sustainable approach, and
solutions for the distribution of ATs through the Authorization Authority were also
explored. The use of pseudonymity for users through Authentication Tickets presents
some challenges, due to the need to resupply users with certificates on a regular basis.
Users must be allowed to connect and receive fresh ATs independent of their location,
putting high demands on the flexibility of the system. The scale of the system is also
an essential factor, as the solution must be able to handle vast numbers of requests
from the end-users. This was hard to account for under the testing, as only two
Dynniq units were available for that phase. Solutions using HTTP and MQTT were
demonstrated, illustrating some of the strengths and weaknesses of the protocols.

Of the two solutions, the use of the MQTT protocol was the most interesting one, as
the publisher/subscriber mechanism opens up for a flexible and scalable design. The
publisher initiates the connection, and through the use of topics messages can quickly
be broadcast to the network. The lightweight design of MQTT means less overhead,
and security can be implemented using TLS. On the other hand, I could not find an
example of the use of MQTT for file transfer in other large-scale operations. The
MQTT broker publishes payloads without a file name, which creates the need for
post-processing at the receiving unit. This is not required when using HTTP. The use
of HTTP or other file server technology for file transfers can be found in a plethora
of systems, and the designs seem transferable to the C-ITS PKI. However, the 1-1
characteristic of the HTTP protocol makes it expensive to broadcast messages to
all the units in the network, and the headers and rules in HTTP make it a heavier
protocol with more overhead. The request-respond mechanism is initiated by the
client (ITS-S), unlike in MQTT, where the publisher (AA) would initiate an eventual
update. The tests performed provided a proof of concept for both protocols, but
given the restraints of the network, the results from those tests were not unambiguous
enough to draw a conclusion on which approach to use going forward. However, the
framework is in place for a larger and more realistic test scenario which can further
clarify the position.
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8.2 Conclusion

In this thesis the use of PKI in C-ITS have been explored, using the policy documents
and standards from the EU, as well as a test network for a practical demonstration.
The theoretical review shows that C-ITS with a public key infrastructure can through
the use of digital signatures and certificates achieve the level of security required
by the EU. Secure messaging was implemented in the test network, and the units
were able to sign and verify CAMs as described in the policy documents. The secure
messages contain a digital signature on the certificate, allowing the receiver to verify
the identity of the sender, based on the trust relationship with the entity that signed
the certificate. The PKI was expanded to include an Authorization Authority, used
to demonstrate both an MQTT-broker and an HTTP-server as solutions for the
administration and distribution of user certificates. Both methods are viable options
in a small-scale network, but MQTT showed more promise regarding scalability. My
recommendation would be to conduct further testing in a more realistic scenario
with more ITS-units available to provide a better comparison. The work done in this
thesis can form a starting point for a more extensive test. No matter which solution
is chosen for the AA, the administration and distribution of the certificates will be a
crucial and challenging task for the security system in C-ITS. Aventi has expressed
an interest in testing the solutions demonstrated in this thesis in the pilot-project
"E8 Borealis" on European route E8 in northern Norway [38].
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8.3 Future work

Time and resources did not allow me to implement a solution for the Enrolment
Authority for this thesis. The EA is responsible for authenticating the ITS-S to the
network using an identifier provided by the vendor or manufacturer. When verified,
the ITS-S should receive a token from the EA, which it can use to request services
from the AA. It would be interesting to explore the use of the Kerberos authentication
protocol for this purpose. Its use of tickets for mutual authentication could prove
to be a useful framework in the C-ITS PKI. Certificate Revocation Lists were also
on the short-list for features to be implemented. I was unable to come up with a
viable solution for the implementation of CRLs, partly because I did not have access
to a software development kit (SDK), making any change in how the units handle
incoming messages very challenging. The implementation of the features described
in previous sections took longer than expected, making it necessary to adjust the
ambitions for this PKI implementation. However, with message authentication in
place along with a framework for certificate distribution, the door is open for further
expansion of the PKI and the creation of applications using secure CAMs as input.
The technology used in this thesis will be used during upcoming tests in the "E8
Borealis" project, and it will be interesting to follow the development of C-ITS in
the future.
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OpenSSL is an open source general-purpose cryptography library, which can be used
to create cryptograhic keys and certificates. It comes pre-configured on the ITS-units,
and can be accessed from the command line. The basic PKI used for the initial
testing consisted of a self-signed root CA and a root-signed intermediate CA. The
self-signed root CA was created and stored on the ITS-PC through OpenSSL. The
first step was to create the directory structure to hold the files needed.

– mkdir root/ca

– cd root/ca

– mkdir certs crl private newcerts

– touch index.txt

– echo 1000 > serial

To use OpenSSL to create certificates and sign, a configuration file must be used for
each signing entity. That means that both the root CA and the intermediate CA
must have its dedicated openssl.cnf file. For this test, a guide on how to create your
own CA hierarchy was used. The guide can be found at [39].

Creating the root CA

The root key will be used to sign the root certificate and the intermediate CA. The
holder of the private key can issue trusted certificates, so it is paramount that it is
kept secret. The following command was used to create the root key:

root/ca/private$ openssl ecparam -genkey -name secp256k1 -noout -out
ca.key.pem

The output is the ca.key.pem, stored in the /private directory. Now that we have
the key, we can use it to create a root certificate:

#cd /root/ca
#openssl req -config openssl.cnf -key private/ca.key.pem -new -x509 -days
7300 -sha256 -extensions v3_ca -out certs/ca.cert.pem
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The certificate is then verified:

openssl x509 -noout -text -in certs/ca.cert.pem

Figure A.1: Verification of the root CA certificate.
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Creating the intermediate CA

The next step was to create a key/certificate pair for the intermediate CA. .

Directory structure for the intermediate CA:

# mkdir root/ca/intermediate

# cd /root/ca/intermediate

# mkdir certs crl csr newcerts private

# chmod 700 private

# touch index.txt

# echo 1000 > serial

The openssl.cnf file for the intermediate CA was placed in the /intermediate directory.
The private key was generated using the same command as the root key:
root/ca/intermediate/private$ openssl ecparam -genkey -name secp256k1 -
noout -out intermediate.key.pem
The intermediate certificate is not self-signed, therefore we first create a certificate
signing request (CSR), which can be signed by the root CA.

# cd /root/ca
# openssl req -config intermediate/openssl.cnf -new -sha256 -key inter-
mediate/private/intermediate.key.pem -out intermediate/csr/intermedi-
ate.csr.pem

The output is a CSR, stored in the /intermediate/csr directory. We then sign the
signing request with the root CA key:

# cd /root/ca

# openssl ca -config openssl.cnf -extensions v3_intermediate_ca -days
3650 -notext -md sha256 -in intermediate/csr/intermediate.csr.pem -out
intermediate/certs/intermediate.cert.pem

Verify that the details of the intermediate certificate is OK:

openssl verify -CAfile certs/ca.cert.pem intermediate/certs/intermediate.cert.pem

Result: intermediate.cert.pem: OK
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Creating & signing the device certificates

The next step is to create a certificate that can be used by the OBU. First we
create a private key to be used for signing. Then we use that key to generate a
certificate signing request. The intermediate CA signs the CSR, thus creating the
OBU certificate. The process was repeated for the RSU.

Figure A.2: Partial view of the OBU certificate. The intermediate CA is listed as
the issuer.

The certificates and keys were deployed to the units using scp.
On the OBU /etc/its-security/certs:

– ca.cert.pem

– intermediate.cert.pem

– obu1.cert.pem

– obu2.cert.pem

On the OBU /etc/its-security/keys:

– obu1.key.pem

– obu2.key.pem
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On the RSU /etc/its-security/certs:

– ca.cert.pem

– intermediate.cert.pem

– rsu1.cert.pem

– rsu2.cert.pem

On the RSU /etc/its-security/keys:

– rsu1.key.pem

– rsu2.key.pem

The Greenflow application was used to inspect the certificate status on the devices.
Neither the RSU nor OBU registered the certificates. The secure mode was enabled,
but with negative results. The OBU and RSU were not able to communicate in
secure mode using certificates created by OpenSSL.
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GeoNetwork header in secure mode

Figure B.1: The expanded headers in a secure CAM packet from Wireshark.
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The configuration below contains the sections that were edited during the work with
the Mosquitto broker.

# =============================================
# Default listener
# =============================================

# IP address/hostname to bind the default listener to. If not
# given, the default listener will not be bound to a specific
# address and so will be accessible to all network interfaces.
# bind_address ip-address/host name
#bind_address

# Port to use for the default listener.
#port 1883
port 8883
# The maximum number of client connections to allow. This is
# a per listener setting.
# Default is -1, which means unlimited connections.
# Note that other process limits mean that unlimited connections
# are not really possible. Typically the default maximum number of
# connections possible is around 1024.
#max_connections -1

# Choose the protocol to use when listening.
# This can be either mqtt or websockets.
# Websockets support is currently disabled by default at compile time.
# Certificate based TLS may be used with websockets, except that
# only the cafile, certfile, keyfile and ciphers options are supported.
#protocol mqtt

# When a listener is using the websockets protocol, it is possible to serve
# http data as well. Set http_dir to a directory which contains the files you
# wish to serve. If this option is not specified, then no normal http
# connections will be possible.
#http_dir
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# Set use_username_as_clientid to true to replace the clientid that a client
# connected with with its username. This allows authentication to be tied to
# the clientid, which means that it is possible to prevent one client
# disconnecting another by using the same clientid.
# If a client connects with no username it will be disconnected as not
# authorised when this option is set to true.
# Do not use in conjunction with clientid_prefixes.
# See also use_identity_as_username.
#use_username_as_clientid

# -----------------------------------------------------------------
# Certificate based SSL/TLS support
# -----------------------------------------------------------------
# The following options can be used to enable SSL/TLS support for
# this listener. Note that the recommended port for MQTT over TLS
# is 8883, but this must be set manually.
#
# See also the mosquitto-tls man page.

# At least one of cafile or capath must be defined. They both
# define methods of accessing the PEM encoded Certificate
# Authority certificates that have signed your server certificate
# and that you wish to trust.
# cafile defines the path to a file containing the CA certificates.
# capath defines a directory that will be searched for files
# containing the CA certificates. For capath to work correctly, the
# certificate files must have ".crt" as the file ending and you must run
# "c_rehash <path to capath>" each time you add/remove a certificate.
#cafile
capath /etc/mosquitto/ca_certificates

# Path to the PEM encoded server certificate.
certfile /etc/mosquitto/certs/server.cert.pem

# Path to the PEM encoded keyfile.
keyfile /etc/mosquitto/certs/server.key.pem

# This option defines the version of the TLS protocol to use for this listener.
# The default value allows v1.2, v1.1 and v1.0, if they are all supported by
# the version of openssl that the broker was compiled against. For openssl >=
# 1.0.1 the valid values are tlsv1.2 tlsv1.1 and tlsv1. For openssl < 1.0.1 the
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# valid values are tlsv1.
#tls_version

# By default a TLS enabled listener will operate in a similar fashion to a
# https enabled web server, in that the server has a certificate signed by a CA
# and the client will verify that it is a trusted certificate. The overall aim
# is encryption of the network traffic. By setting require_certificate to true,
# the client must provide a valid certificate in order for the network
# connection to proceed. This allows access to the broker to be controlled
# outside of the mechanisms provided by MQTT.
require_certificate true

# If require_certificate is true, you may set use_identity_as_username to true
# to use the CN value from the client certificate as a username. If this is
# true, the password_file option will not be used for this listener.
#use_identity_as_username true

# If you have require_certificate set to true, you can create a certificate
# revocation list file to revoke access to particular client certificates. If
# you have done this, use crlfile to point to the PEM encoded revocation file.
#crlfile

# If you wish to control which encryption ciphers are used, use the ciphers
# option. The list of available ciphers can be obtained using the "openssl
# ciphers" command and should be provided in the same format as the output of
# that command.
# If unset defaults to DEFAULT:!aNULL:!eNULL:!LOW:!EXPORT:!SSLv2:@STRENGTH
#ciphers DEFAULT:!aNULL:!eNULL:!LOW:!EXPORT:!SSLv2:@STRENGTH
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