
Porting mobile iOS app to Android -
Klimb AS

Author(s)
Magnus W. Enggrav
Adam A. Jammary

Bachelor in Game Programming
20 ECTS

Department of Computer Science
Norwegian University of Science and Technology,

16.05.2018

Supervisor Mariusz Nowostawski

Sammendrag av Bacheloroppgaven

Tittel: Porting av mobil iOS app til Android - Klimb AS

Dato: 16.05.2018

Deltakere: Magnus W. Enggrav
Adam A. Jammary

Veiledere: Mariusz Nowostawski

Oppdragsgiver: Klimb AS

Kontaktperson: Sindre Helelborgås

Nøkkelord: Bachelor, Porting, iOS, Android, React, Native, Mobil
Antall sider: 89
Antall vedlegg: 6
Tilgjengelighet: Åpen

Sammendrag

Hovedmålet med prosjektet var å få den eksisterende Apple iOS-spesifikke appen til å
fungere på Google Android-plattformen for vår arbeidsgiver Klimb AS. Den eksisterende
kodebasen ble allerede skrevet ved hjelp av React Native rammeverket, som skulle gi
funksjonalitet på tvers av plattformene iOS og Android. Appen ble utviklet på, og hadde
bare blitt testet på iOS-plattformen.

Under arbeidet med prosjektet, fant arbeidsgiveren vår ut at det var bedre å endre mye
av den nåværende arkitekturen, og flytte mer av funksjonaliteten ut i tjenester. Dette var
noe vi trengte å tilpasse oss til.

Vårt hovedfokus mens vi jobbet med prosjektet var å fikse feil som dukket opp på Android-
versjonen, og få programmet til å fungere på Android uten å krasje, og å få funksjon-
aliteten til å virke som forventet, sånn som det gjør på iOS-versjonen. Og i tillegg å få
Android-versjonen til å se og føles så lik iOS-versjonen som mulig.

i

Summary of Graduate Project

Title: Porting mobile iOS app to Android - Klimb AS

Date: 16.05.2018

Authors: Magnus W. Enggrav
Adam A. Jammary

Supervisor: Mariusz Nowostawski

Employer: Klimb AS

Contact Person: Sindre Helelborgås

Keywords: Bachelor, Porting, iOS, Android, React, Native, Mobile
Pages: 89
Attachments: 6
Availability: Open

Abstract

The main goal of the project was to port the existing Apple iOS-specific app to the Google
Android platform for our employer Klimb AS. The existing codebase was already written
using the React Native framework which was supposed to provide cross-platform func-
tionality between iOS and Android. The app was developed on, and had only been tested
on the iOS platform.

While working on the project, our employer decided that it would be better to change a
lot of the current architecture, and move more of the functionality out into services. This
was something that we needed to adapt to.

Our main focus while working on the project was to fix bugs that appeared on the An-
droid version, and get the application to work on Android without crashing, and make
the functionality work as expected, like it does on the iOS version. Also to make the
Android version look and feel as similar to the iOS version as possible.

ii

Preface

We want to start by thanking everyone that has been a part of this project.

We would especially like to thank Elin Årseth, Sindre Helelborgås and everyone else at
Klimb AS for providing us with this Bachelor project, and for all their help and
cooperation throughout the project.

We also want to thank Mariusz Nowostawski for supervising our project and providing
us with great practical feedback on how to setup ShareLatex, and how to get us started
in general.

iii

Contents

Preface . iii

Contents . iv

List of Figures . vii

1 Introduction . 1

1.1 Background . 1

1.2 Project Description . 1

1.3 Scope . 2

1.4 Purpose . 2

1.5 Target Audience . 3

1.6 Roles . 3

1.7 Academic Background . 4

1.8 Glossary . 5

1.9 Document Structure . 6

2 Project Management . 7

2.1 Software Development Methodology - Scrum with XP 7

2.2 Status Meetings and Decision Points . 7

2.2.1 Meetings with employer Sindre Helelborgås 7

2.2.2 Meetings with Supervisor Mariusz Nowostawski 8

2.3 Time Managment . 8

2.3.1 Toggl . 8

2.4 Task Board . 8

2.4.1 Trello . 8

2.4.2 Bitbucket Issues . 9

2.4.3 Bitbucket GIT Repository . 10

3 Alternative Technologies . 11

3.1 Responsive Web Design (RWD) . 11

3.2 Adaptive Web Design (AWD) . 12

3.2.1 Standard Layout . 12

3.2.2 Responsive Layout . 12

3.2.3 Scaled Layout . 12

3.2.4 Flux and Zoom Layout . 12

3.3 Progressive Web Apps . 13

3.4 Web vs. Native . 13

3.5 Native vs. Hybrid . 14

3.5.1 Ionic . 14

iv

3.5.2 Apache Cordova (Adobe PhoneGap) 15

3.5.3 Xamarin . 15

4 Technologies . 16

4.1 React Native . 16

4.1.1 React (JavaScript Library) . 16

4.1.2 ReactJS vs. React Native . 16

4.1.3 Bridging . 17

4.1.4 Building . 18

4.1.5 Reloading . 18

4.2 Project Dependencies . 19

4.3 Package Managers and Build Tools . 20

4.3.1 Node.js 7.10.1 med NPM 4.2.0 . 20

4.3.2 Yarn 1.3.2 . 20

4.4 IDE (Integrated Development Environment) 20

4.4.1 Visual Studio Code 1.19.2 . 20

4.5 Emulators and device testing . 20

4.5.1 Android Studio 3.0.1 for Windows 20

4.5.2 Android Emulators (run through Android Studio) 20

4.5.3 Android Devices (our own Android devices) 20

5 System Architecture . 21

5.1 Authentication using Facebook SDK . 21

5.2 Services . 23

5.3 Components . 26

5.4 Internationalization . 27

5.4.1 Localization (i10n) . 27

5.4.2 Internationalization (i18n) . 27

5.4.3 react-native-i18n . 28

6 Imlementation . 30

6.1 Fixing UI Problems - Android vs. iOS . 30

6.2 Navigation UI . 31

6.2.1 Fixing the navigation UI . 31

6.2.2 UI change . 34

6.3 Independent Task - Tutorial Popups . 35

6.3.1 Task description . 35

6.3.2 Discussion . 35

6.3.3 Solution . 37

7 QA - Testing . 40

7.1 Debug Developer Menu . 40

7.1.1 Reload . 41

7.1.2 Enable Live Reload . 41

v

7.1.3 Hot Reload . 41

7.1.4 Remote JS Debugging . 41

7.1.5 Inspector . 42

7.1.6 Perf Monitor (Performance Monitor) 43

7.2 Console Log . 43

7.2.1 Console.log() . 43

7.2.2 Console.warn() . 43

7.2.3 Console.error() . 43

7.3 Debugging . 43

8 Summary . 45

8.1 Results . 45

8.1.1 Porting to Android . 45

8.1.2 Internationalization . 46

8.1.3 Platform-Specific Code . 46

8.1.4 Learning React Native . 47

8.2 Further Development . 47

8.3 Group Evaluation . 48

8.4 Conclusion . 50

Bibliography . 51

A Project Plan . 55

B Hour Log . 70

C Meeting Summaries . 75

C.1 Meeting with employer Sindre Helelborgås 75

C.2 Meeting with supervisor Mariusz Nowostawski 75

C.3 Meeting with employer Sindre Helelborgås 76

C.4 Meeting with employer Sindre Helelborgås 76

C.5 Meeting with employer Sindre Helelborgås 77

C.6 Meeting with employer Sindre Helelborgås 78

C.7 Meeting with employer Sindre Helelborgås 79

C.8 Meeting with employer Sindre Helelborgås 80

D Backlog . 82

E Email Communication . 83

E.1 Wednesday, 24. January 2018 . 83

E.2 Tuesday, 27. February 2018 . 84

F Project Agreement . 86

vi

List of Figures

1 Trello Board . 8

2 List of issues . 9

3 An example of an issue . 10

4 Responsive Web Design . 11

5 JavaScript Bridge . 17

6 React Native Controls . 17

7 React Native Build Process . 18

8 First time authentication . 21

9 Authentication when token is expired . 22

10 Authentication when token is valid . 22

11 Observer Pattern . 23

12 TokenService initialization . 24

13 TokenService when receiving updates . 25

14 Component example for the Klimb application 26

15 Left: UI problem on Android. Right: UI problem resolved. 30

16 Right to left: Android navigation UI before we started, compared to the iOS. 31

17 Left: Navigation UI when moving action-menu out of the navigation bar.
Right: Displaying action-menu above navigation UI. 32

18 Left: Navigation UI unable to display items when action-menu is pressed.
Right: Displaying items correctly. 33

19 Left: UI before changes. Right: After changes. 34

20 Tutorial Manager class diagram . 37

21 TutorialPopup view . 38

22 Debug Developer Menu . 40

23 Remote JS Debugging . 41

24 Debug Inspector . 42

25 Time distribution . 49

vii

1 Introduction

1.1 Background

Klimb is a health and fitness mobile game, where the objective is to collect points by
walking up hills using the GPS coordinates of the mobile device. You get one height
point for every meter you climb up the hill. The goal of the game is to move up levels,
where each level represents a known mountain you can climb up.

The game displays a list of every top nearby, and you collect points by selecting a top and
start moving towards it, or you can collect "free-points" if you are not moving towards
any specific top. If you are close to a top you can choose to capture the top and it will be
displayed in your collection of mountain tops.

You can hike up your favourite mountain and collect points at the top. If the mountain
does not exist in the game, you can add the top and become the owner of that mountain
top. The application will automatically measure your height meters every time you walk
or run uphill. Your profile page will show your progress towards the next available level,
and how many height points you have collected.

You can share your progress and activity on the app-specific social feed and on Facebook
to inspire others. Klimb uses the Facebook SDK for authentication which makes it easier
and faster to manage user logins.

1.2 Project Description

Klimb AS used external consultants "Snowball Digital AS" to create the first version of the
application and the back-end server. After some time, Klimb AS decided to hire a new
programmer to take over the development and move the development internally. This
all happened right before we started our bachelor project so the new developer already
had a lot to do. Since Klimb AS already had received user requests about an Android
version of the application, we saw this as an opportunity to help them create a functional
Android version as our bachelor project.

The main goal of the project is to port the existing Apple iOS-specific app to the Google
Android platform. Even though the existing codebase is already written using the React
Native framework which allows for cross-platform functionality between iOS and An-
droid, the app has been developed and tested only on the iOS platform. The result is that
it does not currently work on the Android platform.

1

The issues of what is and what is not working is not clearly defined this early in the
process, and it is mainly our task to find all the issues and resolve them, so that the app
can work on Android devices as well. This means that it will be difficult to plan in much
detail, as the details are not yet known. The React Native framework uses JavaScript as
the programming language for both platforms, but allows the use of the native language
of each specific platform if needed.

We will try to use as little platform-specific code as possible, and have the two platforms
share as much of the codebase as possible. This will require clear communication, and
a well-defined work process as we will describe later. The goal is to have the UI (User
Interface) look and feel almost the same on both platforms with less than 10% differences
between the two.

Initially the plan is for the employer to focus on the back-end server communication,
and for us to focus on the Android front-end, but this may change during the project as
needed.

The employer has a huge list of features that they wish to implement, they are not offi-
cially part of the Bachelor project, but they are available if the current workload turns
out to be too small.

1.3 Scope

Field of Study

• Cross-platform (Android and iOS) mobile development
• React Native Framework
• Internationalization (I18N)
• Geolocation (GPS-data, Google Maps)
• Login services (Facebook SDK)

Project Restrictions

• We will not develop anything for the iOS platform
• We will not work on the codebase in the master branch of the repository
• The app will not support older devices than Android 4.1 (API 16 - JELLY_BEAN)

1.4 Purpose

One of the members in the group (Magnus W. Enggrav) knew the owner of Klimb AS
and had been in contact with Elin Årseth. They had discussed the possibility of doing
a Bachelor project, but they did not specifically know what the objective of the project
would be. After discussing the project with the other group member (Adam A. Jammary),
he also liked the general idea of the game, where the user has to be active in real life to
gather points. After some discussions about what Klimb AS needed, they asked us if we
wanted to make the application work on Android.

2

We talked to our supervisor Mariusz Nowostawski, who also thought that this would be
a great experience. With this, we could learn more about mobile development using a
cross-platform JavaScript framework like React Native, and at the same time help Klimb
AS reach a new user base on the Android OS.

We were also told that the design of the application may change while working on the
Bachelor project, so a close collaboration with Sindre Helelborgås would be necessary.
This would also give us more experience on how it is to work in a professional setting.
Klimb AS told us that if we are able to complete the task, they will have more then
enough tasks for us in their backlog. This was great since we did not yet know how much
work would be needed to get the application working on Android.

We were also interested to learn about the differences between Android and iOS, since
React Native is supposed to be a cross-platform framework between Android and iOS,
and why the Android version of the application did not work.

1.5 Target Audience

The company Klimb AS already has a user base for their existing application released on
iOS, and are now looking to expand to users with Android devices. Their target audience
is anyone who actively hikes a lot, or spends time walking up mountain tops, and wants
to get feedback on how well they are doing and share this with friends or other hiking
enthusiasts.

Originally all of the text labels in the application were only written in Norwegian, since
their target audience were only users based in Norway. But as they are planning to ex-
pand, possible users in the future may come from any country. So one of our tasks will
be to implement a framework to more easily provide translated text labels in multiple
languages, at least initially in both Norwegian and English.

1.6 Roles

Mariusz Nowostawski Supervisor
Elin Årseth Employer: Owner/CEO
Mette Kristensen Employer: Part Owner
Asetto Capital Employer: Part Owner
Sindre Helelborgås Employer: Project Manager
Magnus W. Enggrav Developer
Adam A. Jammary Developer

3

1.7 Academic Background

Both of the team members have taken the same courses during our Bachelor program
"Bachelor in Game Programming". These courses have provided us some practical expe-
rience with general software programming principles in Object-Oriented languages like
C++ and Java. Courses in Networking, Operating Systems, Databases and Software En-
gineering etc. have mostly provided theoretical knowledge in these fields which helps us
understand how most technology fundamentally works.

Much of our prior knowledge before starting the project has been focused on develop-
ing desktop applications, including games or more service-oriented back-end processes.
We had no prior experience in developing mobile applications, neither natively for An-
droid or iOS, nor using frameworks like React Native which uses the more web-oriented
JavaScript language.

This means that much of our time will initially be spent on learning a new way of think-
ing. Luckily we have a mobile development course running in parallel with the Bachelor
project, which may provide us some insights in to mobile development, and hopefully
we will be able to apply this insight to this project.

We are both looking forward to face new technical challenges, and gain valuable practical
experience on working with technology that is actually used in the industry.

4

1.8 Glossary

Klimb AS

Name of the company we are working for, where Elin Årseth is the owner.

Klimb

Name of the application we are working on.

Codebase

The existing source code used to create the Klimb application.

UI

User Interface, the interface that the user interacts with.

JavaScript

One of the core programming languages used for web development, supported by most
modern web browsers. JavaScript is dynamically typed, which means that it can change
the data type of a variable throughout the program.[1]

TypeScript

TypeScript is based on JavaScript, but it is statically typed, which means that when a
variable has been assigned a data type, it can never be changed later.[2]

Android

An Operating System developed by Google, and is mostly used for touch-based mobile
devices.[3]

iOS

An Operating System developed by Apple, is only used on Apple-specific hardware. Like
Android it is mostly used on Apple mobile devices like mobile phones and tablets.[4]

5

1.9 Document Structure

Chapter 1 - Introduction

Provides a basic understanding of what this project is about and who is involved.

Chapter 2 - Project Management

Explains how we worked during the project, and how we used different tools to keep
everything organized.

Chapter 3 - Alternative Technologies

Looks at some alternative technologies that could have been used instead of React Native.

Chapter 4 - Technologies

Provides a deeper explanation of the technologies used to create this application, how
they work and how they are used.

Chapter 5 - System Architecture

Explains how the different parts of the technology used in this project is organized.

Chapter 6 - Implementation

Goes in to details on how we contributed to the project by implementing features and
functionality.

Chapter 7 - QA - Testing

Explains various testing and debugging alternatives for React Native, and which of them
we found the most useful.

Chapter 8 - Summary

A summary of the project as a whole, the results we achieved, some evaluations and a
conclusion.

6

2 Project Management

2.1 Software Development Methodology - Scrum with XP

In our project plan (see page 55) we chose to go with Scrum [5] as a software method-
ology because it has "more transparency and project visibility" [6]. This was needed
because the task we were given told us that we had to work closely with Sindre Helel-
borgås, the programmer at Klimb AS, and would give both the employer and us a better
understanding of what everyone was working on.

We also wanted to include some parts of XP (Extreme Programming) [7], like pair-
programming. Our plan was to use pair-programming in the beginning of the project
when learning about React Native and how the Klimb codebase is structured. And then
later on split up, and do separate tasks when we are more comfortable with how the
code works. We also wanted to use pair-programming for bigger implementations like
"TutorialManager" 35 or other more complicated issues, to make sure both members
were on the same page when it comes to the logic and reasons for why a specific solution
was the best solution. Working with pair-programming worked out really well for us.

We originally planned to focus more on testing by using "Jest" [8], which is a JavaScript
[1] testing tool. However much of the codebase is using "TypeScript" [2] files, or ".ts"
files, and these are not supported by "Jest" as they cause the tests to fail. It is possible
to import external packages to solve this problem, however this could also cause depen-
dency issues. And due to our time constraints we chose to prioritize fixing existing bugs
on Android instead of possibly introducing new ones.

2.2 Status Meetings and Decision Points

2.2.1 Meetings with employer Sindre Helelborgås

Our plan was to have regular meetings with our employer once a week, on Mondays at
10 AM on Discord [9]. This was something that we followed the first couple of weeks of
the project, when we still did not have a good understanding of the code. After this we
decided to have meetings only when we had questions, needed feedback on something
we had implemented or if there had been some big changes to the application. For smaller
questions we used Discord to communicate and Sindre Helelborgås would answer when
he had time.

7

2.2.2 Meetings with Supervisor Mariusz Nowostawski

We had our first meeting with our supervisor right after our initial meeting with our em-
ployer. We discussed our project and the report, and he suggested writing more about the
process instead of planning too much in detail, as we will not know about the problems
that will arise until later on in the project. During our project we would usually send an
email if we had any questions, this was much faster and more agile than scheduling a
meeting for every little question we had.

2.3 Time Managment

2.3.1 Toggl

We used Toggl [10], an online time management tool, to track the amount of time we
used on the various activities during our Bachelor project. This helped us manage our
time more efficiently, and we got a better overview of our time distribution. This also
helped us improve our estimations on how much time we would spend on an issue. Our
Toggl time is shown in the "Hour Log" 70.

2.4 Task Board

2.4.1 Trello

We decided to use Trello [11] as our Scrum board so that every member of the team,
including Sindre Helelborgås, could keep track of what everyone else was working on.
To be able to track the tasks properly, we labeled all of our commits, as well as the Trello
cards, with the issue number, ex. "9 Internationalization - i18n". We categorized each
issue as either a "task" or a "bug". We labeled the issue as a "bug" for already imple-
mented features which did not work as expected and needed to be resolved. Otherwise
we labeled it as a "task" for features that needed to be implemented.

Figure 1: Trello Board

8

• Product backlog
Shows the features that Klimb AS wanted to have implemented in the app.

• Sprint backlog
Shows the issues that we will work on this week.

• In Progress
Shows the issues that we are currently working on right now.

• In Review (QA / Test)
Shows the issues that are done and waiting for somebody to review it.

• On Hold
Shows issues that are currently "on hold" meaning to they will be fixed later. One
reason for this category can be that somebody is currently working on another issue
that may fix the "On Hold" issue. Another reason may be that some issues are lo-
cated in the same source file, and this is a way to avoid problematic merge conflicts.

• Done Week
Shows what we have accomplished during that week.

2.4.2 Bitbucket Issues

Whenever a member of the team came across a bug, or the project manager wanted a
new feature, they would create a new issue in Bitbucket Issues with a good description
of what the bug or task was, and a screenshot of what was shown on the screen of the
emulator or mobile phone. When a member wanted to work on a specific issue they
would assign themselves to the issue.

Figure 2: List of issues

Figure 2 shows how the Issues list looks like in Bitbucket. As you can see, it provides a
great and clean overview of what the other members are working on, and what priority
they assigned the issue.

9

Figure 3: An example of an issue

Figure 3 shows an example of one specific issue. We tried as much as possible to use
screenshots after making major progress in the issue. We also tried to be as detailed as
possible when making the description, and keeping the issue updated with comments as
we progressed towards a solution.

2.4.3 Bitbucket GIT Repository

Klimb AS used Bitbucket as a GIT repository, and we were already familiar with how to
use Bitbucket from other school projects. We also decided to use a GIT managament tool
called Sourcetree [12] which provides a nice UI, and makes it easier to keep track of
changes, commits, merges and branches. Bitbucket is a great tool for GIT management,
but it could have a better project management integration with Trello, like Github has.
On Github the issues are automatically linked with Scrum cards, that users can move to
show the progression of what they are working on. Github also links commits if you mark
them with "#issueNumber" and they will show up directly in the issue you are working
on. On Bitbucket on the other hand, we had to manually add Trello cards with the issue,
and also copy the link to a commit related to an issue, and paste it in the Bitbucket issue
comment section. Not a big problem, but it was some extra work every time we created
a new issue or commit.

We only worked in a separate repository branch called "android", while our employer
would merge our branch into the master branch after testing it and verifying that it had
no negative effects on the master branch. And when new features were added in the
master branch, that worked on iOS, we would merge it into the android branch, debug
it and get it to work on the Android platform.

10

3 Alternative Technologies

3.1 Responsive Web Design (RWD)

Figure 4: Responsive Web Design

When mobile devices got web browser support, developers could start developing web-
based apps that could be used by any mobile device, independent of the underlying
operating system and CPU architecture. Since physical screens on mobile devices vary,
the web apps could look perfectly nice on some devices, but not perfectly scaled on
others.

So instead of making static or fixed layouts, the responsive web design principle, tries to
make dynamic layouts that adapts to the physical screen size, resolution or orientation.
This is accomplished by using containers that layout their child components proportion-
ally by using relative sizes like percentages instead of hard-coding sizes in static pixel or
point units.

More and more web sites started moving over to responsive web design starting in early
2000, and Ethan Marcotte coined the term Responsive Web Design (RWD) in 2010 "and
defined it to mean fluid grid / flexible images / media queries". [13]

11

3.2 Adaptive Web Design (AWD)

Adaptive web design is an additional design principle, that can be used by itself, but
also in combination with responsive design. What makes adaptive design different, is
that instead of creating one flexible page that handles all the different devices out there,
you create multiple pages that each are optimized for a different mobile device family
or specification. For example, one page for horizontal orientation and one for vertical, or
one for high-resolution and a different one for low-resolution screens, etc.

Responsive design only, or at least mostly, utilizes client-side technology, like modern
CSS and HTML, to detect the features of the current device. While adaptive design uses
server-side technology to query for the most optimal layout and design to use for the
specific device. Each page can use any web design principle available, even responsive
design as mentioned earlier. [14]

3.2.1 Standard Layout

The standard layout consists of making separate pages for different features. For example
for the most common resolutions, screen sizes or device types, like one for desktop and
one for mobile etc. This means that the list of pages may become huge as more devices
come out with a newer feature set.

3.2.2 Responsive Layout

The responsive layout tries to use fewer pages than the standard layout by combining
adaptive and responsive web design. The responsive layout for each page can flexibly
handle orientation changes, while the different adaptive pages can handle the various
device families by choosing the best page layout on the server-side.

3.2.3 Scaled Layout

The scaled layout allows the use of absolute sizes in pixel or point units, because it will
scale the sizes relatively to the size of the viewport automatically behind the scene.

3.2.4 Flux and Zoom Layout

The flux and zoom layout requires the use of absolute pixel or point sizes. It then scales
everything up relatively using scaled layout, and usually only requires two different page
layouts, one for desktop and one for mobile devices.

12

3.3 Progressive Web Apps

The progressive web design approach is to initially design only a simple core feature-set,
that can be used by any device with simple web browser support. Then progressively,
add layers of more complexity for more modern and feature-rich browsers. This allows
everyone to be able to enjoy the most basic but important features of the web app.

A basic markup document is used to define the core feature-set, and web technologies like
CSS and JavaScript are used to add more advanced feature layers. The download process
is also optimized, since extra features are externally linked from the core features, so the
device only downloads the layers that they can support. [15]

3.4 Web vs. Native

With a responsive web app you only need to develop one "version" of your app, and it
will be available to anyone via a modern web browser without having to go through
the process and restrictions of publishing to an app store for each native platform. This
makes the process of development, testing, building and publishing easier and cheaper
than developing a native app.

Even though reaching such a wide audience in such a simple way is a huge benefit, web
apps also have their own drawbacks. The most obvious one is that they depend on an
internet connection. Of course parts of the app can be cached offline, but the app will
not be fully functional without an internet connection.

Another drawback is performance. Native apps can utilize OS-specific (Operating Sys-
tem) optimizations, while web apps fully depend on the performance of the web browser
and on the speed and stability of the internet connection. Both options are improving and
becoming more widely available at a very fast rate.

The UI (User Interface) varies on different Operating Systems, but the UI on web browsers
is (almost) the same across platforms. This means that the user can be disappointed when
the app does not behave and/or look as they expect in comparison with other native apps
on that specific platform.

In addition to the UI being different, many OS-specific features will not be available
via a web browser, or at least they will be much more restricted. Some examples are
push notifications, access to contacts, the calendar or hardware such as GPS, camera etc.
Although many of these features are becoming more available in modern web browsers.

Lastly, security is a major issue, although security is a concern no matter what type of
app you develop and how it is distributed, being available directly on the web means
that the web server needs to be secured. With a native app store, all security concerns
are handled by the company behind the app store, but when distributing directly on
the web, you need to manually keep the web server secured yourself. This means an
additional cost or resource that needs to be taken into account when making a decision
between web and native apps. [16]

13

3.5 Native vs. Hybrid

Developing a native app means that you have to develop a separate codebase for each
native platform, since each platform uses their own programming language, framework,
API, library dependencies etc. But as we previously described, a web app only needs a
single codebase that works with most modern web browsers.

This is where hybrid apps come to the rescue, they allow you to write the codebase in
one common language, like JavaScript or C#, and build the app for several platforms,
while hiding the OS-specific code from the developers.

One of the biggest problem they all face, is how to provide a consistent look-and-feel, and
also how to access all available platform- or device-specific features, because different
platforms and devices vary a lot. They all use different approaches to try and solve this,
and we will now have a look at the most popular hybrid app frameworks. [17]

3.5.1 Ionic

Ionic uses standard web technologies like HTML, CSS and JavaScript, and builds a cross-
platform mobile app for both iOS and Android. What makes it hybrid is that it builds the
app for the native platform, which means the user opens an app installed on the device,
but it is still mostly a web app in regards to functionality and performance.

The programming framework is based on Angular, which is "a JavaScript-based open-
source front-end web application framework mainly maintained by Google and by a com-
munity of individuals and corporations to address many of the challenges encountered
in developing single-page applications". [18]

But it can also provide native features such as geolocation, push notifications, camera etc.
via Cordova, which is "a mobile application development framework originally created
by Nitobi". [19]

What makes Ionic, and most of these hybrid frameworks so powerful and popular, is
the ecosystem around them, consisting of so many developers contributing additional
features, as needed by the community and as new features become available on the
native platforms.

Ionic provides a visual editor called "Ionic Creator" to easily design the UI, and "Ionic
View" to share the app with other users in the community via invitations. [20]

14

3.5.2 Apache Cordova (Adobe PhoneGap)

• "Apache Cordova (formerly PhoneGap) is a mobile application development frame-
work originally created by Nitobi. Adobe Systems purchased Nitobi in 2011, re-
branded it as PhoneGap, and later released an open source version of the software
called Apache Cordova." [19]

• "The software was previously called just ’PhoneGap’, then ’Apache Callback’." [19]
• "PhoneGap is Adobe’s commercial version of Cordova along with its associated

ecosystem." [19]

As you can see above, it’s easy to get confused by the difference between Apache Cordova
and Adobe PhoneGap, but John M. Wargo provides a nice summary:

"Apache Cordova is the current name for the open source project formerly known as
PhoneGap. Adobe PhoneGap is Adobe’s distribution (flavor) of Apache Cordova, with
some extra capabilities added by Adobe.". [21]

PhoneGap also uses web technologies like HTML, CSS and JavaScript, but instead of
locking JavaScript to one framework such as Ionic and Angular, PhoneGap allows you to
use any JavaScript-based framework. [20]

3.5.3 Xamarin

Microsoft’s Xamarin differs from the other frameworks by using C# as the programming
language instead of JavaScript, which in turn is compiled in to native code for the spe-
cific platform. This cross-compilation is provided by the Mono platform. [22] While the
previous frameworks could best be described as web apps running on a native platform,
Xamarin could better be described as actually creating native apps running on a native
platform with all the benefits of performance and native look and feel.

Although Xamarin can take advantage of many native features, they cannot use all of
them. It will take some time from when the native platform releases a new feature in
their API, until Xamarin implements that feature in to their API, which in turn developers
can use in their Xamarin C# codebase. Users can also override shared API, and write OS-
specific code for features that are just too different and too specific for that OS, which
gives developers a lot of flexibility. [20]

15

4 Technologies

4.1 React Native

Klimb AS had already chosen React Native as their hybrid framework, but they had only
developed for the iOS platform and tested on iPhone devices. And as we explained in
the introduction our job was to make the app functional on Android as well. In theory
this should have been pretty straightforward, but this turned out to be more cumber-
some than we expected. We will go more in detail on the challenges later on when we
discuss the implementation details. For now we will talk about the chosen React Native
framework, and explain how it works in general.

4.1.1 React (JavaScript Library)

React Native, like most of the previously mentioned hybrid frameworks, is based on
the JavaScript language, or more specifically the React JavaScript library, also called
"React.js" or "ReactJS" for short. React is used to build large web-applications where data
can change without having to reload the entire page every time something changes. It is
maintained by huge organizations such as Facebook and Instagram, but also by a large
community of developers around the world. [23]

4.1.2 ReactJS vs. React Native

A standard web application uses HTML as the markup language to define the layout and
content of the UI, CSS to style or format it, and JavaScript to dynamically manage it. The
web browser contains the engine that manages the interaction between these elements
and produces the final rendered output, as well other I/O (Input/Output) functionality
between the user and the app.

React uses something they call JSX (JavaScript XML) [24] which is basically a combina-
tion of HTML, JavaScript and CSS and accomplishes the same.

The main difference between ReactJS and React Native, is that ReactJS is a general
JavaScript library which builds a web app that can be viewed in a web browser, while
React Native builds an app that runs natively on an Android or iOS device.

16

4.1.3 Bridging

Figure 5: JavaScript Bridge
[25]

The React Native code is run natively on the device thanks to a feature called "Bridging",
which allows the JavaScript code to communicate with the device processor during run-
time. The React Native project contains a small default project for each platform, one for
iOS and one for Android, which contains the platform-specific code, and the code which
manages the communication between JavaScript and the CPU (processor), as these can-
not communicate directly.

Figure 6: React Native Controls
[26]

Each React Native control maps to a native control. For example, a control which han-
dles button presses will be implemented differently on different platforms. React Native
will for example provide a "react-native-button" control written in JavaScript, and this
control will do all the necessary mapping behind the scenes and communicate with the
correct OS-specific I/O-control. The OS-specific control could be a Java (on Android)
or Swift/Objective-C (on iOS) API function call. Button handling may perhaps be very
similar across platforms, but other functionality like geolocation or networking may be
implemented very differently. To summarize, React Native bridging provides a very nice
abstraction layer for developers.

17

4.1.4 Building

Figure 7: React Native Build Process
[26]

After setting up all the necessary dependencies and build environment, the developer
can build the project by running a simple command "react-native run-ios" or "react-native
run-android". This command will start the NodeJS web server [27] which will handle the
JavaScript code and provide debugging information, then it will build the native Android
or iOS project, and finally deploy it to the device using the Gradle build system. [28]

When running this command, it will not deploy an APK (for Android) or IPA (for iOS)
package to the device, it deploys a bundle. Which means the device needs to retain a
connection between the device and the NodeJS web server while debugging. When the
connection drops, the command needs to be run again to re-deploy the bundle and re-
establish the connection. When the app is ready for deployment, the packages can be
manually created by running the Gradle tool with various options.

4.1.5 Reloading

React Native also provides a really nice debugging feature which, in theory, will save
developers a lot of time, but in practice may cause a lot of strange caching issues that can
waste a developers time. This feature is called "Reloading", which will only change the
JavaScript code that has been changed after the last build, and since JavaScript does not
need to be compiled, the app should, in theory, just refresh and run the newly updated
code. [26]

18

4.2 Project Dependencies

Dependency Version Description
babel-core 6.26.0 Babel compiler core
babel-jest 22.2.2 Simple testing configuration for React Native with

Jest
babel-preset-react-
native

4.0.0 Babel presets for React Native applications

create-react-class 15.6.3 A drop-in replacement for React.createClass
jest 22.3.0 JavaScript testing framework
prop-types 15.6.0 Runtime type checking for React props and similar

objects
react 16.2.0 An npm package to get immediate access to React,

without also requiring the JSX transformer.
react-native 0.53.0 React Native lets you build mobile apps using only

JavaScript
react-native-
background-
geolocation

2.11.0 Background location-tracking and geofencing mod-
ule with battery-conscious motion-detection intelli-
gence

react-native-
camera

0.12.0 The comprehensive camera module for React Native

react-native-fbsdk 0.7.0 React Native FBSDK is a wrapper around the iOS
Facebook SDK and Android Facebook SDK

react-native-i18n 2.0.11 Integrates i18n (internationalization) with React Na-
tive

react-native-image-
gallery

2.1.5 A pure JavaScript image gallery component for React
Native apps

react-native-
keyboard-aware-
scroll-view

0.4.3 A ScrollView component that handles keyboard ap-
pearance and automatically scrolls to focused Tex-
tInput

react-native-maps 0.20.1 React Native Map components
react-native-md5 1.0.0 Native JS function for hashing messages with MD5
react-native-svg 6.1.4 Built to provide a SVG interface to react native
react-native-swipe-
gestures

1.0.2 React Native component for handling swipe gestures

react-native-swiper 1.5.13 Swiper component for React Native
react-navigation 1.0.3 Extensible yet easy-to-use navigation solution based

on Javascript
react-native-
typescript-
transformer

1.2.3 Seamlessly use TypeScript with react-native

react-test-renderer 16.2.0 Experimental React renderer that can be used to ren-
der React components to pure JavaScript objects

rxjs 5.5.6 Reactive Extensions Library for JavaScript
typescript 2.7.1 Language for application-scale JavaScript, adds op-

tional types, classes, and modules to JavaScript.
util 0.10.3 node.js util module as a module
whatwg-fetch 2.0.3 Promise-based mechanism for programmatically

making web requests in the browser

[29] NPM Package Search (npmjs.com)

19

4.3 Package Managers and Build Tools

4.3.1 Node.js 7.10.1 med NPM 4.2.0

Node.js is a JavaScript runtime built on Chrome’s V8 JavaScript engine. Node.js uses an
event-driven, non-blocking I/O model that makes it lightweight and efficient. Node.js’
package ecosystem, npm, is the largest ecosystem of open source libraries in the world.
[30]

4.3.2 Yarn 1.3.2

Yarn is a new package manager that replaces the existing workflow for the npm client or
other package managers while remaining compatible with the npm registry. [31]

4.4 IDE (Integrated Development Environment)

4.4.1 Visual Studio Code 1.19.2

Visual Studio Code is a source code editor developed by Microsoft for Windows, Linux
and macOS. It includes support for debugging, embedded Git control, syntax highlight-
ing, intelligent code completion, snippets, and code refactoring.[32]

4.5 Emulators and device testing

4.5.1 Android Studio 3.0.1 for Windows

Android Studio is the official integrated development environment (IDE) for Google’s
Android operating system, built on JetBrains’ IntelliJ IDEA software and designed specif-
ically for Android development.[33]

4.5.2 Android Emulators (run through Android Studio)

• Nexus 5X x86 - Android 8.1 - API 27 - 1080x1920
• Nexus 6 x86_64 - Android 6.0 - API 23 - 1440x2560

4.5.3 Android Devices (our own Android devices)

• Samsung Galaxy S6 edge (SM-G925F) - Android 7.0 - API 24 - 1440 x 2560
• Samsung Galaxy S7 (SM-G930F) - Android 7.0 - API 24 - 1440x2560

20

5 System Architecture

5.1 Authentication using Facebook SDK

Figure 8: First time authentication

Figure 8 shows how the application does first time authentication using Facebook SDK.
First, the phone will check if any tokens [34] are stored locally on the phone and if they
are still valid, meaning the timestamp has not expired. If no tokens exist, it means that
this is the first time starting the application, and it will request a Facebook authentication
page using the Login Manager from the Facebook SDK.

The user will then log in with their Facebook account (email and password) and receive
an access token, which consists of a client ID and a client secret key. These are then stored
locally on the phone and on the AWS (Amazon Web Services) back-end server, and the
user is now authenticated and will receive user data from the AWS server.

21

Figure 9: Authentication when token is expired

Figure 9 shows how the authentication is done when the application starts, and the phone
already has a token saved locally but the timestamp has expired. The phone will start by
requesting a token update from the AWS server, and the server will then request a new
token from Facebook using the previously stored client ID and secret key. Facebook will
then send the new access token to the AWS server, the server will then update its existing
local token and pass the token on to the phone, which saves it locally. This happens in the
background so the user does not have to log back in again with their email and password
after the first initial login.

Figure 10: Authentication when token is valid

In figure 10, the phone will check if it has a token stored locally, and if the timestamp is
still valid. If the token exists and is valid, the user is authenticated and will receive user
data from the AWS server.

22

5.2 Services

Services are background processes that the user never sees, they handle the server inter-
actions, the local data storage and general data processing, before passing them on to
the components to be displayed.

Observer Pattern

Figure 11: Observer Pattern
[35]

The observer pattern is a well-known software design pattern mostly used when devel-
oping services or other back-end logic. The pattern involves one object called the subject
which manages a list of other objects called observers. The observers start by subscribing
or registering with the subject.

In a normal client-server pattern, the observers (clients) would have to query the subject
(server) every time they wanted something. In the observer pattern however, it is the job
of the subject to notify all of its observers whenever a change in the state has happened,
and the observers need to update their local states.

It is the most used pattern in web applications based on the MVC (Model-View-Controller)
design pattern [36], and in event management systems used in various UI and Window-
based frameworks.

The event management system for example runs separately from UI rendering, and
whenever it detects a button press or some other event, it notifies registered listeners
about the event, and the listeners can in turn take an action based on the event. [35]

23

src/services/TokenService.ts

This example will describe step by step how the Token service works. And how the
"MainPage" component (src/components/MainPage.js) subscribes to this service.

Figure 12: TokenService initialization

As figure 12 shows, all the services are initialized in the "Klimb.tsx" file.

1 this.token = new TokenService();

"src/Klimb.tsx" then sends the service as a prop to the "KlimbNav" component, which will
send the services further down the chain to the components that need them. "MainPage"
now subscribes to the "TokenService" in its own "componentWillMount()" function, and
passes it on to the "onNext" callback function. The callback function in this case is the
"onTokenStatus()" function in "MainPage". "MainPage" then pushes the service to a local
subscriptions array like so:

1 subscriptions = [];
2 componentWillMount() {
3 this.subscriptions.push(
4 this.props.screenProps.service.token
5 .subscribeToTokenStatus(this.onTokenStatus)
6);
7 }

In "TokenService.ts", the Token Service subscribes to the Behavior Subject named "token-
Status", and passes on the callback function (onNext/onTokenStatus) it got from Main-
Page.

1 this.tokenStatus = new BehaviorSubject(TokenStatus.Loading);
2

3 subscribeToTokenStatus(onNext: (value: TokenStatus) => void) :
4 Subscription {
5 return this.tokenStatus.subscribe(onNext);
6 }

24

Figure 13: TokenService when receiving updates

Figure 13 shows what is happening when "TokenService" receives updates.

1. Receives updates from the AWS server.
2. "TokenService" calls the "next()" function of "BehaviorSubject" with a new state

variable. ex:

1 this.tokenStatus.next(TokenStatus.Loading);
2 this.tokenStatus.next(TokenStatus.Valid);
3 this.tokenStatus.next(TokenStatus.None);

3. "BehvaiorSubject" then emits the updated state to all its subscribers, which in this
example is "TokenService".

4. "TokenService" will then update all of its subscribers, which in this example is
"MainPage". "MainPage" will then call its own registered "onNext" function, which
in this case is the "onTokenStatus()" function, which takes in the new token state
as a parameter. ex:

1 inLogin = false;
2

3 onTokenStatus(tokenStatus) {
4 if (tokenStatus === TokenStatus.None && !this.inLogin) {
5 this.inLogin = true;
6 this.props.navigation.navigate('LoginPage');
7 }
8 }

25

5.3 Components

A component is the view that is displayed on the screen for the user to see or interact
with.

Figure 14: Component example for the Klimb application

26

5.4 Internationalization

5.4.1 Localization (i10n)

"Localization refers to the adaptation of a product, application or document content to
meet the language, cultural and other requirements of a specific target market (a locale)."
[37]

As we can see from the W3C definition, localization means much more than just trans-
lating text from one language to another, it includes customizing the entire application
to the target culture.

This can include well-defined, but not trivial, things like how decimal numbers, dates,
times, currencies etc. are written or separated, like commas, dots/periods, spaces, hy-
phens, forward/back-slashes etc.

But it can also include less defined things that are specific to each culture, like symbols,
icons or even colors. In some cultures, certain colors can refer to things like death or
happiness, and using the wrong colors in the wrong context may not provide the expected
result. Certain countries even have legal prohibitions against certain images, words or
topics.

As we can see, localizing an application requires much more work than just direct trans-
lation, even direct translation may not work if the culture or hidden implications are not
taken in to account. Localization would require hiring experts in the culture or cultures
you are trying to target, including linguists, lawyers etc. [37]

5.4.2 Internationalization (i18n)

"Internationalization is the design and development of a product, application or doc-
ument content that enables easy localization for target audiences that vary in culture,
region, or language." [37]

Again, as we can see from the W3C definition above, even the word internationalization
entails more than just translating the text to multiple languages. One could say that
internationalization is the actual process of localizing the application.

In this report we will refer to internationalization as having a framework in place to
easily being able to add multiple text translations by non-programmers, without having
to access the source code.

27

5.4.3 react-native-i18n

We had the choice between developing an i18n framework from the grounds-up, or see
if there already existed a package that handled internationalization for the React Native
framework. To avoid re-inventing the wheel, we started by searching for existing i18n
packages, and found the package "react-native-i18n" by "AlexanderZaytsev". [38]

We started by following the installation instructions, but unfortunately the automatic
setup did not work on our existing solution. The "link" command which is supposed to
link all the dependant libraries to the native iOS and Android projects failed to do so. We
had to instead manually link the libraries, and fortunately enough, the documentation
was very detailed and gave clear steps on how to achieve this for both native platforms.
Our employer who is responsible for the existing iOS platform performed the manual
linking on iOS, and we linked the library on the Android project.

src/i18n/i18n.js

We created the main i18n entry-point (src/i18n/i18n.js) which manages which language
should be used based on the regional locale settings of the device. Norwegian contains
two variations, "Bokmål" and "Nynorsk", and in addition there is a general abbreviated
name called "no". So we added a fallback for "nb", "nn" and "no" to point to the same "no"
file. But if the company decides to create separate translations for "nb" and "nn", they can
easily just link to each file sparately.

1 import I18n from 'react-native-i18n';
2 import nb from './locales/no';
3 import nn from './locales/no';
4 import no from './locales/no';
5 import en from './locales/en';
6

7 I18n.fallbacks = true;
8

9 I18n.translations = {
10 nb,
11 nn,
12 no,
13 en
14 };
15

16 export default I18n;

28

src/i18n/locales/*.js

We then created separate locale files for each language we currently support, for now
these are English and Norwegian, so we added "en.js" and "no.js" to the "locales" sub-
directory. Even though the files are JavaScript files, and contain "programming" syntax,
they are separate from the logical source code. It should be easy enough for a non-
programmer to later on add another language by copying an existing file, and adding
more translations by using the existing content as a template.

1 import I18n from "../i18n";
2

3 export default {
4 ...
5 component: {
6 header: 'Header text in local language',
7 content: 'Content text in local language ...',
8 },
9 ...

10 };

src/components/component/*.js

The next and final step was to replace existing static text strings with references to the
i18n localized content. This means that each component that wants to use i18n must first
import the package:

1 import I18n from '../../i18n/i18n';

then, reference the content in the localized i18n files (en.js, no.js etc.) by replacing the
existing code:

1 <Text>Header text - one specific language</Text>

with new code:

1 <Text>{I18n.t('component.header')}</Text>

It was nice to find an existing package that worked and provided the results we were
expecting. Now, the application is ready to be translated to as many languages as our
employer wants, which also means they can target a more international audience
instead of being limited to only Norwegian-speaking users as they were before.

We have to mention that the i18n package does not handle any of the more advanced
parts of localization as described previously such as cultural customization, it only han-
dles direct translation of text, which is exactly what we were looking for.

29

6 Imlementation

6.1 Fixing UI Problems - Android vs. iOS

Figure 15: Left: UI problem on Android. Right: UI problem resolved.

One of the first issues we came across, was that the UI rendering is handled completely
differently by Android compared to iOS. For example, much of the existing UI design
was based on some components overlapping other background components. As shown
in Figure 15, the purple and black buttons with the plus sign on the left figures are
supposed to look like the buttons on the right figures.

This is easily accomplished on iOS by using the "overflow" style property as described by
the official React Native documentation: "overflow controls how children are measured
and displayed. "overflow: ’hidden’" causes views to be clipped while
"overflow: ’scroll’" causes views to be measured independently of their parents main
axis." [39]

The above quote is from the documentation as per version 0.46, and it did not mention
any problems or differences with how the "overflow" style property worked on the An-
droid platform compared to the iOS platform. The documentation implied that it should
work on both platforms, since React Native is per definition a cross-platform framework.
This means that we spent a lot of time trying to get it to work as expected.

But after looking through dozens of forums with frustrated developers telling the same
story: "it works perfectly fine on iOS but not on Android", we concluded that it was time
to find an alternative solution for Android, and hope it would not break the UI on iOS.

The problem is that Android cannot draw components outside of its parent component,
so the solution is to wrap all the involved components inside a new parent component
with a much bigger size that will fit all the components.

30

By making the background color of the parent transparent, it will not be visible, and if
positioning becomes a problem, we can force the position by using absolute instead of
relative positioning. Another issue that comes up is deciding which component should be
rendered above other components, this is solved by setting the "zIndex" style property.
[40]

The official React Native documentation was updated after version 0.47, and now it
specifically mentions the problem between Android and iOS: "overflow: visible only
works on iOS. On Android, all views will clip their children." [40]

Most of the issues we had in the first part of the project were UI issues like the example
above, where the existing UI design relied on overflowing the parent component since it
worked perfectly fine on the existing platform (iOS).

We used a combination of the above mentioned techniques, wrap in a bigger and trans-
parent parent component, test absolute vs. relative positioning and setting a higher z-
index to force it to render over other components with a lower z-index.

6.2 Navigation UI

6.2.1 Fixing the navigation UI

The navigation UI was one of the first issues that we worked on before we had gained
any experience in React Native. Just as a side-note, the map is not displayed on some of
the images below due to emulator issues, the map was displayed correctly on a physical
mobile device.

Figure 16: Right to left: Android navigation UI before we started, compared to the iOS.

31

The first problem was that the navigation UI did not look like it did on iOS, see Figure 16.
This was caused by the fact that Android does not support the ’overflow’ style property,
and that the parent view on Android clips the view of its children components if they
are outside the scope of the parent view. However, this was not yet in the official React
Native documentation when we started working on this issue. So it took us some time to
figure out that this was the case.

Figure 17: Left: Navigation UI when moving action-menu out of the navigation bar.
Right: Displaying action-menu above navigation UI.

The first thing we tried was changing the z-index and setting the parent with the
"position: ’absolute’" property in hope that the button would then render above the
map. But sadly this did not work either. We then changed the size of the navivigation
UI to cover the whole screen, this caused everything to look good, but we were not able
to interact with anything except for the navigation UI, since we were not able to click
through a view. The solution we found later was using this view component property
"pointerEvents = ’box-none’", this made us able to click through the view and interact
with the underlying views.

The next thing we tried was moving the entire action-menu (the purple button in the
middle shown on the right in Figure 17) out into "MainPage", so that it would render
as a sibling of the "KlimbMap" component (src/components/map/Map.js), and would be
displayed on top of the map instead of underneath it. However doing this caused the
rest of the buttons in the navigation UI to not display as they should, see Figure 17. The
solution was to add an empty view with the same size as the action-menu we removed,
so that it filled the void space when rendered.

32

After this was fixed, the navigation UI looked like it should. There were still some smaller
style properties that we needed to change to make the buttons and text look good, but
we always made sure to use platform checks if we thought our new values would cause
problems on iOS.

1 ...Platform.select({
2 ios: {
3 zIndex: 100
4 },
5 android: {
6 zIndex: 200
7 },
8 });

Now the navigation UI and the action-menu looked good, but the action-menu items (the
buttons that show up on the screen when pressing the action-menu, shown on the right
in Figure 18) did not display as they should.

Figure 18: Left: Navigation UI unable to display items when action-menu is pressed.
Right: Displaying items correctly.

Displaying the action-menu items was solved by increasing the size of the view. But
we still had some minor problems that the action-menu items view was overlapping
other buttons in the navigation UI, this is when we discovered what we could use
"pointerEvent=’box-none’", which made us able to click on the buttons underneath.

If we had known about this earlier we could have spared ourselves a lot of time and not
moved the entire action-menu outside the navigation UI. This was fixed later by Sindre
when Klimb AS wanted to change the action-menu items to be more descriptive using the
solution of giving the navigation UI a bigger part of the screen as view size, and adding
"pointerEvent = ’box-none’".

33

6.2.2 UI change

Halfway through our project, Klimb AS decided that they wanted to do some changes to
the UI, one of them was making the action-menu items more descriptive. We got some
images from Klimb AS with the new design that showed us what they wanted the new
action-menu items to look like.

Figure 19: Left: UI before changes.
Right: After changes.

We started by creating a new "ActionMenuItem" class (src/components/nav/ActionMenu-
Item.js) that would display the new buttons as shown in Figure 19. We also thought it
would look good if we added an animation when pressing the action-menu button, so
that if the button was pressed, a view containing the new menu item buttons would ap-
pear from the bottom of the screen, animating together with the rotating action-menu
animation. Since some of the animation values and structure was already set up from the
previous "ActionMenuItem" class, it was not that hard to achieve.

We also had to implement which buttons would be displayed where, based on the activity
the user was in, or what screen the user was currently in. The button functionality was
already implemented from the previous action-menu items, so we just reused the same
methods by mapping them to the new buttons.

34

6.3 Independent Task - Tutorial Popups

6.3.1 Task description

The app had an existing introduction tutorial that started the first time a user logged in,
the tutorial had some pages describing the general use of the app. Our employer wanted
in addition a system that could show a small popup with information describing a specific
feature on a page.

This popup should only be displayed the first time a user visits a page, and then hidden
the next time they visit that same page. They should also have the possibility of resetting
the popup visit-state in Settings to make the popups appear again in case they forget the
instructions, or just want a refresher.

6.3.2 Discussion

We started by trying to get a better understanding of the existing system architecture, like
how all the components and services worked together. After gathering some information,
we started discussing some alternatives for where to start.

• How should the popups be managed?
• By each component?
• By a service, a manager?

Option 1

1 <Popup pos="x, y">
2 <Button id="id1" ... />
3 </Popup>

Option 2

1 <Popup pos="x, y", ...>
2 <View><Text /></View>
3 </Popup>

Option 3

1 <Popup id="pop1" pos="x, y">
2 <PopupButton id="popItem1_1" ... />
3 </Popup>
4 <Popup id=pop2 pos="x, y">
5 <PopupButton id="popItem2_1" ... />
6 <PopupButton id="popItem2_2" ... />
7 </Popup>

35

Option 4

1 PopupService popupService = new PopupService();
2 <Popup ...>

We decided to try out option 3 first, as this option made the most intuitive sense. And
maybe try to combine with a service or a manager later as in option 4, so we can store
the state of the popups so they stay hidden the next time the page is visited.

After researching for existing React Native solutions that could provide the features we
wanted, we thought we could use React Navigation [41] for navigating between child
popups, so that we have a main popup bubble which has multiple popup items (children
or pages) that could appear in sequential order. We could also use React Native Async-
Storage [42] to store the visited state of the pages and popups locally on the device.

We also didn’t know how the popups should appear.

• Should they appear automatically when the page loads?
• Have a tutorial icon somewhere on the page?

◦ The user has to click the icon to see the popup tutorial?

• Override the click event trigger of the target?

◦ Make it show the popup on the first click?
◦ And then do what it’s actually supposed to do on the next click?

Another unknown was how to link the tutorial popup to the part of the page it was trying
to describe.

• Have an arrow pointing in the direction of the target component?
• Gray out the background with a transparent color?
• Highlight the target component with a circle or some visual queue?

36

6.3.3 Solution

Figure 20: Tutorial Manager class diagram

src/components/popup/TutorialManager,js

The Tutorial Manager manages all the popups for the entire app. We started by letting
each component do some of the management, but started moving more and more over
to the manager to avoid code duplication in various places in the code.

To add a new popup, one starts by adding it to "popupBubbles" (a map data structure) in
the "initPopups()" method, "popupBubbles" then maps a unique identifier to a "<Tutori-
alPopup>" UI component.

1 this.propTypes.popupBubbles.set(
2 TutorialKeys.MAIN_PAGE,
3 [
4 <TutorialPopup>
5 <TutorialPopupItem />
6 <TutorialPopupItem />
7 </TutorialPopup>,
8 <TutorialPopup>
9 <TutorialPopupItem />

10 </TutorialPopup>
11]
12);

src/config/TutorialKeys.js

Every page that will show a tutorial popup needs to have a uniquely identifiable key
registered in "TutorialKeys", we decided to use the filename to make management easier.

1 export const enum TutorialKeys {
2 MAIN_PAGE = "MainPage",
3 SOCIAL_PAGE = "SocialPage",
4 RUN_PAGE = "RunPage",
5 CAMERA_EDIT_FRAME = "CameraEditFrame",
6 MAP_CARD = "MapCard"
7 }

37

TutorialPopup.js and TutorialPopupItem.js (src/components/popup/)

Figure 21: TutorialPopup view

"TutorialPopup" represents the popup bubble which can contain one or more popup
items. The items are the content within the surrounding bubble, each item also rep-
resents a page within the bubble, and one can navigate to the next page, if it exists, by
clicking on the next arrow.

When there are no more items or popup bubbles left, "TutorialPopup" will let "Tutorial-
Manager" know, and "TutorialManager" will update the state of the popup. When the
component page tries to request a new popup after this, "TutorialManager" will return a
"NULL" object which means it will not be rendered.

We chose to gray out the background to make the popup bubble more visible, and we
chose to display an arrow towards the target component to highlight which feature of
the page we are trying to describe. The position and size of the popup, as well as the
arrow, are handled by "TutorialPopup".

38

Component Page - For example src/components/MainPage.js

The component page that will show a popup needs to start by importing "TutorialMan-
ager" and "TutorialKeys".

1 import TutorialManager from './popup/TutorialManager';
2 import {TutorialKeys} from '../config/TutorialKeys';

Then we need to link the page to the popup, this would not be necessary if the popups
were managed by each page, but since we decided to move management to "TutorialMan-
ager", we need to manually link the page instance to the unique page ID in "TutorialKeys"
when the component mounts.

1 componentWillMount() {
2 TutorialManager.addParent(TutorialKeys.MAIN_PAGE, this);
3 }

The popups are now ready to be rendered to the screen, and to achieve this we need to
ask "TutorialManager" for the popup belonging to this page.

1 render() {
2 <View>
3 {TutorialManager.getPopUp(TutorialKeys.MAIN_PAGE)}
4 </View>
5 }

39

7 QA - Testing

7.1 Debug Developer Menu

Figure 22: Debug Developer Menu

React Native provides a nice debugging tool while developing, and the debug developer
menu can be accessed by:

1. Shake Gesture - Either physically shake the device, or send a "Shake Gesture" to
the emulator.

2. Keyboard Shortcut - Send the CTRL+D (Command+D) to the iOS emulator or
CTRL+M (Command+M) to the Android emulator.

3. Key Event - Only on the Android emulator, run the command "adb shell input
keyevent 82".

[43]

40

7.1.1 Reload

Manually reloads only the JavaScript code, which can be replaced during run-time with-
out having to be re-compiled. This can also be called directly by double-tapping the R
key on Android emulators, or sending the "Command+R" keyboard shortcut to an iOS
emulator. [43]

7.1.2 Enable Live Reload

If Live Reload is enabled, it will automatically try to reload the JavaScript code as de-
scribed above whenever it detects that the code has changed. [43]

7.1.3 Hot Reload

When reloading the JavaScript code, the app may reset the state if the code change affects
too many files. For example, if you have navigated in to a menu, and maybe further in
to a sub-menu, then reloading may send you back to the home page and you have to
manually navigate back to the sub-menu.

Hot Reloading tries to solve this by keeping the app state as it was before the reload
operation. Reloading only works for JavaScript code of course, so if resources have been
added or native code has been changed, it will make a full reload by resetting the state
of the app. [43]

7.1.4 Remote JS Debugging

Figure 23: Remote JS Debugging

41

You can also attach remote JavaScript debuggers, one of the most used one is the web
browser Developer Tools. Although most tutorials will mention the Chrome browser
specifically, this will work with most web browsers that have some sort of Developer
Tools built in.

The React Native debugger is accessed via http://localhost:8081/debugger-ui/ lo-
cally on the development host, the Developer Tools are usually accessed with the F12
keyboard key or via the Tools menu (if the browser menu is hidden, you press the ALT
key in most browsers).

The Sources tab will provide a hierarchical list of all the source files on the left side. And
on the right side you can, as in most debugging environments, watch the variable values,
the call stack, the scope, the breakpoints etc. [44]

7.1.5 Inspector

Figure 24: Debug Inspector
[45]

The Inspector will run on the device or emulator as a transparent overlay over the app
UI, and provides a nice way to inspect different UI components in real-time on the actual
device. When tapping on different UI components, the Inspector will provide detailed
information on the state of that component.

It can also show information about network traffic, which is useful when trying to access
online resources over a network such as the internet. The Inspector works the same way
in the web browser Developer Tools, but shows the details in the browser instead of on
the device. [43]

42

http://localhost:8081/debugger-ui/

7.1.6 Perf Monitor (Performance Monitor)

The Performance Monitor will display a transparent UI layer in the top-right corner with
details about the UI performance on the device, like for example the frame rate in FPS
(Frames Per Second). It even separates between the frame rate of what the JavaScript
code requests and what the UI actually displays, with additional details about frame
drops. This information is especially useful when developing graphically intensive apps.

7.2 Console Log

In addition to React Native specific debugging tools, most modern web browsers provide
a way to log some information to the web browser console. [46]

7.2.1 Console.log()

Prints out information without any specific severity level, usually displayed with the
default text color without any special formatting.

7.2.2 Console.warn()

This will use the Warning severity level, which may sometimes be formatted with a yellow
or orange color. Even when no formatting is used, the warning messages can be filtered
by severity level to filter out non-warning messages. With React Native it will in addition
to printing to the console, also display a yellow non-transparent full screen with the
warning details, React Native calls this a YellowBox. [43]

7.2.3 Console.error()

This will use the Error severity level, which may sometimes be formatted with a red
color. Even when no formatting is used, the error messages can be filtered by severity
level to filter out non-error messages. With React Native it will in addition to printing to
the console, also display a red non-transparent full screen with the error details, React
Native calls this a RedBox. [43]

7.3 Debugging

Our most used method for debugging was "console.log()" for locating the problem when
the react-native debugger did not work. We also used it to see the content of variables,
and to figure out how the code worked and when states where changed. It took us some
time, but after a while we found out that we could use
"console.log(JSON.stringify(variable))" to see the content of objects. React Native
debugger was also very helpful to locate problems and errors, when it worked correctly.

43

For the UI, we used style properties like "borderWidth" and "borderColor" to see how
much space a specific view occupied on the screen, or if it was outside its scope (parent
view). It also came in handy when placing and setting sizes of new UI components.

Positives

• When the debugger was working correctly and displayed the actual stack-trace of
which file and line number the error was located.

• "console.log()" helped us a lot to locate the problems we were looking for when the
debugging tools did not work properly.

• Double-tap R to refresh changes in the code so we did not have to build the entire
project every time.

• When Live Reloading worked as it should, and displayed the changes without hav-
ing to reload the project every time.

• The option to wipe the emulator to run a fresh installation of the application.

The usage of "borderWidth" and "borderColor" in styles, helped us to see the outer lines
of the view we were currently working on. They made it easier to see why the rendering
was wrong and where they happened in the code, ex:

1 const styles = StyleSheet.create({
2 container: {
3 borderColor:'red',
4 borderWidth: 2,
5 },
6 },

Negatives

The React Native debugging tools gave us more problems than solutions, and did not help
us locate various problems. This was especially frustrating if random crashes occurred.

Reloading did not always work because of various caching issues, so it was not always
clear if the changes we had made got displayed on the screen. This took up a lot of time
when we wanted to change a position or a size on a view, and we were not sure if the
new changes had been applied. Because of this, we often had to rebuild the project, or
worse, wipe the emulator clean and install the application again.

When using "console.log(object)" to print out an unknown variable, it would only
display the memory address of the object if it was not "NULL", and not the actual content
of the object, like the type, member variables, member methods etc. However we did
find a nice solution to this, as mentioned before, we could use
"console.log(JSON.stringify(object))" to display the entire content and all of its
content.

44

8 Summary

8.1 Results

8.1.1 Porting to Android

The main goal of the project was to port the existing Apple iOS-specific app to the Google
Android platform for our employer Klimb AS. The existing codebase was already written
using the React Native framework which was supposed to provide cross-platform func-
tionality between iOS and Android, but the app was developed on, and had only been
tested on the iOS platform.

While working on the project, our employer decided that it would be better to change a
lot of the current architecture, and move more of the functionality out into services. This
was something that we needed to adapt to.

Our main focus while working on the project was to fix bugs that appeared on the An-
droid version, and get the application to work on Android without crashing, and make
the functionality work as expected, like it does on the iOS version. Also to make the
Android version look and feel as similar to the iOS version as possible.

Architectural Changes and Issues

After big architectural changes were made, Klimb AS decided that they wanted to do
more changes to the UI and some of the general functionality of the application. These
changes were also needed on the Android version, and gave us an opportunity to add
new features to the app that was not already implemented, instead of just debugging
existing code.

The consequences of porting the application from iOS to Android, while the main iOS
application was still under constant development, resulted in us constantly having prob-
lems and issues to resolve after merging between branches.

Some of the issues we were working on turned out be partly, or even sometimes com-
pletely irrelevant after having resolved them. This is because while we were trying to fix
some issues on Android, at the same time, our employer had internal meetings without
us where they discussed major changes to both the UI and general functionality which
sometimes overlapped with what we were fixing.

45

Most of the times these changes did not overlap, but sometimes they did have a direct
connection and overlapped with what we were working on. This could have been avoided
if we were part of their internal meetings, or at least if we were informed of the decisions
made during those meetings, at least the one that had an impact on our work.

Another issue is that the iOS app was continually being developed while we tried to make
the Android app function based on the original version of the iOS app. Since we had no
iOS device to test on, we had to make our own assumptions based on screenshots of the
original iOS app, and ask our employer if certain functionality still existed in the new
versions of the iOS app. If the development on the iOS app had been paused until both
platforms were ready, many of the issues could possible have been avoided.

8.1.2 Internationalization

The original app was not available to an international market, and all the text labels
were statically written in Norwegian. As part of our project, we decided to implement
a framework for internationalization, or at least to easily and dynamically provide text
labels in different languages.

We implemented an i18n package, and translated all the existing text labels to English.
This would at least provide a default fallback to English for international users, and a
Norwegian interface for Norwegians. It is now also very easy to add other languages
because of the i18n package, all translations are done in separate files instead of being
tightly integrated with the source code.

8.1.3 Platform-Specific Code

One of our goals was to use as little platform-specific code as possible, and rather make
both platforms (iOS and Android) share most of the codebase. We achieved this to an
extent, but some things just did not work the same for both platforms. These differences
were not properly documented when we started, but have been added to the official
documentation later on.

React Native provides a nice interface for making platform-specific code by just writing
a simple if-check in the JavaScript code for if the platform is "android" or "ios". We wrote
platform-specific code for differences where the platforms basically behaved differently,
and there was no way to write shared code for both platforms. Even though we made
platform-specific code, it was kept to a minimum, most often it was just a couple of lines
of code.

Some examples include how to define a font name, by title or by file name, how the
height of the display is calculated, where one platform includes the top status bar as part
of the height, and the other does not, or if UI components can be drawn outside of their
parent component or not etc.

46

8.1.4 Learning React Native

Another goal was to learn how to use the React Native framework for mobile devel-
opment, as it is widely used in the industry. We had no prior experience with neither
front-end development using a JavaScript-based framework, nor with native develop-
ment using Java for Android or Swing/Objective-C for iOS.

Although the learning curve was quite steep by going from no experience, it was at the
same time very exciting to face this challenge which has prepared us for employment
after our studies. This has also provided us with a basic and general foundation which
will make it much easier to learn new relevant frameworks like Agile and React for web
development without having to learn everything from scratch.

8.2 Further Development

We have resolved all the specific issues we found while testing on both Android emulators
and physical mobile devices. We have no way of verifying that our solutions have not
broken the iOS release. We have always made sure to ask our employer if everything is
still working on iOS after making our changes and merging our android branch with the
master and/or iOS branch, and the reply has always been that everything is still working.

The remaining issues we have in the product backlog (Appendix D) are more vague
and only occur randomly, so it is difficult to know if they are actual issues, or if they are
related to the debug environment. We often had issues that were resolved after restarting
the development machines or wiping the emulators etc. Since the debug environment of
React Native and the nodeJS server is pretty complicated, there will always be caching
issues that resolve themselves after a restart of the system.

Our employer has full access to all the remaining issues on BitBucket and Trello, and we
have informed them that they need to fully test with a release version on real mobile
devices. We have not heard about any final plans to release the product on Google Play
Store, but they seemed optimistic to release an Android version as soon as possible.

Releasing on Google Play Store requires a paid developer account, creating a project on
the Store and linking a release encryption key between the local developer machine and
the online project. They are currently in the process of transferring ownership of the iOS
app on the Apple Store from the external developers that originally developed the app
to their in-house developer. We assume that they will handle release preparations for the
Android platform after completing the transfer of ownership for the iOS platform.

They were also in the process of coming up with ideas for how to make money on the app,
and one of the ideas was to have sponsors pay them money for putting their company
name or logo in the app. For example when getting details about a hill or mountain peak,
a possible sponsor could be a travel agency or something similar who provides services
or arranges activities near that hill. We are not sure if this idea will be in the next release,
or if it will be available in a future release instead. But it definitely sounds like a great
idea.

47

8.3 Group Evaluation

The group dynamic was great this entire project, we already had a lot of experience
working together on other projects from other classes. All discussions were constructive,
and we did not experience any major conflicts that we could not resolve ourselves. We
also never experienced any problems of data loss or technical problems that could have
sabotaged our project.

We had fixed routines to meet at school, and work together on Mondays, Tuesdays and
Wednesdays at 10 AM, this made it a lot easier to communicate and decide how we would
delegate new issues that appeared. Since our group only consisted of two members we
never really had any specific role for each member. So the roles where split between us,
the developers, and the employer, Sindre, who was the project manager and also the
developer.

The use of pair-programming from the XP methodology was really helpful at the start
of the project. This helped a lot during the initial research stage to get a better under-
standing of how React Native worked, and also to get a faster understanding of how the
existing codebase worked. Pair-programming was also used on bigger problems or imple-
mentations to make sure that both group members understood what was happening in
the code, and come up with different alternative solutions much quicker than if we had
worked more individually. However for smaller bug fixes and issues we did work more
individually.

We used Trello and Bitbucket Issues to let everybody know what the different team mem-
bers were working on, and which new issues that had been added. This helped us orga-
nize and delegate tasks, and plan for the future. It also made it easy to log the work that
we had done, so we could look it up later when writing the report. We also made sure to
include screenshots and a good explanation for every issue that we made.

Since we mostly worked on independent problems by ourselves, we did not experience
too many discussions or conflicts between us. But when implementing the Tutorial Man-
ager 35 we got the chance to have a lot of discussions and test many different solutions.

48

Figure 25: Time distribution

Most of our time were spent on development, and around April we started to move over
to writing the report, where one member was writing on the report and the other was still
developing. And after most of the specific issues were fixed both members were writing
the report. We also included an hour log to show what we did when, and where most of
our time was spent 70.

49

8.4 Conclusion

The practical aspects of the Bachelor project has provided us with a much more detailed
understanding of how it can be to work in a professional setting. Especially how it is to
enter a company as a new employee, with little or no existing knowledge of the technol-
ogy used by the company, and start working on an existing code base.

We also learned about the challenges of wanting to write code based on best practices,
and having to let go of our own preferred way of coding from the past. We really learned
about the importance of commenting code, and making the code structured and easier
for others to read.

It is easy sometimes, when working alone, to assume everyone understands what you
are coding, and feel that comments and structured code will just make everything take
longer. But after working on a group project, you quickly realize that if the code is not
commented and not intuitively structured, you will spend a lot of unnecessary time trying
to figure out what the code does, and even make unnecessary mistakes because you have
to make assumptions that could turn out be wrong.

We also learned that working closely in the same physical location helps with commu-
nication tremendously. Since we worked in a different city from our employer, we could
not just walk down to the office to have a quick meeting or discussion. We relied on re-
mote voice communication tools such as Discord, which helps a lot, but is definitely not
a replacement for meeting face to face. Many misunderstandings could have easily been
resolved immediately if we were in the same office. At least it prepared us for remote
cooperation, which is very common in the IT-industry.

We had hoped to learn more about how to use GIT and Trello in a more professional
setting, especially learn more about more complicated and advanced features and best
practices. But since our employer was a very small and young company, they did not
have a very established development practices.

Using a framework that is widely used in the industry was probably the biggest take-
away from the project. We also had a mobile development course running in parallel
to the Bachelor project, which provided us with great insight in to the differences be-
tween developing with a cross-platform framework compared to native development for
Android using Java.

Many, if not most of our courses throughout the last three years have helped us greatly
in this project. The first year gave us a solid foundation for general programming and
debugging. The second year helped us with more advanced programming concepts, es-
pecially working in groups with project management tools. And finally having the mobile
course in the third and final year, helped us greatly understand the challenges of devel-
oping for mobile devices.

In conclusion, we feel this Bachelor project has prepared us greatly for any future work
life and employment.

50

Bibliography

[1] Wikipedia contributors. 2018. Javascript — Wikipedia, the free encyclopedia.
[Online; accessed 8-May-2018]. URL: https://en.wikipedia.org/w/index.php?
title=JavaScript&oldid=840176949.

[2] Wikipedia contributors. 2018. Typescript — Wikipedia, the free encyclopedia.
[Online; accessed 8-May-2018]. URL: https://en.wikipedia.org/w/index.php?
title=TypeScript&oldid=838415153.

[3] Wikipedia contributors. 2018. Android (operating system) — Wikipedia, the free
encyclopedia. [Online; accessed 8-May-2018]. URL: https://en.wikipedia.org/
w/index.php?title=Android_(operating_system)&oldid=840107449.

[4] Wikipedia contributors. 2018. Ios — Wikipedia, the free encyclopedia. [Online;
accessed 8-May-2018]. URL: https://en.wikipedia.org/w/index.php?title=
IOS&oldid=839447982.

[5] Wikipedia contributors. 2018. Scrum (software development) — Wikipedia,
the free encyclopedia. [Online; accessed 18-April-2018]. URL: https:
//en.wikipedia.org/w/index.php?title=Scrum_(software_development)
&oldid=836974539.

[6] Patents, A. R. R. S. I. & Pending., P. 2018. Advantages of scrum. URL:
https://www.smartsheet.com/agile-vs-scrum-vs-waterfall-vs-kanban#
advantages-of-scrum.

[7] Wikipedia contributors. 2018. Extreme programming — Wikipedia, the free ency-
clopedia. [Online; accessed 18-April-2018]. URL: https://en.wikipedia.org/w/
index.php?title=Extreme_programming&oldid=830770686.

[8] Inc., C. . F. 2018. Jest-delightful javascript testing. URL: https://facebook.
github.io/jest/.

[9] Discord. 2018. It’s time to ditch skype and teamspeak. URL: https://discordapp.
com/.

[10] OÜ, T. 2018. Everything works much better with toggl. URL: https://toggl.com/.

[11] rettigheter reservert, A. O. . A. 2018. Trello. URL: https://trello.com/.

[12] Atlassian. 2018. A free git client for windows and mac. URL: https://www.
sourcetreeapp.com/.

[13] contributors, W. 2018. Responsive web design — wikipedia, the free encyclopedia.
[Online; accessed 28-March-2018]. URL: https://en.wikipedia.org/w/index.
php?title=Responsive_web_design&oldid=832660943.

51

https://en.wikipedia.org/w/index.php?title=JavaScript&oldid=840176949
https://en.wikipedia.org/w/index.php?title=JavaScript&oldid=840176949
https://en.wikipedia.org/w/index.php?title=TypeScript&oldid=838415153
https://en.wikipedia.org/w/index.php?title=TypeScript&oldid=838415153
https://en.wikipedia.org/w/index.php?title=Android_(operating_system)&oldid=840107449
https://en.wikipedia.org/w/index.php?title=Android_(operating_system)&oldid=840107449
https://en.wikipedia.org/w/index.php?title=IOS&oldid=839447982
https://en.wikipedia.org/w/index.php?title=IOS&oldid=839447982
https://en.wikipedia.org/w/index.php?title=Scrum_(software_development)&oldid=836974539
https://en.wikipedia.org/w/index.php?title=Scrum_(software_development)&oldid=836974539
https://en.wikipedia.org/w/index.php?title=Scrum_(software_development)&oldid=836974539
https://www.smartsheet.com/agile-vs-scrum-vs-waterfall-vs-kanban#advantages-of-scrum
https://www.smartsheet.com/agile-vs-scrum-vs-waterfall-vs-kanban#advantages-of-scrum
https://en.wikipedia.org/w/index.php?title=Extreme_programming&oldid=830770686
https://en.wikipedia.org/w/index.php?title=Extreme_programming&oldid=830770686
https://facebook.github.io/jest/
https://facebook.github.io/jest/
https://discordapp.com/
https://discordapp.com/
https://toggl.com/
https://trello.com/
https://www.sourcetreeapp.com/
https://www.sourcetreeapp.com/
https://en.wikipedia.org/w/index.php?title=Responsive_web_design&oldid=832660943
https://en.wikipedia.org/w/index.php?title=Responsive_web_design&oldid=832660943

[14] contributors, W. 2017. Adaptive web design — wikipedia, the free encyclopedia.
[Online; accessed 28-March-2018]. URL: https://en.wikipedia.org/w/index.
php?title=Adaptive_web_design&oldid=814876811.

[15] contributors, W. 2017. Progressive enhancement — wikipedia, the free encyclo-
pedia. [Online; accessed 28-March-2018]. URL: https://en.wikipedia.org/w/
index.php?title=Progressive_enhancement&oldid=800247276.

[16] ThinkApps. 2018. Responsive web vs native apps. URL: http://thinkapps.com/
blog/development/responsive-web-vs-native-apps/.

[17] Netkow, M. 2018. Hybrid mobile apps are overtaking native. URL: https://blog.
phonegap.com/hybrid-mobile-apps-are-overtaking-native-951a3aacacd1.

[18] contributors, W. 2018. Angularjs — wikipedia, the free encyclopedia. [Online;
accessed 2-April-2018]. URL: https://en.wikipedia.org/w/index.php?title=
AngularJS&oldid=833199461.

[19] contributors, W. 2018. Apache cordova — wikipedia, the free encyclopedia. [On-
line; accessed 2-April-2018]. URL: https://en.wikipedia.org/w/index.php?
title=Apache_Cordova&oldid=825682522.

[20] Kukic, A. 2018. Alternatives to native mobile app development. URL: https:
//auth0.com/blog/alternatives-to-native-mobile-app-development/.

[21] Wargo, J. M. 2018. Which to use: Cordova or phonegap? URL: http://www.
informit.com/articles/article.aspx?p=2478076.

[22] contributors, W. 2018. Mono (software) — wikipedia, the free encyclopedia. [On-
line; accessed 2-April-2018]. URL: https://en.wikipedia.org/w/index.php?
title=Mono_(software)&oldid=831241182.

[23] contributors, W. 2018. React (javascript library) — wikipedia, the free encyclope-
dia. [Online; accessed 3-April-2018]. URL: https://en.wikipedia.org/w/index.
php?title=React_(JavaScript_library)&oldid=833378551.

[24] Wikipedia contributors. 2018. React (javascript library) — Wikipedia, the free
encyclopedia. [Online; accessed 14-May-2018]. URL: https://en.wikipedia.
org/w/index.php?title=React_(JavaScript_library)&oldid=841145185.

[25] @unbug (https://twitter.com/unbug). 2018. React native training - 1.2 how it
works. URL: https://unbug.gitbooks.io/react-native-training/content/
12_how_it_works.html.

[26] Heard, P. 2018. React native architecture : Explained! URL: https://www.
logicroom.co/react-native-architecture-explained/.

[27] contributors, W. 2018. Node.js — wikipedia, the free encyclopedia. [Online;
accessed 3-April-2018]. URL: https://en.wikipedia.org/w/index.php?title=
Node.js&oldid=833229609.

52

https://en.wikipedia.org/w/index.php?title=Adaptive_web_design&oldid=814876811
https://en.wikipedia.org/w/index.php?title=Adaptive_web_design&oldid=814876811
https://en.wikipedia.org/w/index.php?title=Progressive_enhancement&oldid=800247276
https://en.wikipedia.org/w/index.php?title=Progressive_enhancement&oldid=800247276
http://thinkapps.com/blog/development/responsive-web-vs-native-apps/
http://thinkapps.com/blog/development/responsive-web-vs-native-apps/
https://blog.phonegap.com/hybrid-mobile-apps-are-overtaking-native-951a3aacacd1
https://blog.phonegap.com/hybrid-mobile-apps-are-overtaking-native-951a3aacacd1
https://en.wikipedia.org/w/index.php?title=AngularJS&oldid=833199461
https://en.wikipedia.org/w/index.php?title=AngularJS&oldid=833199461
https://en.wikipedia.org/w/index.php?title=Apache_Cordova&oldid=825682522
https://en.wikipedia.org/w/index.php?title=Apache_Cordova&oldid=825682522
https://auth0.com/blog/alternatives-to-native-mobile-app-development/
https://auth0.com/blog/alternatives-to-native-mobile-app-development/
http://www.informit.com/articles/article.aspx?p=2478076
http://www.informit.com/articles/article.aspx?p=2478076
https://en.wikipedia.org/w/index.php?title=Mono_(software)&oldid=831241182
https://en.wikipedia.org/w/index.php?title=Mono_(software)&oldid=831241182
https://en.wikipedia.org/w/index.php?title=React_(JavaScript_library)&oldid=833378551
https://en.wikipedia.org/w/index.php?title=React_(JavaScript_library)&oldid=833378551
https://en.wikipedia.org/w/index.php?title=React_(JavaScript_library)&oldid=841145185
https://en.wikipedia.org/w/index.php?title=React_(JavaScript_library)&oldid=841145185
https://unbug.gitbooks.io/react-native-training/content/12_how_it_works.html
https://unbug.gitbooks.io/react-native-training/content/12_how_it_works.html
https://www.logicroom.co/react-native-architecture-explained/
https://www.logicroom.co/react-native-architecture-explained/
https://en.wikipedia.org/w/index.php?title=Node.js&oldid=833229609
https://en.wikipedia.org/w/index.php?title=Node.js&oldid=833229609

[28] contributors, W. 2018. Gradle — wikipedia, the free encyclopedia. [Online;
accessed 3-April-2018]. URL: https://en.wikipedia.org/w/index.php?title=
Gradle&oldid=829263035.

[29] npm, I. 2018. Npm js website. URL: https://www.npmjs.com/package/package.

[30] Foundation, N. 2018. Node.js. URL: https://nodejs.org/en/.

[31] Sebastian McKenzie, Christoph Nakazawa, J. K. 2018. Yarn: A new
package manager for javascript. URL: https://code.facebook.com/posts/
1840075619545360.

[32] contributors, W. 2018. Visual studio code — wikipedia, the free encyclopedia. [On-
line; accessed 3-April-2018]. URL: https://en.wikipedia.org/w/index.php?
title=Visual_Studio_Code&oldid=833282639.

[33] contributors, W. 2018. Android studio — wikipedia, the free encyclopedia. [Online;
accessed 3-April-2018]. URL: https://en.wikipedia.org/w/index.php?title=
Android_Studio&oldid=833126826.

[34] Inc., A. 2018. Token based authentication made easy. URL: https://auth0.com/
learn/token-based-authentication-made-easy/.

[35] Wikipedia contributors. 2018. Observer pattern — Wikipedia, the free encyclo-
pedia. [Online; accessed 14-May-2018]. URL: https://en.wikipedia.org/w/
index.php?title=Observer_pattern&oldid=840234511.

[36] Wikipedia contributors. 2018. Model–view–controller — Wikipedia,
the free encyclopedia. [Online; accessed 14-May-2018]. URL: https:
//en.wikipedia.org/w/index.php?title=Model%E2%80%93view%E2%80%
93controller&oldid=839034827.

[37] Richard Ishida, W3C, S. K. M. B. 2018. Localization vs. internationalization. URL:
https://www.w3.org/International/questions/qa-i18n.

[38] AlexanderZaytsev. 2018. react-native-i18n. URL: https://github.com/
AlexanderZaytsev/react-native-i18n.

[39] Inc., F. 2018. React native docs v. 0.46. URL: https://facebook.github.io/
react-native/docs/0.46/layout-props.html#overflow.

[40] Inc., F. 2018. React native docs v. 0.55. URL: https://facebook.github.io/
react-native/docs/layout-props.html#overflow.

[41] Navigation, R. 2018. React navigation docs. URL: https://reactnavigation.
org/docs/navigation-prop.html.

[42] Inc., F. 2018. React native docs - asyncstorage. URL: https://facebook.github.
io/react-native/docs/asyncstorage.html.

[43] Inc., F. 2018. React native - debugging. URL: https://facebook.github.io/
react-native/docs/debugging.html.

53

https://en.wikipedia.org/w/index.php?title=Gradle&oldid=829263035
https://en.wikipedia.org/w/index.php?title=Gradle&oldid=829263035
https://www.npmjs.com/package/package
https://nodejs.org/en/
https://code.facebook.com/posts/1840075619545360
https://code.facebook.com/posts/1840075619545360
https://en.wikipedia.org/w/index.php?title=Visual_Studio_Code&oldid=833282639
https://en.wikipedia.org/w/index.php?title=Visual_Studio_Code&oldid=833282639
https://en.wikipedia.org/w/index.php?title=Android_Studio&oldid=833126826
https://en.wikipedia.org/w/index.php?title=Android_Studio&oldid=833126826
https://auth0.com/learn/token-based-authentication-made-easy/
https://auth0.com/learn/token-based-authentication-made-easy/
https://en.wikipedia.org/w/index.php?title=Observer_pattern&oldid=840234511
https://en.wikipedia.org/w/index.php?title=Observer_pattern&oldid=840234511
https://en.wikipedia.org/w/index.php?title=Model%E2%80%93view%E2%80%93controller&oldid=839034827
https://en.wikipedia.org/w/index.php?title=Model%E2%80%93view%E2%80%93controller&oldid=839034827
https://en.wikipedia.org/w/index.php?title=Model%E2%80%93view%E2%80%93controller&oldid=839034827
https://www.w3.org/International/questions/qa-i18n
https://github.com/AlexanderZaytsev/react-native-i18n
https://github.com/AlexanderZaytsev/react-native-i18n
https://facebook.github.io/react-native/docs/0.46/layout-props.html#overflow
https://facebook.github.io/react-native/docs/0.46/layout-props.html#overflow
https://facebook.github.io/react-native/docs/layout-props.html#overflow
https://facebook.github.io/react-native/docs/layout-props.html#overflow
https://reactnavigation.org/docs/navigation-prop.html
https://reactnavigation.org/docs/navigation-prop.html
https://facebook.github.io/react-native/docs/asyncstorage.html
https://facebook.github.io/react-native/docs/asyncstorage.html
https://facebook.github.io/react-native/docs/debugging.html
https://facebook.github.io/react-native/docs/debugging.html

[44] Yuan, V. 2018. React native debugging tools. URL: https://codeburst.io/
react-native-debugging-tools-3a24e4e40e4.

[45] @unbug (https://twitter.com/unbug). 2018. React native training - 1.3 debug
tools. URL: https://unbug.gitbooks.io/react-native-training/content/
13_debug_tools.html.

[46] Mozilla & individual contributors. 2018. Mdn web docs - console. URL: https:
//developer.mozilla.org/en-US/docs/Web/API/Console.

54

https://codeburst.io/react-native-debugging-tools-3a24e4e40e4
https://codeburst.io/react-native-debugging-tools-3a24e4e40e4
https://unbug.gitbooks.io/react-native-training/content/13_debug_tools.html
https://unbug.gitbooks.io/react-native-training/content/13_debug_tools.html
https://developer.mozilla.org/en-US/docs/Web/API/Console
https://developer.mozilla.org/en-US/docs/Web/API/Console

A Project Plan

55

BSP3900 Bachelor Project Plan - 24.1.2018

App and Gamification - Klimb AS

Magnus W. Enggrav, Adam A. Jammary

1. Introduction 1

1.1. Background 1

1.2. Learning Objectives 2

1.3. Impact Objectives 2

1.4. Performance Objectives 2

1.3. Constraints 2

2. Scope 2

2.1. Field of study 2

2.2. Project Restrictions 2

2.3. Project description 3

3. Project Organization 3

3.1. Roles and Responsibility 3

3.2. Project rules and Routines 4

3.2.1. Working hours 4

3.2.2. Conflict management 4

3.2.3. Communication 4

4. Planning, Monitoring and Reporting 4

4.1. Software Development Methodology - Scrum with XP 4

4.2. Roles 5

4.3. Workflow 5

4.4. Artifacts 5

4.5. Plan for status meetings and decision points during the period 6

5. Quality Assurance 6

5.1. Commenting and style guide 7

5.2. Risk analysis 7

5.3. Tools 8

5.3.1. Package Managers and Build Tools 8

5.3.2. IDE (Integrated Development IDE) 8

5.3.3. Emulators and device testing 8

5.3.4. Project Management 9

6. Project Plan 11

7. References 12

1

1. Introduction

1.1. Background

Klimb is a health and fitness game where you collect points when walking uphills

using GPS coordinates. One height meter equals one height point. The goal of the

game is to move up levels and share activity with your friends.

You can hike up your favourite mountain and collect points at the top, if the mountain

does not exist in the app, you can add the top and become the owner of that

mountaintop. You also have the ability to measure height meter everytime you walk

or run uphill, the application will automatically measure this for you. Your profile page

will show you the number of height point you have collected and you can see how

every level is a known mountain you can move towards.

You can share your progress on the stream and on facebook to inspire others. In

“Challenges” you can find fun challenges that you can do together with your friends

or alone. Klimb uses Facebook login system to make it easy and fast to login.

Klimb is currently running on iOS and our project will be to port this over to Android.

2

1.2. Learning Objectives

- How mobile development is done in the industry.

- What frameworks and technologies are used.

- How the practicing agile methodology affects the project.

- What factors are important when developing for multiple platforms.

1.3. Impact Objectives

- The ported Android version of the Klimb app will be available in the Google

Play Store.

- The UI will be improved by being more intuitive to use for customers.

1.4. Performance Objectives

- The customer will have more users using their app since it will be available for

the Google Android platform as well as the existing Apple iOS platform.

- The customer will get more positive reviews because of the improved UI

design.

- Hopefully the customer will have increased earnings because of the above

factors.

1.3. Constraints

We will work under the following constraints:

- We have a maximum of three persons working on development.

- We must complete the work by the time frame of the bachelor project which is

by the time of writing this plan 16th May 2018.

- We have no physical iOS device to develop or test on, but must rely on

screenshots and having the employer test our contribution on iOS devices.

- The employer is not located in the same city as us, so all communication is

remote.

2. Scope

2.1. Field of study

- Cross-platform (Android and iOS) mobile development

- React-Native Framework

- Internationalization (I18N)

- Geolocation (GPS-data, Google Maps)

- Login services (Facebook SDK)

3

2.2. Project Restrictions

- We will not develop anything for the iOS platform.

- We will not work on the codebase in the master branch of the repository.

- The app will only support Android 4.1 (API 16 - JELLY_BEAN) and newer.

2.3. Project description

The main goal of the project is to port the existing Apple iOS-specific app to the

Google Android platform. Even though the existing codebase is already written using

the React Native platform which allows for cross-platform functionality between iOS

and Android, the app has been developed and tested only on the iOS platform. The

result is that it does not currently work on the Android platform.

The issues of what is and what is not working is not clearly defined this early in the

process, and it is mainly our task to find the issues and resolve them so that the app

can work on Android devices. This means that it will be difficult to plan in too much

details as the details are not yet known. The React Native framework uses

JavaScript as the programming language for both platforms, but allows to use native

languages for the specific platforms if needed.

We will try to use as little platform-specific code as possible, and have the two

platforms share as much of the codebase as possible. This will require clear

communication, and a well-defined work process as we will describe later. The goal

is to have the UI look and feel almost the same on both platforms with less than 10%

differences.

Initially the plan is for the employer to focus on the backend server communication,

and for us to focus on the Android frontend, but this may change during the project

as needed. The employer has a huge list of features they wish to implement that are

not officially part of the bachelor project, but they are available if the current workload

is not enough.

3. Project Organization

3.1. Roles and Responsibility

Mariusz Nowostawski Supervisor

Elin Årseth Owner/CEO

Sindre Helelborg Project Manager

Magnus W. Enggrav Developer

Adam A. Jammary Developer

4

3.2. Project rules and Routines

3.2.1. Working hours

Monday to Wednesday we will work together at campus while Thursday to Friday will

be a little more flexible depending on what we are working on individually.

Core hours:

- Monday - Wednesday: 10:00 - 18:00

- Thursday: 13:00 - 16:00

- Friday: 09:00 - 12:00

3.2.2. Conflict management

- Will try to solve conflict with each other first.

- If conflict is not solved employer will have the last word.

3.2.3. Communication

- We will work and communicate together at campus under set working hours.

- Other communication with each other will happen over Discord or Slack.

- Communication with employer will also happen over Discord and Slack.

4. Planning, Monitoring and Reporting

4.1. Software Development Methodology - Scrum with XP

There is currently only one developer working on this application, so there is no

software development methodology currently in place. And since we do not yet know

what problems exists on the Android version, alot of our job will be to find out what

problems exists and what our tasks will be. This makes it hard to plan ahead, which

is why we have chosen the agile methodology framework Scrum [2] in a

combination with aspects of XP [3] since agile methodologies focus more on an

“incremental and iterative approach instead of in-depth planning at the beginning of

the project” [1]. And “agile methodologies are more open to changing requirements

over time and encourages constant feedback” [1] from our employer.

We chose to use a Scrum because it has “more transparency and project visibility”

[1], and this is important since we will be working very closely with our employer.

This helps us know what our employer is working on, and vice-versa. And since we

are mostly working together at campus we are able to have more face-to-face

discussions when we need it, and our employer is always available on Discord and

Slack if we need to discuss something.

5

We will use the general framework of Scrum to organize the project, and the

simplicity and flexibility of XP for our daily development. The existing codebase does

not contain any unit testing, so part of our job will be to implement unit tests for new

functions that we implement in accordance with one of the four core activities of XP,

“Extreme programming's approach is that if a little testing can eliminate a few flaws,

a lot of testing can eliminate many more flaws.” [3].

In the beginning phase we will try to pair-program as much as possible, this will

benefit us if one of us gets sick because if the other will know everything that the

other person has worked on. Later on when we get more familiar with the project and

get more specific tasks, we can start dividing them between the us (the development

team).

4.2. Roles

Project Manager: Sindre Helelborg

Development Team: Magnus Enggrav and Adam Jammary

We have chosen not use the official Scrum roles since their definitions [1] do not fit

with the size of our group which consists only of two developers and our employer.

Our employer can be more accurately described as the general project manager

since he makes overall project decisions and delegates the tasks.

4.3. Workflow

Scrum allows to easily accommodate changes, “With short sprints and constant

feedback, it’s easier to cope with and accommodate changes.” [1]. Constant

feedback from the employer is necessary since we don't yet know what problems

need to be solved, and using Scrum makes it easier to handle changes or problems

that may unexpectedly arise. We have chosen a Sprint period of one week since the

tasks and priorities may unexpectedly change, so it’s better to meet once a week to

more easily adapt to changes.

We have two types of meetings, one is with our employer once every monday

morning to discuss what we did last week (Sprint review), what went well and what

went wrong (Sprint retrospective), and plan for what we will for the rest of that week

(Sprint planning). The other type is between us without the employer (Daily scrum),

where we meet daily and use the first 15 minutes to plan what to work on during that

day, or discuss problems we might have.

6

4.4. Artifacts

We will use Trello as our Scrum board to keep track of the various tasks and what

the members of the team are working on. We will use Bitbucket as the code

repository and Issue Tracker, and GIT as the version control system. Trello is

already integrated in to the Bitbucket project.

1) We start by creating the task in the Bitbucket Issue Tracker which will assign it

an auto-incremented issue number, which we in turn use to create a Trello

card in the “Product backlog”.

2) After we have decided what to work on for that week (sprint) we move the

task over to the “Sprint backlog”.

3) Each one of us will then select a task to work on by moving it over to “In

Progress” and assign ourselves to the task.

4) After we have completed a task, we move it over to “In Review (QA / Test)”,

where we review and test that the code works as expected.

5) Finally we move it over to “Done” marking the task as complete.

To be able to track the task properly, we label all our commits as well as the Trello

cards with the issue number [4], ex. “#9 Internationalization - i18n”. Issues can be of

the type “task” or “bug”. We use “bug” for already implemented features which do not

work as expected and need to be resolved, and “task” for a feature that needs to be

implemented.

We will only work in a separate repository branch called “android”, while our

employer will merge this branch into the master branch after testing it and verifying

that it has no negative effects on the master branch.

Toggl will be used to track the amount of time we use on the various types of

activities during our Bachelor project. This will help us manage our time more

efficiently and get a better overview of how we have distributed our time, and

hopefully help us make better time estimates for future tasks.

4.5. Plan for status meetings and decision points during the period

- Regular meetings with employer once a week, Monday at 10:00 on Discord.

- Meetings with supervisor every two weeks if necessary .

- We can easily contact employer on Discord, Slack or mail outside of

meetings.

7

5. Quality Assurance

5.1. Commenting and style guide

Airbnb React/JSX Style Guide

- https://github.com/airbnb/javascript/tree/master/react

We cannot guarantee that existing code, or code made by anyone other than us will

follow the above style guide from Airbnb, but we will try to follow it as closely as

possible.

5.2. Risk analysis

The documents are written in Google Docs so everything is constantly saved online

which provides a backup. Every document is also saved in Dropbox just in case.

8

5.3. Tools

5.3.1. Package Managers and Build Tools

Node.js 7.10.1 med NPM 4.2.0

“Node.js® is a JavaScript runtime built on Chrome's V8 JavaScript engine. Node.js

uses an event-driven, non-blocking I/O model that makes it lightweight and efficient.

Node.js' package ecosystem, npm, is the largest ecosystem of open source libraries

in the world.” [5]

Yarn 1.3.2

“Yarn is a new package manager that replaces the existing workflow for the npm

client or other package managers while remaining compatible with the npm registry.”

[6]

5.3.2. IDE (Integrated Development IDE)

Visual Studio Code 1.19.2

“Visual Studio Code is a source code editor developed by Microsoft for Windows,

Linux and macOS. It includes support for debugging, embedded Git control, syntax

highlighting, intelligent code completion, snippets, and code refactoring.” [7]

5.3.3. Emulators and device testing

Android Studio 3.0.1 for Windows

“Android Studio is the official[6] integrated development environment (IDE) for

Google's Android operating system, built on JetBrains' IntelliJ IDEA software and

designed specifically for Android development.” [8]

Android Emulators (run through Android Studio)

- Nexus 5X x86 - Android 8.1 - API 27 - 1080x1920 420 dpi

- Nexus 6 x86_64 - Android 6.0 - API 23 - 1440x2560: 530 dpi

Android Devices (our own Android devices)

- Samsung Galaxy S7 (SM-G930F) - Android 7.0 - API 24 - 2560x1440

- Samsung Galaxy S6 edge (SM-G925F) - Android 7.0 - API 24 - 1440 x 2560

9

5.3.4. Project Management

Trello

“Trello is a web-based project management application” [9]

We use Trello as a Scrum board to keep track of each sprint and what each team

member is working on.

Discord

“Discord is a proprietary freeware VoIP application designed for gaming

communities.” [10]

We use Discord to have meetings and chat with our employer and the team.

Slack

“Slack is a cloud-based set of proprietary team collaboration tools and services” [11]

We use Slack for more “official” discussion with our employer.

Toggl (web and desktop app)

“Toggl is a time tracking app operated by Toggl OÜ, headquartered in Tallinn,

Estonia, that offers online time tracking and reporting services through their website

along with mobile and desktop applications.” [12]

We use Toggl for time tracking to get a sense of where most of our time is used.

Bitbucket (GIT)

“Bitbucket is a web-based version control repository hosting service owned by

Atlassian” [13]

We use Bitbucket for version control and issue tracking

SourceTree

SourceTree is a GIT Gui that makes GIT easier.

https://www.sourcetreeapp.com/

Google Docs

Google docs is an online word processing application created by google. It has

version control and can be shared between all team members which make is a very

useful tool when collaborating. We will use this to write the project plan.

10

Microsoft Excel

“Microsoft Excel is a spreadsheet developed by Microsoft for Windows, macOS,

Android and iOS.” [14]

We used Microsoft Excel to create the tables in “5.3. Risk analysis”.

Microsoft Project

“Microsoft Project is a project management software product, developed and sold by

Microsoft.” [15]

We used Microsoft Projects to create the gantt diagram in “6. Project Plan”.

Latex

“ShareLaTeX is an online LaTeX editor that allows real-time collaboration and online

compiling of projects to PDF format.” [16]

https://www.sharelatex.com/project

Bachelor thesis template forked from GitHub:

https://github.com/COPCSE-NTNU/bachelor-thesis-NTNU

We will use ShareLaTeX to write the Bachelor report.

11

6. Project Plan

The initial part of the project will consist mostly of writing the project plan and

researching the current technologies in use, but also possible technologies that can

be added or maybe even replace existing ones.

We have decided to work on the bachelor report in parallel with the development

sprints instead of spending the first half or two thirds for development and saving the

report writing for the end. This will help us keep the report up-to-date from the

beginning to end, instead of rushing it at the end. The report will consist mostly of

notes and short sentences in the first part, and will be more and more organized and

revised the further in to the project we get.

We have reserved the last period between the report deadline and the presentation

for preparation. This does not mean that we will deny the employer to work on their

code, but we will make it clear that we will prioritize preparing for the presentation.

We also have an exam in the same period in another course, so we will be quite

busy during this period.

12

7. References

[1] What's the Difference? Agile vs Scrum vs Waterfall vs Kanban

Retrieved January 23, 2018, from

https://www.smartsheet.com/agile-vs-scrum-vs-waterfall-vs-kanban

[2] Scrum (software development). (2018, January 20). In Wikipedia, The Free

Encyclopedia. Retrieved 13:41, January 23, 2018, from

https://en.wikipedia.org/w/index.php?title=Scrum_(software_development)&oldid=82

1429866

[3] Extreme programming. (2018, January 21). In Wikipedia, The Free Encyclopedia.

Retrieved 13:57, January 23, 2018, from

https://en.wikipedia.org/w/index.php?title=Extreme_programming&oldid=821561346

[4] Mark up comments, issues, and commit messages

Retrieved January 23, 2018, from

https://confluence.atlassian.com/bitbucket/mark-up-comments-issues-and-commit-

messages-321859781.html

[5] nodeJS

Retrieved January 24, 2018, from

https://nodejs.org/en/

[6] Yarn: A new package manager for JavaScript. Introducing Yarn.

Retrieved January 24, 2018, from

https://code.facebook.com/posts/1840075619545360

[7] Visual Studio Code. (2018, January 24). In Wikipedia, The Free Encyclopedia.

Retrieved 10:55, January 24, 2018, from

https://en.wikipedia.org/w/index.php?title=Visual_Studio_Code&oldid=822060320

[8] Android Studio. (2018, January 23). In Wikipedia, The Free Encyclopedia.

Retrieved 10:58, January 24, 2018, from

https://en.wikipedia.org/w/index.php?title=Android_Studio&oldid=821856626

[9] Trello. (2018, January 2). In Wikipedia, The Free Encyclopedia.

Retrieved 11:03, January 24, 2018, from

https://en.wikipedia.org/w/index.php?title=Trello&oldid=818184684

13

[10] Discord (software). (2018, January 23). In Wikipedia, The Free Encyclopedia.

Retrieved 11:04, January 24, 2018, from

https://en.wikipedia.org/w/index.php?title=Discord_(software)&oldid=821860404

[11] Slack (software). (2018, January 19). In Wikipedia, The Free Encyclopedia.

Retrieved 11:06, January 24, 2018, from

https://en.wikipedia.org/w/index.php?title=Slack_(software)&oldid=821267478

[12] Toggl. (2017, October 5). In Wikipedia, The Free Encyclopedia.

Retrieved 11:07, January 24, 2018, from

https://en.wikipedia.org/w/index.php?title=Toggl&oldid=803897264

[13] Bitbucket. (2018, January 10). In Wikipedia, The Free Encyclopedia. Retrieved

11:08, January 24, 2018, from

https://en.wikipedia.org/w/index.php?title=Bitbucket&oldid=819655939

[14] Microsoft Excel. (2017, December 30). In Wikipedia, The Free Encyclopedia.

Retrieved 11:14, January 24, 2018, from

https://en.wikipedia.org/w/index.php?title=Microsoft_Excel&oldid=817705353

[15] Microsoft Project. (2018, January 15). In Wikipedia, The Free Encyclopedia.

Retrieved 11:16, January 24, 2018, from

https://en.wikipedia.org/w/index.php?title=Microsoft_Project&oldid=820510761

[16] ShareLaTeX. (2017, September 24). In Wikipedia, The Free Encyclopedia.

Retrieved 10:45, January 24, 2018, from

https://en.wikipedia.org/w/index.php?title=ShareLaTeX&oldid=802100411

B Hour Log

Applies Date Start End Category Description
All 11.01.2018 10:00 10:30 Meeting First meeting with Sindre
All 11.01.2018 10:30 14:00 Report Setting up Project plan
All 11.01.2018 14:00 17:00 Research React native tutorials
All 12.01.2018 12:30 13:30 Research React native tutorials
All 15.01.2018 10:00 10:30 Meeting Meeting with Sindre
All 15.01.2018 11:30 16:30 Development Setting up environment
All 16.01.2018 10:30 11:30 Project

Agreement
Signing and upload Project
Agreement

Magnus 16.01.2018 11:30 16:30 Research React native tutorials
Adam 16.01.2018 11:30 15:00 Research Look through earlier bachelor as-

signments
Adam 16.01.2018 15:00 16:30 Research React native tutorials
All 17.01.2018 10:30 11:30 Meeting Meeting with Sindre
All 17.01.2018 11:30 12:30 Development #7 Make LoginScreen look the

same on Android as it does on
existing iOS

Magnus 17.01.2018 12:30 16:00 Research Reading about react native
Adam 17.01.2018 12:30 13:00 Development #8 Rotation - Lock to portrait

mode only on Android
Adam 17.01.2018 13:00 16:00 Development #9 Internationalization - i18n
All 22.01.2018 11:00 11:30 Report Write project plan document
All 22.01.2018 11:30 12:00 Meeting Meeting with Sindre
Magnus 22.01.2018 12:00 17:00 Report Working on project plan
Adam 22.01.2018 12:00 12:30 Development Make sure project builds after

new commits from employer
Adam 22.01.2018 12:30 17:00 Report Write project plan document
Adam 23.01.2018 10:00 12:30 Development Can’t login on my mobile device
Magnus 23.01.2018 10:00 17:00 Report Working on Project plan
Adam 23.01.2018 12:30 17:00 Report Write project plan document
All 24.01.2018 10:00 12:30 Report Write project plan document
Magnus 24.01.2018 12:30 16:30 Development Started to look at MapView and

button positioning
Adam 24.01.2018 12:30 13:00 Report Write project plan document
Adam 24.01.2018 13:00 16:00 Development Can’t log back in using Facebook

SDK after logging out
Adam 24.01.2018 16:00 16:30 Development Mobile is stuck on loading map
Magnus 29.01.2018 10:00 17:00 Development NavigationBar: Rendering action

button above map
Adam 29.01.2018 10:00 17:00 Development #9 Internationalization - i18n
Adam 30.01.2018 10:00 13:00 Development #9 Internationalization - i18n
Magnus 30.01.2018 10:00 15:30 Development Moving actionButtons from Nav-

igationBar to MainView
Adam 30.01.2018 13:00 15:30 Development #14 Internationalization - i18n -

Only English is selected

70

Adam 31.01.2018 10:00 13:30 Development #12: NavigationBar
Magnus 31.01.2018 10:00 15:00 Development ActionButtonItems rendering
Adam 31.01.2018 13:30 15:00 Report Setting up ShareLatex
Adam 31.01.2018 15:00 16:00 Research Looking in to rxJS observ-

ables/services
Magnus 31.01.2018 15:00 16:00 Research Learning LaTeX
All 05.02.2018 10:00 11:00 Meeting Meeting with Sindre
Adam 05.02.2018 11:00 15:00 Development #12: NavigationBar
Magnus 05.02.2018 11:00 15:30 Development Fixing ActionButton
All 05.02.2018 15:00 16:30 Development #16 #18 #19
Adam 06.02.2018 11:30 12:30 Development Looking for bugs
Magnus 06.02.2018 11:30 14:15 Development Finding Issues and solving #21
Adam 06.02.2018 12:30 14:30 Development #17 Fix Free Run button in the

navigation bar
Magnus 06.02.2018 14:15 17:00 Development #22 HillActivityPage onClick
Adam 06.02.2018 14:30 17:00 Development #24 Make UI look better - Cam-

era - Take picture
Adam 07.02.2018 10:30 16:00 Development #24 Make UI look better - Cam-

era - Take picture
Magnus 07.02.2018 10:30 14:30 Development #27 HillActivityPage showHill-

Card UI
Magnus 07.02.2018 14:30 16:00 Development #28 Specify fonts manually for

Android vs. iOS
Adam 12.02.2018 10:00 15:30 Development #24 Make UI look better - Cam-

era - Take picture
Magnus 12.02.2018 10:00 15:00 Development #26 Fix Free Run UI - looks

weird
Magnus 12.02.2018 15:00 16:00 Research Research
Adam 12.02.2018 15:30 16:00 Research Research
Magnus 13.02.2018 10:30 17:00 Development Debug #30
Adam 13.02.2018 10:30 14:00 Development #29 Camera - SharePicture-

Frame - keyboard overlaps text
input

Adam 13.02.2018 14:00 17:15 Development #31 Camera - navigation state
not consistent

Adam 14.02.2018 10:00 13:30 Development #31 Camera - navigation state
not consistent

Magnus 14.02.2018 10:00 13:00 Development #30 fixed M.O.H debug distance
Adam 14.02.2018 13:30 16:40 Development #25 Camera - can’t share picture

- loads forever
Magnus 14.02.2018 13:30 16:30 Development #30 fixed M.O.H debug distance
Magnus 19.02.2018 10:00 11:00 Development #32 Specify Lato fonts manually

for Android vs. iOS and Debug
this.circle.update

Adam 19.02.2018 10:15 11:00 Development #25 Camera - can’t share picture
- loads forever

All 19.02.2018 11:00 11:30 Meeting Meeting with Sindre
Adam 19.02.2018 11:30 15:00 Development #33 Camera - Crashes if switch-

ing camera type to front when
the device has no front camera

Magnus 19.02.2018 14:45 17:10 Development #13 I18n

71

Adam 19.02.2018 15:00 17:30 Development #13 Internationalization - i18n -
translate classes

Adam 20.02.2018 10:30 16:45 Development #13 Internationalization - i18n -
translate classes

Magnus 20.02.2018 10:30 15:30 Development #13 Internationalization - i18n -
translate classes

Magnus 20.02.2018 15:30 17:00 Development #23 Social View button some-
times crashes when clicked

All 21.02.2018 10:00 10:30 Development #23 Social View button some-
times crashes when clicked

Adam 21.02.2018 10:30 18:10 Development #42 Fix crash when logging out
- Social => Settings => Log out

Magnus 21.02.2018 10:30 16:00 Development #41 Fix Instructions UI - Social
=> Settings => Instructions

Magnus 21.02.2018 16:00 17:00 Development #40 Fix Collect Points UI - Free
Climb => Collect Points =>YES

Adam 26.02.2018 10:20 11:40 Development #42 Fix crash when logging out
- Social => Settings => Log out

Magnus 26.02.2018 10:20 11:40 Development Looking for issues
Magnus 26.02.2018 11:40 13:00 Development #44: Make "Min Side" look nice
Adam 26.02.2018 11:40 12:40 Development #25 Camera - can’t share picture

- loads forever
Adam 26.02.2018 12:40 14:30 Development #43: No response from Free run

=> Hider markers.
Magnus 26.02.2018 13:00 13:15 Development #45: Fix top statusbar on an-

droid.
Magnus 26.02.2018 13:15 16:30 Development Fixing Decimals in top list , test-

ing after merging master to an-
droid

Adam 26.02.2018 14:30 16:30 Development #42 Fix crash when logging out
- Social => Settings => Log out

Adam 27.02.2018 13:30 16:00 Development Tested new changes in master
branch

Magnus 27.02.2018 13:30 16:20 Development Finding new Issues after merging
with master

Adam 27.02.2018 16:00 17:15 Report Working on report
Magnus 27.02.2018 16:20 17:15 Report Looking at LaTeX and start plan-

ing
Magnus 28.02.2018 10:00 17:00 Report Setting up report and learning

more latex
Adam 28.02.2018 10:00 10:15 Development Tested new changes in master

branch
Adam 28.02.2018 10:15 17:00 Report Working on report
Magnus 05.03.2018 10:20 11:00 Development Looking for issues merging mas-

ter into android
Adam 05.03.2018 10:20 11:00 Development Tested new changes in master

branch on Android emulator
All 05.03.2018 11:00 12:00 Meeting Meeting with Sindre
Magnus 05.03.2018 11:00 16:00 Meeting #55 Peaks nearby list, maybe

smaller, overlaying map.
Adam 05.03.2018 12:00 12:15 Report Adding meeting summary

72

Adam 05.03.2018 12:15 12:30 Development #48 Camera - text not displaying
after style changes

Adam 05.03.2018 12:30 14:00 Development #25 Camera - can’t share picture
- loads forever

Adam 05.03.2018 14:00 16:00 Development #52: Build android for release
Adam 06.03.2018 10:00 16:30 Development #54 Merge EditPictureFrame

and SharePictureFrame
Magnus 06.03.2018 10:00 16:00 Development #55 Peaks nearby list, maybe

smaller, overlaying map.
Magnus 06.03.2018 19:00 20:10 Report Update hour log in report
Magnus 07.03.2018 13:00 17:00 Development #55 Peaks nearby list, maybe

smaller, overlaying map
Adam 07.03.2018 13:00 15:00 Development #54 Merge EditPictureFrame

and SharePictureFrame
Adam 07.03.2018 15:00 17:00 Development #53: Make react-native-

background-geolocation work
on android

Magnus 12.03.2018 10:00 16:30 Development #56: Make more descriptive Ac-
tionButton items

Adam 12.01.2018 10:00 16:30 Development #54 Merge EditPictureFrame
and SharePictureFrame

Magnus 13.03.2018 10:00 10:30 Development #55 Peaks nearby list, maybe
smaller, overlaying map

Magnus 13.03.2018 10:30 16:30 Development #56: Make more descriptive Ac-
tionButton items

Adam 13.01.2018 10:00 11:30 Development #54 Merge EditPictureFrame
and SharePictureFrame

Adam 13.03.2018 11:30 16:30 Development #53: Make react-native-
background-geolocation work
on android

Magnus 14.03.2018 12:00 15:00 Development #56: Make more descriptive Ac-
tionButton items

Magnus 14.03.2018 15:00 15:30 Meeting Meeting with Sindre items
Magnus 14.03.2018 15:30 17:00 Development #56: Make more descriptive Ac-

tionButton items
Adam 14.01.2018 12:00 17:00 Development #53: Make react-native-

background-geolocation work
on android

Magnus 19.03.2018 10:00 11:00 Development Looking at changes
All 19.03.2018 11:00 11:30 Meeting Meeting with Sindre
Magnus 19.03.2018 11:30 16:30 Development 3 Tutorial Messages
Adam 19.03.2018 10:00 11:00 General General
Adam 19.03.2018 11:30 15:00 Development #53: Make react-native-

background-geolocation work
on android

Adam 19.03.2018 15:00 16:30 Development #3 Tutorial Messages
All 20.03.2018 10:00 17:00 Development #3 Tutorial Messages
All 22.03.2018 14:00 18:00 Development #3 Tutorial Messages
All 26.03.2018 10:00 17:00 Development #3 Tutorial Messages
All 26.03.2018 10:00 17:00 Report Writing report
Magnus 27.03.2018 10:00 16:00 Development #3 Tutorial Messages

73

Adam 27.03.2018 10:00 16:00 Report Writing report
Magnus 28.03.2018 10:00 16:00 Development #3 Tutorial Messages
Adam 28.03.2018 10:00 16:00 Report Writing report
Magnus 02.04.2018 11:00 17:00 Development #3 Tutorial Messages
Adam 02.04.2018 11:00 17:00 Report Writing report
Magnus 03.04.2018 10:00 16:00 Development #3 Tutorial Messages
Adam 03.04.2018 10:00 16:00 Report Writing report
Magnus 04.04.2018 10:00 16:00 Development #3 Tutorial Messages
Adam 04.04.2018 10:00 16:00 Report Writing report
All 09.04.2018 10:00 17:00 Development #3 Tutorial Messages - Reset

viewed pages in async storage
All 10.04.2018 10:00 16:00 Development #3, #62, #63, #65
Magnus 11.04.2018 10:00 17:00 Development #3 Tutorial Messages i18n, Feed-

back fixes, CameraEditTutorial
Adam 11.04.2018 10:00 17:00 Development #68 - InstructionService, #67 -

Social - Follow friends
Magnus 16.04.2018 10:00 17:00 Report #75, Writing Report
Adam 16.04.2018 10:00 17:00 Development #66, #76, #77, Writing Report
Magnus 17.04.2018 10:00 17:00 Report Writing Report
Adam 17.04.2018 10:00 17:00 Development,

Report
#71: Fix UI - Suggest a peak,
Writing Report

Magnus 18.04.2018 10:00 18:00 Report Writing Report
Adam 18.04.2018 10:00 18:00 Development Issue #74 #70
Magnus 23.04.2018 10:00 17:00 Report Writing Report
Adam 23.04.2018 10:00 17:00 Development Issue #80 #85, #86
All 24.04.2018 10:00 17:00 Report Writing Report
All 25.04.2018 10:00 17:00 Report Writing Report
All 30.04.2018 10:00 17:00 Report Writing Report
All 01.05.2018 10:00 17:00 Report Writing Report
All 02.05.2018 10:00 17:00 Report Writing Report
All 07.05.2018 10:00 17:00 Report Writing Report
All 08.05.2018 10:00 18:00 Report Writing Report
All 09.05.2018 10:00 17:00 Report Writing Report
All 14.05.2018 10:00 14:00 Report Finalizing report for submission

74

C Meeting Summaries

C.1 Meeting with employer Sindre Helelborgås

Thursday 11. January 2018, 10:00 - 10:30

Present

Magnus W. Enggrav, Adam A. Jammary, Sindre Helelborgås

Agenda for the meeting

General introduction.

Discussion

Introduced ourselves and mainly discussed some of Sindres plans and ideas.

Conclusions

Decided to learn more about React Native by following some online tutorials.

C.2 Meeting with supervisor Mariusz Nowostawski

Thursday 18. January 2018, 15:30 - 16:30

Present

Magnus W. Enggrav, Adam A. Jammary, Mariusz Nowostawski

Agenda for the meeting

Initial discussion on where and how to start, try to get some tips and pointers on how to
write the project plan.

Discussion

Explained to Mariusz about our situation, that all the tasks for the project have not yet
been clearly defined, and that they will unfold along the way.

Mariusz was very understanding, and guided us with practical tips for what to focus on
in the plan and report.

75

Conclusions

He suggested writing more about the process instead of planning too much in detail, as
we we will not know the details until later in the project.

Mariusz also suggested looking into using Latex for the Bachelor report.

C.3 Meeting with employer Sindre Helelborgås

Monday 22. January 2018, 11:30 - 12:00

Present

Magnus W. Enggrav, Adam A. Jammary, Sindre Helelborgås

Agenda for the meeting

Discuss how we should work on the repository.

Discussion

Sindre planned to change the login process.

Discussed linking dependencies in to the Android and iOS projects using ’react-native
link’.

Conclusions

We will work on the android branch while employer merges our changes in to the
master branch after testing.

We need to manually link new packages in to the Android projects since the
’react-native link’ tool fails, Sindre will do the manual linking on the iOS projects.

C.4 Meeting with employer Sindre Helelborgås

Monday 5. February 2018, 11:30 - 12:00

Present

Magnus W. Enggrav, Adam A. Jammary, Sindre Helelborgås

Agenda for the meeting

Find out how we should handle the rendering difference between Android and iOS.

Discussion

Android needs to render things in the correct order and does not work like iOS that can

76

use Overflow:’hidden’ to make children render above their parent. What should we do
about this?

Conclusions

Maybe create some new classes specifically for Android, or maybe redesign some stuff
on Android. Sindre suggested that we start experimenting ourselves to find the best
solution. He suggested either making a new class/component hierarchy by refactoring
the existing code, or keep the existing hierarchy for iOS and make a separate one for
Android.

C.5 Meeting with employer Sindre Helelborgås

Monday 19. February 2018, 11:00 - 11:30

Present

Magnus W. Enggrav, Adam A. Jammary, Sindre Helelborgås

Agenda for the meeting

• Discuss the latest changes in the android branch
• Discuss the latest changes in the master branch
• Discuss the issues found after merging branches
• Discuss what to work on next

Discussion

Sindre talked about meeting with product owner, and how there may be possible
changes to the UI.

Discussed the issues we were working on, and the latest merge with changes from the
master branch.

#20: App randomly crashes on startup

Sindre will take a look, seems the circle is not currently drawn, can be ignored if
possible for now.

#25: Camera - can’t share picture - loads forever

Seems the problem lies on the backend server, will leave the issue open for now and
continue on other issues in the meanwhile.

Conclusions

Concluded that we will continue working on current issues in Bitbucket, and let Sindre
know when we are finished.

77

C.6 Meeting with employer Sindre Helelborgås

Monday 5. March 2018, 12:00 - 13:00

Present

Magnus W. Enggrav, Adam A. Jammary, Sindre Helelborgås

Agenda for the meeting

Discuss issues found last week, and what to work on this and next week.

Discussion

Issue #46: Social => Retrieving friend info . . .

Sindre refactored social services and other stuff in the core architecture that may have
affected all service-based features.

Issue #47: My Site => error

Sindre is not working on it, we can fix it.

Issue #25 Camera - can’t share picture - loads forever

Skal jeg legge til en liten alert melding som sier at den feila å dele/laste opp bildet?

Yes, add alert.

Sindre discussed caching, offline picture management, but this was only an idea for the
future if time is available.

New issue on share page:

Text on bottom, difficult to click on message input field switch is displayed on share
page, does nothing, should be hidden.

Will redo UI, maybe single edit/share pic, see issue #54 Merge EditPictureFrame and
SharePictureFrame.

Issue #48 Camera - text not displaying after style changes

Skal jeg legge tilbake button, eller planlegger du noen UI endringer på kamera sidene?

Seems to be fixed?

Yes, is fixed.

Should map centering icon be displayed on top-right corner?

Probably specific to Android when displaying Google Maps.

78

Conclusions

What should we work on?

• Merge iOS branch in to android branch
• Merge camera single edit/share pic?
• Peaks nearby list, maybe smaller, overlaying map.
• https://projects.invisionapp.com/share/WEEPGYGGN/screens/266597100
• LocationServices:
• - android vs iOS, geolocation
• - https://github.com/transistorsoft/react-native-background-geolocation

C.7 Meeting with employer Sindre Helelborgås

Monday 19. March 2018, 11:00 - 11:30

Present

Magnus W. Enggrav, Adam A. Jammary, Sindre Helelborgås

Agenda for the meeting

• Discuss current issues
• Discuss what to work on next

Discussion

#47: My Site => error

Sindre said he had fixed the issue, but it still loads data forever on Android.

Free (collect points): UI overlaps

Sindre was working on a new iOS release, and will look at the issue after the release is
complete.

New tasks

#3: Tutorial Messages

• Create a popup service that can called from any component
• Keep track of which popups/instructions that have already been seen, and only

display unseen popups.
• Can be disabled/reset in settings
• White box with drop shadow
• Arrow ?
• Make individual instruction popups based on existing instructions slides

79

• LoginPage subscribes to instructions service

#59 Hill search function

Conclusions

Sindre said that the master branch could safely be merged in to the android branch now.

C.8 Meeting with employer Sindre Helelborgås

Wednesday 11. April 2018, 10:30 - 11:00

Present

Magnus W. Enggrav, Adam A. Jammary, Sindre Helelborgås

Agenda for the meeting

• Discuss current issues
• Discuss what to work on next

Discussion

#3: Tutorial Messages

• Show Popups first time
• Saves viewed popups in async storage
• Popup bubble linked to page
• Page can have multiple popup bubbles
• Popup bubble can have multiple pages
• Reset viewed pages in async storage
• Missing: i18n

Conclusions

• Q: How does it look?
• A: Add darker background to separate popup from background
• A: Suppress popup when another popup is visible
• A: Change color on next button
• A: Make buttons smaller and move them more away from edges
• Q: How does services work and how do we use them?
• A: Haven’t looked at it yet
• Q: Other issues, bugs, new tasks?
• A: Everything works on iOS
• A: We will have another look at what’s different on Android
• Q: Merge status? Master => android

80

• A: OK to merge

81

D Backlog

Type Title
86 Bug Start Climb - MapCard - SideHillList - Crash on android branch
84 Bug Random crash when logging in on mobile device
83 Bug Search/Filter Hill List - Number filter button is not scaled or

center-aligned vertically
82 Bug Search/Filter Hill List - Number does not work as expected
81 Bug Failed to build ios branch with updated camera dependency
79 Bug Random focus to location at startup
78 Bug Fix - Social - Stories - share picture
73 Bug Fix: Peaks are not listed and displayed in map on startup
72 Enhancement Offline Fix
69 Enhancement Clean up i18n locale file content
61 Enhancement Google play debug version
58 Enhancement Create hills automatically capture hill
57 Proposal Asset image overlay-graph.png contains the text ’HØYDEPOENG’
52 Task Build android for release
34 Bug Facebook friends permissions
6 Task Fresh Data
5 Task Groups - Plan
4 Bug Fix offline
3 Proposal Tutorial Messages

82

E Email Communication

E.1 Wednesday, 24. January 2018

Fra: Adam Abdellah Jammary
Sendt: 24. januar 2018 14:50
Til: Mariusz Nowostawski
Kopi: Magnus Wirgeness Enggrav
Emne: SV: BSP3900 Bachelor Project - Project Plan
Thanks Mariusz, we’ll go with how it is now.

Fra: Mariusz Nowostawski <mariusz.nowostawski@ntnu.no>
Sendt: 24. januar 2018 14:34
Til: Adam Abdellah Jammary
Emne: Re: BSP3900 Bachelor Project - Project Plan
Hi Adam,

It can be separate, but it can be like you have it now. It looks much better, and the
context is clear. Go ahead with that.

Cheers
Mariusz

—–Original Message—–
From: Adam Abdellah Jammary <adamaj@stud.ntnu.no>
Date: Wednesday, 24 January 2018 at 14:30
To: Mariusz Nowostawski <mariusz.nowostawski@ntnu.no>
Cc: Magnus Wirgeness Enggrav <magneng@stud.ntnu.no>
Subject: SV: BSP3900 Bachelor Project - Project Plan
Something like this?

Or is it important that the front cover page is separate from the content of details?

—————————————-
Fra: Mariusz Nowostawski <mariusz.nowostawski@ntnu.no>
Sendt: 24. januar 2018 14:05:43
Til: Adam Abdellah Jammary
Emne: Re: BSP3900 Bachelor Project - Project Plan
Hi ,

Make sure that the project has at the very start of the document:

Title of the project

83

Your names (both)
Date (current, date of submitting the doc)
The rest of the document is looking OK.

More answers inline:

—–Original Message—–
Also, regarding the project agreement (between us and the company), Blackboard says
only one member of the group needs to upload the documement. Magnus uploaded it,
but since there is no group upload available, my blackboard doesn’t register it as
uploaded for me. Should I just ignore it?

Yup, ignore it. If one of you submitted it, then it is fine.

kind regards,
Adam and Magnus

E.2 Tuesday, 27. February 2018

Fra: Mariusz Nowostawski <mariusz.nowostawski@ntnu.no>
Sendt: 27. februar 2018 17:18
Til: Magnus Wirgeness Enggrav
Kopi: Adam Abdellah Jammary
Emne: Re: Bachelor project question
Hi,

It is OK for you to change and give a slightly different title in your final submitted
report, so, dropping "gamification" from the title is fine. Also, "App and gamification" as
a title feels a bit odd - rather as a placeholder, so, you probably should think and design
a better title anyway, for you final report, such that it conveys the actual nature of your
project. Do not worry about it at this stage - it can be done later, once you have the
actual shape of the final delivery for the report.

Hope that helps,

Cheers
Mariusz

—–Original Message—–
From: Magnus Wirgeness Enggrav <magneng@stud.ntnu.no>
Date: Tuesday, 27 February 2018 at 16:58
To: Mariusz Nowostawski <mariusz.nowostawski@ntnu.no>
Cc: Adam Abdellah Jammary <adamaj@stud.ntnu.no>
Subject: Bachelor project question
Hi Mariusz

We have a question for you:

Our offical title of the bachelor project is "App and gamification". However our task is

84

make an app work on android using react native. and possible do other tasks from their
backlog. So i feel like the title is a bit off. is this a problem?

Or can we use our own title in the report since it is possible that there will be no
gameification, depending on their backlog.

Kind regards,
Magnus Enggrav
Adam Jammay

85

F Project Agreement

86

	Preface
	Contents
	List of Figures
	Introduction
	Background
	Project Description
	Scope
	Purpose
	Target Audience
	Roles
	Academic Background
	Glossary
	Document Structure

	Project Management
	Software Development Methodology - Scrum with XP
	Status Meetings and Decision Points
	Meetings with employer Sindre Helelborgås
	Meetings with Supervisor Mariusz Nowostawski

	Time Managment
	Toggl

	Task Board
	Trello
	Bitbucket Issues
	Bitbucket GIT Repository

	Alternative Technologies
	Responsive Web Design (RWD)
	Adaptive Web Design (AWD)
	Standard Layout
	Responsive Layout
	Scaled Layout
	Flux and Zoom Layout

	Progressive Web Apps
	Web vs. Native
	Native vs. Hybrid
	Ionic
	Apache Cordova (Adobe PhoneGap)
	Xamarin

	Technologies
	React Native
	React (JavaScript Library)
	ReactJS vs. React Native
	Bridging
	Building
	Reloading

	Project Dependencies
	Package Managers and Build Tools
	Node.js 7.10.1 med NPM 4.2.0
	Yarn 1.3.2

	IDE (Integrated Development Environment)
	Visual Studio Code 1.19.2

	Emulators and device testing
	Android Studio 3.0.1 for Windows
	Android Emulators (run through Android Studio)
	Android Devices (our own Android devices)

	System Architecture
	Authentication using Facebook SDK
	Services
	Components
	Internationalization
	Localization (i10n)
	Internationalization (i18n)
	react-native-i18n

	Imlementation
	Fixing UI Problems - Android vs. iOS
	Navigation UI
	Fixing the navigation UI
	UI change

	Independent Task - Tutorial Popups
	Task description
	Discussion
	Solution

	QA - Testing
	Debug Developer Menu
	Reload
	Enable Live Reload
	Hot Reload
	Remote JS Debugging
	Inspector
	Perf Monitor (Performance Monitor)

	Console Log
	Console.log()
	Console.warn()
	Console.error()

	Debugging

	Summary
	Results
	Porting to Android
	Internationalization
	Platform-Specific Code
	Learning React Native

	Further Development
	Group Evaluation
	Conclusion

	Bibliography
	Project Plan
	Hour Log
	Meeting Summaries
	Meeting with employer Sindre Helelborgås
	Meeting with supervisor Mariusz Nowostawski
	Meeting with employer Sindre Helelborgås
	Meeting with employer Sindre Helelborgås
	Meeting with employer Sindre Helelborgås
	Meeting with employer Sindre Helelborgås
	Meeting with employer Sindre Helelborgås
	Meeting with employer Sindre Helelborgås

	Backlog
	Email Communication
	Wednesday, 24. January 2018
	Tuesday, 27. February 2018

	Project Agreement

