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Abstract

AVO inversion is a valuable tool to estimate absolute reservoir properties from prestack seis-

mic data. The bandwidth limitation of the seismic requires that the missing low frequencies

must be added to the inversion in order to estimate absolute values. The standard method is

to build a low-frequency model by interpolating and extrapolating low-pass filtered well logs

guided by interpreted horizons, which often leads to artifacts and has no geologic insight.

Artifacts and uncertainties in the low-frequency model manifest themselves in the inverted

estimates, leading to incorrect interpretations and bad business decisions. In this study, an

innovative methodology is proposed based on machine learning to find the non-linear rela-

tionship between seismic attributes and logged elastic properties from available wells, then

the relation is used to estimate the low-frequency content of a target property away from

well control. Only relevant attributes with a justifiable physical relationship with target elas-

tic properties were used, such as AVO attributes and relative impedance. The methodology

was applied in a practical exploration case and validated for a true blind well location. Even

though the statistical basis of the method becomes less robust in areas with very limited well

availability, the results indicate that this methodology is able to estimate more accurately

low-frequency content of elastic properties than the conventional method.
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Chapter 1

Introduction

Simultaneous AVO inversion has proven to be more effective at reservoir prospecting, char-

acterization and providing significant risk reduction in business decisions than conventional

poststack inversion and structural interpretation together (Kelly et al., 2001; Skidmore et al.,

2001). The method exploits the amplitude variation with offset (AVO) to extract not only

P-wave information but S-wave information as well from prestack seismic amplitudes (Ma,

2002). S-waves mainly interact with the rock matrix, whereas P-wave is far more sensitive to

fluid changes, hence S-wave information enhances lithology and pore fluid discrimination.

The increased discriminating capabilities have made simultaneous AVO inversion a routine

tool for a variety of reservoir seismic applications (e.g., Li-ping and Han-ming, 2014; Chen

et al., 2015; Yenwongfai et al., 2017a).

Even though simultaneous AVO inversion has the potential to be a useful direct hydro-

carbon indicator, it suffers from uncertainties and pitfalls as discussed by Avseth et al. (2016).

Assuming high quality seismic and well data, the inversion process uncertainties are the

ones that affect inversion result the most. There are two fundamental limitations related

to simultaneous AVO inversion (Mallick and Fu, 2007). First, the methodology assumes that

the reflection amplitudes on prestack data can be described by the Zoeppritz equations or

a linear approximation to these equations, normally based on the work of Aki and Richards

(1980). The approximations assume small property contrasts and small angles of incidence.

Any violation of these assumptions will lead to inadequate and misleading approximations.

They hold true for angles of incidence up to 30◦-40◦ for typical contrasts in elastic properties

(Li et al., 2007). Second, the missing low frequencies required to estimate absolute elas-

tic properties are added from derived low-frequency models that are assumed to adequately

1
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describe the low-frequency content of the subsurface for the entire range of seismic data. Es-

timates from simultaneous AVO inversion give confident results using robust low-frequency

models and limited angles of incidence even if seismic quality is rather poor (Veeken et al.,

2004).

The first limitation can be overcome by AVO feasibility studies and limiting the maxi-

mum angle of incidence in angle gathers as suggested by Avseth et al. (2016). The second

limitation is much more complex, given that uncertainties in the low-frequency model will

propagate into the inversion results (Ball et al., 2015). The standard method to build low-

frequency models is a simple interpolation/extrapolation of low-pass filtered elastic param-

eters from available well logs, constrained within a structural (faults) and stratigraphic (hori-

zons) framework (Sams and Carter, 2017). The problem with this method is that it does not

have any geological insight and the results are strongly dependent on the well data distribu-

tion. Under these circumstances, low-frequency models are unreasonable away from well

control. This fact can negatively bias the absolute estimates and lead to incorrect interpre-

tations, no matter how good the seismic quality is or how good seismic reflections can be

described by AVO theory (Özdemir, 2009). Recently, the concept of joint impedance-facies

inversion has emerged (e.g., Rimstad et al., 2012; Kemper and Gunning, 2014; Pendrel, 2015),

where rock physics per facies information is implemented in a Bayesian framework to invert

for elastic properties per facies without the need of a low-frequency model. However, si-

multaneous AVO inversion is still widely used in reservoir characterization and hydrocarbon

exploration.

The main motivation of this study is to propose a methodology for low-frequency model

building that overcomes the limitations of the traditional method. In this approach, multi-

variate linear regression is coupled with machine learning to establish a statistical relation-

ship between available well log data and seismic attributes. The methodology is based on

the work done by Hampson et al. (2001). The multivariate transform concept has been used

as an alternative to seismic inversion (e.g., Keynejad et al., 2017; Yenwongfai et al., 2017b).

The proposed methodology uses the multivariate transform concept differently. It is com-

plementary to the simultaneous AVO inversion instead of an alternative. It is aimed to build

more robust low-frequency models for more reliable absolute estimates from simultaneous

AVO inversion results. It is worthwhile to build more robust low-frequency models because

it will result in better business decisions.
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The use of multivariate regression for low-frequency model building was first imple-

mented by Hansen et al. (2008). In this study, least-squares multilinear regression is used

to estimate the low-frequency model of acoustic impedance in an area with sparse well log

data. TWT, time thickness, amplitude, interval velocity, and coherence attributes were used

in the training data. Even though coherence and time thickness attributes carry some ge-

ological insight, it is difficult to relate them to acoustic impedance. There are two set of

attributes that are missing in this study that better relate to acoustic impedance: relative

acoustic impedance and AVO attributes (Cooke et al., 1999). The fit between estimated and

measured low-pass filtered acoustic impedance at blind well locations is still excellent in the

study.

Xia et al. (2012) and Zou et al. (2013) make use of relative impedance in a iterative ap-

proach coupled with seismic velocities. An initial model is built using seismic velocities and

Gardner’s equation. A second model is derived by multilinear regression using the initial

model as attribute, along with conventional poststack seismic attributes. The second model

is then used to invert for relative impedance. The final model is derived by multilinear re-

gression using the now available inverted relative impedance and the second model. Relative

impedance can be derived without the need of an initial model, avoiding the need to iterate

(Lancaster and Whitcombe, 2000).

One of the issues with seismic velocities is that the upper limit of reliable information

is hardly higher than 2 Hz (Cerney and Bartel, 2007). Ray and Chopra (2015) avoid the use

of seismic velocities in another approach, and instead use a low-frequency model built by

extrapolating a single well as an attribute, along with relative impedance and conventional

poststack seismic attributes in a multilinear regression scheme.

The proposed method in this study represents a significant improvement to the existing

methods. First of all, all existing methods use only multilinear regression schemes. Multilin-

ear regression is only used for best attribute selection on the proposed approach and then

it is cascaded to a probabilistic neural network. Neural networks capture non-linear rela-

tionships better, yielding better estimates in contexts where well data is sparse (Leiphart and

Hart, 2001). Low-frequency models built by interpolation/extrapolation using a single well

are used as attributes. Finally, prestack AVO attributes are included too as seismic attributes

to the training data. These attributes have well defined relations to different reservoir prop-

erties.



Chapter 2

Theoretical background

2.1 Amplitude Variation with Offset

Amplitude versus offset is an important tool in quantitative seismic interpretation for hydro-

carbon prediction and reservoir characterization. It is very popular in the oil industry since

the seismic amplitudes for all offsets can be physically explained in terms of rock proper-

ties. In this section, the theoretical framework of AVO is reviewed in order to understand the

assumptions, limitations, and pitfalls of this tool.

When a plane wave hit a rock interface at an oblique angle, partitioning of the incident

energy occurs at the interface. Not only reflection and transmission of P-wave but also P- to

S-mode conversion takes place. Below critical angle, an incident P-wave gives rise to a re-

flected P-wave, transmitted P-wave, reflected S-wave, and a transmitted S-wave (figure 2.1).

The angular relationships among these components are explained by the Snell’s law:

si n(θr )

VP1

= si n(θt )

VP2

= si n(ϕr )

VS1

= si n(ϕt )

VS2

(2.1)

where VP and VS are the P- and S- wave velocities respectively for two media divided by

an interface. The angles are measured from the normal. θr and θt are the angle of reflection

and the angle of transmission respectively for the P-waves, ϕr and ϕt are the angle of reflec-

tion and the angle of transmission respectively for the S-waves. The partitioning of incident

wave energy into the different components depends on the angle of incidence and on the

properties contrasts of the two media.

4
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Figure 2.1: Energy partitioning for a plane wave that is incident on an interface. VP , VP , and ρ are the
P-wave velocity, S-wave velocity, and density respectively. The subscripts indicate the medium. The
angle θi is the angle of incidence which is also equal to the angle of reflection for the P-reflected ray,
RPP . The angle θt is the angle of transmission for the P-transmitted ray, TPP . Similarly, ϕr and ϕt are
the angle of reflection and the angle of transmission for the S-reflected ray, RPS , and the S-transmitted
ray, TPS , respectively (from Chopra and Castagna, 2014).

2.1.1 Zoeppritz equations

The Zoeppritz equations are the set of equations that describe the energy partitioning of a

seismic wave at an interface. Most AVO analysis techniques used today are based on the

Zoeppritz equations or an approximation of it. Zoeppritz original equations are mathemati-

cal statements of boundary conditions. However, the equations can be conveniently written

as matrix equations. Following Aki and Richards (1980), the equations for incident P-wave
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reflection and transmission coefficients RPP , RPS , TPP and TPS are expressed as follows:



cos(θi )
VP1
VS1

si n(ϕr )
VP1
VP2

cos(θt ) −VP1
VS1

si n(ϕr )

−si n(θi )
VP1
VS1

cos(ϕr )
VP1
VP2

si n(θt )
VP1
VS1

cos(ϕt )

−cos(2ϕr ) −si n(2ϕr ) ρ2
ρ1

cos(2ϕt ) −ρ2
ρ1

si n(2ϕt )

si n(2θi ) −V 2
P1

V 2
S1

cos(2ϕr )
ρ2V 2

S2
V 2

P1

ρ1V 2
S1

V 2
P2

si n(2θt )
ρ2V 2

P1

ρ1V 2
S1

cos(2ϕt )


X



RPP

RPS

TPP

TPS

=



cos(θi )

si n(θi )

cos(2ϕr )

si n(2θi )


(2.2)

where VP , VS , and ρ are the P-wave velocity, S-wave velocity, and density respectively. They

carry a subscript 1 for medium 1 and subscript 2 for medium 2. The angle θi is the angle of

incidence and also equal to the angle of reflection for RPP , The angle θt is the angle of trans-

mitted P-ray TPP . Similarly, ϕr and ϕt are the angle of reflection and angle of transmission

for the S-reflected ray RPS , and the S-transmitted ray TPS respectively. The Zoeppritz equa-

tions (2.2) give the reflection and transmission coefficients for plane waves as a function of

the angle of incidence and three independent parameters (density, P-wave, and S-wave ve-

locities) of the two media on each side of the interface.

Chopra and Castagna (2014) mention certain characteristics of the Zoeppritz equation

to be aware of. They describe plane-wave solutions where reflection and transmission co-

efficients are frequency independent. Actual seismic waves are spherical waves and ex-

hibit frequency-dependent reflection coefficients. The Zoeppritz equations describe reflec-

tion coefficients in the direction of wave propagation, whereas for vertical geophones only

the vertical component of the reflection response is of interest. It may not be the case for

hydrophones that is omnidirectional. The Zoeppritz equations describe the reflection for

a horizontal interface that separates two half-spaces; thus, they do not include wavelet-

interference effects. They do not take into account transmission losses, attenuation, diver-

gence, multiples, converted waves, seismic noise, etc. This has to be taken care of during

seismic processing, otherwise, it can lead to highly misleading interpretations. Another as-

sumption is that both materials are isotropic. There is strong evidence that shale can be

anisotropic. There are anisotropic variations of the Zoeppritz equations and its approxima-

tions. Despite its limitations, Zoeppritz equations have proved to be useful to explain the

seismic response in different combinations of rock properties. The most robust parameters

that can be inferred from AVO are the contrast in impedance and Poisson’s ratio.
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2.1.2 Approximations to the Zoeppritz equations

The Zoeppritz equations are not simple and their solutions are laborious, they have a com-

plicated dependence on elastic parameters of the two media, and on the angle of incidence.

It is difficult to understand how a particular parameter affects the reflection-coefficient curve.

To better understand the relationship between coefficients and the physical parameters at

a given incidence angle, different approximate expressions have been developed over the

years. A well-known approximation is given by Aki and Richards (1980):

R(θ) ≈ 1

2

(
∆VP

VP
+ ∆ρ

ρ

)
+

(
1

2

∆VP

VP
−4

V 2
S

V 2
P

∆VS

VS
−2

V 2
S

V 2
P

∆ρ

ρ

)
× si n2(θ)+ 1

2

∆VP

VP
(si n2(θ)t an2(θ))

(2.3)

where

VP = VP2 +VP1

2
, ∆VP =VP2 −VP1

VS = VS2 +VS1

2
, ∆VS =VS2 −VS1

ρ = ρ2 +ρ1

2
, ∆ρ = ρ2 −ρ1 (2.4)

which is of the form

R(θ) ≈ A+B si n2(θ)+C si n2(θ)t an2(θ) (2.5)

where A is called the AVO intercept, the zero-offset stack, or the "true" normal incidence

reflectivity, B is commonly referred to as the AVO slope or gradient and is a measure of the

rate of change of the amplitude with time, and C is called the curvature. For small angles,

the third term is of fourth order and often neglected. As mentioned by Chopra and Castagna

(2014), dropping the last term is desirable because it renders the equation linear in si n2(θ).

A linear equation is more robust than a parabolic one with three coefficients.

The assumptions for this approximation are that the contrasts of the properties on both

sides of the interface are sufficiently small, and the angles of incidence are small too. The ap-

proximation is far worse at large incident angles and it breaks down as the angle approaches

the critical angle. These assumptions, however, are reasonable and valid for many applica-

tions.

There are various approximations and most of them are based on algebraic rearranges of

the Aki and Richards (1980) equation (2.3). It is outside of the scope of this work to review all

of them, Li et al. (2007) summarize the most widely used approximations, the solution they
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seek and their assumptions and limitations. The Fatti et al. (1994) approximation is relevant

for this work since the AVO inversion algorithm used is based on this approximation. Fatti

et al. (1994) rearrange the Aki and Richards (1980) equation (2.3) as follows:

R(θ) ≈ 1

2
(1+ t an2(θ))

∆IP

IP
−4

(
VS

VP

)2

si n2(θ)
∆IS

IS
−

[
1

2
t an2(θ)−2

(
VS

VP

)2

si n2(θ)

]
∆ρ

ρ
(2.6)

Note that this equation solves for P- and S- impedance reflectivities. The third term is much

smaller than the other two terms because si nθ ≈ t anθ for small angles and hence the third

therm is very small even for large contrasts in density. This approximation is very intuitive

when it comes down to understand why is difficult to determine density from AVO from low

angles of incidence (Lines, 1998). Large angles of incidence are required for the third term to

actually add some value. There a number of associated issues with wide angles mentioned

by Roy et al. (2008) that also explains why is difficult to invert for density. The approximation

makes no other assumption apart from the small contrasts in the elastic properties of the

two medium, and the equation is good out to large precritical angles.

2.1.3 Classification of AVO responses

Castagna et al. (1998) proposed a classification (Table 2.1) on the basis of where the top of

a gas sand falls in the intercept-versus-gradient crossplot (Figure 2.2). The reflection coeffi-

cient versus angle response is modelled for all classes in figure 2.3.

Table 2.1: AVO classes classification in terms of their position on the intercept versus gradi-
ent crossplot, and their sign associated with those attributes.

Class Relative impedance Quadrant R(0) G
1 High-impedance sand 4th + -
2p Near-zero impedance contrast 4th + -
2n Near-zero impedance contrast 3rd - -
3 Low-impedance sand 3rd - -
4 Low-impedance sand 2nd - +

Class 1 anomalies occur when the acoustic impedance of the upper layer is less than

that of the lower layer. Reflectivity is strong positive at zero offset and decreases in mag-

nitude with offset and can change polarity at large offset. Because of this polarity change,

the reflection response can cancel out in CMP stacking. They normally correspond to hard

formations related to deep, well-consolidated sands.
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Figure 2.2: Crossplot of AVO intercept versus AVO gradient showing all four possible quadrants.
Brine-saturated sandstones and shales tend to fall along a well-defined background trend. The top of
the gas sand tend to fall below the background trend, whereas the bottom of the gas sand tend to fall
above the background trend (from Castagna et al., 1998).

Class 2 anomalies response shows a very small difference in acoustic impedance between

the upper and lower layer. The normal incident P-wave reflection coefficient is either slightly

positive or slightly negative (2p or 2n respectively) with a strong negative gradient. They can

appear as dim spots, bright spots, or polarity reversals on stacked seismic data.

Figure 2.3: Reflection coefficients versus angle for all
classes (from Castagna et al., 1998).

Class 3 response occurs where the

acoustic impedance of the upper layer is

higher than that of the lower layer. The

normal incident P-wave reflection coef-

ficient is strong negative with a negative

gradient. Classical bright spots show

this class in stacked sections. Relatively

shallow unconsolidated sediments ex-

hibit class 3 anomalies.

Class 4 are relatively rare. They occur

for unconsolidated or soft sands below

a hard cap rock such as a hard shale, or

a carbonate. Large negative amplitude

at zero offset and then decreases slightly

with offset.
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2.1.4 AVO attributes

Seismic attributes are measurements derived from seismic data, and they are useful because

they correlate with physical properties of interest (Chopra and Marfurt, 2007). AVO attributes

or pre-stack attributes are calculated based on the approximations of the Zoeppritz equa-

tions described in section 2.1.2. The two most important AVO attributes are Intercept or

I and Gradient or G based on equation 2.5. Amplitudes are analyzed as a function of the

squared sine of the estimated incidence angle and the algorithm fits a line in a least square

sense where the slope of the line is the AVO gradient and its intersection of the amplitude

axis is the AVO intercept (Rüger, 2002). The relation between these attributes and reservoir

properties is given by:

I = 1

2

(
∆VP

VP
+ ∆ρ

ρ

)
(2.7)

G =
(

1

2

∆VP

VP
−4

V 2
S

V 2
P

∆VS

VS
−2

V 2
S

V 2
P

∆ρ

ρ

)
(2.8)

it can be noticed that any change in the intercept is a function of the change of P-wave ve-

locity or density or both, subsequently, any change in intercept would be directly correlated

with a change in acoustic impedance Z = VPρ. The same is true for G but in this case, the

relation is more complex. Combinations of these two attributes are used to create other at-

tributes. The AVO product is another common AVO attribute given by the product I ×G .

Recalling table 2.1 is it evident that this attribute will highlight AVO class III anomalies very

well, those are associated with soft sands with hydrocarbons or a classic bright spot. These

sands will have a strong negative intercept and a strong negative gradient. The product will

be a strong positive. Other classes will be weak or have negative products. On the down site,

the AVO product is not able to recognize any other class but class III.

Wiggins et al. (1983) derived the relation RS ≈ (I −G)/2 where RS = 1
2

(
∆VS
VS

+ ∆ρ
ρ

)
. The

approximation is exact for VP
VS

= 2. This attribute is called Scaled S-wave reflectivity and its

general form αI −βG . Following Wiggins et al. (1983), Castagna and Smith (1994) derived a

similar relation, RP −RS ≈ (I +G)/2 where RS = 1
2

(
∆VS
VS

+ ∆ρ
ρ

)
and RP = 1

2

(
∆VP
VP

+ ∆ρ
ρ

)
. The ap-

proximation is exact for VP
VS

= 2 too. A calibration is suggested in the formαI +βG to calibrate

amplitudes and remove petrophysical biases. This attribute is later referred to as Scaled Pois-

son’s reflectivity (Ross, 2002). Castagna and Smith (1994) demonstrated that it is an excellent

hydrocarbon indicator in siliciclastic environments. The relation is based on that pore-fluid
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changes will affect RP much more than RS whilst the porosity and lithology changes will af-

fect them similarly. Hence, the reflection difference trends to cancel out lithology and poros-

ity variations, while fluid changes are enhanced. This attribute will always be negative for gas

sands and more negative than brine sands.

Scaled Poisson’s reflectivity is equivalent to another attribute defined by Smith and Gid-

low (1987) as the fluid factor. It is defined as the difference between observed ∆VP
VP

and ∆VP
VP

predicted from the Mudrock Line (Castagna et al., 1985). Fatti et al. (1994) redefined the fluid

factor in terms of P-wave reflectivity and S-wave reflectivity. Any fluid change will other than

brine will create a difference. Brine saturated lithology will cancel out.

Far vs near stack attributes can be useful when offset stacks are available. The far minus

near stack is a rough estimate of an AVO gradient, and it is found to be a good attribute to

detect class II AVO anomalies (Ross and Kinman, 1995). Other attributes include far minus

near times far and far minus near times near. The first is a good attribute to enhance class

II AVO anomalies. The second is a good attribute to enhance hydrocarbon-related class III

AVO anomalies and reduce brine-saturated class II AVO response. More recent studies have

developed AVO polarization attributes (Mahob and Castagna, 2003) that take into account

wavelet characteristics. They mention these attributes are potentially useful hydrocarbon

indicator and even enhances gas sands better than conventional AVO attributes. However,

they will not work properly for poor signal-to-noise ratio in the seismic data and data with

very low frequency data. There are many other AVO attributes but the ones previously men-

tioned are the most commonly used in AVO analysis.

2.1.5 AVO limitations

Some of the AVO limitations have already been mentioned. Nanda (2016) makes a summary

of them. Firstly, the Zoeppritz’s equations and their simplifications are the core of AVO anal-

ysis and inversion. They are valid under certain assumptions: Single horizontal interfaces

assumption will not be valid for thin-bedded geology. Assumptions of plane waves instead

of spherical waves, isotropy and frequency-independent reflection response are some fac-

tor that may affect adversely AVO analysis. Approximations to the Zoeppritz equation make

other assumptions such as small contrasts in the media properties and limited angle of inci-

dence. Any contexts where these assumptions are broken might lead to erroneous interpre-

tations. Other limitations include composite events from overlapping reflections in complex
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geology, presence of multiples and noise, scattering and absorption, tunning and interfer-

ence effects, attenuation, transmission loss, incorrect NMO, etc.

There are many things that can affect the AVO estimates that makes it a complex and

not very robust technology. Proper processing of seismic data can account for improved

signal-to-noise ratio, acquisition footprints removal, correct amplitude balancing, enhanced

signal bandwidth, multiple removal, attenuation and absorption compensation and so on,

yet in complex situations, the data might not be of desirable quality. Final judgment is based

on AVO modeling, geological understanding, rock physics, petrophysics, etc. Chopra and

Castagna (2014) raise some practical questions for AVO analysis about its limitations and

for the interpreter’s awareness. Even if data quality is assured, the seismic response to fluid

changes decreases with depth. It is known that AVO is useful within a range of depths called

as the "AVO window" (Avseth et al., 2005).

2.2 Seismic Inversion and AVO

The concept of seismic inversion is better explained using the convolutional model. Seis-

mic reflections on a zero-offset stack are represented from the convolution of reflection-

coefficient series with a wavelet that characterizes the seismic source plus random noise

(Cooke and Cant, 2010). Reflection coefficients are related to impedance contrasts between

interfaces. Impedances are rock properties, not interface properties and these are calculated

from density and velocity of the media. At the same time, density and velocity are related to

many other rock properties such as porosity, fluid type, lithology, etc. Figure 2.4 represents

the sketch of the convolutional seismic model or also known as seismic forward modelling,

going from left to right. If the source wavelet is known, it can be deconvolved from the seis-

mic, resulting in the reflection coefficient series. From right to left, it is the inverse of the seis-

mic forward modeling. It extracts geological information from the seismic response (Chopra

and Castagna, 2014), and that is the main reason of its popularity for reservoir characteriza-

tion.
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Figure 2.4: 1D Seismic convolutional model or seismic forward modelling concept .

Inversion methods can be classified into 4 categories: Deterministic vs Stochastic, Ab-

solute vs Relative. They can have post- and pre-stack applications. There several different

approaches in both categories. There is no clear consensus that any particular inversion al-

gorithm is better than others and it can be argued that careful evaluation of every step taken

is more important than the choice of the algorithm (Simm and Bacon, 2014). Each category is

a wide topic. Outlining all inversion schemes is outside the scope of this study. Veeken et al.

(2004) reviewed seismic inversion methods and some of their constraints in detail. There will

be a particular focus on AVO inversion. It is important to mention that any inversion process

has not a unique solution. That means that different geological configurations can have the

same seismic response.

2.2.1 General principles of seismic inversion methods

Most available methods are based on the forward convolution of a reflectivity model with

an estimated wavelet, a difference is computed between the modelled seismic and the ob-

served seismic, then update the reflectivity model in order to minimize the difference be-

tween the modelled and observed seismic traces. Whether Generalized Linear Inversion,

sparse spike or simulated annealing, all algorithms work on the principle of minimization

(Schuster, 2017). Methods based on minimization are commonly known as ’deterministic’.

Figure 2.5 shows a generic deterministic seismic inversion workflow.
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Figure 2.5: Generic deterministic inversion scheme.

On the other hand, stochastic seismic inversion generates a suite of alternative heteroge-

neous impedances representations that match the seismic within a certain threshold. Taken

together, the suite of possible realization capture the uncertainty or non-uniqueness asso-

ciated with the inversion process. Stochastic inversion is complementary to deterministic

inversion. The deterministic seismic inversion is the average of all possible non-unique

stochastic realizations (Francis, 2006).

2.2.2 Limitations of deterministic seismic inversion

Deterministic seismic inversion has some limitations. These arise because of the limited

bandwidth of the seismic data. It is not widely appreciated that seismic inversion is non-

unique because the seismic trace is band-limited. For a given inversion algorithm, the seis-

mic inversion is unique within the seismic bandwidth. Band-limited or relative impedance

inversion is possible without the need of a frequency model (Ball et al., 2014). Even though

band-limited inversions have unique solutions, they are relative estimates and not abso-

lute estimates of reservoir properties. The missing low frequencies contain critical informa-

tion about the absolute values and without them only relative values can be obtained from

seismic. The missing low frequency information must be added to the inversion in order
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to obtain absolute values (Francis, 2006). This information is usually known as the Low-

Frequency Model (LFM), and it constitutes the main limitation of any deterministic seismic

inversion method. Figure 2.6 from Francis (2006) demonstrates this fact. A real data example

for a relative inversion is compared to a high-pass filtered deterministic inversion. The dif-

ferences are indistinguishable. This suggests that the low-frequency model offers very little

value inside the content frequency of the seismic.

Figure 2.6: Deterministic inversion;top left: final seismic inversion;top right: low-pass filtered;lower
left: high pass filtered;lower right: relative impedance.

The LFM controls the initial seismic guess, also constrains the non-uniqueness of the in-

version method, stabilizing the process. Unreasonable low-frequency models can negatively

bias absolute estimates and lead to incorrect interpretations (Sams and Carter, 2017). The

more reliable estimate of the low frequency model, the more reliable estimates of absolute

property values. This is the main focus of this work as stated in the introduction.

As it was mentioned in the introduction, a new approach has been developed to avoid the

limitations of using a low-frequency model. Even though this new methodology is beyond
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the scope of this study, it is important to mention it here. Francis (2010) already suggested

that the limitations of using a low-frequency model can be avoided by adopting a stochastic

inversion approach. Rimstad et al. (2012) and Kemper and Gunning (2014) recast the seismic

inversion problem as a Bayesian problem. In order to account for the inadequate regulariza-

tion and to capture the physics of the inverse problem properly, it is first inverted to facies

and impedances per facies, then given those impedance it is inverted again for facies and so

forth, until convergence. Only depth trends per facies are required as prior information, that

means that the process of building a low frequency model is avoided.

The second biggest limitation is the wavelet estimation. It is straightforward to under-

stand that for the same reflectivity series, its convolution with two different wavelets will

result in two different seismic responses. The same is true in the inverse direction. Decon-

volving the same seismic data with two different wavelets will result in two different reflec-

tivities and hence in different property estimates. Figure 2.7 from Simm and Bacon (2014)

shows how sensitive inversion can be to the wavelet used. The wavelets are quite similar to

each other and yet there are observable differences in the inversion. All other parameters for

the seismic inversion are the same.

Figure 2.7: Sensitivity of inversion results to wavelets extracted from different methods.
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2.2.3 Prestack seismic inversion

The convolutional model is the basis for poststack seismic inversion (figure 2.4). There is no

mode conversion at normal incidence, then only P-wave impedance can be inverted from

poststack seismic data. There is additional information in the prestack seismic data that is

lost after stacking.

Methods that exploit amplitude variations versus offset from prestack seismic data are

known as AVO inversion methods. AVO inversion methods can be divided into two cat-

egories: reflectivity methods and impedance methods (Russell, 2012). The first group of

methods inverts for parameters associated with different approximations of the Zoeppritz

equations, already described in section 2.1.2, such as Intercept, Gradient, Fluid Factor, among

others also previously described (section 2.1.4). Methods that go beyond the estimation of

AVO attributes and invert for elastic parameters, including VP , VS , and density are known

as impedance methods. There are numerous impedance methods (e.g., Quakenbush et al.,

2006; Goodway et al., 1997) but only the two most popular will be described in detail here.

Elastic impedance

Connolly (1999) introduced the concept of Elastic Impedance. First, the elastic impedance

function is defined in terms of angle-dependent P-reflectivity assuming that it has to be anal-

ogous to the acoustic impedance, then

R(θ) = F (ti )−F (ti−1)

F (ti )+F (ti−1
(2.9)

where F represents the elastic-impedance functions and t is time. This can also be written

as

R(θ) = 1

2

∆E I

E I
≈ 1

2
∆ ln(E I ) (2.10)

Where E I is the elastic impedance or angle dependet impedance. This would be valid for

small to moderate changes in impedance. Recalling equation 2.5 proposed by Aki and Richards

(1980) given as

R(θ) ≈ A+B si n2(θ)+C si n2(θ)t an2(θ)

combining the last two equations, and after integration and exponentiation the following
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expression is obtained

E I =V (1+t an2(θ))
P V (−8K si n2(θ))

S ρ(1−4K si n2(θ)) (2.11)

where K = V 2
S

V 2
P

. It is easily demonstrable that E I (0) = AI . Inverting for elastic impedance gives

information about shear wave velocity, that cannot be obtained from acoustic impedance.

In practice, a CMP gather at a well position is selected and different angle stacks are se-

lected. Given that the log has VP , VS , and ρ curves, elastic impedance is calculated for dif-

ferent angles of incidence. Angle-dependent reflectivity at well location is known, it is com-

pared with the angle stacks and wavelet is derived. The derived wavelet is then deconvolved

from the seismic volumes in the process of inverting angle stacks into elastic-impedance vol-

umes. Whitcombe et al. (2002) further developed to the Extended Elastic Impedance that is

shown to correlate better to various elastic parameters such as bulk modulus and lambda.

Simultaneous inversion

Simultaneous inversion refers to AVO extraction and estimation of elastic properties together.

Ma (2002) combines these two processes into a single step and formulates the solution as a

global optimization problem. Fatti et al. (1994) two terms approximation to the Zoeppritz

equations is given by the expression

R(θ) ≈ 1

2
(1+ t an2(θ))

∆IP

IP
−4

(
VS

VP

)2

si n2(θ)
∆IS

IS
(2.12)

and is used to extract the P- and S- impedance reflectivities by fitting to the P-wave reflection

amplitudes from real CMP gathers. Ma (2002) simplifies further by replacing VS
VP

by IS
IP

so

reflection coefficients are only a function of Ip , IS , and θ, resulting in the following formula

R(θ) ≈ 1

2
(1+ t an2(θ))

∆IP

IP
−4

(
IS

IP

)2

si n2(θ)
∆IS

IS
(2.13)

where
∆IP

2IP
= I i

P − I i−1
P

I i
P + I i−1

P

(2.14)

∆IS

2IS
= I i

S − I i−1
S

I i
S + I i−1

S

(2.15)
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IS

IP
= I i

S + I i−1
S

I i
P + I i−1

P

(2.16)

For a given starting model, equation 2.13 can be solved to calculate the reflection coefficients

R(θ). A synthetic seismic gather is computed by convolving the calculated reflection coef-

ficients with predetermined wavelets. The synthetic data are compared with real observed

data to form a misfit function. Each parameter is perturbed to form a new starting model

which is used to generate a new synthetics data that is again compared to the observed data.

This optimization loop is solved using simulated annealing to find a global minimum. The

starting low-frequency model is used as a starting model and it reduces the non-uniqueness

of the problem and stabilizes the algorithm.

The wavelets used for forward modelling of the synthetic data are calculated from multi-

offset stacks. In this way, offset-dependent phase, bandwidth, tuning, and NMO stretch are

captured in the wavelets (Pendrel et al., 2000).

2.3 Machine learning and reservoir properties prediction

There is yet another approach to estimate absolute reservoir properties from seismic. Those

are based on the statistical relation between reservoir properties and the available data rather

than the theoretical relation derived from the AVO theory described before. Diverse meth-

ods and algorithms fall into this category. The two most common ones used as predictor of

reservoir properties are explained in detail here.

2.3.1 Multivariate Linear Regression

Multivariate linear regression is the extension of the conventional linear analysis to multiple

variables (Neter et al., 1996). Under the context of this work, a target log can be expressed by

the linear equation

L(t ) = w0 +w1 A1(t )+w2 A2(t )+w3 A3(t )+ ...+wn An(t ) (2.17)
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where t is time and An are seismic attributes. The weights in the equation are derived by

minimizing the mean-squared prediction error:

E 2 = 1

N

N∑
i=1

(Li −w0 −w1 A1i −w2 A2i −w3 A3i − ...−wn Ani )2 (2.18)

The frequency content of the target log is usually much higher than that of the seismic at-

tribute as shown in figure 2.8. Correlating the log with the attributes on a sample-by-sample

basis may not be optimal. The alternative is to assume that each sample on the target log is

related to a group of neighboring samples on the seismic attribute as illustrated in figure 2.9

for convolution operator of 5 points. Hampson et al. (2001) demonstrates that the number of

Figure 2.8: Comparison between the target log (left) and a seismic attribute (right) that lay stress on
the frequency content difference (from Hampson et al., 2001).

coefficients from equation 2.17 increases to (number of attributes times convolutional oper-

ator length + 1) when a convolutional operator is used. They also show that the operator is

equivalent to introducing time-shifted versions of the original attributes as new attributes.

2.3.2 Neural Networks

The disadvantage of multilinear analysis is that it is linear. Figure 2.10 illustrates the advan-

tages of nonlinear transforms over linear transforms in the same data using just one attribute

as an example. An option to derive nonlinear relationships is the use of neural networks.

Neural networks have been used for diverse geophysical problems. van der Baan and

Jutten (2000) and Poulton (2002) provide a review of this tool for different geophysical ap-

plications. The idea of using neural networks and multiple seismic attributes to estimate
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Figure 2.9: Example of five-point convolutional model to relate seismic attributes to a target log (from
Hampson et al., 2001).

Figure 2.10: Linear analysis (left) vs Neural Network analysis (right) for the same data (from Hampson
et al., 2001).

log properties away from well control was first introduced by Schultz et al. (1994). Further

development and application of neural network to estimate reservoir properties have been

done in recent years (e.g., Liu and Liu, 1998; Hampson et al., 2001; Banchs and Michelena,

2002; Herrera et al., 2006).

Different neural network schemes exist. Liu and Liu (1998) describe the use of a multi-

layer feed-forward neural network (MLFN) for example. One issue with this type of imple-

mentation is explained by Hampson et al. (2001). MLFN can be overtrained easily, proposing

the use of a probabilistic neural network or PNN instead.

The probabilistic neural network is actually a mathematical interpolation scheme that

happens to use a neural network architecture for its implementation (Specht, 1990). The

training data consist of seismic attribute values at well location plus the property log. An
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example for three attributes can be written as follows

{A1n , A2n , A3n , Ln} (2.19)

where there are n training examples or well locations. Given the training data, the PNN as-

sumes that each new output log value

x = {
A1 j , A1 j , A1 j

}
(2.20)

can be written as

L(x) =

n∑
i=1

Li exp(−D(x, xi ))

n∑
i=1

exp(−D(x, xi ))
(2.21)

where

D(x, xi ) =
3∑

j=1

(
x j −xi j

σ j

)2

(2.22)

The quantity D(x, xi ) is the distance between the input point and each of the training points

xi . This distance is measured in the multidimensional space spanned by the attributes and

is scaled by σ j , that can be different for each attribute. The training of the network consists

of determining the optimal set of smoothing parameters σ j . The criterion for determining

these parameters is that the resulting network should have the lowest validation error.

2.3.3 Best attributes selection

Theoretically, an infinite number of seismic attributes could be used in multivariate regres-

sion. Practically, it would not only mean infinite processing time but it can cause overtrain-

ing, making the prediction to be worse outside the training data as described by Kalkomey

(1997). Then, the problem is to select not only the proper attributes but the optimum num-

ber of attributes where neither under-training nor over-training occur.

A systematic procedure was developed by Hampson et al. (2001). The first single best

attribute is found by exhaustive search, that means that all available attributes are used one

by one and the prediction error is computed for all of them. The one with the lowest pre-

diction error is the single best attribute. To find the best pair of attributes it is assumed that

the single best one has to be one of them. A regression is performed and the prediction error

is calculated where the first attribute is fixed and the second is a new attribute every time.
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The best pair is the one with the lowest prediction error. The best triplet of attributes must

have the best pair of attributes, then only the third attribute is checked for all other available

attributes. The best triplet of attributes is again the one with lowest prediction error. This

process can be repeated for to find the best M attributes out of N available attributes where

M < N . This process is called step-wise regression.

The best M attributes out of N attributes could also be found by exhaustive search. In

fact, the optimal solution might not be derived using step-wise regression. The problem

with exhaustive search is that becomes computationally expensive very quickly. Even though

step-wise regression might not lead to the optimal solution, it is a good solution. The com-

putational time is reduced considerably and it already chooses attributes that are linearly

independent as opposed to exhaustive search.

To determine the correct number of attributes to be used, Hampson et al. (2001) use the

method of cross-validation. It consists of dividing the entire training data into two subsets:

the training data and the validation data. The training data are used to calculate the mul-

tivariate transform, while the validation set is used to calculate the final prediction error.

Over-training will result in a poorer fit to the validation data set. In this case, the division of

the training data are all training samples from all wells, except a single hidden well which is

the validation set. The analysis is repeated as many times as there are wells, each time leav-

ing out a single different well. The total validation error is the RMS average of the individual

errors:

E 2
V = 1

N

N∑
i=1

e2
V i (2.23)

where EV is the total validation error, eV i is the validation error for well i , and N is the num-

ber of wells in the analysis.

Figure 2.11 shows the validation error in red and the prediction error in black for the

training data versus the number of attributes. The validation error is always higher than

the training error because there is always one well less in the validation error that results

in less predictive power. The training error always decreases because the higher number of

attributes is analog to fitting a higher order polynomial. On the other hand, validation error

does not decrease monotonically. It decreases and then gradually increases. The point where

the validation error stops declining convincingly is the optimum number of attributes before

over-training.
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Figure 2.11: Validation error (red), and training error (black) versus number of attributes. Training
error always decreases. The optimum number of attributes is 6 for this example (from Hampson
et al., 2001).

2.3.4 Advantages and limitations

The main advantages of multivariate transforms are outlined by Hampson et al. (2001) and

Herrera et al. (2006). It can predict any log in addition to acoustic and shear impedance,

it may use any kind of seismic attributes, including seismic velocities and AVO attributes.

It does not rely on any particular forward model and it does not require knowledge of the

seismic wavelet, which are the two biggest limitations of prestack simultaneous inversion.

On the other hand, different authors have mentioned its limitations (e.g., Kalkomey,

1997; Banchs and Michelena, 2002; Ma, 2011; Ma and Gomez, 2015). The problem of under-

training and over-training can be overcome by selecting the appropriate number of attributes.

A systematic approach was described based on the work done by Hampson et al. (2001) but

Banchs and Michelena (2002) agree that more research on this topic is needed. Kalkomey

(1997) suggests that only seismic attributes that have a justifiable relationship with the tar-

get log should be considered as candidates for predictors. Its biggest limitation is that it is

assumed that the training data spans the whole range of expected conditions in the subsur-

face. In other words, that the limited amount of samples is representative of the whole pop-
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ulation of possible samples in the subsurface. This is directly linked to the number of wells

and their distribution, the more well data and the better distributed it is, the more chances

of capturing all the conditions in the subsurface. It is part of this work to evaluate how well

this approach performs in a practical exploration case where there is limited number and

distribution of well data.



Chapter 3

Methodology

In this chapter, all the steps that were applied in the proposed approach are explained in

detail. Figure 3.1 gives an overview of the different steps followed in this study.

Figure 3.1: Methodology work-flow outline to build low-frequency models of elastic properties by
means of multiattribute analysis

26
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3.1 Gathers QC and stacking

3.2 Data

A comprehensive dataset was available for this work. A total of six wells were available within

the extent of the available seismic. Corresponding well paths and check shots are available

for the wells, with the exception of well 6507/11-11 that has no check shot. The well distribu-

tion is sparse, given it is an exploration setting. Figure 3.2 shows the location of the available

wells within the seismic extent. The seismic is prestack migrated angle gathers conditioned

for AVO in a 12.5 m X 12.5 m bin geometry. The angle range is from 3 to 48 degrees, and its

time range is 1300 ms to 2796 ms. The final processing report is at disposal. The extension of

the seismic can also be seen in figure 3.2. Reference Datum is ED50 UTM Zone 32.

Interpreted horizons for the Base Tertiary, Base Cretaceous Unconformity, Top Kai For-

mation, Top Garn Formation, and Intra Are Coal Marker were available as well. RMS velocity

field from migration velocity analysis in a 50 m X 50 m grid was available too. It is later con-

verted to interval velocities by means of Dix equation. Additional available information are

sedimentology studies, prospect evaluation reports, well tops, drilling reports, Rock Physics

and AVO feasibility studies.

Additional data are generated using the available data. These additional data comprises

calculated acoustic and shear impedances logs, interval velocity field, relative acoustic impedance

volume, AVO attributes, conventional seismic attributes and conventional low-frequency

models. Their calculations are explained in detail in this chapter.
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Figure 3.2: Wells location within the seismic extent.

3.3 Well log QC and conditioning

As it was mentioned before, a total of six wells are available. Table 3.1 comprises what logs

are available for each available well. Even though only P-wave velocity, S-wave velocity, and

density are required to calculate acoustic impedance, shear impedance, and Vp/Vs ratio,

other logs such as gamma ray and caliper are extremely useful for QC and conditioning.

It is important to mention that only wells 6507/11-8, 6507/11-9, and 6507/11-11 have S-

wave velocity, as it can be noted from table 3.1. This represents a serious limitation not only

to conventional interpolation but also to the proposed methodology since it is very unlikely
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Table 3.1: Available logs in the well database

Well Caliper Density Neutron GR P-wave S-wave Rsha Rmed Rdep
6507/8-3 X X X X X X X
6507/8-5 x X X X X X X

6507/11-2 X X X X X X X X
6507/11-8 X X X X X X X X X
6507/11-9 X X X X X X X X X

6507/11-11 X X X X X X X X X

very few wells can capture all possible relations that can be encountered in the subsurface.

P-wave velocity is present twice as much as S-wave velocity, hence Acoustic impedance will

be better estimated than Shear impedance.

Well logs were imported for visualization and QC. P-wave velocity, S-wave velocity, and

density were de-spiked, taking care that no lithology related spike was removed. Gamma-

ray was used as the main lithology discriminator, whilst bit size and caliper were used to

measure how reliable the measurements were at a given depth. Gaps with missing data or

inconsistent data were disregarded.

Figure 3.3 represents the visualization of well 6507/11-8. It is zoomed on the target zone

around Garn and Ile Formations. In the area around the shale that caps the Garn Formation,

there is strong caving shown by the caliper, and density correction is over 0.15 g/cc. All that

part of the well is disregarded. There is also strong caving in the Not Formation, the shale

present between Garn and Ile is also well defined in the log. Caving is only affecting a seg-

ment within the Not Formation, density values are interpolated between unaffected zones

within the same shale. Sonic measurement does not seem to be as affected by caving as

the density measurements. The rest of the well is fairly stable and no other anomalies are

present. Only QC and conditioning of well 6507/11-8 is shown here. All wells were QCed and

conditioned using the same criteria.
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Figure 3.3: Well 6507/11-8 visualization and QC.

3.4 Gathers QC and stacking

There is confidence in the seismic quality due to knowledge and understanding of all the

processes that have been applied to the data. Data loading is a QC process by itself since

all byte locations have to be properly mapped and their contents must be accurate as well.

There were no issues with the data loading and visualization.

Seismic data was partially stacked using only low angles of incidence (0 to 10 degrees)

for well to seismic tie purposes and full stacked for conventional attribute calculations pur-

poses. The amplitude spectrum for the full stack seismic is shown in figure 3.4. The seismic

is known to be broadband and this is confirmed in the amplitude spectrum, where very low

frequencies are in the data. This is relevant for the low-frequency model building process

since the crossover of frequency does not need to be large. A low pass filter of 5 Hz pass and

10 Hz stop should be more than enough frequency crossover between seismic and model in

this case.
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Figure 3.4: Seismic full stack amplitude spectrum

Interpreted horizons were loaded into the project at this stage as well. The correct place-

ment of the interpreted horizons is a QC measure to ensure that the geometry is properly

defined for the seismic and that the events are correct in time. Figure 3.5 shows Inline 2096

section for full stack data where interpreted top Kai, Base Tertiary, and Base Cretaceous Un-

conformity are shown. Horizons are important for the conventional LFM building method

because they guide the interpolation under a stratigraphic framework.

Figure 3.5: Full Stack seismic section for inline 2096 with interpreted horizons
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3.5 Well-to-seismic tie

The well-to-seismic tie procedure can be outline with the following steps as described by

White and Simm (2003):

1. Sonic log calibration.

2. Wavelet estimation

3. Synthetic seismogram from calibrated and conditioned logs

4. Match between observed seismic and modelled seismic.

The sonic log calibration is done by means of calculation a drift curve from the difference be-

tween the integrated sonic log times and the check-shot times. The calibration uses straight

line segment between knee points. The knee points were chosen were relevant changes on

the seismic log were present. The drift curve was then applied to the sonic log. An example

for well 6507/11-2 is shown in figure 3.6. Well tops are available to aid knee location. It can

be seen on the first panel that knees are picked at trend changes in the sonic log, which also

coincides with lithology changes. The second panel is the residual drift for QC, notice that

the residual drift is between ±2.5 ms. Third and last panel shows calibrated sonic log (blue)

and uncalibrated sonic log (red).

Well 6507/11-11 had no check-shot available. A pseudo check-shot was created using

the well report and interpreted horizons. The higher uncertainty of the pseudo check-shot

can be seen in figure 3.7. No clear trend is visible on the drift curve. The residual drift log

ranges from -35 ms to 25 ms. Sonic log calibration is not feasible is such context. Only sonic

calibration for this particular well is performed just to calibrate the reference datum in the

sonic log but no to calibrate the sonic log itself. It is assumed that the available sonic log is

approximate to the calibrated sonic log, therefore no calibration is needed. This assumption

may seem naive, but it is based on the small changes between calibrated and uncalibrated

sonic logs on the other logs too. Figure 3.6 is again a good example of this fact.
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Figure 3.6: Sonic log calibration for well 6507/11-2. Left panel represents drift curve in red fitted
by knee points in blue, black dots represent depths where check-shot measurements are available.
Central panel is the residual drift after sonic calibration. Last panel represents the calibrated sonic
log in blue and uncalibrated sonic log in red

Wavelet estimation was kept as simple as possible. Constant phase is assumed, then

wavelets were estimated statistically at each well location. Zero-offset reflection coefficients

were calculated from acoustic impedance derived from density and calibrated sonic logs.

The zero-offset reflection coefficient series is then convolved with the estimated wavelet to

generate the synthetic seismograms.
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Figure 3.7: Sonic log calibration for well 6507/11-11. High uncertainty and high residual drift due to
the lack of check-shot data

Figure 3.8: Well-to-seismic tie for well 6507/11-2.
Modelled seismic in blue, observed seismic in red

Synthetic seismogram and observed seis-

mic match was kept as simple as possible as

well. Only bulk shift was applied. Squeez-

ing and stretching of the logs was avoided

when possible. The match between mod-

elled seismic and observed seismic proved

to be excellent. Figure 3.8 shows the well-

to-seismic match for well 6507/11-2, blue

wiggles represent the synthetic seismogram,

and red wiggles the composite trace from

the seismic along the well path. This well

is used as example for consistency, as the

sonic log calibration for this well was also

shown previously. As a QC measure, the

cross-correlation coefficient between mod-

elled seismic and observed seismic is 0.7.
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Special care is taken for well 6507/11-11. This well is the only one that has no available

check-shot data, and it is the main well to be used as blind test location as well. Due to the

lack of check-shot data, well-to-seismic tie in this particular case required stretching of the

well log. Figure 3.9 shows a detailed comparison between synthetic and observed seismic.

Despite the lack of check-shot data, there is an excellent match between modelled seismic

and observed seismic.

Figure 3.9: Well-to-seismic tie for well 6507/11-11. Excellent match between modelled (central panel)
and observed seismic (lateral panels) despite lack of check-shot data
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3.6 Seismic Attributes calculation

3.6.1 AVO attributes

One of the key elements of the proposed methodology is the consideration of prestack at-

tributes as predicting attributes due to their well defined relation to elastic parameters. Two

term Aki Richards AVO formulation to calculate Intercept and Gradient from available angle

gathers was performed (equations 2.5). AVO attribute analysis is straightforward. Dropping

the third term from equation 2.5 by limiting the angles to θ < 30◦, yields a linear equation

in terms of sin2θ. A linear regression of the amplitudes from angle gathers yields a linear

equation of the form A+B sin2θ, where A happens to be Intercept, and B the Gradient.

From calculated A and B , other AVO attributes are calculated as well. A× si g n(B), A×B ,

B × si g n(A), Scaled Poisson, and Scaled S-wave are derived from the initial analysis. The

relation between elastic properties and these AVO attributes were explained in detail in the

previous chapter.

3.6.2 Poststack seismic attributes

Only poststack attributes with suspected or known relationship with elastic parameter were

derived. Different attribute classifications exist. In this case, the classification framework

given by Taner et al. (2005) serves ideally to the purpose of this work. Under this classi-

fication, only physical attributes are considered. Physical attributes are those related to

physical parameters of the subsurface that are relevant in reservoir characterization. For

instance, AVO attributes are prestack physical attributes. Physical poststack attributes com-

prise amplitude envelope, integrated absolute amplitude, amplitude derivatives, instanta-

neous phase and frequency, dominant frequency, among others. These attributes are related

to acoustic impedance contrast, major lithology changes, fluid effects, thin beds effects, etc.

Even though physical attributes have a projected use in prediction of rock properties, not all

of them are required or have a strong relationship with a particular rock property. It is part of

the training optimization process to choose those more suited to be used as predictors. This

process will be discussed in detail later in this chapter.
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3.6.3 Relative Impedance volume

Acoustic impedance contrast between the rocks is closely related to the acoustic impedance

of the rocks, therefore there is a well defined relation between relative impedance and abso-

lute impedance and hence used as another attribute in the training data.

The calculation of relative acoustic impedance was carried out by Coloured Inversion, as

described by Lancaster and Whitcombe (2000). It is based on the convolution of an opera-

tor wavelet with the seismic, to convert the seismic spectrum to that of the earth acoustic

impedance spectrum from the well logs.

First, the average acoustic impedance spectrum from all well is calculated and a loga-

rithmic function that fits the spectrum is estimated as shown in figure 3.10. It represents the

earth acoustic impedance.

Figure 3.10: Acoustic impedance log spectrum and logarithmic function fit.

Then, the average seismic spectrum from a defined number of random seismic traces is

calculated, to later obtain a difference spectrum by subtracting it to the modelled acoustic

impedance spectrum. Figure 3.11 shows the average seismic spectrum in blue, whereas the

modelled acoustic impedance spectrum is shown in red. The difference spectrum is shown

in grey.
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Figure 3.11: Average seismic spectrum (blue), modelled acoustic impedance spectrum (red), and
difference spectrum (grey).

The difference spectrum is then converted into an operator by means of the inverse

Fourier transform. The operator accounts for the difference between the calculated average

seismic spectrum and the well derived spectrum. The final step is to convolve the operator

with the seismic.

3.6.4 Conventional LFM and interval velocities

So far, all derived attributes are trend-less attributes or band-limited attributes. One of the

issues to address in this work is not only how good a trend prediction can be using trend-

less training data, but also using low-frequency information in the training data. The low-

frequency content from well logs is used to build conventional low-frequency models con-

strained by interpreted horizons. On the other hand, RMS seismic velocities were available

and converted to interval velocities. The frequency content from the available seismic veloc-

ities only covers the ultra-low frequencies as can be seen in figure 3.12, where the frequency

content is below 2 Hz. This limited frequency content is one of the issues described by Sams

and Carter (2017) when using seismic velocities for cokriging interpolation. Still, the very

low-frequency information can aid to estimate trends away from well control.

Band-pass filtered logs (5 Hz pass - 10 Hz stop) were interpolated and guided by inter-

preted horizons using a single well. The single well selection criteria is defined in terms
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of aim of the study. In this case, the aim is to better estimate away from well control, well

6507/11-11 was used as blind test location. The selected well had to capture all depth trends

for all formations. Not all the log start at the same depth hence P-Impedance, S-Impedance,

and VP /VS do not necessarily logged the same formations for the same log. Given to this fact,

the chosen representative well will depend on the target log also.

Using all available wells to build the conventional low-frequency model as an attribute

was disregarded. If such a model is used to train a multivariate transform, there will be a per-

fect match at every well location because all wells were used to build the model and any other

attribute will not improve the validation error in the best case scenario and it will worsen the

estimates in most scenarios. It is equivalent to using the LFM alone and hence equivalent to

the conventional method.

Figure 3.12: Seismic velocity amplitude spectrum

3.7 Multiattribute Analysis and training optimization

The first step is to set the target log and given that log samples do not necessarily coincide

with the sample times of the seismic data, it is necessary to re-sample in order to avoid alias-

ing. There are two options, as stated by Banchs and Michelena (2002), at this point. The first

option is to low-pass filter the log data and re-sample it to match the spectral content of the

seismic data and the seismic time samples. The second option is to re-sample log data just

to have uniform time samples but preserving its resolution, then it is necessary to up-sample

the seismic data in order to match the log sample times.

The first option works perfectly for the objective of this work since we are aiming to es-
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timate only the low-frequency content of the well-log information away from well control.

The second option is preferable when the aim is to estimate absolute values, then it is con-

venient to preserve as much resolution power as possible. Both approaches are applied and

the result differences discussed later in detail.

The next step is to select the training data to be used in the analysis. Target well logs, AVO

volume attributes, poststack seismic, poststack seismic attributes, seismic velocities, relative

impedance volume, and conventional low-frequency models are selected. A composite trace

is calculated at each well location. This step is represented graphically in figure 3.13, note

that not all available attributes are shown.

Figure 3.13: Input data for multiattribute analysis at well 6507/11-11 location. Target log in red, com-
posite trace in black, and attributes in blue.

Setting the optimum analysis parameters is key. What attributes to use and size of the

operator length are the main parameters to optimize. At first, what attributes relate best to

a particular target log is unknown. A maximum number of attributes must be selected. In

this case, a maximum of 10 attributes were selected and a maximum operator length of 9

times the sample rate is also selected. A high number of attributes and operator lengths at

this point is better than a low number as over-training errors are usually significantly lower

than under-training errors. The best 9 attributes are determined by step-wise regression. A

ranked list of attributes will be determined for a particular operator length as shown in table

3.2. The training error and total validation error is also shown in the table. Attributes are
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ranked from one to nine, being one of the attribute that best correlates with the target log,

number two the second best, and similarly for the rest. The reason why a particular set of

attributes is better than others is analyzed in the discussion chapter.

Table 3.2: Best nine attributes table. P-impedance is the target log. Training and validation
errors are given in (m/s)∗ (g /cc).

Rank Target Attribute Training error Validation error
1 P-impedance Conventional P-impendace LFM 591 605
2 P-impedance Integrate 547 568
3 P-impedance Scaled Poisson 531 555
4 P-impedance Interval Velocity 518 558
5 P-impedance Coloured Inversion 515 556
6 P-impedance Cosine Instantaneous Phase 510 551
7 P-impedance Filter 25/30-35/40 506 553
8 P-impedance Filter 35/40-45/50 504 566
9 P-impedance A * sign(B) 501 568

The training error will always decrease as function of the number of attributes. Using a

higher number of attributes is analogous to fitting a crossplot with an increasingly higher

order polynomial but that might lead to over-training, fitting better at well control but wors-

ening the estimates away from well control. The concept of cross-validation was explained

in detail in the theoretical background and it yields the total validation error. The total val-

idation error is the RMS average of the individual errors at individual blind locations. In

contrast to the training error, validation error curves do not decrease monotonically. It ex-

hibits a distinct minimum that it is assumed that the number of attributes at that point is

optimum since it represents the limit between under-training and over-training. Then the

best attributes and best operator length can be defined at this point. This is checked for the

values in table 3.2 by plotting training error and validation error as function of the number

of attributes (figure 3.14). For this particular case, it can be noted that the validation error is

minimum at the 6th attribute. Going as far as nine attributes is as good as using only the two

best attributes.
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Figure 3.14: Training error (black) and Validation error (red) as a function of number of attributes.
Data from table 3.2

Three Neural Networks algorithms are available: Probabilistic Neural Network (PNN),

Multi-layer Feed Forward Network (MLFN), and Radial Basis Function (RBF). RBF are de-

scribed as a rather simple kind of Neural Network and MLFN tend to fit the data too closely,

leading easily to over-training. PNN is the most robust of the available Neural Network al-

gorithms, with the only disadvantage of being more demanding computationally speaking,

hence this work will focus on using PNN instead of RBF or MLFN. Given that Neural Net-

works operate best with stationary statistics, the PNN training is cascaded with the trend

obtained from multi-linear regression using the attributes obtained with step-wise regres-

sion. Trained PNN is then validated using cross-validation.

3.8 Low-frequency estimation

Once the non-linear relation between the attributes and the target log have been defined and

optimized, then this relation is applied to the whole volume of attributes yielding a volume of

the target elastic parameter. The resulting volume is low-pass filtered and compared against

the conventional method and the actual values at blind well location 6507/11-11. This well

was never used at any moment during the work-flow, neither in the training data nor in the

validation data in order to simulate a real case scenario of a true blind test for a proposed

drilling location.
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Results

Results are divided by target log: Acoustic Impedance, Shear Impedance and VP /VS ratio. At

the same time, target logs are subdivided into two parts: non-filtered logs for absolutes esti-

mates and low-pass filtered log. The reasoning to divide the target logs is to verify what the

differences are, if any, between the two sampling approaches mentioned in the methodology

chapter.

Two different input data-sets were used to train the multiattribute transforms. First data-

set containing trendless data only and the second data-set containing low-frequency infor-

mation from seismic velocities and conventional low-frequency model built using one well

only. The well chosen to be the more representative of the regional P-impedance is 6507/11-

2. The criteria for this selection is the target Group (Viking Group) at the blind test location

(6507/11-11). Well 6507/11-2 has log samples almost through all the time window of interest,

which is not the case for all other wells that only have samples focusing mainly in the Fangst

Group. It may be the case other well would have been more representative if it had logged

the Viking Group. For the Shear Impedance and VP /VS ratio estimates, a different well was

used since 6507/11-2 does not have S-wave velocity logged. Even for those wells that have S-

wave logged, density measurements are not logged at same intervals. 6507/11-9 has S-wave

velocity samples at much shallower depths than density, whereas for 6507/11-8 both start

at the same depth. Density in both cases was only logged for the target area of the Fangst

Group. What this implies is that it is not possible to choose a single well for conventional

model building to estimate S-impedance, and that for VP /VS that the single well can only be

6507/11-9.

43
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4.1 Acoustic Impedance estimation

4.1.1 Absolute estimates

Table 4.1 summarizes the best five attributes calculated by means of step-wise regression to

estimate absolute values of P-Impedance using trendless training data only. The single best

attribute is Time which is equivalent to Depth. It is well known that acoustic impedance is

directly related to burial depth as well as other elastic parameters are also related to depth,

as S-impedance and VP /VS ratio. AVO attributes Scaled Poisson and Intercept are third and

fifth best attributes respectively. Instantaneous attributes Integrate and Second Derivative

are second and fourth respectively.

Training and validation errors are also given in table 4.1. A plot of these errors as func-

tion of number of attributes is shown in figure 4.1. It can be seen that the optimum number

of attributes is between the fourth and the fifth attribute listed in table 4.1, with an average

validation error of 867 (m/s)∗ (g /cc). The average validation error increases after the sixth

attribute due to over-training. The average training error exhibits the expected monotoni-

cally decreasing feature.

Table 4.1: Best five attributes table for absolute P-impedance estimates using trendless train-
ing data only. Training and validation errors are given in (m/s)∗ (g /cc).

Rank Target Attribute Training error Validation error

1 P-impedance Time 871 890

2 P-impedance Integrate 849 873

3 P-impedance Scaled Poisson 843 868

4 P-impedance Second Derivative 839 867

5 P-impedance AVO Intercept 836 868
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Figure 4.1: Training (black) and validation (red) average errors as function the number of attributes.
Multiattribute transform trained with trendless data to estimate absolute P-Impedance values.

Table 4.2 summarizes the best five attributes calculated by means of step-wise regression

to estimate absolute values of P-Impedance using trendless, interval velocity, and conven-

tional low-frequency model built using a single well. Attributes containing low-frequency

information are the first and second best attributes. AVO Scaled Poisson is fourth best. Inte-

grate and Dominant Frequency are third and fifth respectively. Time is not longer in the list

since interval velocity and conventional LFM contain the depth related information.

Training and validation errors are also given in table 4.2. A plot of these errors as func-

tion of number of attributes is shown in figure 4.2. It can be seen that the optimum number

of attributes is again between the fourth and the fifth attribute listed in table 4.2, with an

average validation error of 750 (m/s)∗ (g /cc) which is more than 100 (m/s)∗ (g /cc) lower

than when using trendless data only. The average validation error does not increase signif-

icantly after the sixth attribute, therefore there are no signs of over-training within the first

nine attributes.
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Table 4.2: Best five attributes table for absolute P-impedance estimates using trendless train-
ing data, seismic velocities, and conventional low-frequency model built using one well only.
Training and validation errors are given in (m/s)∗ (g /cc).

Rank Target Attribute Training error Validation error

1 P-Impedance Interval Velocity 804 830

2 P-Impedance Conventional LFM using one well 631 764

3 P-Impedance Integrate 621 752

4 P-Impedance Scaled Poisson 613 747

5 P-Impedance Dominant Frequency 611 748

Figure 4.2: Training (black) and validation (red) average errors as function the number of at-
tributes. Multiattribute transform trained with trendless data, seismic velocities, and conventional
low-frequency model built using one well only to estimate absolute P-Impedance values.

4.1.2 Low-frequency estimates

Table 4.3 summarizes the best five attributes calculated by means of step-wise regression

to estimate low-frequency values of P-Impedance using trendless training data only. The

best attribute is Time, similarly as when estimating absolute values. The table is dominated

by instantaneous poststack attributes (Average Frequency, Apparent Polarity, and Integrate).

Only one AVO attribute is in the table.
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Training and validation errors are also given in table 4.3. A plot of these errors as function

of number of attributes is shown in figure 4.3. It can be seen that the optimum number of

attributes is the single first attribute with an average validation error of 656 (m/s)∗ (g /cc)

which is more than 150 (m/s)∗ (g /cc) lower than when estimating absolute values with the

same input data . The average validation error increases after the first attribute due to over-

training. On the other hand, the average training error exhibits the expected monotonically

decreasing feature.

Table 4.3: Best five attributes table for low-frequency P-impedance estimates using trendless
training data only. Training and validation errors are given in (m/s)∗ (g /cc).

Rank Target Attribute Training error Validation error

1 P-Impedance Time 644 656

2 P-Impedance Average Frequency 639 710

3 P-Impedance Apparent Polarity 636 704

4 P-Impedance Integrate 633 702

5 P-Impedance Gradient * sign(Intercept) 631 700

Figure 4.3: Training (black) and validation (red) average errors as function the number of attributes.
Multiattribute transform trained with trendless data to estimate low-frequency P-Impedance values.

Table 4.4 summarizes the best seven attributes calculated by means of step-wise regres-



CHAPTER 4. RESULTS 48

sion to estimate low-frequency values of P-Impedance using trendless, interval velocity, and

conventional low-frequency model built using a single well. Attributes containing low-frequency

information are the first and second best attributes. The rest of the attributes are mostly

frequency-related instantaneous poststack attributes. No AVO attribute is in the table.

Training and validation errors are also given in table 4.4. A plot of these errors as function

of number of attributes is shown in figure 4.4. So far, all other transforms had the fourth or

the fifth attribute as the optimum number. In this case, the optimum number of attributes

is seven, with an average validation error of 459 (m/s)∗ (g /cc) which is the lowest average

validation error for P-Impedance estimates.

Table 4.4: Best seven attributes table for low-frequency P-impedance estimates using trend-
less training data, seismic velocities, and conventional low-frequency model built using one
well only. Training and validation errors are given in (m/s)∗ (g /cc).

Rank Target Attribute Training error Validation error

1 P-Impedance Interval Velocity 565 604

2 P-Impedance Conventional low-frequency model 394 572

3 P-Impedance Average Frequency 357 533

4 P-Impedance Integrated Absolute Amplitude 317 522

5 P-Impedance Dominant Frequency 300 482

6 P-Impedance Apparent Polarity 291 467

7 P-Impedance Amplitude Weighted Frequency 279 459



CHAPTER 4. RESULTS 49

Figure 4.4: Training (black) and validation (red) average errors as function the number of at-
tributes. Multiattribute transform trained with trendless data, seismic velocities, and conventional
low-frequency model built using one well only to estimate low-frequency P-Impedance values.

4.2 Shear Impedance estimation

4.2.1 Absolute estimates

Table 4.5 summarizes the best ten attributes calculated by means of step-wise regression to

estimate absolute values of S-Impedance using trendless data only. Time is the single best

attribute as for P-impedance under the same context. Coloured Inversion is the fifth best

attribute. AVO attributes such as Scaled Poisson, Intercept, and Scaled S-wave are in the list

in the third, sixth, and eighth position respectively.

Training and validation errors are also given in table 4.5. A plot of these errors as function

of number of attributes is shown in figure 4.5. It shows that the minimum of the function is

at the 10th best attribute, then it increases due to over-training. The average validation error

is 306 (m/s)∗ (g /cc) at the optimum attribute number. The lowest average validation error

for P-impedance estimates was 459 (m/s)∗ (g /cc) as reference.
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Table 4.5: Best ten attributes table for absolute S-impedance estimates using trendless train-
ing data only. Training and validation errors are given in (m/s)∗ (g /cc).

Rank Target Attribute Training error Validation error

1 S-impedance Time 334 357

2 S-impedance Amplitude Envelope 312 399

3 S-impedance Scaled Poisson 299 350

4 S-impedance Average Frequency 292 417

5 S-impedance Coloured Inversion 285 341

6 S-impedance AVO Intercept 279 330

7 S-impedance Derivative 272 321

8 S-impedance Scaled S-wave 269 314

9 S-impedance Apparent Polarity 267 306

10 S-impedance Intercept * Gradient 265 310

Figure 4.5: Training (black) and validation (red) average errors as function the number of attributes.
Multiattribute transform trained with trendless data to estimate absolute S-Impedance values.
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4.2.2 Low-frequency estimates

Table 4.6 summarizes the best four attributes calculated by means of step-wise regression to

estimate low-frequency values of S-Impedance using trendless data only. Time is the single

best attribute. Dominant Frequency, Apparent Polarity, and Integrate are the second, third

and fourth best attributes respectively.

Training and validation errors are also given in table 4.6. A plot of these errors as func-

tion of number of attributes is shown in figure 4.6. As it can be noted, the single best attribute

yields the lowest average validation error of 181 (m/s)∗ (g /cc), then the average validation

error increases drastically due to over-training. The average training error exhibits the ex-

pected monotonically decreasing feature.

Table 4.6: Best four attributes table for low-frequency S-impedance estimates using trend-
less training data only. Training and validation errors are given in (m/s)∗ (g /cc).

Rank Target Attribute Training error Validation error

1 S-Impedance Time 115 181

2 S-Impedance Dominant Frequency 102 1326

3 S-Impedance Apparent Polarity 92 1574

4 S-Impedance Integrate 79 1151
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Figure 4.6: Training (black) and validation (red) average errors as function the number of attributes.
Multiattribute transform trained with trendless data to estimate low-frequency S-Impedance values.

4.3 Vp/Vs ratio estimation

4.3.1 Absolute estimates

Table 4.7 summarizes the best four attributes calculated by means of step-wise regression to

estimate absolute values of VP /VS using trendless training data only. The single best attribute

is Time, which is also the case when estimating absolute P-Impedance and S-Impedance

using trendless data only. Second and third best attributes are Dominant Frequency and

Amplitude Envelope.

Training and validation errors are also given in table 4.7. A plot of these errors as func-

tion of number of attributes is shown in figure 4.7. It can be seen that the optimum number

of attributes at the second best attribute with an average validation error of 0.30. The aver-

age validation error increases after the second attribute due to over-training. The average

training error exhibits the expected monotonically decreasing feature.
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Table 4.7: Best four attributes table for absolute VP /VS estimates using trendless training
data only. Training and validation errors are given in (m/s)∗ (g /cc).

Rank Target Attribute Training error Validation error

1 VP /VS Time 0.18 0.31

2 VP /VS Dominant Frequency 0.17 0.30

3 VP /VS Amplitude Envelope 0.16 0.32

4 VP /VS Intercept * sign(Gradient) 0.16 0.32

Figure 4.7: Training (black) and validation (red) average errors as function the number of attributes.
Multiattribute transform trained with trendless data to estimate absolute VP /VS values.

Table 4.8 summarizes the best ten attributes calculated by means of step-wise regression

to estimate absolute values of VP /VS using trendless and conventional low-frequency model

built using a single well. The conventional LFM is the single best attribute, followed by Time

and Dominant Frequency respectively. Different AVO attributes are also present in the table

as well as Coloured Inversion as the seventh best attribute.

Training and validation errors are also given in table 4.8. A plot of these errors as function

of number of attributes is shown in figure 4.8. It can be seen that the optimum number of

attributes is ten attributes, as listed in table 4.8 with an average validation error of 0.194

which is around 0.1 lower than when using trendless data only. The average validation error
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increases after the tenth attribute due to over-training. The average training error exhibits

the expected monotonically decreasing feature.

Table 4.8: Best ten attributes table for absolute VP /VS estimates using trendless training data
and conventional low-frequency model built using one well only. Training and validation
errors are given in (m/s)∗ (g /cc).

Rank Target Attribute Training error Validation error

1 VP /VS Conventional LFM using one well 0.122 0.245

2 VP /VS Time 0.093 0.235

3 VP /VS Dominant Frequency 0.088 0.233

4 VP /VS Scaled S-wave 0.084 0.216

5 VP /VS Intercept * sign(Gradient) 0.081 0.222

6 VP /VS Gradient * sign(Intercept) 0.079 0.205

7 VP /VS Coloured Inversion 0.078 0.197

8 VP /VS Apparent Polarity 0.077 0.199

9 VP /VS Amplitude Envelope 0.075 0.194

10 VP /VS Intercept * Gradient 0.074 0.194

Figure 4.8: Training (black) and validation (red) average errors as function the number of attributes.
Multiattribute transform trained with trendless data and conventional low-frequency model built us-
ing one well only to estimate absolute VP /VS values.
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4.3.2 Low-frequency estimates

Table 4.9 summarizes the best four attributes calculated by means of step-wise regression to

estimate low-frequency values of VP /VS using trendless training data only. The single best

attribute is Average Frequency, the second is Dominant Frequency and the third is Integrated

Absolute Amplitude. The table is dominated by instantaneous poststack attributes.

Training and validation errors are also given in table 4.9. A plot of these errors as function

of number of attributes is shown in figure 4.9. It can be seen that the optimum number of

attributes is three with an average validation error of 0.23 which is 0.07 lower than when

estimating absolute values with the same input data . The average validation error increases

significantly after the third attribute due to strong over-training. On the other hand, the

average training error exhibits the expected monotonically decreasing feature.

Table 4.9: Best four attributes table for low-frequency VP /VS estimates using trendless train-
ing data only. Training and validation errors are given in (m/s)∗ (g /cc).

Rank Target Attribute Training error Validation error

1 VP /VS Average Frequency 0.158 0.29

2 VP /VS Dominant Frequency 0.125 0.28

3 VP /VS Integrated Absolute Amplitude 0.120 0.23

4 VP /VS Time 0.116 0.52
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Figure 4.9: Training (black) and validation (red) average errors as function the number of attributes.
Multiattribute transform trained with trendless data to estimate low-frequency VP /VS values.

Table 4.10 summarizes the optimum attributes calculated by means of step-wise regres-

sion to estimate low-frequency values of VP /VS using trendless and the conventional low-

frequency model built using a single well. The best single attribute is the conventional low-

frequency model, whereas Average Frequency, Time and Dominant frequency are second,

third and fourth best attributes respectively. Coloured Inversion is the tenth best attribute.

Training and validation errors are also given in table 4.10. A plot of these errors as func-

tion of number of attributes is shown in figure 4.10. Similarly as for absolute estimates using

the same input, the optimum number of attributes is large compared to using trendless data.

It can be seen that the optimum attribute number is twelve. The average validation error at

this point is 0.171 which is the absolute lowest average validation error for VP /VS estimates.

Yet again, the average training error exhibits the expected monotonically decreasing feature.
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Table 4.10: Best twelve attributes table for low-frequency VP /VS estimates using trendless
training data and conventional low-frequency model built using one well only. Training and
validation errors are given in (m/s)∗ (g /cc).

Rank Target Attribute Training error Validation error

1 VP /VS Conventional LFM using one well 0.105 0.477

2 VP /VS Average Frequency 0.663 0.352

3 VP /VS Time 0.057 0.501

4 VP /VS Dominant Frequency 0.050 0.467

5 VP /VS Integrated Absolute Amplitude 0.041 0.307

6 VP /VS Gradient * sign(Intercept) 0.039 0.282

7 VP /VS Intercept * sign(Gradient) 0.036 0.256

8 VP /VS Apparent Polarity 0.034 0.206

9 VP /VS Integrate 0.032 0.189

10 VP /VS Coloured Inversion 0.030 0.183

11 VP /VS AVO Gradient 0.028 0.175

12 VP /VS Intercept * Gradient 0.027 0.171

Figure 4.10: Training (black) and validation (red) average errors as function the number of attributes.
Multiattribute transform trained with trendless data and conventional low-frequency model built us-
ing one well only to estimate low-frequency VP /VS values.
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Discussion

From the multiattribute transforms training for P-impedance, it can be noted that interval

velocity relates better than a conventional model low-frequency model built using a repre-

sentative single well. Even though seismic derived velocities are within the very-low frequen-

cies, they represent the seismic attribute that is closest to true interval velocity. Therefore, if

more accurate and high-resolution compressional velocities could be derived from the exist-

ing seismic, better estimates of acoustic impedance could be derived as well. Full-waveform

inversion has the potential to produce accurate velocity models at a resolution of up to 30 Hz

(Mancini et al., 2016). This resolution cannot be matched by neither automated high-density

velocity nor travel time tomography. That means that velocities derived using Full-waveform

inversion can greatly improve P-Impedance estimates. This must be one of the main consid-

erations for future studies that aim to estimate robust P-Impedance low-frequency models.

The second fact that stands out is that instantaneous frequency-related poststack at-

tributes (e.g. Average Frequency, Dominant Frequency, and Amplitude Weighted Frequency)

relate better than AVO attributes, particularly when estimating the low-frequency content di-

rectly of P-Impedance. This means that the actual frequency content from the seismic can

drive the transforms. This might be related to the fact that the seismic used for this study

is broadband seismic. It is not expected that conventional seismic can drive low-frequency

information in a similar way. Still, AVO attributes contribute to the multiattribute transform.

The low-frequency content actually comes from the facies distribution, said in other

words,it comes from the Net-to-Gross. It can be seen as the "average" of interbedded se-

quences. The low-frequency model is then controlled by the Net-to-Gross at seismic scale.

The purpose of a seismic inversion can be to determine the Net-to-Gross of a given reservoir
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because the Net-to-Gross is unknown away from well control. Here is where AVO attributes

are valuable because they contain Net-to-Gross information that is required to built more

robust low-frequency models (Stovas et al., 2005).

Time is the single best attribute when no other attribute containing low-frequency in-

formation is used. All elastic parameters are directly related to depth. As there is a well

established Depth-Time relationship, it is expected that Time is the single best attribute in

such context. This is the case not only for P-Impedance but also for S-Impedance and VP /VS

when using trendless data only to train the transforms.

Figure 5.1 shows all low-frequency estimates for P-Impedance, VP /VS , and S-Impedance

after applying the trained transforms shown in the results chapter. It can be seen that us-

ing trendless data generates estimates with low-frequency content. The frequency content

is very limited when using trendless input data in the transforms as it can be seen in the fig-

ure, normally below 2 Hz. In a real case scenario, the multiattribute training with the lowest

average validation error is selected and other approaches are discarded. The lowest aver-

age validation error does not necessarily guarantee the lowest individual validation error for

a given location. It might be the case that a transform with a higher average validation er-

ror yields the lowest individual validation error at a particular location but for a true blind

test location there is no way to measure the individual estimation error other than actually

drilling. For this study well 6507/11-11 was selected as true blind location. It can be seen

that for this particular location, the transform with the lowest average validation error (low-

frequency estimates using conventional LFM built using a single well as attribute) is also the

one closest to the actual low-frequency P-Impedance values of the log. Any other approach

yields far worse estimates.

The question to be answered is whether or not the multiattribute transform with the low-

est average validation error can yield better P-impedance estimates than the traditional ap-

proach. A visual inspection of the results shown in figure 5.1 demonstrates that the multiat-

tribute derived estimates resemble much better the P-Impedance variation with depth than

the traditional approach. More over, the RMS estimation error between the conventional

low-frequency model and the actual low-pass filtered log is 791 (m/s)∗ (g /cc), whereas be-

tween the multiattribute derived values is 519 (m/s)∗ (g /cc), which is around 270 (m/s)∗
(g /cc) lower than the conventional method. Then, for low-frequency P-Impedance, ma-

chine learning represents an improvement over the traditional method.
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When it comes down to VP /VS or S-Impedance, it is required to have shear-wave velocity

knowledge. Towed-streamers seismic can be broadband but cannot measure S-wave veloci-

ties as oppose for P-wave velocities. Only ocean-bottom seismic can measure S-wave veloc-

ities but this seismic represents a small fraction of the total marine seismic acquired to date.

Even when ocean-bottom seismic is available, the current state of Full-Waveform Inversion

relies on the solution of the acoustic wave equation. To properly model the full physics of

wave propagation, solutions to the elastic wave equation are required. Current efforts are

focused in that direction (Manukyan et al., 2016). P-wave velocity can be converted to S-

wave velocity using Castagna et al. (1985)’s mudrock line for example. This conversion is not

straightforward as this relation varies not only by facies but with other parameters as depth

and fluid content. Here is the concept of joint-facies inversion better captures the physics of

the problem. All these facts increase the uncertainty of S-wave related estimates compared

to the P-wave estimates counterpart.

For this particular study, only two wells contain S-wave information as mentioned in the

methodology chapter, as opposed to P-wave that five wells were available. This is a big draw-

back for any machine learning scheme. Ross (2002) mentions that any statistical correlation

using wells and neural networks should be used when at least five or more wells are available,

otherwise the training lacks of statistical robustness. This means that neural networks are far

more effective under development or characterization contexts than prospecting or explo-

ration contexts. To illustrate how much of a difference one less available well can make, ob-

serve the difference between average training error and average validation error for table 4.4

using the optimum number of attributes that is seven. The average training error is around

two thirds of the average validation error. It is important to recall that the average training er-

ror is the average estimation error between the estimates values and the actual values using

all available wells, and the average validation error is the average estimation error using all

available wells but leaving a different one out for validation only (not for training the data).

Then the error difference between average training error and average validation error is ba-

sically the error difference given by losing estimation power due to using one less well in the

training. This example is for the training with the lowest validation error for P-Impedance

where a total of 5 wells are available. Again, it is important to emphasize that only 2 wells

that contain S-wave information are available.

The multiattribute transform with the lowest average validation error is given by estimat-
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ing low-frequency VP /VS values using conventional LFM built using a single well as attribute.

Results in figure 5.1 show that low-frequency VP /VS and S-Impedance are not robust when

compared to P-Impedance estimates. The RMS estimation error between the conventional

low-frequency model and the actual low-pass filtered log is 0.26, whereas between the mul-

tiattribute derived values is 0.36, which is 0.1 higher than the conventional method. Then,

for low-frequency VP /VS , machine learning assisted low-frequency modelling does not rep-

resent an improvement over the traditional method. The same applies for S-Impedance,

where a conventional LFM using a single well was not built. In this case the RMS estimation

error between the conventional low-frequency model and the actual low-pass filtered log is

660 (m/s)∗ (g /cc), whereas between the multiattribute derived values is 931 (m/s)∗ (g /cc),

which is around 260 (m/s)∗(g /cc) higher than the conventional method. This was expected

as mentioned before due to the reduced number of wells containing S-wave information.

The problem is extremely under-determined for VP /VS and S-Impedance for the multiat-

tribute derived estimates to be reliable. One question to be answered in future work is how

better the multiattribute derived VP /VS and S-Impedance low-frequency models can be if at

least five wells containing S-wave information were available.

Another point to discuss is that Neural Networks are designed by definition to estimate

stationary (trendless) data series. This means that Neural Networks work better to estimate

values within the same formation where the values are almost trendless. In other words,

Neural Networks work better to estimate absolute values per facies. The non-linear relation

between target log and attributes for a given facies might be totally different for a given set-

ting. This is compensated by cascading the Neural Networking training with multi-linear

regression as described in the methodology chapter. As a matter of fact, multi-linear regres-

sion alone estimates better the low-frequency content of the target log than the PNN alone.

However, cascading the multi-linear regression used in step-wise regression with the PNN is

the optimal approach. This fact reinforces that the concept of inverting per facies is a more

proper way to capture the physics of the inversion problem as described in the introduction.
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Chapter 6

Conclusions

It has been demonstrated that the methodology proposed in this study for building low-

frequency models of elastic properties using multiattribute analysis based on Neural Net-

works represents an improvement over the conventional low-frequency model building method.

Even though the proposed methodology has the potential to estimate more accurately

the low-frequency content of an elastic property away from well control than the standard

interpolation and extrapolation guided by interpreted horizons and faults, the accuracy of

the estimates depends on the quality of the seismic data, well log data, well-to-seismic tie,

frequency content of the seismic data, available seismic attributes, number of available wells,

training parameters, and what formations and facies are logged.

Broadband prestack seismic data was available. Excellent well-to-seismic ties was per-

formed. Relevant attributes with justifiable physical relationship with elastic properties were

used for the Neural Network training, including AVO attributes and relative impedance. Step-

wise regression and crossvalidation were used to optimize the training parameters.

P-impedance estimates were more accurate than S-wave related estimates. This is ex-

plained by the fact that the number of wells and formation/facies logged containing S-wave

information was quite limited compared to those containing P-wave information. If the

conditions are met, the described methodology yields more robust low-frequency models

hence resulting in more accurate absolute estimates from AVO inversion. More accurate ve-

locity fields from Full-Waveform inversion could be benefitial to improve the accuracy of P-

Impedance but the challenge is to quantify how well the conditions are satisfied in practical

exploration cases, particularly for S-wave related estimates.
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