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Abstract

Zero Emission Buildings (ZEBs) are energy efficient buildings that produce on-

site renewable energy to compensate for their consumption. The concept of ZEBs

is based the EU’s Energy Performance of Buildings Directive (EPBD) of 2010,

demanding that all new buildings constructed after 2020 are to reach ”near zero

energy level” [1]. Previous research on energy systems in ZEBs have used deter-

ministic linear optimization techniques to determine the cost-optimal design of

invested technologies in such sustainable buildings [2].

The main contribution of this thesis is the development of a stochastic two-stage

model, formulated as a Mixed Integer Linear Program (MILP), that determines

the cost-optimal investments and operations of a ZEB. The model accounts for

uncertainty in the short-term operational patterns; the fluctuations in the outdoor

temperature, the spot price of electricity and solar irradiation. The two the main

objectives are: 1) To compare the optimal technology design of the determinis-

tic and stochastic model counterparts and 2) to investigate the possibilities of the

investment of an electric battery. Emissions constraints are formulated to fit the

ambition level known as the ”ZEB-O” level, only considering emissions caused in

building operations [3].

The model input data is simulated to fit the hourly demand of electricity and heat-

ing in a Norwegian passive house. Time series on simulated demand from 2010

to 2014 are used to construct operational scenarios. Realistic investment costs of

building technologies are used based on an extensive survey of Norwegian manu-

facturers’ prices. Clustering analysis is used to reduce the computational effort by

selecting seasonally representative hours to imitate a full year of operations.

Results show that a stochastic model can better, than its deterministic counterpart,

account for the following: (i) Cover the peak heat demand of periods colder than

the deterministic input data, and (ii) avoid over-dimensioning of the installed base-

load capacity. The net present value of the total costs can be reduced by 1/6,

which represents the quantitative value of using a stochastic model in the place

of a deterministic model. Furthermore, the stochastic model is used to analyze

the impact of a ”power subscription” grid tariff scheme and battery operations in

ZEBs. The battery is not a cost-optimal technology in ZEBs due to the forced

reinvestments every 10th year imposed by the stochastic two-stage formulation.

Sensitivity analysis show that the battery specific investment costs (EUR/kWh of

storage capacity) must be reduced by 90 % to become part of the solution.
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Sammendrag

Nullutslippsbygg (ZEB) er energieffektive bygninger som produserer fornybar en-

ergi lokalt for å kompensere for importert energi. Begrepet er basert p̊a EU’s

byggdirektiv fra 2010 (EPBD) som krever at alle nybygg etter 2020 skal oppn̊a

”nullenerginiv̊a” [1]. Tidligere forskning p̊a energisystemer i ZEB har brukt en de-

terministisk tilnærming for å finne kostnadsoptimal dimensjonering av investerte

teknologier i nullutslippsbygg [2].

Hovedleveransen i denne masteroppgaven er utviklingen av en stokastisk to-stegs-

modell, formulert som et ”Mixed Integer Linear Program” (MILP) som bestemmer

de mest kostnadseffektive investeringene og driftsmønster i nullutslippsbygg. Mod-

ellen hensyntar usikkerhet i kortsiktige driftsparametere; variasjonene i utetem-

peraturen, spotprisen p̊a elektrisitet og solinnstr̊aling. De to hovedm̊alene er: 1)

Å sammenligne løsningen til den stoskasticke modellen med den deterministiske

motparten og 2) å undersøke mulighetene for å investere i et elektrisk batteri i nul-

lutslippsbygg. Utslippsrestriksjonene er fomulert slik at totale utslipp fra byggets

driftfase er tilpasset ambisjoneniv̊aet kjent som et ”ZEB-O” niv̊a [3].

Inputparametere er tilpasset timesbehovet av elektrisitet of varme i et norsk pas-

sivhus. Tidsserier med det simulerte behovet fra 2010 til 2014, sammen med øvrige

usikre parametere, brukes til å konstruere ulike driftsscenarier. Realistiske invester-

ingskostander for ulike energiteknologier er funnet ved en kostnadsanalyse basert

p̊a priser fra norske leverandører. ”Cluster”-analyse brukes til å redusere modellens

kjøretid ved å velge representative timer for hver årstid som totaltsett etterligner

et helt drifts̊ar for bygget.

Resultatene viser at en stokastisk modell, sammenlignet med dens deterministiske

motpart, er bedre p̊a følgende momenter: (i) Å dekke topplasten av varme i timene

der varmebehovet er høyere enn det som er gitt i deterministisk inputdata, og

(ii) å unng̊a overdimensjonering av installert grunnlastkapasitet. Netto n̊averdi av

totale kostander kan reduseres med 1/6, som representerer den kvantitative ver-

dien av en stokastisk modell sammenlignet med en deterministisk modell. Videre

blir den stokastiske modellen brukt til å analysere virkningen av en effektbasert

netteleiestruktur og driftsmønsteret til et batteri i nullutslippsbygg. Batteriet er

ikke en kostnadseffektiv teknisk løsning i et nullutslippbygg grunnet tvungne rein-

vesteringer hvert 10. år som følge av den stokastiske to-stegsformuleringen. Sensi-

tivitetsanalyse viser at spesifikke investeringskostnader for et batteri (EUR / kWh

lagerkapasitet) m̊a reduseres med 90 % for å bli en del av løsningen.
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Chapter 1

Introduction

1.1 Thesis Motivation

One of the greatest challenges of the 21th century is to restrict global warming.

The EU has an ambitious commitment of limiting the temperature rise to +2 ◦

C. This requires a 90 % reduction of greenhouse gas emissions from the built en-

vironment within 2050 (compared to 1990 level) [4]. Buildings are responsible for

a large share of the total energy consumption in the EU and in Norway. They

account for about 36 % of the GHG emissions in Europe and have great mitigation

potentials [5]. The recast of the EU’s Energy Performance of Buildings Directive

(EPBD), issued in 2010, states that all new buildings constructed within the Euro-

pean Union after 2020 shall reach nearly zero energy level [1]. Nearly Zero Energy

buildings (nZEB) have high energy performance because of low energy demands

that can be covered by renewable energy sources. From the period from 2009 to

2017, the Norwegian Research Center on Zero Emission Buildings (ZEB Center)

was a European lead in investigations of possibilities and challenges of ZEBs. The

ZEB Center has proposed a definition that imposes general emission requirements

on ZEBs. Furthermore, there has been extensive research on ZEBs within fields as

architecture, ventilation and energy systems, life cycle analysis and power system

planning. This wide research has resulted in nine nZEB pilot buildings and a re-

search continuation towards Zero Emission Neighbourhoods in Smart Cities (ZEN)

for the centre of Environment-friendly Energy Research (FME) [6].

ZEBs affects the energy system by lower energy consumption due to energy effi-

ciency measures, and increased production due to on-site power generation by e.g.

Photovoltaic panels (PVs) [2]. Emissions caused by buildings are calculated using

1



2 CHAPTER 1. INTRODUCTION

weighing factors for the energy carriers, for instance a CO2 equivalent factor per

kWh of imported electricity. The value of the CO2 factor for electricity is a de-

bated subject and depends on the mix of resources used in electricity production

(the energy mix) [3]. In Europe, the energy mix is 73 % non-renewable and based

on resources such as nuclear power, coal, crude oil and natural gas [7]. On the

contrary, the Norwegian produced electricity is 98 % hydropower based. However,

increased energy trade between the Nordic and the European power systems in the

future makes it difficult to know which resources the power is coming from [8].

According to the author of [5], upgrading energy systems in buildings can lead to

an 80 % reduction of operational costs. Achieving cost-optimal ZEBs is desirable

since PV systems today are expensive investments [9]. An optimized design of the

energy system is therefore essential to reduce the costs and make ZEBs feasible.

This is the motivation for using optimization techniques to customize the design of

energy systems in ZEBs. This thesis builds on an optimization model developed in

the work of [2]. In that context, a deterministic Mixed Integer Linear Programming

(MILP) formulation was used to find the optimal capacities and compositions of

the technologies in a ZEB. The model was further developed in pre-work by the

author of this thesis [10]. However, the uncertainty of the input parameters was not

considered. The main contribution of this thesis is a qualitative and qualitative

investigation of the need for a stochastic model, accounting for the operational

uncertainty in ZEBs.

1.2 Problem Description

The main objective of this thesis is to develop a stochastic optimization program

for optimal investments of ZEBs, in the open-source language Pyomo. The model

developed considers the short-term operational uncertainty by accounting for dif-

ferent operational patterns of the building. The uncertain parameters investigated

in the stochastic model formulation are the building’s heat demand, outdoor tem-

perature, spot price of electricity and solar irradiation. One of the model extensions

implemented is a household battery, of which operations will be investigated. The

following research questions are to be answered in this thesis:

Question 1: How can a stochastic model formulation better approach the

objective of optimal and long-term robust investments in ZEB energy

systems, compared to a deterministic model formulation?
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(a) How does a stochastic model solution differ from its deterministic counterpart,

given operational uncertainty?

(b) How does implementing a stochastic model affect the applicability and computa-

tional effort compared to implementing a deterministic model, and what could

be possible mitigation measures?

(c) Given the above key indicators of a stochastic model’s adequacy, could one

argue for the suitability and/or necessity of a stochastic model formulation?

(d) How can the significance of non-operational parameter uncertainty be assessed

in a sensitivity analysis?

Question 2: What are the incentives for investing in household batteries

in Norwegian ZEBs?

(a) Through a sensitivity analysis, can the investment of a battery be triggered by

e.g. a power subscription grid tariff scheme?

(b) How does the battery affect optimal operations of ZEBs?

(c) Is the battery modelling sufficiently representative for real-life battery opera-

tions?

1.3 Approach and Limitations

The optimization model developed in this thesis is a stochastic two-stage program

(SMILP), separating the investment decision (first stage) variables from the oper-

ational (second stage) variables. The model’s objective is to minimize both the net

present value (NPV) of the first stage investment costs and weighted probability of

operational costs. Building operations are hourly based and the investments take

place in the beginning of year 1 of the 60 years analysis horizon. A realistic case

study of a Norwegian passive house is used to validate the model and to compare

the deterministic and stochastic solutions. Simulated load profiles for the climatic

years 2010 to 2014 based on [2] are used as input.

One consequence of moving from a deterministic to a stochastic model formulation

can be the increased model computational effort (runtime). When working with

hourly time steps, and expanding from one to multiple scenarios, the runtime can

potentially be an obstacle which will reduce the applicability of the stochastic pro-

gram. To avoid this inefficiency, the methodology of k-means clustering analysis is
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used to reduce the model from a full year of 8760 hours down to a scenario repre-

senting a full year by only 672 hours. K-means clustering methodology, of which

its applicability and wide range of algorithmic approaches is described in [11], has

been widely used in optimization. Examples of energy optimization models using

this methodology as a scenario reduction technique are [12] and [13].

The main limitation in this thesis is that only considers the emissions caused in

operations. Other phases, such as the production and construction of building

materials, should also be accounted for in ZEBs with high ambition levels. In ZEB

definition, the ambition level used in this thesis is called a ”ZEB – O”, which means

a ZEB that only balances out the operational phase [3].

1.4 Structure of the Thesis

The following chapters are structured as follows:

Chapter 2 gives an introduction to the theoretical concept of ZEBs, the fundamen-

tal principles of stochastic programming and a review of the economic influences

on grid-connected ZEBs.

Chapter 3 presents structure of the stochastic model formulation and the model

implementation. This is also where the input parameters are analyzed and the

procedure for scenario generation is explained.

Chapter 4 is a description of the model’s objective function and constraints.

Chapter 5 presents the results of the passive house case study which are readily

discussed.

Chapter 6 delivers the final conclusion.

Chapter 7 gives recommendations for further work.

Appendices include additional figures for the clustering analysis, details on the

technology investment costs used as model input, together with complete result

tables of the model runs presented in Chapter 5, and an extract of the Pyomo

model code.



Chapter 2

Background

2.1 Introduction to Background

This chapter contains related literature of three main subjects: Zero Emission

Buildings (ZEBs), optimization and Stochastic Programming (SP) and the energy

economics of grid-connected buildings. The first part is an introduction to the

concept of ZEB and some of its relevant energy system technologies. The second

part presents the fundamental theory on optimization under uncertainty through

SP, with related terms and relevant formulas. The final part introduces the main

drivers for uncertainty in cost-optimal ZEBs, mainly based on the Norwegian power

market economy for end-users.

2.2 Zero Emission Buildings

2.2.1 Definition

The concept of Zero Energy/Emission Buildings (ZEBs) was launched by the EU’s

Energy Performance of Buildings Directive (EPBD) in 2010, stating that all new

buildings are to be nearly zero energy buildings (nZEB) by 2020 [1]. The EPBD

gives the following definition:

A ’nearly zero-energy’ building means a building that has a very high energy

performance. The nearly zero or very low amount of energy required should be cov-

ered to a very significant extent by energy from renewable sources, including energy

from renewable sources produced on-site or nearby [1].

5
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The terms zero energy and zero emission are equivalents [2], and therefore a more

specific definition proposed by the Research Centre on Zero Emission Buildings

(ZEB Centre) is as follows:

A zero-emission building produces enough renewable energy to compensate for

the building’s total greenhouse gas emissions throughout the lifetime [3].

Greenhouse gas (GHG) emissions caused by buildings are calculated using weigh-

ing factors for each of the energy carriers; the CO2 factor or the primary energy

factor (PEF). The CO2 factor is related to a zero carbon building or a zero emis-

sion building, while the term zero energy building is used together with Primary

Energy Factors (PEF) [2]. The use of the term ”Zero Emission Buildings” (ZEBs)

will from here on embrace both terms.

A net ZEB is by definition a building that can compensate for the accumulated

emissions throughout all its phases of study [3]. For a complete lifetime study, all

phases must be considered. This include extractions, processing and transportation

of construction materials, energy used in construction and operations, demolition

and waste management.
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FIGURE 2.1: Emitted and ”saved” CO2 emissions of a building’s lifetime. Adopted

from [3].

Figure 2.1 illustrates the emission throughout a building’s lifetime, showing that
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there are emissions related to all lifetime phases. However, only the operational

phase is compensating with its ”payback” emissions. The ZEB definition is charac-

terized through the ambition level, indicating which of the lifetime phases that are

recognized [3]. With an ”ZEB - O” ambition level, the emission balance between

energy use and energy generation can be regarded as the annual balance between

import and export of energy. This can be formulated mathematically with equa-

tion (2.1) [14]. The emissions related to the amount of energy from energy carrier

i is multiplied by a weighing factor fi, unique for the energy carrier.

∑
i

importi · fi −
∑
i

exporti · fi = G ∀i ∈ I (2.1)

Energy carriers are e.g. electricity import from the power grid, district heating and

different types of fuels such as bio fuel and fossil fuels. If G = 0, there is a strict

emission balance. Such buildings can be referred to as strictly net zero emission

building (sZEB) [2]. The balance is a net balance throughout a year or for the

entire building’s lifetime. Daily and seasonally weather fluctuations, which cause

mismatches between the instant export and import of energy, makes it impossible

to satisfy the emission balance on a daily or hourly basis.

energy efficiency

reference 
building

weighted supply
(kWh, CO2, etc..)

weighted demand
(kWh, CO2, etc..)

net zero balance line

passive 
building

net ZEB

energy 
supply

FIGURE 2.2: Net ZEB balance line using PEF or CO2 factors. Adopted from [14].

Figure 2.2 shows the net zero balance line which illustrates how a sZEB will have
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the perfect balance between export and import of energy. The x-axis represents

the building energy demand. To what extent the building is a net ZEB (sZEB) or

a nearly ZEB (nZEB) is relative to the reference emissions and can be calculated

according to (2.2) [2].

ZEB-level =
Gref −G
Gref

(2.2)

Where Gref is the emissions from a reference (noZEB) building.

Energy efficient buildings have low energy demands and a lower amount of energy

to compensate for. Such buildings are referred to as passive buildings and the space

heating demand must not exceed 15 kWh/m2/year for buildings ≤ 250 m2 [15]. To

reach ZEB status, energy must be generated on site and exported. Buildings which

export electricity are known as plus buildings [16]. If the total export is equal or

greater than the import, the building obtains the status of a sZEB. Table 2.1 sums

up building categorization terminology.

TABLE 2.1: Building categorization terminology, based on definitions from [2].

Building Type Description

Passive building
Energy efficient building of which the space

heating demand is ≤ 15kWh/mˆ2/year[15]

Plus building
Building exporting surplus electricity excee-

ding its demand/consumption [16]

Zero emission/carbon building
Plus building satisfying balance equation

(2.1) by using a CO2 factors

Zero energy building
Plus building satisfying balance equation

(2.1) by using PEF

Strictly zero emission building (sZEB) 100 % (net) Zero emission building

Nearly zero emission building (nZEB) 1-99 % Zero emission building

No zero emission building (noZEB) Building without emission requirements
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2.2.2 Weighing Factors

The CO2 Factor

A CO2 equivalent is a metric measure of GHG emissions from each kWh of energy

from a given energy carrier [7]. All types a greenhouse gases are converted to a CO2

equivalent according to their relative contribution to pollution, as carbon dioxide

is the dominant GHG [17].

As stated in chapter 1, the CO2 factor of electricity depends on the energy mix

used in its generation. For proper simulations of the entire lifetime of a building,

the CO2 factor will also have to reflect the trending increase in power trade and

the ongoing decarbonization of the European power sector towards 2050. The CO2

factor suggested by the research ZEB Centre is therefore 132 g per kWh of elec-

tricity [3]. However, the estimation of emissions related to Norwegian, hydropower

generated electricity was, in 2015, 17 g/kWh in contrast to the current European

estimation of ca. 350 g/kWh [8].

Primary Energy Factors

Primary energy measures refers to the extraction of energy from natural resources

[7]. The primary energy factor is a ratio of the final energy product in terms

of extracted energy. The extracted amount of primary sourced energy is usually

transformed multiple times before reaching its end use [18]. The transformations

are e.g. processing and transportation, which cause energy losses.

Reducing the primary energy demand in buildings is on of the EPBD’s ambitions,

as it is an accurate measure of the change in efficiency of buildings [1]. In compar-

ison to the CO2 factor, the PEFs do not reflect on the benefits of the renewable

energy production compared to fossil fuels productions [2]. One way to compensate

is to separate renewable PEF and non-renewable PEF, or by indicate renewable

primary energy as a factor ≤ 1 [14]. The EPBD suggested PEF is 2.5 kWh primary

energy per kWh useful energy. However, the actual PEF of electricity varies with

the hourly production mix and there are multiple ways of calculating the factor

depending on different assumptions and considerations, such as the time resolution,

geographical system boundaries etc. [18].
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2.2.3 Relevant Technologies

As ZEBs require on site renewable electricity production, sun power is the most

suitable. Other technologies like the combined heat and power (CHP) or a small

windmill can also generate electricity locally [2]. This section gives an introduction

to each ZEB technology that is considered relevant for this thesis. The following

technologies are introduced:

• Photovoltaic solar panels

• Electric battery

• Air-source and ground-source heat pumps

• Hot water storage

• Biomass boiler

• Electric water boiler

Photovoltaic systems (PV)

A PV system, or a PV panel is an electronic device converting sunlight into energy.

When sun rays hit the non-reflecting surface, electrons are released and a current

is formed [19]. Figure 2.3 shows the structure of a silicon-based PV cell and its

working mechanism, which is further explained in [20].

FIGURE 2.3: Basic structure and operation of a silicon-based PV cell. Adopted

from [21].

Sun power is a sustainable but volatile energy source because the possible electricity

production is intermittently dependent of solar irradiation. About 30 % of the solar
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irradiation is reflected and do not penetrate the atmosphere. The yearly irradiation

in Norway is in between 600 - 1000 kWh/m2 [22]. Power generation from each m2

of PV panel is influenced by multiple factors, such as the module temperature,

the angle of the sun verses the orientation of the panel, and variation in shading

[19]. Estimating the power generation is therefore a complex calculation, usually

done by computer software, to simulate the operation of a given system at a given

location. The author of [23] suggests a simplified estimation of the generated power

in kilowatt hours per kilowatt peak installed (kWh/kWp), by only considering the

horizontal irradiation It (W/m2) and the panel’s ambient temperature Tamb, as in

equation (2.3).

Ppv(kW ) = Pstc ·
It
Istc
· ηrel (2.3)

• Where Ppv (kW) is the generated power, Pstc is the generation at standard

conditions, It (W/m2) is the instant irradiation of a certain time perspective

t and Istc is the irradiation at standard conditions; 25◦C to 1000 W/m2.

ηrel = 1 + k1 ln (I ′) + k2 ln2 (I ′) + T ′t (k3 + k4 ln (I ′) + k5 ln2 (I ′)) + k6T
2
t (2.4)

• Where I ′ = It/Istc, T
′ = Tamb + c · It − Tstc of which the coefficient c

(◦CW−1m2) describes how much the PV module is heated by the solar radi-

ation. It depends e.g. on the way the PV module is mounted and the module

type.

The optimal orientation of the panel, irradiation and temperature are factors in-

fluencing the PV’s efficiency and depend on its geographical location. The average

efficiency increases with the latitude, as overheated panels generate less electricity.

For temperatures higher than 25 ◦ C, the efficiency degrades linearly [24]. However,

the total production throughout the year will be greater in the opposite direction,

as locations closer to equator experience more hours of sun in total. A Norwegian

roof-mounted PV panel can reach a high efficiency because the temperature seldom

exceed 25◦C. However, the amount of days and hours throughout the year that can

produce sun power is limited. The optimal angle of a Oslo based, roof mounted

PV panel is 40◦ [25].

Electric Battery

Batteries are self-contained power banks that can store and release electricity by

moving electrons between two terminals called the electrodes. In between the elec-

trodes, there is a chemical electrolyte which is either a liquid or a powder. The
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most common technology used together with PV systems is the lead-acid or the

lithium-ion battery, whose names reflect the combination of electrolytes and elec-

trodes [19]. Figure 2.4 shows the operation mechanisms of the charging and the

discharging of a battery at an electronic level.

(a) Recharging (b) Discharging

FIGURE 2.4: Operation mechanisms in terms of (a) charging and (b) discharging

of a lithium-ion battery. Adopted from [26].

The battery’s storing capacity is a measure of the maximum useful energy in kWh

or Ah (kilowatts hours or ampere hours), further explained in [19]. The continuous

power capacity, known as the charging rate, is measured in kW or A. A general

measure for the battery’s performance is the round trip efficiency in equation (2.5)

which is the product of the charging and the discharging efficiencies, ηch and ηdch.

The succeeding equations are adopted from [27].

ηrt = ηch · ηdch (2.5)

The state-of-charge (SOC), in (2.6) indicates the energy content in a battery using

percent point units. A SOC of 100 % indicates a fully charged battery. Et (kWh)

is the energy content in time t, and Xrated is the storage capacity (kWh).

SOC (%) =
Et

Xrated
· 100 (2.6)
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The energy content is a balance of the energy ech entering the storage and the edch

drawn from the storage. Note that the discharging efficiency is a fraction, as the

total energy drawn from the storage is greater than the useful energy discharged.

Et = Et−1 + ech · t · ηch − edch · t ·
1

ηdch
(2.7)

The battery is a temporary storage designed for daily cycles; one complete charge

and one complete discharge. Charging the battery 25 % and then discharging 25 %

equals 1/4 cycle. As the charging and the discharging of a battery are mechanisms

of cyclic transfer of charges between electrodes, the lifetime of a battery is a function

of the total charging cycles. It is also dependent on the surrounding temperature,

the storage time period and the Depth of Discharge (DOD) [19]. DOD is the

complement of SOC and co-related to the cyclic lifetime, as seen in figure 2.5.

FIGURE 2.5: Life cycles vs DOD for a lithium-ion battery, adopted from [28].

Figure 2.5 shows that the total cycles during the battery’s lifetime is a function

of the DOD. However, a simplified approach is to estimate the life time in years,

based on normal conditions and usage, as commonly given by the manufacturer.

More on the different types of batteries and their usage is explained in [29].

Heat pumps

Heat pumps are energy efficient heating (or cooling) technologies that by a small

amount of electricity can produce 3-6 times as much energy [30]. The average ratio

for an air-source heat pump (ASHP) is about 1 kWh electricity per 3 kWh useful

heat. However, this ratio, known as the coefficient of performance (COP) depends

on the source temperature and the building required indoor temperature. While

the ASHP uses the difference between the outdoor and indoor temperatures, the

ground-source heat pump (GSHP) relies on the geothermal sources such as ground
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water or soil. More on the detailed thermodynamic technology can be explored in

[31] and their environmental impact, in [32]. Figures 4.14 and 4.15 illustrates the

working principles of the ASHP and GSHP.

FIGURE 2.6: Air source heat pump principles (air to water). Adopted from [33].

FIGURE 2.7: Ground-to-water heat pump principles. Adopted from [34].

The only difference between the ASHP and the GSHP is the source temperature.

The supply temperature can either be hot water demand or indoor air heating,

depending on the distribution system. The difference in source, Tsource and sup-
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ply, Tsupply temperatures are the basis for the COP. [35] suggests the following

calculation of the COP:

COP = k0 − k1 ·∆T − k2(∆T )2 (2.8)

Where the k-values differ between manufacturers and ∆T is the difference between

the source and supply temperatures, as given in equation (2.9).

∆T = Tsupply − Tsource (2.9)
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FIGURE 2.8: COP vs. the temperature difference between source and supply.

Based on Stiebel Electron manufacturer data in the work of [2].

Figure 2.8 shows the co-relation ∆T and COP from Stiebel Electron heat pumps,

based on equation (2.8). The COP curve for the GSHP is higher compared to the

ASHP curve because the Tsource is higher for the GSHP. The ground temperature

is stable at around 10 ◦ throughout the year.
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FIGURE 2.9: Supply temperature for different building standards. Adopted from

[2].

Figure 2.9 shows the variation of the the required indoor temperature Tsupply as a

function of the outdoor (ambient) temperature. The different standards represent

the level heating losses through the insulation levels. Poorly insulated buildings

require a larger ∆T than for instance passive buildings. Equation (2.10) can be

used to calculate the supply temperature [2].

Tsupply = A · T 2
amb +B · Tamb + C (2.10)

In waterborne heat distribution systems, the heat pump serve both the space heat-

ing (sh) demand and the hot water (hw) demand of the building. Because the

supply temperatures of the sh demand and the hw demand differs, they must be

weighted by their respective heating demand to obtain an estimation for the total

COP for the heat pump. Equation (2.11) has been used in [2].

COP =
COPshDsh + COPhwDhw

Dsh + Dhw
(2.11)

Heat Storage

The heat storage is in brief a hot water accumulator tank keeping the water at a

certain temperature and allowing excess thermal energy production to be stored

for later use. In a ZEB context, the accumulator tank closes the gap between the

energy produced and the energy demand of the building. This leads to a flexible

and efficient use of the on-site produced renewable energy. More on heat storage
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technology and the conversion between liters and kWh accumulated energy can be

found in [36].

The Biomass Boiler

Biomass is a general term for combustible remains from organic materials as woods,

agriculture and livestock waste. The energy potential in Norwegian biomass regen-

eration each year can theoretically cover 140 TWh of heating [22]. One type of

bio-fuel used in households is wood pellets, which is processed biomass in the

shape of small brickets carrying a large heating value. Figure 2.10 shows a general

biomass boiler system for waterborne heating systems. For further reading, see for

example [37].

FIGURE 2.10: Principles of the biomass boiler. Adopted from [38]

Electric top-up Boiler

An electric boiler uses electricity to heat the water for the use in waterborne distri-

bution system [39]. The electric boiler is a top-up device for peak heating demand

and has low investment costs. Its operational costs are directly linked to the costs

of electricity and its efficiency is just below 1 kWh heat for each kWh of electricity.
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2.3 Optimization and Stochastic Programming

This chapter introduces the framework for modelling optimization problems involv-

ing uncertainty: Stochastic Programming (SP). The intended audience is readers

with some basic optimization knowledge. Before preceding to the mathematics

behind SP, there is a brief introduction to Mixed Integer Linear Programming

(MILP).

2.3.1 MILP

MILP formulation is especially suitable for large operational models involving sev-

eral hundreds (and thousands) input parameters and processes (e.g. hourly load

and weather profiles). Its linearity makes it possible to efficiently solve large prob-

lems [40]. Some of the variables in MILPs are required to take integer values. A

general formulation of a MILP is given in (2.12), where the objective function,

c(d, x) is the cost function which is to be minimized by choosing the right decision

variables x by the given parameters d. All constraints (f(x)c and g(x)c) must be

linear functions in a MILP formulation [41].

Minimize c(d, x)

s.t x ∈ R, integer xi ∀i ∈ I

f(x)c = 0 c ∈ Eq.

g(x)c ≤ 0 c ∈ Ieq.

(2.12)

The equation above is a general description of a constrained optimization problem

formulated as a MILP. Eq. denotes a set of equality constraints and Ieq. represents

the inequality constraints.

2.3.2 Uncertainty

Uncertainty is the concept of being in doubt about a value. Applied to modelling

it means that a given value may or may not occur in the future [42]. Furthermore,

there is a difference between random uncertainty and stochastic uncertainty. Ran-

domness can be defined as unpredictable uncertainty that can not be described by

previous observations (e.g historical data), while stochastic uncertainty is proba-

bilistic variations in processes over time and space [42]. For long-term investment

models it is important to acknowledge how building operations are and will be af-

fected by investments [43], [44]. The right investments (i.e strategic decisions) must
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be cost-optimal, but also flexible and robust in order for the operational part to

respond to varying conditions; long-term and short-term uncertainty. Short-term

uncertainty refers to seasonal or hourly fluctuations such as weather conditions,

while long-term uncertainty is driven by uncertainty about future pricing levels,

energy production mix and the demand due to future expansion planning, among

others [44]. Accounting for uncertainty in modelling is known as a stochastic mod-

elling approach [45].

2.3.3 Stochastic Programming: The two-stage Model

Stochastic programming (SP) was first introduced by George Dantzig in 1955,

when the two-stage model based on linear programming was formulated [46]. In

opposition to deterministic programming, SP accounts for uncertainty either in

the input parameters or by having probabilistic constraints [47]. A two-stage for-

mulation separates the first stage (investments) variables from the second stage

(operational) variables of the problem, and accounts for the uncertainty in the sec-

ond stage of the recourse problem. In multi-stage and multi-horizon formulations,

these two stages can periodically occur multiple times. In such formulations, the

total number of scenarios is growing exponentially with the number of periods [48].

Stage 1: Investments Stage 2: Operations

Scenario 1

Scenario 2

Scenario n

FIGURE 2.11: Scenario fan for a two-stage stochastic model formulation with one

strategic stage and multiple operational stages for each of the n scenarios.

Figure 2.11 illustrates the scenario tree (or fan) of a two-stage model with opera-

tional scenarios. The square represents the first stage, also known as the strategic

stage. Each blue circle is defined by the choice of time resolution, for example one

hour, week, year or period of operation, i.e. the second stage. The deterministic

equivalent model is shown in figure 2.12, which by definition is a stochastic model

of one scenario [49].
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Stage 1: Investments Stage 2: Operations

Scenario 1

FIGURE 2.12: The deterministic equivalent scenario fan of the two-stage scenario

tree in figure 2.11.

The objective function of a two-stage model is separated into two parts, as given

in equation (2.13), where each c represents a cost function. The x is the first stage

variable vector, the y is the second stage variable vector and ωs is the conditional

probability of scenario s. d and ds represent the model parameter vectors [47].

Minimize c(d, x) +
∑
s∈S

c(ds, y) · ωs

s.t f(x) ≤ 0

g(x, ys) ≤ 0 s ∈ S

(2.13)

Despite the separation of the two stages mathematically, the optimal solution orig-

inate from their internal linkage. In a recursive model as the two-stage model, the

first stage decisions are based on all possible second stage operational patterns and

the first stage (strategic) parameters.

2.3.4 The Value of the Stochastic Model

Taking uncertainty into account can potentially lead to a change in the decision

variables and the objective value. In order to estimate the value of upgrading from

a deterministic to a stochastic model, their objective values can be compared by

applying the following tests:

• Test A: The Value of the Stochastic Solution (VSS)

• Test B: Loss of Using the Skeleton Solution (LUSS)

• Test C: Loss of Upgrading the Deterministic Solution (LUDS)
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A. The Value of a Stochastic Solution (VSS)

VSS is a measure of the integrity of the solution when using a stochastic model in

place of a deterministic model. It is explained by the author of [49] as the loss of

profits due to the presence of uncertainty. In effect, a small VSS indicates that a

deterministic model is an accurate approximation to the optimization problem, and

that there might not be a need for a stochastic model. On the contrary, programs

with large VSS require the solution of a stochastic program. VSS can either be a

positive or a negative value. To justify the necessity of a stochastic program, the

VSS can be calculated by analyzing the solutions of the stochastic model solution

and the solution of the deterministic equivalent model. The first stage decisions

of the deterministic equivalent solution, known as the Expected Value Solution

(EVS), are forced to be the first stage decisions of the stochastic model. This

manipulation changes the initial stochastic model to become a two-stage Recourse

Program (RP) [50].

The procedure for obtaining VSS is as follows:

(1) Obtaining the EVS by using the average scenario of the stochastic equivalent

(2) Solve the RP∗ with the first-stage decisions obtained in 1)

(3) Compare the objective values of EVS and RP∗

Equation (2.14) denotes the objective function, RP∗ of a stochastic program with

fixed first stage values, x̄.

RP ∗ = min
(
cT x̄+

∑
s∈S

ωsd
T
s ys

)
s.t f(x̄) ≤ 0

g(x̄, ys) ≤ 0 s ∈ S

(2.14)

VSS as in equation (2.15), is the difference between the objective values, EVS and

RP∗.

VSS = EVS− RP∗ (2.15)
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If the VSS is small and insignificant, a stochastic program formulation can be re-

dundant [49]. On the contrary, if VSS takes a large value or the RP∗ is insolvable,

further investigations are needed to determine the value of upgrading from the

deterministic solution. It is of interest to find out what makes the deterministic

model weak [51].

B. Loss of Using the Skeleton Solution (LUSS)

LUSS is a quality measure of the deterministic solution. The purpose of LUSS is

to see if the EVS gives the right non-zero variables. It is measured by fixing the

first stage decision variables of the RP to those that are zero in the EVS. Alter-

natively, the decision variables can be fixed at their lower bound. When purposely

activating the first-stage decision binaries, the obtained model is called the model

skeleton [51]. Equation (2.16) gives the calculation.

ESSV∗ = Expected skeleton solution value.

RP∗ = Recourse program.

LUSS = ESSV∗ − RP∗ (2.16)

A LUSS close to zero means that the variables chosen by the deterministic solution

are the same as in a stochastic solution, but it does not indicate whether there

might exist a better solution.

C. Loss of Upgrading the Deterministic Solution: (LUDS)

LUDS can be calculated by letting the decision variables of the EVS be the lower

bound in the stochastic model, by adding the constraint in equation (2.17). The

LUDS is given by equation (2.18).

xi ≤ x̄i(d̄) i∀I (2.17)

Where x̄i is the deterministic decision variables’ value obtained in the optimization

using the input vector, d̄.
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EIV∗ = Expected input value.

LUSS = EIV∗ − RP∗ (2.18)

If LUSS = 0, the deterministic solution is perfect, but there exists an even better

stochastic solution. The deterministic model is hence perfectly upgradable.

2.3.5 Principles of Scenario Generation

The accuracy of a stochastic program depends on the number of scenarios [47].

The true distribution of scenarios would be an infinite number, which is impossible

to generate. In order to obtain the most accurate stochastic models, proper gener-

ation of scenarios is crucial. The number of scenarios S must be large, or at least

highly representative to the true distribution. Successful application of stochastic

models with more than one uncertain parameter requires consistency in the inter-

nal dependency of the parameters [44]. More specifically, it is desirable that the

scenarios capture the following three statistical dependencies, and as stated in [44]

(based on [52]):

• The scenarios should capture dependencies between various uncertain param-

eters

• The scenarios should capture dependencies between geographical regions

• The scenarios should capture dependencies in time

2.3.6 Data Analysis with K-means Clustering

Clustering analysis is a methodology for distance measures, of which the primary

goal is to classify and compress data by separate data samples in groups of equal

variance [53]. K-means clustering is the most commonly used version as it follows

a heuristic algorithm starting by grouping the data samples to K random centers

and integrating until a predefined termination criterion is met, as shown in the flow

chart in figure 2.13.
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FIGURE 2.13: K-means clustering algorithm flow chart, adopted from [54]

Centroid based K-means clustering allows the predefinition of the wanted K num-

ber of centers, known as the centroids. Clustering is used in various scientific

disciplines and is especially suitable tool for scenario reduction as the number of

centroids can be set to the desired number of scenarios in order to avoid duplica-

tion of similar data series. [12] and [13] are examples of energy optimization models

using the k-means clustering method for the selection of scenarios. The wide range

of algorithmic approaches to clustering is explained in [11].
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2.4 Economic Influences on grid-connected Build-

ings

This chapter seeks to emphasize the importance of the energy market variations

and technology costs by introducing some of the principle economic aspects of, and

uncertainty drivers for, grid connected buildings.

2.4.1 End-user price of Electricity

The direct cost influences on a plus building are the following:

• The spot price

• Grid tariff policies

• The ”prosumer” agreement

The price of electricity for the average Norwegian household consists of three main

contributions; the spot price, the grid tariff and value added taxes (VAT) [55], [56].

Equation (2.19) gives the final price per kWh of electricity. The usual revenue of

feed-back electricity is the spot price [57].

Electricity Price = Power Price + Grid tariff + VAT (2.19)

31.9 %

32.5 %

31.1%

1.9%

67.0 %

35.5%

Spot Price
VAT
Grid Tariff
Consumption tax
Energy Fund tax
Grid Energy charge

Grid Tariff

FIGURE 2.14: End-user price of electricity for households. Based on data from

[55], [56]

Figure 2.14 shows the price distribution for one kWh of electricity. The spot price

includes green certificates charges, explained in section 2.4.2. The grid tariff is

further divided into three parts; the grid tariff’s energy charge, consumption tax

and Enova funding. VAT (25 %) is applied to both the final grid tariff and to the
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spot price. There are several impacts on the final end-user price of electricity, both

in a short-term and a long term perspective.

2.4.2 The Spot Price

Short-term fluctuations

In a short-term perspective, the spot price varies like any other commodity, with

the instant demand and the marginal cost of supply (power production) [58]. As

the power production is mainly based on hydropower, the marginal cost of supply

varies with the yearly rainfall which will impact the reservoir in Norwegian maga-

zines and hence the water values [8]. The electricity demand on the other hand, is

negatively co-related with the outdoor temperature. Colder temperatures increase

the demand of electricity as the need of space heating escalates, and this causes

the spot price to rise [59].

Long-term pricing levels

In a long-term perspective, the spot price level is influenced by the price of CO2,

transferring capacity between markets and the long-term electricity demand. Ac-

cording to [60], the spot price is most sensitive to the European market’s carbon

price (CO2 price). The predicted increase towards 2030 is 0.7 ct/kWh compared

to 2017 values [60].

The carbon price

The carbon price is designed to set a monetary value to the external costs of carbon

emissions. The EU’s Emissions Trading Scheme (EU ETS), established in 2005,

provides a cap for total CO2 emissions within the European Economic Area (EU

and Norway and Iceland) [61]. A high carbon price increases the marginal cost of

generation from carbon-intensive resources. Increased costs of supply in Europe

escalate the spot price and leads to an increased demand of Norwegian, low-cost

and low-carbon electricity [58]. The carbon price has been relatively low since 2012,

but it is predicted to increase in the near future. This is a consequence of European

policies of further depressing carbon emissions and a recently suggested ”carbon

price floor” (CPF) implemented in the UK and is now under considerations in the

EU [62]. An increased carbon price will increment the Nordic spot price as the

rule of contingency suggests [58]. Increasing interconnected capacity between the

Nordic and the continental markets will further expose the Nordic spot price. In

addition to the existing links to Denmark and the Netherlands, the ”Norlink” will
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connect Norway to Germany in 2020 and the ”North Sea Link” (NSL) will connect

Norway to the UK in 2021 [60].

Future demand of Electricity

Future predictions of the energy market suggest an increase in electricity demand

on a national level as a result of the electrification of the transport sector and ex-

pansion of aluminum production [60]. Simultaneously, the total power production

is predicted to increase as a result of more integration of wind and solar produc-

tion capacity in the power system. A large integration of power production from

volatile resources might jump the spot price during hours of less wind, resulting in

greater short-term fluctuations in the spot price. On the demand side, as technolo-

gies improve and more buildings become low-energy buildings, the total amount of

household PVs and electric vehicles (EVs) increase, the demand of electricity to

household can be significantly reduced. The study on a large scale integration of

Zero Emission Buildings (ZEBs) has suggested lower electricity prices as a conse-

quence of decreasing demand [2]. The term ”Flexible Demand” (FD) is in brief

a method of offloading the grid by disconnecting a load (i.e. the consumer) [63].

FD can potentially lead to a reduction in short-term fluctuation in the spot price.

When loads can be regulated, there will be smaller differences between supply and

demand, thus smaller variations in the spot price.

Green Certificates

The purpose of green certificates is to reward power production from renewable

energy sources [64]. Towards 2035, Norwegian consumers pay additional taxes to

facilitate the investments in wind power. Reaching the wind power target by 2035

will lead to a large capacity of low-cost marginal production, and potentially a

reduced spot price as the grant is being dismissed after 2035.

2.4.3 Grid Utility Tariffs

Pricing models

Energy pricing

The current grid tariff model, energy pricing, is divided into fixed and variable

charges. It consists of a fixed monthly charge (rent) and a variable charge per kWh

consumed (cost of losses). Equation (2.20) depicts a simplified expression for the

yearly grid tariff for private costumers, based on [56]:
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Yearly grid tariff = 12 ·Monthly fixed charge

+ Energy charge · Total energy consumption
(2.20)

where:

• Monthly fixed charge is grid rent (EUR)

• Specific Energy charge covering the cost of losses (EUR/kWh)

• Total energy consumption (kWh/year)

Power subscription pricing

Instant power demand (kWh/h) is increasing faster than the energy supply as a

volume (kWh), which leads to requirements of higher capacities in existing trans-

mission lines and thus new investments. Authorities suggest a revised grid tariff

model in order to reduce the peak power [57]. The power subscription grid tar-

iff model can be compared to a cellphone subscription plan; including a monthly

charge for a fixed amount of service and a penalty charge for service exceeding

the subscription plan. The tariff includes a fixed kW-subscription charge (NOK),

a penalty charge for the volume exceeding the subscription (NOK/kWh) and an

energy charge to account for losses in the transmission line (NOK/kWh). As this

tariff model is still under development, the pricing method introduced is based on

previous work in [65], [66]. The equation (2.21) depicts as simplified demonstration

of the yearly grid tariff.

Yearly grid tariff = 12 · Fixed Charge · (1 + Subscription)

+ Penalty charge · Penalty volume

+ Energy charge · Total energy consumption

(2.21)

where:

• Fixed Charge is the fixed monthly charge (EUR)

• Subscription is the subscribed power (kW)

• Penalty charge is the charge for exceeding the subscription (EUR/kWh)

• Penalty volume is the import exceeding the subscription (kWh/year)

• Energy charge is the specific consumption charge, referred to as the cost of

losses (EUR/kWh)

• Total energy consumption is the import (kWh)
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Short-term fluctuations

Spot price increments will lead to variations in the variable grid tariff charge, due

to the cost of losses for energy transmission which applies to the Distribution Sys-

tem Operator (DSO). Other impacts on the grid tariff are e.g. income regulation of

DSO’s and variations in costs of non-delivered energy wich impact the short-term

grid tariffs [58].

Long-term pricing levels

The greatest influence on the grid tariff is the costs of expansion, maintenance and

upgrades in the grid [60]. The costs are directly applied to the end-user through

the fixed grid tariff charge. A new grid tariff model will not have great impact on

the end-user’s electricity costs as the intended charges for the power subscription

should in total match the current energy pricing tariff. However, according to [57],

imposing a subscription limit can potentially lead to a decrease in the required

expansion of the power grid.

2.4.4 The Prosumer Agreement

A ”prosumer” (producer and costumer) is a grid-connected electricity costumer

that in periods can produce more than the house’ initial demand and feed back

surplus electricity to the grid. The prosumer agreement established in 2010 allows

prosumers to have power plants of less than 100 kW, and they are excepted from

paying grid rent for the delivered energy [67]. The feed-back revenue is equal to

the spot price of electricity [57].

2.4.5 Support for Renewable Power Production

Enova SF is a state-owned energy fund established to stimulate investments in

green and sustainable technology in order to reduce emissions and efficiently ex-

ploit Norwegian renewable resources. It is governed by the Ministry of Climate

and Environment and is funding small and large scale innovative energy projects

by making them financially viable. Other types of support mechanisms are ex-

plained in [61].

Table 2.2 gives the possible support that costumers can get for domestic energy

investments, for the technologies described in section 2.2.3.



30 CHAPTER 2. BACKGROUND

TABLE 2.2: Possible Enova Support [68]

Installed component Enova-support

Bio-fuel Water Boiler 2600 EUR

Air to water heat pump 2000 EUR

Water to water heat pump 3100 EUR

PV panel 1000EUR + 125 EUR/kWp*

*with a total upper limit of 3000 Euro

2.4.6 Investment Costs of PVs and Batteries

In a global perspective, sun power is the fastest growing energy source, mainly

driven by the large growth in installed capacity in countries as Germany, China

and India. The investment costs of PV systems have dropped 50 % compared to

2009 and is predicted to drop further in the future [69]. This is mainly due to

the drop in solar module price (EUR/kWp), which is a consequence of increased

efficiency of PV technology and increased experience with installation [39]. The

Norwegian market for PV installations is still in an early phase, but according to

the author of [9], the price is expected to drop 20-35 % towards 2025 and with

40-70 % towards 2050 (compared to 2015 level). The general impression is that it

is not beneficial to invest in residential PV panels. This is because the Levelized

Cost of Energy (LCOE) still is high compared to the spot price [61].

Specific investment costs of household batteries have dropped on average 14 %

each year between 2007 and 2014 [70]. The motivation for installing a household

battery is mainly to store PV generated electricity to consume under high spot

prices [71]. Additionally, batteries have great demand side management facilities,

such as reduction of peak power imports, which can be of interest should the

grid power tariff should become reality. It can therefore facilitate FD, which is

of great interest for the power system planners [72]. According to [60], a large

scale integration of batteries can lead to a less fluctuating spot price and a reduced

need for new investments in the distribution network. Integration of household

batteries in Norway is still limited because of high investment costs, but there are

predictions that the investment costs will continue to drop and also that the battery

will become more efficient [73].



Chapter 3

Methodology

3.1 Introduction to Methodology

This chapter presents the the methodology for the development of the proposed

model. A complete mathematical model description can be found in chapter 4.

As the model takes in a large share of various input, a crucial part of obtaining

precise and reliable results is to choose the input parameters wisely. Therefore,

the methodology presented in this chapter contains a detailed data analysis for

a specific case study; a Norwegian passive house (single family home). The first

part introduces of the system design and general assumptions. The following part

gives the methodology for simulations of uncertain parameters. Thereafter comes

a description of the model’s scenario fan structure and the methodology used to

construct scenarios. The strategic parameters are then presented, followed by some

remarks on the model implementation.

Table C.3 gives the key information about the building used in the case study.

TABLE 3.1: Key information for the building used as case study

Area 250 m2

Location Oslo, Norway

Type Single family home

Standard Passive building

31
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3.2 System Design

The model’s objective is to design a cost-optimal composition of the technologies

introduced in section 2.2.3. Figure 3.1 shows the interaction between these; Photo-

voltaic solarcells (PV), Battery (BA), Electric top-up boiler (EB), Air-source heat

pump (ASHP), Ground-source heat pump (GSHP) and Biomass boiler (BB). Blue

lines represent flows of electricity and red lines flows of heat, respectively. Import

to the building, such as the power grid or bio pellets are considered to be outside

the system boundaries. The heat distribution system in the house is waterborne.

Photovoltaic Solarcells (PV)

Power

Grid

Electric

top-up

Boiler (EB)

Air Source

Heat Pump

(ASHP)

Gr. Source

Heat Pump

(GSHP)

Electricity

Storage

(BA)

Hot Water

Storage

(HS)

Bio

Pellets

Bio

Boiler (BB)

Heating and

Hot Water

Demand

Electricity

Demand

FIGURE 3.1: System design of the waterborne building heating system with avail-

able technologies

Energy systems in buildings require a technology for providing base load capac-

ity and peak load capacity [2]. It the system shown in figure 3.1, the base load

technology can be the ASHP, GSHP or the BB. The electric boiler is the top-up

technology.
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3.2.1 Assumptions

Main assumptions for the case study are the following:

• Emissions caused in other phases than in building operations are neglected

(”ZEB-O” ambition)

• Technology degradation is based on standard warranties for each of the tech-

nologies. However, the true degration of e.g. the battery is dependent on the

number of charging cycles, as explained in section 2.2.3

• Emissions from different energy carriers, i.e. the weighing factors are assumed

to stay constant throughout the lifetime of the building

• The house is equipped with an existing waterborne heating distribution sys-

tem

• The house is insulated according to passive house standards

• The roof-top is south-phasing with a 40 ◦ angle

• Transportation of bio-pellets import is neglected
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3.3 Data Input: Scenario Dependent Parameters

This section presents the simulated data for the hourly values of uncertain pa-

rameters. These parameters satisfy all three statistical dependencies explained in

section 2.3.5. Table 3.2 lists the parameters and their origin. a-b) are external sim-

ulations d-e) are the measured data series, and f-h) are the simulated data series.

The input years from 2010 to 2014 are from here on referred to as the climatic

years c1 to c5.

TABLE 3.2: Scenario dependent parameters and their origin

Parameter Origin

a) Electricity demand (kWh/h) Simulations given by [2]

b) Heat demand (kWh/h) Simulations given by [2]

c) Temperature (◦C) Measured data, given by [2]

d) Spot price (EUR/kWh) Source: NO1 Prices (Oslo) from Nordpoolspot [74]

e) Horizontal Irradiation (kW/m2) Source: Solar irradiation from [75]

f) PV generation (kWh/kWp) Simulated by (2.3) by c) and e)

g) COP, ASHP (-) Simulated by (2.8) and (2.11) by c)

h) COP, GSHP (-) Simulated by (2.8) and (2.11) by c)

a) Electricity demand

The building’s electricity demand shown in figure 3.2, is stable in all of the cli-

matic years (c1-c5). The curves in figure 3.2b are laying above one another. The

x-axis refers to the hours of the year.
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(b) Electricity duration curves for c1-c5

FIGURE 3.2: Simulated data: Building electricity demand
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b) Heat demand

The building heat demand is high during the winter and stable during the summer,

as seen from figure 3.3. The heat duration curves of c1-c5 are drawn in figure 3.4.

c1 has a generally higher demand than c2-c4. c5 has the lowest demand.
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c) Temperature

Figure 3.5 shows the temperature duration for c1-c5. c1 is generally a colder year,

while c5 is a warmer year.
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FIGURE 3.5: Measured data: Hourly temperature for c1-c5

d) The Spot price

Figure 3.6 is a plot of the spot price hourly fluctuations throughout the year from

c1-c5. Especially c4 and c5 have experienced high peaks of about 200 EUR/MWh

for several hours during the winter.
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e-f) PV electricity generation

The possible PV generation (kWh/kWp) is a function of the outdoor temperature

and the horizontal solar irradiation, as figures 3.7 and 3.8 show. The temperature

is measured outside the building, while the irradiation data is from the closest

measuring station with hourly values (Aas, Norway).
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FIGURE 3.7: Simulated data: Measured solar irradiation from Aas, Norway 2013

(right axis) vs. the simulated simulated possible PV generation (left axis)
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axis), Norway 2013 and the simulated simulated possible PV generation (left axis)

Calculations are carried out by equation (2.3) of which inputs are the k-values

given in table 3.3. The c value represents a roof-mounted 40 ◦ angle PV panel, as

stated as the optimal angle in section 2.2.3.
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TABLE 3.3: K-values for building integrated PV systems suggested by [23].

k1 k2 k3 k4 k5 k6 c

-0.017162 -0.040289 -0.004681 0.000148 0.000169 0.000005 0.05

g-h) COP for GSHP and ASHP

COP for the GSHP is generally higher as the source temperature is stable (about

10 ◦C), in contrast to the ASHP’s COP which is depending on the outdoor air

temperature. Equations and the weighting of hot water and space heating demand

is explained in 2.2.3. Simulated COPs are shown in figure 3.9.
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(a) COP: Air-source heat pump (ASHP)
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(b) COP: Ground-source heat pump (GSHP)

FIGURE 3.9: Simulated data: Heat pump COP vs. temperature

The required supply temperature for the heat pump is a function of the outdoor

temperature, and can be simulated based on the building standard. Standard 8 is

used in accordance with equation (2.10), as in [2].

TABLE 3.4: ABC-values for the supply temperature in COP simulations [2].

Standard 1 Standard 6 Standard 7 Standard 8 Standard 9

A -0.0306 -0.0062 -0.0040 -0.0051 -0.0039

B -1.8333 -0.9633 -0.7767 -0.5633 -0.3333

C 68.775 42.143 36.671 32.844 27.983
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3.4 Two-stage SMILP

The proposed model in this thesis is a two-stage stochastic Mixed Integer Linear

Program (SMILP). The uncertainty is in the form of hourly co-relations between

the scenario dependent parameters presented in section 3.3. The first stage deci-

sion variables decide if a technology is invested in or not (binary variable) and of

what capacity (kW). The second stage decision variables decide the hourly import

from the electricity grid and the generation patterns of on-site technologies. The

objective is to minimize the expected net present value, subject to the solution

being feasible under all scenarios.

3.4.1 Model Reduction: Clustering Analysis

Each scenario consists of 672 hourly time steps, representing a full year of opera-

tions. Five ”four-weeks” scenarios represent five different operational patters are

separated into groups on the based on their internal co-relations. Scenario 1 rep-

resents coldest weeks and scenario 5 the warmest.

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

x 168 h

Winter        Spring        Summer        Fall

FIGURE 3.10: Scenario fan structure

The scenario fan in figure 3.10 shows the five scenarios sharing the same first stage

(square), and hence, the same first stage decision variables. Each of the circles

represent 168 hours, on week of operations. The parameters from table 3.2 form

one dependency matrix for each week of the four-week scenario. In this matrix, the

dominant parameter is the temperature, which influences all the other parameters,
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except from the building specific electricity demand (lightning and other household

appliances). The dependencies between the heat demand and the temperature are

explained in section 2.4.2. The dependency between the PV generation and the

temperature is explained in section 2.2.3. The PV production is, in addition to the

temperature, also dependent on the irradiation. The dependency between the heat

pumps and the temperature is explained in 2.2.3.

Centroid-based K-means clustering analysis, as explained in 2.13, is used to select

four weeks to each of the scenarios. There are 260 weeks of available data in the

years 2010-2014, 65 for each season. In theory, clustering analysis can be done for

the seven parameters simultaneously [11]. Considering hourly dependencies for all

seven parameters would lead to 260x1687 co-relations (in 7 dimensions). Cluster

analysis in more than three dimensions is not intuitive. Therefore, to simplify the

analysis, the average temperature of each week is compared to the average of the

heat demand.

The procedure for selecting the five representative scenarios for one season is as

follows:

(1) The co-relations form a scatter plot of the co-relation of the temperature and

heat demand, where each point represents the average value of a week.

(2) By the algorithm in 2.13, each point is assigned to the desired amount of

centroids, set to 5 (as there are five scenarios). All points assigned to each

centroid form a cluster group. The number of point assigned to each cluster is

an indicator of the groups probability.

(3) With a developed selection algorithm, the point closest to the centroid is the

representative point, and thus the selected representative week.

The below plots present the selection of five representative weeks of each season

assigned to each of the five scenarios. The point closest to the red cross is the

selected week. The analysis show the co-relation between the outdoor temperature

and the building heat demand. Each point share the color of its associated cluster

group.
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FIGURE 3.11: 65 winter weeks: Clustered co-relation between the average heat

demand (kWh/h) and the temperature (◦C)

Figure 3.11 shows the clusters groups in different colors for the 65 winter weeks of

available data. Winter is assumed to be the 13 weeks of each climatic year between

January 1st to March 3rd, and December 12th to December 31st. There span in

average temperature is in the interval -13 to +4 ◦C. Although the coldest hours

are found in the week represented by the leftmost dark red point, the hour of the

peak demand (kWh/h) occurs in the second leftmost point. The cluster selected

week is the third leftmost. A common approach in energy planning is to design

systems to have the ability to cover the highest demand [2]. Therefore, the second

leftmost point is chosen to represent the winter season for the coldest scenario.
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FIGURE 3.12: 65 spring weeks: Clustered co-relation between the average heat

demand (kWh/h) and the temperature (◦C)
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Figure 3.12 shows the clustering analysis for the 65 spring weeks. The 13 spring

weeks of each climatic year is assumed from March 5th to June 3rd. The analysis

show that when the average temperature is higher than +10 ◦C, the average heat

demand is steadily 1 kWh/h. This constant demand can assumed to be the hot

water demand, because there is no need for space heating for higher temperatures.

10 12 14 16 18 20 22 24

1

2

3

Amb. temperature (celcius)

A
ve

ra
ge

h
ea

t
d
em

a
n
d

(k
W

h
)

FIGURE 3.13: 65 summer weeks: Co-relation between the average heat demand

(kWh/h) and the temperature (◦C)

Figure 3.13 shows a that the heat demand in the summer is constant. However,

the average temperature varies from +12 to +23 ◦C. The 13 summer weeks reach

from June 4th to September 3rd.
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FIGURE 3.14: 65 autumn weeks: Co-relation between the average heat demand

(kWh/h) and the temperature (◦C)

Figure 3.14 show a wide range of average temperature and the related average heat
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demand. The 13 autumn weeks reach from September 4th to December 8th. There

are great temperature differences between the week beginning with September 4th

and the week ending with December 8 that cause this spread. The leftmost, green

point represents an especially cold week in December 2010.

Table 3.5 gives the quantitative grouping of scenarios to each cluster and the final

probability of each scenario. The equivalent analysis for the other parameters,

such as the PV generation and the spot price have proven to give about the same

selected weeks. These analysis can be found in Appendix B.

TABLE 3.5: Probabilities of selected scenarios

Winter Spring Summer Autumn Probability

Scenario 1 5/65 7/65 7/65 1/65 8 %

Scenario 2 19/65 17/65 16/65 7/65 19 %

Scenario 3 14/65 20/65 16/65 24/65 29 %

Scenario 4 19/65 9/65 19/65 21/65 25 %

Scenario 5 18/65 12/65 7/65 12/65 19 %

As can be observed from table 3.5, the coldest scenario, scenario 1 has the lowest

probability. Scenario 3 is the average scenario with the highest probability. The

below figures show the representations for the selected weeks.
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FIGURE 3.15: Average temperatures of the four selected weeks corresponding to

each scenario

Figure 3.15 shows the temperature level for the four selected weeks in each scenario;

13 winter weeks followed by 13 spring weeks etc. It must be stressed that the input
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data in the model are not average values, as it is illustrated in figure 3.15. The

input parameters for the model are hourly values.
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FIGURE 3.16: Average temperature for scenario 3 (reduced model) and c3 (full

model)

Figure 3.16 shows the average temperature for scenario 3 as in figure 3.15. The

black line is the average temperature for each week in c4 (2013). It can be observed

that the average temperature within a season is internally varying.
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FIGURE 3.17: Hourly temperatures for scenario 3 (reduced model) and c3 (full

model).

Figure 3.17 shows the hourly input temperature to the model (in green) for the

average scenario. In black is the hourly temperature measured in the climatic year

c3.
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3.5 Input: Deterministic Parameters

Deterministic parameters are independent of the scenarios. These parameters are

carefully selected to fit the case study, to get the most accurate analysis of the

investment and the performance of the technologies.

3.5.1 Technology Investment Costs

The investment costs listed in table 3.8 are obtained from Norwegian manufactur-

ers’ prices. The fixed costs refer to the installation and/or mounting costs and the

specific costs varies with the invested capacity. A detailed cost analysis is attached

in Appendix C, including a regression analysis to find this relation between fixed

and variable investment costs.

TABLE 3.6: Input: Technology investment costs

Fixed cost

(EUR)

Specific cost

(EUR/kW)
O&M cost* Comment

PV 255 1870 0.01 Fixed costs: Mounting and installation

ASHP 6740 428 0.02 Fixed costs: Mounting and installation

GSHP 11955 961 0.02 Fixed costs: Construction of a well

EB 0 134 0.02 Assumed installed with a HS

BB 2221 229 0.03 Fixed costs: Pellets storage and feeder

BA 0 707 0.0 Prices in EUR/kWh

HS 0 83 0.0 Prices in EUR/kWh

* Operation and maintenance costs given as percentage of specific investment costs

3.5.2 Grid Tariff Prices

While the hourly spot price is simulated as an uncertain parameter, the grid tariff

data is gathered from Hafslund, which is the Distribution System Operator (DSO)

in the Oslo region and also the largest in Norway [56]. Table 3.7 lists the tariff

charges, introduced in 2.4.3. The prices include VAT and the mandatory Enova

charge.

TABLE 3.7: Input: Grid tariff prices

Tariff model Fixed cost Variable cost Penalty Charge

Energy pricing 8.61 EUR/month 0.05 EUR/kWh -

Power sub. pricing 8.61(1+x) EUR/month 0.05 EUR/kWh 0.10 EUR/kWh

* x is subscribed power (kW)
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3.5.3 Technology Performance

Technology efficiency originate from the manufacturer’s data. Sources are pro-

vided together with the cost analysis in appendix C. Lifetimes are estimated as the

expected lifetimes/warranty of the technology, given in [39].

TABLE 3.8: Input: Technology performance

i
Expected

Lifetime
Efficiency

Upper-lower

bound
Comment

PV 25 years 0.106* 1-100 kWp Prices in EUR/kWp

ASHP 20 years 3.7* 1.5-100 kW Efficiency simulated as COP

GSHP 20 years 5.39* 1.5-100 kW Efficiency simulated as COP

EB 20 years 0.98 0.5-100 kW

BB 15 years 0.91 1.5-100 kW

BA 10 years
rt = 0.95

β = 0.433
1-100 kWh β is charging/discharging rate

HS 20 years
η = 0.99

β = 0.667
1-100 kWh β is charging/discharging rate

*Average value for c1

Comments to table 3.8.

• The heat storage beta (β) is modified from reference as the original value

was considered too low, given that the heat storage potentially can discharge

close to all of the water within an hour

• The PV efficiency is included in the simulation of the PV generation

• The battery efficiency is the round trip efficiency, rt, from equation (2.5)

• The lower capacity installation bound is set as a result of the heating curves

in figure 3.4, as the purpose for some of the technologies to cover the ”base

load” of the duration curve. The 1.5 values are based on the specific kWh/h

where the slope evens out

3.5.4 Weighing Factors

The conversion factors are listed in table 3.9. The CO2 factor are either ”CO2-

NOR” or ”CO2-ZEB”. As explained in section 2.2.2, the electricity factor is a

debated subject. Hence, two systems are used as input parameters. Table 3.10

gives the emission and primary energy of a reference building, used for calculation
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of the ZEB-level in accordance to equation (2.2).

TABLE 3.9: Input: Weighing factors

Parameter Value Source

CO2 factors NOR/ZEB

Electricity import (gCO2/kWh) 17/132 [8], [17]

Electricity export (gCO2/kWh) 17/132 [8], [17]

Bio pellets import (gCO2/kWh) 7/14 [2], [17]

PEF

Electricity import (kWhpe/kWh) 2.5 [18]

Electricity export (kWhpe/kWh) 2.5 [18]

Bio pellets import (kWhpe/kWh) 0.11 [76]

TABLE 3.10: Input: CO2 emissions and primary energy for building reference

Reference system CO2-ZEB CO2-NOR PEF

Value 1573.96 kg CO2/year 202.70kg CO2/year 29809.85 kWhpe/year

3.5.5 Control Parameters

TABLE 3.11: Input: Control parameters

Parameter Value Description/Source

Analysis Period 60 years Expected lifetime of a building

Discount rate 6 % Based on [77], [78]

Price of pellets 0.05 EUR/kWh Price of bio fuel [79]

Grid import 3000 kW Maximum grid import

Grid export 100 kW According to policies in [80]

Relaxation coefficient ∼ (0, 1) γ=0 for ”sZEB”, γ=1 for ”noZEB”

Exchange rate 9.6590 EUR/NOK, April 2018 [81]

Where ”sZEB” is a strictly Zero Emission Building.
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3.6 Model Implementation

The proposed model is implemented in Python, with the optimization-specific ex-

tension package, Pyomo version 5.2. The solver used to solve the two-stage stochas-

tic optimization problem was Gurobi Optimizer version 7.5.1.

Stochastic models in Pyomo can be solved by a progressive hedging (PH) algorithm,

a heuristic approach that is commonly used in multi-stage models. However, the

results in these thesis are obtained from the extensive form (EF) which has proven

to be as fast as PH for this two-stage model. For further reading, see [82].

With the basis of the Xpress code developed in [2], the following specific extensions

are implemented by the author:

Pre-work of [10]:

• Reconstruction of the deterministic program from Xpress to Pyomo

• Implemented an algorithm that makes the discounting and rest value of in-

vestment costs directly into the model, simplifying the sensitivity analysis of

the here-and-now parameters

• Implemented constraints for an electric battery

Implementation of this thesis:

• Implemented a two-stage stochastic optimization problem in Pyomo

• Implemented scenario selection algorithm based on clustering

• Implemented the possibility for the user to decide the number of scenarios

• Implemented the pricing constraints to facilitate ”power subscription pricing”

• Implemented a function that fixes the first stage decisions of the stochastic

program to equal the run of the last deterministic solution

• Created a user-friendly data base for scenario extraction in excel



Chapter 4

Model

This chapter gives a mathematical description of the two-stage Stochastic Mixed

Integer Program (SMILP) formulation.

Abbreviations used in this chapter:

• ep: energy pricing

• ps: power subscription pricing

• ze: zero emission

4.1 Notation

TABLE 4.1: Declaration of sets and indices

Set Index Description

I i Technology i

Iz i Storage technology i

E e Import Energy Carrier e

T t Hourly time step t

Υ yr Yearly time step of analysis period Υn = 60

S s Scenario s

49
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TABLE 4.2: Declaration of parameters

Strategic Parameters

Cfxd
i Fixed investment cost for technology i e

Cspe
i Specific investment cost for technology i e/kW (kWh)

Crun
i Yearly running cost for technology i % of Cspe

i

Cfxd
ep Monthly fixed grid tariff for ep (incl. VAT) e

Cfxd
ps Monthly fixed grid charge for ps pricing (incl. VAT) e/kW

Cspe
ep Monthly specific grid tariff for ep (incl. VAT) e/kWh

Cspe
ps Monthly specific grid tariff for ps pricing (incl. VAT) e/kWh

Cpty Penalty charge for ps pricing (incl. VAT) e/kWh

Y sub Power subscription for ps pricing kW

Cf Price of bio-fuel (pellets) e/kWh

R Discount rate −
ηi Efficiency of technology i -

βi Charging/discharging rate of storage technology i -

Li Expected lifetime of technology i Y ears

Xi Upper capacity bound for technology i kW (kWh)

Xi Lower capacity bound for technology i kW (kWh)

Operational Parameters

Cspot
t Electricity spot price at time t e/kWh

COP ashp
t Coefficient of performance for ASHP -

COP gshp
t Coefficient of performance for GSHP -

Del
t Building electricity demand at time t kWh/h

Dht
t Total heating demand for building at time t kWh/h

Tt Outdoor temperature at time t ◦C

Y pv
t Possible supply from PV at time t kW/kWp

Control Parameters

X
imp

Maximum grid import capacity kW

X
exp

Minimum grid export capacity kW

Ge CO2 factor for energy carrier e gCO2eq/kWh

Gref Yearly emissions reference gCO2eq/yr

PEe PEF for energy carrier e kWhPE/kWh

PEref Total reference emissions kWhPE/yr

γ Relaxation coefficient for ze restriction ∼ (0, 1)

Λep Activation of energy pricing 0/1

Λps Activation of power subscription pricing 0/1

Λi Pre-activation of technology i 0/1

Λimp Pre-activation of import 0/1

Λexp Pre-activation of export 0/1

ωs Conditional probability for scenario s ∼ (0, 1)
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TABLE 4.3: Declaration of variables

Strategic Decision Variables

xi Installed capacity for technology i (storage technology i) kW (kWh)

δi = 1 if technology i is installed 1/0

Operational Decision Variables

qashpt Heat generated by ASHP at time t kWh/h

qgshpt Heat generated by GSHP at time t kWh/h

f imp
t Biofuel (pellets) consumed at time t kWh/h

qbbt Heat generated by bio boiler at time t kWh/h

qebt Heat generated by electric boiler at time t kWh/h

qhst Net heat to heat storage (hot water tank) at time t kWh/h

ypvt Generated electricity by the PV at time t kWh/h

yashpt Consumed electricity by the ASHP at time t kWh/h

ygshpt Consumed electricity by the GSHP at time t kWh/h

yebt Consumed electricity by the EB at time t kWh/h

ycht Electricity charging the battery at time t kWh/h

ydcht Electricity drawn from the battery at time t kWh/h

yimp
t Electricity imported from grid at time t kWh/h

yexpt Electricity exported to grid at time t kWh/h

yptyt Electricity exceeding subscription within time t kWh/h

zhst Energy content of heat storage at time t kWh

zbat Energy content of battery at time t kWh

δimp
t =1 if importing electricity from grid at time t 1/0

δexpt =1 if exporting electricity to grid at time t 1/0

δcht =1 if charging battery at time t 1/0

δdcht =1 if discharging from battery at time t 1/0

Functions

cinv Discounted investment costs e

crun(s) Discounted operational costs of scenario s e

Objective function

c∗tot Total costs of stochastic model e
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4.2 Objective Function

For the two-stage SMILP, the objective function is as in equation (4.1).

c∗tot = min

(
cinv +

∑
s∈S

crun(s) · ωs

)
(4.1)

Where cinv (4.2) is the investment cost function and crun(s) is the operational cost

function of each scenario s, in equation (4.4).

cinv =
∑
i∈I

(Cspe
i xi + Cfxd

i δi) · αi(R,Li,Υn) (4.2)

Where the final discounting factor, αi (4.3), takes into account forced reinvestments

and the rest life of each technology (salvage value).

αi(R,Li,Υn) =
1− (1 +R)−(Yn−LiK)

1− (1 +R)−Li
· 1

(1 +R)KLi
+

K−1∑
k=0

1

(1 +R)kLi
(4.3)

The operational costs, crun, is the sum of operation and maintenance costs, bio

fuel, spot price costs and the grid charge. The grid charge can be either energy

pricing or power subscription, as introduced in section 2.4.3. Activation of the

power subscription pricing is given by Λps = 1 and Λep= 0.

crun(s) =

(∑
i∈I

(Crun
i Cspe

i xi)

+
∑
t∈T

yimp
t Cspot

t (s) · 1.25− yexpt Cspot
t (s) + f imp

t Cf · 1.25

+ (12 · Cfxd
ep + Cspe

ep

∑
t∈T

yimp
t )Λep

+ (12 · Cfxd
ps · Y sub + Cpty

ps

∑
t∈T

(yptyt ) + Cspe
ps

∑
t∈T

(yimp
t ))Λps

)
· λ(Υn, R)

(4.4)

Where λ is the total capitalization factor used to obtain a present value of all yearly

running costs for all years Υn of the modeling period (building lifetime). Run costs

are summarized to the end of each year, shown by the second fraction in equation

(4.5).

λ(Υn,R) =
1− (1 +R)−Υn

R
· 1

(1 +R)1
(4.5)
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4.3 Constraints

4.3.1 First Stage Constraints

The installed capacity of technology i is equal to zero if technology i is not a part

of the solution. M is a large value, known as the ”big M” value, and δi is the

binary activation variable. This is given by equation (4.6).

xi ≤ δiM ∀i ∈ I (4.6)

Equation (4.7) is a two-sided constraint applied to all technologies to make sure

that the installed capacity of technology i is in between given bounds.

Xiδi ≤ xi ≤ XiΛi ∀i ∈ I (4.7)

4.3.2 Second Stage Constraints

Second stage constraints apply to the hourly operation pattern of each scenario.

The first group of constraints are the heat and electricity balancing equality con-

straints.
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FIGURE 4.1: Heat and electricity flow diagram. y = electricity, q = heat, f =

bio-fuel.
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Figure 4.1 is a graphical description of the heat and electricity flows when the heat-

ing distribution system is waterborne. The figure forms the basis for the equations

(4.8) and (4.9).

I) Del
t +yashpt +ygshpt +yebt = yimp

t +ypvt +ydcht −yexpt −ycht ∀t ∈ T (4.8)

II) Dht
t + zhst = qashpt + qgshpt + qebt + qbbt + zhs(t−1)ηhs ∀t ∈ T (4.9)

ZEB Constraints

Either CO2 factors or PE factors are used. As shown in equation (4.10), the net

emission balance is accounted for on a yearly basis, of which the sum of total

emissions is constrained. For instance, when optimizing a strictly zero emission

case, γ equals zero.

∑
t∈T

((yimp
t − yexpt )Gel + f imp

t Gf ) ≤ γGref (4.10)

Using the PE conversion factor as crediting system is done by applying the PEF

constraint in equation (4.11).

∑
t∈T

((yimp
t − yexpt )PEel + f imp

t PEf ) ≤ γPEref (4.11)

On-site Energy Production

Equation (4.12) represents a constraint used for the heat technologies ASHP, GSHP,

EB and BB. The heat produced by technology i must be less than or equal to their

installed capacity.

qi,t≤ xi ∀t ∈ T , i ∈ I (4.12)
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Electricity produced by the PV panel, given in (4.13) for hour t, is dependent on

the invested capacity, kWp, and the efficiency parameter Y pv
t (kWh/kWp).

ypvt = xpvY pv
t Λpv ∀t ∈ T (4.13)

Equations (4.14) and (4.15) represent the heat produced by the heat pumps, a

product of the feed in electricity and the coefficient of performance, COP, which is

varying with the ambient temperature, explained in section 2.2.3.

qashpt = yashpt COP ashp
t Λashp ∀t ∈ T (4.14)

qgshpt = ygshpt COP gshp
t Λgshp ∀t ∈ T (4.15)

Likewise, the electric boiler heat production, given in equation (4.16), is dependent

on the feed-in electricity yebt .

qebt = yebt η
ebΛeb ∀t ∈ T (4.16)

Bio boiler heat production is dependent on imported fuel, f imp
t , given by equation

(4.17).

qbbt = f imp
t ηbbΛbb ∀t ∈ T (4.17)

Energy Storage

Energy content, zt (kWh) in BA and HS must be less than or equal to the invested

storage capacities, shown by (4.18).

zi,t ≤ xiΛi ∀i ∈ Iz ∀t ∈ T (4.18)

Equation (4.19) denotes the change in storage content within one hour of operation.

The change in storage content is restricted by the charging rate, βhs, as in (4.20).

For qhs ≤ 0 means that the storage is being charged.

qhst = zhst−1 − zhst ∀t ∈ T (4.19)
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∣∣∣qhst ∣∣∣ ≤ xhsβhs ∀t ∈ T (4.20)

Equation (4.21) is the balancing equation for the battery content zba within one

hour of operation. Because of losses, the charge entering the storage within hour t

is larger than the actual charge accumulated in the storage, as explained in 2.2.3.

Likewise, the useful discharge of the storage is lower than energy content leaving

the storage.

zbat = zbat−1 + ycht ηch − ydcht

1

ηdch
∀t ∈ T (4.21)

Equation (4.22) is preventing the accumulated charging from exceeding the remain-

ing volume in the storage at a certain time t, while equation (4.23) prevents the

discharge to not exceed the previously stored energy content.

ycht ≤ (xba − zba(t−1))
1

ηch
Λba ∀t ∈ T (4.22)

ydcht ≤ zba(t−1)η
dchΛba ∀t ∈ T (4.23)

Equations (4.24) and (4.25) are logical constraints for the activation of charge/dis-

charge within the hour. Equation (4.26) secures that charging and discharging are

mutually exclusive within one hour.

ycht ≤ δchM ∀t ∈ T (4.24)

ydcht ≤ δdchM ∀t ∈ T (4.25)

δcht + δdcht ≤ 1 ∀t ∈ T (4.26)

Equations (4.27) and (4.28) restrict the amount of charge/discharge during one

hour of operation.

ycht ≤ xbaβba ∀t ∈ T (4.27)
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ydcht ≤ xbaβba ∀t ∈ T (4.28)

Grid Interaction Constraints

Equation (4.29) bounds the possible import of electricity from grid in hour t.

yimp
t ≤ Ximp

δimp
t ∀t ∈ T (4.29)

Similarly, (4.30) bounds the maximum export to grid within one hour.

yexpt ≤ Xexp
δexpt ∀t ∈ T (4.30)

Import and export to grid are mutually exclusive variables, by equation (4.31).

δimp
t + δexpt ≤ 1 ∀t ∈ T (4.31)

4.3.3 Power Subscription Pricing

Activation of the power subscription tariff model, activates equations (4.32) and

(4.33).

yimp
t − Y sub ≤ yptyt (4.32)

0 ≤ yptyt (4.33)
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Chapter 5

Results and Discussions

5.1 Introduction to Results

This chapter presents the results of the case study: a single family passive house.

The first part is a proof of concept of a no zero emission requirement case (noZEB).

Chapter 5.3 compares three different ZEB-levels and chapter 5.4 presents a sen-

sitivity analysis including the impact of strategic uncertainties; the spot price of

electricity level, different grid tariff schemes and investment costs for PV and the

battery. The final part is an investigation of the operation of the PV and the bat-

tery. All results have MIP-gaps of 0 %. A summary of the main findings obtained

in this thesis are listed at the end of the chapter. Table 5.1 contains a synopsis of

terms used in this chapter.

59
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TABLE 5.1: Result abbreviations

Abbreviations

Full Det. Deterministic model with t = 52x168 hours

Full Stoch. Stochastic model with 5 scenarios of t= 52x168 hours

Red. Stoch. Reduced stochastic model with t = 4x168 hours (5 scenarios)

Red. Det. Reduced deterministic model with t = 4x168 (average scenario)

CO2-NOR Electricity: 17 g/kWh Bio-fuel: 7g/kWh

CO2-ZEB Electricity: 132 g/kWh Bio-fuel: 14g/kWh

PEF Electricity: 2.5/kWh Bio-fuel: 0.11/kWh

noZEB No ZEB-requirements: 0 % ZEB

nZEB Nearly ZEB: 50 % ZEB relative to noZEB

sZEB Strictly ZEB: 100 % ZEB relative to noZEB

EVS ”Expected Value Solution”

RP ”Recourse Program”

VSS ”Value of the Stochastic Solution”

LUSS ”Loss of Using the Skeleton Solution”

LUDS ”Value of Upgrading the Deterministic Solutuion”

ESSV ”Expected Skeleton Solution Value”

EIV ”Expected Input Value”

Scenarios for the full model Probability

c1 2010 0.2

c2 2011 0.2

c3 2013 0.2

c4 2012 0.2

c5 2014 0.2

Scenarios for the reduced model Probability

Scenario 1 Coldest 0.08

Scenario 2 Colder 0.19

Scenario 3 Average 0.29

Scenario 4 Warmer 0.25

Scenario 5 Warmest 0.19
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5.2 Proof of Concept

This chapter presents the results of the noZEB case to demonstrate the validity,

feasibility and weakness of the model. Motivations for this section are the research

question 1, 1a, 1b and 1c. Firstly, the deterministic and stochastic solutions are

compared to find out if they give the same investments. The second part is a

comparison of the full stochastic model and the reduced stochastic model, to prove

that the reduced model is a valid substitute. The last part gives the consumption

profiles for the noZEB case as a model demonstration to prove its credibility. Tables

with complete model results for all cases are given in in Appendix A.

5.2.1 Stochastic vs. Deterministic Solutions

Simulated time series of uncertain parameters for a full year of operation, for each

of the climatic years c1 to c5, are used as input in this section. c1 is on average

the coldest climatic year and have the highest peak of heat demand. To evaluate

the stochastic solution, it is compared to the deterministic solutions with the same

time resolution. For the stochastic model, c1-c5 are the scenarios of the Full Stoch.

with equal probabilities.
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FIGURE 5.1: noZEB : Invested technologies (kW or kWh) for the stochastic and

deterministic solutions. Right axis: NPV of total costs (kEUR).

Figure 5.1 shows the investment decisions for the full stochastic model to the left

and towards the right are the deterministic equivalents. It can be observed that

the technology choices are identical for the stochastic model and the deterministic
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equivalents, with the air-source heat pump (ASHP) for base load, supported by an

electric top-up boiler (EB) and a large heat storage (HS). However, the capacities

of the technologies differs between the cases. The stochastic model invests in a

larger top-up capacity which is on average 71 % larger compared to the determin-

istic solutions. HS capacity is on average 7 % larger for the stochastic solution and

the ASHP capacity is on average 4 % larger. This is a consequence of the different

input load profiles of the climatic years, as can be seen from the heat duration

curves in figure 3.4. The duration curve is decisive for the proportion between the

base load and the peak load.

Figure 5.2 shows the operational costs of the same cases as in figure 5.1. Note that

the operational costs of each scenario differs, while the investment costs stay the

same. This is because the operational scenarios share the same first-stage decision

variables (investments). The first-stage decisions for each deterministic solution

varies as the investments are customized for this particular climatic year.
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FIGURE 5.2: noZEB : Operational costs (EUR/year) and investment costs (EUR)

for the stochastic and deterministic solutions

Despite the variation in invested capacities, and hence investment costs, the solu-

tions for the yearly operational expenses of the Full Stoch. coincide with the Full

Det.s. As observed in scenario c1 for the stochastic model, the annual costs are

higher than for the deterministic equivalent, while the investment costs are lower.

This is a consequence of the stochastic model in opposition to the deterministic

equivalent accounts for a more seldom occurrence of c1 (probability of 0.2). The
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operational costs are higher because the cold days and hours in this scenario lead

to higher imports from the electricity grid, as the heating technologies are electric-

ity driven. For warmer climatic years (c2-c5), the impact of a stochastic solution

has the opposite effect. Then, investment costs are higher, operational costs lower

and the import from the electricity grid is lower than for the deterministic solution.

In order to evaluate the benefits of the stochastic solution, three tests, as introduced

in section 2.3.4 are performed. Value of the stochastic solution (VSS) is measured

by forcing invested capacities to be the same as in the deterministic solution, called

the expected value solution (EVS). The stochastic model is now a recourse program

(RP). Loss of using the skeleton solution (LUSS) can be calculated by force the

first stage deterministic zero-variables to be zero in the stochastic model. However,

there is no need to perform the calculations as it can be seen from figure 5.1 that the

deterministic equivalents chooses the same first-stage binaries. Loss of upgrading

the deterministic solution (LUDS) is calculated by letting the first-stage decision

variables be the lower bound constraint for the investments. Table 5.2 sums up the

test results.

TABLE 5.2: Deterministic solutions vs. their stochastic recourse program

Deterministic

reference
c1 c2 c3 c4 c5

Deterministic (EVS) 36342.7 31298.4 29720.9 28394.3 26553.5

Stochastic (RP) 30914.78 infeasible infeasible infeasible infeasible

Test A (VSS) 5427.96 ∞ ∞ ∞ ∞

Test B (LUSS)
0

(ESSV = RP)
0 0 0 0

Test C (LUDS)
0

(EIV=RP)
infeasible infeasible infeasible infeasible

Test A: The Value of the Stochastic Solution (VSS)

For the proposed model, the VSS can only be calculated by using the invested

capacities for the deterministic model of the coldest year, c1. This indicates that

the value of having a stochastic model is high. Originally, the suggested EVS is the
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average scenario, which is c3 for this five-scenario structured model. The invested

capacities in the deterministic cases of c2 to c5 can never cover the peak load of

c1, and the optimization turns out infeasible. Thus, the VSS for c2-c5 is infinite.

Hence, a stochastic solution is crucial to cover the building peak load. Neverthe-

less, VSS exists for c1. As can be read in table 5.2, ca. 1/6 of the total costs can

be saved by using a stochastic solution compared to using the design of the coldest

year.

Test B: The Loss of Using the Skeleton Solution (LUSS)

LUSS is equal to zero for all the deterministic references and the deterministic

equivalents are of ”perfect” skeleton solutions. This means that the deterministic

and stochastic solutions have corresponding binary variables in stage 1. Thus, the

deterministic approximations of the decisions can be used as a good ”first guess”

to know which technologies that should be invested in.

Test C: The Loss of Upgrading the Deterministic Solution (LUDS)

Test C is valid for the coldest year only (c1), where LUDS = 0. This proves that

the deterministic equivalent is accurate regardless of the invested technologies and

that a stochastic solution can be upgraded to a better solution (in terms of lower

costs). A perfectly upgradable solution implies, for this model, that the invested

capacities are no higher than this deterministic solution.

To sum up, test results show that the coldest year is a crucial scenario for the de-

sign of the energy system capacities, as the coldest year determines the maximum

heating capacity. Hence, the conditional probability of this scenario is important

for the dimensioning of the installed capacities; the base load, storage and top up

technologies.

5.2.2 Reduced Model: Validation

This section seeks to validate the reduced stochastic model (Red. Stoch.) by

proving that the solution gives the same results as the full stochastic model (Full

Stoch.). The proposed model is reduced from a full year of operational time steps

(8760 hours) down to 672 hours, mainly to reduce the stochastic program’s compu-

tational effort (runtime). Note that the Full Stoch. model uses the climatic years

c1-c5 as scenarios with equal probabilities, while for the reduced model, the sce-

narios are composed by representative weeks, as explained in section 3.4.1. Hence,
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the scenarios are independent from the climatic year of origin and in opposition to

the Full Stoch., the scenarios of the Red. Stoch. do not have equal probabilities.
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Figure 5.3 shows the invested capacities of the full stochastic model and its re-

duced equivalent, Red. stoch. A reduced deterministic model (Red. Det.) solution

with input from the average clustered scenario is included (to the furthest right).

The program runtime on the right axis is significantly higher for the Full Stoch.

compared to the Red. Stoch. However, it is assumed that the Red. stoch. is a

good approximation of the true distribution in the Full stoch. by the following

arguments:

• The total invested capacity is slightly higher in the Red. stoch. (9.26 kW vs.

9.12 kW), implying that the heat load is assured to be covered for the coldest

hours.

• The total costs have small deviations. The Red. Stoch. solution have 2 %

(Inv = 0.5 % Op. = 3.5%) higher costs.

• The runtime of the program is reduced by 90.2 %.
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To find a reason for the in total higher invested capacity in the reduced model

compared to the full version, their respective duration curves of electricity import

are examined.
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Figure 5.4 shows the duration curve for scenario c1 of the Full Stoch. solution and

the four weeks in scenario 1 of the Red. Stoch. solution. In effect, it is the final

composition of reduced scenarios that together imitate a full year. This figure,

which is an exaggeration of how the full composition looks like, shows that the

duration curve of the reduced model is slightly higher for the ”base load part” of

the graph (x-axis: hours 1000-8760). This can be an explanation to the slightly

higher invested capacities for the base load technology and for the heat storage,

while the top-up capacity is smaller, compared tot the Full Stoch. solution.

The reduced deterministic solution, Red. Det. is included in figure 5.3 to illustrate

that the model reduction methodology is especially suitable for stochastic and not

deterministic models. The total installed capacity in the reduced deterministic so-

lution is significantly smaller compared to the Full Stoch.. This solution will not be

able to cover the peak load of the coldest weeks. Table 5.3 sums the key deviations

between the already presented solutions in figure 5.3. Notice that the Red. Stoch.

solution has smaller deviations than the Red. Det. solution. The EB capacity has

the highest deviation of both the reduced stochastic and deterministic solutions.
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TABLE 5.3: Key differences in the solutions of full and reduced models

Full Stoch. Red. Stoch. Red. Det.

Value Value Deviation Value Deviation

Objective (EUR) 30763.8 31485.5 721.6 2.0 % 34884.4 4120.6 13.0 %

Inv. costs (EUR) 12484.8 12548.2 63.42 1.0 % 12460.9 -23.9 0.0

Op. costs (EUR) 18279.1 18937.3 658.17 4.0 % 22423.5 4144.41 23.0 %

Run time (min.) 154.4 15.0 -139.4 -90.2 % 0.29 -154.11 -99.8 %

ASHP (kW) 3.60 3.74 0.14 4.0 % 4.11 0.51 14.0 %

HS (kW) 3.16 3.43 0.27 9.0 % 3.16 0.0 0 %

EB (kW) 2.36 2.09 -0.27 -11.0 % 0.60 -1.76 - 75 %

5.2.3 Hourly Model Operation

The hourly operation of the model is here presented for the reduced stochastic

model, Red. Stoch., which will be used for the succeeding results in this thesis. It

must be stressed that for this demonstration, there is no imposed ZEB-requirements

(noZEB). The following figures, 5.5 and 5.6 are hourly operations of scenario 1 (the

coldest ”year”) given for the three days of maximum experienced load.
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FIGURE 5.5: noZEB : 72 hours heat load curve for scenario 1, Red. Stoch.

Figure 5.5 shows the heat balance for 72 hours (Friday-Sunday). The building heat

demand, represented by the red line, is partially covered by the ASHP supply, EB

supply and occasionally by HS discharge.
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Figure 5.6 shows the electricity balance for the same 72 hours as in figure 5.6. The

imported electricity (red line) covers both the building electricity demand, ASHP

demand and EB demand. Building electricity demand is electric specific demand

such as lightning and other household appliances.

5.2.4 Discussion

Adapting to uncertainty with flexibility

One of the main purposes of this thesis is to address whether or not a stochastic

model is necessary to make accurate investment decisions. Results have shown that

a deterministic solution customized for an average warm year, can not cover the

load of a year with higher peak demands. This can be seen in figure 5.1, where

the total invested capacity differs between the stochastic and deterministic solu-

tions. This is proven by the evaluation of the VSS which gave it an infinite value, as

shown in table 5.2. This is a consequence of the strict heat and electricity balancing

equality constraints, which imply that the demands are completely inflexible. In

reality, the heat demand in a building can be flexible to some extent. Not reaching

the peak demand to its full extent can lead to harmless ”faults” as reduced comfort

for the residents of the house. For example that the one or two hot showers are

dismissed or that there is a need to put on more layers of cloths.

Tests evaluating the the deterministic solution have pointed out its accuracy in

terms of the choice of invested technologies. This means that the a deterministic

model is useful as a ”first guess” to find out which technologies that should be in-

vested in. If a cold year is chosen as input data to the deterministic model, results

in figure 5.1 shows that the deterministic model tends to overestimate the need for

base load capacity. In reality, and as seen from the data analysis in this thesis, the
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heat duration curve varies with the climatic years. This implies that the average

heat duration curve is lower than the cold year, and the need base load capacity is

lower. In real life, heat technologies are often designed based on the duration curve

of the worst case scenario, that is the coldest climatic year [2], [30]. The stochastic

program is simply putting a probability to each duration curve which lower the

probability of the worst case scenario and can, according to table 5.2 save 1/6 of

the total costs.

Another difference between the stochastic and the deterministic solution is that

the stochastic solution suggests significantly larger top-up (EB) and storage (HS)

capacities, compared to the deterministic equivalent solutions. It can be assumed

that the stochastic model chooses a more flexible composition of technologies, which

relies more on grid import during colder hours and less during warmer hours, while

the deterministic solution is customized for the operations of one particular climatic

year. The results show that the best way of mitigate uncertainty is with flexibility.

A successful reduced model

Results show a successful reduction of the stochastic model. It can be assumed that

designing technology capacities only relies on the hour with the peak heat demand.

However, one hour of input can not represent the fluctuating heat demand, because

this one hour is occurring with a probability equal to 1/8760 in a year. This is

why a considerable amount of input data with associated probabilities is important

for accurate scenario construction. The clustering analysis in section 3.4.1 gave a

probability distribution of the scenarios that seems to impact the allocation be-

tween the invested capacities. In the reduced model, the scenarios are one by one

not representative for a full year, which the reduced deterministic model has shown

by its deviating solution (compared to the full stochastic model). As the results in

table 5.3 prove, it is the assembly of clustered scenario-weeks that makes strikingly

accurate representations of the full model.

Model shortcomings

One question that arises when selecting the climatic years, is to what extent one

can be sure that no larger heat load peaks come in the future than in the coldest

scenario. The answer is no, we can not be sure. Therefore, using historical climatic

years can only be regarded as a guidance. Hence, the solution will always carry

some risk. However, the risk is not equal to weakness. As no one can predict the

exact course of the future, there is no stochastic model that comes without risk.

The proposed model in this thesis definitely has room for improvements. Other
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methods of creating scenarios than using historical data can for example be random

sampling, as used in [44] and an even more detailed study of the dependencies of

the uncertain parameters. In the strive of representing a true course of the uncer-

tainty for the proposed model in this thesis, one could apply more scenarios, use

a finer time resolution, or account for both strategic and operational uncertainty

in a multi-stage model. Remembering that the perfect stochastic model has an

infinite amount of scenarios, as stated in 2.3.5. However, more scenarios weakens

the program applicability by giving larger runtimes. (An experiment with different

numbers of scenarios can be found in Appendix B.) For the subsequent presenta-

tions of results, the reader is encouraged to use keep these considerations in mind,

and use the proposed model’s solution as an indication or a guidance, rather than

a true answer.

5.3 Nearly and Strictly ZEB

This chapter presents the optimal solution for three different ZEB-levels; noZEB

(0 %), nZEB (50 %) and sZEB (100 %). Both CO2 weighting factors (CO2-NOR

and CO2-ZEB) and PEF are used in the presentation for the results. Emissions

references are based on the full year c1, as a full year is more representative in

terms of a true grid import value, than a clustered scenario.
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It can be observed from figure 5.7 that there are several effects of imposing a
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ZEB constraint. Firstly, the PV is a solution technology, which is expected. The

building must export a great volume of electricity back to the grid in order to meet

the net ZEB balance line, as first explained in section 2.2. The amount of export,

and hence the PV peak capacity, is dependent on the weighing factors used in the

optimization. From nZEB to sZEB, the only change is the enlargement of the PV

peak capacity, leaving the heating technologies unaffected. The use of different

CO2 factors give different base load technologies and affect the size of the heat

storage.
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FIGURE 5.8: Operational costs (EUR/year) for different ZEB levels.

Figure 5.8 shows the distribution in operational costs of scenario 1 for the different

ZEB-levels. It can be read from the graph that the import of bio-fuel (pellets) is

the greatest cost burden for all the nZEB and sZEB cases with the BB as base

load technology. The sell back revenue is propositional to the PV invested capacity.

However, the revenue is rather small as is is based on the instant spot price only,

representing 1/3 of the average costs of the imported electricity.

5.3.1 Discussion

Results in line with previous research

Observations from figure 5.7 give three indications of that the results are in line

with previous research. Firstly, the size of the PV panel is the only change when

going from a nZEB to a sZEB, leaving the other investments unaffected. This was

also one of the main findings in [2]. Larger PV panels give larger grid impacts (in
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terms of peak import and export), according to the same author. Similar results

can be read from read table A.4. Secondly, cases with completely electrical based

heating technologies (cases with either ASHP or GSHP as base load technology),

there is a need for a larger storage capacity. This is due to the variable spot price,

causing the electricity-driven heat pump to produce heat to be stored for later use

when the spot price is low. Similar observations were made in the case study of [83].

Thirdly, the ratio between the energy carrier weighing factors plays an important

role for the choice of base load technology, which was also shown in results of [2],

[36].

The importance of the weighing factors

The electricity CO2 factors proposed in this thesis are the ZEB-research suggested

factor (132g/kWh) [3], and the assumed the CO2 factor for Norwegian produced

electricity (17 g/kWh) [8]. The co-existing bio-fuel import factors used in this the-

sis are 14g and 7g, respectively [2], [17]. The ratio between the el-factor and the

bio-factor seems to be of importance for for the choice of technologies. A larger

ratio shows solutions with smaller PV panels. In the solutions presented in this

thesis, the PV panel peak capacities are within the interval 9 to 13 kW. This span

gives significant differences in total investment costs and the building’s grid impact,

which are both targets of minimization. Possible explanations to this span will now

be elaborated. One observation from figure 5.7 is the shift between the base load

technology coming from a noZEB case to a sZEB (CO2-NOR) case. When applying

the ZEB constraint, the GSHP is chosen in place of the ASHP. The ZEB constraint

forces the export of electricity to be equal to the import for such electricity-driven

heating systems. This implies that the electricity factor is negligible. It is rather

a question of minimizing the grid import, because the grid import in this case is

proportional to the size of the PV peak capacity. This causes a trade-off between

the ASHP and the GSHP. The GSHP has a higher COP compared to the ASHP,

as explained in section 2.2.3. A higher COP reduces the need of electricity import.

However, a GSHP has higher installation costs because it requires the construction

of a well, in opposition to an ASHP. The trade-off occurs presumably between the

marginal cost of installing PV capacity and the break-even cost between the ASHP

and the GSHP.

Another significant observation is the shift in base load technology in nZEB and

sZEB cases with different weighing factors. Applying the CO2-NOR factors gives

a GSHP while the CO2-ZEB and PEF give a BB. This seems to be a consequence

of the ratio between the el-factor and the bio-fuel factor. A larger ratio implies
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that the marginal emissions from bio-fuel is smaller than the marginal emissions

of imported electricity. Choosing the BB as base load gives in total less emissions

than importing electricity to feed a heat pump. When there are less emissions

to compensate for, the PV panel is smaller due to less required export. There

must exist a ratio that causes this change in base load technology, and according

to table 5.4 it is between 2.42 and 9.42. It must be stressed that the reference

values are based on a noZEB of which base load is the ASHP. Hence, the reference

building has a total import that leads to a large emissions reference. This is also

the reason for smaller PV panels in the nZEB cases. For the solutions with the BB

as base load capacity, the grid import is already reduced to a great extent relative

to the noZEB case (with ASHP). Because of this, the required amount of export is

therefore low and the size of the PV peak capacity accordingly. Table 5.4 shows the

optimal base load technology for different weighing factors, both for deterministic

and stochastic solutions of the reduced model.

TABLE 5.4: Base load technology and the size of PV panel for different weighting

factors (sZEB)

Weighting factor CO2-NOR CO2-ZEB PEF

Ratio: el/bio 2.42 9.42 22.3

R
ed
.
S
to
ch

.

Base load tech GSHP BB BB

PV panel (kWp) 13.3 11.1 9.05

R
ed
.
D
et
.

Base load tech ASHP BB BB

PV panel (kWp) 13.7 9.55 8.07

The eventual question is which factors to use and which solution to trust. All so-

lutions regardless of the chosen base load technology are valid because they satisfy

the ZEB constraint. However, the lack of consistency in the electricity factor for

ZEB research can lead to widely different energy systems which again can lead to

differences in investment costs and in the building’s grid interaction. The span in

results does not necessarily make the results weak. As investment decisions seem

to rely on the electricity factor and the el/bio ratio, this sensitivity can be used

as a tool to explicitly control the investments in ZEBs. Let me explain why: Au-

thorities have the power to decide the CO2 factor and thus, the choice of base load

technology. Imagine if all buildings were to use bio-fuel as heating source. This

can potentially lead to increased bio-fuel prices and/or shortage of supply. This
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can be prevented by increasing the bio-fuel CO2 factor and thus lower the ratio.

However, the draw back of having exclusively electricity-driven technologies is that

the required PV panel is larger compared to the cases with BB as base load tech-

nology. This can be dissolved by proper subsidizing of PV panels, equal to the the

marginal costs for the additional kWp of PV capacity.

Stochastic vs. deterministic and nZEB vs. sZEB

Table 5.4 shows differences between the solutions for the stochastic and the deter-

ministic sZEB cases. The deterministic solution seems to invest in a larger PV

panel (compared to the stochastic) when the el/bio ratio is low, and the opposite

occurs with larger ratios. A possible explanation to this wider span is that the

average scenario used as input in the reduced deterministic model. This average

scenario is not including the above average warm and sunny days that have the

possibility of generating more PV electricity than the average days. Thus, a larger

PV panel is required for the sZEB (CO2-NOR) case as there is more electricity

import to compensate for. Neither does the average scenario include the colder

days, which require a larger import of bio-fuel. Thus, a lower import of bio-fuel

implies a smaller PV panel as the emissions are lower and less compensation is

needed.

Whether it is crucial to have a stochastic model depends on the required accuracy

of the research. If the goal is to obtain a sZEB, the size of the PV panel must be

large enough to export the right amount of electricity despite the uncertainty of the

irradiation and the temperature. In that case, a safer choice is the stochastic solu-

tion that accounts for this operational uncertainty. However, the requirement from

the EU is that the building has a ”near zero emission level”, as stated in chapter 1.

This is an ambiguous definition and can therefore be interpreted accordingly. As

pointed out by the author of [2], nZEBs already are highly energy efficient. The

CO2-NOR factors give a solution for the nZEB case that halves the grid import

(down 48 % compared to the noZEB case) and that is 55 % self-supplied by the

PV. The equivalent sZEB case shows a grid import reduction of 52 % and that is

only 31 % self supplied. One could argue whether increased investment costs (of

15 000 EUR) coming from a nZEB to a sZEB justifies the small difference in grid

interaction of import and a large amount of export.

Impacts of imposed limitations

The main limitation is neglecting the emissions related to the material extraction

and energy used in the construction of the building. Adding these emissions, known
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as the ”embodied emission” will possibly give a larger PV panel.

5.4 Sensitivity Analysis

The motivations for the sensitivity analysis are research questions 1c and 2a im-

posed in chapter 1. The cases presented are linked to chapter 2.4; the long-term

influences on uncertainty for a ZEB. This part of the results seeks to investigate

variations in the spot price level, different grid tariff models and technology invest-

ment costs and answer the following questions:

• Are the solution of the noZEB and the sZEB cases robust to changes in the

spot price?

• Will a new tariff model lead to the investment of a battery in noZEB and

sZEB cases?

• At what break-even investment costs will PVs and batteries become a part

of the solution in noZEB and sZEB cases?

5.4.1 The Spot price of electricity

The first study of the variation of the spot price is the impact on the noZEB case.
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FIGURE 5.9: Sensitivity: Spot price level (EUR/kWh) for a noZEB

Figure 5.9 shows the results of the sensitivity analysis of the spot price level. The

first observation is the shift in technology investments when the spot price increases

to + 50 % of today’s level. For the higher spot prices, the BB is the favored base
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load technology. The second observation in this graph is the distribution of HS and

EB capacities. For higher spot prices, the optimal solution results in a smaller EB

and a larger HS, while the opposite effect occurs of lower spot prices. It has been

observed that a further reduction in spot price leads to the exclusion of the heat

pump and a larger invested capacity in the EB, as a result of a low spot price.
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NOR weighting factors

The identical sensitivity analysis is performed with for a sZEB case with CO2-NOR

weighing factors. As figure 5.10 shows, there is no change in the technologies and

sZEB solution is not affected by the uncertainty of the spot price level. Results

have shown similar trends for the sZEB case for both CO2-ZEB and PEF weighing

factors. The decrease in the total costs for an increased spot price is a consequence

of the increased revenue of electricity export. The export revenue is exclusively

affected by the spot price.

5.4.2 Power Subscription Grid Tariff

The power subscription grid tariff scheme is investigated to find out if it gives

incentives to invest in a battery. The first graph shows invested capacities for

different power subscriptions. Subscribed power ranges from 100 to 25 % of peak

power import of the Full Stoch. model solution of c1, ca. 5kW. For the results

with for subscription limit ”None” means that the current energy pricing model is

used. The second graph shows the annual expected costs of scenario 1.
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The first observation from the noZEB case in figure 5.11 is that a subscription

limit equal to 25 % of peak power triggers a change in base load technology. The

second observation is that a lower subscribed power limit gives slightly lower costs,

as the monthly fixed grid charge is a function of the subscribed power. All sZEB

cases’ investments are unaffected by the change in the grid tariff model, except for

the CO2-NOR case with 1.25 kW limit which has a slightly larger HS.
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Figure 5.12 shows the expected operational costs for the the same cases as in figure

5.11. Note that the figure shows the worst-case costs, for the operations of scenario

1. It can be observed that the CO2-NOR cases give the lowest annual costs.
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FIGURE 5.13: Sensitivity: Consumption curves for the grid import for the com-

parison of power tariff subscription limits.

The load duration curves in figure 5.13 represent the imported and exported elec-

tricity for the same cases as in figures 5.11 and 5.12. It can be observed from the

subscription limits 3.75 and 2.5 kW that the duration curves are flat for a large

amount of hours exactly at the imposed limits, implying that the building opera-

tions aim to stay under this limit as many hours as possible to avoid the penalty

charge. The other appreciable observation is that the load curve is generally at a

lower level when the BB is the base heat load technology, which is the case for all

sZEB cases. This is also the results for the noZEB case with subscription limit

equal to 1.25kW.
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5.4.3 Investment Costs of PV and Battery

This section shows the results of reducing the specific investment costs of the PV

(EUR/kWp) and the battery (EUR/kWh).
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Figure 5.14 shows the results of a noZEB case when reducing the initial specific PV

price of 1870 EUR/kWp. The installation (mounting) cost is kept at the original

value of 255 EUR. The main observation is that the PV becomes a part of the

solution at a specific investment cost equal to 748 EUR/kWp, which is a reduction

of 60 % compared to today’s costs. Note that this price is exclusive the obtainable

Enova support for PV panels, as described in section 2.2.
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As figure 5.15 proves, the specific investment costs of the battery will have to

experience cut from 707 EUR/kWh to 35 EUR/kWh for the battery to become a
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part of the solution (noZEB). For the sZEB case, the battery is a solution after a

90 % reduction in the specific costs. The total costs show insignificant differences.
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Figure 5.16 shows insignificant differences in the annual operational costs and rev-

enue caused by the presence of a battery.

5.4.4 Discussion

Combating increased spot prices with flexibility

Sensitivity analysis has proven that both the noZEB and sZEB are robust to

changes in the spot price level. While all sZEB cases are unaffected by changes in

the spot price, the noZEB case experiences a change in base load technology for

a 50 % increase in the spot price. A 50 % increase is unlikely, according to the

research of section 2.4.2. One observation from figure 5.9 is that higher spot prices

give solutions with larger HS capacities, while the base load heating capacities are

unaffected. The larger heat storage provides more flexibility to building operations,

by facilitating the ability of storing more of the produced heat at low spot prices.

This large amount of stored energy makes the building less dependent grid import.

One can argue that the heat storage therefore is an excellent tool for the demand

side management, and works just as one would expect for a battery.

Evaluating the power subscription grid tariff

Because the power subscription pricing grid tariff is not imposed and still under

consideration, these results should be appreciated with caution. The power sub-
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scription grid tariff model has shown, for the noZEB case, that an especially strict

subscribed power (25% of peak) leads to a change in the base load technology. For

the sZEB case (CO2-NOR), the 1.25 kW limit gives a larger HS capacity which

increases the flexibility of heat generation. The power subscription grid tariff shows

that the penalty charge works as an economic incentive to keep the duration of the

peak load low, as seen from figure 5.13. However, the strict power limit does not

trigger the investment of a battery. To test if the penalty charge of 0.1 EUR/KWh

was too low, the penalty charge was increased to 0.2 EUR/kWh, which lead to

no change in the solutions. It seems that it is more cost-efficient to accept the

penalty charge than to invest in a battery. One could argue that the obstacle is

the battery’s high investment costs.

All sZEB cases seem to give lower peak imports compared to the noZEB cases,

because the PV can cover some of the electricity demand. This is favorable seen

from the grid. However, the peak power of export is not included in figure 5.11.

The ratio between peak import and peak export can be analyzed as a generation

multiple (GM) to investigate the grid burden of the sZEB cases, as was done in [2].

GM can contribute in evaluating the sZEB grid burden. However, this measure is

not included in this thesis and will be recommended for further work.

The penalty of forced reinvestments

Based on the expected decrease in the PV investment costs stated in section 2.4.6,

a cost-reduction of 60 % for PV-systems does not seem distant. The authors of [9]

point out one important aspect of the investment costs that is not considered in

the proposed model. That is, if the PV panels can replace original construction

materials in a building. For example as roof in new buildings or as a replacement

in renovated buildings. Additionally, the Enova support mentioned in section 2.2,

is not accounted for in the PV investment costs and will contribute in decreasing

the break even cost.

The only sensitivity analysis triggering the investment of a battery is the reduction

of its specific investment costs (EUR/kWh). Although the model facilitates both

the battery stored- and the PV generated electricity to be exported, results show

generally poor export revenues (only 1/3 of the buy price). The investment costs

of the battery will have to experience a cut in costs of 90 to 95 % in order for the

battery to appear in the sZEB and noZEB cases, respectively. According to re-

search in section 2.4.6, such reductions seem unlikely in the close future. However,

the proposed model does not include other motivations for investing in a battery.
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What if the battery already exists in form of an electric vehicle (EV)? Battery

operations will be discussed in chapter 5.5.

The two-stage model is designed to force reinvestments when technologies reach

their expected lifetime. For the analysis period of 60 years, reinvestments occur

twice for the PV and five times for the battery. Although discounting the in-

vestment costs and accounting for their rest values, the two-stage model can not

capture the expected reduction of investment costs in the future. One can argue

that the the penalty of the high investment costs are occurring multiple times with

unreasonable high charges. One way of capturing the predicted price reduction is

to account for the strategic uncertainty in a multi-stage model. The advantage of

a such formulation is that it can also give indication of in what year the PV and/or

the battery investment should take place. The multi-stage formulation is advanced

to further work, but a suggestion for this implementation is provided in chapter 7.

5.5 Battery and PV Operations

The following results are presented in order to investigate the impact of a battery

and PV in noZEB and sZEB. This section includes the following cases:

• noZEB with battery

• noZEB with PV

• noZEB with battery and PV

• sZEB with battery

The motivation for this analysis are the research questions 2b and 2c. For the fol-

lowing results, the 6 kWh ”Nissan xStorage” home battery (from the cost analysis

in Appendix C) is purposely fixed as a solution technology. The lower bound is

now equal to 6kWh. The original sZEB analysis from section 5.3 gave a solution

with a 13.3 kWp PV panel. The same PV capacity is used for the noZEB with PV

cases in this chapter. CO2-NOR weighing factors are used in the sZEB analysis.
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FIGURE 5.17: Electricity balance (kWh/h) of the noZEB case with battery

(6kWh) for 72 hours in the summer week of scenario 1.

Figure 5.17 shows 72 hours of operations for the noZEB case with a 6 kWh battery.

The main observation is that the battery discharges to cover the building electricity

demand when the spot price is high. The battery is recharged when the spot price

is low during the night.
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FIGURE 5.18: Electricity balance (kWh/h) of the noZEB case with a 13.3 kWp

PV, for 72 hours in the summer week of scenario 1.

Figure 5.18 shows the case for a noZEB with a 13.3 kWp PV panel. For the

hours when the electricity load can not be covered by the PV, the building imports
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electricity.
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FIGURE 5.19: Electricity balance of the noZEB case with battery (6 kWh) and

PV (13.31 kWp) for 72 hours in the summer week of scenario 1.

Figure 5.19 shows a case where a 6 kWh battery and a 13.3 kWp PV panel are

fixed technologies. This case shows a connection between the PV and the battery

as the battery charges when the PV is generating electricity, and discharging dur-

ing the hours without sun and when the spot price is high. It can be observed

that the export of electricity is exclusively dependent on the instant PV electricity

generation and independent of the battery operations.
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FIGURE 5.20: Electricity balance of the sZEB -case with battery (6 kWh) in the

summer week of scenario 1 with CO2-NOR weighing factors.
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Figure 5.20 shows the equivalent result for a sZEB with a 6kWh battery. The

solution gives a PV panel of 13.3 kWp. Figure 5.20 is close to identical to figure

5.19 for the investigated hours. However, throughout the year there are some

significant differences that can not be seen from a single plot. Firstly, the base

load technology is different between the noZEB with battery and PV and the sZEB

with battery. The sZEB case have a lower annual import of electricity and higher

export. This is expected as the sZEB ’s import must equal its export. The most

significant difference is the peak power of import which is much lower for the sZEB

case than all noZEB cases. Table 5.5 sums up the key differences.

TABLE 5.5: Key differences of cases with and without battery (6 kWh) and PV

(13.3 kWp)

noZEB sZEB

Additional technologies none battery PV battery & PV battery

NPV total costs (EUR) 31485.5 40363.7 56015.0 65419.6 73427.8

Base load technology ASHP ASHP ASHP ASHP GSHP

PV production (kWh/year) 0 0 10813.3 10813.3 10813.3

BA discharge (kWh/year) 0 2332.0 0 1765.2 140.8

El. import (kWh/year) 15731.9 15821.98 12005.3 11069.3 7285.9

Peak import (kW) 4.88 7.32 4.7 6.97 2.92

El.export (kWh/year) 0 0 6973.9 5923.5 7285.9

Peak export (kW) 0 0 8.89 11.1 8.71

Net emissions (kgCO2/year) 202.7 268.9 85.5 87.8 0

ZEB-level (%) 0 % -25 * 58 % 57 % 100 %

* Increased emissions compared to noZEB without battery

5.5.1 Discussion

A spot price dependent battery

Research question 2b addresses how a battery affects operations in noZEB and

sZEB. Based on the knowledge of the battery’s advantages, from section 2.4.6, one

could suppose that the battery would save the PV generated electricity for later

use or export, to even out the grid interaction. However, the results show a cost-

minimizing battery that leads to larger peak power import and exports. According

to table 5.5, installing a battery in the noZEB even causes 25 % higher emissions

compared to the noZEB without battery. The operational results in this thesis

prove that the battery charges solely on low spot prices and discharges under high

spot prices.
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The results of the sZEB with battery case show that the usage the battery in sig-

nificantly lower compared to the other cases. Only 140.8 kWh/year is discharged

from the battery, which presumably is due to the imposed ZEB constraint forcing

all of the surplus electricity to be exported and not stored in the battery. It can

be assumed that cost-optimal operation of the battery in a sZEB is to not use it.

For the sZEB case, the battery seems to be redundant.

Most households are not restricted by emission commitments. Therefore, the

noZEB with PV case can give indications of the dependency of the PV and the

battery. Compared to the noZEB with PV case, the noZEB with battery and PV

case gives larger peak power imports and export, which is undesirable. Although

the battery charges on PV generated electricity, the peak import increases with

the presence of the battery.

A lack of modelling battery control

The final question is whether the results are representative. The motivation for

the battery study was to trigger the claimed advantages of the battery, which is

not detected by cost-minimizing objective function. Therefore, these results can

actually turn out misleading. The cost-optimal operations of a battery leads to

higher peak powers. Without any control and restriction of the battery operation,

its benefits are not appearing. A controllable battery can potentially regulate both

import and export of electricity to avoid peaks. Investigations of the battery’s role

in the presence of the power subscription grid tariff and other tariffs are forwarded

to further work.
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5.6 Summary: Main Findings

• A stochastic model can better than its deterministic counterpart account

for the following: (i) Cover the peak heat load of periods colder than the

deterministic input data, and (ii) avoid over estimating the base load capacity

and thereby lower total costs. The costs can be reduced by 1/6, which is the

qualitative value of the stochastic solution. A stochastic solution seems to

give a more flexible design in terms of a higher storage capacity and top-

up capacity and a lower base load technology compared to a deterministic

solution.

• Model reduction methodology based on clustering analysis which is reducing

the model from a full model of 8760 hours to a reduced version of 672 hours,

is especially suitable for a stochastic model and gives about the same solution

as a full model. The selection of representative input weeks and the belonging

probabilities are crucial to make an accurate imitation of the true distribution.

• All sZEB cases are robust to changes in the strategic uncertain parameters,

in terms of a robust base load technology. For the noZEB case, only a 50

% increase in the spot price of electricity can affect the choice of base load

technology.

• Power subscription tariff have little effect of the composition of invested tech-

nologies, but gives operations that aim to stay under the subscribed limit.

This tariff scheme does not give insentives to install a battery. For the noZEB

case, a strict subscribed power limit can lead to a shift in the base load tech-

nology.

• For a noZEB case, the specific investment costs (EUR/kWp) for a PV system

will have to experience a 60 % reduction in order for the PV to become an

optimal technology. The PV is then used both mostly for self-supply, but

also as an extra source of income for the household.

• The battery is a cost-inefficient technology which is not sensitive to any strate-

gic parameter. The specific investment costs (EUR/kWh) will have to expe-

rience a cost reduction of 90 to 95 % in order to be an optimal technology

for sZEB and noZEB, respectively.

• Cost-optimal operations of the battery in a sZEB case leads to a battery that

charges and discharges seldom, and is independent of electricity exports. The

battery in sZEB seems to be redundant.
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Chapter 6

Conclusion

The main contribution of this thesis is a qualitative and quantitative investiga-

tion of the need for a stochastic model, accounting for the operational uncertainty

in Zero Emission Building (ZEBs). A two-stage stochastic model, formulated as

a Mixed Integerd Linear Program (MILP) is developed in Pyomo/Pyhton. The

model separates the first stage investment variables from the second stage opera-

tional variables, accounting for the operational uncertainty through five scenarios.

Input data is adjusted to fit a single family house located in Oslo.

The first research question was to find out what makes a stochastic model a bet-

ter approach than the deterministic equivalent in the optimization of ZEBs. Data

analysis in this thesis show strong dependencies between the hourly outdoor tem-

perature, building heat demand and the spot price of electricity. The temperature

also impact on the efficiency of several building technologies. The main conclusions

are the following: (i) A stochastic model can better ensure the coverage of the peak

heat loads, when energy system are designed based on historical data for more than

one year, compared to its deterministic counterpart. (ii) A stochastic model can

avoid overdimensioning the heating capacity by accounting for the probability of

occurrence of different operational patterns.

(i) Results have shown that a deterministic solution customized for an average

warm year, can not cover the heating demand of a year that has higher peaks.

This is because the total peak invested heat capacity is too low. However, the

the model has strict heat and electricity balancing equality constraints, which im-

plies that the demands are completely inflexible. In reality, the heat demand in a

building can be flexible to some extent. Not reaching the peak demand to its full

89



90 CHAPTER 6. CONCLUSION

extent can lead to harmless ”faults” as reduced comfort for the residents. Analysis

of flexible loads should be carried on in further studies. The stochastic solution

chooses larger top-up and storage heating capacities compared to its deterministic

counterpart. This is because the stochastic model’s investments must account for

a wide range of operational patterns occurring with specific probabilities. By this,

it can be assumed that the model chooses to mitigate the uncertainty by increasing

the flexibility of operations. The final remark is that a stochastic model is neces-

sary to get investments that makes the energy system flexible and robust to cold

and warm temperatures. Usually, the capacity of base load technology in heating

systems is designed based on the heat duration curve of a deterministic year.

(ii) If a cold year is chosen as input data, results show that the deterministic model

tends to overestimate the need for base load capacity. In reality, and as seen from

the data analysis in this thesis, the heat duration curve varies with the climatic

years. This implies that the average heat duration curve is lower than the coldest

year, and the needed base load capacity is lower. Thus, accounting for the oper-

ational uncertainty can potentially save investment costs. Results show that the

value of having a stochastic solution is saving equal to 1/6 of the total costs. A

final remark is that a stochastic model potentially can give a more suitable dimen-

sioning of technologies and lower costs, compared to its deterministic counterpart.

The second research question was to find the incentives of investing in household

batteries in Norwegian ZEBs. Results have shown that a strictly ZEB with an

installed battery leads to larger power peaks both for import and export compared

to a strictly ZEB without a battery. The imposed ZEB constraints lead to building

operations where the battery is seldom utilized compared to solutions without the

ZEB constraint. All excess PV electricity is directly exported back to the grid to

meet the balance requirements. Neither is the investment of a battery triggered

by a power subscription tariff. It seems that it is more cost-efficient to pay the

penalty charge than investing in a battery. The specific investment costs of the

battery (EUR/kWh) must be reduced by 90 % for it to become a part of the solu-

tion.

Studying the battery operations lead to a doubt in whether the obtained results

can be reliable. The modelling of the battery makes it exclusively motivated by

the cost minimization. The battery increase the building’s grid import during

low spot prices, and decrease the import during high spot prices. The actual

benefits of having a controllable battery are not facilitated. A controllable battery
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increases building flexibility and can potentially regulate both import and export

of electricity to avoid peak powers. Additionally, the two-stage model imposes

limitations to both the battery and the PV as reinvestments are forced multiple

times during the analysis period. The prediction of reduced investment costs in

the future is not captured. One solution to this issue is to formulate a multi-stage

model which can find the right timing of the investments. It can not be concluded

whether a battery should be installed in Norwegian ZEBs. As of today, batteries

do not seem to be cost-optimal technologies, either in zero emission- or regular

buildings.
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Chapter 7

Further Work

This chapter gives recommendations for future extensions to the model developed

in this thesis. Some of the suggested extensions have detailed mathematical de-

scriptions.

Modelling of Flexible Building Loads

Demand side management (DSM) mechanisms are important to consider in the

design of ZEBs as they lead to mismatches between import and export. The heat

storage, electric battery and for instance an electric vehicle (EV) are tools to facil-

itate DSM. In that context, building load flexibility should be further investigated.

More specifically, the deterministic and stochastic solutions should be compared

under flexible heat and electricity loads. Flexible heat loads can be investigated

by relaxing the heat balance equality constraint and find out in which periods of

the operational pattern the peak loads will not be entirely covered. Experiments

with a controllable heat storage is suggested. Extensions to facilitate control mech-

anisms of the battery can be implemented. For example by forcing the battery to

charge exclusively on PV-generated electricity and investigate the operational pat-

terns under strict limitations of peak power imports and/or exports. I recommend

further investigation of the power subscription tariff model’s impact together with

the battery.

A significant number of Norwegian households will by 2030 have EVs with a bat-

tery capacity large enough to cover half of the building’s electricity demand [72].

Further work should consider the EV as an additional technology and apply the

”Vehicles to Home” concept, using the car battery as a power source for a house-
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hold to alleviate consumption of power in peak periods when demand is highest.

Multi-stage Model Formulation

One possible approach to account for both strategic and operational uncertainty

is to expand the model into a multi-stage model. A multi-stage formulation can

potentially find the right timing for the investment in for example PV systems.

I recommend a simplified version of the multi-stage model called ”multi-horizon”

formulation [48]. This approach is used in multiple energy modelling projects, as

[84], [85]. The multi-horizon model can have deterministic strategic parameters

with the ability to adjust these parameters at the beginning of each period. The

scenario tree can look like figure 7.1, of which option (d) is recommended.

FIGURE 7.1: Multi-stage stochastic scenario trees and their multi-horizon equiv-

alents. Adopted from [85].

The multi-horizon model will be multiple two-stage periods. The objective function

is the summation of the Net Present Value (NPV) of each period and can be

formulated as in equation (7.1).
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Minimize
∑
p∈P

1

(1 +R)(p−1)N

(
c(dp, x) +

∑
s∈S

c(ds, y) · ωs

)
s.t f(x) ≤ 0

g(x, ys) ≤ 0 s ∈ S p ∈ P

(7.1)

Where:

• P is the number of periods

• R is the discounting factor

• N is the number of years in each period

• c(dp, x) is the first stage cost function

• c(ds, y) is the second stage cost function

• S is the number of scenarios

• ωs is the scenario-specific probability

Stochastic Investigation of Commercial ZEBs

In opposition to residential buildings, commercial buildings have different grid tariff

called ”peak power pricing”. This tariff model is based on the peak power import of

each month. This implies higher fixed costs (EUR/kW/month) for months where

the peak power is high [86]. The costs of losses remains the same (EUR/kWh), but

varies seasonally. I believe that a peak power pricing scheme will be more effective

for the reducing peak power imports in ZEBs compared to the power subscription

tariff scheme investigated in this thesis. The formulation of the constraint e.g. yimp
t

≤ ymmax can be used to obtain the maximum value.
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Appendix A

Result Tables

The following tables are included:

• Results for (full) deterministic model noZEB

• Results for (full) stochastic model noZEB

• Results for (reduced) stochastic model noZEB

• Results for (reduced) stochastic model noZEB, nZEB and sZEB

• Results for (reduced) stochastic model with power subscription tariffs

• Results for (reduced) stochastic model with battery operations

107



108 APPENDIX A. RESULT TABLES

TABLE A.1: Results for (full) deterministic models noZEB

c1

(2010)

c2

(2011)

c3

(2013)

c4

(2012)

c5

(2014)

FIRST STAGE VARAIBLES

Total costs

NPV Total costs (EUR) 36342.7 31298.4 29720.9 28394.3 26553.4

NPV Investment costs (EUR) 12835.3 12215.6 12160.6 12158.0 11891.2

NPV Operational costs (EUR) 23507.4 19082.9 17560.3 16236.3 14661.26

Invested capacities

ASHP installed capacity (kW) 4.31 3.44 3.31 3.34 2.93

GSHP installed capacity (kW) 0 0 0 0 0

BB installed capacity (kW) 0 0 0 0 0

HS installed capacity (kWh) 3.96 2.98 2.65 2.72 2.42

PV installed capacity (kWp) 0 0 0 0 0

EB installed capacity (kW) 1.46 1.56 1.91 1.73 1.81

BA installed capacity (kWh) 0 0 0 0 0

Technology costs

ASHP investment costs (EUR) 12096.5 11573.0 11490.1 11513.6 11266.0

HS Investment costs (EUR) 462.9 348.2 309.8 317.7 283.1

EB Investment costs (EUR) 275.9 294.3 360.8 326.7 342.1

SECOND STAGE VARIABLES

ZEB

Emissions - CO2-NOR (kg CO2/year) 192.2 169.2 174.6 173.1 164.4

PE consumed (kWh PE/year) 28263.6 24882.1 25680.0 25443.9 24183.5

ZEB-level (%) 0 % 0 % 0 % 0 % 0 %

Grid Operations

Total grid import (kWh) 11302.6 9952.9 10272.0 10277.5 9673.4

Peak power import (kWh/h) 4.50 4.19 4.38 4.36 4.02

Total grid export (kWh) 0 0 0 0 0

Peak power export (kWh/h) 0 0 0 0 0

Energy Production

ASHP generation (kWh/year) 17039.6 13995.4 14561.6 14280.4 12978.6

EB generation (kWh/year) 147.3 153.2 248.8 222.9 262.6

Yearly Operational Costs

Gird tariff (EUR/year) 668.6 600.9 616.9 612.2 586.9

Spot price costs (EUR/year) 840.6 623.6 508.2 426.0 350.77

O&M costs (EUR/year) 33.0 27.0 26.6 26.6 23.8
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TABLE A.2: Results for (full) stochastic model noZEB

FIRST STAGE VARIABLES

Total costs

NPV Total costs (EUR) 30763.9

NPV Investment costs (EUR) 12484.8

NPV Operational costs (EUR) 18279.1

Invested capacities

ASHP installed capacity (kW) 3.60

GSHP installed capacity(kW) 0

BB installed capacity (kW) 0

HS installed capacity (kWh) 3.16

PV installed capacity (kWp) 0

EB installed capacity (kW) 2.36

BA installed capacity (kWh) 0

Technology investment costs

ASHP investment costs (EUR) 11669.4

HS Investment costs (EUR) 369.9

EB Investment costs (EUR) 445.5

SECOND STAGE VARIABLES

Scenario c1 c2 c3 c4 c5
Expected

value

Scenario probability 0.2 0.2 0.2 0.2 0.2 -

Grid Operations

Total grid import (kWh) 11634.5 9912.9 10181.0 10099.0 9508.1 10267.3

Peak power import (kWh/h) 5.20 5.11 4.83 5.10 4.70 4.98

Total grid export (kWh) 0 0 0 0 0 0

Peak power export (kWh/h) 0 0 0 0 0 0

ZEB

Emissions - CO2-NOR (kg CO2/year) 197.8 168.5 173.0 171.7 161.6 174.5

PE consumed (kWh PE/year) 29086.3 24782.4 25453.4 25247.7 23771.7 25668.0

ZEB-level (%) 0 % 0 % 0 % 0 % 0 % 0 %

Energy Production

ASHP generation (kWh/year) 16540.8 14047.6 14676.5 14380.3 13188.5 14566.7

EB generation (kWh/year) 147.3 153.2 248.8 222.9 263.6 211.3

Yearly Operational Costs

Gird tariff (EUR/year) 685.0 598.9 612.4 608.3 578.8 616.7

Spot price costs (EUR/year) 863.3 613.7 496.1 414.5 337.5 545.0

O&M Costs (EUR/year) 29.5 29.5 29.5 29.5 29.5 29.5
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TABLE A.3: Results for (reduced) stochastic model noZEB

FIRST STAGE VARIABLES

Total costs

NPV Total costs (EUR) 31485.5

NPV Investment costs (EUR) 12548.2

NPV Operational costs (EUR) 18937.3

Invested capacities

ASHP installed capacity (kW) 3.74

GSHP installed capacity(kW) 0

BB installed capacity (kW) 0

HS installed capacity (kWh) 3.43

PV installed capacity (kWp) 0

EB installed capacity (kW) 2.09

BA installed capacity (kWh) 0

Technology investment costs

ASHP investment costs (EUR) 11752.1

HS Investment costs (EUR) 401.22

EB Investment costs (EUR) 394.8

SECOND STAGE VARIABLES (SCENARIO 1)

Scenario
1

coldest

2

cold

3

average

4

warm

5

warmest

Expected

value

Scenario probability 0.08 0.19 0.29 0.25 0.29 -

Grid Operations

Total grid import (kWh) 15731.9 11923.9 10037.5 9410.8 8623.3 11145.5

Peak power import (kWh/h) 4.88 4.85 2.43 2.5 2.2 3.37

Total grid export (kWh) 0 0 0 0 0 0

Peak power export (kWh/h) 0 0 0 0 0 0

ZEB

Emissions - CO2-NOR (kg CO2/year) 267.4 202.7 170.6 159.9 146.5 189.5

Total PE consumed (kWh PE/year) 39329.9 29809.9 25093.8 23527.0 22420.7 2836.3

ZEB-level (%) 0 % 0 % 0 % 0 % 0 % 0 %

Energy Production

ASHP generation (kWh/year) 22486.1 18265.9 14613.1 13042.7 11337.0 15948.9

EB generation (kWh/year) 1801.9 283.1 4.5 0.0 0.0 417.9

Yearly Operational Costs

Gird tariff (EUR/year) 889.9 699.5 605.2 573.9 534.5 660.6

Spot price costs (EUR/year) 1042.8 751.6 566.5 449.9 404.4 643.0

O&M costs (EUR/year) 30.0 30.0 30.0 30.0 30.0 30.0
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TABLE A.4: Results for (reduced) stochastic model (noZEB, nZEB,sZEB)

CO2-NOR CO2-ZEB PEF

nZEB

50%

sZEB

100%

nZEB

50%

sZEB

100%

nZEB

50%

sZEB

100%

FIRST STAGE VARIABLES

Total costs

NPV Total costs (EUR) 50782.0 65419.1 39345.0 53560.0 35997.9 49661.8

NPV Investment costs (EUR) 38351.1 55685.7 15300.4 32662.1 10436.4 27850.3

NPV Operational costs (EUR) 12430.1 9733.8 24044.7 20897.9 25561.6 21811.6

Invested capacities

ASHP installed capacity (kW) 0 0 0 0 0 0

GSHP installed capacity(kW) 4.60 4.61 0 0 0 0

BB installed capacity (kW) 0 0 5.40 5.39 5.42 5.40

HS installed capacity (kWh) 5.9 5.9 1.0 1.12 1.45 1.0

PV installed capacity (kWp) 5.97 13.3 3.75 11.1 1.69 9.0

EB installed capacity (kW) 0.78 0.77 1.25 1.37 0.89 1.32

BA installed capacity (kW) 0 0 0 0 0 0

Technology investment costs

PV investment costs (EUR) 14439.0 31761.8 9196.2 26522.4 4338.4 21731.2

GSHP investment costs(EUR) 22675.1 22866.0 0 0 0 0

BB Investment costs (EUR) 0 0 5751.8 5750.7 5760.1 5752.7

EB Investment costs(EUR) 146.9 145.1 235.3 258.4 168.3 249.2

HS Investment costs(EUR) 689.8 689.8 116.9 130.5 169.5 116.9
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SECOND STAGE VARIABLES (SCENARIO 1)

CO2-NOR CO2-ZEB PEF

nZEB

50%

sZEB

100%

nZEB

50%

sZEB

100%

nZEB

50%

sZEB

100%

ZEB (CO2 factors)

Emissions (kg CO2/year) 138.2 126.3 954.6 883.784 1025.857 895.57

Emissions from bio-pellets(%) 0 % 0 % 39 % 42 % 36 % 42 %

Saved emissions (kg CO2/year) 36.9 126.26 167.6 883.8 20.8 677.6

ZEB-level (CO2) (%) 50 % 100 % 50 % 100 % 36 % 86 %

ZEB (PEF)

PE consumed (kWhpe/year) 203324 18566.7 13951.7 16738.3 15298.1 12833.8

PE from bio-pellets (%) 0 % 0 % 21 % 23 % 19 % 23 %

Saved PE (kWhPE/year) 5427.0 18566.7 3174.3 16738.3 393.2 12833.8

ZEB-level (PE) (%) 50 % 100 % 64 % 100 % 50 % 100 %

Grid interactions

Total grid import (kWh) 8132.9 7426.7 4410.1 3873.2 4947.7 3962.9

Peak power import (kWh/h) 2.9 2.89 2.1 2.29 1.81 2.2

Total grid export (kWh) 2170.9 7426.7 1269.7 6695.3 157.3 5133.5

Peak power export (kWh/h) 3.4 8.71 2.0 2.29 0.60 5.9

Energy generation

PV generation (kWh/year) 4852.2 10810.8 3051.4 9009.2 1380.9 7361.7

GSHP generation (kWh/year) 24029.0 24034.9 0 0 0 0

BB generation (kWh/year) 0 0 24209.2 24213.8 24229.2 24288.0

EB generation (kWh/year) 259.0 253.1 78.8 74.2 58.9 79.2

Self-supplied (by PV) (%) 55% 31% 58 % 26 % 89 % 30 %

Yearly operational costs

Gird Tariff (EUR/year) 509.9 474.7 323.8 296.9 350.8 301.5

Spot price costs (EUR/year) 550.7 505.5 289.8 257.9 318.3 263.3

O&M Costs (EUR/year) 152.3 289.4 93.9 231.2 55.0 193.2

Bio-pellets (EUR/year) 0 0 1330.2 1330.4 1331.2 1330.2

Export Revenue (EUR/year) 82.9 289.3 49.9 267.4 6.1 204.3
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TABLE A.5: Results for (reduced) stochastic model with power subscription tariffs
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TABLE A.6: Results for (reduced) stochastic model with battery operations

noZEB sZEB

battery PV PV and battery battery

FIRST STAGE VARIABLES

Total costs

NPV Total costs (EUR) 40363.7 56015.0 63950.3 73427.8

NPV Investment costs (EUR) 21852.8 44419.4 53691.0 65004.7

NPV Operational costs (expected) (EUR) 18510.8 11595.6 20259.3 8468.11

Invested capacities

ASHP installed capacity (kW) 3.76 3.64 3.64 0

GSHP installed capacity (kW) 0 0 0 4.63

BB installed capacity (kW) 0 0 0 0

HS installed capacity (kWh) 3.16 5.29 4.70 5.57

PV installed capacity (kWp) 0 13.3 13.3 13.3

EB installed capacity (kW) 2.12 1.83 1.93 0.79

BA installed capacity (kWh) 6.0 0 6.0 6.0

SECOND STAGE VARIABLES (SCENARIO 1)

Energy generation

BA discharge (kWh/year) 2332 0 1765.2 140.8

PV generation (kWh/year) 0 10812.14 10813.3 10813.3

ASHP/GSHP generation (kWh/year) 22529.5 22284.5 22289.7 24042.6

EB generation (kWh/year) 1758.5 2003.6 1998.3 245.4

Grid Interactions

Total grid import (kWh/year) 15821.98 7737.9 11069.3 7285.9

Peak import (kWh/h/year) 7.32 4.70 6.97 2.92

Total grid export (kWh/year) 0 6973.9 5923.5 7285.9

Peak export (kW/h/year) 0 8.89 11.1 8.71

ZEB

Net emissions - CO2-NOR (kg CO2/year) 268.9 85.5 87.48 0

Net PE (kWh PE/year) 39552.9 30012.9 12864.5 0

ZEB-level(%) -25 % 58 % 57 % 100 %

Yearly Operational Costs

Gird tariff (EUR/year) 894.4 703.6 656.8 467.6

Spot price costs (EUR/year) 978.1 829.15 737.4 478.5

O&M Costs (EUR/year) 30.2 277.6 277.8 288.4



Appendix B

Extended Clustering

Analysis

Additional figures for the clustering analysis consist have proven that the use of

different co-relation (figure B.2) give the same selection of weeks and close to the

same probability (figure B.2).

The figures a-h in B.4 and a-b in B.5 show clustering analysis for different numbers

of scenarios of which runtime increases with the number of scenarios (figure B.3).
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FIGURE B.1: Probability of scenarios for temperature vs. different co-relations
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FIGURE B.3: Runtime vs. number of scenarios
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(a) deterministic (b) 2 scenarios

(c) 3 scenarios (d) 4 scenarios

(e) 5 scenarios (f) 6 scenarios

(g) 7 scenarios (h) 8 scenarios

FIGURE B.4: Clustering for different number of scenarios
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(a) 9 scenarios (b) 10 scenarios

FIGURE B.5: Clustering for different number of scenarios



Appendix C

Investment Costs Analysis

PV Panels

Table C.1 lists Norwegian prices including hardware, mounting and installation of

PV panels for different kWp. Prices include value added taxes (VAT).

TABLE C.1: Costs of complete PV systems. Prices from [87].

PV panel Inverter kWp Price (NOK) Price (EUR)

IBC Polysol 260 x8 Steca Stecagrid 2300 2.1 42900 4442.8

IBC Polysol 260 x12 Steca Stecagrid 3010 3.1 56900 5892.7

IBC Polysol 260 x16 Steca Stecagrid 4200 4.2 74500 7715.5

IBC Polysol 260 x20 SMA Sunny Boy 5000 5.2 96900 10035.3

IBC Polysol 260 x28 SMA Sunny Boy 5000 7.3 135220 14003.8

y = 1870,7x + 224,25
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FIGURE C.1: Regression curve for PV costs showing fixed (EUR) and variable

(EUR/kWp) costs
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Battery

Table C.2 lists battery prices for different types of household batteries available

or soon available in Norway or to be available in near future. Because prices of

software and installation are varying, the price is set as completely relying on the

invested storage capacity and have no fixed costs.

TABLE C.2: Costs of complete battery systems. Prices from: [88], [89]

Battery ηrt β Warranty Capacity Price

Tesla Powerwall 0.90 0.33 10 years 6.4-13.5 kWh 5178.2 - 8254.0 EUR

LG RESU 0.95 0.5 10 years 6.6-9.8 kWh 5151.3 -6249.9 EUR

Nissan Xstorage 0.97 0.5 10 years 6.6-9.6kWh 5298.1 - 6978.1 EUR

SolaX 0.95 0.33 10 years 11.6 kWh 4762.1 EUR

SimpliPhi PHI3.4 0.98 0.5 10 years 3.4 kWh 4331.1 EUR

y = 707,1x
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FIGURE C.2: Regression curve for battery variable costs (EUR/kWh)

Heat pumps

Prices for both heat pumps are gathered from Norwegian manufacturers located in

Oslo-area. An analysis of average fixed and variable costs resulted in the following:

GSHP: 12785 EUR + 961 EUR/kW

ASHP: 7370 EUR + 428 EUR/kW
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TABLE C.3: Investments: Costs of air-source and ground-source heat pumps
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Bio-pellets Boiler

Table C.4 lists bio pellets boilers from Norwegian manufacturers, including VAT.

Figure C.3 shows the regression curve of fixed and variable costs.

TABLE C.4: Price of bio-pellets boilers systems including pellets storage and

feeder. Prices from [39], [90], [91].

Type Capacity (kW) Efficiency Price (NOK) Price (EUR)

Heta Scan-Line Green 100 5.6 0.9 26750 2770.3

Heta Scan-Line Green 200 9.0 0.97 31550 3267.4

Heta Greenfire 100 5.7 0.9 24900 2578.7

Extraflame Isabella 2.5 0.9 14875 1540.5

Audro H1 5.5 0.86 29990 3105.8

y = 259,08x + 2221,8
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FIGURE C.3: Regression curve for fixed (EUR) and variable costs (EUR/kW) for

biopellets boilers
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Heat Storage

Table C.5 gives the specific prices (EUR/kWh) of accumulator tanks of different

sizes. The conversion from litres to kWh are 19.33 litres/kWh (as calculated in

[36]). All prices include VAT.

TABLE C.5: Costs of accumulator tanks. From [92].

Type Total Costs Litres kWh EUR/kWh kW kW/kWh

Oso Super S 669.9 200 10.34 64.8 2 0.193

Høiax Titanium 120 495.0 120 6.206 79.79 2 0.322

Høiax DMK 400 1840.0 400 20.68 88.9 5 0.241

Oso Super SX 300 1240.6 300 15.51 39.9 6 0.386

OSO Saga S 250 1132.7 250 12.92 87.6 3 0.232

y = 83,546x
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FIGURE C.4: Regression curve for the variable costs (EUR/kWh) of hot water

accumulator tanks

Electric Boiler

According to [39], an electric boiler has the average price 134 EUR/kW for the

hardware, including VAT. It is assumed that the costs of installation comes with

the heat storage.



124 APPENDIX C. INVESTMENT COSTS ANALYSIS



Appendix D

Pyomo Code

The following is an extract of the Pyomo code of the model. Reading and writing

procedures, as well as coding for the clustering algorithm can be requested from

the author.

#!/usr/bin/env python3

# -*- coding: utf-8 -*-

"""

Created on Tue Feb 20 08:45:42 2018

@author: ingridandersen

STOCHASTIC TWO-STAGE MODEL: ’st_model’

"""

import pyomo.environ as pyo

import networkx as nx

import pyomo.pysp.scenariotree.tree_structure_model as tsm

import xlrd

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import time

class ZEBModel():

125
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def __init__(self, M_const = 1000):

"""Create Abstract Pyomo model for ZEB

"""

# Stochastic two-stage model

self.abstractmodel = self.createTWOSTAGEMODEL()

self.M_const = M_const

def disco(self, n, r):

’’’Discounting factor’’’

return 1/((1+r)**n)

def annui(self, n, r):

’’’Annuity factor’’’

return r/(1-(1+r)**(-n))

def capit(self, n, r):

’’’Capitalization factor’’’

return (1-(1+r)**(-n))/r

def cost(self, Yn, cost, l, r):

’’’For the two-stage model: calculating forced reinvestment costs’’’

Kn = pyo.floor(Yn/(l*1))

n = Yn-l*Kn

Tn = Yn-n

return cost*(self.annui(l,r)*self.capit(n,r)*self.disco(Tn, r) \

+ sum(self.disco(k*l,r) for k in range(0,Kn)))

def npv_cost_Investments(self, m, st):

’’’Investment function for two-stage/deterministic, including o&m

costs’’’

investments = 0

if st==1:

for i in m.I:

investments += (m.C_spe[i]*m.x[i]+ m.C_fxd[i]*m.a_i[i])

else:

investments = 0

return investments

def npv_cost_Operations(self, m, st):

’’’Operational costs for two-stage/deterministic
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Summation of yearly costs for all years in YRN’’’

techrun = 0

runcosts = 0

gridtariff = 0

operations = 0

if m.lastT == 671:

’’’multiplicationfactor will be 13 if reduced model’’’

f = 13

elif m.lastT == 8735:

f = 1

if st == 2:

for i in m.I:

techrun += m.C_run[i]*m.C_spe_0[i]*m.x[i]

if m.A_ep:

’’’Grid tariff model (includes VAT): Energy pricing’’’

gridtariff = 12*m.C_fxd_ep + m.C_spe_ep*sum(f*m.y_imp[t] for

t in m.T)

elif m.A_ps == 1:

’’’Grid tariff model(includes VAT): Power subscription’’’

gridtariff = 12*(m.C_fxd_ps*(1+m.Y_max)) +

m.C_pty_ps*sum(f*m.y_pty[t] for t in m.T) +

m.C_spe_ps*sum(f*m.y_imp[t] for t in m.T)

VAT = 1.25

runcosts = sum(VAT*m.bf[t]*m.P_bf + VAT*m.y_imp[t]*m.P_spot[t] -

m.y_exp[t]*m.P_spot[t]*m.A_exp for t in m.T)

operations = (f*runcosts + gridtariff +

techrun)*self.capit(m.YRN, m.R)*self.disco(1, m.R)

else:

operations = 0

return operations

def createTWOSTAGEMODEL(self):

m = pyo.AbstractModel()

m.name = ’ZEB stochastic two-stage model’

# SETS ##########################################################

m.T = pyo.Set(doc = ’Set of all hours, full model: 8736, reduced

model: 672’)

m.I = pyo.Set(doc = ’Set of all technologies’)
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m.ST = pyo.Set(initialize = [1, 2], doc=’STAGE’)

# PARAMETERS ##########################################################

m.lastT = pyo.Param(within=m.T, doc="Last time step")

#---Technology costs

m.C_fxd_0 = pyo.Param(m.I,within=pyo.NonNegativeReals, default = 0,

doc=’Fixed investment cost for all techs, EUR in year t = 0’)

m.C_spe_0 = pyo.Param(m.I,within=pyo.NonNegativeReals, default =

0,doc=’Investment costs dependent on installed capacity, EUR/kW

(EUR/kWh) in t= 0’)

m.C_run = pyo.Param(m.I,within=pyo.NonNegativeReals,default =

0,doc=’Yearly running cost of each tech’)

#---Grid Tariff pricing

#Energy pricing

m.A_ep = pyo.Param(within=pyo.Binary,default = 0,doc = ’Activation

of energy pricing’)

m.C_fxd_ep = pyo.Param(within=pyo.NonNegativeReals,default =

0,doc=’Fixed charge part of grid tariff for ep’)

m.C_spe_ep = pyo.Param(within=pyo.NonNegativeReals,default =

0,doc=’Specific energy charge part of grid tariff for ep’)

#Power Subscription pricing

m.A_ps = pyo.Param(within = pyo.Binary, default = 0,doc =

’Activation of power subscription pricing’)

m.C_fxd_ps = pyo.Param(within=pyo.NonNegativeReals,default = 0,

doc=’Subscriptopn charge for pp’)

m.C_pty_ps = pyo.Param(within=pyo.NonNegativeReals,default =

0,doc=’Penalty charge for pp’)

m.C_spe_ps = pyo.Param(within=pyo.NonNegativeReals,default =

0,doc=’Energy charge charge for pp’)

m.Y_max = pyo.Param(within=pyo.NonNegativeReals,default = 0,doc =

’Subscription limit’)

#---Bio fuel price

m.P_bf = pyo.Param(within=pyo.NonNegativeReals, doc=’Constant price

of biofuel’)
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#---#Reference System

#CO2-Factors

m.A_co2 = pyo.Param(within=pyo.Binary,doc = ’Activation of co2

crediting system’)

m.G_ref = pyo.Param(within=pyo.NonNegativeReals,doc=’CO2 reference

emissions’)

m.G_el = pyo.Param(within=pyo.NonNegativeReals,doc=’gCO2 eq. per

kWh imported/exported’)

m.G_bf = pyo.Param(within=pyo.NonNegativeReals,doc=’gCO2 eq. per

kWh for technology i, i.e BB’)

#Primary Energy Factors

m.A_pe = pyo.Param(within=pyo.Binary,doc = ’Activation of primary

energy crediting system’)

m.PE_ref = pyo.Param(within=pyo.NonNegativeReals,doc=’CO2 reference

emissions’)

m.PE_imp = pyo.Param(within=pyo.NonNegativeReals,doc=’PE per kWh

imported electricity’)

m.PE_exp = pyo.Param(within=pyo.NonNegativeReals,doc=’PE per kWh

exported electricity’)

m.PE_bf = pyo.Param(within=pyo.NonNegativeReals,doc=’PE per kWh for

technology i, i.e BB’)

#---Technologies

m.A_i = pyo.Param(m.I, within=pyo.Binary,doc=’Pre-activation of

each tech’)

m.Eff = pyo.Param(m.I,within=pyo.NonNegativeReals, doc=’Technology

efficiency’)

m.Eff_ba_ch = pyo.Param(within=pyo.NonNegativeReals,doc=’Battery

charging efficiency’)

m.Eff_ba_dch = pyo.Param(initialize = 1, doc=’Battery discharge

efficiency’)

m.Beta_ba =

pyo.Param(within=pyo.NonNegativeReals,doc=’Charging/discharging

rate’)

m.Beta_hs = pyo.Param(within=pyo.NonNegativeReals, doc=’identical

charging rate for heat storage’)

m.L = pyo.Param(m.I, within=pyo.NonNegativeIntegers, doc=’Lifetime
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of technology i’)

m.X_min = pyo.Param(m.I, within=pyo.NonNegativeReals, doc=’Max

possible installed capacity of technology ’)

m.X_max = pyo.Param(m.I, within=pyo.NonNegativeReals, doc=’Min

possible installed capacity of technology ’)

m.Temp = pyo.Param(m.T, within=pyo.Reals, doc=’Ambient temperature

of certain hour’)

m.Y_pv = pyo.Param(m.T, within=pyo.NonNegativeReals,doc=’Possible

PV output at time t’)

m.COP_ashp = pyo.Param(m.T, within=pyo.NonNegativeReals, doc=’Heat

pump performance at time t’)

m.COP_gshp = pyo.Param(m.T, within=pyo.NonNegativeReals, doc=’Heat

pump performance at time t’)

#---Energy Demand

m.D_el = pyo.Param(m.T, within=pyo.NonNegativeReals, doc=’Hourly

building electricity demand’)

m.D_ht = pyo.Param(m.T, within=pyo.NonNegativeReals,doc=’Hourly

building heating demand’)

#---Grid

m.P_spot = pyo.Param(m.T, within=pyo.NonNegativeReals, doc=’Hourly

price of imported electricity EUR/kWh including certificates’)

m.X_max_imp = pyo.Param(within=pyo.NonNegativeReals, doc=’Maximum

grid import’)

m.X_max_exp = pyo.Param( within=pyo.NonNegativeReals,doc=’Maximum

grid export’)

m.A_imp = pyo.Param( within=pyo.Binary, doc=’Binary: Import is

activated, 1/0’)

m.A_exp = pyo.Param( within=pyo.Binary,doc=’Binary: Export is

activated, 1/0’)

#---Control

m.gamma = pyo.Param( within=pyo.NonNegativeReals, doc=’=0 for

strictly ZEB’)

m.R = pyo.Param(within=pyo.NonNegativeReals, doc=’Chosen discount

Rate’)

m.YRN = pyo.Param( within=pyo.NonNegativeIntegers, doc=’Total years

in modelling period’)

m.VSS = pyo.Param(m.I, doc =’Result of last deterministic run’)
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m.VSS_a = pyo.Param(initialize = 1, doc=’=1 for VSS calculations’)

def npv_inv_spe(m, i):

return self.cost(m.YRN, m.C_spe_0[i], m.L[i], m.R)

m.C_spe = pyo.Param(m.I, rule = npv_inv_spe)

def npv_inv_fxd(m, i):

return self.cost(m.YRN, m.C_fxd_0[i], m.L[i], m.R)

m.C_fxd = pyo.Param(m.I, rule = npv_inv_fxd)

#VARIABLES ##########################################################

# 1 STAGE : STRATEGIC VARIABLES

m.x = pyo.Var(m.I,within = pyo.NonNegativeReals,

doc=’Optimal installed capacity (storage size), semi-continous,

kW (kWh)’)

m.a_i = pyo.Var(m.I, within = pyo.Binary,

doc=’Activation binary decition for technology i, 1/0’)

#2 STAGE : OPERATIONAL VARIABLES

m.q_hs = pyo.Var(m.T, domain = pyo.Reals,

doc=’Keeping track of HS discharge’)

m.q_eb = pyo.Var(m.T,domain = pyo.NonNegativeReals,

doc=’Net heat supplied from electric boiler at time t, kWh/h’)

m.q_ashp = pyo.Var(m.T,domain=pyo.NonNegativeReals,

doc=’Net heat supplied from heat pump at time t, kWh/h’)

m.q_gshp = pyo.Var(m.T,domain=pyo.NonNegativeReals,

doc=’Net heat supplied from GSHP at time t, kWh/h’)

m.q_bb = pyo.Var(m.T, domain=pyo.NonNegativeReals,

doc=’Net heat supplied from bio boiler at time t, kWh/h’)

m.bf = pyo.Var(m.T, domain= pyo.NonNegativeReals,

doc=’Biofuel input to bio boiler at time t kWh/h’)

m.z_hs = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc=’Conent in heat storage at the end of time t, kWh’)

m.z_ba = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc=’Conent of battery at the end of time t, kWh’)

m.y_imp = pyo.Var(m.T, domain = pyo.NonNegativeReals,
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doc=’Electricity imported from grid at time t, kWh’)

m.y_exp = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc=’Electricity exported to grid at time t, kWh’)

m.y_pv = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc=’PV production at time t, kWh/h’)

m.y_eb = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc=’Electricity drawn from electric boiler at time t, kWh/h’)

m.y_ashp = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc=’Total electricity consumed by the heat pump

at time t, kWh/h’)

m.y_gshp = pyo.Var(m.T, domain = pyo.NonNegativeReals)

m.y_ch = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc=’Amount of electricity to battery (charging) at time t,

kWh/h’)

m.y_dch = pyo.Var(m.T, domain = pyo.NonNegativeReals,

doc=’Amount of electricity discharge from battery at time t,

kWh/h’)

m.y_pty = pyo.Var(m.T, domain = pyo.Reals,

doc = ’Penalty volume’)

m.a_imp = pyo.Var(m.T, domain = pyo.Binary,

doc =’Import activation inward time t, 1= activated’)

m.a_exp = pyo.Var(m.T, domain= pyo.Binary,

doc =’Export actication inward time t, 1= activated’)

m.a_ch = pyo.Var(m.T, domain = pyo.Binary,

doc =’Charging activation inward time t, 1 = activated’)

m.a_dch = pyo.Var(m.T, domain= pyo.Binary,

doc =’Discharging activation inward time t, 1=activated’)

# CONSTRAINTS ##########################################################

# 1 STAGE : INVESTMENTS

#---Activation and boundary constraints

def Tech_active(m, i, st):

return m.x[i] <= m.a_i[i]*self.M_const

m.Tech_active = pyo.Constraint(m.I, m.ST, rule = Tech_active)

def Tech_Min(m, i, st):
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if m.VSS_a:

return m.x[i] <= m.VSS[i]

else:

return m.X_min[i]*m.a_i[i] <= m.x[i]

m.Tech_Min = pyo.Constraint(m.I, m.ST, rule= Tech_Min)

def Tech_Max(m, i, st):

if m.VSS_a:

return pyo.Constraint.Skip

else:

return m.x[i] <= m.X_max[i]*m.A_i[i]

m.Tech_Max = pyo.Constraint(m.I, m.ST, rule= Tech_Max)

#2 STAGE : OPERATIONS

#---Balacing constraints

def El_Balance(m, t, st):

return m.D_el[t] == m.y_imp[t] + m.y_pv[t] - m.y_exp[t] +

m.y_dch[t] - m.y_ch[t] - m.y_ashp[t] - m.y_gshp[t] -

m.y_eb[t]

m.El_Balance = pyo.Constraint(m.T, m.ST, rule = El_Balance)

def Ht_Balance(m, t, st):

if t == 0:

return m.D_ht[t] + m.z_hs[t] == m.z_hs[m.lastT]*m.Eff[’HS’]

+ m.q_ashp[t] + m.q_gshp[t] + m.q_bb[t] + m.q_eb[t]

else:

return m.D_ht[t] + m.z_hs[t] == m.z_hs[t-1]*m.Eff[’HS’] +

m.q_ashp[t] + m.q_gshp[t] + m.q_bb[t] + m.q_eb[t]

m.Ht_Balance = pyo.Constraint(m.T, m.ST, rule=Ht_Balance)

#---Capacity

def ASHP_Restriction(m,t, st):

return m.q_ashp[t] <= m.x[’ASHP’]

m.ASHP_Restriction = pyo.Constraint(m.T, m.ST, rule =

ASHP_Restriction)

def GSHP_Restriction(m,t, st):

return m.q_gshp[t] <= m.x[’GSHP’]
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m.GSHP_Restriction = pyo.Constraint(m.T, m.ST, rule =

GSHP_Restriction)

def EB_Restriction(m,t, st):

return m.q_eb[t] <= m.x[’EB’]

m.EB_Restriction = pyo.Constraint(m.T, m.ST, rule = EB_Restriction)

def BB_Restriction(m,t, st):

return m.q_bb[t] <= m.x[’BB’]

m.BB_Restriction = pyo.Constraint(m.T, m.ST, rule=BB_Restriction)

#---Grid equations

def Grid_Import(m,t, st):

return m.y_imp[t] <= m.a_imp[t]*m.X_max_imp

m.Grid_Import = pyo.Constraint(m.T, m.ST, rule=Grid_Import)

def Grid_Export(m,t, st):

return m.y_exp[t] <= m.a_exp[t]*m.X_max_exp

m.Grid_Export = pyo.Constraint(m.T, m.ST, rule=Grid_Export)

def Prosumer_Balance(m,t, st):

return m.a_imp[t] + m.a_exp[t] <= 1

m.Prosumer_Balance = pyo.Constraint(m.T, m.ST,

rule=Prosumer_Balance)

#---Storage equations

def HS_Restriction(m, t, st):

return m.z_hs[t] <= m.x[’HS’]

m.HS_Restriction = pyo.Constraint(m.T, m.ST, rule=HS_Restriction)

def HS_charge_active(m,t, st):

return m.q_hs[t] <= m.z_hs[t]

m.HS_charge_active = pyo.Constraint(m.T, m.ST,

rule=HS_charge_active)

def HS_discharge_active(m,t, st):
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return - m.z_hs[t] <= m.q_hs[t]

m.HS_discharge_active = pyo.Constraint(m.T, m.ST,

rule=HS_discharge_active)

def HS_Balance_ch(m,t,st):

if t == 0:

return m.q_hs[t] == m.z_hs[m.lastT] - m.z_hs[t]

else:

return m.q_hs[t] == m.z_hs[t-1] - m.z_hs[t]

m.HS_Balance_ch = pyo.Constraint(m.T, m.ST, rule = HS_Balance_ch)

def HS_discharge_rate_min(m,t, st):

return -m.x[’HS’]*m.Beta_hs <= m.q_hs[t]

m.HS_discharge_rate_min = pyo.Constraint(m.T, m.ST,

rule=HS_discharge_rate_min)

def HS_discharge_rate_max(m,t, s):

return m.q_hs[t] <= m.x[’HS’]*m.Beta_hs

m.HS_discharge_rate_max = pyo.Constraint(m.T, m.ST,

rule=HS_discharge_rate_max)

def BA_Restriction(m,t, st):

return m.z_ba[t] <= m.x[’BA’]

m.BA_restriction = pyo.Constraint(m.T, m.ST, rule=BA_Restriction)

def BA_Balance(m,t, st):

if t == 0:

return m.z_ba[t] == m.z_ba[m.lastT] -

m.y_dch[t]*(1/m.Eff_ba_dch) + m.y_ch[t]*m.Eff_ba_ch

else:

return m.z_ba[t] == m.z_ba[t-1] -

m.y_dch[t]*(1/m.Eff_ba_dch) + m.y_ch[t]*m.Eff_ba_ch

m.BA_Balance = pyo.Constraint(m.T, m.ST, rule=BA_Balance)

def BA_Charge_Balance(m, t, st):
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if t == 0:

return m.y_ch[t] <= (m.x[’BA’] -

m.z_ba[m.lastT])*m.A_i[’BA’]*(1/m.Eff_ba_ch)

else:

return m.y_ch[t] <= (m.x[’BA’] -

m.z_ba[t-1])*m.A_i[’BA’]*(1/m.Eff_ba_ch)

m.BA_Charge_Balance = pyo.Constraint(m.T, m.ST,

rule=BA_Charge_Balance)

def BA_Discharge_Balance(m,t, st):

if t == 0:

return m.y_dch[t] <= m.z_ba[m.lastT]*m.A_i[’BA’]*m.Eff_ba_dch

else:

return m.y_dch[t] <= m.z_ba[t-1]*m.A_i[’BA’]*m.Eff_ba_dch

m.BA_Discharge_Balance = pyo.Constraint(m.T, m.ST,

rule=BA_Discharge_Balance)

def BA_charge_active(m,t, st):

return m.y_ch[t] <= m.X_max_imp*m.a_ch[t]

m.BA_charge_active = pyo.Constraint(m.T, m.ST,

rule=BA_charge_active)

def BA_discharge_active(m,t, st):

return m.y_dch[t] <= m.X_max_imp*m.a_dch[t]

m.BA_discharge_active = pyo.Constraint(m.T, m.ST,

rule=BA_discharge_active)

def Battery_Balance(m,t, st):

return m.a_ch[t] + m.a_dch[t] <= 1

m.Battery_Balance = pyo.Constraint(m.T, m.ST, rule=Battery_Balance)

def BA_charge_rate(m,t, st):

return m.y_ch[t] <= m.x[’BA’]*m.Beta_ba

m.BA_charge_rate = pyo.Constraint(m.T, m.ST, rule=BA_charge_rate)

def BA_discharge_rate(m,t, st):

return m.y_dch[t] <= m.x[’BA’]*m.Beta_ba

m.BA_discharge_rate = pyo.Constraint(m.T, m.ST,

rule=BA_discharge_rate)
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#---Production constraints for generating technologies

def PV_Balance(m,t, st):

return m.y_pv[t] == m.x[’PV’]*m.Y_pv[t]

m.PV_Balance = pyo.Constraint(m.T, m.ST, rule=PV_Balance)

def ASHP_Balance(m,t, st):

return m.q_ashp[t] == m.y_ashp[t]*m.COP_ashp[t]

m.ASHP_Balance = pyo.Constraint(m.T, m.ST, rule = ASHP_Balance)

def GSHP_Balance(m,t, st):

return m.q_gshp[t] == m.y_gshp[t]*m.COP_gshp[t]

m.GSHP_Balance = pyo.Constraint(m.T, m.ST, rule = GSHP_Balance)

def BB_Balance(m,t, st):

return m.q_bb[t] == m.bf[t]*m.A_i[’BB’]*m.Eff[’BB’]

m.BB_Balance = pyo.Constraint(m.T, m.ST, rule=BB_Balance)

def EB_Balance(m,t, st):

return m.q_eb[t] == m.y_eb[t]*m.Eff[’EB’]

m.EB_Balance = pyo.Constraint(m.T, m.ST, rule = EB_Balance)

#---Zero emission/energy constraints

def ZE_Balance(m):

if m.A_co2==1:

print(’ACTIVE ZEB-carbon RESTRICTION’)

if m.lastT == 8735:

return sum(m.y_imp[t]*m.G_el - m.y_exp[t]*m.G_el +

m.bf[t]*m.G_bf for t in m.T) <= m.G_ref*m.gamma

elif m.lastT == 671:

return 13*sum(m.y_imp[t]*m.G_el - m.y_exp[t]*m.G_el +

m.bf[t]*m.G_bf for t in m.T) <= m.G_ref*m.gamma

elif m.A_pe == 1:

print(’ACTIVE ZEB-pef RESTRICTION’)

if m.lastT == 8735:

return sum(m.y_imp[t]*m.PE_imp - m.y_exp[t]*m.PE_exp +

m.bf[t]*m.PE_bf for t in m.T) <= m.PE_ref*m.gamma

elif m.lastT == 671:
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return 13*sum(m.y_imp[t]*m.PE_imp - m.y_exp[t]*m.PE_exp

+ m.bf[t]*m.PE_bf for t in m.T) <= m.PE_ref*m.gamma

else:

print(’NO ZEB RESTRICTION’)

return pyo.Constraint.Skip

m.ZE_Balance = pyo.Constraint(rule=ZE_Balance)

#---Subscription power pricing Constraint

def pty_volume(m, t):

if m.A_ps == 1:

return m.y_imp[t] - m.Y_max <= m.y_pty[t]

else:

return m.y_pty[t] ==0

m.pty_volume = pyo.Constraint(m.T, rule = pty_volume)

def pty_volume2(m, t):

return 0 <= m.y_pty[t]

m.pty_volume2 = pyo.Constraint(m.T, rule = pty_volume2)

# OBJECTIVE FUNCTION #################################################

def cost_Investments_rule(m, st):

expr = self.npv_cost_Investments(m, st)

return expr

m.cost_Investments = pyo.Expression(m.ST, rule =

cost_Investments_rule)

def cost_Operation_rule(m, st):

expr = self.npv_cost_Operations(m, st)

return expr

m.cost_Operations= pyo.Expression(m.ST, rule = cost_Operation_rule)

def objective_TotalCost(m):

expr = pyo.summation(m.cost_Investments) +

pyo.summation(m.cost_Operations)

return expr

m.objective_TotalCost = pyo.Objective(rule = objective_TotalCost,
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sense = pyo.minimize)

return m

def createConcreteModeltwoStage(self, data):

’’’Function creating instance from input data’’’

concretemodel = self.abstractmodel.create_instance(data =

{’mymodel’:data}, namespace = ’mymodel’)

return concretemodel

def createScenarioTreeModel(self, num_scenarios, probabilities):

’’’Tree model for two-stage formulation’’’

G = nx.DiGraph()

G.add_node("RootNode")

for i in range(num_scenarios):

G.add_edge("RootNode","Scenario{}".format(i+1),

probability=probabilities[i])

stage_names=[’Stage1’,’Stage2’]

print("Num_scenarios=",num_scenarios)

print("Probabilities=",probabilities)

st_model = tsm.ScenarioTreeModelFromNetworkX(G,

edge_probability_attribute=’probability’,

stage_names=stage_names)

first_stage = st_model.Stages.first()

second_stage = st_model.Stages.last()

#---First Stage

st_model.StageCost[first_stage] = ’cost_Investments[1]’

st_model.StageVariables[first_stage].add(’x[ASHP]’)

st_model.StageVariables[first_stage].add(’x[GSHP]’)

st_model.StageVariables[first_stage].add(’x[PV]’)

st_model.StageVariables[first_stage].add(’x[BA]’)

st_model.StageVariables[first_stage].add(’x[BB]’)

st_model.StageVariables[first_stage].add(’x[EB]’)
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st_model.StageVariables[first_stage].add(’x[HS]’)

st_model.StageVariables[first_stage].add(’a_i[ASHP]’)

st_model.StageVariables[first_stage].add(’a_i[GSHP]’)

st_model.StageVariables[first_stage].add(’a_i[PV]’)

st_model.StageVariables[first_stage].add(’a_i[BA]’)

st_model.StageVariables[first_stage].add(’a_i[BB]’)

st_model.StageVariables[first_stage].add(’a_i[EB]’)

st_model.StageVariables[first_stage].add(’a_i[HS]’)

#---Second Stage

st_model.StageCost[second_stage] = ’cost_Operations[2]’

st_model.StageVariables[second_stage].add(’q_hs’)

st_model.StageVariables[second_stage].add(’q_eb’)

st_model.StageVariables[second_stage].add(’q_bb’)

st_model.StageVariables[second_stage].add(’q_ashp’)

st_model.StageVariables[second_stage].add(’q_gshp’)

st_model.StageVariables[second_stage].add(’bf’)

st_model.StageVariables[second_stage].add(’z_hs’)

st_model.StageVariables[second_stage].add(’z_ba’)

st_model.StageVariables[second_stage].add(’y_imp’)

st_model.StageVariables[second_stage].add(’y_exp’)

st_model.StageVariables[second_stage].add(’y_pv’)

st_model.StageVariables[second_stage].add(’y_eb’)

st_model.StageVariables[second_stage].add(’y_ashp’)

st_model.StageVariables[second_stage].add(’y_gshp’)

st_model.StageVariables[second_stage].add(’y_ch’)

st_model.StageVariables[second_stage].add(’y_dch’)

st_model.StageVariables[second_stage].add(’y_pty’)

st_model.StageVariables[second_stage].add(’y_max’)

st_model.StageVariables[second_stage].add(’a_imp’)

st_model.StageVariables[second_stage].add(’a_exp’)

st_model.StageVariables[second_stage].add(’a_ch’)

st_model.StageVariables[second_stage].add(’a_dch’)

st_model.ScenarioBasedData=False

nx.draw_networkx(G)

plt.savefig(’scenarioTree.pdf’, bbox_inches=’tight’,dpi=300);

return st_model


