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Abstract

In this study, a new approach to Electrical Resistivity Tomography
(ERT) data inversion was investigated. ERT is a geophysical method
for imaging the subsurface. An electrical current is injected into the
surface, and the electrical properties of the subsurface is determined
from measurements of the voltage difference. The objective of these
measurements are to estimate the unknown resistivity distribution of
the subsurface from information gathered on the surface. The most
common way to approach this problem is by the local optimization
method, least squares. Due to the ill-posedness of inverse problems,
least squares method require a prior information of the subsurface.
This may not be readily available. A prior information is needed to
form an approximated initial model, and employ appropriate regular-
izations. In this study, we use Simulated Annealing, to estimate the
resistivity distribution of a resistor network. Simulated Annealing is
a stochastic optimization method for approximating global optimum.
This method does not require a prior information or regularizations,
and can approximate solutions in a large search spaces. An algo-
rithm was developed and implemented from scratch for this study. We
showed that the resistivity distribution of a network, can be approx-
imated using Simulated Annealing. However, problem of local inde-
terminable resistivity is observed for challenging resistor distributions.
Time consumption is one of the main obstacle for Simulated Anneal-
ing to be a competitive optimization method. Practice, limitations and
improvements of the method is also discussed in this thesis.
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Sammendrag

I denne studien undersøkes en ny tilnærming til inversjon av Electri-
cal Resistivity Tomography (ERT) data. ERT er en geofysisk metode
for avbildning av bakken. Elektrisk strøm sendes in i overflaten, og de
elektriske egenskapene til bakken blir bestemt ved m̊alinger av spen-
ningsforskjellen. Målet med disse m̊alingene er å estimere den uk-
jente resistivitetsfordelingen i bakken fra informasjon samlet p̊a over-
flaten. Den vanligste m̊aten å tilnærme seg dette problemt p̊a er
ved hjelp av den lokale optimiseringsmetoden, least squares. Invers
problemer er illposed, og behøver forh̊andsinformasjon om bakken.
Dette er ikke nødvendigvis lett tilgjengelig. Forh̊andsinformasjonen
er nødvendig for å lage en tilnærmet initiel model, og for å tilret-
telegge for riktige matematiske reguleringer. I denne studien har vi
brukt Simulated Annealing for å estimere resistivitetsfordelingen i et
resistornettverk. Simulated Annealing er en stokastisk optimaliser-
ingsmetode for å approksimere et globalt optimum. Metoden behøver
ingen forh̊andsinformasjon eller matematiske reguleringer, og kan ap-
proksimere løsninger i et stort søkerom. Algoritmen ble utviklet og
implementert fra bunnen av i denne studien. Vi viste at resistivitets-
fordelingen i et nettverk kan bli tilnærmet med Simulated Annealing.
Det er dog et problem med lokal ubestemmelig resistivitet for utfor-
drene resistorfordelinger. Tidsbruken er en av hovedutfordringene for
at Simulated Annealing kan være en konkurransedyktig optimaliser-
ingsmetode. Bruk, begresninger og forbedringer av metoden er ogs̊a
diskutert i oppgaven.
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1 Introduction

1 Introduction

Electrical resistivity is one of the most sensitive indicators of change in na-
ture. The properties of matter are fundamentally related to how electricity
interact with it. The ability of electricity for non-intrusive investigation,
makes resistivity an important physical quantity for numerous technical ap-
plications. Resistivity surveys are utilized for internal mapping, from finding
cracks in a concrete slab [1] to imaging of the human body [2], and deter-
mining whole subsurface structures [3]. All of which are vital applications
in modern society. Electrical Resistivity Tomography (ERT) is a geophys-
ical method used to image the subsurface texture. By sending electricity
down through the ground, and measure an apparent resistivity, it is possible
to estimate the resistivity distribution of the subsurface. The resistivity is
connected to various geophysical quantities of the ground, such as material
content, density, fluid composition, porosity, or water saturation of rocks [3].
ERT’s ability to gain perception of the subsurface, makes it an important
application for geological, environmental and archaeological surveys[4, 5, 6].
ERT is a non-linear inverse problem, where a finite number of measurements
at the surface, are used to identify the physical properties of the medium.
Inverse problems are the opposite of forward problems, where researchers
attempt to find exact solutions to describe physical properties, such as prop-
agation of sound, heat and current conduction, and resistivity. The inverse
problem of electrical conductivity of the subsurface was first attempted by
Tikhonov in the 1940s, who at first believed it to be impossible. From a
mathematical view, ill-posed inverse problems were at that time believed to
be unsolvable. However, after seeing that it was possible to find approxi-
mated solutions, and correctly differentiate subsurface structures, he later
formulated the theory of ill-posed inverse problems [7].

The first applicable solution for use with computers was worked out by Loke,
and his method is the one widely used today [3]. His method is based on
measuring the apparent resistivity on the ground surface, and compute a
resistivity map by using smoothness-constrained least squares optimization
method [8]. This method has given ERT global recognition, and it is used in
a broad spectrum of geological monitoring, exploration, and research. Least
squares is a method for finding local minima, and requires the initial model
to be in the vicinity of the solution. This requires a prior knowledge of
the problem at hand, and corresponding constrains and regularizations. In
addition, local optimization algorithms, such as least squares, are sensitive
to measurement noise, error, and other offsets to the gathered data. Lastly,
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1 Introduction

the inherent ill-posedness of data inversion can easily trap local optimiza-
tion methods in sub-optimal solution, and produce wildly inaccurate models.
Electrical resistivity mapping has been stuck in its local sphere of success
since its rise to fame in the late 1990s, and it is due for new approaches.

Simulated Annealing (SA) is an optimization algorithm devised for finding
the global optimum, among many local and sub-optimal optimums [9]. Its
intelligent heuristics makes it unyielding to greedy solutions, resistant to
data errors, and amused by the innate ill-posedness of inverse problems. In
this study, it is attempted to approach apparent resistivity calculations, us-
ing simulated annealing, to find approximated resistivity distribution of a
network.

This thesis is organized in the following manner: In Section 2 we outline
the theory behind electrical resistivity survey, how to model an electrical
conduction system, and how to approach the calculations of such a system.
In Section 3 we provide the details on algorithms and implementations.
Results are presented in Section 4, and discussed in Section 5. Finally,
Section 6 will contain a conclusion for this thesis, and make a few suggestions
for further work.
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2 Theory

The first section will outline the fundamental physics behind electrical re-
sistivity surveys, in accordance with how Loke describes it in his Tutorial:
2-D and 3-D electrical imaging surveys [3]. For the second section, we will
briefly talk about inverse problems. In the third section we will develop a
model for calculating the resistivity distribution, based on the basic electri-
cal resistivity theory. Lastly we will describe the method for building such
a model.

2.1 Introduction to Electrical Resistivity Surveys

Electrical resistance is a well known and studied physical quantity of many
media, and makes a good predictor of what medium we are dealing with,
and/or its properties. The basic idea behind electrical resistivity survey
is that we can inject a known current into a medium from one point, and
measure the difference in the electrical potential at another point. From
this the resistance can be calculated. If we do this for several points, we
get several resistances, which can be compared to each other to form a
resistivity map. Resistivity surveys are based on Ohm’s law, which provide
us the equation of current flow in a medium

~J = σ~E (1)

where σ is the conductivity of a medium, ~J is the current density, and ~E
is the electrical field intensity. In geophysical surveys, it is the mediums
resistivity ρ, the inverse of conductivity ρ = 1/σ, which is most commonly
used, and in this study we will also follow this convention.
The relationship between the electrical potential, and the field intensity is:

~E = −∇Φ (2)

and by combing (1), and (2), gives us:

~J = −σ∇Φ. (3)

For simplicity, we consider the current from a point source. For an elemental
volume ∆V , surrounding the current source I, placed in an arbitrarily coor-
dinate system at ( xs, ys, zs), the relationship between the current density,
and the current is given by [10]:

∇ · ~J =
I

∆V
δ(x− xx)δ(y − ys)δ(z − zs) (4)

3



2.1 Introduction to Electrical Resistivity Surveys 2 Theory

where δ is the dirac delta function. By substituting ~J from (3), Eq. (4) may
be rewritten as

∇ · [σ(x, y, z)∇Φ(x, y, z)] =
I

∆V
δ(x− xs)δ(y − ys)δ(z − zs) (5)

which is the basic equation for calculating the potential distribution in the
ground due to a point current source. This is the forward modelling prob-
lem, and gives us the potential which would have been observed over a given
subsurface structure. Analytical methods for finding the exact resistivity
distribution exists for homogeneous and symmetrical shapes. For inhomo-
geneous and disordered systems, numerical approaches are required, and we
will derive some expressions and techniques for numerically estimating such
systems.
Let us first consider the simplest of cases, a single current source on the top
layer of a homogeneous half-space subsurface. The current will in this case
flow radially away from the source, and the potential will depend inversely
on distance from the current source. The potential can then be given by

Φ =
ρI

2πr
(6)

where r is the distance from an arbitrarily point in the medium to the current
source.
In practice, the point current sources will be electrodes, and at least two
electrodes, a positive and a negative, is needed. The potential in a medium
from a pair of electrodes is given by

Φ =
ρI

2π

(
1

rC1
− 1

rC2

)
(7)

where rC1 and rC2 are distances from the first and second electrode.
Loke further describes that the potential difference is measured for electrical
resistivity surveys, where a typical arrangement are four electrodes, and the
potential difference is then given by

∆Φ =
ρI

2π

(
1

rC1P1
− 1

rC2P1
− 1

rC1P2
+

1

rC2P2

)
(8)

which would give the potential measured over a homogeneous half-space of
a four electrode array.
Real surveys are conducted on inhomogeneous mediums, where the resistiv-
ity distribution is in three dimensions. By injecting current into the ground
through two electrodes ( C1 and C2), and measuring the resulting voltage
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2.2 Inverse and Forward Problems 2 Theory

C1 P1 P2 C2

Figure 1: Typical electrode arrangement to measure the subsurface resistivity.
C1 and C2 are the positively and negatively current sources, and P1 and P2 are
measurement nodes.

difference at two other electrodes (P1 and P2), an observed, or apparent
resistivity ρa can be calculated

ρa = k
∆Φ

I
(9)

where

k =
2π(

1
rC1P1

− 1
rC2P1

− 1
rC1P2

+ 1
rC2P2

)
k is a geometrical factor that comes from the arrangement of the four elec-
trodes, as exemplified in Figure 1. Resistivity measurements normally pro-
vides a resistance value, R = ∆Φ/I, and the apparent resistivity is in prac-
tice calculated by

ρa = kR. (10)

The resistance value is not the true resistivity of the medium, but the result-
ing measured resistivity which a homogeneous medium of the same electrode
arrangement would have given. The relationship between the apparent re-
sistivity and the true resistivity, is given by solving the inverse problem. The
challenge of electrical resistivity tomography is then how to appropriately
process the given apparent resistivity values to approximate the resistivity
distribution of the subsurface.

2.2 Inverse and Forward Problems

Fundamental physic equations help us calculate the effect a physical field,
process or phenomena may have upon a medium. The equations works as a
model framework, which can predict the outcome. Eq.(5) is an example of
this, where a current will act upon the medium, and introduce an electrical
field, of which we can predict the field strength. This is a forward, or direct
problem. A set of model parameters may be used to predict the observation,
and describe the relationship between the model and the observed outcome.
Mathematically a forward problem can be formulated
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2.2 Inverse and Forward Problems 2 Theory

M −→ d = g(M) (11)

where M is the model parameters, d is the data or the observable param-
eters, and g and is the forward operator that describe the relationship be-
tween the model parameters and the data. Most forward problem are well-
posed problems, which have the following properties:

• a solution exists in the model space.

• the solution is unique.

• the solution’s behavior changes continuously with the initial condi-
tions.

The opposite of a forward problem, is an inverse problem. For an inverse
problem the outcome is used to calculate the cause, and can help us figure
out e.g. the properties of a medium. This can again help us make prediction
of sources (e.g. heat, waves, current, potential differences), material, loca-
tion, structure, defects, and so on. For a linear inverse problem, the formula
from the forward problem, rewritten as

d = gM (12)

can be used to invert the operator g to find the model parameters M

M = dg−1. (13)

The operator g can rarely easily be inverted to fit together with the data d
to give the model parameters M. This is due to the fact that most inverse
problems are non-linear, and inherently ill-posed, meaning at least one of
the three conditions of well-posedness are not met. Inverse problems are
therefore subject to the following:

• a solution does not exists everywhere in the model space, or may only
be approached approximately.

• a solution is non-unique, meaning there can be many models that fit
the data.

• a solution’s behavior is unstable ( i.e. poor initial conditions, arbitrar-
ily small changes or measurement errors can produce large errors in
the solutions).

6



2.3 Electrical Conduction Modelling in Media 2 Theory

For such problems, we have to search through the model space, and attempt
to find model(s) M with the smallest possible discrepancy for the data d.
Numerical methods of optimization may be used for this, and we will get
back to this in Section 3.
In electrical resistivity studies we seek to find a model that provides a re-
sponse similar to the actual measured values. The inverse problem of this
study is to find the resistivity distribution for the subsurface, that will min-
imize the difference between the calculated and measured apparent resis-
tivity values. An initial model is proposed, and modified in iterations by
comparing the difference, to achieve the smallest possible discrepancy g.
Lokes method is based on solving a variation of Gauss-Newton least-square
optimization with regularizations. The basic least-square equation is the
following,

JTJ∆qi = JTg (14)

where g is the discrepancy vector, ∆q is the model parameter change vector
and J and JT is the Jacobian matrix and its transpose, respectively. The
equation for practical use is subject to Levenberg–Marquardt modification,
smoothness restrains and reweighting, and looks like this,

(JTJ + λFR)∆qi = JTRdg − λFRqi (15)

where λ is a dampning factor, FR is the smoothness restrains, andRd weight-
ing matrix. This equation is the general method for geophysical inversion,
and can be even further modified to include known information about the
subsurface. For further details and explanation on Lokes methods and tech-
nical solutions, the author refers to his tutorial[3].
Least-square is a method for finding a local minima, and having a proper
initial model is crucial for success. Such initial models require a prior knowl-
edge of the subsurface, and may not be trivial to find. We will in this thesis
therefore attempt a new approach to solve the inverse problem for electrical
resistivity distribution using simulated annealing. For this purpose we need
to make a model that simulates the electrical conduction in an inhomoge-
neous medium.

2.3 Electrical Conduction Modelling in Media

To make an image of the subsurface from resistivity, we need a way of mod-
elling how the electricity conduct itself in a disordered media. In this section
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2.3 Electrical Conduction Modelling in Media 2 Theory

I1, I2, Ii, IN ,U1 U2 Ui UN

1 2 i N

Figure 2: Simplified electrical network with N top nodes. A current is inject into
node i, and extracted at node j until all i,j node pairs are measured and have an
apparent resistivity between them.

a description of how the setup to a model of electrical conduction in the sub-
surface is provided.

The principle of this study is to estimate the resistivity distribution of in-
ternal structures, based on measurements of the electrical potential at the
boundary. For this purpose we make a simplified model of the subsurface
as a resistor network (Figure 2), to see if its possible to estimate the value
of each resistor in the network.
First, let us state a few assumptions for the model:

• The half-space above the top layer have infinite resistance, and will
not conduct a current.

• All the injected current will be absorbed by a current sink on the same
boundary surface.

• The injection and sink current sources coincide with the measurement
nodes, so that the potential difference is between the injection and
sink current sources.

Discretizing the subsurface into a electrical network of square lattices, gives
a good conceptual model for this study. As a side note, studies have also
shown that continuous electrical conduction in a media, can be approach
with discretization models as a resistor network. Rigorous mathematical
justification for modelling electrical conduction in media as a resistor net-
work have been conducted by Borcea et al. [12].

8



2.3 Electrical Conduction Modelling in Media 2 Theory

For an electrical network, Ohm’s laws (1) can be simplified and applied to
calculate the resistance,

R = U/I (16)

where R is the resistance, U is the electrical potential, and I is the current.
To make predictions of the resistivity distribution, based on the measure-
ments at the top layers, is no easy task. For this, we have to invert the
system, build it from the bottom and work our way back to the top, resistor
by resistor. This way, we attempt to recreate the probable pathing of the
electricity. For this purpose we introduce two of Kirchhoff’s laws. Kirch-
hoffs’s current law state that at a junction in an electrical network, the total
current flowing into the junction, have to be the same flowing out, which is
equivalent to

n∑
k=1

Ik = 0 (17)

as current can be expressed as positive or negative depending on if it flows
towards, or against a junction. Here n is the number of branches in the
junction.
Kirchhoff’s voltage law says that the electrical potential difference for a
closed network is zero, and can be expressed as:

n∑
k=1

Uk = 0 (18)

where n is the number of voltages measured. Together the two laws form
Kirchhoff’s circuit laws, which can be combined and used to calculate elec-
trical networks by a system of linear equations.
In a large electrical network system, the equation for every junction can be
generalize to

n∑
j 6=k

Gjk(Uk − Uj) = 0 (19)

where Gjk = Gkj is the conductance between junction k and j, and Uk is
the voltage at junction k. When we apply a current I at a top junction, say
k, the expression becomes

Ik = GkkUk −
n∑
j 6=k

Gjkuj . (20)

9



2.4 Random Resistor Network and Transfer-Matrix Method 2 Theory

We can combine the above junction equations for all junctions, and express
them in matrix form

G11 G12 . . . G1n

G21 G22 . . . G2n
...

...
. . .

...
Gn1 Gn2 . . . Gnn



U1

U2
...
Un

 =


I1
I2
...
In

 ,
or basically

GU = I. (21)

To find the resistivity distribution, we want to calculate the G matrix, in the
form of resistor values R = 1/G. For this, we introduce the transfer-matrix
approach to random resistor network.

2.4 Random Resistor Network and Transfer-Matrix Method

A random resistor network, is a model network for studying conduction
in a disordered system. It consists of random-valued conduction elements
connected through connection points or nodes, usually in the form of a lattice
pattern. The network can take on several geometric forms depending on the
problem at hand, Figure 3 shows some typical geometries. Random resistor
networks have been used extensively in the study of disordered systems, and
have been proven to be quite fruitful for studying conduction properties of
electric current, heat and fluid in all sorts of media [11, 15, 16].

(a) (b)

(c)

Figure 3: Various resistor networks based on square lattice (a), hexagonal lattice
(b) and triangular lattice (c).

A simple resistor network would be one consisting of square lattices (such
as Figure 3a), where a node in each corner of the square, is connected by

10



2.4 Random Resistor Network and Transfer-Matrix Method 2 Theory

four resistors, making up the ”walls” of the square, with the exception of
the top, bottom and edges. In this study, the square lattice pattern will be
utilized.

Transfer-matrix is an acknowledged method in statistical mechanics known
for solving, among many other, the famous two-dimensional Ising model
[17]. The method defines a matrix corresponding to a model, so that the
physical properties of a system can be extracted from the matrix values. For
this study, the conduction properties of an electrical network are examined,
and a transfer-matrix is constructed to reflect the properties of a resistor
network. The transfer-matrix approach is performed in accordance with
Derrida et al., and any resistor distribution can be used for the random
resistor network [11].
We consider the square lattice random network, where a current Ii can be
injected in each top node i, with an associated potential Ui. The potential is
dependent on the current Ii, and are related through a N×N transfer-matrix
A:

Ii =
N∑
j=1

(A)ij Uj . (22)

We can see that the elements of A are related to G in Eq. (21).

Starting with a single row of resistors connecting the top nodes, the resis-
tivity between each node can simply be found by measuring the potential
difference, and calculating the resistance by Ohm’ law, Eq.(16). The resis-
tivity values will then be stored in the matrix A as an equivalent to the
apparent resistivity.
This network can then be built, strip by strip, by transforming the matrix
AL into a new matrix AL+1 after adding horizontal and vertical resistors
(Figure 4). If we first assume only addition of vertical resistors vi, and fix
the potential U ′i at nodes i in layer L+ 1 by external sources, we will get:

Ui = U ′i − viIi. (23)

Thus, the current Ii and the potentials U ′i are related through a matrix
BL+1:

I = BL+1U
′. (24)

This can be expressed in matrix form as
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Ni21

L

L− 1

I1 I2 Ii

U1 U2 Ui

(a) AL

Ni21

L+ 1

L

L− 1

I ′1 I ′2 I ′i

U ′1 U ′2 U ′i

U1 U2 Ui

h1 h2 hi

v1 v2 vi

(b) AL+1

Figure 4: Recursive construction of transfer-matrix A 4a, adding layers of hori-
zontal hi and vertical vi resistors 4b.

U = U′ −VI (25)

where the matrix V is the diagonal, thus

Vij = viδij . (26)

We can then add together Eq. (22) and (25), which gives

U = (1 + VAL)−1U′. (27)

Hence, the matrix BL+1 is given by

BL+1 = AL(1 + VAL)−1. (28)

Now we can add the horizontal resistors hi. Again we fix the voltages U ′i at
every node i of layer L + 1, and get a current ji in the horizontal resistors
hi

ji = [U ′i+1 − U ′i ]/hi. (29)

Therefore, the current I ′i in the resistor connected to the node i of layer
L+ 1 is

I ′i = Ii + ji−1 − ji
= Ii + [1/hi + 1/hi−1]U

′
i − [1/hi]U

′
i+1 − [1/hi−1]U

′
i−1

(30)

12
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which also have a matrix form

I′ = I + HU′ (31)

where H is the matrix which represent the effect of the horizontal resistors
at layer L+ 1:

Hij = [1/hi + 1/hi−1]δij − [1/hi]δj,i+1 − [1/vi−1]δj,i−1. (32)

Finally, this leads to a recursive formulation for building a random resistor
network, strip by strip:

AL+1 = H + AL(1 + VAL)−1. (33)

The transfer-matrix method can be expressed in a more numerically friendly
maneuver, where each resistor is added one by one. This method will be
outlined in the next section.

3 Numerical Methods

Estimating the parameters of a model for an inverse problem is not a trivial
pursuit, and thorough exploration of the model space has to be performed.
Luckily, powerful algorithms for searching, and finding optimal solutions
have been developed. First we will show how to implement the construction
of the random resistor network and the transfer-matrix, then we will describe
the optimization algorithm, and how it is implemented.

3.1 Transfer-Matrix Implementation

Constructing a random resistor network, and updating the transfer-matrix
accordingly is the first step to able to perform the optimization algorithms.
We use the theory from Section 2.4, and Derrida et al. [14] to outline a
numerically implementation.
The size of the transfer-matrix A is predetermined from the number N of
top nodes we choose to use (Figure 5). We can think of N as the width of the
system, and L as the number of vertical resistor layers. Therefore, the depth
will be L+1, since the last layer is of horizontal resistors. Together this form
a system of N×(L+1) nodes, or lattice points. A resistor is placed between
two nodes, so that the total number of resistors in the network becomes
(L+ 1)(N − 1) +NL. First, a single resistor is added between the first two
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nodes i = 1 and its neighbour j = 2, and A11 = Ii/Uj = A22 = Ij/Ui, and
the transfer-matrix will look like this:

A =


(I1/U2) 0 . . . 01n

0 (I2/U1) . . . 02n
...

...
. . .

...
0n1 0n2 . . . 0nn


Adding the remaining resistors of the first layer, contributes to the matrix
A by the following relation:

A′ij = Aij +
(δαj − δβj)(δαi − δβi)

r
(34)

where we also introduced the indices α and β to keep track of the node sites,
from the matrix-elements i, j in A.

β α1 2 N

Figure 5: Construction of the first horizontal layer of the random resistor network.

After constructing the first layer of the resistor network, we can add to the
network, resistor by resistor. The only thing we need to do is transform the

β

α
1 2

N

(a) A

β α

r
1 2

N

(b) A′

β α

r′
1 2

N

(c) A′′

Figure 6: Recursive construction of a network, adding resistor by resistor from
a single layer network. For every vertical resistor added, the matrix A is modified
into A′, and for every horizontal resistor added, A′ is modified into A′′.
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A matrix for every resistor that is added (Figure 6).
In this study, a two-dimensional system have been considered, but the fol-
lowing description can also be generalized for three-dimensions [11].
For a two dimensional system, there are only horizontal and vertical resistors
can be added. Adding a vertical resistor r on site α, produces a new matrix
A′ (Figure 6b. The new matrix A′ is related to A through

A′ij = Aij −
AiαAαjr

1 + Aααr
. (35)

Similarly, we can do this for a horizontal resistor r′ between the sites α and
β (Figure 6c). The matrix A′ changes into a new matrix A′′ given by

A′′ij = A′ij +
(δαj − δβj)(δαi − δβi)

r′
(36)

where δij is the Kronecker delta.
The following pseudocode shows how to implement the construction of the
transfer-matrix:

Algorithm 1 Transfer-matrix approach to random resistor network

Initialize transfer-matrix A
Initialize matrix of horizontal H and vertical V resistor values
for i = 0→ (N − 1) do

Calculate transfer-matrix for first row of horizontal resistor
end for
for l = 0→ L do

Calculate transfer-matrix for every layer of vertical resistor
for n→ N do

Calculate for every horizontal resistor layer
end for

end for
return A
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3.2 Simulated Annealing

Simulated annealing (SA) is an optimization algorithm, designed to find a
global optimum, among many local optimums. An introduction to it can
be found in e.g the book Numerical recipes [18]. The method’s name stems
from the thermodynamic analogy of cooling and annealing metals for specific
properties (e.g. strength, hardness, ductility). At high temperatures, the
molecules in a liquid metal moves freely with respect to each other - if the
liquid is cooled slowly, thermal mobility is gradually lost, and the molecules
will orderly arrange themselves to form a pure crystal. This pure crystal will
be at the lowest possible energy state. Most optimization algorithms always
change towards a state of lower energy, or go downhill, which often is the
analogy of minimization. If a liquid metal is cooled too quickly, molecules
will be squished into sub-optimal configurations, and the metal will end
up with a somewhat higher energy state. This energy state will then be a
so-called local minimum, and resulted from only going downhill.
From statistical mechanics, we have Boltzmann probability distribution,
which has its own minimization procedure integrated in the formula,

Prob(E) ∼ exp(−E/kBT ) (37)

where kB is Boltzmann’s constant. For simulated annealing, the kB constant
is in practice omitted as it is set to 1.
The principle from Boltzmann distribution is that a system in thermal equi-
librium at temperature T has its own energy probabilistically distributed
among all different energy states E. So even for low temperatures the sys-
tem has a chance of being in a high energy state. If we study a system and
consider a transition from configuration 1 with energy E1 to configuration
2 with energy E2, we can substitute E in Boltzmann distribution (37), with
the energy difference between E1 and E2, giving

P (E) = exp[−(E2 − E1)/T ]. (38)

For E2 > E1 we will have a probability between 0 and 1. Hence a SA system
will sometimes have the opportunity to go uphill, and possibly jerk itself out
of local minima valleys. If E2 < E1 the probability will exceed unity, and
will in that case be set to P = 1. Thus the system will always pick the new
configuration.

The general recipe for SA goes as following:

1. Make a description for the possible system configurations.
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2. Construct a generator of random changes in the configuration, which
is presented as options for the system to evaluate.

3. An objective evaluation function E (analogy of energy), which compare
current configuration with the one presented in the previous point.
The goal is to minimize this function.

4. A control parameter T (analogy of temperature), and an annealing
schedule to manage after how many iterations the temperature should
change, and by how much.

SA is a complex, but powerful algorithm, consisting of several algorith-
mic parts. For point 2 and 3 in the general recipe, an algorithm called
Metropolis-Hasting is the functional method for generating and evaluating
the systems configurations, and discussed in the next subsection. The tem-
perature control parameter T from point 4, is discussed in Section 3.2.2.

3.2.1 Metropolis-Hasting Algorithm

The Metropolis-Hasting algorithm is a subclass of Markov Chain Monte
Carlo method (MCMC). MCMC is a class of random sampling methods,
designed to estimate model parameters and their degree of uncertainty. The
purpose of the Metropolis-Hasting algorithm is to generate configurations
from a probability density π(x), and evaluate the configurations based on
the previous state. There are two important aspects to MCMC; ergodic
property and detailed balance. Ergodic property in the means of Markov
chains, is that there is a positive probability to go from any state i, to any
other state j, in just one step. Detailed balance state that the probability
of transition from a state i to state j is equal to transition from j to i, given
by the detailed balance equation:

π(x1)P (x2 | x1) = π(x2)P (x1 | x2) (39)

where π(x1) and π(x2) are non-normalized probability density for state 1
and 2, respectively. P (x1 | x2) is the transition probability for transition to
state 2, given the system is in state 1, and vice versa in P (x2 | x1).
The possibility of sometimes taking an uphill step is known as Metropolis al-
gorithm, and was generalized by Hasting to the so-called Metropolis-Hasting
algorithm. The derivation of the algorithm starts with the detailed balance
equation (39), rewritten as:
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P (x2 | x1)

P (x1 | x2)
=
π(x2)

π(x1)
. (40)

Given a proposal distribution q(x2 | x1) for proposing state 2, given the
system is in state 1, and an acceptance distribution α(x2,x1) for accepting
state 2, the transition probability is

P (x2 | x1) = q(x2 | x1)α(x1,x2). (41)

Inserting this relation into (40) gives us

α(x1,x2)

α(x2,x1)
=
π(x2)q(x1 | x2)

π(x1)q(x2 | x1)
. (42)

For a new configuration, where the energy is lower than the previous config-
uration, the condition from simulated annealing state that the acceptance
probability go to a unity of 1. Therefore Eq. (42), turn to

α(x1,x2) = min

(
1,
π(x2)q(x1 | x2)

π(x1)q(x2 | x1)

)
. (43)

For proposal distributions which only depend on the difference | x1 − x2 |
between energy state 1 and energy state 2, the ratio q(x1 | x2)/q(x2 | x1) is
just 1. The probability density π(x) for a system that follows the Boltzmann
probability distribution (37), becomes π(x) = P (E) = exp(−E/kT ), and we
finally arrive at the acceptance probability:

α(x1,x2) = min (1, exp[−(E2 − E1)/kT ]) (44)

since exp(−E2)/exp(−E1) = exp[−(E2 − E1).

The energy E is the objective function that is used to compare states. In
this study, we are building a resistor network, with no real energy connected
to it. The approach to evaluate the resistor networks are by comparing
the matrix norm of the transfer-matrices of the measured system, and the
annealing system,

E = ‖ Am −Ac‖2 (45)

where Am and Ac are the transfer-matrices of the measured and the an-
nealing system, respectively.

The implementation for the Metropolis-Hasting algorithm is as following:
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1. Initialize with a random starting state x0 in the model space at time
t = 0.

2. Generate a random candidate state xc.

3. Calculate the acceptance probability α(x0 | xc) by Eq.(44).

4. Generate a uniform random number r ∈ [0, 1].

i If r < α(x0 | xc), accept the new state, and set xt+1 = xc.

ii If r > α(x1 | xc), reject the new state, and set xt+1 = x1.

5. Increment t = t+ 1.

3.2.2 Temperature

The temperature T in Boltzmann distribution correspond to a control pa-
rameter in simulated annealing, sometimes referred to as a computational
temperature. At high T , the system performs a coarse search of the model
space to find good minima. If we look at Eq.(38), we can see that by lowering
T , the negative exponential will increase, and thereby reduce the probabil-
ity for uphill transition. This is a sort of fine tuning of the search space,
where searches will be narrowed down to the neighbourhood of an already
determined minimum, and attempt to capture the configuration in the low-
est possible energy state. For simulated annealing, an annealing schedule is
introduced to gradually lower the temperature T . The annealing schedule
is critical for the efficiency of simulated annealing. The annealing schedule
include when and how much the temperature is lowered. The when is in this
study coined the annealing time step k, and is related to the iterative time
step t. Annealing time step is usually defined by lowering the temperature
after a certain amount of either new configuration attempts or approvals. A
stopping criterion is also commonly based on the annealing time step too.
If a high number of rejections (low approval-to-attempt ratio) occurs, the
optimization procedure is concluded. Ideally the system should have time to
reach a near-equilibrium state for every new configuration, where the energy
average have minimal fluctuations, before every temperature cooling. If T is
lowered too fast, its a high possibility of getting stuck in local minima val-
leys. For the opposite situation, where T is lowered too slow, the algorithm
doesn’t converge, and may never find global minimum. Finding a usable
annealing schedule varies with every problem, and is about trial and error.
Although some general schedules have been proposed in the literature for
how much the temperature should be lowered [9, ?]:
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• Exponential schedule: Tk = akT0, where a is a cooling constant usually
between 0.85 and 0.995, k is the annealing time step, and T0 is the
initial temperature.

• Linear schedule: Tk = T0 − ηk, where η is a decay parameter.

Exponential and linear are the original schedules from Kirkpatrick’s paper
[9], and are the easiest to implement.
Lastly, an initial temperature T0 also needs to be considered, as this might
influence the result and the computation time. If the initial temperature is
too high, almost all configuration changes will be accepted, and the system
will be kept rambling in high energy states for much of the computing time.
On the other hand, if the starting temperature is too low, the system might
get stuck on a path towards a local minimum, similarly to the result of
reducing the temperature too rapidly.
The initial temperature should give the system a fair chance of accepting
worse solutions (go uphill), so it doesn’t easily get trapped in local minima
valleys. Some suggestions on how to approach the initial temperature have
been described in Kirkpatrick et al. paper on SA [9]:

• Initial temperature is suggested to be larger or equal to the maxi-
mal energy difference between any neighbouring configurations, T0 =
∆Emax, for a normal run.

• Initial temperature should give an acceptance probability α0 for the
first iteration sequence before temperature change, where α0 may be
any number between 0 and 1, but it is recommended to be close to 1.

As for the annealing schedule, initial temperature is again mostly about trial
and error, and customization of the parameter have to be done according to
the results of trial runs.

3.2.3 Implementation and Pseudocode

In this study, the system configuration is the resistor elements in the net-
work. Every resistor, or its value, is stored in a list. This list is used to to
pick the values, that goes into making the transfer-matrix. The transfer-
matrix is equivalent to the apparent resistivity measurements, and used to
compare the annealing configuration to the true measured configuration.
New configurations are generated by switching out a randomly chosen re-
sistor, and replace it with a randomly generated value. When a resistor
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is switched out, the transfer-matrix have to be recalculated for the whole
network.
The objective evaluation function is made by comparing the norm of the
measured transfer-matrix to the annealing transfer-matrix ‖ Am −Ac‖2.
The pseudocode representation of SA:

Algorithm 2 Simulated annealing

Initialize time t = 0
Initialize starting temperature, Tk = T0
Initialize system configuration, xt = x0, starting energy Et = E0

repeat
Generate a random candidate state xc, and calculate energy Ec =
‖ Am −Ac‖2

Calculate acceptance probability α = exp(− (Ec−Et)
T )

Generate random number r uniformly in (0,1)
if α > r then

accept new configuration, xt+1 = xc with Et+1 = Ec
else

reject new configuration, and keep the previous configuration xt+1 =
x0 with Et+1 = Et

end if
Decrease temperature according to annealing schedule, Tk+1 = Tk−∆T
Increase time t = t+ 1

until T ≈ 0
return xt
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3.3 Simulation Procedure

The objective of this study, is to demonstrate that a resistor distribution
of an electrical resistor network may be approximated from the measured
apparent resistivity of the total network. For this purpose, a few different
artificial resistor mappings have been composed by the author, to produce
transfer-matrices of a supposedly measured systems. These are used to
compare the annealing system, to the supposedly measured system, to see
if it can approach the true resistor distribution.
A uniform random number generator was used for generation of random
numbers. Simulations performed for the result section was produced using
seed(12345). Several seeds was tested for every procedure, to avoid lucky or
unlucky simulations, and to see that the simulations performed within the
same result range.
A matrix was made from the list of resistors to make an image. For L = 3
the images have 7 layers, and for L = 6, the images have 13 layers. The
reason for this is due to how the images are built in a matrix format. The
first row, are the resistor values of the first horizontal row, and the second
row, is the first layer of vertical resistors and so on. Therefore, each row is
one layer of either horizontal or vertical resistors. For L = 3, three layers of
vertical resistors, we get 2L+ 1 = 7 layers in the image, and for L = 6, we
get 13 layers in the image.
For N top nodes, we get N − 1 horizontal resistors for each layer, and
N vertical resistors. Due to this, the N × L matrix is missing the N ’th
horizontal resistor for every layer. The N ’th pixel of the first, and every
other row, will by default be zero, (as the matrix is initialized as a zero
matrix), and therefore be black. This is just to complete the image, and
does not effect the simulations or the results.
Python was the working programming language for development of the al-
gorithms. The program was later transferred to Cython, an C-extension for
Python, to speed up the simulations (see A.1). A note should be made to
remind the reader that Pythons ranging starts at 0, and the indices of the
images will therefore also start at 0.

The simulations executed in this study, was performed with resistors valued
between 0.5 and 1.5. The initial configuration was always randomized, as
can be seen in Figure 7 and 8.
A network consisting of N = 12 top nodes (width), and L = 3 layers (depth)
as in Figure 7 was used for most simulations. At this lattice size, an E
symbol (for electricity), was made with resistors of value 1.5 while all the

22



3.3 Simulation Procedure 3 Numerical Methods

other resistors were set to 0.5. For this network, different simulations for
run times t, initial temperatures T0, annealing time step k and temperature
lowering were performed.

Figure 7: Left panel shows the artificial resistor distribution of a 12× 3 network.
The red pixels illustrate 0.5 resistors. An arbitrarily shape, in this case an E,
is formed from 1.5 resistors. Right figure is a random starting configuration for
the annealing system. The scale on the far right, shows the color mapping of
the resistance values. The black dots on the right edge of each image, are zero
resistances. These are to fill in the matrix used to make the image.

Simulations were also performed with lattice size N = 25 and L = 6 (Figure
8), where a checkered pattern consisting of 0.5 and 1.5 resistors, were made
to increase the difficulty. Lastly, for a real challenge, a grading pattern were
made for N = 25, 26, 27, 28 and L = 6 (Figure 9), with resistor ranging from
0.5 to 1.5, with a 0.1 interval.
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Figure 8: Left panel is the resistor configuration of an artificial 25× 6 checkered
pattern. Red pixels are 0.5 resistors, and white pixels are 1.5 resistors. Right figure
is the random starting configuration for the annealing system. Scale on the far
right shows the color mapping of the resistance values.

Figure 9: Grading pattern for 25 × 6 network, with resistors ranging from 1.5
(white pixels) to 0.5 (red pixels) at a 0.1 interval.
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4 Results

In this section we present results of the simulations performed using the
algorithms from Section 3. The 12 × 3 system is considered in the first
Section 4.1, where we compare the simulation parameters. The results from
running optimizations on a 25×6 checkered pattern is shown in Section 4.2.
Optimization of a few graded patterns is presented in Section 4.3. Lastly,
we show a summarizing figure of the three main networks of this study in
Section 4.4.

4.1 Parameters of Simulated Annealing

Simulations for illustration of SA parameters were performed with a system
of N = 12 top nodes, and L = 3 layers. The 12 × 3 network was able to
perform about 9000 iterations per second within the Cython framework. In
pure Python, the same network had about 2700 iterations per second. A
pure C code was also tested, and was able to perform up to 20000 iterations
per second.
Figure 10, shows how the simulated annealing system develops when com-
pared to the true resistor distribution in Figure 7, the E-symbol. The initial
temperature is T0 = 1, annealing time step k = 100 and temperature low-
ering Tk = 0.95kT0 for these results. The parameters of this run was set
to show how some of the first trials went. The parameters are not optimal,
but we can see some interesting features anyway. Firstly, we can see that
the simulation system is able to shape out the top layers, and hint out that
there is something in the middle of the system after about t = 10000 iter-
ations. From t = 10000 to t = 20000, we can actually see the simulation
evening out the surroundings, and shaping out the contours of an object.
From t = 20000 to t = 1000000, 980000 iterations later, there are barely any
improvement.
The effect initial temperature T0 has on the simulation results is illustrated in
Figure 11. All parameters are constant, except for the initial temperatures.
Simulations were run with T0 = 0.1, 1, 10, 20, 50 and 100, to illustrate the
difference between too low, good, and too high initial temperatures. We can
see that the simulation is able to approximate an object in the middle for
all of the different initial temperatures, but the quality of the simulations
appear dependent on T0.
Annealing time step k is illustrated in Figure 12. The annealing time steps
used are k = 50, 100, 200, 300, 400 and 500, with all other parameters con-
stant. We can again see that the simulations are able to approximate the
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Figure 10: Development of the simulated annealing system through different run
times t as it attempts to approach the measured system with an E symbol in the
middle. The other parameteres were constant at T0 = 1, k = 100 and Tk = 0.95kT0.

object in the middle, but in some variable degree. The annealing time step
k appear to have an impact on the optimization procedure.
The second annealing schedule parameter, temperature lowering, is inves-
tigated in Figure 13. In this figure we have also included images from
different run times t to illustrate speed vs. accuracy. The temperature
lowerings, Tk = akT0, illustrated are a = 0.85, 0.90, 0.95 and 0.99, at time
t = 100000, 200000 and 500000. All other parameters are constant. We can
see that all simulations are able to approximate an object in the middle,
but the slowest cooling a = 0.99 need more time to do so. The quickest
cooling is able to find a good approximation after the least amount of time.
However, the slowest one also seems to provide the best optimization.
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Figure 11: Simulations with different initial temperature T0. Run time t =
100000, annealing step = 100 and temperature lowering Tk = T0 0.95k were con-
stant.
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Figure 12: Simulations with different annealing time step k, T0 = 10, run time
t = 100000, and temperature lowering Tk = T0 0.95k.
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Figure 13: Simulations with different temperature lowering, different run times,
annealing time step k = 300, initial temperature T0 = 10. The rows are different
run times t, and the columns are for different temperature lowering Tk = akT0.
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4.2 Checkered Pattern

Figure 14: Simulation of a checkered pattern at different times t. Initial tempera-
ture T0 = 20, annealing time step k = 500, and temperature lowering Tk = 0.90kT0
were constant.

The size of the network was extended, to see if simulated annealing was able
to approximate solutions for larger networks and to compare time consump-
tion. In addition, a checkered pattern was constructed at this size to provide
the system with an additional challenge. The 25×6 network did about 3000
iterations per second within the Cython framework. A 60 × 12 network
was tested for iteration speed only, and performed about 250 iterations per
second.
Trials with different run times t, initial temperatures and annealing sched-
ules were attempted, before producing the representative simulation in Fig-
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ure 14. This means that the simulations does not necessarily show the
best or the worst results, but it does show a good simulation of the check-
ered pattern. Parameters of the resulting run, was T0 = 20, k = 500, and
Tk = 0.90kT0 We can see in this figure that the annealing system quite
quickly was able to approximate the measured system at the first few layers.
At t = 100000 half the pattern was recognized. From this, it took longer and
longer for the remaining network to be approximated. The image was close
to complete at t = 1000000, but the system is not able to differentiate some
of the few remaining resistors at the lower edges and bottom. Simulation
attempts of another few million iterations showed almost no improvement,
and the system can be said to be settled in an approximated optimum.

4.3 Graded Pattern

Lastly a graded pattern was attempted for network sizes of 25 × 6, 26 × 6,
27× 6 and 28× 6. The parameters was set as following: T0 = 50, k = 1000,
Tk = 0.97kT0, and run time t = 1000000. We can see in Figure 15 that the
top two layers are comparable to the measured system, but after that the
grading pattern melts away. The interesting thing is that we can see that
where the grading vanishes, the contour of the measured system continues.
The image quality can be said to be pretty bad and from the first glance
does not look like the pattern of the measured system. However, some
resemblance to the global patterns are made.
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Figure 15: Simulations of a graded pattern for different sizes N , initial tem-
perature T0 = 50, annealing time step k = 1000, and temperature lowering
Tk = T0 0.97k and run time t = 1000000. Measured system on the left, and
annealing system on the right.
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4.4 Synopsis of the Modelling Optimizations

Figure 16: Comparison of simulations from the three different main network sizes.
For each measured system we have: The approximated annealing system on the top
left, with error below it. On the top right, the energy difference during the simulated
annealing process, and below it, the final difference between the measured system,
and the annealed system.

The results shown in Figure 16 are to summarize the optimization procedure
performed on three of the main networks: E-symbol, checkered pattern and
graded pattern. In this figure the measured system is shown together with a
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final approximation, final error, energy difference throughout the run time,
and the final energy difference. The parameters of the E-symbol was set
as following: T0 = 10, k = 300, t = 500000, Tk = 0.99kT0. Parameters of
the checkered pattern was as following: T0 = 20, k = 500, t = 1000000,
Tk = 0.90kT0. The parameters of the graded pattern was as following:
T0 = 50, k = 1000, t = 1000000, Tk = T0 0.97k. We can see that there is a
difference in how the systems are processed. The E-symbol energy difference
goes down quite steadily, until it almost levels out around t = 450000. The
checkered pattern had a faster annealing schedule and we can see the energy
difference rapidly declining the first 100000. After this it goes into a slow
descend, with sudden drops, until it levels out after about 800000 iterations.
The graded pattern have a steady energy difference descend until 450000
iterations, where it rapidly almost levels out for the next 500000 iterations.
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5 Discussion

In this section we will discuss the results presented in Section 4, and the
implications of these results. We will also discuss the algorithm used in this
study, how to improve it, and comparing it to the established method for
finding a solution in electrical resistivity tomography.

5.1 Discussion of the Results

5.1.1 Parameters of Simulated Annealing

Optimization algorithms are known to be drawn to the first optimum it
encounters. SA is acknowledged for its capability to not fall for greedy solu-
tion. Though, this does not mean it cannot be trapped by pseudo solutions.
The parameters are critical to its efficiency to approximate the global opti-
mum. Figure 10 illustrate a simulation run, with only loose consideration
of the simulation parameters. We can see that the system is quite quickly
able to find many of the correct resistors in the first few layers, and hint to
an object in the middle. But from t = 20000 to t = 100000 there is barely
any improvement. This perfectly illustrate that the system have got stuck
in a local sub-optimal solution, and can hardly improve from there. This is
possibly due to too low initial temperature, or too rapid annealing schedule.

The importance of initial temperature T0 is illustrated in Figure 11. We can
see that the figure is able to approximate an object in the middle for all the
different initial temperatures, but the quality of the image is clearly depen-
dent on T0. For T0 = 0.1 and T0 = 1, the lower image qualities, suggests
that the initial temperatures were too low, and the simulations got stuck
in a local minima. For T0 = 10 and T0 = 20 the images are very close to
the measured system, which suggest these initial temperatures were quite
good. For T0 = 50, and T0 = 100 we can see that the images are again
of lower quality. This is because the simulations have spent much of their
time searching in the higher states, and haven’t had time to properly settle
for a minimization path. Given more run time t, they should be able to
produce images of the same quality as T0 = 10 and T0 = 20. As the images
for T0 = 10 and T0 = 20, became quite good, this also suggests that the
annealing schedule was within a good range.

Figure 12 illustrates the impact of the annealing time step k. The anneal-
ing time steps k = 50 and k = 200, show that an object is found, but the
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quality is low. This suggests that the systems cooled too rapidly, and got
stuck in local minima. Annealing time step k = 100 shows an image of very
high quality, but attempts with other seeds showed this to be an artifact.
For k = 500, the system had not enough run time t = 100000 to settle in
the object, and produced an image of low quality. Given more run time it
would produced an image of higher quality, but at the expense of increased
computational time. The best attempts were performed with k = 300 and
k = 400, and a run time t of 100000, which took about 40 seconds. This
suggests that these are good annealing time step for the 12 × 3 network
together with temperature lowering Tk = T00.95k. In this study, the anneal-
ing time step k was defined as how many new configurations were suggested
before changing the temperature. Another approach commonly utilized is
to define k as how many new configurations are accepted before changing
temperature. Counting the rejected attempts is also a method for defining
k, but is usually used as a stopping criterion (together with a temperature
threshold) [19].

Figure 13 shows the development of the annealing system with different tem-
perature lowerings Tk = T0a

k, at run time t = 100000, 200000 and 500000.
We can see that the faster temperature lowerings, were able to find ap-
proximate solutions quite quickly, but can’t improve much further after a
certain number of iterations. For smaller and less complicated systems, a
quicker annealing schedule can be almost as good as a slower one. For find-
ing the best solution, longer run time t, and a slower temperature lowering
is needed. This we can see from the difference between a = 0.85 and a = 99
in Figure 13. Several cooling schedules are mentioned in the literature and
a few have their own name, such as Fast simulated annealing [20] and very
fast simulated re-annealing [21].
We can from the figures in Section 4.1 see that the parameters of SA have
an important impact on the optimization procedure. SA is not a straight
forward algorithm, it is in fact a metaheuristic, and requires tweaking of the
parameters.

5.1.2 Checkered Pattern

A larger network 25×6, with a checkered pattern was attempted to increase
the difficulty of approximating the resistivity distribution. The larger sys-
tem took a longer time to run, about 350 seconds, and required more time
steps t to find good approximations. Additionally, larger systems require
larger annealing time step k to successfully bring the system to an energy
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equilibrium for each temperature lowering. Thus, contributing to a length-
ened run time t. For this reason, just one of the simulations are shown in
the results. This is nevertheless a representable optimization of this pattern.
We can see that the pattern is quite recognizable, but some local resistivity
is not quite mapped out. This will be discussed further in Section 5.2.2.

5.1.3 Graded Pattern

The graded pattern was believed to be very difficult for the simulations to
distinguish each resistor element, and therefore produce inaccurate images.
We can see in Figure 15 that this was somewhat correct. The top two layers
are comparable to the measured system, but after that the grading pattern
melts away. The interesting thing is that we can see that where the grading
vanishes, the contour of the measured system continues. The image quality
can be said to be pretty bad and from the first glance does not resemble
the pattern of the measured system at all. However, from the point of
recognizing structures in a disordered system ( such as a lump of metal in
the soil), one could argue that the simulation is able to approximate and
produce indications of an object. The issue of indeterminable resistivity is
further discussed in Section 5.2.2.

5.1.4 Synopsis of the Modelling Optimizations

The final figure 16 shows some features of the simulation process and results.
The E-symbol has a steady decline in energy difference, and is able to lock
onto something that leads to a near-optimal approximation. A few resis-
tors are not fully exposed, but the final energy difference and error mapping
substantiates the claim of a good approximation. The checkered pattern
seems to have a too rapid annealing schedule. The approximation is nev-
ertheless able to lock on to a good approximation, and reveals most of the
resistivity distribution. This pattern may not have been as challenging to
distinguish as first believed by the author. The lower edges and bottom is
again difficult to correctly differentiate, and will be further discussed in Sec-
tion 5.2.2. The graded pattern gave the annealing system a real challenge.
Local resistivity is poorly distinguished, however, it was able to produce a
global mapping of the underlying resistivity pattern. This again is a discus-
sion of indeterminability of local resistivity in Section 5.2.2. The annealing
schedule seems to be too rapid, and levels out after only half of the run
time. Slower annealing schedule, and increased run time might improve the
approximation.
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5.2 Further Discussion

5.2.1 Least Squares vs. Simulated Annealing

Least squares is a method for modelling data by minimizing the sum of
squares of the difference between observed and estimated values. Newton-
Gauss algorithm is a type of least squares, on which Lokes method is based
on. For highly non-linear problems, this method requires constrains and
regularizations. This can lead to posterior distributions that does not bring
out the true underlying model, and important details can be lost. Arbitrary
and subjective regulariszation may give solutions which are biased, and parts
of the true model can be neglected or omitted. For larger macroscopic
surveys of the subsurface this might not be a big problem, however for
discovery or assessment of smaller details in e.g. the ground, finding such
details would be an important quality of the method. Additionally, due to
the ill-posedness of inversion problems, a vast amount of local optima appear
as viable solution to local optimization methods, such as least squares. This
requires a good initial model solution of the problem, which require a prior
and/or numerous trial runs, for it to be able to approximate the global
optimum. Least squares is a simpler and faster algorithm, and consequently
led the practice of inverting geophysical field data to this method. From
a time where the computer power was only a fraction of what it is today,
running a heavy heuristic like SA on a desktop computer would have been
redundant. Least squares therefore has decades of research, experimentation
and optimization to back it up. A direct and fair comparison between these
two methods are hence not easy to perform.
SA searches for the global optimum, and is found able to lock down on
good approximated solutions to inverse problems, regardless of initializa-
tion. This can be seen on all the figures in the result section, since all initial
configurations were random. Drawbacks of SA are its general and computa-
tionally heavy heuristic. The generality makes it non-trivial to implement,
and customizations have to be considered for most new problems. The time
consumption can be tremendous for large and complex problems. Given
these two arguments together, puts SA on the lower end of the algorithm
choice shelf, despite its powerful and intelligent framework.

5.2.2 Local Indeterminable Resistivity

Finding the values of resistors, only from measurements at the top layers,
naturally have some obstacles. The point of doing several measurements
at the top, is to be able to compare the probable pathing of current from
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one node to another in the network, and hence estimate the resistivity. For
each layer, the impact from local resistor on the apparent resistivity mea-
surements are reduced, and finding the true resistivity becomes increasingly
difficult. This is especially prominent on the lower edges, corners and bot-
tom (see Figure 14 and 15). When approximating the resistivity, only by
external measurements, the values of some resistors are easy to mix up, again
especially in the lower layers. If we e.g. have two resistors in the bottom
corner, one with a higher value, and the other one with a lower value. The
approximation can just as likely average the high and low value of those two
resistors, and thus the resistors effectively appear to be equal. Same goes
for two equal resistors, that can appear as one high and the other low. This
makes some of the resistors effectively indeterminable, and further from the
top, the more likely this is to occur. We could observe the indeterminacy
readily in the graded pattern in Figure 15, where differentiating the local re-
sistor values quickly became difficult. However, the global shape of a pattern
was still possible to distinguish.
In this study only a maximum of 6 layers were attempted to be estimated,
and the lower levels still have enough impact on the apparent resistivity
to be determinable. For larger systems, the difficulty of determining the
resistivity of the lower levels, will likely increase to the impossible.

5.2.3 Algorithmic Procedure

This study was about proof of concept; the resistor values used was between
0.5 and 1.5, and for most approximations, either 0.5 or 1.5. This difference
between smallest and largest is quite small, and when comparing the config-
urations as a whole, the differences becomes slight. In addition, the random
number generator chooses values between 0.5 and 1.5, which in practice is
an infinite amount of numbers, and makes it impossible to hit the absolute
correct value. On the other hand, the small difference between the resistors,
made it faster and easier than if the difference was several thousands. In Fig-
ure 15, we could see that the small contrast between the resistor elements,
made it hard to distinguish single resistor values from each other.
There are three factors which make this algorithm inefficient:

• Switching out one resistor at a time.

• Random number generator can choose an infinite amount of values
between the highest and lowest resistor value.

• Reconstruction of the transfer-matrix for every iteration.
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The annealing system was run for up to a million iterations to approximate
the checkered system. The system was 25 × 6, consisting of a total of 294
resistors. New candidate configurations are generated by switching out one
resistor, with a random valued resistor. When combined with the random
number generator which can choose any value between 0.5 and 1.5, we can
see that the approximation is deemed to take some time. A more efficient
candidate generator, with a finite number of random resistor values to choose
from between the highest and lowest values could potentially increase the
performance of the algorithm.
For every new resistor switched out to generate a new candidate configura-
tion, the transfer-matrix has to be rebuilt from the first to the last resistor
in the network. This is a algorithmic process that contains several loops,
and a double for-loop, which have the iterate over the whole N width and
L depth of the network. This creates a dense matrix, which is computa-
tionally heavy to work with. This has to be done for every iteration of the
annealing process, and is without doubt the most time consuming part of
the algorithm. Improving the processing of the transfer-matrix would be
highly beneficial for the efficiency of the algorithm. When only one resistor
is switched out in the network, only the proximal resistivity is affected, and
thereby only part of the transfer-matrix. Instead of rebuilding the transfer-
matrix, one should rebuild only the affected parts of it. Other improvements
to the transfer-matrix could be to modify or decompose it to more sparse
and manageable matrices.
The transfer-matrix is in this study used to store the model parameters of the
configuration states. The objective evaluation function E uses the transfer-
matrix to compare the annealing configuration to the measured system.
There could be other and better methods for storing and/or comparing the
configuration states.
Simulated tempering is a modified version of SA, which consider model
copies at different temperatures, and picks the most viable. It is shown to
increase the accuracy of the annealing algorithm [23].

5.2.4 Time Consumption

Simulated annealing is infamous for its extensive time consumption. The
time consumption can be a good reason for deselecting simulated annealing,
despite showing promising results. In this study, the time spent approxi-
mating a solution quickly became a problem. The algorithm for producing
the transfer-matrix, requires it to ”build” the resistor network from the bot-
tom and up, for every new configuration candidate within the simulated
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annealing algorithm. The construction of the transfer-matrix consists of
two for-loops, one of which is a double for-loops to span the N width, and
the L layers of the network. Therefore, for larger models the computational
time increased significantly. A few basic optimizations were performed to
increase the iteration process, such as switching out a few for-loops, and
using Cython as a C-extension to the Python code. Performance of the
Cython program was about 3.5 times faster. A pure C code was also tested
for the purpose of speed comparison of constructing the transfer-matrix,
and gave another 2.2 times speed up. A network of N > 100 is desired for
practical applicability, but this would take days to approximate even in pure
C language framework. A note on the performance should be stated: the
simulations were performed on a laptop with 1,4 GHz Intel Core i5 proces-
sor, and performance could greatly benefit from more dedicated processing
power (stationary computer, computer cluster, cloud computing, supercom-
puter).

Parallelization of the annealing process has shown to efficiently decrease
the time consumption, but due to the fact that simulated annealing is a
naturally sequential algorithm makes it non-trivial to implement [22].
Genetic algorithm (GA) is a global optimization method, where a pool of
configurations, rather than just one are evaluated. New candidate configu-
rations are not only generated by making new configurations (as in SA), but
also by combining configurations from the pool. Evaluation of the configu-
rations are done in the similar manner as in simulated annealing. Accepted
candidates go into the configuration pool, and excess configurations are dis-
carded from the pool in an accept/reject-probability manner. SA-GA hybrid
has shown to be more effective in identifying global optimum than SA and
GA alone, and additionally, easy to ameliorate through parallelization [24].
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6 Conclusion

The purpose of this thesis was to investigate if it is possible to approximate
the resistor distribution of a resistor network, given an apparent resistivity
measured at the top layer of the system. For this purpose, we built a ran-
dom resistor network, used transfer-matrix method to store and compare
the apparent resistivities, and simulated annealing to approximate the mea-
sured system. Results from this study show that the annealed system was
able to approximate the measured system with resistors valued between 0.5
and 1.5 up to the size of N = 25 top nodes and L = 6 layers. However,
some problems with indeterminable resistors were observed. Especially pat-
terns where resistors are gradually changing values made it challenging to
estimate local resistivity, but a global distinction of the pattern was still
visible. What have been provided in this thesis may be seen as a proof of
concept for approaching resistivity distribution calculations, using simulated
annealing. An obstacle for investigation of bigger systems were that the an-
nealing system is incredibly time consuming. Improvement of the algorithm
should be considered to achieve a competitive method for solving non-linear
inverse problems.

6.1 Future Research

The results presented in Section 4 show promising outlook for utilizing SA
as optimization method for processing data of highly non-linear inverse
problems. However, the algorithm developed in this study was mainly con-
structed for conceptual proof. Improvement of the algorithm for faster and
more accurate computations should be considered for further research. Sev-
eral optimizations and performance improvements was discussed in Section
5. These could be subject for further work, and include:

• Increase the efficiency of transfer-matrix construction, or modified
transfer-matrix.

• How the new configuration candidates are generated.

• Modified SA methods, e.g. simulated tempering, SA-GA hybrid.

• Parallelization.

42



6.1 Future Research 6 Conclusion

The simulations were performed as a conceptual proof. This raised an im-
portant next question: Is this method applicable to real conduction systems?
To answer this, further research and experimentation is needed.

Electrical networks have numerous physical analogies. A few selected anal-
ogous systems are provided in the Appendix A.2. An interesting question
is whether it could be possible to transfer this method, and perform simu-
lations on analogous systems.

Investigation of these subjects could possibly lead to innovative methods for
mapping of internal structures.
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A.1 Cython Code for the Numerical Methods

import random
import copy
import matp lo t l i b . pyplot as p l t
import numpy as np

cimport numpy as np
cimport cython

DTYPE = np . f l o a t 6 4
ctypede f np . f l o a t 6 4 t DTYPE t

random . seed (12345)

cde f int N = 25 # number o f top nodes , a
r e s i s t o r i s placed between two nodes
cde f int L = 6 # number o f v e r t i c a l r e s i s t o r l a y e r s
cde f f loat low = 0 .5 # l o w e s t r e s i s t o r v a l u e
cde f f loat high = 1 .5 # h i g h e s t r e s i s t o r v a l u e

cde f int l

A matrix = np . z e r o s ( (N,N) )

#Construct ion o f a measured t r a n s f e r matrix A
def bu i ld (np . ndarray [ DTYPE t , ndim=2] matrix ) :

cde f int i , l , n , j

cde f np . ndarray [ DTYPE t ] R s ta r t h =
np . ones ( (N − 1) ∗ L + (N − 1))∗ low
cde f np . ndarray [ DTYPE t ] R s ta r t v = np . ones (N∗L)∗ low

#To make checkered p a t t e r n
for i in range ( 1 , (N − 1) ∗ L + (N − 1 ) , 2 ) :

R s ta r t h [ i ] = high
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cde f np . ndarray [ DTYPE t , ndim=2] A matrix = np . z e ro s ( (N,N) )
cde f np . ndarray [ DTYPE t , ndim=2] A = np . z e ro s ( (N,N) )

for i in range (N − 1 ) :
A matrix [ i , i ] += 1 / R sta r t h [ i ]
A matrix [ i , i + 1 ] += −1 / R sta r t h [ i ]
A matrix [ i + 1 , i ] += −1 / R sta r t h [ i ]
A matrix [ i + 1 , i + 1 ] += 1 / R sta r t h [ i ]

for l in range (L ) :
for n in range (N) :

A = copy . copy ( A matrix )
for i in range (N) :

for j in range (N) :
A matrix [ i , j ] = A[ i , j ] −
( (A[ i , n ] ∗ A[ n , j ] ∗
R sta r t v [ l ∗N+n ] ) /
(1 + A[ n , n ]∗ R sta r t v [ l ∗N+n ] ) )

for i in range (N− 1 ) :
A matrix [ i , i ] += 1/ R sta r t h [ l ∗(N−1)+ i +(N− 1 ) ]
A matrix [ i , i +1] += −1/ R sta r t h [ l ∗(N−1)+ i +(N− 1 ) ]
A matrix [ i +1, i ] += −1/ R sta r t h [ l ∗(N−1)+ i +(N− 1 ) ]
A matrix [ i +1, i +1] += 1/ R sta r t h [ l ∗(N−1)+ i +(N− 1 ) ]

return A matrix , R start h , R s ta r t v

A matrix , R start h , R s ta r t v = bu i ld ( A matrix )

s t a r t r e s i s t o r s = np . z e ro s ( (2∗L+1, N) )

for l in range (N∗L ) :
s t a r t r e s i s t o r s [ 2∗L−1−2∗( l /N % N) , l%N] = R sta r t v [ l ]

for l in range ( (N−1)∗L+(N− 1 ) ) :
s t a r t r e s i s t o r s [ 2∗L−2∗( l /(N−1 ) ) , l %(N− 1 ) ] = R sta r t h [ l ]

@cython . boundscheck ( Fa l se )
@cython . wraparound ( Fal se )
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#Simulated annea l ing a l gor i thm
def SA(np . ndarray [ DTYPE t , ndim=2] matrix ) :

cde f int t = 0
cde f double E0 = (N+L)∗∗2
cde f double T = 20
cde f int update = 0

cde f np . ndarray [ DTYPE t ] R t r i a l h =
np . random . uniform ( low , high , (N − 1) ∗ L + (N− 1) )
cde f np . ndarray [ DTYPE t ] R t r i a l v =
np . random . uniform ( low , high , (N∗L) )
cde f np . ndarray [ DTYPE t ] R best h = copy . copy ( R t r i a l h )
cde f np . ndarray [ DTYPE t ] R best v = copy . copy ( R t r i a l v )

cde f double random re s i s t o r va lue , E1 , p , alpha , probabi l i ty number
cde f int random pos i t ion
cde f int a , l , n , j
cde f np . ndarray [ DTYPE t , ndim=2] A m a t r i x t r i a l = np . z e ro s ( (N,N) )
cde f np . ndarray [ DTYPE t , ndim=2] A = np . z e ro s ( (N,N) )
cde f np . ndarray [ DTYPE t , ndim=2] U matrix = np . z e ro s ( (N,N) )

while t < 500000:
r a n do m r e s i s t o r v a l u e = random . uniform ( low , high )
random pos i t ion = random . randrange (0 , (2∗N−1)∗L+(N−1) )
i f random pos i t ion >= ( (N−1)∗L+(N− 1 ) ) :

R t r i a l v [ random pos i t ion− ( (N−1)∗L+(N− 1 ) ) ]
= r a nd o m r e s i s t o r v a l u e

else :
R t r i a l h [ random pos i t ion ] = r a n d om r e s i s t o r v a l u e

A m a t r i x t r i a l = np . z e ro s ( (N,N) )

for a in range (N− 1 ) :
A m a t r i x t r i a l [ a , a ] += 1/ R t r i a l h [ a ]
A m a t r i x t r i a l [ a , a+1] += −1/ R t r i a l h [ a ]
A m a t r i x t r i a l [ a+1,a ] += −1/ R t r i a l h [ a ]
A m a t r i x t r i a l [ a+1,a+1] += 1/ R t r i a l h [ a ]

for l in range (L ) :
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for n in range (N) :
V matrix [ n , n ] = 1 / R t r i a l v [ l ∗N+n ]

A m a t r i x t r i a l = A m a t r i x t r i a l . dot (np . l i n a l g . s o l v e
( V matrix + A mat r i x t r i a l , V matrix ) )

for a in range (N− 1 ) :
A m a t r i x t r i a l [ a , a ] += 1/ R t r i a l h [ l ∗(N−1)+a+(N− 1 ) ]
A m a t r i x t r i a l [ a , a+1] += −1/ R t r i a l h [ l ∗(N−1)+a+(N− 1 ) ]
A m a t r i x t r i a l [ a+1,a ] += −1/ R t r i a l h [ l ∗(N−1)+a+(N− 1 ) ]
A m a t r i x t r i a l [ a+1,a+1] += 1/ R t r i a l h [ l ∗(N−1)+a+(N− 1 ) ]

E1 = np . l i n a l g . norm( A matrix−A m a t r i x t r i a l )∗∗2
p = np . exp (−(E1−E0)/T)
alpha = min(1 , p )
probabi l i ty number = random . random ( )

i f alpha > probabi l i ty number :
E0 = E1
R best h = copy . copy ( R t r i a l h )
R best v = copy . copy ( R t r i a l v )
update += 1

else :
E1 = E0
R t r i a l h = copy . copy ( R best h )
R t r i a l v = copy . copy ( R best v )

i f update != 0 and t % 300 == 0 :
T = T∗0 .95

t += 1
return A matr i x t r i a l , R best h , R best v ,T

A mat r i x t r i a l , R best h , R best v , T = SA( A matrix )

#Make an image matrix
r e s i s t o r s = np . z e ro s ( (2∗L+1, N) )

for l in range (N∗L ) :
r e s i s t o r s [ 2∗L−1−2∗( l /N % N) , l%N] = R best v [ l ]

for l in range ( (N−1)∗L+(N− 1 ) ) :
r e s i s t o r s [ 2∗L−2∗( l /(N−1 ) ) , l %(N− 1 ) ] = R best h [ l ]
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f i g , ( ax0 , ax1 ) = p l t . subp lo t s ( f i g s i z e = (10 , 5 ) , n co l s =2)
im1 = ax0 . imshow ( s t a r t r e s i s t o r s , cmap=” hot ” , i n t e r p o l a t i o n=” nea r e s t ” )
im2 = ax1 . imshow ( r e s i s t o r s , cmap=” hot ” , i n t e r p o l a t i o n=” nea r e s t ” )
p l t . c o l o rba r ( im2 )
p l t . show ( )

A.2 Analogies to Electrical System

A few selected analogies to electrical systems, with corresponding parame-
ters:

Table 1: Corresponding parameters to an electrical system.

Electrical Fluid Thermal Mechanical

Voltage V Pressure P Temperature T Velocity u
Conductance G Mobility M Conductance κ Stiffness k

Current I Volume flux Q Thermal power Q̇ Force F
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