
Coupling AltaRica models with
optimization heuristics for the
assessment of maintenance policies

Huweiyang Jin

Reliability, Availability, Maintainability and Safety (RAMS)

Supervisor: Antoine Rauzy, MTP

Department of Mechanical and Industrial Engineering

Submission date: June 2018

Norwegian University of Science and Technology

RAMS
Reliability, Availability,

Maintainability, and Safety

Coupling AltaRica models with optimization

heuristics for the assessment of

maintenance policies

Huweiyang Jin

June 2018

Master Thesis

Department of Mechanical and Industrial Engineering

Norwegian University of Science and Technology

Supervisor : Antoine Rauzy

 i

Preface

This master thesis was written during the spring semester 2017 at the Department of Mechanical

and Industrial Engineering, Norwegian University of Science and Technology (Trondheim). It is

part of the two-year international master’s program in RAMS (Reliability, Availability,

Maintainability and Safety). The topic is based on the specialization project done in the autumn

semester 2017 titled " Coupling AltaRica models with optimization heuristics for the assessment

of maintenance policies". In this thesis, simulation tools from AltaRica project are used instead of

python script. The thesis is supervised by Professor Antoine Rauzy. It is written for readers with

basic understanding in the fields of reliability analysis.

 Trondheim 2018-06-08

 Huweiyang Jin

 ii

Acknowledgment

Thanks to my supervisor professor Antoine Rauzy for his help. He helps me very much with the

learning of computer science technologies, which I lack from my background.

Thanks to my classmate and friend Guilherme Vale for his support.

H.J

 iii

Abstract

The main objective of this thesis is do maintenance optimization for a system using AltaRica

simulation tools. Maintenance optimization is based on the assessment of maintenance policy.

Stochastic simulation is applied to assessment the performance of the maintenance policy.

The simulation process consists of several steps. First, build the AltaRica model. Second, compile

the AltaRica model using compiler from AltaRica project. Third, prepare indicator description file

and generate the simulator. Fourth, prepare mission description file and execute the simulator.

After this process, the simulation is conducted and the result will be stored in a csv file.

Maintenance optimization is based on the simulation process. Among a large number of

candidate solutions for maintenance policy, metaheuristic algorithm can lift the searching

efficiency for the optimum solution. Some algorithms help to skip unnecessary simulation and

avoid repeated work.

The combination of AltaRica simulation tools and metaheuristic algorithm realizes the efficient

automation of maintenance optimization process. This project makes the connection of these

two parts and achieves the objective.

 iv

Contents

Preface .. i

Acknowledgment ... ii

Abstract ...iii

Contents .. iv

1 Introduction .. 1

1.1 The AltaRica 3.0 Project .. 1

1.2 Background ... 2

1.3 Objective... 2

1.4 Structure of the thesis .. 3

2 Literature review ... 4

3 Theoretical description .. 9

3.1 Subprocess ... 9

3.2 XML and xml.dom .. 10

3.3 AltaRica model ... 12

3.4 AltaRica Tools ... 14

3.5 Character-separated values file ... 17

3.6 Regular expression ... 17

3.7 Algorithms .. 17

3.7.1 Gradient descent algorithm .. 18

3.7.2 Tabu search ... 20

3.7.3 Simulated annealing algorithm ... 22

3.7.4 Population method ... 24

4 Experiments .. 25

4.1 Introduction ... 25

4.2 Single element system ... 27

4.2.1 Introduction .. 27

4.2.2 Store parameters .. 28

4.2.3 Build system model ... 29

4.2.4 Modify alt file .. 31

4.2.5 Compile alt file .. 32

4.2.6 Create indicator description file .. 33

4.2.7 Generate simulator ... 34

4.2.8 Generate mission description file ... 34

4.2.9 Conduct simulation ... 35

 v

4.2.10 Read the result .. 36

4.2.11 Maintenance optimization .. 36

4.2.12 Result .. 39

5 Conclusion & Future work ... 40

Bibliography ... 41

Appendix A .. 43

A.1 XML file of candidate values .. 43

Test.txt ... 43

A.2 XML file of Indicator Description File ... 44

A.3 XML file of Mission description file .. 44

A.4 Batch file for generating simulator .. 45

gtsstocmp.cmd ... 45

A.5 AltaRica Model ... 47

A.6 ar3c.exe command list ... 48

A.7 Optimization program ... 49

1

Chapter 1

Introduction

1.1 The AltaRica 3.0 Project

In safety analysis, there are two categories of formalisms.

• Boolean formalisms: Fault Trees, Event Trees, Block Diagrams…

• Transition Systems: Markov Chains, Stochastic Petri Nets…

Virtual experiments are extremely resource consuming

• Approximations

• Tradeoffs accuracy of models/ability to perform computations

Classical formalisms of safety analyses stand at a very low level

• Distance between system specifications and models

• Models are hard to design and even harder to maintain throughout the

life cycle of systems

AltaRica promises to model systems at higher level so to reduce the distance between

systems and models, without increasing the complexity of calculations.

The features of AltaRica is formal, event-based, textual & graphical, with multiple

assessment tools. (Rauzy, 2014)

AltaRica 3 is the latest evolution of event based modeling language AltaRica. In this

language, the state of the system is described by means of variables, so, the

modification of the system state can only happen when its variables values change.

Also, the value of these variables can only change when an event is triggered. Events

can be associated with deterministic or stochastic delays. Models consist of

hierarchical components interfaced in a discrete event system: their inputs and

outputs can be connected and their transitions can be synchronized.(Mortada et al.,

2014)

2

1.2 Background

AltaRica performs well in safety assessment. However, the tools distributed in the

AltaRica project should be executed in command line. AltaRica Wizard is a software

designed by Antoine, which makes a graphical user interface for the users. This way of

using AltaRica tools is limited to the current functions and methods. For different

parameter data in a system, the configuration files of stochastic simulation need to be

modified. In AltaRica Wizard, this modification needs to be done manually. Thus, the

idea of simplizing the modification and making the process automatically arises.

Automation in the stochastic simulation process can make assessment efficient. Much

repetitive work can be neglected. A good choice is to write scripts in python controlling

the process. Python is a simple and minimalistic language. The pseudo-code nature of

python allows user to concentrate on solutions rather than syntax. It is possible to

embed Python within C/C++ programs to give 'scripting' capabilities for your

program's users, which is essential in this project. The embeddable feature of python

makes this project adjustable. The code can be modified according to the needs easily.

The combination of python and AltaRica makes it possible to use algorithms to lift the

efficiency. The AltaRica tools are C++ programs with high efficiency. The efficiency of

the process in python can be lifted by applying some certain algorithms, such as

metaheuristic algorithm.

1.3 Objective

The objective of this project is to conduct maintenance optimization efficiently using

AltaRica simulation tools. The main objective consists of two parts: One is to do

stochastic simulation using AltaRica tools in python, the other is to do assessment and

optimization in python applying algorithms.

Several main challenges are on the way to achieving the first part of the objective.

First, the AltaRica tools are C++ programs, which need to be called in python. While

the simulation tools are running, the python program has to wait for its ending and

then make use of the result. Second, the values of parameter for different simulation

changes. The configuration files need to be modified accordingly, which should be

done in python synchronized.

3

For the second part of the objective, the application of algorithms is the main

challenge. When the number of candidate solutions of maintenance policy is too large,

the efficiency of optimization process is influenced. Using algorithm in a good way can

help to skip some unnecessary simulations.

1.4 Structure of the thesis

Literature review

This chapter is a brief summary and abstract of related work.

Theoretical description

This chapter introduces the technologies used in this project.

Experiment

This chapter is the process of realization of the project.

Summary

4

Chapter 2

Literature review

Application of stochastic simulation

Stochastic simulation provides the estimated probability of possible scenarios of a

certain system or event. It is widely used in industry and other areas, in which real

experiments with the system is impossible or too pricy to conduct. General Electric

Company uses stochastic simulation in their western wind and solar integration study.

The deepening penetration of intermittent renewable resources presents major

challenges in power system planning and operations in light of their highly time-

varying nature and their associated geographical and climatological sources of

uncertainty. Indeed, unlike conventional resource outputs, wind and solar resource

outputs cannot be controlled by the operator except to be curtailed. The high

variability in wind speeds and insolation patterns, both temporal and spatial, results

at times in intermittent wind and solar resource outputs. (Energy, 2010)

These complications illustrate the critical need to appropriately represent the

temporal and spatial correlations of the wind and solar resource outputs in the

assessment of the power system performance. Such need implies that the various

renewable resource outputs, as well as the demands and conventional generation

available capacities, must be modeled by random processes (r.p.s) so as to capture

the impacts of their variability across time and space. These requirements drive the

need for a comprehensive simulation tool that can effectively quantify the expected

economic, reliability and emission variable effects of power system with integrated

renewable resources.(Degeilh and Gross, 2015)

The uncertainty of geographical and climatological sources makes it hard to predict

the timely situation. Stochastic simulation is used to predict the scenarios and

possibilities. Of course, the model is never accurate, as all models are wrong. The

simulation result provides some useful information for analysis.

The system model needs to be updated as the data collected during the work process.

An automatic way of updating the model, mainly the degradation model, is machine

5

learning. The main concept of machine learning here is to use the collected data to

update the system model with some algorithm automatically. The status data is

collected through continuous monitoring.

Figure 2.1 Machine learning (Barros, 2017)

As shown in the figure above, the degradation model is based on a lot of previous data.

The algorithm learns from the previous failures and derives of a possible degradation

trend for the current component and its status.

Machine learning can provide a timely updated degradation model, which makes the

result of simulation more trustworthy.

Maintenance optimization

Given a certain cost and reward structure an optimal repair and replacement strategy

will be derived. (Aven and Jensen, 1999) Maintenance optimization is to derive of the

maintenance policy, which has the best performance considering reliability,

production, etc.

Proper and safe operation is a goal for any electric power generation plant, especially

one powered by nuclear fuel. An inefficiently functioning plant costs more to operate

6

and produces less energy than it potentially could. Replacing or repairing items too

often may substantially increase the cost of operating the plant. A decision-making

rule that defines when and how an item is maintained is known as a maintenance

policy.(Belyi et al., 2017)

In an industrial setting, planned and unplanned maintenance stops can have a

significant impact on sustainability and short and long-term profitability. During a stop,

fixed costs of equipment, real estate and labor remain constant while production is

essentially zero. Maintenance is in itself also costly, and much of it is unnecessary and

avoidable. Substantial efforts have therefore been invested in minimizing the

expected total cost due to failures and preventive maintenance of industrial

equipment. In industry, most preventive maintenance approaches include the use of

fixed schedules, which are (more or less) optimized for minimum cost in advance.

(Bohlin and Wärja, 2015)

The main information of maintenance policy is when to conduct what kind of

maintenance.

A balanced maintenance schedule can keep the system reliability at a high level while

keeping the maintenance cost at a reasonable number. The life cycle cost is shown as

figure 2.2.

Figure 2.2 Life cycle cost

7

The maintenance cost is a large part in the life cycle cost. The maintenance cost varies

from predictive and corrective maintenance. The best maintenance policy is to do

preventive maintenance right before the system fails. It is impossible to be so accurate

in the prediction. Thus, the target of optimization is to plan the preventive

maintenance reasonably insuring stable reliability and low maintenance cost.

Nowadays, the maintenance policy in the industry is normally clock-based. The

preventive maintenance is conducted at a fixed schedule. The drawback of such

maintenance policy is waste of resources. A preventive maintenance may be

performed right after corrective maintenance. A better management of the

maintenance can contribute to the efficiency of maintenance and better usage of

resources, including human resources.

As followed is a case of maintenance optimization of power systems, which proposes

a quantitative maintenance optimization problem for developing reliability centered

maintenance for a power system with renewable energy sources.

Reliability and cost are two important interlinked aspects considered by system

operators in many deregulated power systems. Reliability centered maintenance is an

effective method to consider both of these aspects when performing the maintenance

optimization. Nevertheless, this method has not adequately studied for a power

system with renewable energy sources included. First, the most critical components

of the system are selected. Then, a set of maintenance strategies are proposed for all

critical components. After that, the total cost of each maintenance strategy for all

critical components are calculated as the summation of operation, maintenance,

environmental, and interruption costs. Finally, the best maintenance strategy for each

critical component is selected by identifying the lowest total cost of different

maintenance strategies. (Shayesteh et al., 2018)

In this case, the performance of maintenance policy is based on calculation and

formulas. This way of estimation has its own strengths. The formulas are tested and

influencing factors are controllable. However, the fixed formula means lack of changes.

Some factors may be neglected. Stochastic simulation is therefore a better solution

than estimation with formulas. The main challenge of stochastic simulation is to build

a model of the system and all the scenarios of the system can be developed from the

model, even those which are not expected. The model can be updated and matured

with the data collected through conditioning monitoring. The optimization process of

the case above is done manually. As the number of possible maintenance policy is not

8

large in that case, manual comparison is feasible. However, when the problem comes

to a large system, even a factory, the complexity and difficulty of optimization rises

exponentially. For a large system and a large number of candidate maintenance

policies, it is not wise to perform it manually.

Optimization algorithm

To solve optimization problem, efficient search or optimization algorithms are needed.

There are many optimization algorithms which can be classified in many ways,

depending on the focus and characteristics.

If the derivative or gradient of a function is the focus, optimization can be classified

into gradient-based algorithms and derivative-free or gradient-free algorithms.

Gradient-based algorithms such as hill-climbing use derivative information, and they

are often very efficient. Derivative-free algorithms do not use any derivative

information but the values of the function itself. Some functions may have

discontinuities or it may be expensive to calculate derivatives accurately, and thus

derivative-free algorithms such as Nelder-Mead downhill simplex become very

useful.(Yang, 2011)

Metaheuristic algorithm

A metaheuristic can be considered as a "master strategy that guides and modifies

other heuristics to produce solutions beyond those that are normally generated in a

quest for local optimality" (Glover et al., 2003)

Two major components of any metaheuristic algorithms are: intensification and

diversification, or exploitation and exploration.(Blum and Roli, 2003)

Diversification means to generate diverse solutions so as to explore the search space

on a global scale, while intensification means to focus the search in a local region

knowing that a current good solution is found in this region. A good balance between

intensification and diversification should be found during the selection of the best

solutions to improve the rate of algorithm convergence. The selection of the best

ensures that solutions will converge to the optimum, while diversification via

randomization allows the search to escape from local optimum and, at the same time,

increases the diversity of solutions. A good combination of these two major

components will usually ensure that global optimality is achievable. (Yang, 2011)

9

Chapter 3

Theoretical description

3.1 Subprocess

In computing, a process is an instance of a computer program that is being executed.

It contains the program code and its current activity.(Remzi H. Arpaci-Dusseau, 2014)

In this project, the program in python for maintenance optimization is the main

process. However, the stochastic simulation is not done in python. Communication

between processes is needed for such situation. Subprocess is to spawn a process

execute missions in other programs under the main process.

The communication between subprocess and main process can be synchronous or

asynchronous. For example, subprocess.call(args) is synchronous. The main process

will wait for the end of execution of subprocess. As a contrast, subprocess.popen(args)

is asynchronous. The main process will continue to execute the code while the

subprocess is still under conduction.

Figure 3.1 Explanation of subprocess

10

The subprocess module allows user to spawn new processes, connect to their

input/output/error pipes, and obtain their return codes. In this project, it is needed

for the program to wait for the stimulation result from AltaRica models and do

maintenance policy assessment in python. Thus, subprocess module can be used to

make the python program wait for the stimulation result and deal with the data.

3.2 XML and xml.dom

Extensible Markup Language (XML) is a simple, very flexible text format derived from

SGML (ISO 8879). Originally designed to meet the challenges of large-scale electronic

publishing, XML is also playing an increasingly important role in the exchange of a wide

variety of data on the Web and elsewhere.(Group, 2013)

XML is self-descriptive and has do nothing with just information wrapped in tags. XML

is also extensible. Most XML applications will work as expected even if new data is

added. For example, if new observer is added to the indicator description file in this

project, the program can still work as expected.

The Document Object Model, or “DOM,” is a cross-language API from the World Wide

Web Consortium (W3C) for accessing and modifying XML documents. A DOM

implementation presents an XML document as a tree structure or allows client code

to build such a structure from scratch. It then gives access to the structure through a

set of objects which provided well-known interfaces.(Foundation, 2018b)

Node is the basic element for storage of data in XML. The basic information in a node

is the name of the node. It can also store more data, such as text, attribution and child

nodes.

For example, the XML file and its parsed format in DOM are shown below.

<?xml version="1.0" encoding="UTF-8"?>

<bookstore>

 <book category="cooking">

 <title lang="en">Everyday Italian</title>

 <author>Giada De Laurentiis</author>

 <year>2005</year>

 <price>30.00</price>

11

 </book>

</bookstore>

Figure 3.2 DOM tree example(W3Schools)

<bookstore> is the root node, <book category="cooking"> is the child node of

<bookstore> with the attribution category equals to “cooking”.

In this project, the data is written in XML file so that it can be stored, modified and

used through python through certain module. The module xml.dom is used to process

data in the xml file. The data for stochastic simulation in AltaRica is stored in xml

format. Thus, the parameters can be modified directly using this module in python.

12

3.3 AltaRica model

AltaRica is a modelling language focus on safety assessment. The system model

written in AltaRica describes the structure and reliability data of the system. As

followed is a simple example of a AltaRica model.

Figure 3.3 Water supply system(irt-systemx, 2017)

The AltaRica model to describe this system consists of the description of the elements,

the connection of the elements and the observers to monitor certain conditions. In

this simple system, the model should include the reliability and status data of the three

elements, the connections of them and observer of input to the tank.

The class RepairableComponent describes a simple kind of element which is repairable

with certain data. It has two status, working and not working. The information of

transition between these two status and the probability of transitions are also

included in the model.

This class stores the mutual information of the three elements.

class RepairableComponent

Boolean working (init = true);

parameter Real lambda = 0.0001;

parameter Real mu = 0.01;

event failure (delay = exponential(lambda));

event repair (delay = exponential(mu));

transition

failure: working -> working := false;

repair: not working -> working := true;

end

13

The source and pump extends the class RepairableComponent, which means the class

source and pump have all the characteristics of repairable component with some

specific extra structure or information.

class Source

extends RepairableComponent;

Boolean output (reset = false);

assertion

output := if working then true else false;

end

class Pump

extends RepairableComponent;

Boolean input, output (reset = false);

assertion

output := if working then input else false;

end

With the three element classes, the block is to describe the system and how the

elements are connected.

block SimpleWaterSupplySystem

Source S;

Pump P;

block Tank

Boolean input (reset = false);

end

assertion

P.input := S.output;

Tank.input := P.output;

End

The component objects are created and added to the system. In the assertion, the

components are connected. The input of the pipe is connected to the output of source

and the input of tank connected to output of pipe.

14

The AltaRica model describes the system at length. This model describes the structure

of the system, the reliability data of the components and how the components are

connected.

3.4 AltaRica Tools

The AltaRica tools distributed among the open AltaRica projects can do analysis based

on the system model, including stepwise simulation, fault tree assessment, stochastic

simulation, etc.

The stochastic simulation process is shown below.

Figure 3.4 Stochastic simulation process (Association, 2016)

The process of stochastic simulation is:

1. The AltaRica model is compiled into a guarded transitions system. This step is

actually common to most of the assessment tools and can be performed once

for all.

2. Indicators to be calculated are specified. The result of this phase is an XML file,

typically called myproject.idf. In the indicator description file stores the data

of observers of the states.

3. The stochastic simulator is generated and compiled. For the sake of efficiency,

the AltaRica stochastic simulator is actually a generator of stochastic

simulators. It generates a dedicated executable file (an application) from the

guarded transitions system and the indicator specification files.

15

4. The mission, or simulation profile, is specified. The result of this step is a XML

file, typically called myproject.mdf, that describes the mission time, the

observation dates, the number of runs, the seed of the random number

generator, the format and the name of the file in which results are printed out.

5. Finally, the stochastic simulation itself is launched, i.e. the executable file

generated at step 3 is called with the mission description file generated at step

4 as a parameter. The result is stored in a generated csv file.

The important files created or generated in the process are listed as followed.

1. AltaRica model (.alt)

The model is written in AltaRica and is the basis of the process. It should be

created in the beginning.

2. Guarded transition system (.gts)

The data of parameters is stored in this file. It will be generated after flattening.

The data format is xml.

3. Indicator description file (.idf)

The indicators are sessions of certain observer in the AltaRica model. It can be,

for example, mean sojourn-time of dangerous state. The data format is xml.

The idf file should be prepared before the generating of simulator.

4. Simulator (.exe)

The simulator is an executable generated through the process. Execution of

simulator with mission description file as argument will generate a csv file

storing the result of simulation.

5. Mission description file (.mdf)

Mission description file contains the data of the simulation mission, such as

mission time, seed, etc. It is an input file for generating the result with

simulator. Thus, it should also be prepared before calling simulator. The data

format is also xml as indicator description file.

6. Result file (.csv)

The result file is generated from the simulator with the data of indicators and

general mission information.

16

The AltaRica toolkit consists of several executables that are necessary for the

stochastic simulation.

1. ar3c.exe

The executable ar3c.exe is used for flattening. The flattening process is actually

performed in two steps: first, the AltaRica model is flattened into a guarded transitions

system; second, a type checking tool is applied to this guarded transitions system.

The advantage of this approach is that it makes it possible to detect type errors that

would be quite difficult to catch on the AltaRica model. Its drawback is that error

messages refer to the guarded transitions system and not to the source model. It is

however relatively easy to retrieve the location of errors in the source model from the

messages.

Aside type errors, the type checker emits warnings. These warnings do not prevent

the guarded transitions system to be simulated or assessed, but should be considered

with care, as they reveal in general a modeling mistake. (Association, 2016)

In command line, flattening of the alt file need some arguments:

• The name of the generated guarded transition system file, typically

myproject.gts.

• The name of the alt file, typically myproject.alt.

An example of the command line calling ar3c.exe for flattening is “ar3c.exe --gts-xml

myproject.gts *myproject.alt*”. The command –gts-xml is to generate the guarded

transition system file in XML format. The names of the alt file and generated gts file

are provided as arguments.

2. gtsstocmp.cmd

The batch file gtsstocmp.cmd is used for generating the simulator. It should be called

with four arguments: the directory address of the toolkit, the name of guarded

transistion system file, the indicator description file, the name of the generated

simulator executable. An example of the command line calling gtsstocmp.cmd for

generating simulator is “gtsstocmp.cmd Tools\AR3Tools *myproject.gts*

myproject.idf myproject.exe”.

17

3.5 Character-separated values file

A character-separated values file (CSV file) is delimited text file using comma to

separate values. Tabular data can be stored in plain text. Thus, CSV file and Excel file

can be transformed between each other easily.

The result file generated from simulator is in CSV format. To derive of the data of

indicators, the python module csv is a good choice to conduct the mission. The csv

module implements classes to read and write tabular data in CSV format. It allows

programmers to say, “write this data in the format preferred by Excel,” or “read data

from this file which was generated by Excel,” without knowing the precise details of

the CSV format used by Excel. Programmers can also describe the CSV formats

understood by other applications or define their own special-purpose CSV

formats.(Foundation, 2018a)

3.6 Regular expression

As in the project the parameter values in the AltaRica model need to be set and

changed for different simulation task, it is needed for python to locate the position of

the parameter value in the model text and make the modification.

A regular expression is a sequence of characters that define a search pattern. It can be

used to search and replace some content in a string or text file. For example, the line

in the AltaRica model describing the parameter is “parameter Real delayBetweenTests

= 2178” originally. The regular expression pattern used to search this line is

"(\s+)parameter(\s+)Real(\s+)delayBetweenTests(\s+)=(\s+)(\d+) ". (\s+) can match

with one or multiple space or tab. (\d+) can match single digit or multi-digit.

3.7 Algorithms

Metaheuristic algorithm is the main type of algorithm used in this project.

Metaheuristics is a major subfield, indeed the primary subfield, of stochastic

optimization. Stochastic optimization is the general class of algorithms and techniques

which employ some degree of randomness to find optimal solutions to hard problems.

Metaheuristics are the most general of these kinds of algorithms, and are applied to a

very wide range of problems.(Luke, 2013)

18

3.7.1 Gradient descent algorithm

The gradient descent algorithm is developed from a traditional mathematical method

for finding the maximum of a function, Gradient Ascent.

Algorithm Gradient Ascent: (Luke, 2013)

1: �⃗�

← 𝑟𝑎𝑛𝑑𝑜𝑚 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑒𝑐𝑡𝑜𝑟

2: repeat

3: �⃗�

← �⃗� + 𝛼∇𝑓(�⃗�)

4: until �⃗� is the ideal solution or we have run out of time

5: return �⃗�

Gradient descent algorithm basically is just to change the step 3 to make it descent

instead of ascent. If the optimization is in many dimensions with many variables, the

gradient function is hard or almost impossible to get. As the function is unknown, the

gradient is unobtainable. The change of variables won’t be based on gradient. Thus,

we introduce a term, tweak.

The candidate solution can be in many forms. One simple and common representation

for candidate solutions is a fixed-length vector of real-valued numbers. To tweak a

vector, we might add a small amount of random noise to each number. Here is a

simple way of adding bounded, uniformly distributed random noise to a vector.

Algorithm Bounded Uniform Convolution (Luke, 2013)

1: �⃗�

← 𝑣𝑒𝑐𝑡𝑜𝑟 < 𝑣1, 𝑣2, … 𝑣𝑙 > 𝑡𝑜 𝑏𝑒 𝑐𝑜𝑛𝑣𝑜𝑙𝑣𝑒𝑑

2: �⃗�

← 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎𝑑𝑑𝑖𝑛𝑔 𝑛𝑜𝑖𝑠𝑒 𝑡𝑜 𝑎𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟

3: 𝑟

← ℎ𝑎𝑙𝑓 𝑟𝑎𝑛𝑔𝑒 𝑜𝑓 𝑢𝑛𝑖𝑓𝑜𝑟𝑚 𝑛𝑜𝑖𝑠𝑒

4: 𝑚𝑖𝑛

← 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒

5: 𝑚𝑎𝑥

← 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑣𝑒𝑐𝑡𝑜𝑟 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒

6: for i from 1 to l do

7: if p ≥ random number chosen uniformly from 0.0 to 1.0 then

8: repeat

9: 𝑛

← 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑐ℎ𝑜𝑠𝑒𝑛 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑓𝑟𝑜𝑚 − 𝑟 𝑡𝑜 𝑟 𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑣𝑒

10: until min ≤ vi + n ≤ max

19

11: 𝑣𝑖

← 𝑣𝑖 + 𝑛

12: return �⃗�

Applying the tweak algorithm to the gradient descent algorithm, the algorithm can be

applied to more general cases.

Algorithm Steepest Ascent Hill-Climbing With Replacement (Luke, 2013)

1: 𝑛

← 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑤𝑒𝑎𝑘𝑠 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑡𝑜 𝑠𝑎𝑚𝑝𝑙𝑒 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

2: 𝑆

← 𝑠𝑜𝑚𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

3: 𝐵𝑒𝑠𝑡

← 𝑆

4: repeat

5: 𝑅

← 𝑇𝑤𝑒𝑎𝑘(𝐶𝑜𝑝𝑦(𝑆))

6: for n-1 times do

7: 𝑊

← 𝑇𝑤𝑒𝑎𝑘(𝐶𝑜𝑝𝑦(𝑆))

8: if Quality(W) > Quality(R) then

9: 𝑅

← 𝑊

10: 𝑆

← 𝑅

11: if Quality(S) > Quality(Best) then

12: 𝐵𝑒𝑠𝑡

← 𝑆

13: until Best is the ideal solution or we have run out of time

14: return Best

20

The application of this algorithm in this project is showed as below in the graph. The

optimum test interval can be found after a search applying gradient descent algorithm.

However, this algorithm has its drawback that the search may be stocked in the local

optimum.

Figure 3.2 Gradient descent algorithm

3.7.2 Tabu search

Tabu search employs a different approach to doing exploration: it keeps around a

history of recently considered candidate solutions (known as the tabu list) and refuse

to return to those candidate solutions until they’re sufficiently far in the past. Thus if

we wander up a hill, we have no choice but to wander back down the other side

because we’re not permitted to stay at or return to the top of the hill. (Luke, 2013)

The way to apply tabu search is to maintain a cache that stores the recent candidate

solutions. The structure of cache in is this case is showed as below.

Table 3.1 Tabu cache

If the number of candidates is large, the efficiency of finding optimum will increase

significantly with tabu search. The tabu search algorithm is showed as followed.

21

Algorithm Tabu Search (Luke, 2013)

1: 𝑙

← 𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑡𝑎𝑏𝑢 𝑙𝑖𝑠𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

2: 𝑛

← 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑤𝑒𝑎𝑘𝑠 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑡𝑜 𝑠𝑎𝑚𝑝𝑙𝑒 𝑡ℎ𝑒 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

3: 𝑆 ← 𝑠𝑜𝑚𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

4: 𝐵𝑒𝑠𝑡

← 𝑆

5: 𝐿

← { } 𝑎 𝑡𝑎𝑏𝑢 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙

6: Enqueue S into L

7: repeat

8: if Length(L) > l then

9: Remove oldest element from L

10: 𝑅 ← 𝑇𝑤𝑒𝑎𝑘(𝐶𝑜𝑝𝑦(𝑆))

11: for n-1 times do

12: 𝑊

← 𝑇𝑤𝑒𝑎𝑘(𝐶𝑜𝑝𝑦(𝑆))

13: if W∉L and (Quality(W) > Quality(R) or R∈L) then

14: R←W

15: if R∉L and Quality(R) > Quality(S) then

16: S←R

17: enqueue R into L

18: if Quality(S) > Quality(Best) then

19: 𝐵𝑒𝑠𝑡

← 𝑆

20: until Best is the ideal solution or we have run out of timw

21: return Best

22

However, tabu search only works in discrete spaces. In this project, the range of test

intervals consists of limited number of choices. Thus, the tabu search algorithm can

be applied. If the real function is like the graph below, the flat area in middle can

produce a lot of repeat search. However, the application of tabu search algorithm can

help to reduce the repeated work. The search can recognize the flat area and break

from this simulation or start with another start point.

Figure 3.3 Tabu search algorithm

3.7.3 Simulated annealing algorithm

Simulated Annealing was developed by various researchers in the mid 1980s, but it

has a famous lineage, being derived from the Metropolis Algorithm. The algorithm

varies from Hill-Climbing in its decision of when to replace S, the original candidate

solution, with R, its newly tweaked child. Specifically, if R is better than S, we’ll always

replace S with R as usual. But if R is worse than S, we may still replace S with R with a

certain probability.(Luke, 2013)

Simulated annealing algorithm can help the search to escape from some local

optimum. As shown below, when the search reaches the left point, the search will

stop without simulated annealing algorithm. However, if simulated algorithm is

applied, the search have a certain probability to keep search forward and manage to

escape from the local optimum.

23

Figure 3.4 Simulated annealing algorithm

Algorithm Simulated Annealing (Luke, 2013)

1: 𝑡

← 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙𝑦 𝑎 ℎ𝑖𝑔ℎ 𝑛𝑢𝑚𝑏𝑒𝑟

2: 𝑆 ← 𝑠𝑜𝑚𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛

3: 𝐵𝑒𝑠𝑡

← 𝑆

4: repeat

5: 𝑅

← 𝑇𝑤𝑒𝑎𝑘(𝐶𝑜𝑝𝑦(𝑆))

6: if Quality(R) > Quality(S) or if a random number chosen from 0 to 1<P then

7: 𝑆 ← 𝑅

8: Decrease t

9: if Quality(S) > Quality(Best) then

10: 𝐵𝑒𝑠𝑡

← 𝑆

11: until Best is the ideal solution or we have run out of time, or t ≤ 0

12: return Best

24

3.7.4 Population method

Population-based methods differs from the previous methods in that they keep

around a sample of candidate solutions rather than a single candidate solution. Each

of the solutions is involved in tweaking and quality assessment, but what prevents this

from being just a parallel hill-climber is that candidate solutions affect how other

candidates will hill-climb in the quality function. This could happen either by good

solutions causing poor solutions to be rejected and new ones created, or by causing

them to be Tweaked in the direction of the better solutions.(Luke, 2013)

Figure 3.5 Population method

For one simulation, the result can be a local optimum. As the target is to find the local

optimum, one approach to it is to do lots of simulations with random start in the data

range. Among all the local optimums found, the best one has a high possibility to be

the global optimum. The more simulations done, the higher possibility to get the ideal

solution.

25

Chapter 4

Experiments

4.1 Introduction

The target of this project is to maintenance optimization of some certain system. The

process is as followed.

1. Build the system model in AltaRica

2. Compile the system model file and get the gts file

3. Create the indicators description file

4. Generate the simulator

5. Create the mission description file

6. Generate the csv file

7. Read and assess the result

8. Choose other candidates and repeat 2 to 7

Figure 4.1 Stochastic simulation process (Association, 2016)

For every candidate maintenance policy, the stochastic simulation should be

conducted independently. Therefore, the indicators description file and the mission

description file should be modified accordingly. The results of the simulation are

stored in library in python. Metaheuristic algorithms are used to lift the efficiency of

26

step 8, which is the process of choosing candidate solutions to simulate and assessing

the result.

The outcome of simulation is normally not predictable. That’s why the simulation

process is to some extends a black box. Some candidate solutions are provided to the

system. After stochastic simulation, the result is given, but not predictable. It is hard

or even impossible to analyze the relation between result and input.

In this case, optimization needs some algorithm for assessing the result of simulation.

The relationship between optimization and simulation is shown in figure 4.2. The

stochastic simulation is a black box, that gives unpredictable outcome with input. The

optimization process needs to explore as many candidate solutions as possible. In the

meantime, the efficiency of exploration needs to be considered as well.

Figure 4.2 Black box

27

4.2 Single element system

4.2.1 Introduction

The first system to be analyzed is a system consisting of an element. The system is

periodically tested. The system has an exponentially distributed probability of failure.

The failure will only be revealed at a test and repaired afterwards. Thus, the system

has following statuses, which are working, test when working, undetected failure,

detected failure, repair. The transitions among these statuses are shown in the figure

4.3.

Figure 4.3 Status transitions in single element system

In figure 4.3, the status abbreviations are used.

1. W: Working.

2. W*: Tested when working

3. UF: Undetected failure, which is the period between the system failure and

next test.

4. DF: Detected failure

5. R: Repair

28

In these transitions, repair time and time to failure are exponentially distributed. Test

time and test interval are fixed. The test interval is the key parameter to be optimized.

The preset values of the parameters are listed in table 4.1.

Failure rate 1.0e-04

Test duration 12

Repair rate 1.0e-02

Table 4.1 Parameter data

For such a system, optimization is needed for the balance between preventive

maintenance and corrective maintenance. Low test interval will lead to loss of

production in frequent tests. Whereas, large test interval may lead to larger amount

of failures in between tests. To optimize the maintenance policy, test interval is the

key parameter. The rest parameters are mostly determined. Repair rate is determined

by the efficiency of the maintenance team. There is not much optimization that can

be done through stochastic simulation and analysis. Test duration is determined by

factors outside the system as well. Test interval is the only parameter can be optimized

for maintenance policy here.

4.2.2 Store parameters

As determined previously, the only varying parameter for optimization is test interval.

The candidate values are stored in xml format. (Appendix A.1)

To read and store the parameter values in python, module xml.dom is used. The key

point is to search the node parameter with attribute name equal to the desired

parameter. Here the parameter name is delayBetweenTests, which is test interval. The

child nodes of the node parameter are named candidate with various attribute value.

Using the module to derive of the attribute value and storing in a dictionary in python

is the final step.

The dictionary in python storing the parameter data will be look like:

ParaDict = {“delayBetweenTests” : [718, 1448, 2178, 2098, 3638, 5098, 5828, 6558,

7288, 8018, 8748]}

29

This function can be used to store different parameter candidate value lists. In this

case, there is just one parameter to be optimized, which is the test interval for the

single element. However, the test interval of different sections in a more complex

system may vary from each other. There can also be other parameters to be optimized

other than test interval. This function can fulfill these potential needs in the industry.

4.2.3 Build system model

The first step is to build the system model in AltaRica. The transitions within the

system statuses are shown in figure 4.3. The AltaRica model is in Appendix.

The system has two domins, State and Phase. State domin has three possible values,

WORKING, HIDDEN_FAILED, REVEALED_FAILED. Phase domin has two possible values,

OPERATION, TEST. The combination of these two domin can represent all possible

status of the system.

The transitions are corresponding to the events. Event failure is transition from

WORKING to HIDDEN_FAILED, which is from W to UF in figure 4.3. Event start test is

transition from OPERATION to Test. In figure, it is from W to W* or from UF to DF,

which depends on the initial status. Event complete test is transition from TEST to

OPERATION, which in figure is from W* to W or from DF to R. When the system is

30

failed, the event complete test is equal to ‘start repair’ in figure. Event repair is

transition from REVEALED_FAILED to WORKING, which is from R to W.

Figure 4.4 Relation between domins and states

There are two types of occurrences of the events in this system. One is that the event

happens after some certain time. Event start test and complete test are within this

category. This kind of preventive maintenance is clock-based. The test and preventive

maintenance is conducted at a certain frequency regardless of the condition

monitoring. The other type of occurrences of the events is exponential distribution.

The event failure occurs at a exponentially distributed probability.

The function of the two observers is to monitor the status of the system. Observer

unavailable can observe the unavailability of the system, when domin state is not

WORKING or domin phase is not OPERATION. The observers are the foundation for

the indicators later in the process. The observed states are shown in figure 4.5.

Figure 4.5 Observed states

The system model is built with detailed reliability data and structure. The filename

extension is .alt.

31

4.2.4 Modify alt file

The alt file contains the original data of the parameters. For the stochastic simulations

for different candidate values, the parameter needs to be set to the candidate value.

This preparation work should be done for each simulation before compile.

Regular expression is used to search and change the text where stores the parameter

data. In the AltaRica model of this system, the line determines the test interval is:

parameter Real delayBetweenTests = 3638;

The words ‘parameter’, ‘Real’, ‘delayBetweenTests’ and the equal sign ‘=’ are fixed.

The number of tab and spaces in between the words is not necessarily fixed. The

candidate value is not fixed. After figuring the features of the text, the regular

expression can be determined. (/s+) can match one or more space or tab. (/d+) can

match one or more digits. As the name of the parameter may change for simulation

of different system, string format() method is used here.

In the end the regular expression pattern for the parameter line is:

(\s+)parameter(\s+)Real(\s+){name}(\s+)=(\s+)(\d+)".format(name=VariableName)

Figure 4.6 Regular expression pattern

32

Figure 4.6 shows the relationship between expression in alt file and the regular

expression. The variable name is changeable. The format function in python can make

use of the input variable name.

4.2.5 Compile alt file

The AltaRica tool kit is used for compiling the system model. In the AltaRica tools,

ar3c.exe can be used for compiling. As introduced before, this executable file needs

to called with several arguments in command line.

In the in-line help of executable ar3c.exe, the usage of it is provided. The command

format is ar3c.exe [option]* <AltaRica-filename.alt>*. After checking the list of

command options, the following command suits the case.

--gts-xml <filename>:

Print the GTS model at XML format into <filename>.

The finalized command line is “ar3c.exe --gts-xml *periodicallyTestedComponent.gts*

periodicallyTestedComponent.alt”. As the executable is an outside program,

subprocess is needed. The purpose of subprocess is to execute the command line

while keeping the main process, stochastic simulation in python, waiting. To test the

subprocess module, a simple experiment is performed.

The main purpose of subprocess module is to make the python program wait for the

result of simulation in AltaRica. Here a simple program written in C is used for test:

#include <stdio.h>

#include<windows.h>

int main()

{

 int ran_num;

 sleep(ran_num=rand() % 3000);

 printf("Hello, World!");

 return 0;

}

33

As the time for simulation varies, the time to notify the main process is unsure. I make

the hello program wait for a random time.

import subprocess

main

if __name__=="__main__":

 for i in range(100):

 str = "0";

 str = subprocess.check_output("hello.exe");

 print(str);

In the python program, I set a value to str and assign a new value to str in the

subprocess and then print str. If main process continues to run without waiting for the

result from subprocess, there will be some “0” in the output. After compiling and

running, the results only consist of “Hello, World!”. The function of subprocess module

is proven to be eligible for the stochastic simulation program.

4.2.6 Create indicator description file

The indicators are some certain observed status and value of observers created in the

AltaRica model. In this experiment, there are two observers for the system as

introduced before. The target of optimization is to minimize the mean down time of

the system. The related observer is the unavailable observer. Mean down time is the

mean sojourn-time of unavailable state. The indicator and detailed settings are

determined.

 The indicator description file is in xml format. To create a xml file, the module

xml.dom is used. The root node is ‘ar3ccp’, relating this xml file to its use case. The

first layer of child nodes is ‘calculation’, which states the related observer. In this

project, the calculation node is created with attribute observer equal to ‘unavailable’.

All indicators using this observer for this simulation are child nodes of the calculation

node. The basic information is set as attributes of the indicator node. In this project,

the indicator node is created with several attributes, which are ‘type’ equal to

‘sojourn-time’, ‘name’ equal to ‘MeanDownTime’, ‘value’ equal to ‘true’. As the

34

required value is mean sojourn-time, a child text node, ‘mean’, is appended to the

indicator node.

Figure 4.7 indicator description file

The nodes are created and connected according to the structure through module

xml.dom. Then, the DOM tree is written in to a txt file with extension name .idf. The

xml file can be used as argument to the next steps.

4.2.7 Generate simulator

To generate the simulator, the tool gtsstocmp.cmd is used. The arguments for calling

this command can be figured out in the batch file. (Appendix A.4)

The first argument is the directory of the compiler folder. The tools for compiling and

other necessary files must be stored in the same directory. Some of the generated

files will be put in the subfolders of the tool kit folder. The second argument is the

name of the gts file and the third argument is the name of the idf file. These two files

must be prepared before generating the simulator. The last argument is the name of

the executable file to be generated.

The command line in this project is:

"gtsstocmp.cmd Tools\AR3Tools *periodicallyTestedComponent.gts*

periodicallyTestedComponent.idf periodicallyTestedComponent.exe".

The executable will be generated in the same folder.

4.2.8 Generate mission description file

35

The simulator is used to do the simulation with mission description file. The data

format of the mission description file is also xml. Thus, the xml.dom is used as well.

The root node of this file is the same as indicator description file, ‘ar3ccp’. Then, the

child node ‘simulation’ is the node containing the mission information of the

simulation. The three attributes of the simulation node are ‘result-csv’ with value of

the name of the result file, ‘number-of-runs’ with the value of the simulation runs,

‘seed’ with the seed value for simulation. Thus, the node simulation will be like

<simulation number-of-runs="10000" results-csv="results.csv" seed="12345">.

Figure 4.8 mission description file

More setting can be set for the simulation in the mission description file. One other

node added in this experiment is a child node ’schedule’ with attribute mission-time.

In this experiment, the mission time is set to one year, which is 8760 hours.

4.2.9 Conduct simulation

The simulation is executed using the command line as well. The simulator is generated

in last step. Calling the simulator requires one argument, which is the name of the

mission description file. The simulation will be conducted accordingly and the result

file will be generated. The command line for this experiment is:

 “periodicallyTestedComponent.exe *periodicallyTestedComponent.mdf*”.

36

4.2.10 Read the result

The result file format of the simulation is comma-separated values. An example of the

result of the simulation is shown below.

meta-data

;number-of-runs;10000

;seed;12345

;mission-time;8760.0

;model-name;Unit

;filename;periodicallyTestedComponent.gts

;start-time;Fri May 11 01:34:01 2018

;end-time;Fri May 11 01:34:01 2018

;steps min;5

;steps mean;6.3728

;steps max;10

;tool version;1.0.0

;compiler version;1.0.0

observer;unavailable;type;Boolean

;indicator;MDT;type;sojourn-

time;value;true

;;date;8760.0

;;;sample-size;10000

;;;mean;1371.95

The module csv is used to fetch the useful information from the csv file. Every line is a

list stored in the reader dictionary. The delimiter is semicolon “;”. The needed line is

the last line, “;;;mean;1371.95”. It is stored in list as [, , ,mean,1371.95]. Module csv

can help to find the value and the data format of number ‘1371.95’ is string. After

changing the format of the number to float, the data can be stored and made use of.

4.2.11 Maintenance optimization

The combination of previous functions and steps can conduct any single simulation for

the system. The approach to maintenance optimization is a combination of the

stochastic simulation and the application of algorithms. Stochastic simulation

generates the reliability performance of the system. Algorithms help to find the

optimum solution efficiently. For a system, there can be a lot of candidate

maintenance policies. The algorithm helps to skip some unnecessary work.

37

The algorithms used here are metaheuristic. Population-based gradient descent

algorithm is the main algorithm used for searching the optimum solution. Tabu search

algorithm, simulated annealing algorithm are used for improving the efficiency of

search.

The main process of optimization is:

1. Choose a candidate solution as base from the list randomly and do simulation

2. Choose the two nearby solutions of the previous one and do simulation

3. Assess the performance of all the three simulation results

4. Choose the candidate solution with best performance as the base

5. Do the loop of step 1 to 4 until find the local optimum solution.

6. After finding a certain number of local optimum, derive of the global optimum

solution among them.

The main problem left is how to assess the result and judge if this candidate solution

is a local optimum. As shown in the gradient descent algorithm figure, as the

parameter value changes, the mean down time varies.

Figure 4.2 Gradient descent algorithm

The local optimum is the solution at the saddle point. The method of assessing if the

current solution is local optimum is comparing the performance of the current

solution and two nearby solutions. If the current solution is at the saddle point, the

nearby two solutions will have higher mean down time than the middle one. However,

38

somewhere in the performance figure may look like figure 4.2. If the search goes a bit

further, the program can find a much better solution than the local optimum found

according to the gradient descent algorithm.

Figure 4.3 Simulated annealing algorithm

Simulated annealing algorithm can help to escape from such a saddle point. This

algorithm can help to find better solution in one single simulation. In the program, the

search has a probability to go on even a local optimum is found.

Besides Simulated annealing, tabu search is also used to lift the efficiency of the

optimization process. In the program, if a cache stores a list of candidate solutions that

have been searched recently. If the candidate solution picked is among the list, it will

be skipped and a new candidate will be picked. The combination of these algorithms

helps to find the best test interval efficiently.

39

4.2.12 Result

The result of the optimization is derived after 30 runs. The best maintenance policy is

conducting test and preventive maintenance every 1448 hours. The estimated mean

down time of this maintenance policy in a year is 723 hours.

The whole optimization process is conducted automatically and efficiently. A large list

of candidate maintenance policies can be simulated and assessed professionally. It has

proven the practicability of this program.

40

Chapter 5

Conclusion & Future work

The main objective of this project is to do maintenance optimization for a system. The

process contains two main parts, stochastic simulation and optimization. Stochastic

simulation is done using the AltaRica tools. The simulation is done by AltaRica

simulator and the configuration files are generated by AltaRica tools or python script.

Maintenance optimization is done through python script. This project makes the

combination of two parts and does the maintenance optimization for the system. The

process is controlled by python script automatically. The efficiency of the process is

guaranteed in the two parts. In the simulation part, the simulator from AltaRica

project is written in C++, which has high efficiency. In the optimization part, the

optimization process is optimized by metaheuristic algorithm.

This project can be adapted and applied to many other systems. The modification

needed to be done for different system is the AltaRica model and some configuration

information. This project has high flexibility. It can be transplanted to many systems

and the result is reliable.

41

Bibliography

ASSOCIATION, A. 2016. AltaRica Wizard -Help [Online]. Available: AltaRica Wizard

[Accessed 2018].

AVEN, T. & JENSEN, U. 1999. Stochastic models in reliability, New York, Springer.

BARROS, A. 2017. RE: Compendium of TPK4450 Datadrevet prognose og prediktivt

vedlikehold.

BELYI, D., POPOVA, E., MORTON, D. P. & DAMIEN, P. 2017. Bayesian failure-rate

modeling and preventive maintenance optimization. European Journal of

Operational Research, 262, 1085-1093.

BLUM, C. & ROLI, A. 2003. Metaheuristics in combinatorial optimization: Overview and

conceptual comparison. ACM Computing Surveys (CSUR), 35, 268-308.

BOHLIN, M. & W RJA, M. 2015. Maintenance optimization with duration-dependent

costs. Annals of Operations Research, 224, 1-23.

DEGEILH, Y. & GROSS, G. 2015. Stochastic simulation of power systems with integrated

intermittent renewable resources. International Journal of Electrical Power

and Energy Systems, 64, 542-550.

ENERGY, G. 2010. Western wind and solar integration study. NREL.

FOUNDATION, P. S. 2018a. csv — CSV File Reading and Writing [Online]. Available:

https://docs.python.org/2/library/csv.html [Accessed 2018].

FOUNDATION, P. S. 2018b. xml.dom - The Document Object Model API [Online].

Available: https://docs.python.org/2/library/xml.dom.html [Accessed 2018].

GLOVER, F., KOCHENBERGER, G. A. & SPRINGERLINK 2003. Handbook of

metaheuristics. Springer US.

GROUP, X. C. W. 2013. Extensible Markup Language (XML) [Online]. Available:

https://www.w3.org/XML/ [Accessed 2018].

IRT-SYSTEMX. 2017. OpenAltaRica - Example: A (Simple) Water Supply System [Online].

Available:

https://www.openaltarica.fr/docs/The%20OpenAltaRica%20Platform%20-%2

0Example%20(Simple)WaterSupplySystem.pdf [Accessed 2018].

LUKE, S. 2013. Essentials of Metaheuristics, George Mason University, Lulu.

MORTADA, H., PROSVIRNOVA, T. & RAUZY, A. 2014. Safety assessment of an electrical

system with altarica 3.0. Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 8822, 181-194.

RAUZY, A. 2014. The AltaRica 3.0 Project.

REMZI H. ARPACI-DUSSEAU, A. C. A.-D. 2014. Abstraction: The Process The Process API.

Operating Systems: Three Easy Pieces.

SHAYESTEH, E., YU, J. & HILBER, P. 2018. Maintenance optimization of power systems

with renewable energy sources integrated. Energy, 149, 577-586.

https://docs.python.org/2/library/csv.html
https://docs.python.org/2/library/xml.dom.html
https://www.w3.org/XML/
https://www.openaltarica.fr/docs/The%20OpenAltaRica%20Platform%20-%20Example%20(Simple)WaterSupplySystem.pdf
https://www.openaltarica.fr/docs/The%20OpenAltaRica%20Platform%20-%20Example%20(Simple)WaterSupplySystem.pdf

42

W3SCHOOLS. XML DOM [Online]. Available:

https://www.w3schools.com/xml/xml_dom.asp [Accessed 2018].

YANG, X.-S. 2011. Metaheuristic Optimization. Scholarpedia, 6, 11472.

https://www.w3schools.com/xml/xml_dom.asp

43

Appendix A

A.1 XML file of candidate values

Test.txt

<?xml version="1.0"?>

<optimization>

 <model file="periodicallyTestedComponent" main="Unit">

 <parameters>

 <parameter name="delayBetweenTests">

 <candidate value="718" />

 <candidate value="1448" />

 <candidate value="2178" />

 <candidate value="2098" />

 <candidate value="3638" />

 <candidate value="5098" />

 <candidate value="5828" />

 <candidate value="6558" />

 <candidate value="7288" />

 <candidate value="8018" />

 <candidate value="8748" />

 </parameter>

 </parameters>

 </model>

</optimization>

44

A.2 XML file of Indicator Description File

periodicallyTestedComponent.idf

<?xml version="1.0" ?>

<ar3ccp>

 <calculation observer="unavailable">

 <indicator name="MDT" type="sojourn-time" value="true">

 <mean/>

 </indicator>

 </calculation>

</ar3ccp>

A.3 XML file of Mission description file

periodicallyTestedComponent.mdf

<?xml version="1.0" ?>

<ar3ccp>

<simulation number-of-runs="10000" results-csv="results.csv" seed="12345">

<schedule mission-time="8760"/>

</simulation>

</ar3ccp>

45

A.4 Batch file for generating simulator

gtsstocmp.cmd

@echo off

echo change current directory to compiler folder (%1) and setup paths

cd %1

setlocal

SET PATH=%cd%

SET PATH=%PATH%;%cd%/cppcompiler

SET PATH=%PATH%;%cd%/cppcompiler/bin

SET COMPILER_PATH=

SET LIBRARY_PATH=

SET C_INCLUDE_PATH=

SET CPATH=

SET CPLUS_INCLUDE_PATH=

SET OBJC_INCLUDE_PATH=

echo clean up compiler folder

REM rm.exe -f gtssto/obj/*.o

REM rm.exe -f gtssto/bin/gtssto.exe

REM rm.exe -f gtssto/src/GTSSTOModel.cpp

REM rm.exe -f gtssto/include/GTSSTOModel.hpp

del gtssto\obj*.o

del gtssto\bin\gtssto.exe

del gtssto\src\GTSSTOModel.cpp

del gtssto\include\GTSSTOModel.hpp

echo generate C++ files

gtsstocmp.exe --configuration %3 --output gtssto/tmp %2

REM mv.exe gtssto/tmp/GTSSTOModel.cpp gtssto/src

REM mv.exe gtssto/tmp/GTSSTOModel.hpp gtssto/include

move /Y gtssto\tmp\GTSSTOModel.cpp gtssto\src

move /Y gtssto\tmp\GTSSTOModel.hpp gtssto\include

echo compile C++ files

46

g++.exe -w -I gtssto/include -std=c++11 -std=gnu++11 -O2 -s -c -o

gtssto/obj/GTSSTOModel.o gtssto/src/GTSSTOModel.cpp

g++.exe -w -I gtssto/include -std=c++11 -std=gnu++11 -O2 -s -c -o

gtssto/obj/main.o gtssto/src/main.cpp

g++.exe -w -L gtssto/lib -std=c++11 -std=gnu++11 -o gtssto/bin/gtssto.exe

gtssto/obj/GTSSTOModel.o gtssto/obj/main.o -lm -l gtsstosimkernel

echo copy executable and DLLs to the target directory

REM mv.exe gtssto/bin/gtssto.exe %4

move gtssto\bin\gtssto.exe %4

copy /y gtssto\bin*.dll "%~dp4" > nul

echo compilation completed

47

A.5 AltaRica Model

periodicallyTestedComponent.alt

domain State {WORKING, FAILED}

domain Phase {OPERATION, TEST, MAINTENANCE}

block Unit

State _state(init=WORKING);

Phase _phase(init=OPERATION);

event failure(delay=exponential(failureRate));

event startTest(delay=Dirac(delayBetweenTests));

event completeTest(delay=Dirac(testDuration));

event startMaintenance(delay=Dirac(delayBeforeMaintenance));

event completeMaintenance(delay=Dirac(maintenanceDuration));

parameter Real failureRate = 1.0e-4; // the component fails on average about once in a

year

parameter Real delayBetweenTests = 2178; // the component is tested every 3 months

parameter Real testDuration = 12; // the test lasts one shift, i.e. 12 hours:

2178+12=2190=8760/4

parameter Real delayBeforeMaintenance = 72; // 3 days

parameter Real maintenanceDuration = 24; // 2 shifts

transition

failure: _state==WORKING and _phase==OPERATION -> _state:=FAILED; // the

component cannot fail during tests

startTest: _phase==OPERATION -> _phase:=TEST;

completeTest: _phase==TEST and _state==WORKING -> _phase:=OPERATION;

startMaintenance: _phase==TEST and _state==FAILED ->

_phase:=MAINTENANCE;

completeMaintenance: _phase==MAINTENANCE -> {

_state:=WORKING; // the component is as good as new after the maintenance

_phase:=OPERATION;

}

observer Boolean unavailable = _state!=WORKING or _phase!=OPERATION;

observer Boolean dangerousState = _state==FAILED and _phase==OPERATION;

end

48

A.6 ar3c.exe command list

-h, --help:

 This help.

 --version:

 Print version of the tool.

 -v, --verbose:

 Print runtime information.

 -I <directory>:

 Add <directory> to the compiler's search paths.

 -e <filename>, --error <filename>:

 Print errors into <file> (default stderr).

 --gts-txt <filename>:

 Print the GTS model at text format into <filename>.

 --gts-xml <filename>:

 Print the GTS model at XML format into <filename>.

 --main-element <elementname>:

 Define the main element of the model (a block or a class).

 By default: the last declared block.

 --structure <filename>:

 Print the struture of the model at XML format into <filename>.

 --graphical <filename>:

 Print structured elements of the model at XML format into <filename> (for

the graphical viewer).

 --ast <filename>:

 Print the Abstrat Syntax Tree of the model into <filename>.

 --altarica <filename>:

 Print the AltaRica model of the model into <filename>.

 -f <filename>, --flatten <filename>:

 Print the flattened model into <filename>.

 -l <filename>, --log <filename>:

 Print log information into <filename>.

49

A.7 Optimization program

Import necessary modules

import re

import subprocess

import os

import csv

import xml.dom

from xml.dom import minidom

import random

"""

change the path to the working directory

"""

os.chdir("D:\Softwares\AltaRica\OARPlatform-win64-

v1.0.0\AltaRicaWizard\Try\periodicallyTestedComponent\Tools\AR3Tools");

Read XML and store candidate values

"""

Store the parameter data in a dictionary provided

"""

ParaDict={};

def storeParameters(dict):

 #Parse the xml file

 dom = xml.dom.minidom.parse('test.txt');

 root = dom.documentElement;

 parameterNodes = root.getElementsByTagName("parameter");

 for parameterNode in parameterNodes:

 valueNodes = parameterNode.getElementsByTagName("candidate");

 valueList=[];

 for valueNode in valueNodes:

 valueList.append(valueNode.getAttribute("value"));

50

 dict[parameterNode.getAttribute("name")]=valueList;

Modify alt file

"""

Modify the parameter data in the alt file

Set the value of certain parameter to a given value

Input: Parameter name

 New value

"""

def modifyAltFile(VariableName,Value):

 #Regular expression needs modification for different needs

 pattern =

re.compile(r"(\s+)parameter(\s+)Real(\s+){name}(\s+)=(\s+)(\d+)".format(name=Vari

ableName))

 #Name of alt file set to the used file

 file = open("periodicallyTestedComponent.alt",'r+')

 lines = file.readlines()

 file.seek(0,0)

 for line in lines:

 if re.match(pattern,line):

 s=re.sub("\d+","{}".format(Value),line)

 file.write(s)

 continue;

 file.write(line)

 file.close();

Generate gts file

"""

Generate the GTS file for a given alt file

Input: alt file

"""

def generateGTSFile():

 file = open("periodicallyTestedComponent.gts",'w');

 file.close();

51

 subprocess.call("ar3c.exe --gts-xml *periodicallyTestedComponent.gts*

periodicallyTestedComponent.alt");

Generate idf file

"""

Generate indicator description file

The code block should be modified according to the indicators to be generated

"""

def generateIDFFile():

 doc = xml.dom.minidom.Document()

 root = doc.createElement('ar3ccp')

 doc.appendChild(root)

 nodeCalculation = doc.createElement('calculation')

 nodeCalculation.setAttribute('observer','unavailable')

 root.appendChild(nodeCalculation)

 nodeIndicator = doc.createElement('indicator')

 #Set attribute for the indicator

 #Type is the recorded value of the indicator

 nodeIndicator.setAttribute('type','sojourn-time')

 #name is MDT, mean down time

 nodeIndicator.setAttribute('name','MDT')

 #value is the monitoring state of the indicator

 nodeIndicator.setAttribute('value','true')

 nodeCalculation.appendChild(nodeIndicator)

 #The node 'mean' means recording the mean value of the monitored

indicator value

 nodeMean = doc.createElement('mean')

 nodeIndicator.appendChild(nodeMean)

52

 fp = open("periodicallyTestedComponent.idf",'w')

 doc.writexml(fp)

 fp.close()

Generate simulator

"""

Generate the simulator using the compiling batch file from AltaRica tools

The AltaRica tool directory need to be set.

The name of the gts file and idf file need to be set.

"""

def generateSimulator():

 p = subprocess.call("gtsstocmp.cmd Tools\AR3Tools

periodicallyTestedComponent.gts *periodicallyTestedComponent.idf*

periodicallyTestedComponent.exe");

Generate mdf file

"""

Generate the mission description file

The result file name can be changed

The number of runs, seed can be changed.

The mission time should be set according to need.

"""

def generateMDFFile():

 doc = xml.dom.minidom.Document()

 root = doc.createElement('ar3ccp')

 doc.appendChild(root)

 nodeSimulation = doc.createElement('simulation')

 nodeSimulation.setAttribute('results-csv','results.csv')

 #Set number of runs

 nodeSimulation.setAttribute('number-of-runs','10000')

 nodeSimulation.setAttribute('seed','12345')

 root.appendChild(nodeSimulation);

53

 nodeSchedule=doc.createElement('schedule')

 #Set mission time

 nodeSchedule.setAttribute('mission-time','8760')

 nodeSimulation.appendChild(nodeSchedule)

 fp = open("periodicallyTestedComponent.mdf",'w')

 doc.writexml(fp)

 fp.close()

Generate result csv file

"""

Conduct the simulation with simulator and mission description file

"""

def generateCSVFile():

 p = subprocess.call("periodicallyTestedComponent.exe

periodicallyTestedComponent.mdf");

Read result

"""

Store the result of simulation and value of monitored indicator after each

simulation

Input: Dictionary storing result,

 Parameter value

"""

def storeResult(ResultsDict,Value):

 # Read csv

 csvFile = open("results.csv", "r")

 reader = csv.reader(csvFile, delimiter=';');

 # Build dictionary

54

 result = {};

 for item in reader:

 # Ingore first line

 if reader.line_num == 1:

 continue

 i=1;

 while item[i]=='':

 i=i+1

 result[item[i]] = item[i+1];

 csvFile.close()

 #In this case,it's mean of sojourn time. It should be reset depending on the

case

 strResult=result['mean']

 ResultsDict["{}".format(Value)]=int(float(strResult))

Do one simulation

"""

Do the whole process of one simulation with certain maintenance policy

"""

def simulation(VariableName,Value,ResultsDict):

 modifyAltFile(VariableName,Value)

 generateGTSFile()

 generateIDFFile()

 generateSimulator()

 generateMDFFile()

 generateCSVFile()

 #The result of the simulation stored in ResultDict

 storeResult(ResultsDict,Value)

Main

55

"""

Main block of the maintenance optimization process

Metaheuristic algorithms are applied here

"""

#Store the candidate parameter values

storeParameters(ParaDict)

valueList=ParaDict["delayBetweenTests"]

sorted(valueList)

ResultsDict={};

GlobalOptimum={};

#Create the tabu list, length is 10

TabuList=[None]*10;

TabuCount=0;

#Number of runs searching local optimum

n=30;

localoptimal=[];

localoptimalMDT=[];

for i in range(n):

 # Randomly choose the starting point

 startIndex=random.randrange(0, len(valueList),1)

 if startIndex == 1:

 startIndex = startIndex+1

 elif startIndex == len(valueList):

 startIndex = startIndex-1

 #Apply Tabu search algorithm

 if startIndex in TabuList:

 continue;

 TabuList[TabuCount]=startIndex;

 TabuCount=TabuCount+1;

 if TabuCount==10:

 TabuCount = 0;

 MinMDTIndex = 0;

56

 MinMDT =0;

 run = 0;

 LocalOptimums = {};

 OptimalVariable= None;

 #Search the local optimum until finding it or time expired

 while(MinMDTIndex!=1 and run <=10):

 #Simulations for the chosen value and two teaked values

 for index in [startIndex-1,startIndex,startIndex+1]:

 simulation("delayBetweenTests",valueList[index],ResultsDict)

 #Assess the performance of the three candidate values

 #Store the MDT results of three candidates

 MDTList = list(ResultsDict.values())

 #Find the smallest MDT among the three candidates

 MinMDT = min(MDTList)

 #Record the index of th smallest, 0-2

 MinMDTIndex = MDTList.index(MinMDT)

 #Record the corresponding parameter

 MinMDT_Para = list(ResultsDict.keys())[MinMDTIndex]

 startIndex = valueList.index(MinMDT_Para) # Change the index of

parameter in valueList

 if(startIndex==(1 or len(valueList))):

 break

 OptimalVariable = MinMDT_Para

 run = run+1;

 LocalOptimums[OptimalVariable] = MinMDT;

#Find the global optimum solution among all the local optimums

MDTList = list(LocalOptimums.values());

MinMDT = min(MDTList);

MinMDTIndex = MDTList.index(MinMDT);

57

MinMDT_Para = list(ResultsDict.keys())[MinMDTIndex];

GlobalOptimum[MinMDT_Para]=MinMDT;

print(GlobalOptimum)

