
An Additive Manufacturing Path
Generation Method Based on CAD Models
for Robot Manipulators

Ingrid Fjordheim Onstein

Master of Science in Cybernetics and Robotics

Supervisor: Jan Tommy Gravdahl, ITK
Co-supervisor: Linn Danielsen Evjemo, ITK

Department of Engineering Cybernetics

Submission date: May 2018

Norwegian University of Science and Technology

Problem description

Main objectives for this thesis:

1. Do a literature review on the state-of-the-art of large-scale additive manufactur-
ing. Consider the benefits and challenges of using a 6 DOF industrial robot as
opposed to using a traditional 3 DOF translation-only set-up.

2. Present the methods and software currently used for generating trajectories for
extrusion based AM based on CAD models.

3. Improve the method from the preliminary project that used available software to
generate a trajectory for printing a simple geometrical form. Evaluate whether
or not this improved method is suitable for further work on large-scale AM with
a 6 DOF robot.

4. Develop a new method to generate a path for printing simple geometrical forms
using robot manipulators that takes advantage of the robots 6 DOF. This includes
generating a path that reduce the need for support structures and that can print
along curved contours.

i

Abstract

Traditional extrusion based Additive Manufacturing (AM) is realized using a 3 Degrees
of Freedom (DOF), translation only, 3D printer. Here, the printer must be larger than
the printed part. One way of enabling AM in large-scale is to combine AM with
robotics. By using a 6 DOF robot manipulator to extrude a fast-curing material, the
workspace of the build would be greatly expanded and it would be possible to increase
the flexibility of the building process itself since the structure would no longer have
to be built from the bottom-up approach which is necessary for most existing forms
of AM. This could possibly reduce the need for support structures to the point of
only relying of anchoring and stabilizing. In this thesis, a method for generating a
path for AM using robot manipulators that takes advantages of the robots DOF is
presented. The path is generated based on simple surfaces in CAD models. First, the
surface(s) is sampled and the samples are gathered in a point cloud. Then, a path is
generated based on the point cloud using a path generation algorithm. Three different
path generation algorithms was implemented and tested: greedy choice, weighted
greedy choice and Travelling Salesman Problem (TSP). Out of the three algorithms,
the weighted greedy choice algorithm shows the most promise. With this algorithm,
paths that enable printing along curved surfaces and reducing the need for support
structures was generated. The method is effective, and by interfacing with FreeCAD, it
is easy to review the generated paths through visual aids. It is, however, important to
mention that the method only generates paths based on simple surfaces and is based
on the assumption of fast-curing material enabling mid-air printing.

ii

Sammendrag

Til tradisjonell 3D-printing brukes 3D-printere med 3 frihetsgrader. Dette medfører
at printeren må være større enn delen som skal printes. 3D-printing i storskala kan
muliggjøres ved å kombinere 3D-printing og robotikk. Ved å bruke en robotmanipulator
med 6 frihetsgrader til å ekstrudere et materiale som herder raskt, kan arbeidsområdet
bli kraftig utvidet og det vil være mulig å øke flesibiliteten til byggeprosessen. Dette
er siden strukturen ikke lenger må bygges lag for lag fra bunnen av som er nødvendig
for de fleste eksisterende løsninger innen 3D-printing. Dette kan redusere behovet for
støttestrukturer til kun å være avhengig av forankring og stabilisering.

I denne avhandlingen, vil en metode for å generere baner til 3D-printing for en
robotmanipulator bli presentert. Målet med metoden er å utnytte alle de 6 frihets-
gradene. De genererte banene er basert på enkle overflater i CAD-modeller. Det første
steget i prosessen er å sample de valgte overflatene og samle alle punktene i en felles
punktsky. Deretter vil en en bane bli generert basert på denne punktskyen ved hjelp
av en algoritme. Tre forskjellige algoritmer er implementert og testet, herunder grådig
algoritme, vektet grådig algoritme og travelling salesman problem (TSP). Blant de
tre algoritmene er det vektet grådig som viser mest potensiale. Denne algoritmen
genererer baner som muliggjør 3D-printing langs kurvede overflater og som reduserer
behovet for støttestrukturer. Metoden er effektiv og gjennom FreeCAD er det lett å
vurdere de genererte banene ved hjelp av visuelle verktøy. Det er viktig å nevne at
metoden kun genererer baner basert på enkle overflater, og er basert på antagelsen
om materiale som herder hurtig.

iii

Preface

This thesis is written as part of a Master’s degree in Engineering Cybernetics at the
Department of Engineering Cybernetics at the Norwegian University of Science and
Technology (NTNU). The project was carried out from January 2018 to June 2018.
This thesis is based on the work done in the specialization project performed by
the student with the title "Additive manufacturing by robot manipulator: A method
for generating robot trajectory based on CAD model using existing solutions". The
task was formulated as an open problem and the student has chosen method and
software independently. Guidance was received from supervisor Jan Tommy Gravdahl,
co-supervisor Linn Danielsen Evjemo and from Mathias Hauan Arbo, all at NTNU.

Acknowledgements

I would like to thank my supervisor and co-supervisor at NTNU, Jan Tommy Gravdahl
and Linn Danielsen Evjemo, for their help and guidance throughout this project. I
would also like to thank Mathias Hauan Arbo at NTNU for discussing the project with
me when needed. Finally, I would like to thank my brother, Håkon Fjordheim Onstein,
for providing me with CAD models on request.

iv

Contents

Problem description i

Abstract ii

Sammendrag iii

Preface iv

1 Introduction 1
1.1 Motivation . 1
1.2 Literature review . 2
1.3 Assumptions . 3
1.4 Contributions . 3
1.5 Outline . 4

2 Literature study 5
2.1 Additive manufacturing . 5

2.1.1 Using 3D printers . 6
2.1.2 Using industrial robots . 6
2.1.3 Existing solutions . 7

2.2 Computer-Aided Design . 16
2.2.1 Boundary representation . 16

v

2.2.2 The STEP standard . 20
2.2.3 Stereolithography . 22
2.2.4 FreeCAD . 23

2.3 AM processing pipeline . 24
2.3.1 Tessellation of model . 24
2.3.2 Slicing algorithm . 24
2.3.3 Support structures . 28
2.3.4 Machine instructions . 30
2.3.5 AM software . 31

2.4 Robot control . 32
2.4.1 RobotStudio . 33
2.4.2 Robot Operating System . 34

2.5 Algorithms . 36
2.5.1 Dynamic programming . 36
2.5.2 Greedy choice algorithms . 36
2.5.3 Travelling Salesman Problem 37

3 Preliminary project 39
3.1 Further work . 41
3.2 Future work . 43

4 AM Path generation 45
4.1 Choice of solution . 45
4.2 AM Path generation system . 48
4.3 Sampling . 48

4.3.1 Sample object . 50
4.3.2 Sampling of sub object . 50
4.3.3 Calibration of step . 50
4.3.4 Generating point cloud . 52

4.4 Path generation . 52
4.4.1 Requirements of path . 53
4.4.2 Assumptions . 54

vi

4.4.3 Algorithms . 54

5 Results 59
5.1 Sampling . 60

5.1.1 Shoehorn model . 60
5.1.2 Propeller blade model . 62

5.2 Path generation . 67
5.2.1 Greedy choice algorithm . 67
5.2.2 Weighted greedy algorithm 69
5.2.3 Travelling Salesman Problem algorithm 76

6 Discussion 81
6.1 Sampling . 81
6.2 Path generation . 83

6.2.1 Greedy choice algorithm . 83
6.2.2 Weighted greedy choice algorithm 84
6.2.3 TSP algorithm . 87
6.2.4 Comparing the algorithms . 88

6.3 Path generation system . 89

7 Conclusion 91
7.1 Prospect for future work . 92

References 93

vii

List of Figures

2.1 The BOD . 8
2.2 New Story + ICON: 3D printed house 9
2.3 The Mataerial project enables AM along double curved lines in mid-air 10
2.4 MX3D Bridge Project - Robot on bridge 11
2.5 MX3D Bridge Project - Complete span 11
2.6 Part printed by the Robot Composite 3D Demonstrator 12
2.7 A typical aerospace component - material deposition and removal . . 14
2.8 Path comparison on a bowl-like surface 15
2.9 B-rep models . 17
2.10 A Bézier curve and its control polygon 18
2.11 Schematic of the control net for a 4x4 Bézier surface 20
2.12 Bi-cubic Bézier surfaces . 21
2.13 3D model of cylinder . 23
2.14 Typical process planning phases in AM 24
2.15 Staircase effect . 25
2.16 Slicing of triangle mesh process . 26
2.17 Image of sloped regions of simple manufactured example 27
2.18 Multi-directional slicing . 29
2.19 Structures requiring support structures 29
2.20 Direction parallel and contour parallel infill patterns for AM 30

3.1 Result from the slicing process using CraftWare 40

viii

3.2 Result of simulation of printing a cylinder in RobotStudio 42
3.3 Close up result of simulation of printing a cylinder in RobotStudio . . 42

4.1 Flow chart of the automatic path generation process. 48
4.2 UML diagram of the automatic path generation system 49
4.3 TSP solver tested on different input sequences 58

5.1 Shoehorn model used for testing the system 59
5.2 Propeller model used for testing the system 60
5.3 Non-adaptive sampling of shoehorn model 61
5.4 Adaptive sampling of shoehorn model 63
5.5 Sampling error displayed on sampling of shoehorn 64
5.6 Non-adaptive sampling of propeller blade 65
5.7 Point cloud of adaptive sampling of propeller blade 66
5.8 Path generated using greedy algorithm on shoehorn model 68
5.9 Path generated using greedy algorithm on propeller blade 69
5.10 Path generated using greedy algorithm on parts shoehorn model . . . 70
5.11 Path generated using greedy algorithm with u-weighting on shoehorn

model . 72
5.12 Path generated using greedy algorithm with u-weighting on propeller

blade . 73
5.13 Path generated using greedy algorithmwithu-weighting on sub objects

of shoehorn model . 74
5.14 Path generated using greedy algorithm with y-weighting on shoehorn

model . 75
5.15 Path generated using greedy algorithm with y-weighting on shoehorn

model - from top . 76
5.16 Path generated using TSP on shoehorn model 77
5.17 Path generated using TSP on the two largest faces of shoehorn model 78
5.18 Path generated using TSP on propeller blade 79

ix

Abbreviations

AM Additive Manufacturing

B-rep Boundary representation

CAD Computer Aided Design

CAM Computer Aided Manufacturing

CLI Common Layer Interface

CNC Computer Numerical Control

DOF Degrees of Freedom

FDM Fused Deposition Modeling

ISO International Standards Organization

NURBS Non-uniform rational B-splines

OLP Offline Programming

ROS Robot Operating System

SM Subtractive Manufacturing

STEP Standard for the Exchange of Product Model data

STL Stereo Lithography

TSP Travelling Salesman Problem

WAAM Wire Arc Additive Manufacturing

x

Chapter 1

Introduction

1.1 Motivation

In the recent years, the development of AM has increased rapidly and AM has become
more available to the public, Evans (2012). AM is the formalized term for what used to
be called rapid prototyping or what is more popularly called 3D printing, Gibson et al.
(2010). It works by adding material parts in layers; each layer a thin cross-section of
the part derived from the original Computer Aided Design (CAD) model. Initially AM
has been used to create visualization for products as they were being developed, but
today, AM is used to fabricate end-use products for aircraft, dental restoration, medical
implants, automobiles and even fashion products, AM basics (2017). Traditionally, AM
is realized using a 3D printer that can move in three linear directions along the x-y-z
axes, Evans (2012). It then follows that the 3D printer must be larger than the print. To
print in large scale using traditional 3D printers, the part must be printed in smaller
sub-parts before being mounted together afterwards. Another way of enabling AM
in large scale is to combine AM with robotics, Evjemo et al. (2017). By using a 6 DOF
robot manipulator to extrude a fast-curing material, the workspace for the build could
be greatly expanded and it would also be possible to increase the flexibility of the
building process itself because the structure would no longer have to be built layer by

1

2 CHAPTER 1. INTRODUCTION

layer from the bottom-up approach which is necessary for most existing forms of AM.
This could reduce or even remove the need for support structures to the point of only
relying on anchoring and stabilizing.

In the specialization project, which is presented in chapter 3, it was investigated
how a robot manipulator trajectory for extrusion based AM could be generated based
on a CAD model using existing solutions. A method that enabled AM using robot
manipulators was found, but it did not fully take advantage of the robots DOF. This
thesis will further investigate how a path can be generated based on a CAD model
for extrusion based AM using a robot manipulator. The goal is that the path takes
advantage of the robot manipulators DOF. A method for generating such paths will be
developed and tested on different CAD models. The thesis will start with a literature
review on the state-of-the-art AM using industrial manipulators, challenges and bene-
fits of using a 6 DOF robot manipulator compared to a traditional 3 DOF 3D printer, a
review of the methods and software currently used for AM based on CAD models and
a overview of CAD models and how they are built up.

1.2 Literature review

There has been a lot of development within AM in the recent years. Livesu et al. (2017)
present an overview of the AM processing pipeline from 3D model to 3D print. Evjemo
et al. (2017) present an overview of state-of-the-art AM by robot manipulator including
a proof-of-concept experiment. MX3D (2018) and Stratasys (2017) are both commercial
companies that present novel use of AM using robot manipulators, MX3D for large
scale printing and Stratasys for removing the need of support structures. Within the
subject of using robot manipulators for AM with non-planer contours, Zhang et al.
(2015), Zhang et al. (2016) and Alsharhan et al. (2017) show promising results with
increased material properties compared to planar contours. There has also been some
resent development with using arc-welding techniques for AM, so called Wire Arc
Additive Manufacturing (WAAM). This is attracting interest from the manufacturing
industry because of their potential to fabricate large metal components with low cost
and short production lead time. A review of WAAM is presented in Pan et al. (2018).

1.3. ASSUMPTIONS 3

1.3 Assumptions

There are two main assumptions that will be adopted throughout this thesis.
Assumption 1. The material is fast-curing enabling printing in mid-air.
Assumption 2. Only simple surfaces of the CAD model is used.
Remark 1. Tool-path planning is out of the scope of this thesis.

1.4 Contributions

The work in this thesis is based on the specialization project presented in chapter 3.
The following contributions have been made in this thesis:

• An overview of both traditional AM and AM using robots including different
technologies, methods and existing solutions.

• Further work on the method presented in the preliminary project for generating
robot trajectories for AM based on CAD models for simple geometrical forms
using existing solutions. The method is tested and verified using the virtual
controller in RobotStudio.

• A novel method for generating paths for AM using robot manipulators that
takes advantage of the robots DOF. The method consists of three different path
generation algorithms: greedy choice, weighted greedy choice and Travelling
Salesman Problem (TSP).

• The novel method is implemented using Python and FreeCAD.

• Studies evaluating the performance of the novel method on two different CAD
models, one with double curvature and one with overhang.

• Considered future work necessary to take this method to use

4 CHAPTER 1. INTRODUCTION

1.5 Outline

This thesis is divided into seven chapters. After this introductory chapter, there is
a literature study on the existing solutions for both traditional AM and AM using
robots, Computer-Aided Design and its standards, the state-of-the-art AM methods
and software, robot manipulator control including available software and finally a
section on different algorithms for path generation. This thesis is based on the work
from the specialization project which is presented in chapter 3. Chapter 3 also includes
some further work and results including a discussion of why a new and improved
method was necessary. In chapter 4, the new method for generating paths for AM
is presented. The result from this method is presented in chapter 5. The results are
discussed in chapter 6 before concluding and considering future work in chapter 7.

Chapter 2

Literature study

This chapter is based on the chapter with the same title in the preliminary project,
except for section 2.2 about CAD and section 2.5 about algorithms.

2.1 Additive manufacturing

AM is the formalized term for what used to be called rapid prototyping and what is
popularly called 3D printing, Gibson et al. (2010). AM works by adding material parts
in layers; each layer is a thin cross-section of the part derived from the original CAD
model. The counterpart of AM is Subtractive Manufacturing (SM) such as machining
which is defined by Machining (2017) as a process where a piece of raw material is cut
into a desired final shape and size by a controlled material-removal process. Reasons
for using AM instead of SM can be that SM is not able to produce highly complex
parts, AM can be much faster and that AM can be much cheaper. Initially, AM was
used to create visualization for products as they were being developed. As the AM
technology has developed, the number of applications has increased. Today, AM is
used to fabricate end-use products in aircraft, dental restorations, medical implants,
automobiles, and even fashion products, AM basics (2017).

5

6 CHAPTER 2. LITERATURE STUDY

2.1.1 Using 3D printers

To print a 3D model, a 3D printer is used. A traditional 3D printer can be compared to
a 3 DOF Cartesian robot. This is a machine that can move in three linear directions
along the x-y-z axes, Evans (2012). 3D printers have been around for engineers the
last 25 years, but become available to the public only the last few years. There are two
main AM technologies for layer by layer 3D printing; local deposition of material and
solidification of material, Livesu et al. (2017).

Material deposition refers tomethods that create the next layer by locally depositing
material on a previously printed layer. One example of a material deposition method
is Fused Deposition Modeling (FDM). FDM is defined as systems that builds parts
layer-by-layer by depositing semisolid molten polymeric materials in the shape of
thin filament (or road/bead) via computer-controlled robotic extruder, Taufik and Jain
(2016). There are several advantages of material deposition such as the ability to
combine multiple materials, printing time that mostly depend on the part volume and
the ability to fully enclose voids. A huge drawback however, is the strong requirement
for support structures, Livesu et al. (2017).

Layer solidification refers to all the processes that build the object by solidifying
the top (or bottom) surface of a non-solid material, typically within a tank. Examples
of layer solidification methods are photo-polymerization, powder bed fusion and sheet
lamination, Livesu et al. (2017). The main advantage of layer solidification compared
to material deposition is that the need for support structures are reduced. The major
drawback however, is that layer solidification typically require a tank larger than the
print with non-solid material. This makes this method very impractical for large-scale
AM.

2.1.2 Using industrial robots

AM can be time demanding for larger components since the layer size affect the
roughness and accuracy of the constructed surface. As a result, AM-machines are often
restricted to small build volumes. However, for parts where surface quality and detail is
less important, it is possible to build quicker and bigger. For traditional AM-processes,

2.1. ADDITIVE MANUFACTURING 7

this implies that the machines need to grow to a larger scale than the produced parts.
One way of enabling AM in large scale is to combine AM with robotics. By using
a 6 DOF robot manipulator to extrude a fast-curing material, the workspace for the
build could be massively expanded and it will also be possible to increase the flexibility
of the building process itself because the structure would no longer have to be built
layer by layer from the bottom-up which is necessary for most existing forms of AM.
This could reduce or even remove the need for support structures to the point of only
relying on anchoring and stabilizing. One possibility is also to make several robot
manipulators work simultaneously, possibly with different materials, on the same part,
Evjemo et al. (2017).

2.1.3 Existing solutions

3D printed houses

Over the last decade, there has been great progress in the field of 3D printing houses.
Two existing projects are The BOD and New Story + ICONs 3D printed houses. Both
are realized using a large scale 3D printer.

In Denmark, the construction of Europe’s first 3D printed building started in 2017,
The construction of Europe’s first 3D printed building has begun (2017). The goal of the
project is to demonstrate how 3D printing technology can be applied for constructions
in Europe, still fulfilling the usual European building codes. The BOD, which is short
for Building on Demand", will be a 3D printed small office hotel of less than 50 square
meters located in Copenhagen. It does not contain any straight lines of walls except
for the windows and doors, and is printed using the bottom-up approach. A picture of
the planned result can be seen in figure 2.1. The printing of the BOD is completed, but
windows, doors and roof are still to be mounted.

The other 3D printed house is made by Icon and New Story. In March 2018, they
showed their first 3D printed house in Austin, Texas. The house is 32m2 and is printed
by a printer, made up of aluminum, in concrete layer by layer, New Story + ICON: 3D
printed houses (2018). It is stated that it will take less than 24 hours to print a house
and that the price of one house will be $4.000. The goal of the project is to bring homes

8 CHAPTER 2. LITERATURE STUDY

Figure 2.1: The BOD. Image courtesy of The construction of Europe’s first 3D printed
building has begun (2017)

2.1. ADDITIVE MANUFACTURING 9

Figure 2.2: New Story + ICON: 3D printed house. Image courtesy of New Story + ICON:
3D printed houses (2018)

to the underdeveloped parts of the world. In figure 2.2 there is a picture of the printed
house in Austin, Texas.

Using industrial robots

In the Netherlands, Joris Laarman Lab enables craftsmen, scientists and engineers to
collaborate on emerging technologies such as 3D printing, Joris Laarman Lab (2018).
In 2012, Joris Laarman Lab, together with the Institute pf Advanced Architecture of
Catalonia (IAAC), started the Mataerial project, Mataerial (2018) The project used
a 6 DOF industrial manipulator to deposit material along a pre-designed trajectory.
This resulted in a patented AM method for building fast-curing thermoplastic in any
direction. There is a picture showing the result of the Mataerial project in figure 2.3.
This picture shows that by combining industrial manipulators with a fast-curing plastic

10 CHAPTER 2. LITERATURE STUDY

Figure 2.3: The Mataerial project enables AM along double curved lines in mid-air.
Image courtesy of Mataerial (2018)

makes it possible to "print" along double curved lines in mid-air.

Another project to come out of the Joris Laarman Lab is MX3D, MX3D (2018),
and this is one of the projects that has come the furthest within AM using robot
manipulators. They have successfully printed a butterfly screen and a gradient screen
in metal using a robot manipulator. Their newest project is to print a fully functional
stainless steel bridge that is to cross one of the canals in the center of Amsterdam.
The bridge is printed in parts of roughly one meter which is then assembled together
afterwards. In September 2017, they managed to mount the robot manipulator directly
on the bridge to print horizontally. A picture of the project from September 2017 is
shown in figure 2.4. April 2018, MX3D completed the full span of the bridge, only
missing the swirls on the end of the bridge. A picture of the complete span of the
bridge is shown in figure 2.5.

Another company that has come quite far within AM using robots is Stratasys,
Stratasys (2017). Stratasys has developed a new system called Robot Composite 3D
Demonstrator, Stratasys demonstrates next generation 3D printing technology for large

2.1. ADDITIVE MANUFACTURING 11

Figure 2.4: MX3D Bridge Project - Robot on bridge. Image courtesy of MX3D (2018).

Figure 2.5: MX3D Bridge Project - Complete span. Image courtesy of MX3D (2018)

12 CHAPTER 2. LITERATURE STUDY

Figure 2.6: Part printed by the Robot Composite 3D Demonstrator. Image courtesy of
Robotic composite 3D demonstrator (2017).

parts composites (2016). In the demonstrator, they have combined their own AM
processes with Siemens’s industrial motion control hardware. The result is an 8 DOF
system that allows for precise directional material placement while reducing the need
for support structures. The demonstrator is put together by one robot manipulator
with 6 DOF and one smaller robot with 2 DOF. The two robots work together allowing
the demonstrator to print along any X-Y-Z path. In figure 2.6 is a picture of the printed
part.

In Zheng et al. (2017), a method for automatic CAD-based path generation and
optimization for laser cladding robot in AM is presented. The process convert a CAD
model into a Stereo Lithography (STL) model, slices the STL model into a point cloud,
order the intersections in the x-y plane of the point cloud before finally generating
a layer by layer robot path. An experiment using the new method has also been
performed which shows promise.

2.1. ADDITIVE MANUFACTURING 13

Non-planar contours

Traditionally, all slicing algorithms use planar slices. There has, however, also been
a lot of research on the subject of using robot manipulators for printing along non-
planar surfaces. Zhang et al. (2015) present a method to fabricate parts or structures by
printing along curved surfaces with use of industrial robots. To print, an extrusion head
was mounted on the tip of an IRB140 robot. The curved path machine instruction was
generated using Arevo Kepler engine software and converted into RAPID code using
RobotStudio. Zhang et al. (2016) build on the work of Zhang et al. (2015) and presents
a method for robotic AM process simulation which pushes one step further in the
direction of design and analysis of AM part with building parameters in consideration.
The simulation is realized using RobotStudio and its tools such as tool trace. Also within
the work on non-planar surfaces has Alsharhan et al. (2017) developed a method for
enhancing mechanical properties of thin-walled structures with non-planar extrusion
based AM. The tool path is generated inMatlab and parsed into RAPID before simulated
and realized using RobotStudio and an ABB IRB120 robot manipulator. Results from a
test that compare the mechanical properties of the same model printed using planar
and curved contours are presented and discussed. The results shows that the material
properties of the part realized using curved contours are greatly improved compared
to using planar contours.

Wire Arc Additive Manufacturing

Arc-welding based AM techniques are attracting interest from the manufacturing
industry because of their potential to fabricate large metal components with low cost
and short production lead time, Pan et al. (2018). In WAAM, welding equipment is
mounted on the tip of a robot manipulator. WAAM has received less attention than
other AM processes through time due to high heat input, poor accuracy, no smooth
surfaces, immature CAD-to-part AM system and lack of integrated, reliable process
monitoring. However, WAAM has been widely explored over the last three decades.
This has led to several strategies within both slicing and path planning. This will be
explained further in section 2.3.2 and 2.3.3.

14 CHAPTER 2. LITERATURE STUDY

Figure 2.7: A typical aerospace component formed by electron beam wire deposition
followed by finishing material removal processes. Image courtesy of Hoye (2015)

In figure 2.7, an aerospace component before and after machining is shown. The
first picture shows the the component after AM and the second picture shows the same
component after undergoing machining. Machining is necessary for most components
made using WAAM.

Surface finishing

The opposite of AM is SM, also known as machining. There are a few areas within
machining that is highly applicable within AM as well. One is free form surface
finishing. Surface finishing is a broad range of industrial processes that alters the
surface of a work piece to achieve a certain property, Metal Finishing Industry (1995).
Free form surfaces, also called sculptured surfaces, can be defined as surfaces containing
one or more non-planar, non-quadratic surfaces generally represented by parametric
and/or tessellated models, Lasemi et al. (2010).

There are three major types of tool path topologies: direction-parallel, contour-
parallel and space-filling curve (SFC). In Lin et al. (2015), a new method is presented
that formulates the problem as a TSP. Here, the optimal path is generated in two steps.
The first step is to generate a set of regular cutter contact points on the surface and
the second step is to feed the generated points into a TSP solver for generation of the
optimal point linking sequence. A figure showing the result of the different tool path
generation algorithms is shown in figure 2.8.

2.1. ADDITIVE MANUFACTURING 15

Figure 2.8: Path comparison on a bowl-like surface: (a) the surface; (b) zigzag path; (c)
ISFC path; (d) TSP path. Image courtesy of Lin et al. (2015)

16 CHAPTER 2. LITERATURE STUDY

2.2 Computer-Aided Design

CAD can be defined as the use of computer systems to assist in the creation, modifica-
tion, analysis or optimization of a design, Sarcar et al. (2008). It can be used to increase
the productivity of the designer, to improve the quality of design and to improve
communications through documentation. A CAD model is typically represented using
boundary representation.

2.2.1 Boundary representation

Boundary representation (B-rep) represent objects in terms of the "skin" surrounding
them, Stroud (2006). The skin is composed of a set of adjacent bounded surface
elements, called faces. Faces are bounded by sets of edges, which are portions of curves
lying on the surface of the faces on either side of the edge. The points where several
faces meet are called vertices. A model showing how B-rep models are built up is
shown in figure 2.9. Each object can be divided into two basic groups: topology and
geometry. The topology is responsible for defining the structure of the object while
the geometry define the form or shape of the object. Examples of topology elements
are face, edge and vertex and examples of geometry elements are surface, curve and
point.

Free-form geometry

Geometry can be split into two categories: analytical and numerical, Stroud (2006).
With analytical geometry, the shape information is explicit. Examples of this is that a
curve is circular or that a surface is planar. Analytical geometry can be represented as

y = f (x) f (x ,y) = 0 f (x ,y, z) = 0 (2.1)

For numeric geometry, there is no inherent notion of the shape that is represented. The
shape is controlled by the positions of a set of points, called the control points, with
different weighting functions. The weighting functions are called "basis functions"
and different sets of functions give different geometry. Examples of basis functions are

2.2. COMPUTER-AIDED DESIGN 17

Figure 2.9: B-rep models. Image courtesy of Stroud (2006)

the Bézier form, Basis spline (B-spline) and Non-uniform rational B-splines (NURBS).
Numeric geometry is more difficult to use, but useful for representing surfaces where
no analytic representation exist. Examples of such surfaces are automobile bodies,
ship hulls, sculptures, bottles, shoes, etc, Rogers (2000).

The following descriptions of the different basis functions are taken from Stroud
(2006) and Rogers (2000).

Bézier curves was developed by P. Bézier at Renault Automobile Company. It is
defined by a set of control points B0 through Bn where n is called its order. The curve
passes through the first and terminating point while the remaining points are used to
define the slope of the curve at the end points.

The general formula for a Bézier curve of degree n is

P(t) =
n∑
i=0

n!
i!(n − 1)! (1 − t)n−it iBi (2.2)

18 CHAPTER 2. LITERATURE STUDY

Figure 2.10: A Bézier curve and its control polygon. Image courtesy of Rogers (2000)

where t is the curve parameter and Bi are the control points. In figure 2.10, a Bézier
curve and its control polygon is shown.

Bézier polynomials are somewhat constrained in the number of points that they
may approximate without the degree of the curve becoming inconveniently high. A
generalization of the Bézier approach known as B-splines overcome this problem.
B-splines uses blending functions to combine the influence of a series of control or
track points in an approximate curve.

Letting P(t) be the position vector along the curve as a function of the parameter t,
a B-spline curve is given by:

P(t) =
n+1∑
i=1

BiNi,k (t) tmin ≤ t < tmax , 2 ≤ k ≤ n + 1 (2.3)

where the Bi are the position vectors of the n + 1 control polygon vertices, and the
Ni,k are the normalized B-spline basis functions. For the ith normalized B-spline basis
function of order k (degree k − 1), the basis functions Ni,k (t) are defined by the Cox-de

2.2. COMPUTER-AIDED DESIGN 19

Boor recursion formulas. Specifically

Ni,1(t) =

1, if xi ≤ t < xi+1

0, otherwise.
(2.4)

and
Ni,k (t) =

(t − xi)Ni,k−1(t)

xi+k−1 − xi
+
(xi+k − t)Ni+1,k−1(t)

xi+k − xi+1
(2.5)

The values of xi are elements of a knot vector.

A generalization of both Bézier curves and the B-spline curves are NURBS curves.
A NURBS curve is defined by its order, a set of weighted control points and a knot
vector. The primary difference between NURBS, Bézier and B-splines is the weighting
of the control points which makes NURBS curves rational. B-splines are a special case
of of rational NURBS where each control point has a weight of 1, that is regular and
non-homogeneous. Currently, NURBS curves and surfaces are the standard for curve
and surface description in computer graphics.

NURBS curves are given as

P(t) =
n+1∑
i=1

Bhi Ni,k (t) (2.6)

where Bhi are the control polygon vertices for the non rational four-dimensional B-
spline curve. Ni,k (t) is the non rational B-spline basis function as given in equation
2.5.

Surfaces work in the same way as curves, only in two directions. These are called
"tensor product" surfaces. As a result, instead of one parameter, there are now two,
usually called u and v . The general formula for Bézier surfaces are:

P(t) =
n∑
i=0

m∑
j=0

n!
i!(n − i)!

m!
j!(m − j)! (1 − u)n−iui (1 −v)m−jv jBi j (2.7)

Bi j are the vertices of a polygonal control net. By comparing with the equation of

20 CHAPTER 2. LITERATURE STUDY

Figure 2.11: Schematic of the control net for a 4x4 Bézier surface. Image courtesy of
Rogers (2000)

a Bézier curve given in equation 2.2, it can be seen that they are quite similar. The
difference is that the equation of a Bézier surface contains two Bézier curve equations.
The control net of a 4x4 Bézier surface is shown schematically in figure 2.11. Here, the
v direction is given asw . Figure 2.12 shows several bi-cubic Bézier surfaces and their
control nets. The figure shows how changes in the tangent vector affects the surface.
B-spline surfaces and NURBS surfaces work in the same way as Bézier surfaces, but
with different basis functions.

2.2.2 The STEP standard

In design and manufacturing, there are many different systems used to manage techni-
cal product data. Each system has its own data format to represent the same informa-
tion. As a result, the same information has to be entered multiple times into multiple

2.2. COMPUTER-AIDED DESIGN 21

Figure 2.12: Bi-cubic Bézier surfaces. (a) Base surface; (b) effect of a change in both
tangent vector magnitudes at B0,0; (c) effect of a change in tangent vector direction at
B0,3; (d) effect of a change in twist vector magnitude at B0,0. Image courtesy of Rogers
(2000)

22 CHAPTER 2. LITERATURE STUDY

systems resulting in errors. For 3D design, this can become a large problem due to
its complexity. To solve the problem, standards for data exchange was made. In the
beginning, there were several different standards before an unifying effort was started
by International Standards Organization (ISO) to create one international standard.
The standard was named Standard for the Exchange of Product Model data (STEP),
more formally known as ISO 10303, The STEP Standard (2018). STEP is represented
using B-rep.

2.2.3 Stereolithography

STL was developed as a graphics exchange standard. Today, it is the most commonly
used format for 3D-printing. It approximates the surfaces of the model using polygons,
Chua et al. (2003). The number of polygons necessary to approximate a surface
depends on the structure of the surface. Highly curved surfaces must employ many
more polygons than a flat surface. The accuracy of the STL model is also determined
by the size and number of the polygons. It is important to notice that the size of the file
becomes larger as the number of polygons increase which creates a trade off between
size, accuracy and print time. In figure 2.13, a 3D model of a cylinder is shown in
both STEP and STL format. It can be seen that in the model represented using STEP,
figure 2.13a, the surface of the cylinder is smooth, continuous and put together by
different sub objects. In figure 2.13b, the cylinder is in STL format. It can be seen that
the surface of the cylinder is approximated using polygons.

2.2. COMPUTER-AIDED DESIGN 23

(a) Cylinder in STEP format (b) Cylinder in stl format

Figure 2.13: 3D model of cylinder

2.2.4 FreeCAD

CAD software enables engineers to design, inspect and manage projects with an
integrated graphical user interface (GUI) on a computer. Some popular CAD software
are Autodesk, Solidworks and FreeCAD. FreeCAD is a parametric 3D modeler made
primarily to design real-life objects of any size, FreeCAD (2018). Parametric modeling
allows you to easily modify your design by going back into your model history and
changing its parameters. FreeCAD is open-source and highly customizable. It can be
used interactively, or its functionality can be accessed and extended using the Python
programming language.

24 CHAPTER 2. LITERATURE STUDY

Figure 2.14: Typical process planning phases in AM: a design model (left) is tessellated
to enter the Process Planning phase (centre-left). Such a tessellation is sliced (centre-
right), and each slice is converted to a sequence of machine instructions (right). Image
courtesy of Livesu et al. (2017).

2.3 AM processing pipeline

The first step of AM is to have a 3D model of what you want to print. Such a model is
typically realized using CAD. When you have a 3D model, the next step is the process
planning. Process planning is the sequence of operations required to move from design
to realization. In AM, the phases of process planning is typically to tessellate the design
model, to slice the tessellated model and to finally convert each slice into machine
instructions, Livesu et al. (2017). A figure of the process going from a CAD model to
machine instructions is shown figure 2.14.

2.3.1 Tessellation of model

The first step in process planning is to tessellate the 3D model. This is done by
casting the CAD model into a corresponding Computer Aided Manufacturing (CAM)
representation. A typical CAM file format is STL as described in section 2.2.3. STL is
a triangular surface representation without representation of color, texture or other
common CAD model attributes, Chua et al. (2003). The casting from CAD to CAM can
be done within most software for 3D design such as Solidworks.

2.3.2 Slicing algorithm

After casting the design model into a CAM representation, the next step of the process
planning is slicing. Slicing means dividing the geometry into a set of contours. Tradi-

2.3. AM PROCESSING PIPELINE 25

Figure 2.15: Staircase effect. Image courtesy of Livesu et al. (2017)

tionally this has been planar contours, but there has been some research on curved
contours as well.

Planar contours

When slicing into planar contours it is commonly along the z axis aligned with the
height of the model. Then each slice is a plane intersecting the shape at a given height.
The simplest approach to divide the model into slices is to subdivide it uniformly, that
is with a constant step in the z direction. Given a manufacturing layer thickness τ and
the height of the model H , the model is divided into N = H

τ slices. Each slice i is then
located at height zi = i+0.5

N , Livesu et al. (2017).
One of the main drawbacks of planar contouring is the staircase effect, Livesu

et al. (2017). This occurs as a result of the difference between the contours and the
model. The staircase effect is shown in figure 2.15. As can be seen in the figure, the
staircase effect is almost negligible when the geometry is close to vertical. However,
when the geometry is near horizontal and highly curved, the staircase effect is large
causing a large error between geometry and print. One solution is to reduce the step
length, but this increases both the build time and cost. An alternative solution to

26 CHAPTER 2. LITERATURE STUDY

Figure 2.16: Slicing of triangle mesh process. Image courtesy of Kirschman and Jara-
Almonte (1992)

reduce the staircase effect is to use adaptive step length in the z direction. Adaptive
slicing approaches exploit this by adapting the thickness of each slice to the shape
geometry, Sabourin et al. (1996). Thinner slices can then be used for curved geometries
and thicker slices for close to vertical geometry.

After determining the set of slices, each slice plane has to be intersected with the
input geometry. One way to do this is slicing of triangle meshes. An algorithm of
this is described by Kirschman and Jara-Almonte (1992). The algorithm works by
extracting, for each z layer, all intersections segments between the slice plane and the
triangles of the STL file followed by forming loops. This process from design model
to slices is shown in figure 2.16. There are many different implementations of this
method and they mainly differ by how segments and loops are formed.

Direct Slicing

To avoid triangle mesh, several techniques has been developed to extract contours
directly from the initial model. These methods are called direct slicing. In Jamieson

2.3. AM PROCESSING PIPELINE 27

Figure 2.17: Images of sloped regions of simple example manufactured: (A) component
manufactured using conventional layered contouring; (B) component with skin layer
manufactured using curved contouring. Image courtesy of Allen and Trask (2015)

and Hacker (1995), the arguments for and against direct slicing is discussed. One
argument for direct slicing is that for models with cylindrical shapes, a tessellated
file will make the print inaccurate and most likely require hand finishing to obtain
a smooth surface. Another advantage is that the slices are fed directly to the printer
reducing pre-processing time and file size. One file format for direct slicing is Common
Layer Interface (CLI). The drawbacks of direct slicing is that supports cannot be easily
added to the nested sections and the ability to re orientate the model is lost. It is argued
that the disadvantages is in fact benefits since the designer should design the models
for AM to gain the full potential of the technology.

Research has been done on applying direct slicing on point clouds which are often
obtained by 3D scanners or vision algorithms. For point clouds, triangle contouring
is not applicable since the connectivity and topology is unknown. Yang et al. (2011)
present an approach on slicing point-set into planar contours for AM use.

Curved contours

As already mentioned, one of the biggest drawbacks of planar contours is the staircase
effect. This problem occurs especially on curved surfaces. To minimize that effect and
also improve the mechanical properties of the part, there has been a lot of development

28 CHAPTER 2. LITERATURE STUDY

and research on AM using curved contours by Huang and Singamneni (2012), Allen
and Trask (2015), Lim et al. (2016) and as mentioned in section 2.1.2 by Zhang et al.
(2015), Zhang et al. (2016) and Alsharhan et al. (2017). Huang and Singamneni (2012)
and Allen and Trask (2015) presents curved contouring and methods for developing a
tool path for specific models. Lim et al. (2016) discuss the advantages and problems
of curved contouring in addition to developing a novel method for generating a tool
path for a broad specter of models. The main disadvantages of planar contours is the
main advantages for curved contours. Firstly, the staircase effect is reduced. Secondly,
the top surface is covered by one layer instead of multiple layer edges. Thirdly, the
mechanical and aesthetic properties of extrusion based AM are improved. This is tested
and proved by Alsharhan et al. (2017). The main problems with curved contouring is
that it is necessary with more DOF for the printer, making the path generation more
complicated. Also, a need to secure collision avoidance with the print is necessary.
In figure 2.17, the result from the experiment performed by Allen and Trask (2015) is
shown. Here it can be seen that the structure of the surface is greatly improved by
using curved contouring instead of layered contouring for curved geometries.

2.3.2.1 Multi-directional slicing

Most 3D slicing methods within WAAM have focused on minimizing the need for
support structures. One reason for this is that for metal components, the supports
are normally deposited using the same material. This results in wastage of material,
and the removal of such supports requires costly post-processing, Ding et al. (2016). A
method to reduce the need for support structures is multi-direction slicing as presented
in Ding et al. (2016). The method works by first decomposing the CAD model into
sub-volumes before the sub-volumes are sorted using a depth-tree structure based on
topology information for slicing. In figure 2.18, a model of the process is shown.

2.3.3 Support structures

After the slices and contours are ready, support structures has to be added to the
part. Support structures are essential in AM, especially for extrusion based methods.

2.3. AM PROCESSING PIPELINE 29

Figure 2.18: (a) a progressive decomposition of an example into sub-volumes with their
own build directions; (b) sub-volume grouping with depth-tree structure; (c) model
slicing along multiple build directions. Image courtesy of Ding et al. (2016)

Figure 2.19: The letter M decomposed into layers. The figure to the left is showing an
island and the figure to the right is showing collapsing print due to overhang. Image
courtesy of Livesu et al. (2017)

30 CHAPTER 2. LITERATURE STUDY

Figure 2.20: Direction parallel and contour parallel infill patterns for AM. Image
courtesy of Livesu et al. (2017)

They are used to compensate for limitations of the manufacturing processes. Some
limitations are certain geometrical structures such as overhang angles and islands.
This is represented in figure 2.19. Another reason for support structures are to avoid
printing the inner volume of the part to safe both time and cost. Support structures are
split into two categories, internal and external support. The external support structures
are typically printed in a different material than the rest of the print to facilitate part
cleanup and removal, Gibson et al. (2010). This does however often require human
intervention and is therefore a time-consuming and expensive step.

Internal support modify the inside of the object to achieve a trade-off between
material cost, print time and physical properties, Livesu et al. (2017). They can be split
into two main categories: techniques that create large empty pockets within object
and techniques that create dense infill. The techniques that create large empty pockets
within the object focus on saving both material and time. Within the area of dense
infill there are different filling patters including direction parallel (or zig-zag) and
contour parallel. The two dense infill methods are shown in figure 2.20

2.3.4 Machine instructions

There are several factors to consider when generating the tool path. In FDM it is very
difficult to control the material deposition when a path begins and stops, making it

2.3. AM PROCESSING PIPELINE 31

important to reduce the number of disconnected paths. Furthermore, long curvature
paths are preferred over sharp turns, allowing higher nozzle speed. One final factor
to consider is to reduce the airtime, the time necessary to move the nozzle from the
end of a curve to the beginning of the subsequent one. This path planning problem
has been shown to be related to the TSP, Wah et al. (2002). TSP is described in section
2.5.3.

2.3.5 AM software

There is a lot of AM software on the market for process planning. They generally
work by uploading the CAM model you want to print and then return the machine
instructions. Some of them are described, compared and rated on 17 best 3D slicer
software tools for 3D printers (2017). The different software can vary on price, who
it is intended for and on operating system. Two free solutions are Ultimaker Cura
and CraftWare. Ultimaker Cura is developed by the 3D printer company Ultimaker,
but has its roots in open source. CraftWare is developed by CraftUnique to support
their 3D printer CraftBot, but can be used for other printers as well. Both Cura and
CraftWare has the option of switching between "easy" and "expert" mode depending
on the experience and need of the user. The output from both programs is G-code in
the file format .gcode.

G-code

G-code is the common name for the most widely used numerical control programming
language. Smid (2003) defines numerical control as an operation of machine tools by
the means of specifically coded instructions to the machine control system. Numerical
control is is used in Computer Numerical Control (CNC). CNC refers to a computer
"controller" that reads G-code instructions and drives the machine tool, G Code (2017).
G-code instructions are preparatory commands. They preset and prepare the control
system to a certain desired condition, mode or state of operation. Examples of G-code
commands used in AM is shown in the table 2.1.

32 CHAPTER 2. LITERATURE STUDY

Command Meaning
G0 Rapid positioning
G1 Linear interpolation
G28 Return to home
G90 Absolute distance mode
G92 Offset coordinate system and set parameters

Table 2.1: Commonly used G-code commands

2.4 Robot control

The development of industrial robots is characterized by the fusion of a large spectrum
of multidisciplinary technologies. Automotive industries and their supply chains are
the dominating customers for industrial robots today. This means that their needs and
requirements has been driving the robot development. In order to find other industries
that might drive future robot development, low cost safe robot systems that are easy
to install, configure, calibrate, program and maintain are necessary, Brogårdh (2007).
The complexity of programming remains one of the major hurdles preventing other
industries from using industrial robots.

There are two main methods for robotic programming; online programming in-
cluding lead-through and walk-through and Offline Programming (OLP). For online
programming, a teach pendant is used to manually move the end effector to the desired
position and orientation at each stage of the robot task. The relevant robot configura-
tions are recorded by the robot controller and the robot program is generated. The
advantages of this method is that it is intuitive, requires low programming skills and
has low initial cost. The drawbacks however, is that it is limited by the skills of the
operator and once the program is generated, it it very difficult to make changes, Pan
et al. (2012). OLP is based on the 3D model of the robot system. It is more reliable and
flexible compared to online programming. The drawback is that it is more complex,
requiring higher programming skills.

Due to the complexity of OLP, numerous graphical software environments are
created by robot vendors as well as non robot vendors. Almost every robot vendor

2.4. ROBOT CONTROL 33

has their own platform and each OLP is made compatible with its corresponding
robot hardware. ABB has RobotStudio, which is the most popular one, and KUKA has
KUKA-sim and KUKA CAM-Rob.

Three environments developed by non robot vendors are Grasshopper 3D, Robot-
master CAD/CAM and Robot Operating System (ROS). Grasshopper 3D is an en-
vironment than runs within the Rhinoceros 3D CAD software, Grasshopper (2017).
Grasshopper uses a visual scripting tool, allowing the user to create parametric struc-
tures without knowing how to write scripts. HAL is a robot programming add-on
for Grasshopper that supports both ABB, KUKA and Universal Robots, HAL Robotics
(2017). Robotmaster CAD/CAM integrates OLP, simulation and code generation. It
is designed for users without deep knowledge in the field by using visualization of
issues and opportunities to obtain the optimal robot program, Robotmaster CAD/CAM
(2017). ROS is a flexible framework for writing robot software. It is a collection of
tools, libraries, and conventions that aim to simplify the task of creating complex and
robust behaviour across a wide variety of robotic platforms, ROS (2018).

There are no standardized robot control system either. KUKA’s control system is
based on x-y-z coordinates for translation and Roll, Pitch, Yaw to define the rotational
angles, KUKA (2017). The programming language is called KRL. The control system of
ABB, on the other hand, is also based on x-y-z coordinates for translation, but uses
quaternions for rotational angles. ABB’s programming language is called RAPID, ABB
Robotics (2017). Each program or code is made specifically for one robot with specific
configurations. As a result, it is not straight forward to run the same code on different
robots with different configurations.

2.4.1 RobotStudio

RobotStudio is the OLP environment developed by ABB. It has tools for training,
programming and optimization of robot systems. It has a virtual controller with the
exact copy of the real software that runs on ABB robots, RobotStudio® (2017). This
means that a system or code that runs successfully on the simulator in RobotStudio
will also run successfully on the physical robot.

34 CHAPTER 2. LITERATURE STUDY

RAPID

RAPID is the programming language used to program ABB’s industrial robots. The
robot rely on three different types of motion, MoveL, MoveJ and MoveC, ABB (2007).
MoveL is linear motion that forces the robot to move on a straight line between two
points. This is the command that is used the most. MoveJ is a point to point motion
that lets the robot move to the second point in the easiest way. This is typically used to
move to the start point or the other side of the workspace. MoveC is arc motion defined
by two points. The robot will then start from the point where the last command ended
and create an arc through the first until the second point.

2.4.2 Robot Operating System

As mentioned, ROS is a flexible framework for writing robot software. It is a collection
of tools, libraries, and conventions that aim to simplify the task of creating complex
and robust behaviour across a wide variety of robotic platforms, ROS (2018). ROS is
open source and written in C++ and Python. It can run on two operating systems,
Linux and MacOS. One program in ROS is ROS-Industrial. This contains libraries,
tools and drivers for industrial hardware. One feature of ROS-Industrial is a package
that provide communication with ABB industrial robot controllers. The models for
supported manipulators are associated with another feature in ROS-industrial, namely
MoveIt!.

MoveIt!

MoveIt! is state of the art software for mobile manipulation, incorporating the latest
advances in motion planning, manipulation, 3D perception, kinematics, control and
navigation. It provides an easy-to-use platform for developing advanced robotics
applications, evaluating new robot designs and building integrated robotics products for
industrial, commercial, R&D and other domains, MoveIt! (2018). MoveIt! is interfaced
on over 65 robots by the community. A list of the robots can be found on their web
page. If desired, it is possible to implement MoveIt on any robot. At the Norwegian

2.4. ROBOT CONTROL 35

University of Science and Technology (NTNU), MoveIt is implemented on the KUKA
robotics laboratory at the Department of Cybernetics.

36 CHAPTER 2. LITERATURE STUDY

2.5 Algorithms

This section is on based chapter 15, 16 and 32 in Cormen (2009).

2.5.1 Dynamic programming

Dynamic programming solves problems by combining the solutions to subproblems.
It applies when the subproblems overlap - that is, when the subproblems share sub-
subproblems. In this context, a divide-and-conquer algorithm does more work than
necessary, repeatedly solving the common subsubproblems. A dynamic-programming
algorithm solves each subsubproblem just once and then saves its answer in a table,
thereby avoiding the work of recomputing the answer every time it solves each sub-
subproblem. Dynamic programming is typically applied to optimization problems.
Such problems can have many possible solutions and the goal is to find a solution with
the optimal (maximum or minimum) value.

2.5.2 Greedy choice algorithms

For many optimization problems, using dynamic programming to determine the best
choice is overkill; simpler, more efficient algorithms will do. A greedy algorithm
always makes the choice that looks best at the moment. That is, it makes the locally
optimal choice in the hope that this choice will lead to a globally optimal solution. It
is important to notice that greedy algorithms do not always yield optimal solutions.

In order for a greedy algorithm to solve a particular optimization problem, the
greedy-choice property has to be satisfied and the problem must have optimal sub-
structure. The greedy-choice property is satisfied if we can assemble a globally optimal
solution by making locally optimal (greedy) choices. In other words, we make the
choice that looks best in the current problem, without considering results from sub
problems. This differ from dynamic programming where we make a choice at each
step, but the choice usually depends on the solutions to sub problems. The choice
made by a greedy algorithm may depend on choices so far, but it cannot depend on
any future choices or on the solutions to sub problems.

2.5. ALGORITHMS 37

A problem exhibits optimal substructure if an optimal solution to the problem
contains within it optimal solutions to sub problems. This property is a key ingredient
of assessing the applicability of both dynamic programming as well a greedy algorithms.
For greedy algorithms, this can be applied with a rather direct approach. All we need
to do is argue that an optimal solution to the sub problem, combined with the greedy
choice already made, yields an optimal solution to the original problem.

Weighted greedy choice algorithm

A weighted greedy algorithm is the exact same algorithm as the greedy choice algo-
rithm with the exception of the weighting. The greedy algorithm makes the locally
optimal choice in the hope that this choice will lead to a globally optimal solution. The
weighted greedy algorithm does the exact same thing, only that some weight might
effect what the locally optimal choice is. Weighting works by altering the calculations
that is the basis for the greedy choice based on some weighting criteria. This weighting
criteria will vary depending on the application.

2.5.3 Travelling Salesman Problem

The following paragraph is taken from Lawler et al. (1985) and not Cormen (2009) as
the rest of this section. In combinatorial mathematics, a graph is a finite set of vertices,
some pairs of which are joined by edges. A cycle in a graph is a set of vertices of the
graph which is such that it is possible to move from vertex to vertex, along edges of
the graph, so that all vertices are encountered exactly once, and that we finish where
we started. If a cycle contains all the vertices of the graph, it is called Hamiltonian. The
TSP for a graph with specified edge lengths is the problem of finding a Hamiltonian
cycle of shortest length.

The TSP is described as a salesman must visit n cities. The salesman wishes to
make a tour visiting each city exactly once and finishing at the city he starts from. The
salesman incurs non negative integer cost c(i, j) to travel from city i to city j, and the
salesman wishes to make the tour whose total cost is minimum, where the cost is the
sum of the individual costs along the edges of the tour. The TSP is NP-complete. A

38 CHAPTER 2. LITERATURE STUDY

NP-problem is a problem where no polynomial-time algorithm has yet been discovered,
nor has anyone yet been able to prove that no polynomial time algorithm can exist for
any one of them.

Chapter 3

Preliminary project

In the autumn 2017, a method for enabling AM using robot manipulators based on
existing solutions was investigated in the authors specialization project with the
title: "Additive manufacturing by robot manipulator: A method for generating robot
trajectory based on CAD model using existing solutions". The method consisted of
five main steps:

1. Cast the CAD model into a CAM model in STL format.

2. Generate 3-axis machine instructions based on the CAM model using AM soft-
ware. In the project, CraftWare, CraftWare (2017), was used. The machine
instructions were given in g-code. A picture of the result in CraftWare including
the path and the machine instructions is shown in figure 3.1.

3. Convert the machine instructions into robot path using Machining PowerPac,
RobotStudio Machining PowerPac (2017), in RobotStudio, RobotStudio® (2017).

4. Simulate the generated robot path using the virtual controller in RobotStuio.

5. Run the simulated path on the physical robot.

With some smaller modifications of the generated code, the robot managed to
follow the generated path. It was, however, argued that the method has drawbacks

39

40 CHAPTER 3. PRELIMINARY PROJECT

Figure 3.1: Result from the slicing process using CraftWare

3.1. FURTHER WORK 41

and limitations that makes the method unfit for large-scale AM using a 6 DOF robot.
One drawback was that the slicer tool did not generate an optimal path. The most
significant drawback was, however, that the machine instructions is generated for
a 3 DOF 3D printer meaning that the robot cannot take advantage of its 6 DOF for
large-scale AM using this method. Some lost advantages is to use other approaches
than bottom-up AM to reduce the need of support structures and to use non-planar
contours to improve the aesthetic and material properties.

3.1 Further work

In the specialization project, one problem was that the used slicing tool, Craftware, had
limited options in the advanced settings. As a result, it was impossible to generate slices
without an inner wall. To further investigate the method for automatic generation
of robot trajectories based on CAD models developed in the specialization project,
it was decided to look for other slicing tools that had the desired possibilities. After
testing various options, the choice fell on SelfCAD. SelfCAD is an online browser-based
CAD/CAM platform which allows the user to model, sculpt, slice and print online,
SelfCAD (2018).

In SelfCAD, it is possible to set a Custom FDM printer as your choice. This printer
can be modified in whatever way you like. For this test, layer height was set to 2.0
mm, wall thickness to 4.0 mm, wall line count to 1 and top/bottom thickness to 0
mm. All support structures such as infill and brim was disabled. As in the project, the
generated g-code was imported, converted and simulated using RobotStudio and its
corresponding Machining PowerPac. The complete simulation of the print can be seen
in figure 3.2 and 3.3. As can be seen in the close up picture of the simulation in figure
3.3, the path is without an inner wall as planned.

The result of this improved method is a fully functional robot trajectory that is
generated based on a CAM model. It is simulated and verified using the powerful
virtual controller in RobotStudio. This trajectory could have been tested on a physical
robot with AM tools as it is.

42 CHAPTER 3. PRELIMINARY PROJECT

Figure 3.2: Result of simulation of printing a cylinder in RobotStudio

Figure 3.3: Close up result of simulation of printing a cylinder in RobotStudio

3.2. FUTURE WORK 43

3.2 Future work

Even though a fully functional robot trajectory was generated as described in the
previous paragraph, the method still has limitations. The most important limitation
being that the method is based on solutions made for 3 DOF 3D printers, while the
goal is to take advantage of the 6 DOF of a robot manipulator. Another limitation is
that both the slicing software and Machining PowerPac converter are considered to
be a processes that are difficult to control, meaning that the the user cannot control
what happens besides the settings available in the user interface. One last limitation is
that g-code for AM uses only straight line segments. This means that curved surfaces
will be approximated by many small straight line segments. Based on the mentioned
limitations, it was decided to find another approach to automatically generate paths
for AM using robot manipulators. This will be discussed in the following chapters.

44 CHAPTER 3. PRELIMINARY PROJECT

Chapter 4

AM Path generation

In chapter 3, a method for generating robot trajectories based on CAD models using
existing solutions was presented briefly and discussed. Based on the result it was
concluded that it was necessary with another method for automatic generation of
paths.

4.1 Choice of solution

Below is a list of possible improvements for the new method:

1. Take advantage of the DOF

(a) Curved contouring

(b) Reduce the need for support structures

(c) Multi-directional slicing

2. Avoid g-code

3. Improve control over the process

4. Use a CAD format instead of CAM

45

46 CHAPTER 4. AM PATH GENERATION

The first and most important improvement to consider is to take advantage of
the DOF. This could be done in several ways including curved contouring or multi-
directional slicing as described in section 2.3.2 or it could be to create a path that allows
printing overhang without the need for support structures. The next two mentioned
improvements is to avoid g-code and to improve control over the process. Both is
described in chapter 3. If g-code is avoided, there is no longer necessary to convert the
machine instructions into robot manipulator code. This also means that RobotStudio
Machining PowerPac is no longer needed. This makes it easier to improve the control
over the process which includes avoid using software where it is difficult to control
the process. In the preliminary project, this was a large problem with both the AM
software and RobotStudio Machining PowerPac. One more advantage of avoiding
g-code and thus finding another way of representing the path is that there is more
freedom in the choice of robot control environment. The final improvement was to
use a CAD format instead of a CAM format such as STL which is as approximation of
the CAD model. It was a goal to use a CAD format that was platform independent.
CAD was presented in section 2.2 and here under STEP as a possible format. STEP is
defined using boundary representation and is platform independent.

In section 2.3.2 and more specifically Alsharhan et al. (2017), a method using curved
contouring is presented. One input to the method is the part geometry and orientation
represented by the surface equation of the desired part. With surface equation as
input, there is one main drawback of the method: the surface must be described using
a surface equation. This means that more complex shapes that is represented using
numerical geometry cannot be printed. Within surface finishing as presented in section
2.1.3, however, paths that follows curved contours is generated for complex shapes as
well. The method described in Lin et al. (2015) generate a set of control points based
on the CAD model and then generate a path based on these control points. In this
particular paper, the path is generated using TSP to improve more established methods
such as zigzag and SFC.

Based on the findings in the literature study as described above, it was decided to
make an AM path generation system. As opposed to the specialization project, only
the path planning problem will be investigated. The robot control problem including

4.1. CHOICE OF SOLUTION 47

tool-path planning and collision avoidance is outside the scope of this thesis.
The path planning system will be inspired by the system used for surface finishing.

This allows curved contouring, possibly printing in overhang, improving the control
over the process and it allows the use of a CAD format instead of CAM. Since this
is only a path planning system, using or avoiding g-code will not be a issue for this
thesis.

48 CHAPTER 4. AM PATH GENERATION

4.2 AM Path generation system

Figure 4.1: Flow chart of the
automatic path generation
process.

The system is implemented using Python and ran as a
Macro in FreeCAD. This allows free interaction between
the CADmodel and the script. Themain idea behind the
solution is to generate a point cloud of samples from the
CAD model and then run a path generation algorithm
on the point cloud. A flowchart of the system can be
seen in figure 4.1. The first step is to have a CAD model
in STEP format open in FreeCAD. Next, the desired sub
object(s) are selected. From here on out in this thesis,
a sub object is considered to be a face as described in
section 2.2.1. By running the script on the selected
sub object(s), the system will sample the sub object(s)
separately before combining them into a point cloud.
Before generating a path, an algorithm has to be chosen.
The choices include TSP, greedy choice and weighted
greedy choice. Finally, a path is generated based on the
point cloud. The generated path and samples can be
displayed in FreeCAD together with the CAD model to
see the result. The system is implemented using four
classes: SubObject, Sample, Path and PointCloud. An
UML diagram of the system can be seen in figure 4.2.

4.3 Sampling

To be able to generate a path, it was necessary to sample
the surface of the object. This was done by sampling each geometric surface separately
before gathering all the samples in a joined point cloud.

4.3. SAMPLING 49

Figure 4.2: UML diagram of the automatic path generation system

50 CHAPTER 4. AM PATH GENERATION

4.3.1 Sample object

Each sample is stored as a Sample object. This object contains reference to the FreeCAD
sub object the sample belongs to, the u and v parameter coordinates, the Cartesian
coordinates and the normal vector as can be seen in the Sample class in figure 4.2.
The normal vector is not relevant for this system, but for future work on tool-path
planning it will be.

4.3.2 Sampling of sub object

A sub object, or face, is defined by two different coordinate systems in FreeCAD:
Cartesian coordinates and parameter coordinates. All Cartesian coordinates for the
entire CAD model are defined relative to the same reference point, and is given in
the form (x ,y, z). Parameter coordinates, however, are defined relative to a reference
point that is unique for every sub object. It is given in the form (u,v).

The parameter coordinates (u andv) of a sub object is used for sampling by iterating
over the face with a given step length. For each new iteration, it is checked if the
sample is on the face by using the function isInside in FreeCAD. All valid samples
are stored in a list of samples before the list is added to the point cloud. The sampling
of each sub object is implemented in the SubObject class that can be seen in the UML
diagram in figure 4.2.

When sampling a sub object, the user has to decide the desired distance (in mil-
limetres) between each sample in both the u and v direction. A step length in both u
and v direction is calculated based on the desired distances using calibration. This is
described further in the following section.

4.3.3 Calibration of step

Since u and v are parameter coordinates, it was necessary to calibrate the step length
in both the u and v direction to get the desired distance between each sample. For
each iteration, the distance, dk , between two points in the three-dimensional Euclidean

4.3. SAMPLING 51

space using the current step is calculated using the formula

dk =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (4.1)

where (x ,y, z) is the Cartesian coordinate. p1 = (x1,y1, z1) is found through the
parameter coordinate (u1,v1) and p2 = (x2,y2, z2) is found through the parameter
coordinates (u1+αu ,v1+αv). The Cartesian coordinates is found through the parameter
coordinates by using the function valueAt in FreeCAD. αu and αv is the step size in
the u and v direction respectively. Since only one direction is calibrated at the time,
either αu or αv will be zero during the calibration. The rest of the description is made
independent of which direction that is calibrated.

The calibration used in this thesis is strongly related to line search which is a basic
iterative approach to find a local minimum of an objective function. It is described in
Nocedal and Wright (2006) accordingly:

In the line search strategy, the algorithm chooses a search direction pk and
searches along this direction from the current iterate xk for a new iterate
with a lower function value. The distance to move along pk can be found
by approximately solving the following one-dimensional minimization
problem to find a step length α :

min
α>0

f (xk + αpk) (4.2)

The implemented calibration works as follows. If the calculated distance is outside
some area of tolerance, a,

a ≤ dk − dd ≤ −a (4.3)

where a is given by
a =

dd
t

(4.4)

where t is the tolerance given by the user and dd is the desired distance between the

52 CHAPTER 4. AM PATH GENERATION

two points. The step, α , will then be updated using the formula

αk+1 = αk
dd
dk

(4.5)

Pseudocode of the calibration function can be seen below.

1 de f c a l i b r a t e _ s t e p (po in t s , s t ep , d e s i r e d _ d i s t a n c e , t o l e r a n c e)
2 c a l i b r a t e d = F a l s e
3

4 whi l e not c a l i b r a t e d
5 c a l c u l a t e d i s t a n c e between the p o i n t s u s ing c u r r e n t s t e p
6

7 i f not c a l i b r a t e d and d i s t a n c e i s o u t s i d e a r e a o f t o l e r a n c e
8 update s t e p
9 e l s e
10 c a l i b r a t e d = True
11 r e t u r n s t e p

Listing 4.1: Pseudocode for calibration of sampling.float

4.3.4 Generating point cloud

As mentioned, all the samples were gathered in a joined point cloud. The point
cloud is a list of Sample objects which was described above. This point cloud can be
displayed in FreeCAD with or without the corresponding CAD model. The point cloud
is implemented through the PointCloud class which can be seen in the UML diagram
in figure 4.2.

4.4 Path generation

After generating the point cloud, the next step of the process is to generate a path.
Before the path can be generated, however, the goals and requirements of the path has
to be established. Assumptions and/or simplifications of the problem also has to be
taken into account.

4.4. PATH GENERATION 53

4.4.1 Requirements of path

The requirements of the path can vary depending on the material. Different materials
has variations in their ease of use and different physical properties. This means that one
path can be feasible with one material and infeasible with another. Other requirements
are due to practical reasons such as material extrusion.

In Ding et al. (2014), a list of requirements for a tool-path planning strategy for
WAAM is given and described as follows:

1. Geometrical accuracy: as the resolution of arc welding is relatively low, the
outlines of 2D geometries should be fabricated by contour patterns which could
effectively improve the geometrical quality of the part.

2. Minimize the number of tool-path passes: the cumulative deviations introduced
by the uneven weld bead geometry at the start and end portions of each welding
pass will limit the maximum number of layers that can be added together before
vertical build errors become problematic. Therefore, the number of welding
passes should be minimized to reduce starting-stopping sequences within each
layer. A continuous path is preferred here.

3. Minimize the number of tool-path elements: tool path elements are a series of
line segments representing the travel path of the tool. In general, at the ends of
tool-path elements, the wire feed rate should be adjusted to avoid a deposition
error caused by a rapid change of tool-path travel direction. To improve surface
accuracy, the number of tool-path elements should be minimized.

4. Simple algorithm with rapid implementation: the path planning algorithms
should be simple and quick to implement to reduce the pre-processing computa-
tional time.

In the listed requirements for a path in WAAM, some are more relevant than
others. One of the most relevant being that a continuous path is preferred over several
smaller paths since it is difficult to control the extrusion of material during start and
stop. Furthermore, it is preferred that the path is without self-intersections, again

54 CHAPTER 4. AM PATH GENERATION

since it is difficult to control material extrusion. Lastly, it is preferred that the path
planning process is efficient in order to reduce the pre-processing computational time.
As mentioned, the type of material affect the requirements. What to print also affect
the path. Due to this, some assumptions had to be taken to confine the problem.

4.4.2 Assumptions

To continue making a path generation system, the problem had to be confined. This is
done by making certain assumptions. The two assumptions are

1. Only simple surfaces

2. Fast curing material

Only simple surfaces means no solid models, only surfaces, and that the surfaces
are relatively smooth. By assuming that a fast curing material is used, mid-air printing
like achieved by Mataerial, presented in section 2.1.3, is possible. This enables printing
both horizontally and upside down. In this way, overhang structures can be printed
without the use of support structures.

4.4.3 Algorithms

Before choosing a path generation algorithm, it has to be established what properties
the desired path has. Based on the requirements, certain conclusions can be drawn. It
is desired that each sample is visited once and not multiple times. This means that the
path is a-cyclic. Furthermore, since it is difficult to start and stop material extrusion, it
is desired that the path is not self-intersecting. The distance between each sample can
be thought of as weights. The distance, or weight, is however the same if you go from
A to B as from B to A, making this an undirected problem with only positive weights.
Based on these findings, it was decided to try out three different algorithms, including
greedy choice, weighted greedy choice and Travelling Salesman Problem (TSP). All
algorithms are implemented through the Path class that is shown in the UML diagram
in figure 4.2.

4.4. PATH GENERATION 55

Greedy choice algorithm

The greedy choice algorithm is described in section 2.5.2 as an efficient algorithm for
optimization problems. It makes the locally optimal choice in the hope that this choice
will lead to a globally optimal solution. In addition to being efficient, the greedy choice
algorithm is also easy to implement. This is why this was the first algorithm to be
implemented.

The pseudocode of the implementation is given in algorithm 1. It starts by choosing
a starting sample. This is given by the user. Next, the distance to the other samples
in the point cloud are calculated. Based on the distances, a greedy choice is made.
Finally, the current sample is updated and added to the path. This loops until there is
no unvisited samples left.

Algorithm 1 Greedy choice algorithm
1: Choose starting sample
2: while there is unvisited samples do
3: Calculate distance to the other samples
4: Make greedy choice
5: Update current sample
6: Add sample to path
7: end while

Weighted greedy algorithm

The greedy algorithm always chooses the sample that is the closest to the current
sample. This might not always be the optimal choice. It could for example be beneficial
if the path completed one level before moving on to the next. This can be controlled
by adding weights in the calculations. In this way, the user can choose the starting
point and printing direction that is most likely to give the best result.

The pseudocode of the implementation of the weighted greedy algorithm is given
in algorithm 2. By comparing with algorithm 1, it can be see that they are very similar.
The only difference between the two algorithms are the weight that is added on the
distance if some weighting criteria is satisfied. Two different weighting systems was

56 CHAPTER 4. AM PATH GENERATION

implemented: u-weighting and y-weighting. u-weighting was implemented to affect
the parameter coordinates u and v . A weight is added in the weighting algorithm
if the u-value of the next sample is different from the current u-value. In this way,
the path will complete one u-level before moving on to the next. v-weighting was
not implemented in this thesis, but it would have worked in the exact same way.
y-weighting was implemented to affect the Cartesian coordinates x −y −z. This works
by adding a weight on the y-parameter of the distance calculations. Only y-weight
was implemented in this thesis since it was the only one that was applicable as will be
seen later. x and z could have been implemented in the exact same manner if found
applicable.

Algorithm 2 Weighted greedy choice algorithm
1: Choose starting sample
2: while there is unvisited samples do
3: Calculate distance to the other samples
4: if weighting criteria is satisfied then
5: Add weight on distance
6: end if
7: Make greedy choice
8: Update current sample
9: Add sample to path
10: end while

TSP

The TSP is described in section 2.5.3 as: the salesman wishes to make a tour visiting
each city exactly once and finishing at the city he starts from, and he wishes to make
the tour whose total cost is minimum.

Since TSP is a very complex algorithm, an already implemented solver was found
at the web page that belongs to Joao Pedro Pedroso at the University of Porto, TSP
solver (2018) 1. Input to the solver is a series of 2D coordinates and the shortest path,

1This solver is a part of the programming code for the book "Metaheuristics: A programming guide",
Kubo and Pedroso (2009)

4.4. PATH GENERATION 57

Algorithm 3 TSP algorithm
1: Calculate distance matrix
2: Create greedy tour
3: Calculate length of tour
4: Local search starting from greedy tour

visiting all the coordinates, is returned. To verify that the solver worked, four simple
test sequences was ran through the solver. The result of the four different sequences
can be seen in figure 4.3. All paths are found using greedy choice on the initial tour and
local search to improve the initial tour. Pseudocode of the solver is given in algorithm
3. Local search uses breadth first strategy until reaching local optimum. The blue dots
are the points of the input sequence and the calculated shortest path is displayed in
red. All axes are scaled to be equal in the figures. By reviewing the different paths, it
can be seen that they are all indeed the shortest paths. It was therefore concluded that
the solver worked satisfactory.

As mentioned, the input to the solver is a series of 2D coordinates. In the AM path
generation problem, there points are, however, 3D coordinates. To make the solver
applicable, some modifications was necessary. The solver makes all its calculations
based on a distance matrix that is calculated in the beginning of the TSP algorithm.
All distances in this matrix is calculated using the following formula

dk =
√
(x2 − x1)2 + (y2 − y1)2 (4.6)

By changing this distance calculation from 2D to 3D, the solver was adapted to fit the
AM path generation problem. The new formula was

dk =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (4.7)

where (x ,y, z) is the Cartesian coordinate.

58 CHAPTER 4. AM PATH GENERATION

(a) TSP sequence 1 (b) TSP sequence 2

(c) TSP sequence 3 (d) TSP sequence 4

Figure 4.3: TSP solver tested on different input sequences

Chapter 5

Results

Figure 5.1: Shoehorn
model used for testing
the system

In chapter 4, the AM path generation system and imple-
mentation was presented. In this chapter, the results of
testing the system is presented. First, the results of the
sampling and point cloud generation is presented and next,
the results of the path generation is presented including
the results using the different algorithms.

For testing both sampling and path generation, two
CAD models were used. The first model was of something
resembling a shoehorn as can be seen in figure 5.1. This
model was mainly chosen because of the overhang at the
top of the model, but also because it is made up of several
faces. The second model was of a propeller which can
be seen in figure 5.2. Due to the complexity of propeller
models, propellers today are mainly made using machining.
It was therefore interesting to choose a propeller to work
on for AM. The complex features include curving of the
propeller blades and curved seams between the propeller
blades and the center cylinder.

59

60 CHAPTER 5. RESULTS

Figure 5.2: Propeller model used for testing the system

5.1 Sampling

In the AM path generation system, the first step of the process was to sample the
surface of the selected sub objects of the CAD model. These samples was gathered in
a point cloud. The process of sampling the sub objects and gathering the samples in a
point cloud is described in section 4.3.

5.1.1 Shoehorn model

The first model that the sampling was tested on was the shoehorn model. The shoehorn
model consists of six combined faces. For the first test, the step length was only
calibrated once for each sub object resulting in non-adaptive sampling. In table 5.1 and
figure 5.3, the result of the non-adaptive sampling is given. The sampling in the u and
v direction was both set to 10.0 mm and this resulted in 961 samples. As can be seen in
figure 5.3, the entire model was sampled with about the same distance between each
sample. By studying the sampling closely, it can be seen that the sampling between
different faces is not optimal.

In hope to fix the sampling error between faces, adaptive sampling was imple-

5.1. SAMPLING 61

(a) Point cloud of non-adaptive sam-
pling of shoehorn together with CAD
model

(b) Point cloud of non-adaptive sam-
pling of shoehorn model

Figure 5.3: Non-adaptive sampling of shoehorn model

62 CHAPTER 5. RESULTS

Non-adaptive sampling of shoehorn model
Distance between samples (u, v) 10 mm x 10 mm

Number of samples: 961

Table 5.1: Non-adaptive sampling of shoehorn model

Adaptive sampling of shoehorn
Distance between samples (u, v) 10 mm x 10 mm

Number of samples: 960

Table 5.2: Adaptive sampling of shoehorn model

mented. Adaptive sampling in this context means calibrating the step length for each
iteration. The result of sampling the shoehorn model with the new calibration method
is given in table 5.2 and figure 5.4. The same desired step length in theu andv direction
was used and this resulted in 960 samples, one less that without adaptive sampling.

By comparing figure 5.3 and 5.4 it can be seen that they are more or less identical,
both with the same sampling problem between faces. In figure 5.5, a close up picture of
the sampling error is given. The close up photo shows that there is an error between
the samples in the seam of the faces. This is almost negligible at the bottom of the
figure, the start of the sampling, but grow larger further up along the model. After
looking closer into the problem, it was found that the u and v direction is defined in
different directions for the two largest faces in the middle and the thinner faces on the
sides. This result in the sub objects being sampled in the same direction by considering
u and v coordinates, but different directions in Cartesian coordinates.

5.1.2 Propeller blade model

The second model the sampling was tested on was the propeller model. More specifi-
cally it was tested on the propeller blade which is one the sub objects. Like with the
shoehorn model, the sampling was tested with the same desired step length in both u
and v direction and the calibration on the step length was only performed once at the

5.1. SAMPLING 63

(a) Point cloud of adaptive sampling of
shoehorn model with CAD model

(b) Point cloud of adaptive sampling of
shoehorn model without CAD model

Figure 5.4: Adaptive sampling of shoehorn model

64 CHAPTER 5. RESULTS

Figure 5.5: Sampling error displayed on sampling of shoehorn

5.1. SAMPLING 65

Non-adaptive sampling of propeller blade
Distance between samples (u, v) 10 mm x 10 mm

Number of samples: 372

Table 5.3: Non-adaptive sampling of propeller blade

(a) Point cloud of non-adaptive sampling of
propeller blade together with CAD model

(b) Point cloud of non-adaptive sampling of
propeller blade

Figure 5.6: Non-adaptive sampling of propeller blade

beginning of the sampling. The result of the non-adaptive sampling can be seen in
table 5.3 and figure 5.6. The distance between each sample was set to 10.0 mm x 10.0
mm and the number of samples was 372. As opposed to the result from the shoehorn
sampling, the distance between each sample here is not the same for the entire face as
supposed to. It can also be seen in the figures that the sampling follows the curvature
of the seam between the propeller blade and the cylinder in the center.

In order to get the same distance between all samples on the propeller blade,
adaptive sampling was tested. As for the shoehorn test, the same desired step length
was used. The result from the adaptive test can be seen in table 5.4 and figure 5.7. With
adaptive sampling, the number of samples was 609 which is a large increase from 372
with the non-adaptive sampling. By comparing the figure with non-adaptive sampling,
figure 5.6, with the figures with adaptive sampling, figure 5.7, it can easily be seen that
there are more samples with adaptive sampling and that the distance between each

66 CHAPTER 5. RESULTS

Adaptive sampling of propeller blade
Distance between samples (u, v) 10 mm x 10 mm

Number of samples: 609

Table 5.4: Adaptive sampling of propeller blade

(a) Point cloud of adaptive sampling of pro-
peller blade with CAD model

(b) Non-adaptive sampling of propeller
blade without CAD model

Figure 5.7: Point cloud of adaptive sampling of propeller blade

sample is constant.

5.2. PATH GENERATION 67

5.2 Path generation

After the point cloud was generated, the next step of the AM path generation process
was to generate the path. This was done using path generation algorithms. Three
different algorithms were tested: greedy choice, weighted greedy choice and TSP.
Based on the result from section 5.1, the path algorithms were only tested on the point
clouds generated using adaptive calibration. To be able to compare the results, the
desired distance between samples was set to 10.0 mm x 10.0 mm in u and v direction
respectively. The starting point of all algorithms is set to the first point in the point
cloud. The result from the three path algorithms is presented in the following sections.

In section 5.1.1, the result of sampling the shoehorn model was presented including
the sampling error that occurs between faces. This sampling error is present when
generating paths for the shoehorn model. Its presence greatly affect the performance
of the algorithms. The consequences of the sampling error will be discussed in the
next chapter.

5.2.1 Greedy choice algorithm

The first path algorithm to be implemented was the greedy choice algorithm. To
visualize the path, a wire connecting the samples was drafted.

In figure 5.8, the greedy choice algorithm was tested on a point cloud consisting of
all faces of the shoehorn model. It can easily be seen that the path is far from optimal.
There are several instances where the path intersects itself which was one of the main
things that should be avoided as discussed in section 4.4.1. Furthermore, the path has
some jumps from one sample to another which can be seen especially in figure 5.8b on
the backside of the shoehorn. Unless it is possible to turn off the material flow during
the jump, this will cause large errors between the original CAD model and the print.

In figure 5.9, the greedy choice algorithm is tested on the propeller blade. Like for
the shoehorn model, the path here is far from optimal.

To further test the quality of the greedy path algorithm without the presence of
the sampling error, it was decided to test the algorithm on one face at a time. In figure
5.10a, the algorithm is tested on the largest face of the shoehorn. Here it can be seen

68 CHAPTER 5. RESULTS

(a) Path generated using greedy algo-
rithm on shoehorn model - with CAD
model

(b) Path generated using greedy algo-
rithm on shoehorn model - only path

Figure 5.8: Path generated using greedy algorithm on shoehorn model

5.2. PATH GENERATION 69

(a) Path generated using greedy algorithm
on propeller blade - with CAD

(b) Path generated using greedy algorithm
on propeller blade - only path

Figure 5.9: Path generated using greedy algorithm on propeller blade

that the greedy path algorithm generates a path without self-intersections or any
other problems. In figure 5.10b, the algorithm is tested on the two largest faces in the
shoehorn model. This means including the face with the overhang feature. It can be
seen that the path is without self-intersections and overall a good path. The path is,
however, not optimal in the seam between the two faces. This is explained by the fact
that the distance between the samples in the seam is not the same as for the other
samples due to the sampling error.

5.2.2 Weighted greedy algorithm

The second algorithm that was tested was the weighted greedy algorithm. Initially,
the weighting was based on u. That means that if the next sample had another u-value
than the current u-value, a weighting value was added to the distance calculation.
This was to ensure that the path followed the current u-value, that is the current level,
before moving up along the model. The second weighting to be tested wasy-weighting.
Here, a weight is added on the y-component of the distance calculation. This was to
ensure that the path followed the current y-level before moving up along the model.
y-weighting was only tested on the shoehorn model since the coordinate system of
the propeller blade model was different and thus not applicable. The weight was set to

70 CHAPTER 5. RESULTS

(a) Path generated using greedy al-
gorithm on largest face of shoehorn
model

(b) Path generated using greedy algo-
rithm on the two largest faces of shoe-
horn model

Figure 5.10: Path generated using greedy algorithm on parts shoehorn model

5.2. PATH GENERATION 71

10.0 for both weightings, the double of the distance between the samples.

u-weighting

The result from the weighted greedy path algorithm tested on the shoehorn is shown
in figure 5.11. It can be seen that the path completes the two largest faces first like in
figure 5.10b before moving on to the sides. Compared to the result from the greedy
algorithm, figure 5.8, the path is improved. The problem of self-intersections is gone,
but there is still a jump on the path that is far from optimal.

The result from the weighted greedy path algorithm run on the propeller blade is
shown in figure 5.12. Here it can be seen that the generated path follows the curvature
of the seam between the propeller blade and the center cylinder and is without any
self-intersections or jumps. It is greatly improved compared to the result from the
greedy algorithm from figure 5.9.

One big problem with u-weighting on the shoehorn model is that the u and v

directions are defined orthogonal on each other on the two largest faces and the sides.
To take advantage of this, one solution is multi-directional slicing similar to the one
presented in section 2.3.2. This means first printing the two large faces, including the
overhang before printing one side at the time onto the print. A path for such a solution
is presented in figure 5.13. Here, the path for the two largest faces is generated first
before the path for the sides is generated afterwards, one at a time. The path generated
for the two largest faces is presented in black while the path for the sides is in green
and purple. By examining the figures, it can be seen that the three paths are without
any self-intersections or jumps that has been recurring issues before. Based on the
assumptions made about fast-curing material, this is a path that should be feasible.

y-weighting

The other weighting that was tested was y-weighting. y-weighting means that a
weight was added on the y-component in the distance calculation. The reason why
y-weighting was implemented was that the coordinate system for the shoehorn model
was defined with y up along the shoehorn. The goal was to overcome the issue with u

72 CHAPTER 5. RESULTS

(a) Path generated using greedy algo-
rithm with u-weighting on shoehorn
model - with CAD

(b) Path generated using greedy algo-
rithm with u-weighting on shoehorn
model - only path

Figure 5.11: Path generated using greedy algorithm with u-weighting on shoehorn
model

5.2. PATH GENERATION 73

(a) Path generated using greedy algorithm
with u-weighting on propeller blade - with
CAD

(b) Path generated using greedy algorithm
with u-weighting on propeller blade - only
path

Figure 5.12: Path generated using greedy algorithm with u-weighting on propeller
blade

and v being defined in different directions for the two large faces and the two sides.
The result from the test with y-weighting is shown in figure 5.14. It can be seen

that in the bottom of the model, the path moves from right to left, following the current
level before moving upwards. However, as the path moves upwards, the path start
having trouble. This can be explained by the error due to sampling as shown in figure
5.5. Further up along the model, the error becomes less as the sampling error become
less significant. At the top of the model, a new problem arise. This can be seen in
figure 5.15. The path no longer moves from left to right as it did further down on the
model. This is due to the fact that y-weighting is not effective when the model bends.
The movements in y is then small while the movements in the x − z plane is large. As
a result, the resulting algorithm acts as a greedy choice algorithm until the movements
in the y-direction becomes more significant.

74 CHAPTER 5. RESULTS

(a) Path generated using greedy algo-
rithm with u-weighting on sub objects
of shoehorn model - from right

(b) Path generated using greedy algo-
rithm with u-weighting on sub objects
of shoehorn model - from left

Figure 5.13: Path generated using greedy algorithm with u-weighting on sub objects
of shoehorn model

5.2. PATH GENERATION 75

(a) Path generated using greedy algo-
rithm with y-weighting on shoehorn
model - with CAD

(b) Path generated using greedy algo-
rithm with y-weighting on shoehorn
model - only path

Figure 5.14: Path generated using greedy algorithm with y-weighting on shoehorn
model

76 CHAPTER 5. RESULTS

Figure 5.15: Path generated using greedy algorithm with y-weighting on shoehorn
model - from top

5.2.3 Travelling Salesman Problem algorithm

The last algorithm to be implemented was the Travelling Salesman Problem (TSP)
algorithm. This was done using the modified TSP solver as described in section 4.4.3.
The result from running the TSP algorithm on the shoehorn model is shown in figure
5.16. It took several minutes to generate the path. Even though the path does not have
any self-intersections or jumps, it is far from optimal.

The result from running the TSP algorithm on the two largest faces is shown in
figure 5.17. This path took a little more than two minutes to generate. In figure 5.17b
it can easily be seen why it is an issue that the salesman wants to return to the same
city. The path that goes up along the left side of the model is a direct result of this
assumption.

The result from running the TSP algorithm on the propeller blade is shown in
figure 5.18. Like with the path generated for the shoehorn using TSP, it is far from
optimal and took a long time to generate.

5.2. PATH GENERATION 77

(a) Path generated using TSP on shoe-
horn model - with CAD

(b) Path generated using TSP on shoe-
horn model - only path

Figure 5.16: Path generated using TSP on shoehorn model

78 CHAPTER 5. RESULTS

(a) Path generated using TSP on the
two largest faces of shoehorn model -
with CAD

(b) Path generated using TSP on the
two largest faces of shoehorn model -
only path

Figure 5.17: Path generated using TSP on the two largest faces of shoehorn model

5.2. PATH GENERATION 79

(a) Path generated using TSP on propeller
blade - with CAD

(b) Path generated using TSP on propeller
blade - only path

Figure 5.18: Path generated using TSP on propeller blade

80 CHAPTER 5. RESULTS

Chapter 6

Discussion

In chapter 3, the specialization project including some improvements was presented
and discussed. Based on this, a new solution was presented in chapter 4. The results
from the new method is presented in chapter 5. In this chapter, those results will be
reviewed more closely and discussed. At the end of the chapter, the system as a whole
will be discussed.

6.1 Sampling

The first step of the AM path generation system was to sample the surface of a
CAD model. This is realized through sampling each sub object, face, separately
before gathering all the samples into a joined point cloud. The advantages of this
method is that the Sample object can be customized to contain the desired information.
Furthermore, it is easy to generate a path based on this point cloud. There is, however,
one main disadvantage of this method. That is lost curvature of the model due to the
sampling. The sampling is a form of discretization meaning that the continuous surface
is transferred into a discrete counterpart. To minimize the error between the CAD
model and the point cloud, the step length can be reduced. This will, on the other hand
cause a larger point cloud which again will make the path generation system slower.

81

82 CHAPTER 6. DISCUSSION

As a result, there is a trade off between discretization error and the effectiveness of the
system.

In section 5.1, the results of the sampling of the shoehorn model and the propeller
blade is presented. By looking at the figures in the section, it can be seen that the
sampling method managed to sample the surfaces and captures most of the curvature
of the surfaces. On the shoehorn model, the distance between each sample was good
without calibration in each iteration. For the sampling of the propeller blade, however,
the distance between each sample was not the same over the whole surface. At the
bottom of the blade, in the seam between the blade and the center, the distance between
each sample was small while large at the top of the blade. This can be seen in figure
5.6. The problem was fixed by running the calibration of the step length between each
sample. This resulted in an even distance between each sample and the result can be
seen in figure 5.7.

One great advantage of sampling along the surface as in this method using the
parameter coordinates u and v , is that the resulting samples follows the curvature of
the surface. This can be seen in figure 5.7. The samples follow the curvature of the
seam between the propeller blade and the center. This makes it easy to generate a path
that follows the same curvature.

Even though the distance became the same between each sample as wanted, it can
be discussed if that is the best solution. For surfaces with high curvature, it can be
desirable to introduce adaptive step length in other to capture the curvature of the
surface better. This can for example be realized by comparing the normal vectors of
two samples with each other. If the angle between them is larger than some limit, the
step length is reduced and the current sample is deleted to find a new one. It works
the same the other way around, if the angle between the normal vector is less than
some limit, the step length is increased. In this way, the number of samples in high
curvature areas is increased while reduced on flat surfaces. All in all, adaptive step
length does not have to mean more samples in the point cloud in the end.

The biggest problem with the sampling method is the issue with sampling between
different faces. A figure showing this issue was presented in figure 5.5. This issue
becomes especially large when u and v are defined in different directions for different

6.2. PATH GENERATION 83

faces as in the shoehorn model. The presence of the sampling error can be seen in two
ways. The first is on the edge between faces. Edges are sampled twice, once for each
face. This causes twice as many samples as supposed to along the edges. A solution
to this problem would be to remove the samples that are within some radius of each
other. The sampling error is visible in another way as well. In figure 5.5, it can be seen
that there is an offset between the samples of the two largest faces and the sides of the
shoehorn model. This offset grows larger up towards the middle of the shoehorn before
it decreases again. The offset is caused by the fact that the parameter coordinates of
the faces are defined in different directions. Unfortunately, this is not an error that can
be fixed easily. One solution might be to rotate the coordinate systems so that all faces
are defined in the same direction, or to sample the faces without using the parameter
coordinates. The sampling issue as it is greatly affects the path generation algorithms
as will be discussed in the following section.

One goal with the new method was to avoid the STL format since it is an approxi-
mation of the surface. The continuous format STEP was used instead of STL, but when
sampled, the result is still an approximation of the surface. It can therefore be argued
that the STL format could be used. This is the format that is used in most applications
within AM. There are, however, some consequences of using STL instead of STEP.
A 3D model that is represented using STL has the whole surface approximated as
one using polygons. This means that the sampling problem between faces using the
method presented in this thesis would no longer be a problem. The downside is that
since the whole surface is represented as one, and not sub surfaces, it is more difficult
to sample and print just some parts of the model if desirable. For the same reason,
multi-directional sampling and printing becomes more difficult.

6.2 Path generation

6.2.1 Greedy choice algorithm

The first algorithm to be tested was the greedy choice algorithm. The result from
running this algorithm on a point cloud of the entire shoehorn model and on the

84 CHAPTER 6. DISCUSSION

propeller blade is shown in figure 5.8 and 5.9, respectively. It can easily be seen that
neither of those paths are optimal for AM. It is difficult to say just how much the
algorithm is affected by the sampling error. To get a better idea, a path was generated
for just that face as well as for the two largest faces since the path for the shoehorn
model had some good tendencies on the two largest faces. The results can be seen
in figure 5.10. Here it can be seen quite clearly that the paths are improved and has
become feasible AM paths. In the seam between the two faces in figure 5.10b, there
are still some trouble in the path, however.

The greedy choice algorithm is based on the assumption that making a locally
optimal choice will lead to a global optimal solution. A question to ask here is: what is
a local optimal choice in the sense of AM path generation? In the implementation of
the algorithm, the locally optimal choice is set to be the closest sample with regards
to distance. If the sampling had been optimal, meaning the same distance between
all points, this might have been true. This is the case that is seen when the path is
generated for only the largest faces of the shoehorn model. When more than one face
is introduced, the sampling is no longer optimal and the algorithm falls through. For
the propeller blade, the algorithm falls through due to the curvature of the blade which
makes the distance between every sample uneven. However, even though perfect
sampling would have improved the outcome of the greedy algorithm, there is no
guarantee that it will print in one direction to the end before moving on to the next
level.

6.2.2 Weighted greedy choice algorithm

To better control the printing direction, the weighted greedy algorithm was im-
plemented. There were two different weightings implemented: u-weighting and
y-weighting. The results from testing the algorithm with the two weightings can be
seen in section 5.2.2.

6.2. PATH GENERATION 85

u-weighting

The first weighting to be tested was the u-weighting. u-weighting means adding a
weight on the distance calculation in the weighted greedy algorithm if the u-value
is different from the u-value of the current sample. This was to ensure that the path
followed the current u-value before moving on to the next. The result from testing the
u-weighting can be seen in figure 5.11 and 5.12. In figure 5.11, the path is generated
for the shoehorn model. It can be seen that the path follows the current u-value as
supposed to. The only problem is that u and v is, like mentioned earlier, defined
orthogonal on each other on the two largest faces and the sides. As a result, the path
has a jump that can be seen in figure 5.11b making this path not optimal.

In figure 5.12, the algorithm is tested on the propeller blade. Here it can be seen
that the path is quite satisfactory. It follows the curvature of the seam between the
propeller blade and the center cylinder and completes one direction before moving on
to the next level. This is a path that is infeasible using a traditional 3D printer and thus
not possible to generate using traditional AM software. None of the other existing
solutions presented in 2.1.3 has generated a path resembling this one either. Printing
a propeller blade using this path would save material compared to using traditional
machining.

As mentioned, the problem with the shoehorn model is that the parameter coordi-
nates u and v are defined in different directions for the different faces. To overcome
this issue, it was decided to run the greedy algorithm with u-weighting on the faces
that were defined differently one at a time. This means the two largest faces together
and the the two sides separately. The result can be seen in figure 5.13. Three different
paths was generated and they are represented in green, black and purple. By looking
at the three paths, it can be seen that they are all satisfactory with no issues like
self-intersections or jumps. However, this path would have to be printed in three runs
and this does not come without complications. Most likely, the two largest faces would
be printed first, the black path, before printing the sides onto the print. This resembles
multi-directional slicing as presented in section 2.3.2. The downside of this method is
that AM has great uncertainties, especially in large scale. It is very likely that there

86 CHAPTER 6. DISCUSSION

will be some difference between the print and the 3D model. So when the two largest
faces are printed first, there will some differences. This becomes a problem when the
path of the two sides are based on the 3D model of the shoehorn and not the print.
Those differences can cause even larger differences in the print of the sides or even
worse, cause collision between the robot and the print. To overcome the last problem,
reactive collision avoidance could be implemented in the robot control system. The
first problem could be solved by having an online path-planning system that can alter
the generated path based on the print.

The paths generated in figure 5.13 are based on the assumption of fast curing mate-
rial making it possible to print in any direction without support structures. Stratasys,
as presented in section 2.1.3, has found a method to overcome this problem. They
made a system with 8 DOF that rotates the part for optimal printing direction. In this
way, the area to be printed is always pointed upwards meaning that overhang without
support structures is no problem. The shoehorn model could be printed in the same
way by rotating the part between each path. For example could the black path be
printed first, then turn the part onto one side to print the side and then turn again to
print the other side. To realize this, a method to turn and stabilize the printed part
would be necessary. Furthermore, it would require a system that could see the print
and be able to know where the path should be printed onto it.

y-weighting

The second weighting to be tested was y-weighting. y-weighting means adding a
weight on the y-component of the distance calculations in the weighted greedy algo-
rithm. The reason y-weighting was implemented was that the coordinate system of
the shoehorn model is defined with y up along the model. By adding a weight on y,
the path would complete one layer in the x − z plane before moving onto the next.
The hope was that y-weighting would overcome the problem of u and v being defined
in different directions for the different faces of the shoehorn model. The results using
the y-weighting algorithm is given in figure 5.14 and 5.15. It can be seen that the path
starts out good moving from right to left before moving on to the next level. The
problem starts half way up along the model when the sampling error is growing larger.

6.2. PATH GENERATION 87

Also, at the top of the model where the desired printing direction is no longer y, the
path is far from optimal as can be seen in figure 5.15. Despite the mentioned problems,
this is a weighting system that shows promise. If the sampling had been without
errors, it is likely that the generated path would have been greatly improved. Out of
the tested algorithms, this is the only one that generate a path that move from right to
left, completing one level before moving on to the next for the shoehorn model. It is
important to mention that the path issue at the top of the shoehorn would not have
been improved with improved sampling.

In this thesis it was only y-weighting that was implemented and tested, but x and z
weighting could just as easily have been implemented. The drawback with all of these
is that they only work if the printing direction of the model moves in the direction
of the weighting. For the propeller blade, there is no constant building direction in
x − y − z and this type of weighting is therefore not applicable. For the shoehorn,
it worked fine, besides the sampling error, until the top of the shoehorn where the
printing direction change.

6.2.3 TSP algorithm

The last algorithm to be tested was TSP. The result from testing the algorithm can be
seen in figure 5.16, 5.17 and 5.18. By looking at figure 5.16, it can be seen that the path
does not have any of the previously mentioned problems such as self-intersections
or jumps, but the path is still far from optimal. To see how much of the problem is
caused by the sampling error, TSP was tested on the two largest faces as well as shown
in figure 5.17. Even though the path is greatly improved, it is still not optimal. One
founding assumption in TSP is that the salesman want to start in a city and return
to the same city in the end. This is an assumption that turned out to make the TSP
algorithm less applicable to the AM path generation problem than expected. It can
be seen that the assumption that the salesman wants to return to the starting city is
an issue in figure 5.17b. The path moves up along the left part of the model. This is a
direct cause of that assumption.

The fact that TSP is NP-complete causes anothermajor issuewith the TSP algorithm.

88 CHAPTER 6. DISCUSSION

When the point cloud grows large, it takes a lot of time to generate a path. Generating
the path for the entire shoehorn model took several minutes. Here, the distance
between each sample was 10.0 mm x 10.0 mm. The distance could have been much
less causing a much larger point cloud. This makes TSP very inefficient and not very
applicable since an efficient algorithm was one of the desired qualities.

TSP was presented in section 2.5.3 as a special case of an Hamiltonian cycle where
the goal is to find the shortest path. In the core of both, is the assumption of returning
to the home city after making a tour. To avoid this basic assumption, one trick can
be made. This is presented in Lawler et al. (1985) as the computer wiring problem.
The book suggests to create a dummy point whose distances to every point is 0. After
finding a path, the dummy point is deleted and the result is a TSP path that does
not return back to the home city. By implementing this modified TSP algorithm, the
resulting path might have been improved. Due to the inefficiency mentioned in the
previous paragraph of TSP, this modified TSP algorithm was not considered applicable
and thus not implemented and tested.

6.2.4 Comparing the algorithms

Three different algorithms has been presented, tested and discussed. The greedy choice
algorithm is quick, but the path is full of self-intersections and jumps making is far
from optimal for AM. The TSP algorithm is inefficient, and with the assumption of
returning to the starting city, not optimal. If the mentioned solution to the computer
wiring problem had been implemented, the resulting path might have been improved,
but the algorithm would still be very slow. Out of the three algorithms, weighted
greedy is the one that showed the most promise. Two different types of weighting was
tested and discussed, u-weighting and y-weighting. The two weightings are good at
different thing and there is not one solution that is better for all purposes.

For the propeller blade, the best algorithm is without a doubt greedy algorithmwith
u-weighting. With that algorithm the generated path followed the curvature of the
seam between the blade and the center cylinder. The path completed one level before
moving on to the next and the path was without any issues such as self-intersections

6.3. PATH GENERATION SYSTEM 89

and jumps. This is a path that takes advantage of the DOF of the robot manipulator
through following the curvature of the propeller blade and it is therefore infeasible
using traditional solutions for AM.

For the shoehorn model, there was not one clear answer to what the best algorithm
was. With the u-weighting, the path generated for the shoehorn as a whole was far
from optimal. However, if the path was generated in three parts, the two largest faces
together and each side separately, the path was greatly improved. The downside of
this method is that the part has to be printed in three separate runs which causes new
problems as discussed above. With the y-weighting, the path moved from right to left,
one level at a time as supposed to up until the sampling error became too significant.
This is the only method that managed to generate a path moving from one side of
the model to the other, printing the sides in the same level as the largest face in the
middle of the model. The downside with y-weighting is that it only works as long as
the printing direction is in the y-direction, which was not the case at the top of the
shoehorn model.

In section 6.1, the sampling error was discussed, and as mentioned there, it became
a big problem for all the path generation algorithms. It is very difficult to generate
an optimal path when the point cloud the algorithms use is far from optimal. The
algorithms that worked the best here was the ones that was best on handling the
sampling error. It is hard to say how large an impact an optimal point would have
given.

6.3 Path generation system

In chapter 3, the specialization project with some further work was presented. Here
it was concluded that it was necessary with a new and improved method to better
control the process and to take advantage of the DOF. As a result, a new method has
been developed, tested and discussed. In the new method, the created python script
controls the entire process. This is an improvement compared to the old method where
the process was considered to be difficult to control. Another improvement with the
new method is that it takes better advantage of the DOF. The path generated using

90 CHAPTER 6. DISCUSSION

the greedy algorithm with u-weighting on the propeller blade follows the curvature of
the blade. This would not have been possible with a 3 DOF 3D printer and thus not
been possible to generate using the old method. It is however important to mention
that the solution in the specialization project was a system that took in a CAD model
and returned RAPID code simulated and verified using the powerful virtual controller
in RobotStudio. The new method takes in a CAD model in the same way, but only
generates a path. The tool-path planning problem is considered to be very complex
and has to be solved before the generated path is ready to be tested on a physical robot.

Like mentioned, the method presented in this thesis only generates a path, not
tool-path or robot code. There are other limitations to the solution as well. Two
assumptions that were made was that the method is made for simple surfaces and
require fast-curing material that enables printing in mid-air. As a result, solid models
are thus not possible to print using this method. Also, printing complex surfaces can
challenge the reachability of the robot. To enable printing such complex surfaces,
the path might have to be planned in a more strategic way. There are not a lot of
materials that enable mid-air printing. All traditional 3D printing material require
support structures for the print to hold. To enable printing for example overhang, the
path might have to be altered to be feasible or the part has to be rotated. Another
limitation of the presented solution is that it is only tested on two different models,
the shoehorn model and the propeller blade. To further guarantee its behaviour, the
solution has to be tested on more models.

Even though the sampling results is an approximation of the surface, this does not
mean that the end result would be any different with a continuous path. Large-scale
AM has large inaccuracies. If the step length of the sampling is short enough, it is likely
that the end-result would be the same as if the path was continuous. Furthermore,
a discrete path can be made continuous through robot systems. In ROS, which was
presented in section 2.4, a path can be represented as a series of way points. In MoveIt!,
Cartesian Paths given as a series of way points can be interpolated with a desired
resolution. The result is a discrete path made continuous.

Chapter 7

Conclusion

In this thesis, a method for generating a path for AM using a 6 DOF robot manipulator
for extrusion based AM based on simple surfaces of a CAD model was presented.
The method is implemented using python and ran as a macro in FreeCAD. First, the
surface(s) is sampled with a desired step length before a path algorithm is ran on the
generated point cloud. Three different algorithms was implemented and tested: greedy
choice, weighted greedy choice and TSP. Greedy choice generated a path effectively,
but it was full of self-intersections. TSP was very slow and as implemented with
the assumption of returning to the starting sample, not applicable. Out of the three,
weighted greedy was the algorithm that gave the best result. With u-weighting, the
generated path completed oneu-level before moving on to the next. The path generated
for the propeller blade followed the curvature of the blade as can be seen in figure
5.12. This is a path that would not have been feasible with a traditional AM solutions.
For the shoehorn model, there were some issues with the different faces being defined
differently with respect to the parameter coordinates u and v . One solution to this
was generating a path for one surface at a time resembling multi-directional slicing
as shown in figure 5.13. The path generated for the shoehorn model enables printing
in overhang without the need for support structures. This is only feasible under the
assumption of fast-curing material enabling mid-air printing. With y-weighting in

91

92 CHAPTER 7. CONCLUSION

the weighting algorithm, the path for the shoehorn model moved from right to left
before moving on to the next level. The path started to struggle further up along the
shoehorn when the sampling error became too significant as can be seen in figure 5.14.

In summary, the developed method generates paths for AM that takes advantage
of the 6 DOF of the robot manipulator. The method is effective and by interfacing with
FreeCAD, it is easy to review the generated path through visual aids.

7.1 Prospect for future work

• Improve the sampling method. The sampling error between faces caused prob-
lems for the path generation algorithms. To further improve the paths, the
sampling would have to be improved first. Furthermore, an adaptive step length
could be implemented to better catch the structure of curved surfaces.

• Develop new algorithms for simple surfaces to improve the result. For the
shoehorn model, there was not one algorithm that gave an optimal path even
though both u and y weighting showed promise.

• Develop a graphical user interface (GUI) that makes it easier to choose accuracy
of the sampling and to choose between the different algorithms.

• Develop new algorithms that generates paths for more complex geometries such
as solids.

• Develop a method for generating a tool-path based on the generated paths using
the method in this thesis. This is a complex problem, but necessary to realize
the generated paths.

References

17 best 3D slicer software tools for 3D printers (2017). https://all3dp.com/1/

best-3d-slicer-software-3d-printer/. [Online; accessed 06-December-2017].

ABB (2007). Introduction to RAPID.

ABB Robotics (2017). http://new.abb.com/products/robotics. [Online; accessed
17-December-2017].

Allen, R. J. and Trask, R. S. (2015). An experimental demonstration of effective curved
layer fused filament fabrication utilising a parallel deposition robot, Additive Manu-
facturing 8: 78–87.

Alsharhan, A. T., Centea, T. and Gupta, S. K. (2017). Enhancing mechanical prop-
erties of thin-walled structures using non-planar extrusion based additive man-
ufacturing, ASME 2017 12th International Manufacturing Science and Engineering
Conference collocated with the JSME/ASME 2017 6th International Conference on Ma-
terials and Processing, American Society ofMechanical Engineers, pp. V002T01A016–
V002T01A016.

AM basics (2017). http://additivemanufacturing.com/basics/. [Online; accessed
16-December-2017].

Brogårdh, T. (2007). Present and future robot control development—an industrial
perspective, Annual Reviews in Control 31(1): 69–79.

93

https://all3dp.com/1/best-3d-slicer-software-3d-printer/
https://all3dp.com/1/best-3d-slicer-software-3d-printer/
http://new.abb.com/products/robotics
http://additivemanufacturing.com/basics/

94 REFERENCES

Chua, C. K., Leong, K. F. and Lim, C. S. (2003). Rapid prototyping: principles and
applications, Vol. 1, World Scientific.

Cormen, T. H. (2009). Introduction to algorithms, MIT press.

CraftWare (2017). https://craftunique.com/craftware/. [Online; accessed 17-
November-2017].

Ding, D., Pan, Z., Cuiuri, D., Li, H., Larkin, N. and Van Duin, S. (2016). Automatic
multi-direction slicing algorithms for wire based additive manufacturing, Robotics
and Computer-Integrated Manufacturing 37: 139–150.

Ding, D., Pan, Z. S., Cuiuri, D. and Li, H. (2014). A tool-path generation strategy for wire
and arc additivemanufacturing, The international journal of advancedmanufacturing
technology 73(1-4): 173–183.

Evans, B. (2012). Practical 3D printers: The science and art of 3D printing, Apress.

Evjemo, L., Moe, S., Gravdahl, J., Roulet-Dubonnet, O., Gellein, L. and Brøtan, V. (2017).
Additive manufacturing by robot manipulator: An overview of the state-of-the-art
and proof-of-concept results, In proceedings of the 22nd IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), Limassol, Cyprus.

FreeCAD (2018). https://www.freecadweb.org/. [Online; accessed 15-March-2018].

G Code (2017). http://gcodes.net/. [Online; accessed 06-December-2017].

Gibson, I., Rosen, D. W., Stucker, B. et al. (2010). Additive manufacturing technologies,
Vol. 238, Springer.

Grasshopper (2017). http://www.grasshopper3d.com/. [Online; accessed 17-
December-2017].

HAL Robotics (2017). http://hal-robotics.com/. [Online; accessed 17-December-
2017].

https://craftunique.com/craftware/
https://www.freecadweb.org/
http://gcodes.net/
http://www.grasshopper3d.com/
http://hal-robotics.com/

REFERENCES 95

Hoye, N. (2015). Characterisation of ti-6al-4v deposits produced by arc-wire based
additive manufacture, University of Wollongong Thesis Collections . A thesis submit-
ted in partial fulfillment of the requirements for the award of the degree Doctor of
Philosophy.

Huang, B. and Singamneni, S. (2012). Alternate slicing and deposition strategies for
fused deposition modelling of light curved parts, J. of Achievem in mat and manuf
55(2): 511–517.

Jamieson, R. and Hacker, H. (1995). Direct slicing of cad models for rapid prototyping,
Rapid Prototyping Journal 1(2): 4–12.

Joris Laarman Lab (2018). http://www.jorislaarman.com/. [Online; accessed 07-
May-2018].

Kirschman, C. and Jara-Almonte, C. (1992). A parallel slicing algorithm for solid
freeform fabrication processes, Solid Freeform Fabrication Proceedings, Austin, TX
pp. 26–33.

Kubo, M. and Pedroso, J. (2009). Metaheuristics: A programming guide, Kyoritsu
Shuppan Co., Ltd., Tokyo .

KUKA (2017). https://www.kuka.com/. [Online; accessed 17-December-2017].

Lasemi, A., Xue, D. and Gu, P. (2010). Recent development in cnc machining of freeform
surfaces: A state-of-the-art review, Computer-Aided Design 42(7): 641–654.

Lawler, E. L., Lenstra, J. K., Kan, A. R., Shmoys, D. B. et al. (1985). The traveling salesman
problem: a guided tour of combinatorial optimization, Vol. 3, Wiley New York.

Lim, S., Buswell, R. A., Valentine, P. J., Piker, D., Austin, S. A. and De Kestelier, X. (2016).
Modelling curved-layered printing paths for fabricating large-scale construction
components, Additive Manufacturing 12: 216–230.

Lin, Z., Fu, J., Shen, H., Gan, W. and Yue, S. (2015). Tool path generation for multi-axis
freeform surface finishing with the lkh tsp solver, Computer-Aided Design 69: 51–61.

http://www.jorislaarman.com/
https://www.kuka.com/

96 REFERENCES

Livesu, M., Ellero, S., Martínez, J., Lefebvre, S. and Attene, M. (2017). From 3d models to
3d prints: an overview of the processing pipeline, Computer Graphics Forum, Vol. 36,
Wiley Online Library, pp. 537–564.

Machining (2017). http://fab.cba.mit.edu/classes/863.12/people/laia.

mogassoldevila/projects/p7.html. [Online; accessed 16-December-2017].

Mataerial (2018). http://mataerial.com/. [Online; accessed 07-May-2018].

Metal Finishing Industry (1995). http://infohouse.p2ric.org/ref/03/02454/

overview.htm. [Online; accessed 16-April-2018].

MoveIt! (2018). http://moveit.ros.org/. [Online; accessed 15-March-2018].

MX3D (2018). http://mx3d.com/. [Online; accessed 11-April-2018].

New Story + ICON: 3D printed houses (2018). https://www.iconbuild.com/home.
[Online; accessed 11-April-2018].

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization, Springer.

Pan, Z., Ding, D., Wu, B., Cuiuri, D., Li, H. and Norrish, J. (2018). Arc welding
processes for additive manufacturing: A review, Transactions on Intelligent Welding
Manufacturing, Springer, pp. 3–24.

Pan, Z., Polden, J., Larkin, N., Van Duin, S. and Norrish, J. (2012). Recent progress
on programming methods for industrial robots, Robotics and Computer-Integrated
Manufacturing 28(2): 87–94.

Robotic composite 3D demonstrator (2017). http://blog.stratasys.com/2016/

08/24/infinite-build-robotic-composite-3d-demonstrator/. [Online; ac-
cessed 16-December-2017].

Robotmaster CAD/CAM (2017). http://www.robotmaster.com/en/. [Online; ac-
cessed 17-December-2017].

http://fab.cba.mit.edu/classes/863.12/people/laia.mogassoldevila/projects/p7.html
http://fab.cba.mit.edu/classes/863.12/people/laia.mogassoldevila/projects/p7.html
http://mataerial.com/
http://infohouse.p2ric.org/ref/03/02454/overview.htm
http://infohouse.p2ric.org/ref/03/02454/overview.htm
http://moveit.ros.org/
http://mx3d.com/
https://www.iconbuild.com/home
http://blog.stratasys.com/2016/08/24/infinite-build-robotic-composite-3d-demonstrator/
http://blog.stratasys.com/2016/08/24/infinite-build-robotic-composite-3d-demonstrator/
http://www.robotmaster.com/en/

REFERENCES 97

RobotStudio® (2017). http://new.abb.com/products/robotics/robotstudio.
[Online; accessed 06-December-2017].

RobotStudioMachining PowerPac (2017). http://new.abb.com/products/robotics/
application-software/machining/robotstudio-machining-powerpac. [On-
line; accessed 05-December-2017].

Rogers, D. F. (2000). An introduction to NURBS: with historical perspective, Elsevier.

ROS (2018). http://www.ros.org/. [Online; accessed 15-March-2018].

Sabourin, E., Houser, S. A. and Helge Bøhn, J. (1996). Adaptive slicing using stepwise
uniform refinement, Rapid Prototyping Journal 2(4): 20–26.

Sarcar, M., Rao, K. M. and Narayan, K. L. (2008). Computer aided design and manufac-
turing, PHI Learning Pvt. Ltd.

SelfCAD (2018). https://www.selfcad.com/. [Online; accessed 26-January-2018].

Smid, P. (2003). CNC programming handbook: a comprehensive guide to practical CNC
programming, Industrial Press Inc.

Stratasys (2017). http://www.stratasys.com/. [Online; accessed 28-October-2017].

Stratasys demonstrates next generation 3D printing technology for large parts composites
(2016). https://www.additivemanufacturing.media/news/. [Online; accessed
18-October-2017].

Stroud, I. (2006). Boundary representation modelling techniques, Springer Science &
Business Media.

Taufik, M. and Jain, P. K. (2016). A study of build edge profile for prediction of
surface roughness in fused deposition modeling, Journal of Manufacturing Science
and Engineering 138(6): 061002.

The construction of Europe’s first 3D printed building has begun (2017). https://

3dprinthuset.dk/europes-first-3d-printed-building/. [Online; accessed
16-December-2017].

http://new.abb.com/products/robotics/robotstudio
http://new.abb.com/products/robotics/application-software/machining/robotstudio-machining-powerpac
http://new.abb.com/products/robotics/application-software/machining/robotstudio-machining-powerpac
http://www.ros.org/
https://www.selfcad.com/
http://www.stratasys.com/
https://www.additivemanufacturing.media/news/
https://3dprinthuset.dk/europes-first-3d-printed-building/
https://3dprinthuset.dk/europes-first-3d-printed-building/

98 REFERENCES

The STEP Standard (2018). https://www.steptools.com/stds/step/step_1.html.
[Online; accessed 07-February-2018].

TSP solver (2018). http://www.dcc.fc.up.pt/~jpp/code/py_metaheur/tsp.py.
[Online; accessed 20-May-2018].

Wah, P. K., Murty, K. G., Joneja, A. and Chiu, L. C. (2002). Tool path optimization in
layered manufacturing, Iie Transactions 34(4): 335–347.

Yang, P., Li, K. and Qian, X. (2011). Topologically enhanced slicing of mls surfaces,
Journal of Computing and Information Science in Engineering 11(3): 031003.

Zhang, G. Q., Mondesir, W., Martinez, C., Li, X., Fuhlbrigge, T. A. and Bheda, H. (2015).
Robotic additive manufacturing along curved surface—a step towards free-form
fabrication, Robotics and Biomimetics (ROBIO), 2015 IEEE International Conference
on, IEEE, pp. 721–726.

Zhang, G. Q., Spaak, A., Martinez, C., Lasko, D. T., Zhang, B. and Fuhlbrigge, T. A. (2016).
Robotic additivemanufacturing process simulation-towards design and analysis with
building parameter in consideration, Automation Science and Engineering (CASE),
2016 IEEE International Conference on, IEEE, pp. 609–613.

Zheng, H., Cong, M., Dong, H., Liu, Y. and Liu, D. (2017). Cad-based automatic path
generation and optimization for laser cladding robot in additive manufacturing, The
International Journal of Advanced Manufacturing Technology 92(9-12): 3605–3614.

https://www.steptools.com/stds/step/step_1.html
http://www.dcc.fc.up.pt/~jpp/code/py_metaheur/tsp.py

	Problem description
	Abstract
	Sammendrag
	Preface
	Introduction
	Motivation
	Literature review
	Assumptions
	Contributions
	Outline

	Literature study
	Additive manufacturing
	Using 3D printers
	Using industrial robots
	Existing solutions

	Computer-Aided Design
	Boundary representation
	The STEP standard
	Stereolithography
	FreeCAD

	AM processing pipeline
	Tessellation of model
	Slicing algorithm
	Support structures
	Machine instructions
	AM software

	Robot control
	RobotStudio
	Robot Operating System

	Algorithms
	Dynamic programming
	Greedy choice algorithms
	Travelling Salesman Problem

	Preliminary project
	Further work
	Future work

	AM Path generation
	Choice of solution
	AM Path generation system
	Sampling
	Sample object
	Sampling of sub object
	Calibration of step
	Generating point cloud

	Path generation
	Requirements of path
	Assumptions
	Algorithms

	Results
	Sampling
	Shoehorn model
	Propeller blade model

	Path generation
	Greedy choice algorithm
	Weighted greedy algorithm
	Travelling Salesman Problem algorithm

	Discussion
	Sampling
	Path generation
	Greedy choice algorithm
	Weighted greedy choice algorithm
	TSP algorithm
	Comparing the algorithms

	Path generation system

	Conclusion
	Prospect for future work

	References

