
Navigation using Bluetooth Low Energy
Beacons

Håkon Espeland

Master of Science in Cybernetics and Robotics

Supervisor: Geir Mathisen, ITK
Co-supervisor: Bjørn Magne Elnes, Aventi

Department of Engineering Cybernetics

Submission date: June 2018

Norwegian University of Science and Technology

NTNU Faculty of Information Technology
Norwegian University of and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

MASTER THESIS DESCRIPTION SHEET

Name: Håkon Espeland

Department: Engineering Cybernetics

Thesis title (Norwegian): Navigasjon ved bruk av Bluetooth Low Energy
Beacons

Thesis title (English): Navigation using Bluetooth Low Energy
Beacons

Thesis Description: All around the world companies, local authorities and street performers,
install and use Bluetooth Beacons. These Beacons transmits a hexadecimal string or readable
URL, based on how they are configured. Frameworks from Apple (iBeacon) and Google
(Eddystone) are designed to interact with mobile applications on smartphones or tablets,
having a Bluetooth antenna.

In this thesis, we want to explore the possibility to use this technology for positioning, applied
in a mobile application for Car Parking, providing indoor navigation inside a parking garage.

The following subtasks should be considered:

1. Performing a litterature-study regarding Bluetooth Beacon Protocols and relatable
algorithms for positioning.

2. Design a navigation system that uses positioning principals like Cell Identification and
Trilateration through Received Signal Strength Indicator (RSSI) from BLE Beacons.

3. Implement the navigation system as an extension to the mobile application, ePark,
developed during the related specialization project. Perform extensive testing to
evaluate navigation using signals from BLE Beacons.

The subtasks will result in answering the following questions:

Q1: What level of accuracy could a Bluetooth based Navigation System expect to
achieve?

Q2: Which positioning concept provide the best results?

Start date: 08. January, 2018
Due date: 04. June, 2018

Thesis performed at: Department of Engineering Cybernetics, NTNU
Supervisor: Professor Geir Mathisen, Dept. Of Eng. Cybernetics
Co-supervisor: Bjørn Magne Elnes, Aventi Technology

-

Abstract

The wireless techonology Bluetooth has over the years become more commonly supported
by personal electronic devices, especially in smart-devices such as smartphones, tablets and
smart-watches. Earlier, Bluetooth was mostly used as wireless communication between
personal devices, and not between personal and public Bluetooth peripherals. When
Bluetooth version 4.0, also called Bluetooth Low Energy (BLE) was introduced in 2010,
the development of light-weight, easy-deployable Bluetooth Beacons emerged. This
development opened up for using public Bluetooth peripherals to interact with personal
devices, broadcasting information to compatible units within close proximity. This report
is a result of researching the functionality foundwithin the Bluetooth Low Energy protocol,
and by using available frameworks, design and implement a navigation system into an
Android mobile application that uses interaction with Bluetooth Beacons for determining
its position.

Integrating Android, BLE Beacon libraries, Cloud Services and relevant positioning prin-
cipals, a navigation system is developed and implemented in the Android application,
ePark, as a part of a parking service, providing navigation inside a parking garage. Us-
ing the Eddystone UID framework developed by Google, a smartdevice running ePark
continously interacts with nearby BLE Beacons. The calculated Received Signal Strength
Indication (RSSI) of each beacon are passed into a position algorithm along with the
known coordinates of each beacon, having the algorithm calculate the smartdevice’s
current position.

Positioning principals like Cell Identification and Trilateration are implemented into the
position algorithm to evaluate the performance of a bluetooth navigation system which
is based on RSSI-measurements. Imprecision in RSSI measurements are seen to directly
affect the positioning algorithm, and the achieved accuracy is approximately 5 meters
when using trilateration.

ii

Sammendrag

(Norwegian translation of the abstract)

Den trådløse teknologien, Bluetooth, har de siste årene i større grad blitt tilgjengeliggjort
i det meste av personlig elektronikk, spesielt i smarte enheter som smart-telefon, nettbrett
og smart-klokker. Tidligere har Bluetooth for det meste blitt brukt innenfor enhet-til-
enhet kommunikasjon mellom private enheter, og ikke mellom private og offentlige
enheter. Når Bluetooth versjon 4.0 ble lansert i 2010 under navnet Bluetooth Low Energy
(BLE), iverksatte det utviklingen av en ny måte å bruke teknologien på, ved bruk av BLE
Beacons. Denne utviklingen åpnet opp og skapte et behov for kommunikasjon mellom
private og offentlige enheter ved å bruke BLE Beacons til å kringkaste informasjon til
kompatible enheter innenfor rekkevidde. Denne rapporten er et resultat av undersøkelser
rundt funksjonaliteten til Bluetooth Low Energy protokollen, og hvordan man kan bruke
tilgjengelige rammeverk for å utvikle et navigasjonssystem og implementere det i en
mobilapplikasjon som tar i bruk Bluetooth teknologi til å fastsette posisjonen sin.

Ved å integrere Android, tilgjengelige software biblioteker for BLE Beacons, sky-tjenester
og relevante posisjonerings prinsipper, er ePark utviklet som en parkerings app for Android
hvor navigasjon inne i et parkeringshus er noe av det appen tilbyr. Ved å bruke Eddystone
UID rammeverket som tidligere har blitt utviklet av Google, kan en smart enhet som kjører
ePark applikasjonen måle signalstyrken til BLE Beacons innenfor rekkevidde og bruke
disse målingene sammen med koordinatene for hver beacon til å kalkulere posisjonen til
enheten gjennom en posisjonerings algoritme.

Posisjonerings prinsipper som celle-identifisering og trilaterering er implementert i po-
sisjonerings algoritmen for å kunne vurdere ytelsen av et navigasjonssystem som baserer
seg på signalstyrke fra bluetooth sendere. Unøyaktighet i RSSI målinger fra en enkel BLE
Beacon viser seg å påvirke posisjoneringsalgoritmen direkte, og oppnåd nøyaktighet er
rundt 5 meter når algoritmen baserer seg på trilaterering.

iii

Preface

This report is the result of the Master of Science in Engineering Cybernetics, TTK4900.
This thesis is part of a two-year masters program in Cybernetics and Robotics with spe-
cialization in Embedded Systems at the Norwegian University of Science and Technology.

The master’s thesis was carried out during the spring semester of 2018 in cooperation with
Aventi Technology, as further work related to the specialization project which was carried
out during the fall semester of 2017. The work focuses Bluetooth Low Energy (BLE) and
how signals from BLE Beacons can be used in a navigation system. The practical tasks and
development are performed as further work on the ePark application developed during
the related specialization project, meaning that all of the developed functionality has been
implemented as extensions to the former work.

There has not been performed a lot of serious research regarding this subject. The basis
of the master thesis takes stand in knowledge acquired during the specialization project
together with applied mathematics and discovered theory of relevance for making this
project feasible. A full review of the background material and what distinguishes the
specialization project from the master thesis is given in Section 1.1.

I would like to thank my supervisor, Professor Geir Mathisen for valuable feedback and
guidance. A special thanks to my co-supervisor, BjørnMagne Elnes and Aventi Technology
for the endless support and guidance throughout the project.

Trondheim, 2018-06-03

Håkon Espeland

iv

Contents

Master Thesis Description Sheet . i
Abstract . ii
Sammendrag . iii
Preface . iv
List of Tables . ix
List of Figures . 1

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Objective and scope . 2
1.3 Outline . 3

2 Introduction to ePark 5
2.1 System description . 5
2.2 BLE Beacon Technology . 7

2.2.1 Bluetooth Low Energy - Bluetooth v4.0 7
2.2.2 Bluetooth Beacons . 8
2.2.3 iBeacon . 9
2.2.4 Eddystone . 10

2.3 Android . 12
2.3.1 Architechture . 12
2.3.2 Activities . 14
2.3.3 Services . 16
2.3.4 Manifest and permissions . 17
2.3.5 Android Beacon Library . 17

2.4 Cloud Storage . 19
2.4.1 Server connection . 19
2.4.2 Server requests . 20

v

3 Positioning System 21
3.1 Introduction to positioning systems . 21
3.2 Positioning Concepts . 23

3.2.1 Cell Identity . 23
3.2.2 Triangulation . 24
3.2.3 Trilateration . 25
3.2.4 Angle of Arrival (AoA) . 28
3.2.5 Time of Arrival/Time Difference of Arrival (ToA/TDoA) 29

3.3 Positioning using BLE Beacons . 31
3.3.1 Related Work . 32
3.3.2 Trilateration with BLE Beacons 33

4 Design 37
4.1 Introduction . 38

4.1.1 Functionality . 38
4.1.2 Preliminary decisions on design 38

4.2 System Design . 39
4.3 Hardware Design . 41

4.3.1 Hardware Requirements . 41
4.3.2 Hardware Choices based on design 42

4.4 Software Design . 43
4.4.1 Application design . 44
4.4.2 Services . 47
4.4.3 Database Design . 48

5 Implementation 51
5.1 Hardware Implementation . 51

5.1.1 RadBeacon Bluetooth Beacons . 52
5.1.2 Smartdevices . 53
5.1.3 Hardware Deployment . 53

5.2 Software Implementation . 54
5.2.1 ePark GUI . 54
5.2.2 Activities . 55
5.2.3 Bluetooth Service . 61
5.2.4 Network Service . 65
5.2.5 Positioning Algorithm . 68

vi

6 Results 71
6.1 System Testing . 71

6.1.1 Single Beacon Range Test . 72
6.1.2 Trilateration Test . 73

6.2 Subtask Results . 75
6.2.1 ST1: Theory . 75
6.2.2 ST2: Navigation System . 76
6.2.3 ST3: Android Development and Integration 76

7 Discussion 79
7.1 Accuracy of distance measurements . 79
7.2 Navigation System Accuracy . 80
7.3 Research Questions . 81
7.4 Integrations . 83

8 Conclusion 85

9 Future Work 87

References 89

vii

List of Tables

2.1 Transmission power values . 8

4.1 ePark’ layered architecture . 43

5.1 Comparison of different BLE Beacons . 52
5.2 Bluetooth Service Methods . 62
5.3 Network Service Requests . 67

6.1 Single Beacon Range Test . 72
6.2 Trilateration Test . 73

viii

List of Figures

2.1 Information flow in the system . 6
2.2 iBeacon Data Overview . 9
2.3 Eddystone Data Overview . 11
2.4 The Android Software Stack from [1] . 13
2.5 Activity Lifecycle from [2] . 15

3.1 Cell Identification with BLE Beacons . 23
3.2 Triangulation . 24
3.3 Trilateration . 25
3.4 Illustration of trilateration symbols . 26
3.5 Angle of Arrival . 28
3.6 Time Difference of Arrival (TDOA) . 30
3.7 Trilateration using BLE Beacons . 31

4.1 Functionality Design . 40
4.2 Application flowchart . 44
4.3 Database design . 48

5.1 Android Studio Graphics Development with XML 54
5.2 Java development in Android Studio . 55
5.3 Main Activity in ePark . 57
5.4 Map Activity of testarea . 58
5.5 Park Activity in ePark . 59
5.6 History Activity in ePark . 60
5.7 Scheduling the Bluetooth Service . 64
5.8 Network Service Communication Flow 65
5.9 Cell Identification 3D illustration . 68
5.10 Trilateration 3D illustration . 69
5.11 Map Activity Graphical User Interface . 70

ix

6.1 Single Beacon Range Test with error . 72
6.2 Trilateration Test showing real position versus calculated position 74

x

Chapter 1
Introduction

1.1 Background and Motivation

Bluetooth Low Energy (BLE) hit the market in 2011 as Bluetooth 4.0. To establish a
Machine-to-Machine (M2M) connection using Standard Bluetooth1, pairing is required
before use. This was one of the most comprehensive changes made in v4.0 [3]; using
BLE, it is not required to pair devices to establish a M2M connection. Until this release
Bluetooth was mostly used as a private network between personal devices, but along with
BLE, a market for digital public advertising evolved.

A Beacon is a BLE-based radio transmitter, repeatedly transmitting a single signal that
other devices can read. It consists of a CPU, radio and a power source2. Beacons are
transmitting hex-strings which is basically unique identification of each beacon along
with sensor-data dependant on the protocol used. Through different applications, the ID
of a beacon can be used to prompt the user with notifications, provide an advertisement
or determine their proximity.

The proximity to a BLE Beacon can be measured by a smartdevice, i.e a smartphone or
a tablet. Measuring the RSSI (Received Signal Strength Indication), distance between a
smartdevice and a beacon can be converted into meters using Eq. 2.2. Aventi Technology
desired to explore the possibilities of using the RSSI measurements for navigation, applied

1Bluetooth Core Specification 3.0 and lower.
2Beacons often use small lithium chip batteries, or a plugged power source.

1

2 CHAPTER 1. INTRODUCTION

through conventional positioning principals. Being a company developing systems within
ITS (Intelligent Transportation Systems), Aventi Technology came up with the idea of
using RSSI measurements from BLE Beacons to provide indoor navigation inside a parking
garage through a mobile application.

Conventional GNSS technology (Global Navigation Satellite System), including GPS, relies
on the line of sight of satellites. These kind of technologies are not suited nor intended for
indoor applications. A parking garage typically has poor GPS coverage, which motivates
for the use of a local positioning system, for the use RSSI measurements from locally
deployed BLE Beacons. Such a positioning system allows the use of many of the same
positioning principals as conventional GNSS technology, which of will be covered through
this report.

During the fall of 2017, a specialization project was carried out for Aventi Technology. The
work resultet in the development of a parking application named ePark, which created
the basis for this master thesis. ePark was developed as an Android mobile application,
interacting with BLE Beacons. Conceptually, running ePark in a parking garage with
deployed BLE Beacons, the user could request and reserve parking spots after parking by
having ePark determine the closest beacon (in meters) and reserve the ID of the related
parking spot.

1.2 Objective and scope

The main objective of this master thesis is to develop a local navigation system using
BLE Beacons. Based on the measured RSSI (Received Signal Strength Indication), posi-
tioning algorithms based on conventional positioning principals are to be developed and
implemented as extensions into the former developed Android application, ePark. The
navigation system is going to be a part of a parking service, featuring a map-interface,
reservation possibilities and parking log.

1.3. OUTLINE 3

The following subtasks are proposed for the project:

1. Performing a litterature-study regarding Bluetooth Beacon Protocols and relatable
algorithms for positioning.

2. Design a navigation system that uses positioning principals like Cell Identification
and Trilateration through Received Signal Strength Indicator (RSSI) from BLE
Beacons.

3. Implement the navigation system as an extension to the mobile application, ePark,
developed during the related specialization project. Perform extensive testing to
evaluate navigation using signals from BLE Beacons.

Through these subtasks it is desirable to evaluate the accuracy of a bluetooth-based
navigation system, the system performance using different concepts and algorithms, and
which use-cases that the system is applicable for.

1.3 Outline

The outline of this report is meant to reflect the subtasks of the thesis along with relevant
previous work that were performed during the fall of 2017.

Chapter 2 summarizes the project thesis that was finished in December 2017, bringing
forward preliminary theory and results, making the foundation for the subtasks of the
master’s thesis. Chapter 3 introduces relevant theory regarding positioning technologies
and principals. Chapter 4 presents the design of both software and hardware, reasoning the
design choices, followed by Chapter 5 presenting the system implementation, with focus
on software- and hardware-implementation, software integration and important system
modules. The results are presented in Chapter 6. Chapter 7 discusses some important
measures in the project, followed by some concluding remarks in Chapter 8. The report
finishes off with suggestions for future work in Chapter 9.

4 CHAPTER 1. INTRODUCTION

Chapter 2
Introduction to ePark

This chapter will introduce the Android mobile application, ePark, developed during the
specialization project which was performed as preliminary work for this master thesis.
As ePark is described in this chapter, Section 2.2 and Section 2.3 summarizes some of the
theory acquired during the specialization project, which is seen as highly relevant for the
understanding of this report.

2.1 System description

ePark is an Android Mobile Application developed during the associated specialization
project carried out during the fall of 2017. The application is meant to deliever several
services when parking in a public garage, such as:

• Parking reservation

• Display real-time elapsed parking time and cost

• Indoor navigation inside the parking garage, with status over available spots

• Parking log of previous parkings

Being further work on an already existing application, almost all of the listed services
are supposed to be developed during this project. From earlier on, ePark has the ability
to determine the closest BLE Beacon, and reserve the related parking ID. Parking timer,
indoor navigation services, and parking log are all features that needs to be developed

5

6 CHAPTER 2. INTRODUCTION TO EPARK

in conjunction with the proposed work. One comprehensive change in the software
structure of ePark, is moving the cloud storage and its related modules from the Microsoft
Azure Cloud platform to Cloud Services provided by Digital Ocean. The new structure is
presented in Section 2.4.

Installing and running ePark on an Android device (smartphone, tablet), fascilitates
interaction between the smart-device, bluetooth beacons deployed in a public parking
garage and cloud storage. Requirements for the Android device are:

• Minimum API level 21 (Android Lollipop)

• Supporting Bluetooth v4.0 or higher

• Wi-Fi or 4G LTE enabled

• Granted permissions for Internet, Bluetooth and Location Services in Android

Running ePark as a registered user, the Android device functions as a scanner, scanning
for Bluetooth devices within range, based on the Eddystone Protocol. The Android device
performs duplex communication with a server (Ubuntu 16.04 MySQL-server), polling
beacon and parking information from the cloud-plattform, as shown in Figure 2.1.

Figure 2.1: Information flow in the system

The following sections will enlighten the basic theory and concepts which make up the
system of ePark.

2.2. BLE BEACON TECHNOLOGY 7

2.2 BLE Beacon Technology

The beacons used in this project are based on the Bluetooth v4.0 [3], also referred to as
BLE (Bluetooth Low Energy) or Bluetooth Smart™. The standard itself will be presented
in this section, along with Beacon Standards available today.

2.2.1 Bluetooth Low Energy - Bluetooth v4.0

Bluetooth is a short range Radio Frequency (RF) communication technology that operates
in the 2.4 GHz ISM band, and is a global wireless standard for simple connectivity. The
technology can be divided into two main categories; Bluetooth Basic Rate/Enhanced Data
Rate (BR/EDR) and Bluetooth Low Energy (BLE).

Bluetooth Basic Rate/Enhanced Data Rate (BR/EDR):
Used for continous connection in a point-to-point (1:1) connection. Typically used for
audio streaming e.g wireless headsets, wireless speakers and in-car audio.

Bluetooth Low Energy (BLE):
Used for various short burst connections such as point-to-point (1:1), broadcast (1:m) and
mesh (m:m). Point-to-Point is used in data transfer between a central unit (e.g smartphone)
and peripherals like fitness devices and welness monitors. Broadcast focuses on localized
information, using beacons to transmit information within a configured range. The last
type of connection, Mesh, is used in conjuction with larger device networks such as
building automation, wireless sensor networks and asset tracking.

Bluetooth Low Energy (BLE) was incorporated into the Bluetooth 4.0 Core Specification
in 2010 and experienced rapid market growth, including all the major operating systems,
most of the smartphones and tablets, along with a new breed of devices like fitness bands
and simple RF tags. Support for Bluetooth 4.0 on some platforms are listed below:

• iOS 5+ (iOS 7+ preferred)

• Android 4.3+ (numerous bug fixes in 4.4+)

• Apple OS X 10.6+ (named macOS today)

• Windows 8 (XP, Vista and Windows 7 only support Bluetooth 2.1)

8 CHAPTER 2. INTRODUCTION TO EPARK

2.2.2 Bluetooth Beacons

Bluetooth Beacons are BLE-based devices that broadcasts small packets of data within
a radius based on their configuration. The configuration comprises a Beacon Standard,
transmit-power determining the range, advertising-rate and configuration of the packets
of data broadcasted.

Transmit Power
The Transmit Power setting determines the strength of the transmitted beacon signal,
measured in dBm (decibel-milliwatts). A beacon can normally be configured within a range
of -30 dBm to +4 dBm, and by measuring the RSSI (Received-Signal-Strength-Indication)
from a central device (e.g smartphone), it is possible to calculate the distance in meters.

The RSSI is calculated by the following equation:

RSSI@1m = −20 · logd +MeasuredPower (2.1)

which provides:
d = 10

MeasuredPower−RSSI@1m
20 (2.2)

where d is the distance between the central device and the beacon.

Table 2.1: Transmission power values

TX Power level RSSI @ 1m Range (meters)
-30 dBm -115 dBm 2
-20 dBm -84 dBm 4
-16 dBm -81 dBm 10
-12 dBm -77 dBm 20
-8 dBm -72 dBm 30
-4 dBm -69 dBm 40
0 dBm -65 dBm 60
4 dBm -59 dBm 70

Each Beacon is calibrated by measuring the RSSI at a distance of 1 meter. The calibrated
RSSI@1m is sent along with the Beacon data, making it possible to perform calculations
based on equation 2.2 on the central device.

2.2. BLE BEACON TECHNOLOGY 9

Advertising Rate

The advertising rate setting determines how often the beacon transmits the signal [1Hz
- 10Hz]. A higher advertising rate will consume more power, which often is the most
decisive setting configuring a beacon (desirable advertising rate vs. battery life).

2.2.3 iBeacon

Apple announced the iBeacon protocol in December 2013, a Bluetooth Low Energy Beacon
profile which officially only works with iOS devices, although some Android devices are
capable of receiving the iBeacon signals.

The iBeacon protocol requires an app to receive, process and/or track the beacon, meaning
they onlyworkwith apps installed on a device. iBeacons interact with apps by broadcasting
a single unique ID. The broadcasted signal is used by the app to prompt an action, such
as providing indoor navigation, keyless access, notifying the user of a nearby deal.

The broadcasted unique ID consists of:

• UUID (Universally Unique Identifier) - 16 bytes/128bits BLE UUID

• Major - unsigned integer value between 0 and 65535

• Minor - unsigned integer value between 0 and 65535

Figure 2.2: iBeacon Data Overview

10 CHAPTER 2. INTRODUCTION TO EPARK

To put the different values into context, a museum is used as an example scenario. The
museum has invested in 1000 iBeacons. All 1000 beacons are configured with the same
UUID, telling the end-user that the received signal comes from a beacon owned by the
museum. Inside the museum, there are several paintings and sculptures spread over 5
floors. It would then be natural to assign the floor number as Major (1-5), and assigning
the exhibit number as Minor. If each floor has 200 exhibits, then each beacon would
be configured with the same UUID, a Major representing the floor (1-5), and a Minor
representing the exhibit number (1-200).

The iBeacon API makes it possible to develop applications for both monitoring and ranging.
By monitoring, functions from the library returns the UUID,Major andMinor values
from all beacons that the end-user receives signals from. Ranging uses the Tx Power sent
along with the rest of the iBeacon data to compute the distance to each beacon based on
actual RSSI and Equation 2.2. The accuracy values may fluctuate due to RF interference.

2.2.4 Eddystone

Eddystone is a Bluetooth Low Energy Beacon profile released by Google in July 2015,
as a cross-plattform protocol containing multiple frame types. The protocol is already
implemented in several native apps, including Google Maps and Nearby.

The Eddystone protocol has 4 frame types:

• Eddystone-UID broadcasts an identifying code containing namespace ID, instance
ID, making it possible to distinguish between beacons when interacting with apps.

• Eddystone-EID broadcasts an encrypted identifier which is continously rotated to
increase the security of the protocol, but otherwise functions as the UID frame.

• Eddystone-TLM broadcasts information about the beacon such as sensor data,
battery level and other relevant information to the beacon admininistrators. TLM
must be accompanied by another frame to be used.

• Eddystone-URL broadcasts a URL, redirecting the end-user to a website that is
secured using SSL.

2.2. BLE BEACON TECHNOLOGY 11

Figure 2.3: Eddystone Data Overview

An Eddystone Beacon can be configured with several frames, swapping between different
GAP advertising packets that is being transmitted. The UUID consisting of namespace
ID and instance ID transmitted through the Eddystone-UID frame, provides the same
16Bytes of UUID namespace that iBeacon does. The namespace ID is unique and assigned
to a group of beacons, along with the namespace ID assigned to each beacon within the
group, making it possible to distinguish between different beacons.

12 CHAPTER 2. INTRODUCTION TO EPARK

2.3 Android

Android is a mobile operating system developed by Google, primarily for touchscreen
devices such as smartphones and tablets. Initially, the system was developed by Android
Inc. which was bought by Google in 2005, before the mobile platform was released in 2007.
Through Android API’s (Application Programming Interface), a set of core libraries and
functionalities can be accessed, extended and customized for development of applications
for modern mobile devices.

Applications ("apps"), extending the functionality of a device, are written using the Android
SDK, often accompanied by the Java programming language. The Android plattform
provides full C++ support when using Java, and development is also available with the use
of Google’s own programming language Go (Golang) and Kotlin. The below subsections
describe the basics of the Android Platform and how Bluetooth Beacon libraries can be
implemented in an application.

2.3.1 Architechture

The Android Platform is an open source, Linux-based software stack, developed primarily
for mobile operating system, but also for televisions (Android TV), for cars (Android Auto)
and for wrist watches (Android Wear). Figure 2.4 below shows the major components of
the Android Platform Architechture [1].

The well-known Linux Kernel lies on the bottom of the Android Architechture, provid-
ing drivers for the different parts of an Android-running device, along with the power
management. On top of the Linux Kernel, the Hardware Abstraction Layer (HAL)
provides standard interfaces between the hardware and the rest of the stack. Android
runtime (ART) is the managed runtime used by applications and system services on
Android. ART replaced its predecessor Dalvik in Android version 5.0 (API Level 25), and
is developed to run multiple virtual machines on low-memory devices, executing DEX
files, a bytecode format designed specially for Android considering minimal memory
footprint. ART includes the following features; Ahead-of-time (AOT) nad Just-in-time
(JIT) compilation, Optimized garbage collection (GC) and better debugging support with
detailed diagnostic exceptions and crash reporting.

2.3. ANDROID 13

Figure 2.4: The Android Software Stack from [1]

Java API Framework:
All core features in Android OS is available through APIs written in the Java language,
simplifying the development by modular system components and services, which include

14 CHAPTER 2. INTRODUCTION TO EPARK

the following:

• A View System used to build the application User Interface (UI), including lists,
text boxes, buttons, menus and general graphics and animation.

• A Resource Manager providing access to non-code resources such as imported
graphics, strings and layout files.

• A Notification Manager that enables all applications to show customized notifi-
cations in the status bar.

• An Activity Manager that manages the lifecycle of applications and provides a
common navigation back stack.

• Content Providers that enables applications to share data among eachother.

2.3.2 Activities

An activity is a common element in Android Applications. It is basically a Java class which
extends the Activity class that takes care of creating a window where the User Interface
(UI) can be placed by using setContentView(View). Almost all activities interact with the
user, presented as full-screen windows, floating windows or embedded inside of another
activity.

It is important to note that one activity usually is related to a single view in the application,
thus every view is related to its own Java class. Android Applications normally run each
activity on the UI thread, but also support multiple threads running in the background.

Android uses an activity stack to manage activities. An activity has to be triggered to
start. Starting an activity can be done as default start-up activity, after a given amount of
time, by user-input (touch, voice-control, keyboard etc.) or by external hardware (signal
detection). A new activity is put on top of the stack and comes to the foreground, while
the current activity is paused in the background until the new activity exits.

2.3. ANDROID 15

Figure 2.5 displays the lifecycle of an activity with all its methods being called sequentially.

Figure 2.5: Activity Lifecycle from [2]

There are three loops regarding an activity:

• The entire lifetime is from the first call to onCreate() through to a single final call
to onDestroy(). The activity will perform setup of the global state in the onCreate-
method, and release all remaining resources in the onDestroy()-method.

• The visible lifetime is everything that happens between a call to onStart() until
a corresponding call to onStop(), and it is during this time that the user can see

16 CHAPTER 2. INTRODUCTION TO EPARK

the activity on-screen.

• The foreground lifetime happens between corresponding calls between onResume()
and onPause(). During this time, the activity is on top of the stack, in front of all
other activities. Certain calls are frequent, and are caused by for example when the
device goes to sleep or when background tasks deliever results.

The entire lifecycle of an activity is defined by the methods shown in Figure 2.5, and as
explained in [2], they can be modified through an @Override to do the desirable work
when the current activity changes state.

An activity has four states, which are:

• Running: The activity is active and runs in the foreground

• Paused: The activity has lost focus, but is still alive and displayed

• Stopped: The activity saves state information, but is obscured by another activity
and is exposed for being killed if the system requires memory

• Terminated: The activity is being shut down or killed by the system, freeing
system memory

2.3.3 Services

As described in Section 2.3.2, only one activity is allowed to run on the UI-thread at a time.
If it is desirable to run tasks in the background without disturbing the user interacting
with the app through the UI-thread, Services[4] can be used.

A service is Java code that is running in the background, independent of the UI-thread
and with no connection to anything directly visible to the user. Typical standard Android
Services are services listening for location, incoming phone calls or SMS. These services
are part of the Android API, and can not be altered, but it is possible to develop User
Defined Services to achieve the desirable result from tasks running in the background.

2.3. ANDROID 17

2.3.4 Manifest and permissions

To make an Android Application into an executable, it needs to obtain a detailed descrip-
tion of the application and how it is composed. This is provided through the manifest,
AndroidManifest.xml. The manifest contains important information regarding:

• Including all app components, and describe the intent-filter of activities set to be
MAIN and LAUNCHER (launcher activity)

• Determining which permissions the application should use. This is done by the
<uses-permission> command, used to grant permissions for LOCATION_SERVICES,
BLUETOOTH, INTERNET and more.

• Setting the app icon, label and theme.

To be able to implement compatibility for Bluetooth Low Energy Beacons in Android,
permission for BLUETOOTH has to be granted. After the launch of Android version 6.0
(API Level 23), permission for LOCATION SERVICES has to be granted in order to request
permission for BLUETOOTH. As a security measure, all permissions related to location
services have to prompt the user with a dialog box, asking for permission. The permission
prompt has to be implemented as an abstract Java class, gathering permissions from the
AndroidManifest.xml that has to be asked permission for.

2.3.5 Android Beacon Library

To detect BLE Beacons in Android, there are several external libraries available. In this
project Eddystone UID will be implemented, hence the library Android Beacon Library
developed by AltBeacon, providing full support for all Eddystone frames [5].

As AltBeacon describes in their documentation, any device with Android 4.3+ and a
Bluetooth Low Energy chipset can detect Beacons, using their library.

The package org.altbeacon.beacon [6] contains several interfaces and classes, as de-
scribed below:

BeaconConsumer

An interface for an Android Acticity or Service that wants to interact with beacons.
The interface is used in conjunction with BeaconManager and provides a callback when
the BeaconService is ready to detect and range beacons.

18 CHAPTER 2. INTRODUCTION TO EPARK

BeaconManager

A class used to set up the interaction with the beacons. The BeaconManager includes and
manages all methods for both monitoring and ranging beacons. As mentioned above, the
BeaconManager requires a callback from the BeaconConsumer to use its methods.

RangeNotifier

An interface for ranging the distance to beacons. The RangeNotifier provides both
identification and ranging of visible beacons. It is implemented by the BeaconManager
class, and calculates the distance through the method:
void didRangeBeaconsInRegion(Collection<Beacon> beacons, Region region)

MonitorNotifier

An interface for monitoring a Region. Like the RangeNotifier, the MonitorNotifier
provides identification of the beacons in a region, but it does not range them.

Region

A class that represents several criterias to match beacons. Through instances of this class,
it is possible to filter the region which is desirable to monitor or range, based on Beacon
Standard, UUID and other ID parameters (dependable on Beacon Standard).

Identifier

A class that encapsulates a beacon identifier of arbitrary byte length, and stores it as a
byte array.

2.4. CLOUD STORAGE 19

2.4 Cloud Storage

Developing an application sometimes requires some form of cloud-based storage. ePark
uses an Ubuntu 16.04 server provided by DigitalOcean. The server is configured as a
MySQL-server with phpMyAdmin, holding important information such as:

• User database - Application Registering and Login

• Beacon database - Information and status of all beacons in the system

• Ticket database - All ongoing and completed parking requests

2.4.1 Server connection

The connection to the server is done through the language PHP, along with Volley-
requests [7] from Android (URL-based requests).

<?php

$host="localhost";

$port =3306;

$socket="";

$user="********"; # Server username

$password="********"; # Server password

$dbname="mysql";

$con = new mysqli($host , $user , $password , $dbname , $port , $socket)

or die ('Could not connect to the database server '

. mysqli_connect_error ());

$sql = "SELECT * FROM tickets WHERE user_id = ? AND completed = 1";

$statement = mysqli_prepare($con , $sql);

/>

20 CHAPTER 2. INTRODUCTION TO EPARK

2.4.2 Server requests

Server requests are requests from Android through the Volley-library [7], to either acquire
data, insert data or manipulate existing data. Based on the request, different php-scripts
are initiated through their designated URL (https://67.205.190.1/<php_script_name>.php).

A php-script could contain an executable MySQL-query. This concept along with the
Volley-library [7] in Android allows parameters to be passed to the php-script and used in
the MySQL-query. The Volley-library then handles the response from the server, whether
it returns a string, a JSON Object or a JSON Array.

JSON (JavaScript Object Notation) [8] is a lightweight data-interchange format. The
notationmakes it easily readable for humans, in addition to making parsing and generation
for computers easy. JSON is mainly built on two structures:

• JSON Object: A collection of name/value pairs

• JSON Array: A list containing JSON Objects

The notation for an object begins ({) and ends (}) with curly-brackets. Inside these
curly-brackets, name/value pairs are seperated by a colon (:) and different pairs can be
distinguished by each comma (,). This notation is shown through the example JSON
Object displayed below:

{ " ID " : 5 , " name " : " George " , " age " : 4 3 }

A JSON Array is basically only a list of JSON Objects. The notation for a JSON Array is
encapsulated by square-brackets ([]). Inside the brackets, the JSON Objects are separated
by a comma (,) as shown below:

[{ " ID " : 5 , " name " : " George " , " age " : 4 3 } ,
{ " ID " : 6 , " name " : " L i s a " , " age " : 1 9 } ,
{ " ID " : 7 , " name " : " Mark " , " age " : 2 2 }]

JSON supports data-types such as string, integer, float, object/array1, true/false, null. Miss-
ing data-types can be handled through convertion back and forth to the string data-type
or other compatable data-types.

1Represented as JSON Object/Array as in [9]

Chapter 3
Positioning System

This chapter will introduce some relevant surveying concepts based on signal measure-
ments, applicable for positioning applications. The belonging theory and mathematic
expressions will be derived in each section.

3.1 Introduction to positioning systems

Conventional GNSS technology (Global Navigation Satellite System), including GPS, relies
on the line of sight of satellites. These kind of technologies are not suited nor intended
for indoor applications. This section will introduce several surveying concepts that are
applicable for indoor use.

An indoor positioning system requires some form of technology that can determine the
relative position of an object. There are several technologies that can be used for this
purpose.

• Signal measurements: By having signal-anchors of known coordinates, signal
measurements between an object and an anchor could determine the position of
the object relative to the anchor(s) (distance calculations or time-based concepts).
This implies knowing the position of an anchor and the distance to an object, you
know the possible position(s) of the object.

• Magnetic Positioning: Deployingmagnetic sensors obtaining a three-dimensional
magnetic field, mapping of this magnetic field can be used for positioning. Through

21

22 CHAPTER 3. POSITIONING SYSTEM

calculations and filters, changes in the magnetic field can determine the position of
an object that interferes with the magnetic field.

• Dead Reckoning: By measuring the heading and movement (e.g speed) and time
of an object, the position can be estimated. The position then become an estimate
based on previous measurements, and will be estimated once a new measurement
is available.

This thesis will focus positioning concepts based on signal measurements, having a signal-
sources of known coordinates, broadcasting a signal that can be measured by the object
(e.g a smartphone), determining the relative position relative to the signal-source. Some
of the most common technologies to accomplish this kind of positioning system are:

• Wi-Fi: The localization technique is based on measuring the RSSI (Received Signal
Strength Indicator) from wireless access points. A WPS (Wi-Fi Positioning System)
can be utilized where it is inadequate for conventional GPS, having the position
of each wi-fi access point stored in a database, including their SSID and unique
MAC-address. WPS is suitable for locations that already has several access points
installed, making it a cost-effective solution.

• Ultra-Wide-Band: UnlikeWi-Fi, Ultra-Wide-Band (UWB) uses time-synchronization
for positioning purposes. UWB operates with pulse-based transmission in the from
3.1 to 10.6 GHz frequency range. By measuring the time it takes for the signal
to travel from the transmitter to the receiver, UWB enables higher accuracy than
RSSI-based concepts. The concept is based on transmitting a signal from a so-called
tag that the user is carrying. The signal from the tag is transmitted to UWB-anchors
of known coordinates. Using concepts like Time of Arrival (ToA) or Time Difference
of Arrival (TDoA) implemented in a RTLS-server (Real-time location system), the
position of the tag can be determined and feeded back to the tag1 or by Wi-Fi to a
smartdevice (e.g smartphone, tablet). Some of the drawbacks by using UWB is that
each UWB-anchor requires a synchronization signal, mostly obtained through a
ethernet-connection, in addition to deploying a RTLS-server that handles the posi-
tioning calculations. This introduces a relative high cost for installing a positioning
system based on UWB.

• Bluetooth: Like Wi-Fi, a bluetooth-based positioning system uses RSSI (Received
Signal Strength Indicator) to determine the position of a bluetooth device. Protocols
and frameworks developed by Google (Eddystone) and Apple (iBeacon) enables

1Some UWB tags support bluetooth, and can transmit the latest position update over bluetooth to a desired
smartdevice for use by installed apps

3.2. POSITIONING CONCEPTS 23

continous data-transmissions from Bluetooth Beacons of known coordinates, broad-
casting their identity along with their calibration parameters. As described in
Section 2.2, these measurements can be used in several positioning concepts to
determine the position of a bluetooth-device. Due to the Bluetooth Low Energy
support, bluetooth beacons results in a positioning system of high mobility due to
long battery-life and of relative low cost.

In the next section bluetooth will be focused as the choice of technology, but the concepts
are also applicable for both Wi-Fi and UWB.

3.2 Positioning Concepts

3.2.1 Cell Identity

The map is divided into cells, having a beacon deployed in the center of each cell. Measur-
ing the RSSI, the closest/actual cell is determined as the position of the measuring device
(e.g smartphone).

Figure 3.1: Cell Identification with BLE Beacons

Cell Identity achieves a precision based on the size of each cell. Reasonable sizing of
the cells are done based on cost-per-cell (1 beacon for each cell) along with expected
accuracy of the RSSI. Normally, Cell Identification is used for applications that can tolerate
an accuracy exceeding 10 meters. Increasing the accuracy (< 10 meters) can be done
by implementing other positioning concepts within the cell, either by installing more
equipment or using the signals from the beacons deployed in the neighbour cells.

24 CHAPTER 3. POSITIONING SYSTEM

3.2.2 Triangulation

Triangulation is a surveying technique in which unknown distances between beacons
and the smartdevice can be determined by trigonometric applications of one or several
triangles [10]. This requires that the antenna’s are capable of measuring the angle of the
incoming signal, which bluetooth antennas are not capable of doing. With antennas that
are capable of measuring the angle of the incoming signal, the object that is desirable
to track, sends a signal to surrounding anchors that measure the angle of the incoming
signal. As shown in Figure 3.2, this creates 4 triangles.

Figure 3.2: Triangulation

Triangulating one triangle provide either a x- og y-coordinate, so at least three anchors
are required to perform the following equation:

The length of
−→
AB is known from the coordinates of the anchors placed in A and B. ∠A and

∠B are measured based on the incoming signals in A and B. The y-coordinate can then be
calculated by finding P:

3.2. POSITIONING CONCEPTS 25

Trigonometry provides: P =
���−→BC ��� sin(∠B)

∠C = 180o − (∠A + ∠B)

The law of sines gives: sin(∠B)���−−→AC ��� = sin(∠A)���−−→BC ��� = sin(180o−(∠A+∠B))���−−→AB ������−→BC ��� = ���−−→AB ���·sin(∠A)
sin(180o−(∠A+∠B))

We obtain: P =

���−−→AB ���·sin(∠A)·sin(∠B)
sin(180o−(∠A+∠B))

(3.1)

This proves that two anchors could provide either an x- or an y-coordinate. To determine
the position of the object, at least 3 anchors are needed (R2) and 4 anchors if the system
operates with x-y-z coordinates (R3).

3.2.3 Trilateration

Trilateration is a surveying technique based on measuring lengths creating a triangle [11],
rather than angles like in triangulation. In trilateration, the angles are calculated by the
law of cosines from the measured distances. Figure 3.3 shows, purely theoretical, how 1
distance measurement form a curve, 2 distances obtains two intersections and how the
third distance measurement determines the correct intersection.

Figure 3.3: Trilateration

26 CHAPTER 3. POSITIONING SYSTEM

In practice, signals fluctuate, and the measurements are not accurate enough to re-create
the scenario displayed in Figure 3.3. Lets consider the following scenario in Figure 3.4

Figure 3.4: Illustration of trilateration symbols

Notations:

• Coordinates of target point P is denoted θ = (x ,y, z)

• The known location of beacons/anchors are denoted Bi = (xi ,yi , zi)

• The distance (d) between a beacon/anchor and the target θ can be derived as:

di (θ) =

√
(x − xi)

2 + (y − yi)
2 + (z − zi)

2 (3.2)

• Choosing a known beacon/anchor as a reference point of coordinates (xr ,yr , zr),
the distance between this reference point and an arbitrary beacon/anchor can be
derived as:

dir =

√
(xi − xr)

2 + (yi − yr)
2 + (zi − zr)

2 (3.3)

• The distance between a reference and the target θ can then be derived as:

dr (θ) =

√
(x − xr)

2 + (y − yr)
2 + (z − zr)

2 (3.4)

3.2. POSITIONING CONCEPTS 27

Derivation of a Linear Model:

Using the reference, adding a zero-sum into the equation, the cosine-rule can be applied
to simplify the expression for the linear model:

di (θ)
2 = (x − xi)

2 + (y − yi)
2 + (z − zi)

2

Adding the zero-sum:

di (θ)
2 = (x − xr + xr − xi)

2 + (y − yr + yr − yi)
2 + (z − zr + zr − zi)

2

di (θ)
2 = (x − xr)

2 + 2(x − xr)(xr − xi) + (xr − xi)
2

+(y − yr)
2 + 2(y − yr)(yr − yi) + (yr − yi)

2

+(z − zr)
2 + 2(z − zr)(zr − zi) + (zr − zi)

2

Combined with previous expressions the following is obtained:

dr (θ)
2 + dir

2 − di (θ)
2 = 2((xi − xr)(x − xr) + (yi − yr)(y − yr) + (zi − zr)(z − zr))

where i = 1, 2, ..., n with n ≥ 4

Using any beacon as a reference point (e.g B1), inserting known coordinates results in a
Linear system by the following equation:

(xn − x1)(x − x1) + (yn − y1)(y − y1) + (zn − z1)(z − z1) =
1
2
[r1

2 − rn
2 + dn1

2] = bn1

When one beacon is used as reference, the number of equations for the linear system
is (n-1) where n is number of beacons2. And as we know, there are 3 unknowns in the
system; coordinate x, y and z. The system can be written in matrix-form (Ax=b) as:

A =

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1
...

...
...

xn − x1 yn − y1 zn − z1

,x =

x − x1

y − y1

z − z1

,b =

b21

b31
...

bn1

(3.5)

2This indicates that a system of nD-space requires n+1 beacons to determine the position of an object

28 CHAPTER 3. POSITIONING SYSTEM

3.2.4 Angle of Arrival (AoA)

Angle of Arrival (AoA) measurement is a method for determining the direction of an
incoming signal. In positioning systems, the object that is preferable to track, functions as
an emitter while deployed sensors/antennas measure the angle relative to an antenna array.
Having multiple sensors determining angles, intersections are obtained to determine the
position of an object.

Figure 3.5: Angle of Arrival

This method is suitable for applications where there is line-of-sight between the emitter
(P) and the sensors (A and B), and require large and complex hardware. The angle
measurement is normally performed in one out of two ways:

• Mechanically-agile directional antennas which automatically adjust themselves
towards the highest signal strength.

• An antenna-array which is made by measuring the TDOA (Time difference of
Arrival) at individual elements of the antenna array.

Angle of Arrival is not a preferable method for indoor positioning as it is highly sensitive
to signal reflections (multipath), decreasing both accuracy and precision.

3.2. POSITIONING CONCEPTS 29

3.2.5 Time of Arrival/Time Difference of Arrival (ToA/TDoA)

Time of Arrival is the most common surveying technique, and is also used in Global
Positioning System (GPS). The method is based on knowing the exact time of transmission
from the target object, the exact time of arrival at a reference point, and the speed at
which the signal travels. Once these parameters are known, the distance between the
target and the reference point can be calculated using the following equation:

d = c ∗ (tarr ival − tsent) (3.6)

where c is the speed of the signal, usually the speed of light.

Further on, concepts like Trilateration can be used to determine the position of the target,
requiring three reference points for 2-dimensional positioning, and four reference points
for positioning in 3 dimensions.

Synchronization is an important measure when it comes to ToA, and can be achieved by:

• Exact synchronous clock on both sides (target and reference). Inaccuracy of clock
synchronization directly leads to imprecise positioning.

• Using a common reference point on both sides.

Having synchronized time opens up for the use of Time Difference of Arrival (TDoA),
measuring the time difference between the signals received at two reference points. The
difference can be calculated by the following equation:

∆d = c(∆t) (3.7)

where c is the speed of light and ∆t is the difference of arrival times at the reference
points.

30 CHAPTER 3. POSITIONING SYSTEM

In 2D, Eq. 3.7 can be used together with

∆d =
√
(x2 − x)2 − (y2 − y)2 −

√
(x1 − x)2 − (y1 − y)2 (3.8)

where (x1,y1) and (x2,y2) are known coordinates of beacon 1 and 2, ∆d is the distance
relationship based on the time difference. Using nonlinear regression, hyberbolas are
created through the equations and the position of the target can be determined by finding
the intersections as shown in Figure 3.6 below.

Figure 3.6: Time Difference of Arrival (TDOA)

3.3. POSITIONING USING BLE BEACONS 31

3.3 Positioning using BLE Beacons

Based on the positioning concepts presented in the latter sections, only a few would be
feasible together with Bluetooth Low Energy (BLE) Beacons. As presented in Section 2.2,
BLE Beacons transmits data (varies with framework3) that is received by a smart-device
such as a smartphone or a tablet. Due to limitations of the general antennas that are found
in these smart-devices today, the only direct surveying technique of a single signal is
calculating the distance through the RSSI-equation (Eq. 2.2). This limits bluetooth-based
positioning systems to Cell identification and Trilateration.

In a bluetooth-based positioning system, the smartdevice performs a scan cycle, discov-
ering and ranging the distance to all nearby BLE beacons. Based on the implemented
software in the running application, the position of the target can be obtained. In some
applications Bluetooth is also used as a supplement to other technologies to improve
location services, e.g together with GPS and Wi-Fi positioning.

Using BLE Beacons, the distance measurements are essential for making a concept like
Trilateration work. A theoretical approach with perfectly accurate distance measurements
would result in a point position, but due to disturbances, a bluetooth positioning systems
need an implementation of trilateration that handles uncertainties. As shown in Figure 3.7,
three BLE Beacons are used to determine the position of the smartdevice by trilateration.
The first, 3.7a, displays a theoretical approach, resulting in a point position. The second,
3.7b, shows how the possible solution is defined as an area instead of as a point.

(a) Trilateration (b) Trilateration with uncertainty

Figure 3.7: Trilateration using BLE Beacons

3Eddystone by Google and iBeacon by Apple are examples of different frameworks

32 CHAPTER 3. POSITIONING SYSTEM

3.3.1 Related Work

The need of Positioning Systems for indoor applications has already been mentioned due
to poor coverage of conventional GPS signals based on line-of-sight. When it comes to
using RSSI measurements for positioning, there has been some former research regarding
the subject using different wireless technologies.

An acoustic positioning system was developed and tested in [12]. The achieved accuracy
resulted in deviances below 1cm, but due to directional transducers with relative low
range, the coverage area was limited to approximately 3m3.

A wireless technology found in the same band as Bluetooth Low Energy, is WLAN IEEE
802.114, also called Wi-Fi. A real-time positioning system based on the WLAN IEEE 802.11
using Trilateration is presented in [13]. One of the most comprehensive advantages with
the suggested system is that it can be implemented into existing Wi-Fi infrastructure, but
the estimates of the calculated position is off by several meters.

In [14], a bluetooth positioning system is developed and tested, tracking a smartphone by
using four other smartphones as reference, using the Bluetooth 2.1 standard. The accuracy
of the system is not specified, but the authors suggests the use of other algorithms to
solve the positioning problem.

This thesis is based on navigation with BLE Beacons, having data broadcasted from
beacons to a smartphone, allowing tracking of several objects simultaneously. In [15]
a Bluetooth sensor network with inverted communication flow achieves a positioning
accuracy of 3 meters using triangulation. This system only allow tracking of one device
at a time, and explains to what the degree the human body blocks the signal and lowers
the accuracy considerably.

The related work presented above is using technology that can be related to Bluetooth
Low Energy (BLE) and positioning based on signal strength measurements, which creates
the basis for this thesis. BLE has advantage over other technologies due to being low-cost,
highly supported, low-power consumption and light-weight for easy deployment, making
it interesting to see if BLE could be a reliable technology for indoor positioning.

4Normally found in the frequency bands 2.4, 3.6 and 5GHz. Both version 802.11b and 802.11g are located in
the ISM band along with BLE

3.3. POSITIONING USING BLE BEACONS 33

3.3.2 Trilateration with BLE Beacons

Due to the uncertainties in the distance measurements when using BLE Beacons for
positioning, it is not straightforward to solve the mathematical equations to determine
the position of a smartdevice. Although there is derived a linear model for trilateration
in Section 3.2.3, only obtaining estimates for the distances due to interference, it results
in nonlinear equations of higher degree. Solving these with distance estimates instead
of accurate distances can be performed satisfactorily through linear least squares, and
nonlinear least squares solution techniques. The linear system of the trilateration
problem is defined in matrix form as:

A®x = ®b

A =

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1
...

...
...

xn − x1 yn − y1 zn − z1

,x =

x − x1

y − y1

z − z1

,b =

b21

b31
...

bn1

(3.9)

The linear system above has (n-1) equations in three unknowns (x,y,z). The system could
also be reduced into a two-dimensional (R2) system, resulting in (n-1) equations in two
unknowns (x,y). This requires the presence of four beacons (n=4) in a three-dimensional
system (R3), and three beacons (n=3) in a two-dimensional system (R2).

Linear Least Squares

As the distance measurements used as input to solve the trilateration problem only are
estimates, it results in a solution containing several points (area) instead of a point as
shown in Figure 3.7. Using Linear Least Squares as solution technique, the sum of the
squared differences between the data values and their corresponding modeled values is
minimized, providing a position approximation. Since all measured distances to each
beacon are estimates, the problem requires the determination of ®x such that A®x ≈ ®b. As
described in the technical report [16], this is done through minimizing the sum of the
squares of the residuals,

S = ®rT ®r = (®b −A®x)T (®b −A®x) (3.10)

which leads to
ATA®x = AT ®b (3.11)

34 CHAPTER 3. POSITIONING SYSTEM

Equation 3.11 can be solved for ®x in several ways. The condition number ofATA determines
which method is best. If ATA is non singular and well-conditioned then

®x = (ATA)−1AT ®b (3.12)

If ATA is singular or poorly conditioned, QR Factorization of matrix A can be used to
decompose it into the product A = QR, whereQ is an orthogonal matrix and R is an upper
triangular matrix. From the QR Factorization, the solution for ®x can be found by back
substitution when A is full rank from Equation 3.13:

R®x = QT ®b (3.13)

Although matrix A is not close to singular, it may happen that ATA is. This could result
in a problem that is not possible to solve through QR Factorization and has to be solved
through Singular Value Decomposition (SVD).

Nonlinear Least Squares

When using estimates for the beacon distances in trilateration, Nonlinear Least Squares
method provides higher accuracy than the Linear Least Squares method [16]. One of
the main differences between Nonlinear Least Squares (NLSQ) and Linear Least Squares
(LLSQ) is that while LLSQ can be solved through direct methods, NLSQ is an iterative
process. In NLSQ, the least square estimate needs to be obtained through successive
approximation, starting with linearization of the model by approximation to a first-order
Taylor-series about βk , where β is the least square estimate and k is the iteration number.
Using the same linear model as in LLSQ from (3.9), NLSQ can be used with the following
restrictions for achieving higher accuracy than LLSQ:

• Positioning with NLSQ restricts the smartdevice of only being positioned at one
side of the plane that the BLE beacons is deployed. In practice this means only
determining z-coordinates which are below the z-coordinate of the beacons. This is
due to NLSQ may have multiple minima in the sum of squares, while in LLSQ the
solution is unique.

• The smartdevice will have to be inside the perimeter of the installed beacons. Both
elevation changes and moving further away from the perimeter will decrease the
accuracy.

3.3. POSITIONING USING BLE BEACONS 35

These restrictions are mentioned in [16] as measures for conserving high accuracy, al-
though the Nonlinear Least Square method will provide results if these restrictions are
violated.

In NLSQ, the sum of the squares of the errors on the estimated distances is minimized.
The estimated (measured) distances are denoted ri , exact distance is denoted di , i.e

(x − xi)
2 + (y − yi)

2 + (z − zi)
2 = d2i (3.14)

To minimize the sum of the squares of the errors on the estimated distances, one must
minimize the following function:

F (x ,y, z) =
n∑
i=1

(di − ri)
2 =

n∑
i=1

fi (x ,y, z)
2, (3.15)

where
fi (x ,y, z) = di − ri =

√
(x − xi)2 + (y − yi)2 + (z − zi)2 − ri (3.16)

The next step is differentiating (3.15) with respect to x yields

∂F (θ)

∂x
= 2

n∑
i=1

fi
∂ fi (θ)

∂x
= 2

n∑
i=1

fi
∂di (θ)

∂x
(3.17)

The equations for the partials with respect to y and z are similar. Let two vectors be
defined as:

f (θ) =

©«

f1(θ)

f2(θ)
...

fn(θ)

ª®®®®®®®¬
,▽F (θ) =

©«
∂F (θ)
∂x

∂F (θ)
∂y

∂F (θ)
∂z

ª®®®®¬
(3.18)

and define the Jacobian matrix J as:

J(θ) =

©«

∂d1(θ)
∂x

∂d1(θ)
∂y

∂d1(θ)
∂z

∂d2(θ)
∂x

∂d2(θ)
∂y

∂d2(θ)
∂z

...
...

...

∂dn (θ)
∂x

∂dn (θ)
∂y

∂dn (θ)
∂z

ª®®®®®®®¬
(3.19)

36 CHAPTER 3. POSITIONING SYSTEM

Based on (3.18) and (3.19) the following equation needs to be solved:

▽F (θ) = 2J(θ)T f (θ) = 0 (3.20)

where

J(θ)T f (θ) =
©«
∑n

i=1
(x−xi)fi (θ)

di (θ)∑n
i=1

(y−yi)fi (θ)
di (θ)∑n

i=1
(z−zi)fi (θ)

di (θ)

ª®®®®¬
(3.21)

There are several algorithms available for minimizing the sum of the square errors, such
as Newton iteration. The Newton Algorithm uses an initial guess for the vector, ®R,
containing the position to search for the true position. The Newton algorithm is given by

®R {k+1} = ®R {k } − (JT
{k } J{k } +A{k })

−1 JT
{k }

®f {k } (3.22)

As calculating the Hessian matrix A is computionally intensive, the Gauss-Newton
Algorithm can be used if A is small compared to JTJ. Solving positioning using trilat-
erating allows the use of Gauss-Newton, ignoring the Hessian matrix A, making the
Gauss-Newton algorithm equivalent to the Newton Algorithm giving

®R {k+1} = ®R {k } − (JT
{k } J{k })

−1 JT
{k }

®f {k } (3.23)

If the matrix-product JT
{k}J{k} can occur as singular or ill-conditioned, (3.23) can be

modified to
®R {k+1} = ®R {k } − (JT

{k } J{k } + λ {k }D {k })
−1 JT

{k }
®f {k } (3.24)

known as the Levenberg-Marquardt Algorithm. λ {k } is the Levenberg-Marquardt
parameter and D {k } is a diagonal matrix with positive elements along the diagonal.

Chapter 4
Design

This chapter will present the design of the system and all concepts that needs to be
realized to cover all key-aspects of the problem formulation. The design is basically an
software-extension to the ePark application, enabling location services through bluetooth
technology.

To clarify some important terms:

• Scanner: A smart device scanning for Bluetooth Low Energy Beacons, receiving
their unique ID. In this case, it is represented as a smartphone running the ePark
application.

• Advertiser: A Bluetooth Low Energy Beacon that is transmitting data based on
the configured framework, as mentioned in Section 2.2.

• Cloud Storage: As mentioned in Section 2.4, ePark runs an Ubuntu 16.04 Server
as cloud storage. Through a MySQL database, the application is user-dependant
instead of device-dependant, meaning that a user could bring the account forward
to e.g a new phone or similar.

37

38 CHAPTER 4. DESIGN

4.1 Introduction

As described in the problem formulation, one of the main objectives for this work is to
develop an application that provides location services inside a parking garage. Due to
poor coverage of daily-basis technologies like GPS, the location service will be achieved
through Bluetooth technology.

The initial development of ePark carried out during the fall of 2017 will be the foundation
for both the design and implementation of the location service. Below is a scenario which
substantiates the design of the system.

4.1.1 Functionality

1. ePark is downloaded and installed on the users smartphone and configured with
personal login.

2. The user enters a public parking garage, ePark should then provide:

• Location service with map-preview of the parking garage and current position
of the user

• Interactive status coloring of available parking spots

3. The user then chooses parking based on the information provided by the application,
reserves and pays for the parking, everything in one application

4. The application should also contain history of previous parkings, making it simple
for the user to keep track of parkings and costs.

4.1.2 Preliminary decisions on design

To create a framework for the design, the following decisions are made:

• Development platform: Android

• BLE Beacon Framework: Eddystone UID

• Beacon Provider: Radius Networks

• Cloud Storage Provider: Digital Ocean

These decisions are embracing the system design with important boundaries.

4.2. SYSTEM DESIGN 39

4.2 System Design

The system design is based on a smartphone (scanner) interacting with BLE Beacons
(advertisers). The interaction is handled within the Android application ePark, which also
performs all computation of position data. Interaction occurs in the following ways:

• BLE Beacons → Smartphone: Every beacon broadcasts its identifiers which is
received by the smartphone. Distance-calculations can be performed on the received
signal.

• Smartphone ↔ Cloud Storage: The smartphone can poll, manipulate and insert
data into the MySQL database functioning as Cloud Storage.

BLE Beacons can as described in Section 2.2 be configured with one or several frameworks
(iBeacon, Eddystone). As this work is intended as an extension to ePark, it will keep its
initial specifications, using Eddystone UID as the preferable chosen framework. This
design choice implies that the following data is received in a transmission between a
beacon and a smartphone:

• UUID: Set as a 16-bit hexadecimal value by the beacon provider (Radius Networks)

• namespace ID: Grouping beacons in larger groups, for instance the floor they are
installed

• instance ID: Distinguishing between beacons within a namespace group, giving
all beacons an unique ID combination

The combination of UUID, namespace ID and instance ID is referred to as the address of a
beacon. This address should be used by the smartphone to poll the physical installation
coordinates from the MySQL database. This design allows the smartphone to calculate its
position based on known locations of beacons along with distance-calculations to these
beacons. Based on the positioning concepts outlayed in Section 3.1, this design makes it
possible to implement positioning algorithms for both Cell Identification (Section 3.2.1)
and Trilateration (Section 3.2.3).

The figure below displays how the transmissions of data from beacons can be used to
determine the position of the smartphone (represented as the blue dot). Independentantly
of the chosen algorithm, the computed position can be put as an overlay over a layout
drawing of the parking garage. Trilateration and Cell Identification can also be used
combined. Then the Trilateration algorithm will determine the position of the smartphone,
and when parking, Cell Identification determines the correct parking spot (e.g cell P8).

40 CHAPTER 4. DESIGN

Figure 4.1: Functionality Design

A scenario for the use of the ePark application would consist of:

1. The user arrives at the entrance of the parking garage and runs the application:

• The application provides a location service with a GUI that displays current
position and available spots

• High refresh rate of the GUI provides a smooth location service

2. The user parks at an available spot and enters the ‘parked’ state by touching a
button:

• The application registers the parking in the Cloud Storage

• Based on business-model, payment can be performed at the time of check-out,
or as elapsed-time-based micro-transactions

4.3. HARDWARE DESIGN 41

4.3 Hardware Design

This section will cover the hardware requirements for realization of the system and the
choices made to accommodate these requirements.

4.3.1 Hardware Requirements

Section 4.2 roughly described the system as a whole. Choosing reliable, compatible
and correct hardware is fundamental for the realization of the system. The hardware
components necessary for realization are:

BLE Beacons

Bluetooth Low Energy Beacons are to be deployed at the designated area which a location
service is to be used. The following measures are important for achieving the bluetooth-
coverage needed:

• Transmission power: The specified Tx-value for the BLE Beacon determines the
possible range of the signal (Table 2.1)

• Advertising rate: Determines the system broadcasting latency

• Power-source: Plugged power-source increases the cost of the system drastically,
therefore battery-power is preferred in most cases. The battery-life of the chosen
BLE Beacon affects the maintainability of the system

• Encapsulation: The BLE Beacon has to be encapsulated to withstand the environ-
ments of deployment

• Deployment: The beacons should be deployed at a height of 2.5 - 4 meters to
reduce interference from moving cars and humans. Every inch of the area should
be covered by at least 4 beacons.

When choosing beacons, Eddystone UID support is required. Before installing the beacons
at their location, a calibration routine is necessary to achieve accurate results. This
calibration routine is performed by measuring the RSSI@1m, putting the measured dBm
into the Eddystone UID framework.

42 CHAPTER 4. DESIGN

Smartdevice

To run the ePark application and receive signals from the BLE Beacons, an Android
smartdevice such as a smartphone or tablet is required. The following requirements are
needed for realization of the system:

• Android OS - Minimum API lvl 21 (Android Lollipop)

• Support of Bluetooth Low Energy [3]

• Allowing low-level modification of the software that controls the Bluetooth service
hardware.

4.3.2 Hardware Choices based on design

Based on the requirements for the beacons and the smartdevice, both cost and availability
affects the design choices. To eliminate the possibility of poor performance due to chosen
hardware, each hardware component will run as duplicates - meaning that there will be
used at least twomodels for both beacons and smartdevice. By comparing the requirements
to recommended products, the following hardware components are chosen:

• Smartdevices:

1. Huawei Mediapad T3 10 LTE (tablet)

2. Huawei Honor 7 PLK-L01 (smartphone)

• Beacons:

1. Radius Networks RadBeacon Dot

2. Nordic Semiconductor nRF51822 Beacon

The components will be a part of the system through the entire development. The
performance of each hardware component will be evaluated to discover the need of
necessary changes in design to accomplish optimal results.

4.4. SOFTWARE DESIGN 43

4.4 Software Design

The software of the system has to work as an interpreter between the smartdevice and
the beacons, making use of the bluetooth signals. To make this feasible, the following
requirements are needed:

• Software support for Bluetooth Low Energy [3]

• Compatible libraries for using BLE [5], MySQL communication and for solving
nonlinear mathematical equations

Meeting these requirements, the software will be developed with great focus on modu-
larity, making it easy to re-use and extend the software and its functionality. Achieving
modularity starts of with deriving the software into layers representing the architectural
pattern of the ePark application; as it is, and with the necessary extensions to accomplish
functionality such as location services. The table below displays the layers and briefly
about their content:

Table 4.1: ePark’ layered architecture

User Layer
The User Layer mainly consists of a graphical user interface (GUI), providing the user with
useful information, and allowing user-interaction. This is the highest level of abstraction, telling
the other layers what to return to the user as some form of informative object.
Resource Managing Layer
This layer handles all the resources, mapping the resources to GUI objects. The layer uses
raw-data from the underlying layers and translates it into readable information.
Positioning Layer
The positioning layer receives beacon-data from the Bluetooth layer including relative distances
to each beacon and their ID. Based on running positioning algorithm, the positioning layer uses
the related coordinates for each beacon ID to calculate the position.
Bluetooth Layer
Handles all communication related to the Bluetooth Low Energy protocol and the Eddystone
framework. The layer scans for beacons nearby, stores them along with their distance-calculation,
forwards the data to the positioning layer, and deletes them before the next scan.
Networking Layer
This layer consists of the Android built-in PHP service handling all communication between
the application and the cloud storage. Using the Android Volley library, string requests and
JSON requests can be used to access data from the database through public html.

44 CHAPTER 4. DESIGN

4.4.1 Application design

The GUI itself should run on the UI-thread within the Android application, letting the
Bluetooth service, Network service and the Positioning algorithm run on separate threads
in the background where they are needed. The Android UI-thread activates function-
ality whenever events occur (button presses, swipes etc.), and achieves the maximum
performance when not interrupted by other tasks and services. Making this design choice
provides a good user experience, letting the resource manager of the system pass the
requested resources between the different tasks and services that are running.

The flowchart below is intended to illustrate the designed functionality and the required
services that have to be run in the background.

Figure 4.2: Application flowchart

4.4. SOFTWARE DESIGN 45

1. Start:

• Starting the application runs through the standard Android Lifecycle [2]
displayed in Figure 2.5. The start-up also checks for necessary permissions
specified in the Android Manifest. First-time users will be prompted to accept
the necessary permissions, while this is remembered by the device, running
the application without being prompted in the future.

• The application should require permissions for INTERNET, BLUETOOTH, LO-
CATION SERVICES1 and requires an active internet connection as well as
bluetooth activated.

2. Login:

• Users are registered in the MySQL database. Login requests determines
whether the user is allowed to access the application, along with the access-
level (authentication).

• Existing users are authenticated by username and password.

• New users has to register before login, and by registering their personal
information it is possible to assign owners to the cloud resources (ownership).

• Login provides personalization to the application, making it possible to ac-
cess the same data from several devices (user-dependant instead of device-
dependant).

3. Synchronize User Data:

• A successfull login will send a request to the MySQL server, retrieving user-
data and personal settings. This synchronization makes it possible to poll
desirable parameters before entering the main activity and is easy to extend
in future development.

• The synchronization request should be able to poll strings, JSON objects and
JSON arrays.

4. Main Activity:

• The Main Activity is going to function as a home-screen of the application,
providing the user with options for the various features.

• Main features: Map Activity, Park Activity, History Activity.
1Android API level 21 and higher requires permission for Location Services to use Bluetooth

46 CHAPTER 4. DESIGN

5. Map:

• The Map Activity should display a scaled and user-friendly layout preview of
the parking garage.

• As an overlay of the preview, current position of the smartdevice should be
displayed.

• The interface should be refreshed at the highest rate possible to provide the
best service possible. The refresh rate will be dependant on the intervals be-
tween each bluetooth scan along with the computation time of the positioning
algorithm.

• The Map Activity will be using Network Service, Bluetooth Service and the
Positioning Algorithm.

6. Park:

• The Park Activity should reserve a parking spot in the MySQL database and
create a ticket with user data (ownership), parking identifiers and timestamps
for both check-in and check-out.

• Based on the created ticket, a Parking Timer will provide the user with the
necessary information such as elapsed time, cost and location of parking.

• The Parking Timer should be easy to customize for different payment models.

• The Park Activity will be using Network Service, Bluetooth Service and the
Positioning Algorithm.

7. History:

• The History Activity should provide the user with information regarding
previous completed parkings such as time and date, cost, duration and location,
represented as a list.

• The data presented in the list should be requested from the MySQL database
as a JSON array.

• The History Activity will be using Network Service.

4.4. SOFTWARE DESIGN 47

4.4.2 Services

Based on the theory presented in Section 2.3.3, the Android Services [4] will be running
as background tasks apart from the UI-thread. There are three main services presented in
this design; Network Service, Bluetooth Service and the Positioning Algorithm.

Network Service:
The network service is placed in the Networking Layer as shown in Table 4.1, and handles
all communication between the application and the MySQL database. To minimize data-
usage, the network service is designed to be request-based, meaning that it will only
interact with the database at certain events.

Events that triggers database request should both be programmable as they should be
triggered by user interaction (buttons, swipes etc.). Based on the type of request, the
network service is designed to retrive strings, JSON objects and JSON arrays from the
database, using the Google Volley library [7].

Bluetooth Service:
Having the application interact with BLE Beacons, a Bluetooth Service is required. This
service is intended to run in the background apart from the UI-thread, where interaction
with BLE Beacons is desired. As described in Section 2.3.5, the Android Beacon Library
provide the necessary support for a Bluetooth Service in Android. The service should,
when active, read all present BLE signals, filter by framework (e.g Eddystone) and range
the beacons - calculating the relative distance to each beacon.

Positioning Algorithm:
The system, as specified in the System Design in Section 4.2, is able to run a implemen-
tation of both Cell Identification and Trilateration to solve the positioning. To do this,
a Positioning Algorithm will run as a task in the background apart from the UI-thread,
solving the conceptual dependant equations. The algorithm is feeded with:

• Beacon IDs and distances (in metres)

• Beacon IDs and coordinates, either from local storage or polled from the MySQL
database

Based on the running positioning concept, the algorithm should use the coordinates and
distances to calculate and estimate the location of the smartdevice, pass the calculated
coordinates of the smartdevice to the resource manager, updating the relevant GUI objects.

48 CHAPTER 4. DESIGN

4.4.3 Database Design

The database will be configured as a MySQL database, running on the Ubuntu server
provided by Digital Ocean [17]. As described in Section 2.4, the MySQL database is
configured with phpMyAdmin and holds data in tables, accessible from the application
through Volley-requests. To obtain a scalable system capable of handling the functionality
specified in the problem formulation, Figure 4.3 shows the necessary tables and their
content, designed as a relational database.

Figure 4.3: Database design

• USERS: The users table are required for the login and registration of the application.
It also provides user-dependancy for data synchronization to the application, along
with personalization and assignment of ownership to cloud resources. The user_id
will automatically be generated by the system as a unique number for each user.

• TICKETS: The tickets table is a relational table, using the user_id from users
and the parking_id from parkingspots. A parking request should send a MySQL
query, creating a new row in the tickets table. The new row should be initialized
with timeFrom containing the timestamp of the entry, and completed as NULL until
the ticket is completed and paid for. Completing a parking should send a MySQL
query that updates the row with completed as 1 and with timeTo containting
the timestamp of completion. This design allows the tickets table to actively be
used during parking, and as it contains all parkings, it can be used to provide the
parking-history feature, filtered by user ID.

• PARKINGSPOTS: The parkingspots table is intended to function as a higher level
of abstracion of the beacon parameters, applying the beacon identifiers with infor-

4.4. SOFTWARE DESIGN 49

mation regarding the garage they are installed in, a unique parking_id in addition
to the available parameter, whether the parkingspot is taken or available.

• BEACONS: The beacons table is intended to contain all the necessary information
regarding a beacon. Each beacon should be configured uniqely and will also obtain
a unique beacon_id. This table also contains the physical installation coordinates
of the beacon, which can be polled by the application or be stored locally inside the
application.

50 CHAPTER 4. DESIGN

Chapter 5
Implementation

This chapter will cover the implementation of both hardware and software based on the
specified theory and design, along with the necessary changes made along the way to
solve all subtasks in the problem formulation.

5.1 Hardware Implementation

On of the most important factors developing a reliable, accurate and precise system for
positioning is about choosing the correct hardware. The hardware chosen were listed in
Chapter 4 as a part of the planned design. The following subsections will describe the
implementation of:

• BLE Beacons

• Smartdevices

• Hardware deployment

51

52 CHAPTER 5. IMPLEMENTATION

5.1.1 RadBeacon Bluetooth Beacons

The chosen BLE Beacons specified in the design are provided by Radius Networks and
Nordic Semiconductor. The nRF51822 [18] and the RadBeacon Dot [19] benefits from
many other BLE Beacons by being battery-powered in addition to being configurable or
programmable to support the desirable Beacon protocols. Table 5.1 compares the features
of both the nRF51822 and the RadBeacon Dot, along with the RadBeacon USB [20] - a
USB powered beacon provided by Radius Networks.

Table 5.1: Comparison of different BLE Beacons

Feature RadBeacon Dot RadBeacon USB nRF51822 Beacon
Beacon Provider Radius Networks Radius Networks Nordic Semiconductor
Power-source Battery (CR2032) USB-powered Battery (CR1632)
Transmit Power -20dBm to +4dBm -20dBm to +0dBm -20dBm to +4dBm
Advertising Rate 1Hz to 10Hz 1Hz to 10Hz 1Hz to 10Hz
Bluetooth Support Bluetooth v4.0 (BLE) Bluetooth v4.0 (BLE) Bluetooth v4.0 (BLE)

Beacon Protocol
Support

Eddystone UID
Eddystone URL

iBeacon
AltBeacon

Eddystone UID
Eddystone URL

iBeacon
AltBeacon

Fully programmable

Using theRadBeacon Configuration App for the RadBeacon Dot beacons, and by using
the Android-nRF-Beacon-for-Eddystone App for the nRF51822 beacons, all beacons
in the system were configured with the following parameters:

• Beacon Protocol: Eddystone UID

• Transmit Power: +4dBm, achieving maximum distance-range

• Advertising rate: 3 Hz

• Namespace ID: 8AB99F056B0874A7AF25 (generated)

• Instance ID: 1 to n (n is the number of beacons in the system)

To achieve accuracy in the distance-calculations, all beacons require calibration. This is
also performed inside the configuration applications, completing a calibration-routine
that measures the Received Signal Strength Indication (RSSI) at a distance of 1 meter. The
calibrated RSSI@1m is put in an own data field and transmitted along with the Bluetooth
data package (31 bytes). Due to interference from other communication protocols operat-

5.1. HARDWARE IMPLEMENTATION 53

ing at the same frequency as Bluetooth Low Energy (2.4GHz ISM-band), all beacons were
calibrated with approximately identical environmental conditions.

5.1.2 Smartdevices

Based on the requirements for the smartdevice presented in Chapter 4, aHuawei Honor
7 [21] smartphone meets all the requirements and was used throughout the development.
The Honor 7 features Bluetooth Low Energy [3] along with running Android version 5.0.2
(API level 21), which made the smartphone a reasonable choice during development.

During development, the ePark application is loaded and installed on the Honor 7 by using
Android Studio and the supplied USB cable. Due to interaction with BLE Beacons, the
functionality actually had to be tested by running the full application, making unit-testing1

difficult.

5.1.3 Hardware Deployment

To make sure that signal-blocking and interference is kept at minimum, the deployment
of the BLE Beacons is important. Normal conditions of use would include having moving
cars and humans, making it optimal to install the BLE Beacons at a height of 3-4 meters,
eliminating some signal-blocking from cars and humans.

When deploying beacons, the first step is to accurately measure the area that they are being
installed in. These measurements will function both as a reference for the coordinates of
each beacon, and when drawing the scaled layout preview for the Android application.

1Unit Testing is a way of testing code snippets and functions by using pre-defined tests, testing the function-
ality isolated from the rest of the system.

54 CHAPTER 5. IMPLEMENTATION

5.2 Software Implementation

This section will describe the core of the system, the software implementation. ePark is
designed and developed to meet all requirements specified in the problem formulation.
The software implementation will be divided into the following modules:

• ePark GUI

• Activities

• Bluetooth Service

• Network Service

• Positioning Algorithm

The implementation of the different modules is described in the following sections.

5.2.1 ePark GUI

The graphical user interface (GUI) of ePark is written as XML-files in the Android Studio
IDE. Developing the graphical user interface can be done directly in each XML-file, but also
by using the built-in object oriented graphical tool in Android Studio, which automatically
generates the XML-code. Through the standard Android libraries, ePark is filled with push-
buttons, views, progress bars and many other customizable objects providing user-friendly
interactive graphics.

Figure 5.1: Android Studio Graphics Development with XML

5.2. SOFTWARE IMPLEMENTATION 55

Figure 5.1 displays the Android Studio IDE when developing graphics in XML. The left-
side displays the editable XML code, while the right-side contains the graphics tool -
letting the developer drag and drop objects, having the XML code automatically generated.
Assigning a string-ID to each object makes all the objects accessible from the back-end of
the application which is referred to in Section 2.3.2 as Activities.

The functionality in ePark, represented by the Activities, is written in Java - the standard
programming language of Android Studio. The Java classes uses the ID of each XML
object to achieve what is known as the front-end functionality of the application.

5.2.2 Activities

The back-end of ePark mainly consists of Activities and Services, which firstly were
presented in Section 2.3. These are developed through the Java programming language as
Java classes, and their behaviour is what separates them. A service normally runs in the
background apart from the UI-thread, while one activity run at a time on the UI-thread
connecting the back-end to the front-end.

Figure 5.2: Java development in Android Studio

Figure 5.2 shows the Java development in Android Studio. Based on ePark’ design, the
Activies are implemented as Java classes for the purpose of:

• Looping through the Android Activity Lifecycle vizualised in Figure 2.5, Section 2.3.2

• Connecting a XML view, displaying information to the user, where specified in the
@Override

56 CHAPTER 5. IMPLEMENTATION

• Running background tasks such as Services

• Handling user-interaction, updating the GUI

By writing a @Override on of the methods in the Activity Lifecycle, event-handling and
functionality can be bound to certain points in the lifecycle. By overriding the OnCreate-
method, it is possible to program the first actions of each Activity.

Code Implementation example:

@Override

protected void OnCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.activity_main);

...

}

@Override

protected void onPause () {

beaconManager.unbind(this);

}

@Override

protected void onResume () {

beaconManager = BeaconManager

.getInstanceForApplication(this.getApplicationContext ());

beaconManager.getBeaconParsers ().add(new

BeaconParser ().setBeaconLayout(EDDYSTONE_UID_LAYOUT));

beaconManager.bind(this);

...

}

In the example above, the OnCreate, the OnPause and the OnResume methods are overrid-
den. In the OnCreate-method, the selected view that is displayed to user is set through the
setContentView(R.layout...) function. The Bluetooth Service in ePark is controlled
by a beacon manager, described in Section 2.3.5. The beacon manager binds the Bluetooth
Service to an activity and starts ranging for BLE Beacons. Placing this in the OnResume
and OnPause methods prevents the Bluetooth Service of running when it is not needed.

5.2. SOFTWARE IMPLEMENTATION 57

Implementation of the activities is done according to the specified design in Section 4.4,
with Main Activity, Map Activity, Park Activity and History Activity.

Main Activity:
TheMainActivity is runned after a successful passing of the login and user-synchronization.
It is developed as a home-screen of the application, featuring options for running other
activities, logout and settings. Synchronization of user-data makes it possible for the Main
Activity to pass data used for ownership to other activities.

Figure 5.3: Main Activity in ePark

58 CHAPTER 5. IMPLEMENTATION

Map Activity:
The Map Activity is implemented containing a scaled layout preview (map) of the parking
garage, a moving dot representing the current position and a button which will perform a
parking request, reserving the actual parking spot in the parkingsspots MySQL table. As
previously illustraded in Figure 4.1, the Map Activity uses:

• Bluetooth Service - For interacting with BLE Beacons, calculating the relative
distance to each beacon

• Network Service - Request beacon coordinates from the cloud storage if not stored
locally

• Positioning Algorithm - For calculating and updating the current position on the
layout preview

Figure 5.4: Map Activity of testarea

5.2. SOFTWARE IMPLEMENTATION 59

Park Activity:
The Park Activity is run as a result of a park request from the user. By using the positioning
algorithm, it determines which parking spot to be put along in the request, changing the
available status in the MySQL table from 1 to 0. The Park Activity also features a parking
clock interface, displaying elapsed time, timestamp and cost. The implementation is done
according to the specified design, having the activity use the same services as the Map
Activity.

Figure 5.5: Park Activity in ePark

60 CHAPTER 5. IMPLEMENTATION

History Activity:
The History Activity is implemented as a list, displaying all previous parkings to the
user. Each listobject contains timestamps, elapsed time and cost. The functionality is
implemented by using the Network Service’ JSON Array Requst - A request that polls a
JSON Array from the MySQL table tickets, containing JSON Objects that each represents
a row. The JSON Array filled with JSON Objects is filtered by the user_id that was
synchronized preliminary to the Main Activity.

Figure 5.6: History Activity in ePark

5.2. SOFTWARE IMPLEMENTATION 61

5.2.3 Bluetooth Service

One of the main features for solving all subtasks in this project is having a background
service that interacts with BLE Beacons. The Bluetooth Service is implemented through
the Android Beacon Library described in Section 2.3.5.

The library is included in the gradle build file:

compile 'org.altbeacon:android -beacon -library :2.3.+ '

Making the classes and interfaces of the library available for the application. As described
in Section 2.3.5, the Beacon Manager manages all methods for both monitoring and
ranging beacons, thus it is the only privatemember variable of the Java class that represents
an Activity that needs to be initialized to achieve the desired functionality.

private BeaconManager beaconManager;

Having a Beacon Manager placed in an activity allowsmodification of the classes, methods
and interfaces located in the Android Beacon Library by performing an @Override on one
of the methods. Together with the Beacon Manager, the Bluetooth Service is implemented
through the BeaconConsumer and the RangeNotifier interface.

public class [CLASS NAME] implements

BeaconConsumer , RangeNotifier {...}

Through this implementation, the Bluetooth Service can be bound to an activity by using
the methods displayed in the table below.

By overriding these methods, filters for Eddystone UID can be set through either defining a
beacon-layout or by defining a Region. onBeaconServiceConnect() defines the RangeNo-
tifier interface for the beacon manager, before the didRangeBeaconsInRegion()-method
calculates the distances to the discovered BLE Beacons.

Since the didRangeBeaconsInRegion(...)-method gets called periodically with a pe-
riod of 1s, this allows the rest of the system to handle the calculated distances as valid
measurements for 1 second. All computations based on these measurements have to finish
within 1 second.

62 CHAPTER 5. IMPLEMENTATION

Table 5.2: Bluetooth Service Methods

BeaconConsumer
Type Method Description

void onBeaconServiceConnect()

Called when the beacon service is
running and ready to accept the
programmed commands through
the BeaconManager.

boolean bindService(...)

Called by the BeaconManager to
get the context of the Activity, and
bind the bluetooth.

void unBindService(...)

Called by the BeaconManager to
unbind the bluetooth service from
the activity.

RangeNotifier
Type Method Description

void didRangeBeaconsInRegion(...)

Called once per second to calculate
the distance to each beacon in the
collection.

Methods with (...) indicates that arguments are required, found in the Android Beacon Library [5]

Data Manipulation of received Bluetooth packages:

• The received identifiers from the Eddystone UID Bluetooth package was of the data
type byte-array (Identifier)

• The instanceID of each beacon was received on the form 0xFFFFFFFFFFF, making it
necessary to convert them into integers

5.2. SOFTWARE IMPLEMENTATION 63

Having the instanceID of each beacon as integers, using the same data-type in application
as in the database, made the comparison of beacons inside the application simpler. The
Android Beacon Library does feature a stringToInt()-method, not being supported by
Eddystone UID, a convertion from byte-array to integer had to be implemented as shown
below:

public int identifierToInt(Identifier id) {

int sum = 0;

String str = id.toString ();

int index = 13;

int p = 0;

while (index > 1 && str.charAt(index) != '0'){

int pow = (int) Math.pow (16.0 ,(double) p);

if (str.charAt(index) > '0' &&

str.charAt(index) <= '9'){

sum += (((int)str.charAt(index)) -48)*pow;

}else{

sum += (((int)str.charAt(index)) -87)*pow;

}

index --;

p++;

}

return sum;

}

}

64 CHAPTER 5. IMPLEMENTATION

Scheduling - Bluetooth Service:
The implementation of the Bluetooth Service intend to always provide other software
modules with valid data instead of deprecated data. To guarantee this, the following
criterias are implemented in the service:

• Deleting previous measurements always occurs first - Clearing the map of beacon
IDs and distance-measurements

• Beacon identifiers and distance-measurements are put into themap in pairs - Making
sure that the ID corresponds with the distance

Since the didRangeBeaconsInRegion-method is called with a period of 1 second, schedul-
ing the Bluetooth Service is implemented as shown in Figure 5.7

• Event 1: Deletes the previous data and starts scanning for Bluetooth Beacons

• Event 2: One by one, ranges the discovered beacons, converts their ID from byte
array (Identifier) to integer with the identifierToInt(...)-method and stores it
in a map

• Available: The time left of a range cycle, equivalent with the time the data is valid

Figure 5.7: Scheduling the Bluetooth Service

This implementation makes valid data available for other software modules as frequently
as possible, since the Android Beacon Library does not offer any further adjustment of the
1 second period of the didRangeBeaconsInRegion()-method. Other software modules
using the Bluetooth Service, copies the map containing the beacon IDs and distance-
measurements, making them independent of the range cycle when it comes to execution
time.

5.2. SOFTWARE IMPLEMENTATION 65

5.2.4 Network Service

The Network Service is implemented according to the specified design, as a request-based
service. The communication between the application and the MySQL database is triggered
by events, running the desired php-request that is implemented in Android through the
Google Volley library [7]. The php-request is written in Java, accessing an URL that is
specified within the request.

Figure 5.8: Network Service Communication Flow

A php-request could contain parameters - data to be inserted into the MySQL database.
The URL that is specified within the request, contains a PHP script that runs a MySQL
query, accessing the database, gaining the functionality specified in the design.

PHP scripts are stored in the server through public HTML. This implementation makes
it possible to execute PHP-scripts through the URL along with the name of the file that
contains the script. An example of this is the Login.php that handles the system login:

• Accessible through https://SERVER_IP_ADDRESS/Login.php

• The Google Volley Library passes the username and password

• Username and password are compared to the entry in the users table and returns a
JSON Object

• Successful login is made if the JSON Object variable success contains the string
“success”

66 CHAPTER 5. IMPLEMENTATION

Placing the files in public html could vary from server to server. This implementation
runs a Ubuntu 16.04 server where public html is done by placing the 6 php files in the
path: /var/www/html. Each file is used by a request in Android. The different request are
described in Table 5.3 on the next page.

Each request returns either a JSON Object or a JSON Array. These responses are received
in the Android application through a ResponseListener. The ResponseListener listens
for responses from the specified URLs, and decodes the received JSON Objects.

5.2. SOFTWARE IMPLEMENTATION 67

Table 5.3: Network Service Requests

LoginRequest
Parameters Description Return Type

username, password
Parameters are passed to Login.php. A MySQL query
compares the parameters with data in the users table.

JSON Object

RegisterRequest
Parameters Description Return Type

Last name, first name,
email, password

Parameters are passed to Register.php. A MySQL
query inserts the parameters into the users table.

JSON Object

TicketRequest
Parameters Description Return Type

user_id, parking_id

Parameters are passed to RequestParking.php.
A MySQL query inserts the parameters into
the tickets table, initialized with completed = 0
and timeFrom = CURRENT_TIMESTAMP

JSON Object

CompleteRequest
Parameters Description Return Type

user_id

Parameters are passed to ValidateParking.php. A MySQL
query updates the entry for the current user_id where
completed = 0 and alters timeTo in the tickets table
with CURRENT_TIMESTAMP

JSON Object

TimingRequest
Parameters Description Return Type

user_id
Parameters are passed to getTime.php. A MySQL query
returns a JSON Object containg the timstamps for the
current user_id where completed = 0 in the tickets table.

JSON Object

HistoryRequest
Parameters Description Return Type

user_id

Parameters are passed to getHistory.php. A MySQL
query returns a JSON Array containing JSON Objects
for all complete entries for the current user_id
in the tickets table.

JSON Array

68 CHAPTER 5. IMPLEMENTATION

5.2.5 Positioning Algorithm

The Positioning Algorithm is implemented as two Java classes, one for each implemented
positioning concept, Cell Identification and Multilateration, a trilateration algorithm that
can use measurements from more than 3 beacons at a time. As described in the design,
the positioning algorithm, regardlessly of positioning concept, uses the beacon ID, known
coordinates of each beacon and distance measurements to determine the position of the
smartdevice.

Cell Identification

As illustrated in Figure 5.9 below, Cell Identification is implemented for determining the
cell in the grid where the smartphone is located. Each cell has a related beacon, meaning
that if the smartdevice calculates a beacon to be the closest one, it inherits the coordinates
of that beacon. Through the Bluetooth Service, the didRangeBeaconsInRegion-method
is called once every second, providing a maximum refresh rate of 1Hz. The accuracy of
this implementation would be directly related to the size of the cells - greater cells equals
greater accuracy.

Figure 5.9: Cell Identification 3D illustration

5.2. SOFTWARE IMPLEMENTATION 69

Multilateration

As illustrated in Figure 5.10, the trilateration implementation, called Multilateration,
require far less beacons than Cell Identification to cover an area. This implementation
also provides a maximum refresh rate of 1Hz due to the constraints on the Bluetooth
Service. The output of the algorithm is x-y-z coordinates, preventing the jump from cell
to cell, obtaining higher positioning resolution inside the application.

Figure 5.10: Trilateration 3D illustration

To accomodate the uncertainties of distance measurements that follows with bluetooth
positioning, described in Section 3.3, the Multilateration algorithm is implemented based
on nonlienar regression, fitting the distance measurements from the beacons through
successive approximation. As described in Section 3.3.2, the Multilateration algorithm is
implemented through a Non-linear Least Square Solver using the Levenberg-Marquardt
algorithm to calculate the sum of the square errors.

The implementation was performed through the Apache Commons Math library [22],
which supports solving Non-linear Least Square problems in Android using the Levenberg-
Marquardt algorithm. In Java, it is implemented as three classes; TrilaterationFunction,
NonLinearLeastSquaresSolver and Multilateration.

70 CHAPTER 5. IMPLEMENTATION

The JacobianMatrix for a given point is calculated and initialized in the TrilaterationFunction
Java class, before it is passed to the NonLinearLeastSquaresSolver. This is based on
the equations presented in Section 3.3.2. Through non-linear regression, solvers in the
NonLinearLeastSquaresSolver Java class are implemented to solve the Trilateration
problem. A Java class named Multilateration is added to create a higher level of ab-
straction for solving the trilateration problem with methods for determining the validity
of the measurements.

Positioning in the Map Activity

The Map Activity of ePark continously scans for nearby beacons, and stores their IDs
together with the measured distance. Initializing instances of both Cell Identification

and Multilateration, the beacon ID along with the coordinates and distance measure-
ment are passed in as argument to get the returned value representing the current location
of the target.

A marker on the layout preview updates continously along with the new coordinates
received from the positioning algorithm, inheriting the coordinates according to the layout
preview, as shown in Figure 5.11 below.

Figure 5.11: Map Activity Graphical User Interface

Chapter 6
Results

This chapter describes the results based on the subtasks and the implementation. At first,
some different tests will be presented to substantiate the results of each subtask. The
subtasks are denoted and referred to as ST.

6.1 System Testing

This section will present some tests carried out for evaluating the Bluetooth Low Energy
standard as technology for use in navigation systems. The results of the system testing will
provide useful information for both determining the accuracy in Received Signal Strength
Indication (RSSI) measurements, and how these measurements affect the trilateration
calculations in the positioning algorithm.

71

72 CHAPTER 6. RESULTS

6.1.1 Single Beacon Range Test

The Single Beacon Range Test is intended to evaluate the accuracy of the RSSI signal
received by the smartphone, transmitted by a Bluetooth Low Energy Beacon using the
Eddystone UID framework. The test is based on placing a beacon in a low-interference
environment at different distances, logging the measured RSSI.

Table 6.1: Single Beacon Range Test

Distance [m] 1 2 3 4 5 6 7 8 9 10
Expected RSSI [dBm] -59 -65 -69 -71 -73 -75 -76 -77 -78 -79
Average RSSI [dBm] -59 -73 -64 -73 -71 -70 -80 -76 -75 -79

Table 6.1 displays both the measured average and the theoretical expected Received Signal
Strength Indication (RSSI). Including the errors, Figure 6.1 displays the average with error
versus the expected theoretical values.

Figure 6.1: Single Beacon Range Test with error

Due to the navigation system intends to provide interactive tracking of current position,
unpredictable measurements with a remarkable amount of error would create a poor basis
for positioning algorithms.

6.1. SYSTEM TESTING 73

6.1.2 Trilateration Test

This test is based on the input/output relationship of the positioning algorithm when
Trilateration is the running positioning concept. Four beacons [B1, B2 ... B4] are in-
stalled respectively at coordinates {[0,0],[10,0],[0,10],[10,10]} forming a square as shown
in Figure 6.2. The beacons are installed at a height of 1.5 meters, which allows the test to
run in two dimensions (2D) when holding the smartphone at the same height. Table 6.2
displays the output of the algorithm both when the input is fixed and by using real-time
measurements from the BLE Beacons.

Table 6.2: Trilateration Test

Fixed Input Measured Input
Smartdevice
Coordinates

[x,y]
Fixed distances Output Measured distances Output

[0, 0] [0, 10, 10, 14.1] [0, 0] [1.4, 8.3, 5.4, 15.9] [0.2, 2.3]
[5, 0] [5, 5, 11.2, 11.2] [5, 0] [1.8, 5.6, 13.1, 16] [2.6, -1.7]
[10, 0] [10, 0, 14.1, 10] [10, 0] [8.9, 2.4, 13.3, 9.5] [8.7, 0.5]
[10, 5] [11.2, 5, 11.2, 5] [10, 5] [17.3, 8.9, 7.3, 12.1] [8.3, 10.5]
[10, 10] [14.1, 10, 10, 0] [10, 10] [9.5, 4.1, 9.8, 4.3] [8.7, 4.9]
[5, 10] [11.2, 11.2, 5, 5] [5, 10] [21.3, 14.9, 3.2, 6.7] [3.2, 13.8]
[5, 5] [7.1, 7.1, 7.1, 7.1] [5, 5] [3.2, 4.9, 11.4, 10.2] [4.3, 0.4]
[0, 5] [5, 11.2, 5, 11.2] [0, 5] [6.7, 10.8, 4.6, 14.5] [-1.2, 5.1]
[0, 10] [10, 14.1, 0, 10] [0, 10] [5.6, 19.4, 3.1, 9.1] [-0.8, 7.2]

Table 6.2 shows that with a perfect theoretical approach, with fixed distances, the ouput
from the algorithm corresponds 100% to the coordinates of the smartdevice. Measuring
the RSSI signals and putting them into the algorithm, the calculated position is off by
nearly 6 meters in several cases. Figure 6.2 displays the smartdevice’s real position by
the blue dots, and the calculated position by the orange dots. The number represents the
relative deviance in meters, ranging from 1.2 to 5.76 meters.

74 CHAPTER 6. RESULTS

Figure 6.2: Trilateration Test showing real position versus calculated position

Both Table 6.2 and Figure 6.2 indicates that imprecise RSSI measurements directly affects
the output of the positioning algorithm.

6.2. SUBTASK RESULTS 75

6.2 Subtask Results

The subtasks were formulated as:

1. Performing a litterature-study regarding Bluetooth Beacon Protocols and relatable
algorithms for positioning.

2. Design a navigation system that uses positioning principals like Cell Identification
and Trilateration through Received Signal Strength Indicator (RSSI) from BLE
Beacons.

3. Implement the navigation system as an extension to the mobile application, ePark,
developed during the related specialization project. Perform extensive testing to
evaluate navigation using signals from BLE Beacons.

6.2.1 ST1: Theory

The litterature-study along with the forwarded theory from the preliminary development
on the ePark application provided useful information regarding the Bluetooth Low Energy
(BLE) standard, BLE Beacons and algorithms/concepts that can be used to determine the
location of a smartdevice based on the strength of the received bluetooth signals (RSSI).

Chapter 2 provided the necessary theory and results that were obtained during the project
thesis, where the ePark application first was developed. In this Chapter, the system is
described as a whole, before Section 2.2 and Section 2.3 directly sums up the theory and
experience acquired during the project thesis.

As of February 2018, ePark’s cloud storage was moved from Microsoft Azure to Digital
Ocean due to a resignation of the former membership Aventi had with Microsoft. How
the cloud storage provided by Digital Ocean could be connected to ePark and what kind of
server requests that were possible was described in Section 2.4, implemented as designed,
providing a stable and reliable cloud solution for the application.

Chapter 3 enlightened some of the most used and widespread technologies for positioning,
different positioning concepts and outlined the mathematics between each concept where
necessary. Section 3.3 described why Cell Identification and Trilateration were the only
two positioning concepts feasible to implement using Bluetooth Low Energy Beacons due
to technological limitations, not having antennas in smartdevices capable of measuring
angles.

76 CHAPTER 6. RESULTS

As intended, Chapter 2 and Chapter 3 provide the information and theory required to
re-create the positioning system developed during this project.

6.2.2 ST2: Navigation System

Based on the theory in Chapter 3, the following positioning concepts were deduced and
illustrated:

• Cell Identity

• Triangulation

• Trilateration

• Angle of Arrival

• Time of Arrival/Time Difference of Arrival

Due to the data between the Bluetooth Low Energy Beacons and the smartdevice only
flowing in one direction, the Received Signal Strength Indicator (RSSI) was the only
measurement that could be brought into a positioning concept, only allowing the use of
Cell Identity and Trilateration as positioning concept for the system specified in Chapter 4.

Based on the design presented in Section 4.2, the implementation of both Cell Identity and
Trilateration described in Section 5.2 and the tests developed and completed as described
in Section 6.1, a local navigation system was developed, divided into several Java classes.
The navigation system is able to run both Cell Identity and Trilateration as positioning
concept based on the build configuration, although the accuracy and precision of both
concepts is below a satisfying level.

6.2.3 ST3: Android Development and Integration

Based on the work carried out during the fall of 2017, ePark was further developed, from
providing a parking service choosing the nearest beacon, to an application featuring
navigation functionality inside a parking garage.

All of the functionality specified in the application design was completed. Interacting with
Bluetooth Low Energy Beacons, the Android application uses the implemented positioning
algorithm to determine the position of the smartdevice by measuring the relative distance
to each beacon. Using the PHP-based cloud storage, the application is able to poll data
from the MySQL database such as beacon coordinates, user information during login, and

6.2. SUBTASK RESULTS 77

JSON Arrays to display the parking history to the user. The implemented cloud solution
also allows the application to insert data into the MySQL database, creating entries for
new users, new parking requests and so on.

78 CHAPTER 6. RESULTS

Chapter 7
Discussion

In the previous chapters, a Navigation System using Bluetooth Low Energy beacons has
been designed and implemented into the Android mobile application, ePark. Based on
tests, results and experience, this chapter will discuss the system as a whole, limitations
regarding performance and use the results as arguments to answer the research questions
specified in the problem definition.

7.1 Accuracy of distance measurements

Developing a Navigation System that uses the Bluetooth Low Energy technology together
with the Eddystone UID framework, the output containing the target coordinates is
shown to be highly dependent on the input, being the distance measurements of each BLE
Beacon. The distance measurements that are based on Received Signal Strength Indicator
(RSSI), have through testing proven themselves to be inaccurate and extremely sensitive
to interference from other wireless technologies operating at the same frequency, and
interference due to blocking objects and signal reflecting materials.

Based on the Single Beacon Range Test in Section 6.1.1, using the RSSI equation (2.2),
the accuracy of a distance measurement deviates with several meters from the real distance.
Being unpredictable, it is difficult to determine whether a measured distance is valid or
not. It is possible to define maximum and minimum values for each distance measurement,
creating boundaries for the area where the navigation system is to be used, but having

79

80 CHAPTER 7. DISCUSSION

this high deviance between the real distance (Expected RSSI) and measured distance
(Average RSSI), it is expected that neither of the presented positioning concepts presented
in Chapter 3 would be able to produce accurate results.

As mentioned in the preliminary specialization project carried out during the fall semester
of 2017, the RSSI equation (2.2) does not take into account that smartphones have different
casing, and measures different RSSI at the same distance due to signal loss through the
material between the antenna and the environment. To increase the accuracy for RSSI
measurements, the RSSI equation (2.2) could be altered to use calculated constants for each
specific smartphone, which is found through measurements and non-linear regression and
stored inside the Android Beacon Library [5]. Currently, there are no more than a couple
of devices supported, and the Huawei Honor 7 used in development is not supported. A
supported smartphone would potentially use the specific RSSI equation with constants
that are received from the library by checking the unique build number of the smartphone.
If supported, the accuracy of a distance measurement might be increased a little, but due
to Bluetooth Low Energy being highly sensitive to interference, determining the position
of a target device through a positioning algorithm would not be remarkable of higher
precision.

7.2 Navigation System Accuracy

As presented in Table 6.2, Trilateration produces accurate output when using a fixed
input. This indicates that the distance measurements performed for each beacon, directly
affects the output coordinates of the Navigation System. Due to inaccuracy of BLE RSSI
calculations, imprecise results are produced through the positioning algorithm.

Deploying different wireless technologies to achieve higher accuracy in each distance
measurement, would lead to a more precise Navigation System. The drawback with other
wireless technologies is that the lightweight of the system when using Bluetooth might be
lost. BLE Beacons are cheap, small in physical size, completely wireless through battery-
power and easy to deploy. This makes BLE Beacons applicable where the Navigation
System intend to be temporary, and the accuracy demands are reasonable.

Using Bluetooth Low Energy for positioning could still be done more accurate by using
other positioning principals. The BLE Beacons are bound by the beacon protocols such as
Eddystone or iBeacon. This implies that the data only flows in one direction, from
the beacon to a smartdevice that only has one opportunity with the antennas used

7.3. RESEARCH QUESTIONS 81

today, calculating RSSI. Ignoring beacons, using Bluetooth Low Energy featured SoCs
(System on a chip) where angle measurements are supported or through accurate time
synchronization, the data flow could be reverted, flowing from the smartdevice to a SoC.
Then positioning principals such as Angle of Arrival (AoA) and Time of Arrival/Time
Difference of Arrival (ToA/TDoA) could be used. These principals would make the
Navigation System independant of the design properties of the smartdevice, i.e the signal
broadcasted from the smartphone and achieved by SoCs have the same base brought into
calculations, and in theory, the casing of each smartphone would not affect the end result.

7.3 Research Questions

As described in the problem formulation, the subtasks would help answering the following
research questions:

1. What level of accuracy could a Bluetooth based Navigation System expect to
achieve?

2. Which positioning concept provide the best results?

This section will bring forward the results and discuss how they should be interpreted to
answer these questions.

Q1: What level of accuracy could a Bluetooth based Navigation System expect to
achieve?

The level of accuracy for a Bluetooth based Navigation System is dependant on system
design properties for data flow direction, and applicable positioning concepts. This report
has focused on the use of BLE Beacons, allowing only data flow in one direction, making
Cell Identification and Trilateration the only applicable positioning concepts due the RSSI
measurements being the only measurements possible.

As discussed in the two previous sections, the distance measurement performed at a
single beacon is quite unpredictable and is off by several meters. Using these imprecise
measurements as input for Trilateration produce imprecise output as displayed in Table 6.2,
and displayed in Figure 6.2 with deviances exceeding 5 meters.

82 CHAPTER 7. DISCUSSION

The level of accuracy related to the output of the algorithm is determined by:

• Total number of beacons used in calculations

• Total sum of error in measurements compared to total sum of valid measurements

Being directly affected by the distance measurements, the expected accuracy for a
Bluetooth based Navigation System would be dependant of several measures. Some of
these measures are possible to alter for better or worse, some are difficult to handle in
form of accuracy. Achieving accuracy well within 5 meters is difficult, but can possibly be
achieved through the following suggestions:

• Reasonable beacon deployment: Making sure that the area where the beacons
are deployed has minimum interference from both objects and other wireless tech-
nologies.

• Testing for optimal number of beacons: Due to the Bluetooth signals behaving
different in different areas, extensive testingwith different numbers of active beacons
in the system will produce different result. Adapt the number of beacons based on
performed tests at the desired location.

• Reasonable beacon configuration: Tweaking the signal strength of each beacon
to maximum could lead to having a lot of imprecise measurements from irrelevant
beacons that are far away from the target position. Dividing the area into "zones",
setting the transmit power of a group of beacons to cover only that zone, could
improve accuracy.

• Signal filtering: Filtering the signals might remove some interference and can be
achieved through for instance a Kalman Filter. Being able to weight each signal,
signals that we know are imprecise (i.e greatest distance), can be excluded in calcu-
lations. Machine Learning could also be used for the principal of "fingerprinting" -
allowing the "machine" to learn the error image at given locations.

These suggestions are related to the use of BLE Beacons. Reverting the data flow as
mentioned in Section 7.2, making the data flow from the smartdevice to a Bluetooth Low
Energy featured SoC, enabling positioning concepts like Angle of Arrival (AoA) and Time
Difference of Arrival (TDOA), higher accuracy could be expected, as such concepts do not
determine position based on inaccurate RSSI measurements.

7.4. INTEGRATIONS 83

Q2: Which positioning concept provide the best results?

In this report, both Cell Identification and Trilateration has been explained, designed,
implemented and tested. Neither of them excels at any point, but there are certain
differences that imply that the choice of positioning concept should be based on the
purpose of use. In a Navigation System where the intention is to achieve highest accuracy
possible, Trilateration is solely the positioning concept that has potential to produce
the best results, when using RSSI measurements. Lowering the accuracy demands, Cell
Identification with quadratic cells that exceeds the inaccuracy in each RSSI measurement,
the Navigation System would achieve higher reliability, and guarantees that the result is
valid in a higher manner than by Trilateration. Based on the results of the specialization
project preliminary to this master thesis, ePark was able to determine the closest beacon
9 out of 10 times, argumenting for the reliability of Cell Identification.

Each positioning concepts will provide the best results based on the purpose for where it
should be applied. The main cause of determining which concept that provide the best
result is the level of accuracy demanded. High prevision navigation is not achievable
through BLE Beacons that uses RSSI measurements. The accuracy might increase through
Angle of Arrival and Time Difference of Arrival, but the consensus is that using a tech-
nology that could produce accurate RSSI measurements, Trilateration would be a highly
appropriate positioning concept to achieve high accuracy.

7.4 Integrations

When designing a system based on several platforms and interfaces, integrations are
essential to the end result. Throughout the work carried out, ePark is integrating:

• Bluetooth Low Energy (BLE) Interaction through the BLE protocol using the Eddys-
tone UID framework

• Android OS

• Cloud Storage through a MySQL Database delievered by Digital Ocean

The application developed matches the specified design with all functionality. The expe-
rience acquired during testing of the application has proved that integrations has been
carried out satisfactory even though the Navigation System did not provide accuracy of
an acceptable level. Software integrations has been implemented as modules, making it
easy to exchange parts in the future, i.e exchanging the Bluetooth Low Energy Service

84 CHAPTER 7. DISCUSSION

with other wireless technologies that hopefully would improve the accuracy of the system.
For instance, a module implementing Ultra-wide Band (UWB) could be developed as long
as it passes coordinates and distances to the positioning algorithm.

Chapter 8
Conclusion

The goal of this thesis was to develop a navigation system, and implement it into a Android
Parking Service providing the user with indoor navigation inside a parking garage. Along
with the navigation, the parking service was intended to provide parking reservation and
parking log implemented through cloud-based storage.

A navigation system was develop based on distance measurements from Bluetooth Low
Energy (BLE) Beacons, radio transceivers using the BLE protocol for broadcasting specific
data. Using the Eddystone UID framework, the broadcasted identifiers of each beacon
made it possible to solve the positioning problem through both Cell Identification and
Trilateration when measuring the Received Signal Strength Indicator (RSSI), measured
by a smartphone running the ePark application. Extensive testing with the BLE Beacons
was conducted, ensuring that the setup and configuration of the system provided the best
results possible.

Testing both distance measurements from single beacons and positioning data ouput from
the positioning algorithm revealed great weaknesses with the use of BLE Beacons for
navigation. Due to imprecise and unpredictable distance measurements, deviating with
several meters from the real distance, the location determination of the target device did
not enter within the desirable demands when it comes to accuracy. Bluetooth Low Energy
should not be written off as a potential technology to be used for navigation systems,
but using lightweight beacons featuring standard beacon frameworks as Eddystone UID
limits to positioning concepts that is based on RSSI measurements, and therefore high
accuracy can not be expected. Using hardware that supports duplex communication,

85

86 CHAPTER 8. CONCLUSION

other positioning principals like Angle of Arrival and Time Difference of Arrival can be
implemented, removing some uncertainty and most likely result in higher accuracy.

Chapter 9
Future Work

The navigation system developed has mainly two aspects for future work, developing the
system further,

1. Exchange the current hardware with components that would potentially increase
navigation accuracy through other wireless technologies or positioning concepts

2. Including more functionality, improving user-interface adding enhanced features

A suggestion for future work, improving accuracy, is to first implement hardware support-
ing Bluetooth Low Energy Angle of Arrival, or time synchronization making it possible to
implement Time Difference of Arrival with Bluetooth Low Energy duplex communication.
Re-using the concepts developed throughout this thesis, the results of these concepts
can be compared to Cell Identification and Trilateration to conclude which positioning
concept providing the best results. Another suggestion would be to exchange the entire
system with wireless components that possibly could achieve greater accuracy in single
measurements, through another wireless technology such as Ultra-wide band. Due to the
results produced through fixed input in the positioning algorithm, more accurate signle
measurements would improve higher accuracy.

Adding functionality inside the ePark application could for instance include:

• Algorithms for calculating the shortest path to a desirable parking spot

• Positioning data from other vehicles in the parking garage to avoid collisions

87

88 CHAPTER 9. FUTURE WORK

• Payment solutions, either virtual or real, either based on normal currencies or
crypto-currency

• Enhanced ICT security - Scouring the system design for flaws regarding ICT security

It is clear that it is several aspects that could be improved to increase navigation accuracy
as well as functionality is only limited by the imagination of the developer, and could also
be improved through user-feedback.

References

[1] “Android Developer - Platform Architecture,” last visited 2018-03-08. [Online].
Available: https://developer.android.com/guide/platform/index.html

[2] “Android Documentation - Android Activity,” last visited 2018-02-24. [Online]. Avail-
able: https://developer.android.com/guide/components/activities/activity-lifecycle.
html

[3] “Bluetooth Core Specification Version 4.0,” last visited 2018-02-23. [Online].
Available: https://www.bluetooth.com/specifications/bluetooth-core-specification/
legacy-specifications

[4] “Android Documentation - Android Service,” last visited 2018-02-24. [Online].
Available: https://developer.android.com/reference/android/app/Service.html

[5] “Android Beacon Library version 2.3,” last visited 2018-02-24. [Online]. Available:
https://altbeacon.github.io/android-beacon-library/index.html

[6] “Package org.altbeacon.beacon - Android Beacon Library,” last visited 2018-03-16.
[Online]. Available: https://altbeacon.github.io/android-beacon-library/javadoc/
index.html

[7] “Google Volley - an HTTP library for Android Networking,” last visited 2018-04-27.
[Online]. Available: https://github.com/google/volley

[8] “Introduction to JSON,” last visited 2018-03-18. [Online]. Available: https:
//www.json.org

89

https://developer.android.com/guide/platform/index.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://www.bluetooth.com/specifications/bluetooth-core-specification/legacy-specifications
https://www.bluetooth.com/specifications/bluetooth-core-specification/legacy-specifications
https://developer.android.com/reference/android/app/Service.html
https://altbeacon.github.io/android-beacon-library/index.html
https://altbeacon.github.io/android-beacon-library/javadoc/index.html
https://altbeacon.github.io/android-beacon-library/javadoc/index.html
https://github.com/google/volley
https://www.json.org
https://www.json.org

90 REFERENCES

[9] “JSON Data Types,” last visited 2018-03-18. [Online]. Available: https://www.
w3schools.com/js/js_json_datatypes.asp

[10] R. C. Brinker and R. Minnick, The Surveying Handbook, Ch.11 - Triangulation. Chap-
man and Hall, 1995.

[11] ——, The Surveying Handbook, Ch.12 - Trilateration. Chapman and Hall, 1995.

[12] J. C. S. C. Medina and A. D. la Torre, “Ultrasound indoor positioning system based on
a low-power wireless sensor network providing sub-centimeter accuracy,” Sensors,
vol. 13, no. 3, pp. 3501–3526, 2013.

[13] S. Mazuelas, A. Bahillo, R. M. Lorenzo, P. Fernandez, F. A. Lago, E. Garcia, J. Blas, and
E. J. Abril, “Robust indoor positioning provided by real-time rssi values in unmodified
WLAN networks,” IEEE Journal on Selected Topics in Signal Processing, 2009.

[14] Y. Wang, X. Yang, Y. Zhao, Y. Liu, and L. Cuthbert, “Bluetooth positioning using
RSSI and triangulation methods,” in 2013 IEEE 10th Consumer Communications and
Networking Conference, CCNC 2013, 2013.

[15] J. Castano, M. Svensson, and M. Ekstrom, “Local positioning for wireless sensors
based on Bluetooth/spl trade/,” Proceedings. 2004 IEEE Radio and Wireless Conference
(IEEE Cat. No.04TH8746), 2004.

[16] W. S. Murphy, Jr., and W. Hereman, “Determination of a position in three dimensions
using trilateration and approximate distances,” Tech. Rep., 1995.

[17] “Digital Ocean - Cloud Computing,” last visited 2018-04-28. [Online]. Available:
https://www.digitalocean.com

[18] “nRF51822 Beacon by Nordic Semiconductor,” last visited 2018-04-29. [On-
line]. Available: https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/
nRF51822-Bluetooth-Smart-Beacon-Kit/(language)/eng-GB

[19] “RadBeacon Dot by Radius Networks,” last visited 2018-04-09. [Online].
Available: http://downloads.radiusnetworks.com.s3.amazonaws.com/datasheets/
datasheet-radbeacon-dot.pdf

[20] “RadBeacon USB by Radius Networks,” last visited 2018-04-09. [Online].
Available: http://downloads.radiusnetworks.com.s3.amazonaws.com/datasheets/
datasheet-radbeacon-usb.pdf

https://www.w3schools.com/js/js_json_datatypes.asp
https://www.w3schools.com/js/js_json_datatypes.asp
https://www.digitalocean.com
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF51822-Bluetooth-Smart-Beacon-Kit/(language)/eng-GB
https://www.nordicsemi.com/eng/Products/Bluetooth-low-energy/nRF51822-Bluetooth-Smart-Beacon-Kit/(language)/eng-GB
http://downloads.radiusnetworks.com.s3.amazonaws.com/datasheets/datasheet-radbeacon-dot.pdf
http://downloads.radiusnetworks.com.s3.amazonaws.com/datasheets/datasheet-radbeacon-dot.pdf
http://downloads.radiusnetworks.com.s3.amazonaws.com/datasheets/datasheet-radbeacon-usb.pdf
http://downloads.radiusnetworks.com.s3.amazonaws.com/datasheets/datasheet-radbeacon-usb.pdf

REFERENCES 91

[21] “Huawei Honor 7 - model PLK-L01,” last visited 2018-04-09. [Online]. Available:
https://www.gsmarena.com/huawei_honor_7-7269.php

[22] “Apache Commons Math 3.6.1 API,” last visited 2018-05-05. [Online]. Available:
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html

https://www.gsmarena.com/huawei_honor_7-7269.php
http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html

	Master Thesis Description Sheet
	Abstract
	Sammendrag
	Preface
	List of Tables
	List of Figures
	Introduction
	Background and Motivation
	Objective and scope
	Outline

	Introduction to ePark
	System description
	BLE Beacon Technology
	Bluetooth Low Energy - Bluetooth v4.0
	Bluetooth Beacons
	iBeacon
	Eddystone

	Android
	Architechture
	Activities
	Services
	Manifest and permissions
	Android Beacon Library

	Cloud Storage
	Server connection
	Server requests

	Positioning System
	Introduction to positioning systems
	Positioning Concepts
	Cell Identity
	Triangulation
	Trilateration
	Angle of Arrival (AoA)
	Time of Arrival/Time Difference of Arrival (ToA/TDoA)

	Positioning using BLE Beacons
	Related Work
	Trilateration with BLE Beacons

	Design
	Introduction
	Functionality
	Preliminary decisions on design

	System Design
	Hardware Design
	Hardware Requirements
	Hardware Choices based on design

	Software Design
	Application design
	Services
	Database Design

	Implementation
	Hardware Implementation
	RadBeacon Bluetooth Beacons
	Smartdevices
	Hardware Deployment

	Software Implementation
	ePark GUI
	Activities
	Bluetooth Service
	Network Service
	Positioning Algorithm

	Results
	System Testing
	Single Beacon Range Test
	Trilateration Test

	Subtask Results
	ST1: Theory
	ST2: Navigation System
	ST3: Android Development and Integration

	Discussion
	Accuracy of distance measurements
	Navigation System Accuracy
	Research Questions
	Integrations

	Conclusion
	Future Work
	References

