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Abstract

In 2008 Bitcoin was introduced as the first decentralized electronic cash system
and it has seen widespread adoption since it became fully functional in 2009. This
thesis describe the Bitcoin system, anonymity aspects for Bitcoin and how we
can use cryptography to improve anonymity by a scheme called Zerocoin. The
Bitcoin system will be described with focus on transactions and the blockchain
where all transactions are recorded. We look more closely into anonymity in terms
of address unlinkability and illustrate how the anonymity provided is insufficient
by clustering addresses. Further we describe Zerocoin, a decentralized electronic
cash scheme designed to cryptographically improve the anonymity guarantees in
Bitcoin by breaking the link between individual Bitcoin transactions. We detail the
construction of Zerocoin, provide security analysis and describe how it integrates
into Bitcoin.

Sammendrag
Bitcoin ble i 2008 introdusert som første desentraliserte elektroniske betalingssys-
tem, og har blitt svært utbredt siden det ble startet å operere i 2009. I denne
masteroppgaven ser vi nærmere p̊a Bitcoin, anonymitet i systemet og Zerocoin,
et forslag som viser hvordan kryptografi kan benyttes for å forbedre anonymitet i
Bitcoin. Bitcoin presenteres med fokus p̊a transaksjoner og blokkjeden, hvor alle
transaksjoner lagres. Vi ser nærmere p̊a anonymitet hvor vi ønsker at addresser ikke
skal kunne lenkes sammen, og illustrerer hvordan anonymiteten Bitcoin gir ikke er
tilstrekkelig. Videre beskriver vi Zerocoin i detalj. Zerocoin er konstruert for å
forbedre anynomiteten Bitcoin gir ved bruk av kryptografi, dette gjennom å bryte
den sammenhengende kjeden av Bitcoin-transaksjoner. Vi beskriver Zerocoin-
konstruksjonen i detalj, sikkerhetsaspekter og hvordan Zerocoin kan integreres med
Bitcoin.
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Chapter 1
Introduction

Bitcoin and cryptocurrencies has caused a lot of excitement since Bitcoin was pre-
sented as the first decentralized electronic cash system, a payment system without
the requirement of a trusted bank. Electronic cash systems can be either central-
ized or decentralized, and up to this time all has been centralized. Decentralized
systems do not rely on a trusted third party to validate transactions but instead rely
on cryptography. In 2008 Bitcoin was presented as the first decentralized digital
currency, or cryptocurrency, and became fully functional in January 2009. Bit-
coin is the first cryptocurrency to see widespread adoption and many marketplaces
accept payments in bitcoins.

Digital currencies are currencies that do not have intrinsic value and have mean-
ing only to the extent that a government maintains its value or participants agree
that they have meaning [31]. The idea of digital currency is not new to the elec-
tronic community and was first presented by Chaum in the 1980’s [15]. Chaum
obtained an anonymous electronic cash scheme where the main idea is that you can
design the withdrawal and spending protocols in such a way that it is impossible
to identify how a particular coin was spent even though a central authority, such
as a bank, is responsible for giving out electronic coins and validating them. This
is done by the use of blind signatures.

Since that of Chaum, many papers have been published to improve the efficiency
and security of electronic cash systems. The anonymity provided by electronic cash
systems is often of interest. While anonymity can be defined as the state of not
being identifiable within a set of subjects, being pseudonymous is the state of using
a pseudonym as identification [43]. Bitcoin provides pseudonymity. To validate
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transactions and prevent double-spending of money, probability the core problem
of digital currencies, the entire history of all Bitcoin transactions are recorded in a
public ledger and payments are conducted between pseudonyms to avoid tracking
by third parties. These pseudonyms works as anonymous addresses and Bitcoin
users can create any number of them [20].

The underlying public transactions still imposes a threat to anonymity. The
Bitcoin community generally acknowledges this issue which leads to interest in
providing stronger anonymity. One of the main groups of proposals are those who
provide stronger anonymity but again require more advanced cryptography and
modification to Bitcoin.

In this thesis we look more at one of these proposals. First we examine Bitcoin
and anonymity aspects. Next we describe how we can use cryptography to improve
the anonymity Bitcoin provides by a scheme called Zerocoin. The structure of the
thesis is as follows:

Chapter 2 The chapter introduces preliminaries and theory for the thesis espe-
cially focusing on zero-knowledge protocols.

Chapter 3 After the theory chapter follows a presentation of the Bitcoin system
divided in three main parts; transactions, blockchain and mining and the
communication network.

Chapter 4 A review of anonymity in the Bitcoin system follows the presentation
of it. We give a definition of anonymity and show how it is attacked by
address linking.

Chapter 5 Zerocoin is presented as a proposal to improve Bitcoin anonymity,
both construction of the scheme and security analysis.

Chapter 6 The final chapter compare the anonymity of Bitcoin and Zerocoin,
consider limitations regarding Zerocoin anonymity and briefly examine fur-
ther work.

More details of the chapters will be provided at the start of each one.
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Chapter 2
Theory

In this chapter we present preliminaries and theory that will be of relevance. We
start with preliminaries which briefly introduces facts assumed to be known to
the reader and some words regarding notation in the thesis. Further we consider
cryptographic hardness assumptions, zero-knowledge protocols and commitment
schemes.

2.1 Preliminaries

For an integer n, Zn = {0, 1, ..., n− 1} denotes the ring of integers modulo n. The
positive integers smaller than and relatively prime to n is denoted Z∗n [11]. We write
x

r← Zn to denote that x is drawn at random from {0, 1, ..., n−1}. For every prime
p the integers modulo p is a field Fp. Similarly F∗p denotes the elements in Fp that
are smaller than and relatively prime to p. We write G ⊆ F∗p to denote that G is a
subgroup of F∗p. The arithmetic for group elements is performed modulo the order
of the group and will not be stated unless it is found convenient. For exponent
arithmetic we will explicitly stated how the modular arithmetic is performed.

We can distinguish between private key cryptography and public key cryptogra-
phy. For public key cryptography, also known as asymmetric cryptography, each
user possesses a private key but also a public key [40]. In this thesis we denote the
private key by sk and the public key by pk.

Public key cryptography can be used for applications such as digital signatures.
Digital signatures are one of the most important cryptographic tools [11]. A sig-
nature σ on a message m is issued under a public key pk and one can interpret
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that the owner of pk and its corresponding key sk has signed message m. Everyone
must be able to verify a signature when given the public key of the signer and the
message, but only the signer (the party knowing the private key) must be able to
compute the signature [14].

The Bitcoin system is built on public key cryptography and more specifically
elliptic curve cryptography. Bitcoin makes use of ECDSA, the elliptic curve digital
signature algorithm. Users in the Bitcoin system are identified by a public key for
this signature scheme. The key pair controls access to bitcoins; the public key pk
is used to receive bitcoins and the private key sk is used to sign transactions to
spend those bitcoins [2].

An essential part of digital signature schemes are hash functions. We let H be a
collision-resistant hash function that maps binary strings of arbitrary finite length
to binary strings of fixed length l [11]. We write H : {0,1}∗ → {0,1}l. It can be
mentioned that there are different families of hash functions and later we briefly
bring up SHA-256 which is a member of the SHA-2 hash functions.

In this thesis we consider electronic cash systems. When referring to Bitcoin
(capital B) we mean the payment system and when referring to bitcoin (lowercase
b) we mean the currency, like ”one can transfer bitcoins in the Bitcoin system”.
The same holds for Zerocoin and other systems to be mentioned.

We will use game-based definitions for the security of Bitcoin and Zerocoin.
Informally we can define a game as an interaction between an adversary and a
simulator. We let A and B denote adversaries and Sim denote a simulator that
simulates the environment that the adversaries normally would exist in. Some-
times we assume an oracle O is connected to the communication. Many security
definitions hold assuming the hardness of some cryptographic problem and next
we turn to describing two hardness assumptions of relevance.

2.2 Cryptographic Hardness Assumptions

Cryptographic constructions can be proven secure relative to some assumption
regarding the hardness of solving some problem. The construction is considered
secure as long as the problem is hard to solve, but if we can solve the problem we
can break the security of the construction [11]. By hard we often mean that there
is no algorithm that solves the problem using a reasonable amount of resources.
In this thesis we consider two widely used assumptions, the Discrete logarithm
assumption and the Strong RSA assumption.
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The Discrete logarithm assumption. The Discrete logarithm problem forms
the basis of numerous cryptographic protocols. The discrete logarithm of y to the
base g in a group G is the smallest non-negative integer x such that y = gx. We
write loggy = x. We can note for later purposes that similarly the double discrete
logarithm of y ∈ G to the bases g and h is the smallest non-negative integer x such
that g(hx) = y. There exists efficient algorithms for finding y given g and x, but
finding x given y and g is not easy in general [11].

We can define the Discrete logarithm problem as follows: given a finite cyclic
group G of order q with generator g and an element y ∈ G, find the smallest
integer x, 0 ≤ x ≤ q − 1, such that gx = y (in this thesis we normally use q to
denote a prime, but discrete logarithms are defined for groups of non-prime order
as well). The Discrete logarithm assumption is the assumption that this problem
is hard to solve. The utility of the Discrete logarithm problem in a cryptographic
setting is that finding discrete logarithms are difficult while the inverse operation
of exponentiation can be computed efficiently [50].

The Strong RSA assumption. The Strong RSA assumption was first introduced
by Barić and Pfitzmann [4]. The RSA problem can be stated as follows: given an
RSA modulus n, an exponent e and a random u ∈ Z∗n, find v ∈ Z∗n such that
ve ≡ u (mod n). The RSA assumption is the assumption that this problem is
hard to solve. The flexible RSA problem can be stated as follows: given an RSA
modulus n and a random u ∈ Z∗n, find v ∈ Z∗n and e > 1 such that ve ≡ u (mod n).
The Strong RSA assumption is the assumption that this problem is hard to solve.
Note that is called the Strong RSA assumption. This differs from the ordinary
RSA assumption where the exponent e is given [17].

2.3 Zero-knowledge Protocols

An interactive protocol can be seen as a pair of algorithms for two communicating
players. For an interactive proof the players are usually a prover P and a verifier
V. The communicating parties are often assumed to be two interactive algorithms
with communication tapes that allows them to send and receive messages from one
another [11]. We denote a prover that can cheat by P∗ (he does not necessarily
get the secret input as P does) and a verifier that tries to cheat by V∗ (he does
not behave as V but gets the same public input). We consider an interactive proof
system for a language L where y ∈ L means that a claim is true [18, 49]:
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Definition 1. An interactive proof system for a set L is a two party game between
a prover P and a verifier V that on public input y satisfies the following:

• completeness meaning that for every y ∈ L, V accepts after interacting with
P on public input y and potentially auxiliary private input x to P, i.e. the
prover can convince the verifier that a true statement is indeed true;;

• soundness meaning that if y /∈ L then V for any P∗ accepts with at most
negligible probability after interacting with P∗ on public input y, i.e. the
prover can not convince the verifier that a false statement is true.

A special flavour of interactive proofs is a proof of knowledge. In such a proof
the prover convinces the verifier that he knows a certain piece of information he
claims to know such as a value, or a witness, satisfying a certain predicate [11, 18].
A formal definition can be found by Bellare and Goldreich [5]. Let us say that
P wants to prove that y ∈ L. This means that P must know a witness w ∈ W

for y ∈ L, but he does not want V to obtain anything else than the single bit of
information that y ∈ L.

We let R be a relation and (y, w) ∈ R. We consider an interactive protocol for
a prover P and a verifier V who both have public input y and P knows a witness
w ∈ W for y ∈ L. We say that an interactive protocol between a prover P and a
verifier V is a proof of knowledge if there exists an efficient knowledge extractor that
for every P∗ which makes V accepts with non-negligible probability, the extractor
can interact with P∗ and with overwhelming probability output a witness w such
that (y, w) ∈ R [28]. Note that proof of knowledge will imply soundness. A proof
of knowledge of a witness implies that a witness exists.

Interactive proofs can be zero-knowledge. In a zero-knowledge protocol a prover
proves a statement to a verifier without revealing anything about the statement
other than that it is true [24]. Goldwasser et al. [26] were the first to introduce
the concept of zero-knowledge. If we use protocols where we can control exactly
how much sensitive information is being released we can keep private information
private, even in presence of adversarial behaviour. A protocol is said to be zero-
knowledge if it communicates exactly the knowledge that was intended and nothing
more, i.e. zero additional knowledge [18].

Before we give a formal definition of zero-knowledge we must say something
about indistinguishability. We can talk about perfect, statistical or computational
zero-knowledge according to three kinds of indistinguishability. We say that two
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distributions are indinstinguishable if it is hard to distinguish them. In the following
we consider two distributions Y1 and Y2 and we say that the distributions are [11]:

• perfectly indistinguishable if Y1y = Y2y for every y, which means that Y1 and
Y2 are the same probability space and it is not possible to distinguish them
at all,

• statistically indistinguishable if the statistical distance between Y1 and Y2 is
negligible, which means that there is a small advantage over a random guess
or

• computationally indistinguishable if no efficient algorithm exists than can dis-
tinguish them, which means that it requires a lot of computational power to
decide which of the distribution produced a given output.

Now we can present a formal definition of zero-knowledge [11]:

Definition 2. A protocol (P, V) is (perfect/statistical/computational) zero-
knowledge if for any verifier V∗ there exists an efficient simulator Sim such that
the output produced by Sim is (perfectly/statistically/ computationally) indistin-
guishable from the output produced by (P, V∗) when Sim and (P, V∗) have the
same public input.

Zero-knowledge protocols are normally viewed in a ”general cheating verifier”
setting. This means that no matter the strategy of the verifier he learns no addi-
tional information. We can also consider an honest verifier that must follow the
protocol specifications exactly but maintains the ability to keep a record of the
entire interaction. This gives rise to the notion of honest-verifier zero-knowledge
[11, 25, 27, 49]. Note that zero-knowledge implies honest-verifier zero-knowledge
since a verifier for zero-knowledge can be malicious. A definition follows [11]:

Definition 3. A protocol (P, V) is (perfect/statistical/computational) honest-
verifier zero-knowledge (HVZK) if for any verifier V there exists an efficient simu-
lator Sim such that the output produced by Sim is (perfectly/statistically/
computationally) indistinguishable from the output produced by (P, V) when Sim

and (P, V) have the same public input.

Next we look more at honest-verifier zero-knowledge protocols.
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2.3.1 Σ-protocols

Most honest-verifier zero-knowledge protocols are Σ-protocols. An interactive
Σ-protocol is a special type of three-move protocol. The prover sends a commitment
α, the verifier answers with a random challenge β and the prover completes the
protocol with a response γ [8]. A standard example of a Σ-protocol is that of
Schnorr [48] which allows a prover P to prove knowledge of a discrete logarithm
without revealing any knowledge about it other than that he knows it. The protocol
is illustrated in Figure 2.1 where, given a cyclic group G ⊆ F∗p of prime order q
where p = 2q+1 with generator g and y = gx, the prover proves knowledge of x (the
arithmetic for group elements is performed modulo p and the exponent arithmetic
modulo q).

Public input: p, q, y and g
Private input to P: x such that y = gx

Prover P Verifier V

r
r← Zq

α← gr
α−−−−→
β←−−−− β

r← Zq
γ ← xβ + r mod q γ−−−−→ gγ

?= αyβ

Figure 2.1: Schnorr protocol for proving knowledge of a discrete logarithm.

We consider a Σ-protocol for a prover P and a verifier V who both have input y
and P wants to prove that y ∈ L. The prover knows a witness w ∈ W for y ∈ L
such that (y, w) ∈ R. A Σ-protocol has the following properties [27]:

• completeness meaning that if P and V follow the protocol specifications on
input (y, w) ∈ R where indeed y ∈ L and the prover knows a witness w ∈ W ,
the verifier always accepts;

• special soundness meaning that from any y and pair of accepting conversa-
tions (α, β, γ) and (α, β′, γ′) where β 6= β′, one can efficiently extract the
witness w ∈ W for y ∈ L;

• special honest-verifier zero-knowledge (SHVZK) meaning there exists a sim-
ulator Sim which on public input y and challenge β outputs an accepting
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conversation of the form (α, β, γ) that is indistinguishable from a real con-
versation produced by (P, V).

Note that special soundness implies that the protocol is a proof of knowledge (and
sound). We can show that the Schnorr identification protocol in Figure 2.1 has the
desired properties. By computing

gγ = gxβ+r = grgxβ = gryβ = αyβ

we see that completeness is satisfied. For special soundness we assume we are given
two conversations (α, β, γ) and (α, β′, γ′) where β 6= β′. One can compute the
secret x = (γ − γ′)/(β − β′) since we know that gγy−β = gγ

′
y−β

′ (x is the witness in
the protocol). For special honest-verifier zero-knowledge we assume the existence
of a simulator Sim that:

1. selects γ at random,

2. computes α = gγy−β and

3. outputs (α, β, γ).

It is impossible to decide whether α or γ was chosen first, hence the distribution
of the real and the simulated conversations are indistinguishable and the protocol
is special honest-verifier zero-knowledge.

2.3.2 Rewinding

In this thesis we make use of a technique called rewinding [32, 45]. The concept of
rewinding is a common proof technique in cryptography that for instance can be
used to prove that a protocol is sound. Rewinding require that we are able to save
states in the protocol such that we can rewind back to the previously saved states.
We commonly have an extractor around the prover to perform the rewinding.

We will show an example of rewinding for the Schnorr protocol in Figure 2.1 to
make the concept clear. When rewinding is performed for an interactive proof sys-
tem (P∗, V) the protocol will start as usual and an accepted conversation (α, β, γ)
is outputted. Next we rewind, which means going back, to a previous stage in
the protocol. We give the prover a new random challenge β′ and a new accepted
conversation (α, β′, γ′) is outputted. Rewinding for the Schnorr protocol can be
performed as follows:

1. Run P∗ ←→ V until P∗ sends α.
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2. Remember the state of P∗ and V.

3. Choose V’s challenge β randomly.

4. Run P∗ ←→ V until P∗ sends γ.

5. Rewind.

6. Choose a new challenge β′ randomly.

7. Run P∗ ←→ V until P∗ sends γ′.

The rewinding gives us two accepting conversations (α, β, γ) and (α, β′, γ′). As
we recently showed (Section 2.3.1) two such conversations can be used to compute
the secret input and is hence a way to prove that the protocol has special soundness.
Later we make use of the rewinding technique for proofs regarding the Zerocoin
construction.

2.3.3 From Interactive to Non-interactive

Any honest-verifier zero-knowledge Σ-protocol can be transformed into a non-
interactive protocol. For non-interactive proofs the prover sends his proof only
and the verifier decides to accept or reject the statement without any further in-
teraction [8].

The Fiat-Shamir transform. The most common and efficient technique for con-
structing non-interactive zero-knowledge proofs is the Fiat-Shamir heuristic [8, 22].
To describe the transformation we need a closer look at the random oracle model.
The random oracle model was formalized by Bellare and Rogaway [6]. A random
function is a function H: {0, 1}∗ → {0, 1}l such that the output is selected ran-
domly and independent of all other output. In the random oracle model there exist
a random oracle with access to such functions over all l so that two equal queries
always have the same response. The oracle is exchanged for a cryptographic hash
function in the real application.

The idea behind the transformation from interactive to non-interactive is having
the prover compute the message of the verifier (the challenge) as the hash of the
message sent by the prover. A message computed this way should look random as
in an interactive execution if the hash is modelled as a random oracle. We look at
a Σ-protocol between a prover P and verifier V and let H be a hash function. The
weak Fiat-Shamir transform is as follows [8]:
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• P(y, w) Run P to obtain a commitment α, compute the challenge
β ← H(α), obtain the response γ and output (β, γ).

• V(y, β, γ) Run V to compute α′ from (y, β, γ) and verify if β = H(α′).

Note that the prover might as well output (α, γ). The strong Fiat-Shamir is the
same as the weak except that β includes the statement to be proved in the hash;
β ← H(y, α). If the interactive proof has special soundness and is special honest-
verifier zero-knowledge, the non-interactive proof will be sound and zero-knowledge
in the random oracle model [27]. Figure 2.2 shows how the protocol in Figure 2.1
is made non-interactive by the (weak) Fiat-Shamir transform.

Public input: p, q, y and g
Private input to P: x such that y = gx

Prover P Verifier V

r
r← Zq

α← gr

β ← H(α)
γ ← xβ + r mod q (β,γ)−−−−−−−→ α′ ← gγy−β

β
?= H(α′)

Figure 2.2: The Fiat-Shamir transform applied to the Schnorr protocol in Figure
2.1.

Signatures of knowledge. Later we make use of non-interactive zero-
knowledge proofs. A type of non-interactive zero-knowledge proofs are signatures of
knowledge. These are proofs of knowledge that also serve as signatures by including
the message to be signed in the hash [13]. We recall from Section 2.1 that signing
a message m resulted in a signature σ. Unless an application has reason to trust
the public key pk, this alone is not sufficient to trust the message m. Some proof
that pk is trustworthy can therefore be required of such an application in addition
to (m, σ, pk). We can consider schemes where one is allowed to issue signatures
on behalf of any statement y ∈ L which we refer to as signatures of knowledge [14].

We want to be able to issue signatures using knowledge of a witness w ∈W such
that (y, w) ∈ R is accepted. We can think of an algorithm for this as a procedure
that decides whether w ∈W is a witness for y ∈ L for the language L. The resulting
signature can be referred to as a signature of knowledge of w ∈ W that is a witness
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to y ∈ L on message m, a signature of knowledge of w on message m or a signature
of knowledge on behalf of y ∈ L on message m [14].

We use the notation of Camenisch and Stadler [13] exampled by Miers et al. [36]
when referring to these proof. A non-interactive zero-knowledge proof of knowledge
of the elements x1 and x2 that satisfy both y1 = gx1 and y2 = gx2 is denoted

NIZKPoK{(x1, x2) : y1 = gx1 ∧ y2 = gx2}

where the values not enclosed in () are assumed known to the verifier. Similarly
the extension

ZKSoK[m]{(x1, x2) : y1 = gx1 ∧ y2 = gx2}

denotes a zero-knowledge signature of knowledge of x1 and x2 on message m. Later
in the thesis we will describe the construction of such a signature. The construction
also has to do with commitments which we next turn to.

2.4 Commitment Schemes

A commitment scheme is a fundamental primitive in cryptographic protocols and
for zero-knowledge proofs in particular. Commitments allow a player in a protocol
to choose a value from some set and make a commitment to his choice while keeping
in hidden to others. Once the commitment is made the player can no longer change
his mind. He can, but is not queried to, reveal his choice at a later point of time.
For the understanding of commitments we can look at an informal example [18]:

1. P wants to commit to a bit b. He does so by writing down b on a piece of
paper, puts in a box and locks it with a key.

2. P gives the box to V.

3. P can later, if he wants to, open the commitment by giving V the key to the
box.

Once P has given away the box he can no longer change what is inside and
when V recievies the box he can not tell what is inside before P gives him the key.
We refer to these two properties respectively as the binding property and the hiding
property [18]. They are essential to any commitment scheme and we can generalize
them as follows:
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• the binding property means that it should be hard for P to change the value
he has committed to at a later stage;

• the hiding property means that it must be hard for V to extract any additional
information about the commitment.

A secure commitment scheme is always depending on randomness, if not a
powerful opponent could simply compute any commitment and check for matches.
For a set of messages, a set of randomness and a set of commitments, to make a
commitment c to a message m with randomness r we write c = commit(m, r).
The commitment is opened if the tuple (m, r) is revealed and V can check that
c = commit(m, r). The commitment properties can be unconditional or computa-
tional [18]:

• Unconditional binding means that even with infinite computing power P can
not change his mind after committing, which means if P has committed to
m using r there is no pair (m′, r′) where m 6= m′ such that commit(m, r) =
commit(m′, r′).

• Computational binding means that the chances of being able to change your
mind are very small unless you have ”very large” computing resources, which
means that for two tuples (m, r) and (m′, r′) we demand that the probability
that commit(m, r) = commit(m′, r′) is negligible.

• Unconditional hiding means that a commitment reveals no information about
the commitment even to an infinitely powerful V. For a commitment to be
unconditionally hiding we need the distribution of commitments to m to be
perfectly indistinguishable from the distribution of commitments to m′, i.e.
for a valid opening to a commitment there exists another valid opening.

• Computational hiding means that a bounded V will have a hard time guessing
what is inside a commitment. For a commitment to be computationally
hiding we need the distribution of commitments to m to be computationally
indistinguishable from the distribution of commitments to m′.

At most one property can be unconditional at any time. It is impossible for a com-
mitment scheme to be both unconditionally binding and unconditionally hiding. If
a commitment scheme is unconditionally binding no collision should exist, but for
unconditional hiding any pair should have a collision that opens the commitment
to a different value.
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2.4.1 Pedersen Commitment

A commitment scheme we consider in this thesis is that of Pedersen [42]. Let g, h
be generators of G such that nobody knows loggh. To commit to a value m ∈ Zq,
choose r ∈ Zq at random and compute

c← gmhr

where the commitment c = commit(m, r) can be opened by revealing m and r.
The scheme is unconditionally hiding. As long as r is chosen uniformly in Zq the

commitment is uniformly distributed in G. For a commitment c = commit(m, r)
there is randomness r that opens the commitment to that value such that all r are
equally likely.

The commitment scheme is computationally binding as long as the Discrete
logarithm problem is hard. The one committing can not open a commitment to m
for m 6= m′ unless he can find loggh. If there exists to openings (m, r) and (m′, r′)
the discrete logarithm of h can be computed as

loggh = m−m′

r′ − r

by setting gmhr = gm
′
hr
′ . This closes our theory chapter. We will make use of the

theory described in the thesis and it is especially prominent when it comes to the
Zerocoin chapter. Before we consider Zerocoin we present the Bitcoin system.
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Chapter 3
The Bitcoin System

In this chapter we will describe Bitcoin, the first decentralized electronic cash
system. We want to both provide an overview of the Bitcoin system and consider
anonymity and proposals for improvement, so this chapter will also review aspects
beside what is necessary for the purpose of anonymity considerations.

We will divide the presentation of the Bitcoin system into three parts. First
we consider transactions, how they are created and how one can send bitcoins to
another user in the Bitcoin system. Second we consider the blockchain, the core of
the Bitcoin system which is the public ledger where all transactions are recorded,
and the process of mining. Third we consider the communication network on which
Bitcoin operates.

In this chapter we will not discuss the Bitcoin client and setup, challenges for the
Bitcoin system, different attacks, changes and modification to the Bitcoin system
etc., and refer the reader to for example Antonopoulos [2], Bonneau et al., [9],
Conti et al. [16] or Narayanan et al. [38] for more on this. Our focus is neither on
social or economic aspects but searches to provide a more technical overview. This
chapter is based on the work of Nakamoto who presented the Bitcoin white paper
[37] but is also inspired by other papers on Bitcoin [1, 2, 3, 9, 16, 20, 29, 30, 38].
We close the presentation of the Bitcoin system by giving a short summary before
we proceed to anonymity considerations.
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3.1 Transactions

The state of the world in the Bitcoin system is represented by a series of messages
called transactions. These are data structures that encode the transfer of value
between participants in the Bitcoin system. Transactions are an important part of
the system whereas everything else in Bitcoin is designed to give assurance that
transactions can be created, broadcast on the network, validated and eventually
added to the blockchain.

Keys and addresses. Payments in the Bitcoin system are performed through
transactions between Bitcoin users. Identities in Bitcoin are represented by ECDSA
public keys [29]. Each Bitcoin user U can generate any number of ECDSA key pairs
(pkU , skU ). A private key sk is a number, usually picked at random, and pk is
derived from sk using elliptic curve multiplication. This is a one-way cryptographic
function which means it is easy to derive the public key from the secret key but
not to derive the secret key from the public key.

The key pairs are used to authorize the transfer of ownership of bitcoins. To
receive bitcoins a user U publishes the public key pkU or its hash as an address.
The private key skU is used to sign transactions to spend bitcoins. This means
that control of the private key of an address denoted adr provides ownership of the
bitcoins sent to that address. We will shortly say more about addresses. The keys
of a user are stored in a databased called a wallet. Private and public keys are
stored together as a key pair in most wallet implementations, but since the public
key can be derived from the private key it is possible to store only the private key
as well.

Users participate in transactions by using pseudonyms and we refer to these as
bitcoin addresses. There are different address formats in use in the Bitcoin system
which means there are different transaction types. A common type is pay-to-public-
key-hash transactions [9]. Figure 3.1 shows how an address can be created from
the public key. We will not go into the details of the figure but want to illustrate
that creating an address can be a process with several steps. In the literature an
address if often referred to as a hash of the public key, which indeed is true, but
note that an address can be further processed after hashing the public key. Since
we use one-way functions the public and private key can not easily be derived from
the address.

Note that the way in Figure 3.1 is not the only way to create an address, one
can for example create addresses directly from the private key as well [2]. A user
in the Bitcoin system can create any number of addresses and it is considered good
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Figure 3.1: A way to create a Bitcoin address from the public key, the figure is copied
from Antonopoulos [2].
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practice for a payee to generate a new one for every transaction.

Transactions. A Bitcoin transaction indicates a bitcoin movement from source
address(es) to destination address(es). A transaction can have one or multiple input
and output addresses. We denote a transaction by t. A transaction ti is specified by
a list of input transactions {Ij}i (an exception is a generation transaction which
does not include a transaction input, more on this later) and a list of output
transactions {Oj}i. In this context the index j denote the jth input/output of a
transaction and the index i denote the ith transaction.

Transactions in Bitcoin are identified by a hash value. Each transaction ti

constituted by the list of input transaction {Ij}i and output transactions {Oj}i is
hashed using SHA-256 and the hash will serve as a unique transaction ID when
published in a block.

Input. Each input Ij of a transaction ti is a reference to an output from a
previous transaction pti, which consists of a transaction hash H(pti) and an index
indi into that transaction output, and a script scriptSigj [9, 16]. An important
requirement is that each transaction input Ij has to match a previous transaction
output so that the tuple

(
H(pti), indi, scriptSigj

)
references pti [47]. Note that a

previous transaction for a transaction ti is denoted pti and not ti−1 because it is
not necessarily the first preceding transaction that is referenced.

Output. Each output Oj of a transaction indicates the total amount of bitcoins
to be transferred to each output address adrj . Each output Oj contains an integer
value dj that represents a quantity of Bitcoin currency denoted in Satoshi where
1 bitcoin equals 108 Satoshi [9]. The total number of bitcoins outputted by a
transaction,

∑
j dj , can not exceed the total value of the referenced outputs from

previous transactions in {Ij} [47]. The output also contains a specification of who
is authorized to spend that output called scriptPubKeyj . The scripts scriptSigj
and scriptPubKeyj must execute successfully to successfully redeem a previous
transaction [9, 16].

The Bitcoin system uses a scripting system for transactions whereas the script-
ing language include support for cryptographic operations like hashing data and
verifying signatures [38]. For pay-to-pub-key-hash transactions the script
scriptPubKey specifies the hash of a public key and a signature validation routine.
This ”locks” the bitcoins to the owner of the private key belonging to that public
key. The script scriptSig specifies a public key and a signature that ”unlocks” the
bitcoins so that they can be spent. The script verifies that the provided public key
in scriptSig hashes to the hash in scriptPubKey and check the signature against
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the public key from scriptSig (which had to be signed with the private key belong-
ing to the public key) [3, 9]. Recall that control of the private key of an address
provides ownership of the bitcoins sent to that address. The scripts are illustrated
in Figure 3.2.

Figure 3.2: The scripts for a pay-to-pub-key-hash transaction, the figure is copied
from Antonopoulos [2] and edited.

Figure 3.3 shows an example of a pay-to-pub-key-hash transaction with one
input I1 and one output O1 (or simply I and O). Let us assume Alice wants to
send bitcoins to Bob. Here 50 bitcoins (5 000 000 000 Satoshi) is imported from
a previous transaction to Alice by the hash of that transaction (030b593...). In
scriptSig is a signature σ on the claiming transaction under skA and the public
key pkA where Alice unlocks this transaction that was locked to her. These 50
bitcoins are sent and locked to Bob by scriptPubKey which contains a hash of
Bob’s public key pkB and a signature validation routine.

Figure 3.3: An example of a transaction with one input and one output, the figure
is copied from Miers et al. [36].

If Bob at a later time wants to redeem the 50 bitcoins he recieved from Alice
that is locked to him, he unlocks it with a transaction where scriptSig contains
a signature from his private key skB , and his public key pkB . In scriptPubKey

he presents the hash of the public key belonging the user he wants to send the
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bitcoins to and a signature validation routine. The index is 0 which means that
Bob references 0 as an input in this transaction where he wants to spend the
bitcoins he received from Alice. Note that an address can be further processed
after hashing the public key (Figure 3.1) so the hash of the public key we see here
is simply the hash of the public key, not the complete address.

There are no such thing as stored balance in Bitcoin. The amount of bitcoins
a user receives is stored as an unspent transaction output and the only thing that
exists are unspent transaction outputs locked to specific users [2]. If the unspent
transaction output is greater than the desired value of a transaction it still must
be consumed in its entity. This means if you have 10 bitcoins unspent and want to
pay someone 5 bitcoins you have to produce two outputs; one paying 5 bitcoins to
the desired receiver and one paying 5 bitcoins in change to yourself. It is common
practice in the Bitcoin system to return bitcoins to yourself.

Transactions are only valid if they satisfy the constraint that the sum of the
values of all transaction outputs is less than or equal to the sum of the values of
all inputs (in addition to the requirements that each transaction input matches a
previous transaction output and that the scripts execute successfully). Since the
total amount of previous transaction outputs must be spent in a transaction it
is difficult with transactions with exactly one single input address and one single
output address.

Figure 3.4: An example of a Bitcoin transaction with four input addresses and two
output addresses, the figure is copied from Herrera-Joancomart́ı [29].

Figure 3.4 shows an example of a transaction with several inputs and outputs.
As just mentioned, users can collect change of a payment in one of his own ad-
dresses, often reffered to as a shadow address [29]. This address belongs to the
same user that performs the payment. Bitcoins not accounted for will serve as
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transaction fees (more on this later). Transactions are often compared to double-
entry book-keeping where one page is the inputs of a transaction and the other is
the outputs. A bitcoin can be consider a page in the ledger rather than a physical
coin which has no story of where it has been.

Signatures. A chain of ownership is created as outputs from one transaction can
be used as inputs in new transactions and proof of ownership is therefore required in
each transaction. To transfer bitcoins the sender digitally signs a hash of a previous
transaction and of the public key belonging to the receiver (as for the example with
Alice and Bob). This is done with the sender’s private key to prove he is the real
owner. The receiver can verify this signature to verify the chain of ownership since
he knows the sender’s public key. Figure 3.5 illustrates this process. Bitcoin can at
its core be considered as a chain of signatures that reflects a coin’s path through
the Bitcoin system. To verify the validity of a bitcoin a user can check the validity
of each signature in the chain.

Figure 3.5: How transactions are hashed, signed and verified in the Bitcoin system, the
figure is copied from Nakamoto [37].

Lets us say that Alice is owner 1 and Bob is owner 2 in Figure 3.5. Alice creates
the transaction in the middle and she needs to prove she has the bitcoins she claims
to have. To do so she signs a hash of the transaction she got the bitcoins from (the
transaction to the left) and a hash of Bob’s public key pkB with her private key
skA. We call the signature σA. Bob will verify that Alice is the real owner of the
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bitcoins by validating σA, which implies checking the correspondence between σA

and pkA (that corresponds to skA). Note that it is crucial that private keys that are
used to create signatures are kept secret at all times, otherwise someone else could
spend your bitcoins. In addition to validate that the digital signature is correct
Bob should also validate that the bitcoins in the input addresses are not previously
spent before accepting a payment. The last validation prevents double-spending.

3.2 Blockchain and Mining

To solve the double-spending attack without a trusted party all transactions must
be publicly announced. They are published in a global, permanent transaction
log, denoted pubLog, which is not modifiable except from adding new transactions.
Note that this means that payments in the Bitcoin system are non-reversible. We
call this public ledger, which contains all bitcoin transactions performed since the
system started to operated, the blockchain. The blockchain is stored in different
nodes of the Bitcoin network which makes Bitcoin a completely distributed system.
Any Bitcoin user can maintain a copy of the blockchain. Transactions are collected
in blocks and the process of adding new blocks to the blockchain is called mining.
In this chapter we consider the blockchain and the process of mining in more detail.

The Blockchain. When Alice wants to send a transaction she broadcasts it on
the Bitcoin network. The transaction has to be verified and included in a block
before it becomes a part of the blockchain. Any party can attempt to add blocks
to the blockchain (to mine) by collecting a set of valid pending transactions and
compiling them into a block (more on validity of transactions in the next section).

A block is a data structure that mainly contains a set of transactions in the
Bitcoin system. An example of a block is shown in Figure 3.6. This block includes
four transactions and we see that the output amount does not exceed the input
amount for any transaction. The bitcoins not accounted for serve as fees as we
can see in the third transaction. The first transaction is a so-called generation
transaction (more on this shortly).

In Figure 3.6 we can see that each block has its own hash and contains the
hash of the previous block. A system for participants to agree on a single history
of the order in which the transactions were received is needed. We say that global
consensus on the content of the blockchain is required. A part of the solution
originally proposed by Nakamoto [37] is a so-called timestamp server which takes
the hash of a block of items to be timestamped. Actually transactions are hashed
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Figure 3.6: An example of a Bitcoin block, the figure is copied from Herrera-Joancomart́ı
[29].

using a Merkle tree where only the root is included in the block’s hash, but this
will only be noted here and not explored any further. The hash is widely published
and the timestamp proves that the data must have existed at the time in order
to get into the hash. A chain is formed by each timestamped block including the
previous timestamped block in its hash. This is illustrated in Figure 3.7.

Figure 3.7: How a chain is formed by including the hash of the previous timestamped
block in a new timestamped block, the figure is copied from Nakamoto [37].

The process of mining. Mining is the process of adding new blocks to the
blockchain. To decide which block that will be added the mining process uses a
proof-of-work system to implement a distributed timestamp server. The mining
process starts by miners (which simply are the ones mining) collecting pending
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transactions into a block. Which block will be considered the next in the chain de-
pends on the proof-of-work, which basically is a challenging computational puzzle.
The validity of the solution can be verified easily even though the solution itself is
hard to find.

The puzzle is to find a block whose hash begins with a number of zero bits. The
miners are searching for a block bc such that SHA256

(
SHA256(bc)

)
= 0l||{0, 1}256−l

[9, 36]. A periodic network vote selects the value l to adjust the difficulty to ensure
that a block is created every tenth minute on average [3, 9]. The average work
for the puzzle is exponential in the number of zero bits required and the difficulty
increases if blocks are generated too fast. Note that mining consumes a great
amount of energy and computing resources.

Each block has a nonce (see Figure 3.6) which is an arbitrary number that can
be used only once. The standard strategy to solve the puzzle is brute force by trying
random nonces and hashing the block until the desired value is obtained [9, 29].
The first announced valid block containing a solution to the puzzle is considered
correct. This block then becomes the top block of the blockchain, miners discard
their work on that block and move on to the next block. If all transactions in the
block validate and a valid proof of work links the block to the chain thus far, we
say that the block is valid. A block is accepted by using that block’s hash in the
next block. To ensure blockchain integrity a block is not fully trusted until it has
a certain number of confirmations, typically six, meaning that there are six blocks
on top of that block in the blockchain [24].

The blockchain can have several branches. The consensus blockchain is the
longest version at any given time, which means the one with the greatest proof-
of-work effort invested in it. Typically this is the branch with the most blocks,
but note that the longest chain is defined as the one with the greatest excepted
difficulty to produce. This is because mining difficulty can vary. Thereby the
Bitcoin protocol depends on the assumption that an adversary can not assess more
then 50 % of the computational power of the Bitcoin network (it can be noted that
this number is questioned [21]). Two chains of equal length can occur if two valid
solutions are found approximately at the same time and miners can then choose
either fork [3]. Transactions on the discarded branch will be collected into blocks
on the prevailing branch eventually.

Mining implies hard work and miners in the Bitcoin system are rewarded. This
happens by two separate incentives. The first one is transaction fees. This is the
net difference in value between all input and all output transactions in a block. The

24



second is newly generated bitcoins. Every new block includes a generation transac-
tion without any input address and an output address belonging to the miner who
created the block (see the first transaction in Figure 3.6). This transaction is also
known as a coinbase transaction [3, 9]. Miners receive all new currency initially and
this is the only allowed mechanism for creation of money in the Bitcoin system.
Each block contained 50 new bitcoins for the first four years of operation of the
network, then decreased to 25 bitcoins and will half approximately every four years
until roughly 2140.

3.3 Communication Network

Transactions and blocks are data that are generated in a distributed way, both
addressed by a hash of the data. To transmit such information over the Internet
the Bitcoin system uses a distributed peer-to peer (P2P) network consisting of
nodes. In this section we will present an overview of the network.

The Bitcoin network consists of nodes where a Bitcoin node is a collection of
functions. The four functions are network routing, blockchain database, wallet
services and mining [2]. The nodes both provide and consume services at the same
time. The nodes can support different functionality and there is no hierarchy within
the network. When we say ”the Bitcoin network” we talk about the collection of
nodes running the Bitcoin peer-to-peer protocol. Note there are also other protocols
for example for mining [2], but this is out of scope for this thesis.

The distributed network is decentralized and created by Bitcoin users in a
dynamic way where nodes of the Bitcoin peer-to-peer network are computers that
run the Bitcoin node software [20]. The computers that participate in the network
are peers to each other, but each peer is not connected to all others. The steps to
run the network are as follows stated by Nakamoto [37]:

1. New transactions are broadcast to all nodes.

2. Each node collects new transactions into a block.

3. Each node works on finding a difficult proof-of-work for its block.

4. When a node finds a proof-of-work, it broadcasts the block to all nodes.

5. Nodes accept the block only if all transactions in it are valid and not already
spent.
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6. Nodes express their acceptance of the block by working on creating the next
block in the chain, using the hash of the accepted block as the previous hash.

Let us look more closely at the first point about transactions being broadcast. A
user sends a transaction directly to his connected peers when creating a transaction
and these peers assess whether it is valid. We recall that the fee for a transaction
is set by the each user when constructing the transaction and miners can also
exclude transactions with insufficient fees or prioritize transaction with the highest
fees. Other reasons for a transaction to be ignored by peers are that [30]:

• the transaction has already been relayed recently (repeated);

• the transaction is already in the main block chain (old);

• the transactions attempts to claim an output already claimed by a previous
transactions (double-spend);

• the input signature(s) can not be verified, e.g. attempt to spend some other
user’s coins (bad signature);

• one or more of the outputs claimed by the inputs can not be found (orphan).

If the transaction is considered valid the connected peers relay it to their peers
and the transaction gets propagated through the rest of the network until it reaches
a miner who collects it in a block. Both new transaction broadcasts and block
broadcasts do not necessarily need to reach all nodes. Transactions will get into
a block as long as they reach several nodes. A node will request a block when it
receives the next and realizes that one was missing.

3.4 Summary

Before we move on to the next chapter where we consider Bitcoin anonymity, we
summarize the basic operation of Bitcoin [34]. First at least one public-private
key pair (pkU , skU ) is generated for each user U . The public key, or hashing and
processing the public key, serve as an address adrU for the user to receive bitcoins.
When a user wants to spend his bitcoins he creates a transaction t which is broad-
cast to his peers. The transaction should prove that the user has the bitcoins he
claims to have by a signature σU . The user’s peers in turn broadcast the transac-
tion to their peers if the transaction is valid and eventually the transaction reaches
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a miner. The miner collects all pending transactions in a block and works on solv-
ing a computational puzzle until he hits the target hash. A generation transaction
with the miners address as receiver is included in the block as a reward. When
the miner solves the puzzle he broadcasts it to his peers who again broadcast it to
their peers and all other miners discard their work on that block. The miner gets
the newly generated bitcoins, which is the only allowed mechanism for generating
new coins in the Bitcoin system, and all the fees for the included transactions as
a reward. The block is a part of the blockchain once this block is referenced as a
previous block.
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Chapter 4
Anonymity in the Bitcoin System

In this chapter we consider anonymity aspects in the Bitcoin system. We recall from
Chapter 3 that all Bitcoin transactions are public, that the sender and receiver of
bitcoins are identified through public keys and that transactions can have multiple
inputs and outputs. These are features of particular interest in this chapter.

Anonymity can be defined in terms on unlinkability and we will start this
chapter by doing so for Bitcoin. The first section gives a definition in terms of
address unlinkability and briefly consider anonymity measures. In the next section
we describe address linking in Bitcoin by presenting a heuristic, show how linking
can be performed and briefly consider related work on this.

4.1 Defining Anonymity

Anonymity for Bitcoin will in this thesis be defined in terms of unlinkability and
base this section mainly on the work of Androulaki et al. [1]. They introduce a
notion called activity unlinkability. This refers to the fact that an adversary should
not be able to link two different addresses or transactions related to a user of his
choice. They are referred to as address unlinkability and transaction unlinkability
respectively. Our focus will be on address unlinkability. If two Bitcoin addresses
can be linked to the same user by an adversary, he can also link all transactions
that these addresses participate in [1, 10, 39].

We will now define an adversary A against the anonymity of Bitcoin. We as-
sume A is motivated to acquire information about the addresses related to all or
a subset of Bitcoin users. He has access to the public log of Bitcoin, pubLog, and
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is also a part of the Bitcoin system himself. Further we assume A is computa-
tionally bounded and cannot construct ill-formed Bitcoin blocks, forge signatures,
double-spend transactions that are confirmed etc. We consider the following game
B-Anonymity for defining Bitcoin anonymity:

B-Anonymity. The game B-Anonymity goes as follows:

• The adversary A specifies a transaction generator τ that generates transac-
tions in such a way that it is not obvious that A wins the game.

• The simulator Sim outputs pubLog.

• The adversary A chooses an address adr0 among the addresses that appear
in the public log of Bitcoin, adr0 ∈ pubLog, and sends it to Sim.

• The simulator Sim outputs an address adr1 such that adr1 6= adr0 if possible.

– If adr1 6= adr0 then adr1 is so that Sim randomly chooses a bit b ∈ {0, 1}
and if b = 0, Sim chooses an address adr1 ∈ pubLog such that adr0, adr1

belong to the same user, otherwise Sim randomly chooses adr1 such that
adr0, adr1 are owned by different users.

• The adversary A outputs b′ as a guess on whether the two addresses belong
to the same user or not and wins the game if b = b′.

The game can be illustrated as in Figure 4.1:

Sim

b
r← {0, 1} A

τ

pubLog

adr0 ∈ pubLog

adr1

b′

Figure 4.1: An illustration of the game B-Anonymity whereby we want to ensure
that an adversary can not link addresses to a user.

We have two ways of defining the advantage of A. First we can assess the
advantage of A winning the game in relation to an adversary A′ which plays the
same game as A but does not have access to pubLog. We assume that they both
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have gathered the same a-priori knowledge κ about whether these addresses belong
to the same user or not. We can define the advantage of A the following way:

AdvA =
∣∣Pr[b′ ← A(pubLog, κ) : b = b′]− Pr[b′ ← A′(κ) : b = b′]

∣∣ (4.1)

because this equation tells us how much information one can obtain from pubLog.
We want the probability that A wins and A′ wins to be only negligibly different as
this must mean that pubLog does not reveal much information.

Second we can assess the advantage of A winning the game in relation to an
adversary who plays the same game as A but responds to all game challenges with
random guesses. An adversary who responds with random guesses will guess the
correct b with probability 1⁄2. We can define the advantage of A the following way:

AdvA =
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ (4.2)

and based on our definition of address unlinkability and advantage of the adversary
we can more formally say something of what we require of anonymity for the Bitcoin
system in this thesis.

Definition 4. The Bitcoin system satisfies the requirement of anonymity if every
adversary A has negligible advantage in B-Anonymity.

By negligible advantage we mean that the public log should not reveal much
information to the adversary for him to base his guess on (4.1) and that the ad-
versary can not do better than to simply guess randomly whether the addresses
belong to the same user or not (4.2). Let us say that ε is the advantage of A. Since
the transaction log is public it is not possible to make the definition hold for any
negligible ε. So instead of proving that the Bitcoin system does satisfy the require-
ment of anonymity, we will actually look at how we can attack the definition by
showing how an adversary has considerable advantage regarding address linking.
Before we do so we briefly mention some anonymity measures in Bitcoin.

It is claimed that public keys are the mechanism Bitcoin use to ensure anonymity
and is based on the fact that users can create any number of anonymous Bitcoin
addresses from these keys to use in their transactions [20, 29]. Nakamato stated
in the Bitcoin white paper that privacy can be maintained as long as the public
keys are kept anonymous and further; the public can see that someone is sending
an amount to someone else, but without information linking the transactions to
anyone [37].
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An adversary who wants to de-anonymize users will attempt to construct a
one-to-many mapping between users and public keys and associate information
external to the system with the users. To prevent such an attack Bitcoin stores the
mapping of a user to his of her public keys on that user’s node only and also by
allowing each user to generate many public keys. To better protect their identity
a user can also avoid revealing any identifying information in connection with
these keys, repeatedly send varying fractions of their own bitcoins to themselves by
using multiple newly generated public keys and/or use a trusted third-party mixer
or laundry [44].

4.2 Attacking Anonymity

By allowing users to use different addresses (derived from their public keys) in
every transaction the Bitcoin system partially addresses the anonymity issue. Nev-
ertheless, the underlying Internet infrastructure that is non-anonymous together
with the fact that all Bitcoin transactions are publicly available in the blockchain,
has proven to be a threat to anonymity [3]. The original Bitcoin paper actually
cautioned that some linking of addresses is unavoidable [37].

There are several papers published on Bitcoin anonymity and one of the cate-
gories are papers that perform blockchain analysis [29]. Recall that the blockchain
is public and includes all transactions ever performed by the Bitcoin system. Data
obtained from the blockchain can be used to derive information from users and
properties like usage patterns. Such data includes which Bitcoin addresses money
comes to, where it goes, when, how many bitcoins is held within the addresses etc.

To attack the anonymity we defined in Section 4.1 the goal is use data obtained
from the blockchain (pubLog) to cluster the addresses in the blockchain that belongs
to the same user as a user can generate any number of keys (and addresses from
them). Another step can then be taken to link address clusters to identities in
the real-world. As mentioned we will start by describing a heuristic for linking
addresses before we show how the linking can be performed. We close the chapter
by giving a short overview of related work. We mainly base the presentation on
the work of Reid and Harrigan [44].

4.2.1 Heuristic for Linking Addresses

We recall that transactions can have several input addresses from Section 3.1.
Multi-input transactions occur when a user wishes to perform a payment and the
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amount exceeds the value of each of the available bitcoins in this users wallet [1].
By assuming that all input addresses of a transaction belong to the same user,
addresses of the same user can be clustered. More precise, if two (or more) public
keys are used as inputs in the same transaction we say that the same user controls
them. This heuristic can be defined as follows [34]: If two (or more) addresses are
inputs to the same transaction, they are controlled by the same user; i.e. for any
transaction t, all pk ∈ I(t) are controlled by the same user.

The sender of a transaction must know the private key belonging to each public
key used as an input in order to spend the bitcoins (described in Section 3.1). It
is therefore unlikely that the collection of public keys are controlled by multiple
parties which if so would have to reveal their private keys to each other. This
would imply that others could use their bitcoins. This makes the heuristic quite
safe. The heuristic also extends beyond the inputs to a single transaction. If one
transaction has input addresses adr0 and adr1 and another has adr1 and adr2, we
can conclude that adr0, adr1 and adr2 belong to the same user [34].

Androulaki et al. [1] showed that the advantage of an adversary who wants to
say something about whether addresses belong to the same user or not is consid-
erable given our heuristic. They also argue that the heuristic can not be easily
evaded in any future implementation of Bitcoin without compromising the basic
operation of Bitcoin. Next we show that the advantage of A in B-Anonymity is
considerable by showing how addresses can be linked using the heuristic regarding
multi-input transactions. By considerable advantage we mean, if we look at (4.1)
and (4.2), that the public log reveals information to the adversary and that he can
do better than simply guessing randomly whether addresses belong to the same
user or not.

4.2.2 Linking Addresses

First, a note on public keys and addresses is found convenient. We defined address
unlinkability and described that we want to link addresses, but here we show how
we can link public keys. Recall that the address is derived from the public key. One
can not derive the public key from the address, but we will look at clustering and
if you cluster public keys you also cluster the addresses derived from them. This
means that when we show how to link public keys we can also link the addresses
derived from these keys.

Reid and Harrigan [44] define two distinct network structures for the Bitcoin
system, the transaction network and the user network. The basis for them is
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provided by three features of the Bitcoin system; the public availability of Bitcoin
transactions, the use of public keys and the fact that a transaction can have multiple
inputs and multiple outputs. Both networks represents the flow of bitcoins over
time, but the transaction network describe the flow between transactions and the
user network between users.

The goal is to obtain the (pseudonymous) user network from the transaction
network. The transaction network describe how bitcoins move from transaction
to transaction and if we can cluster all transactions belonging to a user in this
network, we obtain the user network that describe how bitcoins move from user
to user. To do so we will move from a transaction network through an incomplete
user network to a complete user network. An overview of this process is shown in
Figure 4.2 and details of the figure will follow.

The networks can be described in graph terminology. For the transaction net-
work each vertex represents a transaction t. Each directed edge represents a flow of
bitcoins from an output of one transaction to an input of another. Further we can
consider an incomplete user network in the sense that each (diamond) vertex repre-
sents a single public key pk rather than a user U . Each directed edge represents an
input-output pair of a single transaction where the public key of the input belongs
to the user corresponding to the source and the public key of the output belongs to
the user corresponding to the target. Each subset of vertices whose corresponding
public keys belongs to a single user needs to be contracted in order to perfect the
network. For the user network each (circular) vertex represents a user.

To completely perfect the network using a dataset of transactions alone is impos-
sible because a user can create a new public-private key pair for every transaction.
However, for transactions with multiple inputs, public keys can be related to one
user by the heuristic in Section 4.2.1. Some address linking is therefore possible and
subsets of vertices in the incomplete network can be contracted. We will describe
how addresses can be linked by considering these networks and go into the details
of Figure 4.2. We follow the work of Reid and Harrigan [44]. They downloaded the
public transaction ledger and clustered Bitcoin addresses into users by using the
described heuristic. We will use the notation introduced in Section 3.1.

Figure 4.3 shows a sub-network of the transaction network. Public keys will
be used in our explanation related to the figure but are not shown. Note that
each directed edge also includes a value in bitcoins and a timestamp that is not
shown in Figure 4.2. The timestamp tells when this transaction was added to the
blockchain. Let us look at transaction t1. This transaction has one input (I1)1 and
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Figure 4.2: An overview of how we move from the transaction network (through an
incomplete user network) to obtain the user network. Regular vertices illustrates transac-
tions, diamond vertices public keys and the circles illustrates users. The figure components
are copied and edited from Reid and Harrigan [44].
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two outputs (O1)1 and (O2)1. In (O2)1 1.2 bitcoins was sent to a user identified
by the public key pk1. One of the two outputs of t2, (O2)2, sent 0.12 bitcoins to a
user identified by pk2. The inputs of t3, (Ij)3, are connected to (O2)1 and (O2)2.
The only output of t3 is to t4 which is a transaction with sixteen inputs (only four
in Figure 4.3) and only one output.

Figure 4.3: An example of a sub-network for the transaction network, the figure is
copied from Reid and Harrigan [44].

Figure 4.4 is overlaid onto the network in Figure 4.3 and shows an example
of a sub-network from an incomplete user network. Here each diamond vertex
represents a public key and each directed edge between diamond vertices represents
a flow of bitcoins from one public key to another. For each transaction, as can be
seen behind the diamond vertices, each diamond vertex represents the public keys
corresponding to the inputs of that transaction. We remember that an output
from t1 was sent to a user with public key pk1 and an output from t2 to a user
with public key pk2. These are the inputs to transaction t3 and this transaction is
therefore marked with pk1 and pk2.

Figure 4.5 is overlaid onto the network in Figure 4.4 and shows an example of
a sub-network from the user network. Here each circular vertex represents a user
and not a public key (therefore not incomplete) and each directed edge between
circular vertices represents a flow of bitcoins from one user to another. By our
heuristic, an adversary A who wants to link addresses and more specifically say
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Figure 4.4: An example of a sub-network from the incomplete user network overlaid to
the network from Figure 4.3, the figure is copied from Reid and Harrigan [44].

Figure 4.5: An example of sub-network from the user network overlaid to the network
from Figure 4.4, the figure is edited from that of the original paper [44].
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something about whether addresses belong to the same user or not, can see that
an address derived from pk1, say adr1, and an address derived from pk2, say adr2,
must belong to a single user U1. This is because they correspond to an input pair
of a single transaction. The same reasoning holds for user U2. The sixteen (four on
the figure) inputs to transaction t4 results in a contraction of sixteen public keys
into a single circular vertex, a single user U2.

By this technique addresses of the same user can be linked together by the
adversary. Further he can take another step and link address clusters to identities
in the real-world. External information on Bitcoin addresses can be obtained from
different resources on the Internet to help the clustering process and to identify
the users behind these clusters. Reid and Harrigan, for example, used forum posts
[44]. In such a way the anonymity of identities and organizations can be attacked.
Reid and Harrigan [44] concluded that it is possible to associate many public keys
with each other by using an appropriate network representation and showed how
this could be used to track a thief in a case study. They note that it is not difficult
for others to replicate their work.

4.2.3 Related Work

Reid and Harrigan published the first research article on Bitcoin anonymity [44]. To
analyze the anonymity offered by the Bitcoin system others have also exploited data
obtained from the blockchain and in this section we briefly present some of these
articles. The presentation is based on a selection of previous work [1, 29, 30, 34, 46].

Ron and Shamir [46] performed a similar analysis to that of Reid and Harrigan
[44]. They performed an analysis of typical behavior of entities on the Bitcoin
network from the blockchain data. They did not have as their goal to de-anonymize
users but answered questions like how users acquire bitcoins and how they spend
them, how they move bitcoins between their various accounts in order to better
protect their privacy etc.

Androulaki et al. [1] took another step into clustering addresses by taking
into account the same idea of Reid and Harrigan [44] with multi-input addresses.
They also added another heuristic regarding shadow addresses. In the case where
a Bitcoin transaction has two output addresses where one them is an address that
has appeared in the public ledger before and the other one never has, they assumed
that this new address is a shadow address. This address can therefore be clustered
with the input addresses. Note that they assumed that most transaction do not
have more than two output addresses. They also evaluated privacy by behavior-
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based clustering techniques and by simulating the use of Bitcoin in a university,
and found that the profiles of almost 40% of users can be recovered.

Meiklejohn et al. [34] built on past efforts to cluster addresses. They performed
an active analysis in contrast to that of Androulaki et al. [1], Reid and Harrigan
[44] and Ron and Shamir [46] by interacting with parties on the Bitcoin network to
create a list of known Bitcoin addresses. This was done by performing payments
from their own Bitcoin addresses to known services like mining pools, exchanges
sites and so on. To obtain user identification of other addresses they also browsed
the Internet. Meiklejoin et al. also used the heuristic that all input addresses
belong to the same user and a heuristic for identifying shadow addresses. Their
approach was similar to that of Androulaki et al. [1] but was not limited to two
outputs only in the transactions. The authors concluded that it is possible to trace
the movements for large Bitcoin transactions and that the anonymity provided by
the Bitcoin network is not sufficient.

Note that Bitcoin is a dynamic system. This implies that some of the hypotheses
assumed for some blockchain analysis may not completely hold. Above it is assumed
that multi-input transactions only can be created by one user which was the case
at the time the first paper on Bitcoin anonymity was published. Bitcoin did not
provide support for different users to participate in a single transaction. Later
proposals where multiple users can join a single transaction, like CoinJoin, break
this assumption but again have practical complications and may provide smaller
anonymity sets [10, 29, 33].

As we can see, Bitcoin has limitations regarding anonymity. There are three
main classes of proposals to improve anonymity [9]; i) through the peer-to-peer
network, ii) through mix services that mixes the coins of multiple users or iii) with
altcoins with integrated unlinkability. For the last class of proposals we consider
the possibility to exchange bitcoins for some alternate currency (altcoins) and later
change the altcoins back for bitcoins. Figure 4.6 shows a comparative evaluation
of some of the proposals for improving the anonymity of Bitcoin. We refer the
reader to the work of Conti et al. [16] for a greater comparison of techniques for
improving anonymity and of altcoins where both distinct features and properties,
advantages and disadvantages for each is presented.

One of the altcoin proposals is that of Miers et al. [36]; a new system designed
to cryptograhically amplify the anonymity guarantees in Bitcoin called Zerocoin.
Zerocoin propose to add decentralized anonymous electronic cash to Bitcoin and in
the next chapter we examine Zerocoin. In Chapter 6 we make a comparison of the
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Figure 4.6: A comparative evaluation of proposals for improving anonymity of Bitcoin,
the figure is copied from Bonneau et al. [9].

anonymity discussed for Bitcoin in this chapter and the anonymity considerations
to be presented for Zerocoin.
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Chapter 5
Improving Bitcoin Anonymity:
Zerocoin

Zerocoin is a cryptographic extension to Bitcoin proposed by Miers et al. [36]. It
is a decentralized electronic cash system that breaks the link between individual
Bitcoin transactions using standard cryptographic assumptions. Zerocoin does not
introduce any new trusted parties or change the security model of Bitcoin. It
extends Bitcoin with a new form of anonymous electronic cash and is essentially a
decentralized laundry that allows individual Bitcoin clients to generate new coins
(if they have sufficient bitcoins to do so). The idea is that you can take real bitcoins,
transfer them to zerocoins and pull back bitcoins with the exact same property.

Zerocoin is a construction that relies on digital commitments and zero-knowledge
proofs. Each coin is a commitment. Zerocoin does not rely on digital signatures
to validate coins but authenticates coins by proving in zero-knowledge that a coin
belongs to a public list of valid coins maintained on the blockchain. Note that
Zerocoin could be integrated into any cryptocurrency although originally proposed
for Bitcoin.

The Zerocoin construction is referred to as a decentralized electronic cash
scheme as it does not require a central coin issuer. In this chapter we first de-
scribe the algorithms that make up such a scheme. Next we define the security
required of a decentralized electronic cash scheme and we do so by two game-based
definitions. We further describe a concrete instantiation and look at how the de-
scribed construction integrates into Bitcoin. We close the chapter by giving proofs
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of security for the construction in terms of the two games defined.
This chapter is based on the original Zerocoin paper [36] and one of the authors

master thesis [35] to varying degrees. The description of the algorithms of the
scheme and the concrete construction is pretty straightforward with some modifi-
cations where it is found convenient (especially regarding notation) while security
analysis and the construction of the signature of knowledge that Zerocoin takes
use of have greater modifications and are written in more detail than where it is
introduced [35, 36].

5.1 Algorithms

In this section we define the algorithms that make up a decentralized electronic cash
scheme and define the completeness required. In the following we let C denote the
set of allowable coin values and λ represent an adjustable security parameter. A
decentralized electronic cash scheme is a tuple of algorithms (Setup, Mint, Spend,
Verify) defined as follows:

System setup. The algorithm Setup generates a set of public parameters and a
description of the set C:

• Input:

– a security parameter λ

• Output:

– public parameters params

– a description of the set C

Minting coins. The algorithm Mint generates new coins:

• Input:

– parameters params

• Output:

– a coin c ∈ C

– a trapdoor tr for c
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Spending coins. The algorithm Spend allows coins to be spent and generates
coin spend transactions:

• Input:

– parameters params

– a coin c

– the trapdoor tr for c

– some transaction string T ∈ {0,1}∗ that stores transaction-specific in-
formation

– an arbitrary set of coins C

• Output:

– a proof π and a serial number sn if c ∈ C ⊆ C

– otherwise ⊥

Verifying transactions. The algorithm Verify checks the validity of a transac-
tion:

• Input:

– parameters params

– a proof π

– a serial number sn

– transaction information T

– a set of coins C

• Output:

– 1 if C ⊆ C and (π, sn, T ) is valid

– 0 otherwise

It is worth noting that the serial number sn that is released during the spending of a
coin is a unique value. This is designed to prevent any user from spending the same
coin twice. We call (π, sn) a coin spend transaction or simply a spend transaction.
The transaction string T is an arbitrary string intended to store transaction-specific
information, as the identity of the receiver. Before we formalize the completeness
of our decentralized electronic cash scheme we summarize the algorithms:
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• params ← Setup(λ)

• (c, tr) ← Mint(params)

• (π, sn) ← Spend(params, c, tr, T , C)

• {0, 1} ← Verify(params, π, sn, T , C)

We want every decentralized electronic cash scheme to satisfy the following
requirement for completeness:

Definition 5. Let params← Setup(λ), (c, tr)← Mint(params) and C ⊆C be any
valid set of coins where |C| is at mostN . Let (π, sn) ← Spend(params, c, tr, T , C).
A decentralized electronic cash scheme Π = (Setup, Mint, Spend, Verify) is com-
plete if ∀ C, T and randoms coins used in the above algorithms the following
equality holds with all but negligible probability:

Verify
(
params, π, sn, T , C ∪ {c}

)
= 1.

If Setup, Mint and Spend are executed correctly, we want the transaction to
be verified in Verify. For completeness we want a prover to be able to convince
a verifier that a true statement is indeed true. This means that an honest user
producing a spend transaction by following the scheme should be able to convince
others that he did so and his transaction should be accepted with all but negligible
probability.

5.2 Security

The security of a decentralized electronic cash system will be defined by two games.
We first describe the game Z-Anonymity and then the game Balance. The first
game ensures that an adversary can not link a given coin spend transaction (π, sn)
to the coin associated with it and the latter that an adversary can not spend more
coins than he mints, i.e. that a party can not forge coins. Proof of security is
provided in Section 5.4.

5.2.1 Anonymity

We continue to define anonymity in terms of unlinkability as we did for Bitcoin.
Recall that in the algorithm Spend a coin is spent and the output is a (coin) spend
transaction (π, sn). We want to ensure that an adversary can not link a given spend

44



transaction to the coin associated with it, which implies linking the address used to
mint the original zerocoin to the address used to redeem the zerocoin. We let the
adversary provide many of the coins used in generating the spend transaction and
still want the linking to be unfeasible. We consider the following game for defining
anonymity in Zerocoin:

Z-Anonymity. The game Z-Anonymity
(
Π, A, λ

)
goes as follows:

• The simulator Sim outputs params ← Setup(λ).

• For i ∈ {0, 1} the simulator runs (ci, tri) ← Mint(params), outputs (c0, c1)
and stores the associated trapdoors (tr0, tr1).

• The adversary A outputs (C, T ) ← A(params, c0, c1) using any strategy he
wishes.

• The simulator Sim samples b r← {0, 1} and outputs
(π, sn) ← Spend

(
params, cb, trb, T , C ∪ {c0, c1}

)
.

• The adversary A outputs b′ ← A(π, sn) as a guess of which coin was spent.

The game can be illustrated as in Figure 5.1:

Sim

b
r← {0, 1} A

params

c0, c1

C, T

π, sn
b′

Figure 5.1: An illustration of the game Z-Anonymity whereby we want to ensure
that an adversary can not link a given spend transaction the coin associated with it.

The adversary A wins if b = b′. We want the information provided to A not to
reveal anything about the bit b so that A can not do any better than an adversary
who simply guesses b randomly, i.e. who guesses the correct b with probability 1⁄2.
We define the advantage of A as follows:

AdvA =
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ (5.1)
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and close this section by giving a more formal definition of the what we require of
anonymity for a decentralized electronic cash system like Zerocoin:

Definition 6. The requirement for anonymity is satisfied for a decentralized elec-
tronic cash scheme Π = (Setup, Mint, Spend, Verify) if every adversary A has
negligible advantage in Z-Anonymity.

5.2.2 Balance

As mentioned we would like to ensure that an adversary can not spend more coins
than he mints. We give the adversary a collection of valid coins and an honest
simulator that he can use to spend any of these coins. If A produces M coins
and M + 1 valid spends, no transaction will duplicate a serial number or modify a
transaction produced by the simulator. We consider the following game for defining
balance in Zerocoin where the adversary wants to spend more coins than he mints:

Balance. The game Balance
(
Π, A, N, λ

)
goes as follows:

• The simulator Sim outputs params ← Setup(λ).

• For i = 1 to N the simulator runs (ci, tri) ← Mint(params) and outputs
{c1, ..., cN}

• The adversary A sends a query (ci, Ci, T i) to Sim

• The simulator Sim does the following:

– If ci /∈ {c1, ..., cN} output ⊥.

– Otherwise output (πi, sni)← Spend(paramsi, ci, tri, T i, Ci) and record
(sni, T i) in the set S.

• The adversary A outputs
(
c∗1, ..., c∗M , V ∗1, ..., V ∗M , V ∗M+1

)
.

Note that the raised star denotes that something is produced by A. Also note
that the number of queries is not necessarily the same as the number of honest
minted coins. The adversary can send as many queries as he likes and he can
also query coins not among the honest minted coins (results in ⊥). However, we
use the index i for both honest minted coins by Sim and queries from A to make
it clear that Sim only spends coins he has minted (and has the trapdoor to).
The simulator records (sni, T i) for the ith spend, meaning that a coin with serial
number sni is spent in a transaction with transaction string T i. This coin that the
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simulator spends is one of his minted coins ci for i = 1 to N , but the ith spend
is not necessarily for the ith minted coin (but only minted coins are spent by the
simulator).

When Sim outputs sni as response to the ith query this is a serial number sni
for one of his minted coins ci, but the first minted coin is not necessarily spent in
the first query (or at all). The game can be illustrated as in Figure 5.2:

Sim

Record (sni, T i)
A

params, c1, ..., cN

(ci, Ci, T i)

⊥ or (πi, sni)

c∗1, ..., c∗M , V 1, ..., VM , VM+1

Figure 5.2: An illustration of the game Balance whereby we want to ensure that
an adversary can not spend more coins than he mints.

We give the adversary access to coins and spend transactions produced by an
honest party. The adversary can alter valid coins, for example by modifying the
corresponding transaction information string T . He can also specify arbitrary input
for the value C. We say that A wins if ∀ V ∗ = (π∗, sn∗, T ∗, C∗) ∈
{V ∗1, ..., V ∗M , V ∗M+1} the following holds:

• Verify(params, π∗, sn∗, T ∗, C∗) = 1,

• C∗ ⊆ {c1, ..., cN , c∗1, ..., c∗M},

• (sn∗, T ∗) /∈ S and

• sn∗ appears only in one tuple from {V ∗1, ..., V ∗M , V ∗M+1}.

This means that we require that the spends A produces must be verified (recall
that this means that C∗ ⊆ C and (π∗, sn∗, T ∗) is valid), the coins in C∗ must be
among the the coins produced in Mint by an honest party or by A through the
simulator Sim, the pair (sn∗, T ∗) for a given transaction should not be recorded
in the set of records S by Sim and a serial number sn∗ should only appear once
among the tuples of valid spend transactions.
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If these conditions hold the adversary A can produce more spends than minted
coins and he wins the game. We note the event that A wins by E. We define the
advantage of A as the probability that A wins Balance;

AdvA = Pr[E] (5.2)

and close this section by giving a more formal definition of the what we require of
balance for a decentralized electronic cash system like Zerocoin:

Definition 7. The requirement of balance is satisfied for a decentralized electronic
cash scheme Π = (Setup, Mint, Spend, Verify) having at most N coins if ∀ N every
adversary A has negligible advantage in Balance.

5.3 Instantiation

In this section we describe an instantiation of the decentralized electronic cash
scheme from Section 5.1. This is the Zerocoin construction. Before we describe
the construction we need to describe an accumulator is made use of. Further we
describe the construction of a signature of knowledge before we close the chapter
by describing how the Zerocoin construction integrates with Bitcoin.

5.3.1 Accumulation

The construction to be described uses an accumulator. An accumulator scheme is
an algorithm that allows one to combine a set of values into one short accumula-
tor. There exists a short witness w that a given value was incorporated into the
accumulator and at the same time it is infeasible to find a witness for a value that
was not accumulated. The accumulator is used to prove that you know a coin c in
the set of all minted zerocoins C without revealing which coin it is. This accumu-
lator is based on the Strong RSA assumption. For details we refer the reader to
Benaloh and de Mare [7] who introduced the concept and Barić and Pfitzmann [4]
and Camenisch and Lysyanskaya [12] who improved it. The following algorithms
define the accumulator used in the construction:

Accumulation setup. The algorithm AccumSetup generates a set of public pa-
rameters:

• Input:
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– a security parameter λ

• Output:

– n = p′q′ where p′ and q′ are primes sampled with polynomial dependence
on the security parameter

– a seed value u ∈ QRn [4, 36] where u 6= 1 and QRn denote the quadratic
residues modulo n

Accumulating. The algorithm Accumulate computes an accumulator Λ of prime
numbers:

• Input:

– parameters params (n, u)

– a set of prime numbers C = {c1, ..., cN} | c 6= p′, q′∧ c ∈
[
X,X2) for

some fixed X

• Output:

– an accumulator Λ computed as uc1c2...cN (mod n)

We will say a bit more about the range
[
X,X2) in the next section.

Generating a witness. The algorithm GenWitness generates a witness w that a
given value c is accumulated:

• Input:

– parameters params (n, u)

– a set of prime numbers C as in Accumulate

– a value c ∈ C

• Output:

– a witness w which is the accumulation of all the values in C besides c;
w = Accumulate

(
params, C \{c}

)
Verifying. The algorithm AccVerify checks whether a presented witness for a
given value in fact is a valid witness:

• Input:
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– parameters params (n, u)

– an accumulator Λ

– an element c

– a witness w

• Output:

– 1 if Λ = Λ′ ≡ wc (mod n), c is prime and c ∈
[
X,X2)

– 0 otherwise

The accumulator can be summarized as follows:

• params ← AccumSetup(λ)

• Λ ← Accumulate(params, C)

• w ← GenWitness(params, c, C)

• {0, 1} ← AccVerify(params, Λ, c, w)

A trusted setup process is assumed for generating the accumulator parameters
[36, 38]. Note that the accumulator trapdoor (p′, q′) can be deleted immediately
after the parameters are generated as they are not used after AccumSetup. Also
note that the accumulator can be incrementally updated as pointed out by Miers
et al. [36], but we will not discuss this any further.

If the Strong RSA assumption holds the accumulator satisfies a strong collision-
resistance property [12]. This ensures that no adversary running in feasible time
can produce a pair (c, w) where c /∈ C that is verified in AccVerify.

An efficient zero-knowledge proof of knowledge that a (committed) value is
accumulated is presented by Camenisch and Lysyanskaya [12]. This is converted
into a non-interactive zero-knowledge proof of knowledge (NIZKPoK) by the Fiat-
Shamir transform. The resulting proof is referred to the following way:

NIZKPoK{(c, w) : AccVerify
(
(n, u),Λ, c, w

)
= 1}.

Recall that this notation denotes a proof of knowledge of the elements c and w that
satisfies AccVerify

(
(n, u), Λ, c, w

)
= 1, i.e. a proof of knowledge of a witness w

for a value c that verifies in AccVerify. This means a valid witness w that c is
accumulated. The proof is one of two parts in a signature of knowledge used in the
construction to be described.
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5.3.2 Construction

In this section we describe an instantiation of a decentralized electronic cash scheme
which is the Zerocoin construction. We assume the hardness of the Strong RSA
problem and the Discrete logarithm problem. We also assume the existence of a
zero-knowledge proof system. The Zerocoin system can be proven secure under
these assumptions, something we do in Section 5.4. The construction is based on
the algorithms defined in Section 5.1:

• params ← Setup(λ)

• (c, tr) ← Mint(params)

• (π, sn) ← Spend(params, c, tr, T , C)

• {0, 1} ← Verify(params, π, sn, T , C)

Next we describe the construction in detail.

System setup. The details of params ← Setup(λ) are as follows:

• Run AccumSetup(λ) on input λ to obtain (n, u).

• Generate primes p, q such that p = 2jq + 1 for j ≥ 1 according to Miers et
al. [36].

• Select random generators g, h for G where G ⊆ F∗p.

• Output params = (n, u, p, q, g, h).

Minting coins. The details of (c, tr) ← Mint(params) are as follows:

• On input params select sn, r r← Zq.

• Compute the commitment c = commit(sn, r) where c ← gsnhr (mod p)
such that c is prime in

[
X,X2) for a fixed X.

– If c is not a prime, start Mint from the beginning and try again. We
want c to be prime as the accumulator accumulates prime numbers in
Accumulate.

• Set tr = (sn, r).

• Output (c, tr).
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Note that the set we commit to is the set of serial numbers randomly chosen
from Zq, the set of randomness is numbers randomly chosen from Zq and the set
of commitments C will exist in F∗p. The commitments are Pedersen commitments
as described in Section 2.4.1. The range

[
X,X2) is defined as so to guarantee that

the product of two commitments is outside the interval. This is described in an
article based on Zerocoin [19].

Spending coins. The details of (π, sn) ← Spend(params, c, tr, T , C) are as
follows:

• (Output ⊥ if c /∈ C.)

• Compute Λ ← Accumulate
(
(n, u), C

)
.

• Compute w ← GenWitness
(
(n, u), c, C

)
.

• Output (π, sn).

The proof π compromises the following signature of knowledge on the transaction
string T :

π = ZKSoK[T ]{(c, w, r) : AccVerify
(
(n, u),Λ, c, w

)
= 1 ∧ c = gsnhr}.

This signature of knowledge proves knowledge of a coin c, a witness w and a random
number r such that i) the coin c was minted somewhere in the past by showing that
the committed value is in an accumulator and that ii) the coin c can be opened to
a serial number sn with commitment randomness r. We examine the signature of
knowledge further after the last part of the construction:

Verifying transactions. The details of {0, 1} ← Verify(params, π, sn, T , C)
are as follows:

• Compute Λ← Accumulate
(
(n, u), C

)
, recall that Λ is computed as uc1c2...cN

(mod n) when C = {c1, ..., cN}.

• Verify that π is the signature of knowledge on T by using the public values
(recall from AccVerify that you compute Λ’ ≡ wc (mod n) and check if
Λ’ = Λ.

• Output 1 if the proof verifies successfully, output 0 otherwise.
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We want to note as Miers et al. [36] that we specify security in terms of a single
adjustable security parameter λ, but in reality there are three distinct security
choices for the Zerocoin construction; the size of the RSA modulus used in the
accumulator, the size of the group used in the coin commitments and the security
of the zero-knowledge proofs. We will not explore this any further and move on to
the signature of knowledge which is a central part of the Zerocoin construction.

5.3.3 Construction of the Signature of Knowledge

In this section we consider the signature of knowledge π which proves that the
spending party can open one of the commitments in C to a presented serial number
sn. The signature is composed of two zero-knowledge proofs; first that a committed
value c is accumulated and second that c is a commitment to sn (which means that
c = gsnhr). Recall that

π = ZKSoK[T ]{(c, w, r) : AccVerify
(
(n, u),Λ, c, w

)
= 1 ∧ c = gsnhr}.

The first part (that we remember from Section 5.3.1), a proof of knowledge of c
and w, is given by Camenisch and Lysyanskaya [12] and the second part, a proof
of knowledge of c and r, is briefly presented by Miers [35] and Miers et al. [36]. We
refer the reader to Camenisch and Lysyanskaya for first part part of the proof as we
focus on the construction of the second part. Note that this presentation is more
detailed than that of where it is briefly introduced [35, 36]. The proof we consider
is a double discrete logarithm proof. First we look at an interactive protocol which
we later make non-interactive.

Interactive protocol. We consider, given a cyclic group G ⊆ F∗p of order q where
p = 2jq + 1 with generator g1, g2, a cyclic group H ⊆ F∗q of order ` where q = 2`+1
with generator h1 and y1 = g1

h1
x1
g2
x2 and y2 = h1

x1 , how to prove knowledge
of x1 and x2. A prover P does so by executing the protocol in Figure 5.3 with a
verifier V for i = 1 to k where k is a security parameter.

The proof in Figure 5.3 proves knowledge of x1 and x2 such that y1 = g1
h1
x1
g2
x2

and y2 = h1
x1 . We recall the commitment c = gsnhr for Zerocoin. We have chosen

to use a general notation and not the Zerocoin notation for convenience, but if we
consider a case where g = g1, h = g2, sn = h1

x1 and r = x2, we prove knowledge of
c and r such that c is a commitment to sn by proving we know sn with commitment
randomness r such that c = gsnhr. Next we prove that the proof is complete, has
special soundness and is special honest-verifier zero-knowledge.
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Public input: p, q, y1, y2, g1, g2, h1 and h
Private input to P: x1, x2 such that y1 = g1

hx1
g2
x2 and y2 = h1

x1

Prover P Verifier V

r1, ..., rk
r← Z`, z1, ..., zk

r← Zq
αi ← g1

h1
ri
g2
zi

α′i ← h1
ri

α1,...,αk,α
′
1,...,α

′
k−−−−−−−−−−−−−−−→

β1, ..., βk
r← {0, 1}

β1,...,βk←−−−−−−−−−
γi ← ri − βix1 mod `
γ′i ← zi − βix2 mod q

γ1,...,γk,γ
′
1,...,γ

′
k−−−−−−−−−−−−−−→

α̃i ← y
βi
1 g1

h1
γi
g2
γ′i

α̃′i ← y
βi
2 h1

γi

α̃i
?= αi, α̃

′
i

?= α′i

Figure 5.3: An interactive protocol for proving knowledge of a double discrete
logarithm.
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Theorem 1. The proof in Figure 5.3 is complete.

Proof. We show that the proof is complete by showing that the verifier V will
accept on public input (p, q, y1, y2, g1, g2 and h1) if the prover P is honest.

βi = 0 :

α̃i = y
βi
1 g1

h1
γi
g2
γ′i = y0

1g1
h1
ri
g2
zi = g1

h1
ri
g2
zi = αi

α̃′i = y
βi
2 h1

γi = y0
2h1ri = h1

ri = α′i

βi = 1 :

α̃i = y1g1
h1

(ri−x1)
g2

(zi−x2) = g1
h1
x1
g2
x2g1

h1
(ri−x1)

g2
(zi−x2)

= g1
h1

(x1+ri−x1)
g2

(x2+zi−x2) = g1
h1
ri
g2
zi = αi

α̃′i = y
βi
2 h1

γi = y2h1
(ri−x1) = h1

x1h1
(ri−x) = h1

(x1−x1)h1
ri = h1

ri = α′i

Since α̃i = αi and α̃′i = α′i the proof is complete.

Theorem 2. The proof in Figure 5.3 has special soundness.

Proof. We will show special soundness for the proof by showing that it is possible
to find the secret (x1 and x2) if we have two accepting conversations between the
prover and the verifier from rewinding. We perform the rewinding for the protocol
in Figure 5.3 as follows:

1. Run P∗ ←→ V until P∗ sends (αi, α′i).

2. Remember the state of P∗ and V.

3. Choose V’s challenge (βi) randomly.

4. Run P∗ ←→ V until P∗ sends (γi, γ′i).

5. Rewind.

6. Choose a new challenge (β̂i) randomly.

7. Run P∗ ←→ V until P∗ sends (γ̂i, γ̂′i).

This gives us two accepting conversations between P∗ and V:

(
(αi, α′i), (βi), (γi, γ′i)

)
and

(
(αi, α′i), (β̂i), (γ̂i, γ̂′i)

)
.
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We assume without loss of generality that for some i we have βi 6= β̂i. Since the
conversations are accepting we know that the following must hold:

α̃i = y0
1g1

h1
γi
g2
γ′i = y1

1g1
h1
γ̂i
g2
γ̂′i =⇒ g1

h1
γi
g2
γ′i = y1g1

h1
γ̂i
g2
γ̂′i .

By manipulation of this expression we see that

g1
h1
γi
g2
γ′i = y1g1

h1
γ̂i
g2
γ̂′i =⇒ y1 = g1

h1
γi
g2
γ′i(g1

h1
γ̂i
g2
γ̂′i)−1 = g1

h1
(γi−γ̂i)

g2
(γ′i−γ̂

′
i).

We recall that y1 = g1
h1
x1
g2
x2 so we have

g1
h(γi−γ̂i)

g2
(γ′i−γ̂

′
i) =⇒ x1 ≡ γi − γ̂i mod `, x2 ≡ γ′i − γ̂

′
i mod q.

From the rewinding, which gave us the two accepting conversations between the
prover and the verifier, we managed to compute the secret input of the prover.
This means that the protocol has special soundness (Section 2.3.1) and we have
shown what we wanted.

Theorem 3. The proof in Figure 5.3 is special honest-verifier zero-knowledge.

Proof. To show that the proof is special honest-verifier zero-knowledge we need to
show that there exists a simulator Sim that on the same public input as in a real
conversation produced by a prover P and verifier V can produce a conversation
that is indistinguishable from that between from P and V. More specifically, we
want to show that Sim on public input (p, q, y1, y2, g1, g2, h1) and challenge (βi)
outputs an accepting conversation

(
(αi, α′i), (βi), (γi, γ′i)

)
that is indistinguishable

from a real conversation
(
(αi, α′i), (βi), (γi, γ′i)

)
produced by P and V with public

input (p, q, y1, y2, g1, g2, h1), challenge (βi) and private input x1 and x2.
In the real conversation between P and V we replace V with (βi). The prover

first selects (αi, α′i) at random and computes (γi, γ′i). In the simulated conversation
the simulator Sim is given (βi), selects (γi, γ′i) at random and computes (αi, α′i).
We want to show that one can not determine in which of the two ways an accepting
conversation

(
(αi, α′i), (βi), (γi, γ′i)

)
was created. This means we want to show that

Pr[
(
P←− (βi)

)
 
(
(αi, α′i), (βi), (γi, γ′i)

)
]

= Pr[
(
Sim←− (βi)

)
 
(
(αi, α′i), (βi), (γi, γ′i)

)
]. (5.3)

where the arrow can be read ”outputs”. We need to show that given
(
(αi, α′i), (βi)

)
there is only one choice for (γi, γ′i) and given

(
(βi), (γi, γ′i)

)
there is only one choice
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for (αi, α′i). We start by considering the first of the two probabilities in (5.3) and
observe that

Pr[
(
P←− (βi)

)
 
(
(αi, α′i), (βi), (γi, γ′i)

)
]

= Pr[αi = g1
h1
ri
g2
zi ∧ α′i = h1

ri |ri
r← Z`, zi

r← Zq]

= Pr[g2
zi = αig1

−h1
ri ∧ h1

ri = α′i|ri
r← Z`, zi

r← Zq] (5.4)

= Pr[zi ≡ logg2αi − h1
ri logg2g1 ∧ ri ≡ logh1α

′
i|ri

r← Z`, zi
r← Zq].

First we show that there exists a unique pair (ri, zi) such that g1
h1
ri
g2
zi = αi and

h1
ri = α′i. From ri ≡ logh1α

′
i we know that there exists a unique ri such that

logh1α
′
i ≡ ri. This implies that there exists a unique zi such that zi ≡ logg2αi −

h1
ri logg2g1. We therefore know that there exists one and only one pair (ri, zi) such

that g1
h1
ri
g2
zi = αi and h1

ri = α′i. Next we show that given
(
(αi, α′i), (βi)

)
, where

we know that (αi, α′i) is uniquely specified for (ri, zi), there is only one choice for
(γi, γ′i). We assume we have two accepting conversations

(
(αi, α′i), (βi), (γi, γ′i)

)
and

(
(αi, α′i), (βi), (γ̂i, γ̂′i)

)
. We know that the following must hold:

(∗) αi = y
βi
1 g1

h1
γi
g2
γ′i = y

βi
1 g1

h1
γ̂i
g2
γ̂′i

(∗∗) α′i = y
βi
2 h1

γi = y
βi
2 h1

γ̂i

where the second equation (**) gives us that γi = γ̂i. It then follows from the first
equation (*) that γ′i = γ̂′i. This means that there is only one choice for (γi, γ′i)
given

(
(αi, α′i), (βi)

)
. Due to the injectivity it is sufficient to consider where ri and

zi is drawn from in (5.4). Since ri is drawn at random from Z`, zi is drawn at
random from Zq and there are k pairs we have

Pr[
(
P←− (βi)

)
 
(
(αi, α′i), (βi), (γi, γ′i)

)
] =

(
1
`
· 1
q

)k
= 1

(`q)k (5.5)

for the first of the two probabilities in (5.3). Next we consider the simulated
conversation and the following probability:

Pr[
(
Sim←− (βi)

)
 
(
(αi, α′i), (βi), (γi, γ′i)

)
]

= Pr[γ̂i = γi ∧ γ̂
′
i = γ′i|γ̂i

r← Z`, γ̂′i
r← Zq].

Note that we write γ̂i
r← Z` since ri

r← Z` and γi ← ri−βix1 (mod `), and γ̂′i
r← Zq

since zi
r← Zq and γ′i ← zi − βix2 (mod q). It is clear from the computation of
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(αi, α′i) given
(
(βi), (γi, γ′i)

)
that there is only one choice for (αi, α′i), therefore we

can say that

Pr[
(
Sim←− (βi)

)
 
(
(αi, α′i), (βi), (γi, γ′i)

)
]

= Pr[γ̂i = γi ∧ γ̂
′
i = γ′i|γ̂i

r← Z`, γ̂′i
r← Zq] =

(
1
`
· 1
q

)k
= 1

(`q)k (5.6)

and conclude from (5.5) and (5.6) that

Pr[
(
P←− (βi)

)
 
(
(αi, α′i), (βi), (γi, γ′i)

)
]

= Pr[
(
Sim←− (βi)

)
 
(
(αi, α′i), (βi), (γi, γ′i)

)
]

which is what we wanted to show. This shows that our proof is special honest-
verifier zero-knowledge and more specifically perfect special honest-verifier zero-
knowledge since the probability spaces are perfectly indistinguishable (they are the
same).

We have shown that our interactive proof is complete, has special soundness
and is special honest-verifier zero-knowledge. This is a Σ-protocol. As we can recall
such protocols can be made non-interactive.

Non-interactive protocol. We can take the interactive Σ-protocol that has spe-
cial soundness and is special honest-verifier zero-knowledge and make the protocol
non-interactive by the Fiat-Shamir transform. The resulting proof will be sound
and zero-knowledge in the random oracle model (reffering to Section 2.3.3). By
including the transaction string T in the hash computed by the prover, the proof
will also serve as a signature. We refer to the resulting non-interactive proof as a
zero-knowledge signature of knowledge (ZKSoK).

We let k ≤ l be two security parameters and H : {0, 1}∗ → {0, 1}l be a collision-
resistant hash function. As in the interactive version y1 = g1

h1
x1
g2
x2 and y2 = h1

x1

is given and we want to prove knowledge of x1 and x2. The symbol || denotes the
concatenation of two binary strings or of binary representations of integers and
group elements and by β[i] we mean the ith bit of the string β. To construct the
signature of knowledge first generate 2k random numbers r1, ..., rk and z1, ..., zk.
For i = 1 to k compute αi ← g1

h1
ri
g2
zi and α′i ← h1

ri . Compute

β ← H
(
T ||y1||y2||g1||g2||h1||α1||...||αk||α′1||...||α′k

)
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and (where β[i] is either 0 or 1)

γi ← ri − β[i]x1,

γ′i ← zi − β[i]x2.

The signature of knowledge on the transaction string T is
(
β, (γi, γ′i)

)
. To verify

the signature compute:

α̃i ← y
β[i]
1 g1

h1
γi
g2
γ′i ,

α̃′i ← y
β[i]
2 h1

γi

and
β′ ← H

(
T ||y1||y2||g1||g2||h1||α̃1||...||α̃k||α̃′1||...||α̃′k

)
and check whether β = β′. The protocol below illustrates the non-interactive proof
(for i = 1 to k):

Public input: p, q, y1, y2, g1, g2 and h1
Private input to P: x1, x2 such that y1 = g1

hx1
g2
x2 and y2 = h1

x1

Prover P Verifier V

r1, ..., rk
r← Z`, z1, ..., zk

r← Zq
αi ← g1

h1
ri
g2
zi

α′i ← h1
ri

β ← H
(
T ||y1||y2||g1||g2||h1||α1||...||αk||α′1||...||α′k

)
γi ← ri − β[i]x1 mod `
γ′i ← zi − β[i]x2 mod q

β,γ1,...,γk,γ
′
1,...,γ

′
k−−−−−−−−−−−−−−−−→

α̃i ← y
β[i]
1 g1

h1
γi
g2
γ′i

α̃′i ← y
β[i]
2 h1

γi

β′ ← H
(
T ||y1||y2||g1||g2||h1||α̃1||...||α̃k||α̃′1||...||α̃′k

)
β

?= β′

Figure 5.4: A non-interactive protocol from the interactive in Figure 5.3 for proving
knowledge of a double discrete logarithm.

Since we showed that the interactive proof has special soundness (Theorem 2)
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and is special honest-verifier zero-knowledge (Theorem 3) we have that the non-
interactive proof illustrated in Figure 5.4 will be sound and zero-knowledge in the
random oracle model. These are properties we will make use of in our security
analysis in Section 5.4.

5.3.4 Integrating into Bitcoin

Before we move on to prove security for the Zerocoin construction we describe
how it integrates into Bitcoin. As mentioned Zerocoin is essentially a decentralized
laundry where the idea is that you can take bitcoins from your wallet, transfer
them to zerocoins (where they get mixed with other user’s coins) and pull back
bitcoins with the exact same property. You temporarily pool bitcoins together in
exchange for this currency called zerocoin. Nobody should be able to link your new
coins to the old ones.

Minting coins. Let us assume Alice wants to mint a zerocoin of denomination d.
In the described construction individual coins all have the same value, but it is
noted by Miers et al. [36] that multiple values can be supported by running distinct
Zerocoin instantiations simultaneously. Alice will run Mint(params) to obtain
(c, tr). Zerocoins are just numbers and each is a digital commitment to a random
serial number. What Alice keep secret is the trapdoor tr, which is the serial number
sn and the randomness r used to mint c. This is her trapdoor to use that zerocoin
again.

What gives the zerocoins value is that they are put on the blockchain; one
zerocoin on the blockchain costs one bitcoin. Once a mint transaction has been
accepted on the blockchain the zerocoin is included in a global accumulator by
miners. The currency (bitcoin) is then essentially placed in escrow and can not be
accessed except through a Zerocoin spend.

The scripting language Bitcoin uses can not be used for sophisticated calcu-
lations such as verifying zero-knowledge proofs so the Zerocoin system extends
Bitcoin by adding a new instruction, ZEROCOINMINT [36]. Minting a zerocoin
constructs a transaction with an output where scriptPubKey contains this in-
struction and a coin c.

Spending coins. A Zerocoin spend transaction allows you to claim the bitcoins
left by some other Zerocoin user. Let us assume Alice wants to spend c with
Bob. She constructs a partial transaction t′. This transaction references an un-
claimed mint transaction in the input I and includes Bob’s address in the output
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O. Alice then goes through all valid mint transactions in the block chain, assem-
bles the set of minted coins C and outputs (π, sn) ← Spend(params, c, tr, T , C)
where T = H(t′). Recall that the serial number for the coin is released during the
spending of it so that Alice can not spend the same coin twice.

When Alice gives a valid proof she can go through the blockchain, find some
other zerocoin left by another user and claim the bitcoin belonging to that zerocoin
back. The spend transaction (π, sn) Alice creates to spend a zerocoin claims
as input some Zerocoin mint transaction. The transaction has a scriptSig-field
containing (π, sn) and a reference to the block containing the accumulator used
in π. This is the input of t′. Recall that in the proof Alice proves knowledge of a
zerocoin that is on the blockchain and the randomness that causes that zerocoin
commitment to open to the serial number she presents. Since the proof is zero-
knowledge there is no actual way to link the address that was used to mint the
original zerocoin to the address used to redeem the zerocoin. Any given coin spend
is hence anonymous since it can not be traced to its withdrawal.

For an adversary not being able to simply change who the transaction is payed
to, Alice needs to sign the transaction. In a normal Bitcoin transaction this is done
by an ECDSA signature by the key specified in scriptPubKey of the referenced
input, but there is no such ECDSA for a spend transaction for an arbitrary zerocoin
[36]. Alice therefore uses the signature of knowledge π to sign the transaction
hash that normally would be signed using ECDSA. The proof is not just used for
spending a coin but as a signature of knowledge also signing the Bitcoin address
where the withdrawn bitcoins should be sent.

Verifying transactions. The proof is non-interactive so that the withdrawal of
bitcoins from the escrow pool can be verified at any time. Zerocoin spend trans-
actions must first be verified by a miner to make sure invalid transactions are not
included in a block and then again by the distributed network running Bitcoin to
make sure that an invalid block is not included in the blockchain. A new block
should be created once every 10 minutes according to specifications of the Bitcoin
protocol and if verification for blocks with a reasonable number of zerocoins takes
longer than 10 minutes the network can not function.

Verification means checking that Verify(params, π, sn, T , C) = 1. By doing
so it is verified that π is a valid signature of knowledge. It is also checked that the
serial number sn does not appear in any previous transaction to prevent double-
spending. The spend transaction is considered valid if these conditions hold and
the referenced mint transaction is not claimed as input to a different transaction.
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Alice is then allowed to redeem d bitcoins left by some other Zerocoin user and
embeds c in the output of a Bitcoin transaction t that spends d (+ fees) classical
bitcoins.

5.4 Proof of Security

In this section we prove security for the Zerocoin construction in Section 5.3.2
based on the security definitions with rise in the games Z-Anonymity and Balance

from Section 5.2. When it comes to security our focus in this thesis has been on
anonymity, but we also want to prove that the balance property is fulfilled. An
electronic cash system where one could spend more coins than minted would of
course be inexpedient. We are inspired by the work of Miers [35] and Miers et al.
[36], but the proofs are modified and written in more detail.

Note that the proofs assume the existence of an efficient simulator and an
extractor for the signature of knowledge that can extract the witness used by an
adversary to construct a proof, even when the adversary is supplied with simulated
proofs.

5.4.1 Anonymity

Recall that we defined the game Z-Anonymity whereby we wanted to ensure that an
adversary A could not link a given coin spend transaction the the coin associated
with it. We start by presenting a theorem that claims under what conditions the
requirement of anonymity is satisfied. Next we give a proof of security by proving
the theorem.

Theorem 4. Assume we have a decentralized electronic cash system Π where the
signature of knowledge π is computationally zero-knowledge in the random oracle
model, then the adversary A in Z-Anonymity has negligible advantage.

Recall that in Z-Anonymity the adversary A outputs a bit b′ as a guess on which
coin is spent and wins if b = b′. We want to prove that A’s view is independent of
the bit b so that the advantage of A must be negligible. We will perform the proof
in two steps and argue in each step that A’s view is independent of the bit b:

• Replace the signature of knowledge π provided to A with a simulated signa-
ture of knowledge π′.
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• Replace the coins (c0, c1) and serial number sn provided to A with random
values from the appropriate distributions.

Proof. We let A be an adversary that has advantage ε in Z-Anonymity.

Replacing the signature of knowlegde. We denote the game Z-Anonymity by
G0. Further we consider a game identical to G0 except that the proof π provided to
A is simulated by a ZKSoK-simulator instead of generated in Spend. We denote
this game by G1. We want to argue that π can be replaced by a simulated signature
π′ without substantially affecting the advantage of A if π is computationally zero-
knowledge. If the system is secure if π is computationally zero-knowledge, the
system is also secure if π is statistically or perfect zero-knowledge. We know that
π is zero-knowledge according to Section 5.3.3.

To argue we will show that if A has advantage different than ε when π is replaced
with π′, we can construct a distinguisher that determines if the proof is as in the
real game (G0) or simulated (G1). We construct the game G2 where we assume we
have an adversary A′, a simulator Sim′ and an oracle OSoK . On input a trapdoor
OSoK samples b′′ and if b′′ = 0 outputs π as in the real game (G0) and a simulated
proof if b′′ = 1. The game G2 goes as follows (illustrated in Figure 5.5):

• The simulator Sim′ outputs params ← Setup(λ) as in the real game.

• For i ∈ {0, 1} the simulator Sim′ outputs (ci, tri)← Mint(params) and stores
the associated trapdoors (tr0, tr1).

• The adversary A′ outputs (C, T ) ← A′(params, c0, c1) using any strategy
he wishes.

• The simulator Sim′ samples b r← {0, 1} and runs
Spend

(
params, cb, trb, T , C ∪ {c0, c1}

)
as in the real game but send queries

to OSoK to obtain π.

• The simulator Sim′ outputs (π, sn).

• The adversary A′ outputs b′ ← A′(π, sn) as a guess of which coin was spent.

If b′′ = 0 then G2 is run as G0 and if b′′ = 1 then G2 is run as G1. This means that
if b′′ = 0 the input to the adversary is distributed identically to the real game and
the advantage is ε. What about when b′′ = 1 and a simulated proof is outputted?
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Sim′

b
r← {0, 1} A′

OSoK
b′′

r← {0, 1}

params

c0, c1

C, T

π, sn

trb π

b′

Figure 5.5: A game identical to Z-Anonymity in Figure 5.1 except that the simulator
sends queries to an oracle to obtain the proof π.

We know according to (5.1) that

ε =
∣∣∣∣Pr[b = b′|G0]− 1

2

∣∣∣∣
=
∣∣∣∣Pr[b = b′|G0]− Pr[b = b′|G1] + Pr[b = b′|G1]− 1

2

∣∣∣∣
≤
∣∣∣∣Pr[b = b′|G0]− Pr[b = b′|G1]

∣∣∣∣+
∣∣∣∣Pr[b = b′|G1]− 1

2

∣∣∣∣.
By the notation Pr[b = b′|G0] we mean the probability that b = b′ given that we are
in game G0, i.e. the probability that b = b′ in G0. We have that

∣∣Pr[b = b′|G1]− 1/2
∣∣

is the advantage of A in G1. Since π here is simulated and does not depend on the
bit b, the probability that b = b′ is 1/2 and we can look away from the advantage
of A in G1. This leaves us with:

ε ≤
∣∣∣Pr[b = b′|G0]− Pr[b = b′|G1]

∣∣∣.
We observe that

∣∣Pr[b = b′|G0] − Pr[b = b′|G1]
∣∣ is the advantage of A′ in G2 to

guess the correct b′′, i.e. the advantage against the signature of knowledge π. This
tells how much information one gets from π to say something about b. Since π is
computationally zero-knowledge we know that this advantage is negligible. This
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means that ε must be negligible and moreover that A’s view is independent of the
bit b.

Replacing the coins and serial number. In this step we modify Z-Anonymity

the following ways:

• Instead of generating the coins c0 and c1 by Mint we sample two values c0
and c1 at random from the set of prime numbers in

[
X,X2).

• We sample the serial number sn at random from Zq.

• Finally we simulate the signature of knowledge π.

We want to argue that a simulation with these values will have the same distribution
as in the real game which will mean that A’s view is independent of the bit b. We
know from the argumentation above that a proof π generated from Spend as in
Z-Anonymity can not be distinguished from that of a simulated proof. Further
since the Pedersen commitment is unconditionally hiding an adversary can not
distinguish whether sn is sampled and then c = gsnhr computed or if c and sn are
both simply sampled at random. Since the values are sampled from

[
X,X2) and

Zq the distribution of the values will be identical to that of the real game.

The argumentation of the two steps shows that A’s view is independent of the
bit b which means that A can not do much better than guessing which of the two
minted coins was spent given two Zerocoin mints and one spend. We recall that
AdvA = |Pr[b = b′]− 1/2| (5.1). The above argumentation gives us that ε, which is
the advantage of A in Z-Anonymity, must be negligible as well and we have shown
what we wanted.

In Section 5.2.1 we stated that a decentralized electronic cash system like Ze-
rocoin satisfies the requirement of anonymity if every adversary has negligible
advantage in Z-Anonymity. By this proof we have shown that an adversary in
Z-Anonymity has negligible advantage under the assumption that the signature of
knowledge is computationally zero-knowledge in the random oracle model. This
means that the requirement of anonymity for Zerocoin is satisfied under the given
assumption.

5.4.2 Balance

Recall that we defined the game Balance whereby we wanted to ensure that an
adversary A could not spend more coin than he mints. An adversary can spend
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more coins than he mints either by stealing another user’s zerocoin which entails
spending a coin with the same serial number or by double-spending one of his own
coins which entails assigning the coin two different serial numbers. We start by
presenting a theorem that claims under what conditions the requirement of balance
is satisfied. Next we give a proof of security by proving the theorem.

Theorem 5. Assume we have a decentralized electronic cash system Π where the
signature of knowledge π is sound in the random oracle model, the Strong RSA
problem is hard and the Discrete Logarithm problem is hard in G, then the adversary
A in Balance has negligible advantage.

Before proving Theorem 5 we provide an outline. We want to show that an
adversary that wins Balance can be used to either find a collision in the commit-
ment scheme, which allows us to solve the Discrete logarithm problem, or to find
a collision in the accumulator, which allows us to solve the Strong RSA problem.
We do so in four steps summarized as follows and detailed right below:

• We construct an adversary B.

• We consider the cases where the simulation does not abort.

• We consider the cases where the simulation aborts.

• Finally we conclude based on the previous steps.

The proof starts by assuming we have an adversary A in Balance. We construct
an adversary B that operates using A to produce coins and valid tuples for coin
spend transactions. The adversary B uses an extractor to extract values from the
spend proofs produced by A. This gives six possible outcomes. If the run of B

does not stop it means A has succeeded. Recall that A succeeds if he can spend
another user’s coin or double-spend one of his own. We show that this allows us
to solve the Discrete logarithm problem. Four of the resulting outcomes result in
the run of B stopping. We look more closely at the probability for each of these.
Next we consider the probabilities all together in order to say something about the
advantage of B in relation to the advantage of A. We end up seeing that if we have
an adversary A that wins Balance we have an adversary that solves the Discrete
logarithm problem or the Strong RSA problem, so such an adversary A can not
exist under the assumption that these problems are hard.

Proof. We assume we have an adversary A in Balance.

66



Constructing the adversary B. We construct an adversary B that takes input
(p, q, g, h) where g, h are generators for G ⊆ F∗p with order q and outputs x ∈ Zq
such that gx ≡ h (mod p). This is how B works:

• On input (p, q, g, h) generate the accumulator parameters (n, u) as in
AccumSetup.

• Set params ← (n, u, p, q, g, h).

• For i = 1 to N compute (ci, tri) ← Mint(params) where ci ← gsnihri

(mod p) and tri = (sni, ri).

• Run A as in Balance.

– The adversary A queries (ci, Ci, T i) and the simulator Sim outputs
(πi, sni) ← Spend(paramsi, ci, tri, T i, Ci) for i = 1 to K.

– Each of A’s queries to Sim is answered with the appropriate trapdoor
information.

– The simulator Sim records
(
(sn1, T 1), ..., (snK , TK)

)
.

– A set of M coins (c∗1, ..., c∗M ) and a corresponding set of valid tuples
V ∗j = (π∗j , sn∗j , T ∗j , C∗j ) for j = 1 to M +1 is outputted by A at the end
of the game.

• Apply an extractor to the jth zero-knowledge proof π∗j for j = 1 to M + 1 to
extract the values (c̄j , r̄j), recall that the proof is

π = ZKSoK[T ]{(c, w, r) : AccVerify((n, u),Λ, c, w) = 1 ∧ c = gsnhr}.

Note that in this context we use the bar to denote a value that is extracted from
the proof. When the extractor is applied we get the following outcomes:

1. If the extractor fails on input π∗j , abort and signal Exit.

2. If c̄j /∈ C∗j , abort and signal Acc.

3. If c̄j ∈ {c1, ..., cN}:

(a) If (sn∗j , r̄j) = (sni, ri) for some i and T ∗j 6= T i, abort and signal Forge.

(b) Otherwise if for some i (sn∗j , r̄j) = (sni, ri), abort and signal Col.

(c) Otherwise set (snδ, rδ) = (sni, ri).
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4. If c̄j = c̄k for some k, set (snδ, rδ) = (sn∗k, r̄k).

Next these cases will be described in detail and we start with the latter two (3c
and 4) where the simulation does not abort. Note in the following that the index
i is used related to honest produced mints and spends from the simulator and the
indices j, k related to what is produced by the adversary.

The simulation does not abort. We know by the win conditions of Balance

that when the simulation does not abort we are able to extract c̄j for j = 1 to
M + 1 where ∀ j, c̄j ∈ C∗j ⊆ {c1, ..., cN , c∗1, ..., c∗M} and each sn∗j is distinct and
does not match any serial number output sni by the simulator Sim.

The third case where c̄j ∈ {c1, ..., cN} means that A tries to spend of the honest
minted coins. For some i (for i = 1 to N) we have c̄j = ci where ci ∈ {c1, ..., cN}.
In the last opportunity for the third case (3c), if neither a forgery or collision has
accrued, it means that A has spent one of the honest minted coins but provided a
new serial number for it. The adversary A has produced a pair (sn∗j , r̄j) 6= (sni, ri)
for a coin c̄j = ci. Since c̄j = ci and ci = gsnihri we have (snδ, rδ) = (sni, ri)
where (snδ, rδ) 6= (sn∗j , r̄j) and c̄j = gsn

∗
j hr̃j ≡ gsnδhrδ (mod p).

In fourth case (4) where c̄j = c̄k for some k (for k = 1 to M + 1) we look at
the case where A has spent a coin twice. This means that the serial number sn∗k
for c̄k is not the same as the serial number sn∗j for c̄j , so (sn∗j , r̄j) 6= (sn∗k, r̄k)
even though c̄j = c̄k. We set (snδ, rδ) = (sn∗k, r̄k) which satisfies c̄j = gsn

∗
j hr̃j ≡

gsnδhrδ (mod p) and (snδ, rδ) 6= (sn∗j , r̄j).
We have by the soundness of π (for the cases that the simulation does not

abort) the values (c̄j , sn∗j , r̄j , snδ, rδ) where we know that c̄j = gsn
∗
j hr̃j ≡ gsnδhrδ

(mod p) and (snδ, rδ) 6= (sn∗j , r̄j). We recall that B outputs x ∈ Zq such that
gx ≡ h (mod p). Any pair (snδ, rδ) as described can be used to solve for x = loggh

as in the following:

gsn
∗
j hr̃j ≡ gsnδhrδ

gsn
∗
j g−snδ ≡ hrδh−r̃j

gsn
∗
j−snδ ≡ hrδ−r̃j

(gsn
∗
j−snδ)(rδ−r̃j)−1

≡ (hrδ−r̃j )(rδ−r̃j)−1

g(sn∗j−snδ)(rδ−r̃j)
−1
≡ h

and to solve for loggh output (sn∗j− snδ) · (rδ−r̃j)−1 (mod q). Note that the
exponent arithmetic is done modulo q and not modulo p as for the group elements.
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This tells us that if we have an adversary A that wins Balance we can construct
an adversary B that solves the Discrete logarithm problem.

We have considered the cases where A succeeds. Recall that A is the adversary
in Balance that wants to spend more coins that he mints and he succeds if he
spends another user’s coin or spends the same coin twice. Next we consider the
probability that the simulation aborts.

The simulation aborts. Recall that case 1, 2, 3a and 3b make the simulation
abort.

1. If the extractor fails on input π∗j , abort and signal Exit.

This is simply that the extractor fails on extracting the desired values. The
extractor wants to extract the values (c̄j , r̄j) from π∗j for j = 1 to M + 1
tuples produced by A. For every π∗j the probability that the extractor fails
on input π is µ(λ) where µ is a negligible function. By summation we have

Pr[Exit] ≤ (M + 1)µ(λ). (5.7)

2. If c̄j /∈ C∗j , abort and signal Acc.

This means that the extracted coin c̄j is not in C∗j ⊆ {c1, ..., cN , c∗1, ..., c∗M}
which means that c̄j is not among the honest minted coins or the coins pro-
duced by A. This will give us a collision in the accumulator. We assume we
have an adversary A2 that induces this event, uses him to construct a Strong
RSA-solver B2 and say that

Pr[Acc] = AdvB2 . (5.8)

The idea is that if you can find a witness for a non-member in a given ac-
cumulator you can solve the Strong RSA problem [12, 36]. Adversary B2 is
given as input a Strong RSA instance (n, u), selects (p, q, g, h) as described
in Setup in Section 5.3.2 and sets params = (n, u, p, q, g, h). He generates
(c1, ..., cN ) as in the run of B and runs A2 who produces a valid output
(π∗, C∗). A c̄ /∈ C∗ is extracted and the event Acc is induced by A2. Now B2

extracts w̄ from π∗ and uses this value, a witness for a value not accumulated,
to compute a solution to the Strong RSA instance (n, u).

We know that Λ ≡ uc1c2...cN (mod n). We get a witness w that c̄ = cN+1 is
in the accumulator Λ which means that wcN+1 ≡ Λ (mod n). Since every c
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is a prime number we know that cN+1 and
∏N
i=1 ci are relatively prime. This

means that there exists s1, s2 such that s1cN+1 + s2
∏N
i=1 ci = 1. We have

(where the math is done modulo n)

wcN+1 ≡ Λ

wcN+1 ≡ u
∏

ci

(wcN+1)s2 ≡ (u
∏

ci)s2

ws2cN+1 ≡ us2
∏

ci

us1cN+1 · ws2cN+1 ≡ us1cN+1 · us2
∏

ci

(us1ws2)cN+1 ≡ us1cN+1+s2
∏

ci

(us1ws2)cN+1 ≡ u

and if we set us1ws2 = v and cN+1 = e we have found v, e such that ve ≡
u (mod n), which means we have a solution to the Strong RSA problem.
This shows that an adversary A2 that induces the event Acc can be used to
construct an adversary B2 that solves the Strong RSA problem.

3. If c̄j ∈ {c1, ..., cN}:

(a) If (sn∗j , r̄j) = (sni, ri) for some i and T ∗j 6= T i, abort and signal Forge.

As mentioned the third case means that A tries to spend a coin that
is the among the honest minted coins and for some i (for i = 1 to
N) we have c̄j = ci where ci ∈ {c1, ..., cN}. This first possibility (3a)
where (sn∗j , r̄j) = (sni, ri) and T ∗j 6= T i means that A has produced
a coin c̄j with serial number sn∗j (with corresponding r̄j) that is not
output and recorded by the simulator. The pair (sn∗j , r̄j) is equal a
pair (sni, ri) for an honest minted coin for a different transaction. A
coin with serial numbers sni exists and suddenly the serial number sn∗j
where (sn∗j , r̄j) = (sni, ri) shows up for a different transaction but the
simulator has not output and recorded sn∗j . This means that A tries to
forge c̄j . We assume we have an adversary A3 that induces this event,
uses him to construct an adversary B3 that solves the Discrete logarithm
problem and say that:

Pr[Forge] = AdvB3 . (5.9)
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We construct a game as follows: adversary B3 is given a discrete loga-
rithm instance (p, q, g, h) as input. He wins if he can output x ∈ Zq
such that gx ≡ h (mod p). He runs A3 just as B runs A in the main
simulation except that trapdoor information is not used to answer the
queries of A3 to Sim. Recall that Sim outputs (πi, sni) by running
Spend with appropriate trapdoor information tri to A, but to A3 we se-
lect random serial numbers from Zq and simulate the ZKSoK responses
by programming the random oracle.
We can compare B and B3 where they differ to get a more clear view of
how B3 works. Note that B and B3 takes input (p, q, g, h), generates
(n, u) and mint coins by ci ← gsnihri . First we look at when B runs A

with Sim:

• A queries (ci, T i, Ci) for i = 1 to K.
• Sim outputs (πi, sni) ← Spend(paramsi, ci, tri, T i, Ci).
• Sim records

(
(sn1, T 1), ..., (sn1, TK)

)
.

• A outputs a set of M coins (c∗1, ..., c∗M ) and a corresponding set of
valid tuples (π∗j , sn∗j , T ∗j , C∗j ) for j = 1 to M + 1,

and next how B3 runs A3 with Sim′:

• A3 queries (ci, T i, Ci) for i = 1 to K.
• Sim′ outputs (π̂i, ŝni) where π̂i is simulated and ŝni is sampled

random from Zq.
• Sim′ records

(
(ŝn1, T 1), ..., (ŝn1, TK)

)
.

• A3 outputs a set of M coins (c∗1, ..., c∗M ) and a corresponding set of
valid tuples (π∗j , sn∗j , T ∗j , C∗j ) for j = 1 to M + 1.

Since A3 induces Forge we know for some i we have, for a coin c∗j with
belonging proof π∗j , that c∗j = ci, sn∗j = ŝni and T ∗j 6= T i. When A3

outputs a forgery on a repeated serial number but for a different string
we rewind A3 back to where the proof for this serial number sn∗j is
produced. A new proof π∗j ∗ is outputted and from this proof we extract
r̄j to obtain the pair (sn∗j , r̄j). This pair equals (ŝni, ri). We obtain a
commitment that can be opened to two different serial numbers. This
makes B3 able to solve the Discrete logarithm problem. He does so by
setting

c∗j = gsn
∗
j hr̄j ≡ g ˆsnihri (mod p)
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and solves for the discrete logarithm as shown above. This shows that
an adversary A3 that induces the event Forge can be used to construct
an adversary B3 that solves the Discrete logarithm problem.

(b) Otherwise if for some i (sn∗j , r̄j) = (sni, ri), abort and signal Col.

We are still on the third case where A tries to spend one of honest
minted coins. This other possibility is that (sn∗j , r̄j) = (sni, ri), the
same as above, but without the condition T ∗j 6= T i. This means that
A has produced a pair (sn∗j , r̄j) which is equal a pair (sni, ri) where
Sim has output and recorded sni. However, Sim has not produced sn∗j
which is equal sni so we have a collision in the commitment scheme.

We remember that the simulator records (sni, T i) for the ith query for
i = 1 to K. There are K pairs (sn, r) that satisfies c̄j = gsnhr and these
are distinct. For some i the adversary A has produced a pair (sn∗j , r̄j) =
(sni, ri) where sn∗j is not output and recorded by the simulator Sim. It
is a coincidence which of the coins (more specifically the serial numbers)
outputted by Sim that A’s produced pair collide with. Thereby we have

Pr[Col] ≤ 1
K

. (5.10)

We will make use of the probability that the simulation aborts in our argumentation
in the next step.

Conclusion. In (5.2) we defined the probability that A wins as Pr[E]. We denote
the event that the simulation does not abort by F and have the following result:

Pr[E] = Pr[E|F ] · Pr[F ] + Pr[E|¬F ] · Pr[¬F ]

≤ Pr[E|F ] + Pr[¬F ] (5.11)

since both Pr[F ] ≤ 1 and Pr[E|¬F ] ≤ 1 (obviously). We hope the probability
that the simulation does not abort is close to 1 and we are not interested in the
probability that A wins when the simulation stops. The adversary B will win if
the simulation does not abort and A wins. We denote the probability that B wins
by D and we have Pr[D] = Pr[E|F ]. We know by (5.11) that

Pr[D] ≥ Pr[E]− Pr[¬F ]. (5.12)

We say that the advantage of B is the probability that B wins and by (5.7)-(5.10)
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we can write (5.12) as

AdvB ≥ AdvA −
(
M + 1)µ(λ) +AdvB2 +AdvB3 + 1

K

)
=⇒ AdvB +AdvB2 +AdvB3 ≥ AdvA −

(
(M + 1)µ(λ) + 1

K

)
. (5.13)

In Equation 5.13 we can look away from the negligible probabilities (we assume K
is large). These leaves us with

AdvB +AdvB2 +AdvB3 ≥ AdvA. (5.14)

By considering (5.14) we see that if AdvA is great then the sum of AdvB, AdvB2

and AdvB3 must be great. This means that at least one of these advantages must
be great. We recall that AdvB and AdvB3 are advantages for solving the Discrete
logarithm problem and AdvB2 for solving the Strong RSA problem. This means
that if we have an adversary A that wins Balance we have an adversary that solves
the Discrete logarithm problem or the Strong RSA problem. Under the assumption
that these problems are hard the advantage of A must be negligible and we have
shown what we wanted.

In Section 5.2.2 we stated that a decentralized electronic cash system like Zero-
coin satisfies the requirement of balance if every adversary has negligible advantage
in Balance. By this proof we have shown that an adversary in Balance has negli-
gible advantage under the assumption that the signature of knowledge is sound in
the random oracle model, the Strong RSA problem is hard and the Discrete Log-
arithm problem is hard. This means that the requirement of balance for Zerocoin
is satisfied under these assumptions.

Before we close this section we want to note, as pointed out by Miers [35],
that the definition of balance is incomplete in the sense that it does not ensure
that a party can actually spend the money they are paid. It is also noted that
even if Zerocoin is cryptographically secure against double-spending and forgery of
zerocoins, Bitcoin upon which it depends is not, so that double-spends and forgery
of zerocoins can be accomplished by breaking Bitcoin and without touching the
underlying cryptographic primitives of Zerocoin [24]. We will not discuss this any
further and close our description of Zerocoin. We review the system further in the
next chapter.
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Chapter 6
Discussion

The final chapter of this thesis starts with a comparison between anonymity for
Bitcoin and Zerocoin, and describe how linking of addresses is harder for Zero-
coin than it is for Bitcoin. However, Zerocoin also imposes limitations regarding
anonymity and some aspects on this will be described. Finally we briefly consider
work presented to improve the Zerocoin system. The first section is mainly inde-
pendent and is based on what is previously presented in the thesis. The second
section is mainly based on the original Zerocoin paper [36] while the last section
presents several papers.

6.1 A Review of Anonymity

To make a comparison between anonymity in Bitcoin and Zerocoin we take a look
back at our games B-Anonymity and Z-Anonymity. In B-Anonymity for Bitcoin
we wanted to ensure that an adversary could not link given addresses to a user of
his choice. In Z-Anonymity we wanted to ensure that an adversary could not link
a given coin spend transaction to the coin associated with it which implies linking
the address used to mint the original zerocoin to the address used to redeem the
zerocoin. Both games enhances the fact that we want addresses to be unlinkable,
which is the kind of anonymity we have required from Bitcoin and Zerocoin in this
thesis.

We showed how an adversary in B-Anonymity could link addresses by clustering
them together based on the heuristic regarding multi-input transactions (and fur-
ther link address clusters to real-world identities). For Zerocoin we proved that an
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adversary in Z-Anonymity had only negligible advantage. Based on these results
one can say that Zerocoin provides stronger anonymity guarantees when it comes
to address unlinkability than Bitcoin.

In a normal Bitcoin transaction history each transaction is linked to a preceding
transaction and we showed how data obtained from the Bitcoin blockchain can
support linking of addresses (referring to Section 4.2). Remember that when you
mint a zerocoin your bitcoins go into an escrow pool and there is nothing that makes
anyone else able to spend it unless it gets taken out by a Zerocoin spend transaction
with a proof. When you give a valid proof you can go through the blockchain, find
some other zerocoin and claim the bitcoin belonging to that zerocoin back.

Since the proof is zero-knowledge, user anonymity is achieved. There is no
actual way to link the address that was used to mint the original zerocoin to
the address used to redeem the zerocoin. Nobody knows which serial number
corresponds to which zerocoin. If the serial number for a minted coin was to be
linked to the serial number released in a withdrawal one must either know the
randomness that causes the commitment to open or directly which coin is proven
knowledge of, but non of these are revealed by the proof. All an adversary could
deduce from your Zerocoin mint and Zerocoin spend is that you are one of the
(many) users who did a Zerocoin mint but not who you are. Figure 6.1 shows a
Bitcoin blockchain and a Zerocoin blockchain and illustrates how Zerocoin breaks
the linkage between coins.

Figure 6.1: The figure illustrates two chains; a normal Bitcoin transaction chain (a) and
a Zerocoin chain (b) and shows how in a Zerocoin chain the linkage between mint and
spend can not be determined from the block chain data. The figure is copied from Miers
et al. [36].
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The upper chain in Figure 6.1 is a Bitcoin blockchain. Each transaction is
linked to a preceding transaction as the bitcoins in the output of a transaction in
a block is used as input for a transaction in another block (described in Chapter
3). Through this linkage one can follow bitcoins in the chain and cluster addresses
based on the movement of bitcoins as we showed earlier.

The chain below the Bitcoin blockchain on Figure 6.1 is a Zerocoin blockchain.
As one can see bitcoins are exchanged for zerocoins through a Zerocoin mint and
bitcoins taken out again by a Zerocoin spend. This is why Zerocoin can be refereed
to as a decentralized laundry or mix. Assume that you put in one bitcoin, exchange
it for a zerocoin and exchange your zerocoin for another bitcoin in return, this
breaks the movement of that bitcoin in the chain as the dotted line in Figure 6.1
represents. It is impossible to connect the two trades.

The reasoning for clustering addresses from Section 4.2 will not hold in the
case where Zerocoin is used as the transaction history (for example between t1,
t2, t3 and t4 in Figure 4.4) is broken. We can not construct such transaction and
user networks to cluster addresses since we can not represent the flow of bitcoins
between transactions or users in the same way. The link is broken through the
use of Zerocoin as Figure 6.1 shows. This makes linkage of addresses harder with
the use of Zerocoin than it is for Bitcoin and we can say that Zerocoin amplify
the anonymity guarantees in Bitcoin. However, the Zerocoin system also imposes
limitations.

6.2 Limitations of Zerocoin Anonymity

Zerocoin reveals the destination and denomination of transactions, which is poten-
tial source for adversaries who want to attack the anonymity of the system. Miers
et al. [36] claim that this may be an advantage rather than a loss since the bank
can be considered an adversarial party. They further claim that the problem with
denomination can be avoided by using Zerocoin to anonymize bitcoins or to fix
one or a small set of coin denominations and exchange coins until one has those
denominations.

In previous electronic cash systems information about the number of minted and
spent coins are revealed primarily to merchants and the bank, but in a decentralized
electronic cash system like Zerocoin this information is revealed to all users of the
system. Let us assume N coins are minted in Mint and subsequently spent in
Spend. This gives us an anonymity set of size n. If another coin is minted after the
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last spending of the N coins the size of the anonymity set for the next spend is not
n+ 1 but 1 because all observers know that the previous coins have been spent.

Another aspect of anonymity is the minted zerocoins put on the blockchain.
If Alice is the only one putting zerocoins on the blockchain she (obviously) gets
no anonymity. A sufficient number of independent users is required to obtain
anonymity. We can consider an attack scenario where someone maliciously tries to
put a lot of zerocoins on the blockchain and try to de-anonymize, but an adversary
can not do much better than that. Since an adversary can mint a large fraction of
the coins, a lower bound on the provided anonymity is the number of coins minted
by honest parties before a coin is spent and an upper bound is the total set of
minted coins.

The loss of wallets is a serious concern in the Bitcoin community. This can
also threaten anonymity in the setting of Zerocoin. We recall that the trapdoor
for a minted zerocoin is stored. By using the stored trapdoor an adversary can
de-anonymize Zerocoin transactions. Miers et al. [36] presents two proposals for
this problem. The first is to securely delete the trapdoor immediately after the
spending of a coin, but if the trapdoor is stolen at some earlier point this provides no
protection. The second proposal is to generate the spend transaction immediately
after a coin is minted. Such a solution makes an adversary who gets a hold of the
wallet unable to link any zerocoins in it to their mint transactions, but reduces the
anonymity of the user by decreasing the number of coins in the set of all minted
coins. In addition, spending a coin right after its minting will leak some information
about when a coin was minted and may impair the anonymity provided.

6.3 Further Work

In this section we briefly present proposals that are presented to improve Zerocoin.
In the original Zerocoin paper [36] it is presented several experiments conducted
to test the performance of Zerocoin. The authors note that the need for double
discrete logarithm proofs of knowledge to redeem zerocoins leads to large proof size
and verification time. They further note that a scheme with both smaller proofs
and greater speed is preferable.

Zerocoin also has drawbacks when it comes to functionality. We have already
noted that Zerocoin reveals the amount and other metadata about transactions
even though a payment transaction is unlinked from its origin address. There are
also other regards on funtionality [47]:
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• Zerocoin uses coins of fixed denominations; does not support payments of
exact values or provide a means to divide coins (make change following a
transaction).

• Zerocoin has no mechanism for a user to pay another user directly in zero-
coins, the payment is conducted through bitcoins.

The authors of the original Zerocoin paper [36] present in a new paper [24] how
to modify the Zerocoin protocol to create divisible coins. This means that every
zerocoin can contain an arbitrary individual denomination. This denomination can
again can be divided into new coins of arbitrary value. They propose to commit to
both a serial number and a balance for a coin that can be divided into new coins
instead of committing to a serial number only. They also consider how to improve
the anonymity in Zerocoin. We refer the reader to the paper [24] for more on this.

As to reduce the proof size and quicker the verification in Zerocoin, Danezis
et al. [19] presents Pinocchio coin. The system takes use of Pinocchio [41] which
is a proof system for efficiently verifying general computations while relying on
cryptographic assumptions. The authors note that the proof size for Pinocchio
zerocoins (344 bytes) is comparable with existing Bitcoin transactions contrary to
the proof size of Strong RSA zerocoins (50 kb). However, the protocol of Pinocchio
coin only supports coins of fixed denomination and is best viewed as a decentralized
mix like Zerocoin.

Pinocchio coin takes use of what is called zK-SNARKs to reduce proof size
and verification time in Zerocoin. A system called Zerocash [47] also takes use
of zK-SNARKs to reduce the proof size and quicker the verification of Zerocoin
and provides anonymous payments of any amount. A zk-SNARK (zero-knowledge
succinct non-interactive argument of knowledge) is an efficient variant of a zero-
knowledge proof of knowledge. The proof is succinct meaning that the proofs are
very short and easy to verify. In addition to provide anonymous payments of any
amounts, Zerocash improves performance and functionality compared to Zerocoin
by [47]:

• reducing the size of transactions spending a coin by 97.7 %;

• reducing the verification time of spend transactions by 98.6 %;

• allowing for payments to be made directly to a user’s fixed address without
user interaction;

• hiding transaction amounts and the values of coins held by a user.
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While Zerocoin is not a full-fledged anonymous currency and uses Bitcoin as
baking currency, Zerocash makes it possible to entirely replace traditional Bit-
coin payments with anonymous alternatives. Zerocash is implemented into the
cryptocurrency Zcash (the cryptocurrency Zcoin uses the Zerocoin protocol) [51].
However, there are also drawbacks to Zerocash, for example that it requires pro-
tocol modification and relies on a trusted setup for generating parameters to the
implementation of zk-SNARKs. Some of the authors of Zerocash propose to use a
modified and separate instance of Zerocash to create coins that allows search for
accountable user tracing [23], but we will not explore this any further. We refer
the reader to the Zerocash paper [47] for details of the Zerocash system.

There are many proposals that seek to improve the anonymity of Bitcoin,
not just the ones mentioned here, and they all come with advantages and dis-
advantages [16]. In this thesis we have focused on Zerocoin. Zerocoin provides
stronger anonymity but require substantial modifications to Bitcoin and derive its
anonymity (and security against counterfeiting) from cryptographic assumptions
at the cost of increased computational complexity and size. This again results in
proposals to improve Zerocoin, so development is not standstill. As stated in the
Zerocoin paper [36] it is reasonable to believe that further research will lead to
different trade-offs between security, accountability and anonymity, and it will be
exciting to see how research in the field of cryptocurrencies and anonymity evolves
in the future.
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