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ABSTRACT
Several risk and decision analysis applications are characterized by spatial elements: there are

spatially dependent uncertain variables of interest, decisions are made at spatial locations, and there
are opportunities for spatial data acquisition. Spatial dependence implies that the data gathered at
one coordinate could inform and assist a decision maker at other locations as well, and one should
account for this learning effect when analyzing and comparing information gathering schemes.
In this paper, we present concepts and methods for evaluating sequential information gathering
schemes in spatial decision situations. Static and sequential information gathering schemes are
outlined using the decision theoretic notion of value of information, and we use heuristics for ap-
proximating the value of sequential information in large-size spatial applications. We illustrate the
concepts using a Bayesian network example motivated from risks associated with CO2 sequestra-
tion. We present a case study from mining where there are risks of rock hazard in the tunnels,
and information about the spatial distribution of joints in the rocks may lead to a better allocation
of resources for choosing rock reinforcement locations. In this application, the spatial variables
are modeled by a Gaussian process. In both examples there can be large values associated with
adaptive information gathering.

Keywords: value of information, spatial risk analysis, spatial statistics, sequential information,
adaptive testing, Bayesian networks, Gaussian processes
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1 Introduction

With the current trends in machine learning, artificial intelligence and internet of things, there is
growing interest in monitoring. By monitoring, or information gathering, we refer to data collected
by sensors, surveys or through processing of massive data sets such as by geophysical acquisition
or remote sensing. The purpose of gathering such data is to make improved decisions under un-
certainty. In several applications, the goal is to monitor a multivariate phenomenon in space or
time, and decision makers must choose wisely where or when to gather information. In the current
paper we focus on risk and decision analysis applications that involve spatial elements. We discuss
one example with CO2 sequestration sites that could be leaking, and by gathering geophysical data
one might get valuable information about the sealing properties of the reservoir(s). In another ex-
ample involving risks of rock hazard, the decision maker must choose the locations for reinforced
rock support in a mining tunnel, and borehole data of joint counts can help make these difficult
decisions.

These examples, and several other application domains, seem to share at least three spatial
elements. First, decisions are often allocated to geographic coordinates. For instance, the decision
maker must select locations for CO2 sequestration, or choose whether to reinforce specific rock
formations that could cause severe hazard in the mine. Second, uncertainties are characterized
by spatial dependence. In terms of the rock hazard risk, the joint frequency in the rocks would
be spatially correlated. Third, information can be gathered at specific locations. Depending on
the application, it may be infeasible or just not worthwhile to acquire such information at all the
locations in general. Rather, the budget can often only cover one survey to get an indication about
the sealing properties for one of the sequestration sites, and survey data for joint frequency are
typically only acquired in a few boreholes.

Oftentimes, information can be collected sequentially rather than all at once, i.e. the decision
maker can, at any point, determine whether s/he wishes to continue gathering information or go
ahead with her/his allocation decision (Miller, 1975). This sequential aspect gives the decision
maker flexibility since the information set can grow in different ways. In spatial situations, such an
approach may be of particular value to the decision maker because observations at certain locations
also provide information about unexplored locations through spatial dependence.

In risk and decision analysis, the decision theoretic notion of value of information (Howard,
1966; Raiffa, 1968) provides a formal basis for evaluating information sources that support deci-
sion making. The value of information (henceforth referred to as VOI) has been popular in classic
decision analysis industries such as oil and gas (Bratvold et al., 2009), but it has also been effec-
tively deployed in domains with a risk analysis bent, including health risk management (Yokota
and Thompson, 2004a; Yokota and Thompson, 2004b; Baio, 2012) and environmental applications
(Keisler et al., 2014). Topics in environmental network design are similar: Wang and Harrison
(2013) study optimal sampling locations for mobile sensors to detect water contaminants, without
using a formal decision theoretic setting. Convertino et al. (2015) present monitoring networks for
ecosystems, with a value measure tied to biodiversity.

There has been a relatively recent attempt at explicitly modeling spatial dependence for decision-
theoretic VOI analysis (Eidsvik et al., 2008; Bhattacharjya et al., 2010; Eidsvik et al., 2015). In this
paper, we build upon this framework and study the value of sequential information in spatial risk
and decision applications. We are particularly interested in exploring the effect of spatial depen-
dence. Note that while the information gathering is sequential, the underlying decision situation is
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assumed to be a one-time selection, i.e. the problem of resource allocation is itself static.
Sequential optimization problems are typically solved using dynamic programming (Bellman,

1957; Puterman, 2005), but the ‘curse of dimensionality’ that is encountered in larger problems re-
quires computational techniques for approximate solutions (Powell, 2011). Some of these methods
have been deployed for solving sequential decision problems in applications with dependence, in-
cluding models such as graphical models or Bayesian networks (BNs) (Krause and Guestrin, 2009;
Brown and Smith, 2013; Martinelli et al., 2013a), Markov random fields (Bonneau et al., 2014;
Martinelli and Eidsvik, 2014) and Gaussian processes (GPs) (Srinivas et al., 2010). In the rock
hazard application, we compare some common heuristics for sequential information gathering.

Although our focus is primarily on dependence among spatial random variables, sometimes
called uncertainties in the decision analysis literature, there is some related literature on spatial
decision making that studies multi-attribute preference models (Malczewski, 2006; Simon et al.,
2014). The formulation presented in this paper can easily incorporate multiple attributes/criteria,
as long as the decision maker can provide a value function (Matheson and Howard, 1968; Dyer and
Sarin, 1979), which is necessary for VOI analysis. Here we will assume value to be in monetary
units, which allows for a buying price interpretation of VOI (Howard and Abbas, 2015). This is
often of great practical benefit because it allows the decision maker a direct comparison between
the value of an experiment and its cost.

The remainder of the paper is organized as follows. Section 2 presents the notation and ba-
sic concepts for formulating decision situations when there is statistical dependence. Section 3
proceeds to VOI analysis, distinguishing between static and sequential information gathering. For
gaining insight into the concepts, we use the illustrative running example with a BN model for
leaking or sealing reservoir variables at two geographic locations chosen as candidates for CO2
sequestration. Section 4 introduces some heuristic strategies for sequential information gathering
in high-dimensional spatial risk and decision analysis applications, and provides computational
methods required to approximate the value of these strategies. Section 5 performs a case study of
a rock hazard application in a mining tunnel. Section 6 concludes the paper.

2 Spatial Decision Situations

The inherent spatial dependence in many applications is often a consequence of the fundamen-
tal ‘physics’ of the problem. In health and epidemiology, this is a reflection of how human beings
interact with each other and with their environment. In the environmental and earth sciences, spa-
tial variability arises from trends caused by eons of geological, physical, chemical, and biological
processes. The decision maker’s characterization of uncertainties is then best represented by spatial
statistics, because properties at a particular geographic location cannot be treated independently of
those at other locations. In this section, we describe a formulation of spatial decision situations
and present the basic terminology and notation that will be used in subsequent sections. We also
introduce the specific models that will be used for a running example about CO2 sequestration as
well as the rock hazard application in Section 5.

2.1 Spatial statistical modeling

Spatial and spatio-temporal statistical modeling techniques (Cressie, 1993; Le and Zidek, 2006;
Cressie and Wikle, 2011; Chiles and Delfiner, 2012; Banerjee et al., 2014) aim at embedding vari-
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Figure 1: CO2 sequestration example: BN for joint distribution at two reservoir traps.

ables in a framework that allows for multivariate spatial dependence. There has been an increased
focus in these fields over the last few years, perhaps due to the remarkable growth and develop-
ment in positioning equipment as well as computer tools that allow one to register plans and current
activities or monitor data sets on a geographical map.

We refer to the most pertinent uncertainties in a decision situation as the distinctions of inter-
est. These are denoted x = (x1, . . . , xn), where the random variables are associated with spatial
locations si, i = 1, . . . , n, and thus xi = x (si). The joint probability density or mass function
(pdf) for these spatial variables is denoted by p (x).

In the simplest non-trivial situation, there are just two dependent variables x = (x1, x2). Con-
sider an example where xi is a binary random variable that represents whether the trap of the
geological formation of reservoir i will leak; xi = 1 if it leaks and xi = 0 if it is sealing. This
setting is relevant for risks associated with CO2 sequestration (Mathieson et al., 2011). Figure
1 shows a BN model of the uncertain trap properties of two reservoirs along with a variable x0,
which is common parent node variable in the BN. It induces dependence in the outcomes for x1
and x2 through an underlying geological mechanism where trap leakage at the reservoirs will not
occur unless it occurs at the top node (Martinelli et al., 2013b). This sort of dependence is natural
in many spatial applications where geological conditions are such that properties cannot propa-
gate unless they occur in an upstream variable (Martinelli et al., 2011). For our example, we will
use the following marginal and conditional probabilities, which together construct the joint pdf:
p(x0 = 1) = 0.2, p(xi = 0|x0 = 0) = 1, p(xi = 1|x0 = 1) = 0.5, i = 1, 2, assuming the two trap
properties are conditionally independent given the parent outcome and have symmetric properties.
The bivariate pdf for the two traps, after summing out the common parent variable, is provided in
Figure 1.

Perhaps the most pervasive and widely applicable model for representing spatial variables is
the GP (Rasmussen and Williams, 2006; Banerjee et al., 2014), which uses a multivariate Gaussian
distribution over spatial locations of interest with mean vector µ and covariance matrix Σ. Figure
2 (top) shows realizations of a GP in two spatial dimensions over the unit square. The realizations
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Figure 2: Gaussian process realizations (top) for two different correlation functions (bottom).

are representative of different spatial correlations (left and right). In these displays, the spatial
correlation function (bottom displays) is an exponential function of the distance between locations,
i.e. the isotropic covariance between variables xi and xj with distance h = |si − sj| is Σij =
C(h) = σ2 exp (−ηh) for parameters σ and η. In the figure, the mean µi = 0 for all locations
and the variance σ2 = 1. The correlation lengths for the two cases are 3/η equal to 0.1 (left) and
0.33 (right). This is the distance at which the correlation between variables decreases to 0.05 and
is therefore a measure of spatial dependence, where a higher value reflects larger correlation.

One of the major benefits of GP models is computational tractability. For instance, there are
closed-form expressions for updating the model based on observations. If the outcome xj of the
GP at a site sj is observed, the conditional distribution at another site si is Gaussian with mean

E(xi|xj) = µi + Σi,jσ
−2(xj − µj), (1)

while the conditional variance is

Var(xi|xj) = σ2 − Σi,jσ
−2Σj,i. (2)

These equations are used extensively in spatial interpolation (Kriging). If the two sites are in close
proximity, then the cross-covariance Σi,j ≈ σ2, and the expected value in equation (1) is close to
the observation xj (if µi = µj). If the two sites are far away from each other, the cross-covariance
is near 0 and the expected value is near µi. Similarly, the variance in equation (2) will be close to
0 for nearby sites and increase to σ2 at large distances, where the observation xj is not particularly
informative of xi.

The formulas in equations (1) and (2) have natural vector/matrix extensions in multi-site data
and prediction, and we will use these for conditioning and for conducting VOI analysis in subse-
quent sections.
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2.2 Spatial decisions

Now let us overlay a decision on the spatial statistical model. We denote alternatives of the
decision by a = (a1, . . . , an), where ai = a(si) ∈ Ai is a choice the decision maker has at spatial
location si. Note that the spatial scale of the alternatives need not necessarily be the same as that
of the uncertain variables, but we assume that this is the case for simplicity of exposition. The
decision maker’s value from choosing alternative a when the distinctions of interest are at state x
is v(x, a). We assume that the decision maker is risk neutral, so decisions are based on expected
values. The decision maker hence has the common linear utility function over value. The methods
described here for VOI analysis also work for other utility functions, but if a function other than
linear or exponential is chosen, then computations must be performed from first principles (Howard
and Abbas, 2015) which can be more challenging in general.

The decision is static when the decision maker must choose in one go, i.e. without the op-
portunity of potentially observing outcomes from alternatives at selected locations before making
choices at other locations. If the decision situation does not have further constraints, then for a risk
neutral decision maker the alternative that maximizes the expected value is optimal, therefore

PV = max
a∈A

{∑
x

v(x, a)p(x)

}
. (3)

Here, we assume a discrete sample space for x. An integral would replace summation for a con-
tinuous sample space. The notation PV stands for prior value, as this is the value to the decision
maker prior to any additional information gathering.

The solution could potentially be simplified considerably after considering the distinction be-
tween coupled and decoupled value. A value function is coupled when it depends on several of
the spatial locations through a potentially complex function that cannot be separated into different
components for each location. This is not uncommon in many spatial applications, for instance
where the value calculation involves a solution of a differential equation of diffusion or fluid flow,
etc. If the value function decouples, it can be split into different components, and this makes
the solution of the optimization of expected value more tractable as it can be done separately for
individual locations. The prior value computation then becomes

PV =
n∑

i=1

max
ai∈Ai

{∑
xi

vi(xi, ai)p(xi)

}
, (4)

where vi denotes the value function at site si.
To motivate the setting, let us build upon the BN model in Figure 1 and consider a decision

situation pertaining to CO2 sequestration. Suppose a decision maker is considering whether to
pump CO2 from her/his factory into the two reservoirs under consideration. Thus, the decision
maker has two alternatives: ai ∈ {0, 1} at each reservoir i = 1, 2, representing whether s/he
should sequester CO2 into the reservoirs. Recall that the leaking of a reservoir trap is represented
by a binary uncertain outcome xi ∈ {0, 1} at each reservoir i = 1, 2. If the decision maker chooses
not to sequester at reservoir i (ai = 0), s/he must pay carbon taxes. If s/he chooses to sequester
CO2 at reservoir i (ai = 1), s/he faces the risk of paying a hefty fine if there is CO2 leakage. Figure
1 shows that the marginal probability of leakage is p(xi = 1) = 0.1, i = 1, 2.
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In this application, it is natural to assume that the value decouples because the costs and poten-
tial savings from the two reservoirs are additive. If the decision maker chooses not to sequester at
reservoir i, s/he must pay a tax of −2 money units, and the values are thus vi(xi, ai = 0) = −2,
i = 1, 2, no matter what xi is. Sequestration has a fixed cost of injection set to −1 money units.
Moreover, one must pay a fine if leakage occurs (xi = 1) in reservoir i. The fine is −17 units
for the larger reservoir 2, while it is −7 units for the smaller reservoir 1. Then values are then
v1(x1, a1 = 1) = −7I(x1 = 1) − 1 and v2(x2, a2 = 1) = −17I(x2 = 1) − 1. With these values
and the previously defined probabilities we use equation (4) to get

PV = max {−7 · 0.1− 1,−2}
+ max {−17 · 0.1− 1,−2} = −3.7, (5)

and the decision is to sequester only at reservoir 1. In Section 3 we compute the VOI for this
example when the decision maker can perform seismic tests to get information about sealing or
leaking reservoirs.

In some spatial decision situations, the decision maker may have the opportunity to allocate re-
sources in a sequential manner, in which case s/he would be able to select among some alternatives
after the effect of previous decisions have been revealed. Such decision situations introduce further
computational complexities that make them difficult to solve for large problems. We do not con-
sider such situations in the current paper. Here we assume that the decision maker’s downstream
decision is a static (one-time) allocation of resources. This assumption is natural in the rock hazard
application presented in Section 5 because the decision of bolting the rock formation provides no
information about the joints in the rock.

3 Value of Information in Spatial Decision Situations

Spatial decision situations allow for spatial information gathering schemes where data is col-
lected at specific spatial locations. Information gathering is an important auxiliary decision because
determining how much and what type of data to collect before an allocation of resources could im-
prove the decision maker’s value significantly. Supporting data collection is particularly crucial
for spatial risk and decision analysis problems because there is a wealth of opportunities for cre-
ative experimentation; for instance, the decision maker may benefit from collecting data only over
a small region of the entire domain, possibly at a much lower price. Spatial experimental design
methods (Le and Zidek, 2006; Muller, 2007; Dobbie et al., 2008) often consider metrics such as
entropy and variance reduction. Other information criteria focus on the minimization of prediction
errors (Lilleborge et al., 2016) or the uncertainty in excursion set predictions (Azzimonti et al.,
2016). Although very useful in several contexts, these criteria do not relate the information to the
ultimate decision that it supports. We consider the VOI instead (Eidsvik et al., 2015).

We denote the data obtained from information gathering by y. Information can be perfect or
imperfect. Perfect information refers to observations that tell the decision maker directly about
the distinctions of interest, i.e. y = x, whereas imperfect information refers to data that provide
noisy measurements of these variables. We also distinguish between total and partial information
gathering schemes; in the latter type, only a subset of the uncertain variables are measured.

The relationship between the information y and the distinctions of interest x is typically mod-
eled through a likelihood function p(y|x). The marginal pdf of the data is obtained by marginaliz-
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Figure 3: CO2 sequestration example: BN model for the joint distribution at two reservoir traps, along with bottom
nodes indicating the results of seismic tests.

ing over all possible outcomes for the uncertain variables x, i.e.

p(y) =
∑
x

p(y,x) =
∑
x

p(y|x)p(x).

The posterior distribution of the distinctions of interest is given by Bayes’ rule:

p(x|y) =
p(y,x)

p(y)
=
p(y|x)p(x)

p(y)
.

Returning to the CO2 sequestration example, the bottom nodes in Figure 3 represent the results
of seismic tests that provide (imperfect) information about the reservoir traps. The result of a seis-
mic test for a reservoir is conditionally independent of all other variables given the outcome of the
trap for the corresponding reservoir. The decision maker could consider purchasing partial infor-
mation, i.e. seismic results for only one of the reservoirs. The seismic tests are assumed to have
binary outcomes where the results either indicate a closed or open structure, which is indicative of
the reservoir trap sealing or leaking. The likelihood model is defined by p (yj = k|xj = k) = 0.9,
k = 0, 1, and for reservoirs j = 1, 2. This implies that at both reservoirs the chance of observing
an open test result for a leaking reservoir equals that of observing a closed test result for a sealing
reservoir. If we observe an open result from a seismic test at reservoir 1, the posterior probability
of leaking becomes p(x1 = 1|y1 = 1) = 0.9·0.1

0.9·0.1+0.1·0.9 = 0.5, while p(x2 = 1|y1 = 1) = 0.28.
This is a significant increase from the prior probability of 0.1. The opposite test result gives
p(x1 = 1|y1 = 0) = 0.012, while p(x2 = 1|y1 = 0) = 0.06. Because of these differences, the
partial test could be quite informative as it might change the downstream decision.

Moving to the continuous example, consider a prior Gaussian pdf, p(x) = N(µ,Σ), for the
distinction of interest, where the length n mean vector is µ and the n × n covariance matrix is
Σ. Assume that one measures this GP at m locations, i.e. yj = y(sj) = x(sj) + N(0, τ 2),
j = 1, . . . ,m, where the measurement noise variance is τ 2. By extensions of equation (1) and (2)
we have:

E(xi|y) = µi + Σi,yΣ
−1
y (y − µy), (6)
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Var(xi|y) = Σii −Σi,yΣ
−1
y Σy,i, (7)

where the marginal pdf of the data is p(y) = N(µy,Σy). The cross-covariance between xi and
y is denoted Σi,y. Because the noise terms in the measurements are assumed independent, this
cross-covariance equals that of respective sites in the GP for x(s). Equations (6) and (7) are used
in Section 4 and 5.

3.1 Static information gathering

A static information gathering scheme is one where all the information y is available to the
decision maker simultaneously. The posterior value is defined as the value of the situation when
the information is available for free, before the downstream spatial decision is made. Since the
information is not actually available before it is observed, the posterior value for a risk-neutral
decision maker is computed by averaging the maximum expected value over all possible data
outcomes. Assuming that the value is decoupled, the posterior value and the VOI are

PoV =
∑
y

n∑
i=1

max
ai

{∑
xi

vi(xi, ai)p(xi|y)

}
p(y),

VOI = PoV− PV, (8)

since the VOI is the difference between the posterior and prior values for a risk-neutral decision
maker. The posterior value is computed from maximum conditional expected values, for all data
outcomes.

Since the posterior value is an expectation over the data, PoV(y) is also used for posterior
value in the literature, like it is done for expectation and variance with respect to random variable
y. Notably, the posterior value and the VOI depend on the design of the data, i.e. where the data is
collected. When the decision maker can gather information yj according to a particular design j,
we will denote the resulting posterior value and VOI by PoV(j) and VOI(j). The notation will be
clarified in the context of sequential information gathering below.

For a test to be worthwhile, its VOI in equation (8) should be greater than its buying price P .
The price of gathering data according to design j is denoted Pj . The decision maker could conduct
VOI analysis to explore and compare various potential information gathering schemes.

3.2 Sequential information gathering

Sequential information gathering is possible when the decision maker can decide about sub-
sequent tests after only obtaining partial information. For instance, after performing one test, the
decision maker could continue with more testing or choose to stop. The potential tests could be
conducted at a single location or over a set of locations. The different tests could potentially also be
done using different equipment, perhaps through a laboratory test with negligible error (perfect in-
formation), or using just a perfunctory on-site evaluation (imperfect information). In what follows
we use letters j, k, and so on, to indicate various kinds of test designs that are done sequentially,
and the test results are likewise denoted yj , yk, etc.

The sequential posterior value for data yj is defined as the value of the situation when the
decision maker can observe yj for free, and then subsequently have the opportunity for sequential
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information gathering of further data yk at a price Pk, before making the downstream decision.
This value and the associated VOI can be obtained using the following set of equations:

PoVseq(j) =
∑
yj

max

{
Stop(j),
max
k 6=j
{CV(k|j)}

}
p(yj),

Stop(j) =
n∑

i=1

max
ai
{E[vi(xi, ai)|yj]} ,

CV(k|j) = Cont(k|j)− Pk, (9)

Cont(k|j) =
∑
yk

max

{
Stop(j, k),
max
l 6=j,k
{CV(l|j, k)}

}
p(yk|yj),

VOIseq(j) = PoVseq(j)− PV.

Equation (9) represents an adaptive testing scheme, where one starts by gathering data yj and then
continues with more testing if further data gathering is worthwhile. Static information gathering
with design j, denoted PoV(j), corresponds to always stopping after the first test in the top row
of equation (9), i.e. Stop(j). In the sequential information gathering case, the second test is the
one which optimizes the continuation value (denoted CV) among all the remaining tests, hence the
inner maximization in the top row equation in (9). This CV again allows for the opportunity of
stopping or continuing testing after the second test, and so on. The scheme is adaptive because the
ordering of data designs and the number of tests depend on the actual data values gathered in the
sequence.

Note that there could also be other stopping rules such as constraints for the number of tests, or
the decision maker may not allow tests with accumulated prices exceeding a specified budget. The
price Pj could in some applications indicate a bound on the additional information value, where
the decision maker stops collecting data when no tests can add value exceeding this bound.

In the CO2 sequestration example, sequential information gathering implies that the decision
maker can perform seismic testing at only one reservoir, and then continue testing the other if
it is worthwhile to do so. For some outcomes of the first test, the decision maker might stop
testing, whereas s/he might continue with a test at the other reservoir for other first-test results.
Considering this adaptivity in information gathering, the value of sequential testing would always
be larger or equal to that of static testing. Since there are only two binary data sources in the CO2
sequestration example, one can compute the optimal sequential information gathering strategy
defined by equation (9) exactly.

Figure 4 demonstrates the notion of sequential information gathering in this example using a
(partial) decision tree. Here, the price of seismic testing is set to P1 = P2 = 0.3 monetary units.
(Below we compare testing options over price ranges.) The value numbers indicated in Figure 4
are the expected values when one conducts no further testing or with (continued) testing, at a price
that is subtracted. As an example, assume one starts with a test at reservoir 1, and the test result is
closed: y1 = 0. Then p(x1 = 1|y1 = 0) = 0.012 and p(x2 = 1|y1 = 0) = 0.06. With no further
testing, and using the monetary values of equation (5), it is then optimal to sequester at reservoir
1 because −7 · 0.012 − 1 = −1.09 > −2, while it is optimal to avoid sequestration at reservoir
2 because −17 · 0.06 − 1 = −2.02 < −2. The overall value is then −1.09 − 2 = −3.09. The
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Figure 4: CO2 sequestration example: Illustration of sequential information gathering using a partial decision tree.

value of continued testing is obtained by averaging over the second test result, conditional on the
first result (y1 = 0), and subtracting the price P2. This expected continuation value is −2.64. It is
thus optimal to continue testing with this outcome of the first test, because −2.64 > −3.09. If the
result of the first test is open: y1 = 1, it is optimal to stop testing as this has value −4, while the
expected value of continued testing is −4.09.

Figure 5 shows decision regions for adaptive information gathering in the CO2 sequestration
example, indicating the optimal information gathering scheme over potential prices of the two
seismic tests. This figure shows three displays. The middle one represents the model with the
probabilities specified in Figure 3, while the others represent minimal (top) and maximal (bottom)
correlation between the two reservoir traps, while keeping p(xi = 1|x0 = 0) = 0, i = 1, 2, and
maintaining the marginal probabilities of sealing/leaking in Figure 1. The minimal correlation
case is obtained by setting p(x0 = 1) = 1 and p(xi = 1|x0 = 1) = 0.1, i = 1, 2. The maximum
correlation case is obtained by setting p(x0 = 1) = 0.1 and p(xi = 1|x0 = 1) = 1, i = 1, 2. All
displays have the same value functions, as described above. The decision regions are constructed
by computing the VOI for different tests, and then subtracting the price of relevant tests. The case
denoted ’Both’ means that seismic tests are at both reservoirs simultaneously is optimal, without
any sequentiality. ’Only 1’, or ’Only 2’, means that testing at only one reservoir is optimal, and
there is nothing to gain by adaptive testing at the other. ’Seq 1->2’, or ’Seq 2->1’, means that there
is clearly a gain in adaptive testing, and the decision maker should consider sequential information
gathering, when prices are in this region. In these situations it is beneficial to continue testing for
one outcome of the first test, while it is optimal to stop for the other outcome.

Consider now the middle display in Figure 5: when both seismic tests are inexpensive, it is
optimal to do both tests at once. As the price of a seismic test at the first reservoir increases, it
becomes optimal to test the other reservoir first, with the option of sequential testing at the first
reservoir. The price configuration P1 = P2 = 0.3, shown in Figure 4, is in the region where
sequential testing starting at reservoir 2 is best. If the price of reservoir 1 gets very large, it is
optimal to test only at reservoir 2. Note that sequential information gathering would always be
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Figure 5: CO2 sequestration example: Decision regions with the optimal information gathering schemes. Top:
minimum correlation. Middle: medium correlation (reference case). Bottom: maximum correlation.
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better or equal to performing ’One’ or ’Both’ in this situation, so to compare static and sequential
information gathering in Figure 5 we show ’Only 1’, ’Only 2’ or ’Both’ when this value is the
same as the sequential strategy.

In the situations with more extreme correlations (top and bottom displays of Figure 5), there
is little additional value of sequential testing. Here the optimal information gathering strategy is
almost always to acquire one test, both tests or none. This could be important in practice - if the
dependence is very large or small, there is less value in sequential testing over static tests.

4 Heuristic Strategies

Calculating the values associated with sequential information gathering entails a series of max-
imizations and summations (or integrals when the sample space is continuous), such as in equation
(9). Computations grow combinatorially with the number of possible tests, as should be evident
from the decision tree in Figure 4. Thus, exact evaluation is only possible in small-size problems,
where one can store the computations from all strategies. For large-size problems, approximations
of the expected values are necessary (Powell, 2011). The values of the resulting strategies are
sub-optimal. These techniques sacrifice optimality for tractability.

In this section, we present some common heuristic strategies that approximate the sequential
forward computations required to calculate the continuation value at any decision epoch. It is our
intention to explore information gathering schemes that are simple, yet have the ability to exploit
dependence in spatial risk and decision analysis applications.

For GP models like the one deployed in the application in Section 5, there exist partly closed-
form expressions for the posterior values under some working assumptions, as has been noted in
previous spatial VOI literature (Bhattacharjya et al., 2013). These expressions are also effective
in the selection of sequential tests. Consider again a Gaussian variable x = (x1, . . . , xn) with
mean µ and covariance matrix Σ. Assume the decoupled value function (equation (4)) is defined
by vi(xi, 0) = 0 and vi(xi, 1) = xi for the two alternatives ai ∈ {0, 1}, i = 1, . . . , n. Then,
Bhattacharjya et al. (2013) show that the posterior value of a static information gathering scheme
for Gaussian data yj is

n∑
i=1

∫
max {0, E(xi|yj)} p(yj)dyj =

n∑
i=1

[µiΦ(µi/ri) + riφ(µi/ri)], (10)

where ri =
√

Σi,jΣ−1yj
Σj,i, Σyj

is the covariance matrix of the data yj , and Σi,j is the cross-

covariance between xi and data yj . Furthermore, φ(z) and Φ(z) are the pdf and cumulative distri-
bution function of the standard normal distribution. We will use equation (10) and related results
for computing the value for three heuristic strategies for sequential information gathering.

An important reason for computational infeasibility in large-scale sequential problems is that
one must compare all the remaining potential tests for the exact solution. In one class of heuristics,
the order of potential tests is fixed before the sequential decision problem is solved; we refer to
these as fixed-order heuristics. The computational advantage in these heuristics is that the deter-
mination of the order can be done offline, before the sequential problem is solved. Importantly,
during the online solution of the problem, the computation only needs to consider whether or not
to continue to the next test, and the potential test is pre-determined in the fixed order.
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A second aspect of computational infeasibility for large-scale sequential problems is that the
dynamic program grows quickly when several subsequent decision epochs need to be considered.
In our heuristics, we approximate this away in our computations through a working assumption that
at most one more test will be done at any decision epoch. This implies that the maximization in
the continuation value in equation (9) is conducted by only comparing whether to stop at any given
epoch or perform one more test and then stop. It is often necessary to approximate the sequential
problem in this fashion, neglecting the sequential nature of the problem beyond a few subsequent
epochs; this approach is common in approximate dynamic programming (Martinelli et al., 2013a;
Goodson et al., 2017). For special value functions one can derive bounds for these heuristics, using
for instance submodular properties (Golovin and Krause, 2011; Chen et al., 2015).

The first two heuristics that we consider here are both fixed-order heuristics; the difference
between these heuristics lies in how the fixed order is determined. The first heuristic is the naive
selection strategy for tests. This scheme is established by first ranking the possible tests j =
1, . . . ,m based on the difference between the static VOI(j) of test yj and the price Pj of the test.
This order is denoted by j(1), j(2), etc. At each stage, the decision maker will either stop testing,
or continue with the next pre-detemined test. In practice, even though the order of tests is fixed,
the number of tests actually done will depend on the realized data. This is because the values for
the stopping or continuation options change with the data. To evaluate the strategy we ’play the
game’ of running the approach over simulated data samples. This can be used to study the depth
of testing, and it also gives an estimate of the VOI. Say, for realization b, one either stops after
the first test yb

j(1)
, with expected values defined by equation (6) for data yb

j(1)
. Alternatively, one

performs test two yb
j(2)

if the continuation value

CVb(j(2)|j(1)) =
∑
i

[µb
i|1Φ(abi,2|1) + ri,2|1φ(abi,2|1)]− Pj(2) , (11)

is larger than the value of stopping. Here, ai,2|1 = µb
i|1/ri,2|1, and µb

i|1 and ri,2|1 =
√

Σi,2|1Σ
−1
2|1Σ2,i|1

are defined from the joint Gaussian distribution of xi and yj(2) , given yj(1) (see equation (6) and
(7)). If the decision maker conducts the second test, the same stop or continue procedure is done
for the third test yj(3) , and so on.

A potential way to include more of the dependence in the spatial model is to rank the tests
based on the added inclusion of one more test in the information gathering scheme. This is done
in the second heuristic which we refer to as the naive-expand selection strategy. We start with the
best test (just like in the naive scheme), and next choose the test which increases the VOI the most
when performed together with the first selected test. If we again let j(1) be the index of the best
single test, the second test is chosen according to:

j(2) = argmaxj{VOI(j(1), j)− Pj}. (12)

Subsequent tests, 3, 4, etc, are selected in a similar fashion, by computing the VOI jointly with all
previous tests in the order. Note that the path of this strategy will in general be different from the
naive scheme. If there is significant correlation between the tests, this strategy will more effectively
avoid tests that carry almost the same information as previous test(s). This strategy is also evaluated
by Monte Carlo sampling, which at every stage works in a similar stop or continue procedure as
for the naive strategy in equation (11).
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These fixed-order heuristics are easy to evaluate, and could likely be extended further, but
they are not adaptive in the sense that their ordering is pre-determined and does not change with
the data that are gathered. The third heuristic is the myopic strategy, which is a well-known
adaptive approach in sequential decision problems. This strategy is not a fixed-order heuristic
because the order of the remaining tests may change depending on the observed test results. At
any decision epoch, all the observations till date are used to update the decision maker’s beliefs
about the remaining uncertainties, and the decision maker chooses an alternative assuming that
this will be the final choice s/he will make. In our information gathering formulation, the decision
maker can choose the test to perform next, if it is profitable to perform a test at all.

To evaluate the myopic strategy we again ’play the game’ of applying Monte Carlo simulation.
But unlike the naive strategies this heuristic must select among all possible continuation tests, or
stopping, since the myopic strategy does not give a pre-determined sequence of potential tests. We
sample data variables and find the next candidate for data gathering (or stop) by maximizing the
increase in posterior value for every sample. Similar to the previous heuristics, assume that data
yb
j(1)

have been collected in the best first testing alternative j(1). The next stage test selection for
this sample is determined by

Stopb(j(1)) =
∑
i

max
{

0, E(xi|yb
j(1)

)
}
,

CVb(j|j(1)) = max
j 6=j(1)

{
Contb(j|j(1))− Pj

}
, (13)

Contb(j|j(1)) =
∑
i

[µb
i|1Φ(abi,j|1) + ri,j|1φ(abi,j|1)],

with similar notation as in equation (9) and (11).
The values of the three different strategies are obtained by averaging value results over the

Monte Carlo samples.

5 Rock Steady: A Rock Hazard Application

In this section, we study a mining rock hazard application (Karam et al., 2007; Ellefmo and
Eidsvik, 2009; Zetterlund et al., 2011). Figure 6 shows n = 52 tunnel locations in a mine. The
tunnel locations (marked by x) are at risk of rock fall, which could incur a large cost for the mining
company. They must decide whether to prevent rock fall via extensive bolting, or to avoid this
costly operation at the risk of rock hazard that occurs at a random rate. The frequency of joints in
the rocks are critical for the stability.

The mining company is considering information gathering schemes that could help them make
a better rock reinforcement decision. We study the VOI of joint frequency measurements in bore-
holes for this application. A total of 30 possible boreholes have been designed (plotted in Figure
6), and data acquired in these boreholes will be indicative of the joint frequency at the locations
where data are collected. Because of the spatial dependence, this information will also propagate
to be informative about the joint frequency in the vicinity of the boreholes.
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Figure 6: Risk tunnel locations and borehole design of 30 boreholes for joint frequency data.

5.1 Modeling

We use a GP to model the joint frequency in the mine, with pdf p(x) = N(µ,Σ) for the
distinctions of interest x = (x1, . . . , x52). Adjusted from earlier studies with joint frequency data
(Ellefmo and Eidsvik, 2009), we assign a fixed mean µi = 35 for all sites, variance σ2 = 102,
and reference correlation length 3/η = 300. Sensitivity results to other correlation lengths are also
discussed. We assume that the data are imperfect measurements of the joint frequency where the
boreholes are drilled. The measurement noise terms are assumed to be independent and Gaussian
distributed with variance τ 2 = 0.12. It is worth noting that the joint frequency data are counts
and could be modeled by Poisson distributions (Ellefmo and Eidsvik, 2009; Eidsvik et al., 2015;
Evangelou and Eidsvik, 2017) having a GP as latent intensity. For rather large counts, which is the
case here, the GP is a reasonable model approximation.

One must further specify costs for stabilizing the rock mass through bolting and costs for
rock fall, if it occurs. Here, the decision situation takes the form: max{−Cb,−CfE(xi)} =
−Cb + max{0, Cb − CfE(xi)}, i = 1, . . . , n. Note that this decision rule is of a similar form as
that of equation (10), and for the VOI analysis, we can use results from Section 4 since the prior
and posterior of x is Gaussian. We assume the cost parameters are Cf = 1 and Cb = 30 monetary
units.

The boreholes have lengths between 5 and 48 samples, but most of them have 25 − 35 mea-
surements, see Figure 6. The price of acquiring and processing data is assumed to be proportional
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Table 1: Length of borehole, VOI and average posterior prediction variance, for seven boreholes.

Borehole 1 2 3 4 5 6 7
Length 30 30 30 25 29 33 27
VOI 5.05 3.28 3.02 3.02 2.97 2.65 2.65
Ave.Pred.Var 9.69 9.79 9.81 9.81 9.82 9.83 9.83
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Figure 7: Variance reduction obtained by data in single boreholes 1, 2, 3 and 4.

to the lengths of the boreholes, and we set price Pj = 0.05mj , where mj is the number of samples
in borehole j.

5.2 VOI analysis

Table 1 shows initial analysis of the planned borehole data, presenting the lengths of boreholes,
the static VOI of a single borehole, and the average prediction variance at the 52 risk sites when
data is collected in a borehole. The borehole numbers (1, . . ., 30), which are shown in Figure 6,
are here defined according to the ranks of single borehole VOI results. Borehole 1 is the most
valuable because it is close to several of the identified tunnelling locations. Assuming no further
opportunities for information gathering, one should gather data in this borehole if the price of data
acquisition and processing is less than 5.05. Borehole 1 also gives the smallest average prediction
variance in the conditional distribution.

Figure 7 shows the prior and posterior variance at all 52 risk locations, when we have condi-
tioned on data in a single borehole, see equation (7). Data in borehole 4 (bottom row in Figure
7) clearly reduce the uncertainty at some tunnel locations. However, if one is in the setting se-
quential information gathering, where one would already have collected data in borehole 1 and
2, the additional uncertainty reduction achieved by borehole 4 is likely to be much smaller than

17



Table 2: VOI for different strategies, and for smaller (top) and larger (bottom) correlation. Monte Carlo sample
size is 1000. The 90 percent uncertainty intervals are based on bootstrapping replicate value results.

Corr. range: 225m
Static Naive Naive-expand Myopic

VOI (1) 3.6 5.9 (5.4-6.3) 13.5 (12.7-14.2) 17.0 (16.3-17.8)
Comp.Time (sec) 0.1 3 7 100
Ave.Depth(1) 1 2.4 (2.3-2.5) 6.5 (6.4-6.6) 8.7 (8.6-8.8)
Corr. range: 300m

Static Naive Naive-expand Myopic
VOI (1) 5.1 8.0 (7.3-8.5) 18.6 (17.6-19.7) 25.3 (24.1-26.4)
Comp.Time (sec) 0.1 3 7 100
Ave.Depth(1) 1 2.4 (2.3-2.5) 5.6 (5.5-5.7) 10.2 (10.1-10.4)

in the bottom row of Figure 7 because borehole 4 provides similar information as 1 and 2. The
naive-expand strategy would recognize this by the forward expansion of the next best boreholes in
the fixed ordering of sequential tests. Borehole 4, which is ranked fourth in the naive strategy, thus
gets a poor rank for the naive-expand strategy.

We next run the strategies for computing the VOI of sequential testing starting with borehole
1. The results are summarized in Table 2. Having the opportunity of sequential testing is clearly
beneficial in this case, since the VOI increases with the complexity of the strategies. Moreover, the
value is larger for 300 m spatial correlation range (bottom) compared with 225 m (top); when the
correlation range is larger, data gathering in boreholes provide more information at all risk sites. It
should be useful to incorporate a workflow that can gauge such sensitivity effects of model param-
eters on the VOI. The computation time is very small for the static and the fixed-order strategies. It
is larger for the myopic strategy, where a significant time is spent on computing the optimal order
for the different data samples. Such numbers of course depend on the implementation, software
and hardware, but they are nevertheless indicative of the relative computer times. The average
depths (i.e. number of tests performed) are clearly larger for the naive-expand strategy compared
with the naive. It gets even larger for the myopic strategy. This average depth does not seem to
depend so much on the spatial correlation length 225 m or 300 m. We study sensitivity to more
extreme correlations below.

Figure 8 shows the testing stages for the three strategies (left to right). This is illustrated for two
Monte Carlo samples (top-bottom). For the naive and naive-expand strategies, the paths are pre-
determined, but the number of stages depends on the realized tests in the Monte Carlo sample. The
naive strategy (left plots) tends to stop after testing at borehole 1 and 2. For some data samples,
it continues testing over more stages, like in the lower left display. The naive-expand strategy
(middle plots) usually takes more steps than the naive strategy before it stops testing (see Table 2).
For the myopic strategy (right plots), the paths depend on the Monte Carlo samples.

We now study the effect of extreme spatial dependence conditions. When the correlation range
is extremely large; 30 km, the VOI of static testing in borehole 1 is 81. In this case the value of
sequential information is approximated to 88 (naive), 93 (naive-expand) and 94 (myopic). For such
very large dependence, knowing the outcome in the first borehole is enough in most cases; thus it
is rarely worthwhile conducting more tests, and the additional value of sequential testing is small.
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Figure 8: Borehole data strategies for two Monte Carlo realizations of tests.

In the opposite situation with a smaller correlation range of 125 m, the VOI of static testing
in borehole 1 is 1.2. The value of sequential information is now approximated to 1.2 for both
naive and naive-expand strategies, which never perform more than 1 test for the 1000 Monte Carlo
samples. For the myopic strategy, the approximated value is 1.4, and the average depth of this
strategy is now 2.1. Thus there is little benefit from a sequential strategy in this situation as well.
The largest additional value of sequential testing tends to occur for moderate to high spatial de-
pendence, when the information in one borehole can influence the posterior pdf at other decision
locations, but there is still remaining uncertainty so more data could be useful.

6 Conclusions

In this paper, we studied sequential information gathering schemes for spatial risk and deci-
sion analysis applications. Sequential testing implies that a decision maker has the opportunity to
continue testing after the results of former tests are revealed, if it is worthwhile to do so. It has
been our intention to provide tutorial explanation of concepts and interpretation of results, under
different spatial models.

We learned that statistical dependence does indeed have a bearing upon the suitability of se-
quential testing strategies. In the CO2 sequestration example, the additional value of sequential
testing is large for moderate to high correlations, while it is negligible for very low and very high
correlations. In the rock hazard application, we further learned that the value of sequential testing,
much like static testing, depends on the spatial correlation and on the possible spatial designs of
the tests, and that a wisely chosen (sequential) strategy can provide the decision maker with a sig-
nificant value gain. We recommend a workflow studying the sensitivity to different correlations in
the spatial model.

For large-size problems, like with our rock hazard example, there is no tractable optimal so-
lution to the dynamic program involved in value of sequential information calculations. Here, we
used common heuristics such as the myopic approach that has been shown to be easy to implement

19



and is very popular in practice. The myopic approach is truly adaptive in our case: the sequen-
tial data gathering scheme will depend on the observed data. Note that the heuristic strategies
presented here could be improved upon, at the expense of computational time.
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