
Development of a Real-Time Embedded
Control System for SLAM Robots

Johan Korsnes

Master of Science in Cybernetics and Robotics

Supervisor: Tor Engebret Onshus, ITK

Department of Engineering Cybernetics

Submission date: June 2018

Norwegian University of Science and Technology

Problem Formulation
A project with the goal of developing robots for Simultaneous Localization and Mapping

(SLAM) was started in 2004 at NTNU. Throughout the years since its inception, several

different robots have been designed. The majority of these robots employ 8-bit AVR

microcontrollers for their control systems. Common to all of these robots is the Nordic

Semiconductor nRF Bluetooth dongle used for communication with a central server. This

dongle contains an nRF51-series System-on-Chip (SoC).

In this project, a real-time embedded control system for the SLAM robots is to be developed

from the ground up. It shall be based on Nordic Semiconductor’s more recent nRF52-series

SoC for both robot control and communication. The new nRF52-series SoC features

sophisticated debugging functionality combined with a powerful 32-bit ARM Cortex M4F

processor with a dedicated floating point unit.

A new printed circuit board shall be designed, integrating the new SoC and additional

components as seen fit. A development environment with proper debugging facilities

shall be set up, as well as a template application running a real-time operating system. To

facilitate future SLAM application development, priority should be given to the following

aspects: Proper debug facilities, such as trace and single-stepping; a unified and robust

design, based on a single printed circuit board; autonomous capabilities, in the form of

assessment of computing abilities.

The specific tasks outlined for the project are as follows:

• Review and derive specifications and requirements

• Develop schematics and printed circuit board layout

• Perform complete board bring-up, including assembly and soldering

• Set up and configure the development environment with debug facilities

• Develop drivers for relevant components

• Set up a template application that will serve as a starting point for future SLAM

application development

i

ii

Preface

This thesis is not the continuation of a specialization project. Neither does it directly continue
on any previous work. I was assigned one of the robots part of the SLAM project, and this
robot has been used to form parts of the specifications for the new control system.

I am thankful for the feedback I have received from my supervisor, Professor Tor Onshus.

I would like to thank the personnel at the ITK workshop and Omega workshop, for letting

me use their equipment.

Having been able to design and bring up a complete embedded system all the way from

schematics to firmware has been a very rewarding process. With embedded systems as a

study specialization and hobby, I cannot imagine anything more exciting. It has given me

invaluable insight into the world of embedded systems.

Johan Korsnes

Trondheim 14.06.2018

iii

iv

Summary
This thesis encompasses all phases in the development of a real-time embedded control

system designed for simultaneous localization and mapping (SLAM) robots. This work

includes system design, schematic capture, printed circuit board (PCB) design, assembly

using precision soldering, and embedded software development. A template application

running on a real-time operating system (RTOS) has been set up with device drivers.

Real-time aware debug facilities have been implemented, giving complete insight into the

RTOS’ behavior.

A set of specifications and requirements have been derived for the new control system,

ensuring compatibility with the equipment used on current SLAM robots. The nRF52

System-on-Chip (SoC) used has been thoroughly assessed. New functionality has been

introduced, such as an onboard display and a microSD slot for portable storage. A two-

stage power supply has been designed with a focus on efficiency and a stable output

voltage.

Complete schematic capture of the electrical control system has been performed, for

which a four-layer PCB layout has been designed. While the fabrication of the PCB itself

is outsourced to an external fabricator, the assembly process is performed as part of the

thesis work. This process involves different precision soldering techniques and electrical

verification.

A low-cost development environment is set up, where the development kit used for

flash programming and debugging is the only expense. The integrated development

environment used, Segger Embedded Studio, and the advanced real-time aware tracing

software used, Tracealyzer, are both available in educational licenses free of charge. Both

a set of drivers and a template application incorporating these, have been developed. The

template application is set up to showcase different synchronization mechanisms, and to

serve as a template for future work.

The new control system features a robust and unified single PCB design, something which

addresses concerns raised about the hardware reliability with previous control systems.

The new development environment features modern real-time aware debugging facilities,

improving upon the inadequacies in previous control systems. With a template application

with drivers set up, the control system is viable for implementation in a SLAM robot.

v

vi

Oppsummering
Denne avhandlingen tar for seg alle faser i designet og utviklingen av et sanntids in-

nvevd kontrollsystem til bruk på kartleggings-roboter (SLAM). Arbeidet omfatter sys-

temdesign, utvikling av skjematikk, design av kretskort, montasje, presisjonslodding og

programvareutvikling for tilpassede datasystem. En applikasjon kjørende på et sanntids-

operativsystem er utviklet med tilhørende enhetsdrivere. Feilsøkings-verktøy designet for

sanntidsapplikasjoner har blitt implementert, noe som gir omfattende innsikt i systemets

oppførsel.

Et sett med spesifikasjoner og krav er utarbeidet for det nye kontrollsystemet, med fokus

på kompatibilitet med det utstyret som idag benyttes på SLAM-robotene. Det har blitt

utført en grundig evaluering av nRF System-på-Chip (SoC)-en som skal benyttes. Ny

funksjonalitet har blitt introdusert, slik som et integrert display og mikroSD støtte for

portable lagring av større mengder data. Et to-stegs strømforsyning er designet med fokus

på virkningsgrad og stabil utgangs-spenning.

Elektrisk skjematikk tilhørende det elektriske kontrollsystemet har blitt utviklet, som

så har dannet grunnlaget for designet av et fire-lags kretskort. Selve produksjonen av

kretskortet er utført av tredjepart, men all sammensetting og lodding av komponenter

er utført som en del av prosjektet. Denne prosessen involverer forskjellige teknikker for

presisjons-lodding samt verifikasjon av det elektriske systemet.

Et lavkostnads utviklingsmiljø er satt opp, hvor et nRF utviklerbrett som benyttess til

programmering og debugging utgjøre eneste kostnad. Det integrerte utviklingsmiljøet

som benyttes, Segger Embedded Studio, og det sanntids-tilpassede tracing-verktøyet

Tracealyzer som også benyttes, er begge tilgjengelig i en gratis akademisk lisens. Et sett

med drivere er utviklet, samt en applikasjon basert på FreeRTOS som benytter disse. App-

likasjonen er satt opp for å vise frem noen av de forskjellige synkroniseringsmekanismene

tilgjengelig, og for å danne et grunnlag for fremtidig arbeid.

Det nye kontrollsystemet består av et robust og enhetlig design på ett enkelt kretskort.

Dette adresserer bekymringer vedrørende robusthet til hardware som har vært fremmet

rundt tidligere kontrollsystem. Det nye utviklingsmiljøet stiller med moderne sanntids-

tilpassede verktøy for debugging. Med en eksempelapplikasjon med driver satt opp, har

kontrollsystemet vist seg å være et lovende system for implementering i SLAM-robotene.

vii

viii

Conclusion
The control system developed in this thesis addresses primarily two growing concerns

regarding the state of the current SLAM robots: robustness of hardware, and the lack of

more sophisticated real-time debugging facilities. In addition, the new platform signifi-

cantly increases the computational power available to the application developer, greatly

facilitating the migration towards more autonomous robots.

It is now a unified designwith all connections andmost components integrated into a single

printed circuit board. Distrust in the hardware should be a non-issue in the new system,

as application developers will no longer have to worry about loose wires or hardware

faults when debugging. This unification does come at the cost of complicating future

prototyping, as the process of exchanging components will require drop-in compatible

alternatives.

The migration to the nRF52 SoC comes with an increase in RAM and program storage

capacities. Running with a clock frequency about four times that of the ATmega, combined

with 32-bit architecture and dedicated floating point unit, this all ensures that the new

control systemmakes for a solid foundation for the more computing intensive autonomous

robots under development.

Instead of relying on rudimental debugging facilities such as light emitting diodes and

printing to console, the debug features of the new SoC are leveraged to offer modern and

more powerful debugging facilities. These facilities include real-time monitor debugging

and RTOS aware trace functionality. Combined, this gives a much more complete insight

into the behavior of the RTOS and should accelerate future development.

Combined, the aforementioned aspects of the new control system certainly goes a long

way to alleviate deficiencies curbing efficient SLAM development in the contemporary

control systems. While no SLAM application is developed as part of this thesis work, the

new development environment set up with RTOS aware analysis—made possible with the

migration to the new SoC—should be able to accelerate future development significantly.

The new debugging features combined with unified hardware design and a new and more

powerful SoC should make for a more stable and suitable platform.

ix

x

Contents

Problem Formulation i

Preface iii

Summary v

Conclusion ix

List of Tables, Figures an Acronyms xv

1 Introduction 1
1.1 Background . 1

1.1.1 Simultaneous Localization and Mapping 1

1.1.2 Template Robot . 2

1.2 Previous Work . 3

1.3 Motivation . 5

1.4 Objective and Scope . 5

1.5 Outline . 6

2 Specifications and Theory 7
2.1 System-on-Chip . 7

2.1.1 Peripherals . 10

2.1.2 Storage . 11

2.1.3 Compute Performance . 13

2.1.4 Debugging . 15

xi

2.1.5 Summary . 16

2.2 System Configuration . 16

2.3 New Functionality . 20

2.3.1 Display . 20

2.3.2 Portable Storage . 20

2.3.3 Connectors and Test Points . 21

2.4 Power Supply . 23

2.4.1 Component Selection . 24

2.4.2 Performance . 26

2.5 PCB Fundamentals . 27

2.6 Development Environment . 29

2.6.1 Build Process . 29

2.6.2 IDE and Flash Programmer . 30

2.6.3 Debugging Facilities . 31

3 Schematics and Layout 33
3.1 Altium Designer . 33

3.2 Component Library . 35

3.2.1 Low Drop-out Regulator Heatsinking 36

3.2.2 System-on-Chip Vias . 37

3.3 Schematic Capture . 38

3.3.1 Power Supply . 38

3.3.2 System-on-Chip . 40

3.3.3 Analog-to-Digital Conversion . 42

3.3.4 Bus Devices . 43

3.4 Printed Circuit Board . 44

3.4.1 Dimensions and Layers . 44

3.4.2 Initial Configuration . 46

3.4.3 Design Process . 48

3.5 Second Revision . 53

3.5.1 Corrections and Improvements 53

3.5.2 Ease of Manufacturing . 54

3.5.3 Inrush Current . 54

4 Hardware 55
4.1 Equipment . 55

4.2 PCB Fabrication . 55

xii

4.3 System-on-Chip . 59

4.4 Remaining Components . 62

4.5 Power Supply Verification . 64

5 Software 67
5.1 Development Environment . 67

5.1.1 Host to Target Interface . 67

5.1.2 Setting up a Minimal Example . 68

5.1.3 Debugging . 69

5.2 Driver Development . 72

5.2.1 Display . 72

5.2.2 microSD . 75

5.2.3 Motors . 76

5.2.4 Encoders . 77

5.2.5 IR . 78

5.2.6 Sensor Tower Servo . 78

5.2.7 Magnetometer . 79

5.3 Template Application . 80

5.3.1 Gatekeepers . 80

5.3.2 System Architecture . 81

5.3.3 Autonomous Scan Cycle . 82

6 Results 85
6.1 Hardware . 85

6.2 Software . 87

6.2.1 Development Environment . 87

6.2.2 Drivers . 87

6.2.3 Template Application . 89

7 Discussion and Further Work 93
7.1 Discussion . 93

7.2 Further Work . 96

7.2.1 Completing the Control System 96

7.2.2 Second Revision . 97

7.2.3 SLAM Application . 97

Bibliography 99

xiii

A Media Attachment A-1
A.1 Schematics and PCB Layout . A-1

A.2 Software . A-2

A.3 Tutorials . A-2

B Schematics and PCB Layout B-1

xiv

Listings

5.1 FreeRTOSConfig.h: Increase heap size for more tasks. 68

5.2 sdk_config.h: SDK low-frequency clock source configuration. 69

5.3 sdk_config.h,main.c: Enabling and using RTT. 70

5.4 trcConfig.h Trace library target configuration. 71

5.5 FreeRTOSConfig.h: Enabling trace in FreeRTOS. 71

5.6 main.c: RTT interlock and Tracealyzer usage. 72

5.7 oled_driver.c: Part of the SPI configuration used. 74

5.8 oled_driver.c: SPI initialization routine. 74

5.9 oled_driver.c: Setting or resetting a single pixel. 75

5.10 task_display.c: Display Task structure. 81

xv

xvi

List of Tables

1.1 Control system revisions timeline. 4

2.1 Platform peripheral comparison. 11

2.2 Memory capacities for the different platforms. 12

2.3 SLAM robot peripheral and pin requirements. 18

2.4 Control system current consumption estimates. 25

2.5 DC-DC module used for the first stage. 25

2.6 LDO used for the second stage. 26

3.1 Layer stack configuration in AD. 47

4.1 Equipment used during soldering, assembly and verification. 56

5.1 OLED driver callback functions . 73

5.2 SDK graphics library drawing operations. 75

5.3 microSD-card driver interface. 76

5.4 Motor driver interface. 77

5.5 Encoder initialization functions. 77

5.6 IR driver interface functions. 78

5.7 Servo driver interface functions. 79

5.8 Magnetometer driver interface functions. 79

A.1 Description of the content in the pcb folder. A-1

A.2 Description of the content in the sw folder. A-2

xvii

xviii

List of Figures

1.1 Template SLAM robot. 2

2.1 Simplified SoC overview, showing only the relevant subsystems. 9

2.2 Platform memory capacities compared. 12

2.3 Flash and memory layout on the SoC with SoftDevice. 13

2.4 Components and peripheral usage of current control system. 17

2.5 Components and peripheral usage of new control system. 19

2.6 ATmega control system, emphasis on wiring. 22

2.7 Comparison between previous and new power connectors. 23

2.8 JST connectors for LIDAR and IR sensors. 23

2.9 Power distribution scheme. 24

2.10 LDO Power Supply Rejection Ratio as a function of frequency. 27

2.11 Primary components of a PCB in four-layer configuration. 28

2.12 Steps involved in generating an executable for target. 29

2.13 Final process of transferring the program to the target. 30

3.1 Flowchart illustrating the complete PCB development cycle. 34

3.2 Parts constituting an AD component. 34

3.3 Thermal relief on left side vs no thermal relief on right side. 37

3.4 Different solutions for solving the via wicking issue. 37

3.5 DC-DC regulator with surrounding circuitry. 39

3.6 ESR requirements for LDO regulator output capacitor. 40

3.7 LDO regulator with surrounding circuitry. 41

3.8 Voltage divider structure . 42

3.9 Bi-directional level shifter circuit. 43

xix

3.10 PCB layer stackup legend. 45

3.11 Planned board positioning of sections and components. 46

3.12 Board set up and ready for layout design. 48

3.13 PCB layout with primary components placed. 49

3.14 PCB layout with primary and passive components. 50

3.15 PCB layout with components and tracks. 51

3.16 Internal power layer split into two sections. 52

3.17 Final PCB layout with ground plane. 52

4.1 Flowchart illustrating the complete PCB development cycle. 57

4.2 Visual inspection of the received PCB. 59

4.3 Solder paste and flux application, and the final SoC alignment. 60

4.4 Difference between good and bad QFN soldering joints. 61

4.5 Stencil that aids in dispensing solder paste correctly. 62

4.6 All components of a JST connector . 63

4.7 Probing method for voltage regulators. 64

4.8 Oscilloscope measurements of voltage regulator output. 66

5.1 The connection between PC and control system. 68

5.2 Monitor mode debugging principle. 70

5.3 Components of the display driver. 73

5.4 Mapping between display buffer and pixels on the display. 74

5.5 Gatekeeper task structure. 80

5.6 Architecture of template application . 82

5.7 Flow chart describing an IR scan cycle. 83

6.1 Assembled control system. 86

6.2 Status of driver and assembly of control system components. 88

6.3 Tracealyzer trace and profiler view. 90

6.4 Tracealyzer object history and communication flow view 91

xx

Glossary and list of abbreviations

AD Altium Designer, electronics design automation software.

API Application Programming Interface

Application Developer Person using drivers and underlying facilities to develop the

actual SLAM application.

AM Arduino Mega which some of the robots are based on. The Arduino Mega is based

on the ATmega2560 microcontroller.

BLE Bluetooth Low Energy

BOM Bill of Materials

DC-DC Buck down voltage regulator.

DMA Direct Memory Access, enablers peripherals to write/read memory without pro-

cessor intervention.

DSP Digital Signal Processing.

FPU Floating Point Unit, hardware processing unit dedicated to floating point operations.

GPIO General Purpose Input/Output.

GPIOTE General Purpose Input/Output with Task and Events.

GUI Graphical User Interface

I2C Inter-Integrated Circuit, serial multi-drop bus for communication.

xxi

IC Integrated Circuit

IMU Inertial Measurement Unit

JST Japan Solderless Terminal, series of different electrical connectors.

JTAG Joint Test Action Group, programming and debugging interface.

LDO Low Drop-out, type of voltage regulator.

MCB Motor Control Board, dedicated board to control the motors on the robots.

MLCC Multi-layer Ceramic Capacitor

MMD Monitor Mode Debugging, non-intrusive debugging technique.

NTNU Norwegian University of Technology and Science

PCB Printed Circuit Board

PPI Programmable Peripheral Interconnect, feature allowing for autonomous peripheral

operations.

QFN Quad Flat No-leads, a type of IC package with pads instead of pins.

RTOS Real-time Operating System. E.g., FreeRTOS.

RTT Real-Time Transfer, protocol for real-time transfer.

SDK Software Development Kit, referring to Nordic Semiconductor’s nRF SDK unless

stated otherwise.

SES Segger Embedded Studio, an integrated development environment.

SLAM Simultaneous Localization and Mapping

SoC System-on-Chip, refers to the nRF52832 SoC in this thesis.

SPI Serial Peripheral Interface, serial bus for communication.

SWD Serial Wire Debug, programming and debugging interface.

SWO Serial Wire Output, trace data drain for streaming data.

UART Universal Asynchronous Receiver Transmitter, hardware for serial communica-

tion.

xxii

Chapter 1
Introduction

This chapter begins with a brief description of the ongoing SLAMproject and then provides

a summary of previous work done on the SLAM robots. This chapter also presents the

motivation for the control system that is to be developed. The scope and objectives are

defined, and the structure of the thesis is presented.

1.1 Background

The purpose of this section is to make the reader familiar with the SLAM project and the

definition of the control system that is to be developed.

1.1.1 Simultaneous Localization and Mapping

This thesis is part of a series on simultaneous localization and mapping (SLAM) related

projects dating back to its start in 2004 at NTNU. SLAM is the problem of mapping an

unknown area using a robot. The problem is fundamentally a dual—that of creating a

map, and that of knowing the robot’s position. While this problem has been successfully

solved on a theoretical level, it is its implementation that remains the primary challenge.

SLAM is a cornerstone in autonomous robotics operations, and as such it has never been

more relevant with the recent advent of autonomous vehicles. As the SLAM problem itself

will not be addressed directly as part of this thesis (ref. problem statement), the reader

1

1.1. BACKGROUND CHAPTER 1. INTRODUCTION

should consult material such as Durrant-Whyte and Bailey’s SLAM introduction for a

more in-depth background.[1] [2]

1.1.2 Template Robot

At the outset of the project, the author was assigned one of the current SLAM robots.

During the design and development of the new control system, parts of this robot and its

control system have served as a starting point and reference. A picture of the robot can

be seen in Figure 1.1.

Figure 1.1: Template SLAM robot.

The robot consists of the following main subsystems:

• Control system

2

CHAPTER 1. INTRODUCTION 1.2. PREVIOUS WORK

• Sensor tower: IR-sensors mounted atop a servo motor

• Motors: dedicated motor control board and one motor for each wheel

• Wheels with encoders

• 12V Li-Ion battery

There is no exact definition as to which components encompass the control system. The

term will herein refer to those components that will be integrated within the new PCB

that will be developed. For the template robot, this includes the stack of components and

devices seen in Figure 1.1 and the IMU located below. In some sense, a more fitting term

for this could be an integrated control system, as it will include components that are not

performing any control logic. This selection of components is also the result of more

practical consideration, that of: "which components are easily integrated into a PCB?".

Given the previous definition of the control system, a brief overview of the robot’s

functioning follows: In the current SLAM project, the actual mapping is performed on a

central PC that runs a server communicating with one or more robots. The server orders

a robot to move to a given location. The robot will then execute the movement order

using the motors for the actual movement, and a combination of wheel encoders, IMU,

and magnetometer to estimate its position. Either during, or after arrival at the requested

location, a scanning sequence begins. The scanning sequence consists of moving the angle

of the servo controlling the sensor tower in fixed increments, and for each increment, the

IR sensor performs a distance measurement. This data is transferred back to the server

that generates a map. This procedure repeats until the environment is fully mapped.

1.2 Previous Work

In order to both motivate and bring context to this project, a quick review of previous

work done on the robots will be presented. In the timeline given in Table 1.1, it can be

seen that the project spans many years, with many different students participating in the

development. The information in the timeline is obtained from the project summaries

given in Homestad’s and Ese’s theses [3] [4], as well as the original theses cited in the

timeline itself.

The first robot built in 2004 was based on an ATmega32 in combination with LEGO

Mindstorms RCX. The Mindstorms are Lego’s robotics kit. The RCX was used as a

3

1.2. PREVIOUS WORK CHAPTER 1. INTRODUCTION

Table 1.1: Timeline highlighting all major control system revisions and redesigns.

2004 • ATmega32 (Skjelten [5])

2008 • NXT + ATmega48 (Bakken [6])

2015 • EV3 (Stüper [7])

2016 • ATmega1284 (Ese [4])

2016 • ATmega2560 (Andersen and Rødseth [8])

dedicated motor controller. The project focused on assessing the performance of different

sensors in SLAM applications.

During the summer of 2006, Lego released Mindstorms NXT, featuring more connectivity

options and a more powerful built-in microcontroller. In 2008, a new robot was developed

to take advantage of the NXT. The primary goal was to create a more stable and unified

robot, as the NXT would be capable of handling more of the control functions itself.

A third-generation Mindstorms robotics kit, the EV3, was announced in early 2013. A new

SLAM robot based on this kit was developed in 2015. Recently a project to port FreeRTOS

to the EV3 platform was performed. [9]

In 2016 two new robots were developed, both based on ATmega microcontrollers. These

are both running FreeRTOS. One of them has been designed around the ATmega 1284

microcontroller, while the other uses the Arduino Mega (AM). The AM platform is es-

sentially an ATmega2560 on a PCB with rows of headers for prototyping. Also, it runs a

special bootloader, making it possible to flash program the microcontroller directly via

USB.

In parallel with this project there have been three other ongoing projects as part of the

SLAM project:

• Transition from IR to LIDAR sensor. ATmega (AM)-based robot used.

• Improved robot navigation. ATmega (AM)-based robot used.

• More algorithmic work locally on the robot. ATmega1284-based robot used.

Since these are the robots currently used, and likely to be used for future projects as well,

the specifications derived in Chapter 2 will be based mainly on the comparison of the new

SoC with the AM and the ATmega1284 control system.

4

CHAPTER 1. INTRODUCTION 1.3. MOTIVATION

1.3 Motivation

Feedback from those who are developing on the current control systems is concerned

with the lack of proper debugging facilities. For some robots, the only available aids in the

debug process is performing print statements to an external computer, and the encoding

of information via a set of three status LEDs. With the introduction of a complete RTOS on

recent robots, progress has been severely curbed by the lack of any real-time supporting

debug systems. The complexity of the system has increased exponentially, while the

debug facilities have been at a standstill.

The current control system setup consists of an intermediate PCB to connect different

modules together. These components could have been organized into a single PCB

instead. While this separation is not in itself a major issue, the implementation seen in the

template robot is. The system is fraught with fray wiring and fragile connections prone

to breaking at some point. This means that the application developer has to inspect and

potentially perform measurements on hardware if the robot malfunctions. This distrust

in the hardware is far from optimal.

A peculiar aspect of the current robots is that the control systems are based on older 8-bit

architecture microcontrollers, while the Bluetooth communication dongle mounted on it

contains a modern and powerful 32-bit ARM Cortex processor with significantly larger

program and data memories dedicated for user applications.

By developing a new control system around a modern system with advanced debug func-

tionality, the desire is to significantly accelerate the development of the SLAM application.

It would seem as if more time is spent debugging, than on the SLAM challenge at this

point. The expected increase in computing power will also aid and enable the current

research into more autonomous robots.

1.4 Objective and Scope

A new control system will be developed with the current robots and the SLAM application

in mind. This will involve system design, schematic capture, PCB layout development

and embedded software development. The actual implementation of any SLAM algorithm

or functionality is not within the scope of this thesis.

The RTOS template project implemented will serve as a starting point for the implementa-

tion of a SLAM application. It will include drivers and a minimal RTOS set-up using basic

5

1.5. OUTLINE CHAPTER 1. INTRODUCTION

synchronization mechanisms. Relevant debug facilities should also be implemented.

1.5 Outline

This thesis is outlined with two primary considerations in mind—reconstruction and

understanding. The former should be evident by the thesis’ structure, while the latter will

be more of an implicit manifestation throughout. The intention is not only to prepare the

reader for reconstruction, but also provide sufficient understanding to enable the reader

to modify and improve upon the system.

Each chapter starts with a brief introduction describing the chapter’s topic and outline.

Chapter 2 describes the system design phase of the project, where requirements and

improvements are discussed and selected. In addition, this chapter serves as a theoretical

primer where relevant.

Chapter 3 covers the electrical schematics capture and the design of a PCB layout.

Chapter 4 covers the PCB assembly and precision soldering techniques used. It also details

electrical verification of the power supply.

Chapter 5 starts out with detailing the set-up of a development environment with RTOS

aware debugging facilities. Following this the driver development is discussed, before a

template RTOS project is set up using the drivers developed.

Chapter 6 presents the final status of the new control system.

Chapter 7 presents a project discussion and suggestions for further work.

6

Chapter 2
Specifications and Theory

This chapter starts out with an assessment of the SoC, comparing it with the current

ATmega platforms with regard to central features such as peripherals, program memory,

RAM, compute performance, and debugging facilities supported. This assessment will

establish the SoC’s capabilities, especially for SLAM applications.

The previous system configuration is reviewed, and a new one set up. This configuration

involves the allocation of the SoC’s resources such that all SLAM requirements are satisfied.

New functionality is introduced and selected. A two-stage power distribution scheme is

presented to power the new system. A brief introduction to basic concepts in the field of

PCB design is given. The final section covers the new development environment that will

be set up.

This section will also serve as a theoretical primer on the most central topics. This chapter

is therefore intentionally detailed in some of its descriptions.

2.1 System-on-Chip

The nRF52832-QFAA SoC will be used for the new control system. This SoC is the next

generation of the nRF51 used on the current robot’s Bluetooth dongle. This section will

introduce relevant features of this new SoC and assess its performance relative to the

currently used ATmegas for the SLAM robots.

7

2.1. SYSTEM-ON-CHIP CHAPTER 2. SPECIFICATIONS AND THEORY

Figure 2.1 shows a simplified block schematic of the SoC adapted from a more detailed

system overview that can be found in the datasheet. The primary components shown are:

• Cortex M4 CPU with floating point coprocessor (FPU)

• Program storage (Flash) and RAM (SRAM)

• Peripherals with DMA blocks if supported

• Bus system for interconnecting the different components

• Processor instruction cache (I-Cache)

In the following subsections, all of these components except the bus system will be

discussed. Also, the debug facilities will be reviewed.

8

sl
av

e

RAM0 RAM1 RAM7 GPIO

sl
av

e

sl
av

e

sl
av

e

AHB Multi-Layer

sl
av

e

sl
av

e

sl
av

e

m
as

te
r

I-Cache

Flash

AHB to APB
Bridge

CPU

ARM Cortex M4F

POWER

WDT

PPI

RADIO

DMA

GPIOTE

COMP

LPCOMP

SAADC

QDEC

TIMER [0..4]

SPIM [0..2]

TWIS [0..1]

TWIM [0..1]

UARTE[0]

SPIS [0..2]

PWM[0..3]

DMA

DMA

DMA

DMA

DMA

DMA

DMA

master

master

master

master

master

master

master

master

A
PB

0

NVMC

…

FPU

Figure 2.1: Simplified SoC overview, showing only the relevant subsystems.

2.1. SYSTEM-ON-CHIP CHAPTER 2. SPECIFICATIONS AND THEORY

2.1.1 Peripherals

Peripherals are devices that allow the microcontroller to interact with its surroundings,

either via input, output or both. In the SLAM project, they are used for controlling motors

and the sensor tower, and for reading sensor data from devices such as the IMU and wheel

encoders.

It is essential that the SoC has peripherals that support all the different components of the

SLAM robot, and that it has enough of these. Referring to Figure 2.1, a summary of the

most central peripherals will now be described. It is worth noting that in contrast to the

ATmegas, all peripherals except the SAADC can be configured to any physical pin as long

as the pin is not dedicated to any special functionality (e.g., ground, power or antenna).

• The General Purpose Input/Output (GPIO) peripheral allows for configuring pins as
either input or output. For example a switch connected to the SoC, where the GPIO

peripheral can be used to read the status of the button on the pin it is connected to.

The GPIO Tasks and Events (GPIOTE) is an extension enabling tasks and events

on GPIO pins. Tasks and events are features that will be described at the end of this

subsection.

• Two-Wire Interface (TWI) in slave (TWIS) or master (TWIM) configuration is

a two-wire master/slave multidrop bus. It can be configured to conform to the

Inter-integrated Circuit (I
2
C) standard.

• Serial Peripheral Interface (SPI) is a serial interface. In addition to the clock, there

are two data lines and a slave select necessary for multi-drop configurations. The

benefit of SPI over I2C is a more lightweight protocol and typically higher transfer

rates.

• The timer (TIMER) peripheral supplies timers. These timers can be configured to

operate in either timer or counter mode.

• The Pulse-width-modulator (PWM) peripheral uses a TIMER instance and a GPIO

pin to output pulse-width-modulated signal. This type of signal is used for control-

ling the motors and the servo on the robot.

• The Successive Approximation Analog-to-Digital Converter (SAADC) converts
analog input voltage to a digital representation. For the robot this peripheral is used

for monitoring the battery voltage and perform readings from the IR sensors that

output a voltage as function of measured distance.

10

CHAPTER 2. SPECIFICATIONS AND THEORY 2.1. SYSTEM-ON-CHIP

The SoC incorporates two additional new features that complement the whole peripheral

system. These are the Programmable Peripheral Interconnect (PPI) and Direct Memory

Access (DMA). The former allows for supporting peripherals to set up events (e.g., ADC

conversion complete) and tasks (e.g., GPIOTE sets pin activating LED), and then connect

these tasks and events. The latter allows supporting peripheral systems to access memory

directly via read or write operations. These features allows for basic and recurring routines

in the peripheral system to operate without the processor intervening. Not relying on

the processor also makes for a less complex real-time system, making timing analysis

techniques more viable.

A comparison of the number of peripherals relevant to the SLAM application can be seen

in Table 2.1. Keep in mind that this table does not take into consideration the different

system’s implementation of the peripherals, apart from mentioning resolution where

relevant. For more details, the individual datasheets should be consulted.

Table 2.1: Comparison of number of peripherals available on the different platforms.

SoC ATmega2560 ATmega1284

Pins 34∗ 85 32

Timers 4‡ (32 bit) 2 (8 bit) + 4 (16 bit) 2 (8 bit) + 2 (16 bit)

PWM† 3x4 (15 bit) 1x4 (8 bit) + 1x12

(2–16 bit)

1x8 (8 bit)

ADC† 1x8 (12 bit) 1x16 (10 bit) 1x8 (10 bit)

UART 1 4 2

SPI 3 1 1

I2C 2 1 1

∗All pins configurable with all peripherals except ADC.

†Hardware peripherals × Channels.

‡TIMER0 is reserved for the SoftDevice, thus only 4 timers are available.

2.1.2 Storage

Both the SoC and microcontrollers contain two types of memory, a program memory

(flash memory) and a RAM (SRAM). The former is used for storing the program code,

while the latter for storing run-time data such as variables. Table 2.2 summarizes the

capacities for the different platforms.

11

2.1. SYSTEM-ON-CHIP CHAPTER 2. SPECIFICATIONS AND THEORY

Table 2.2: Memory capacities for the different platforms.

Platform ATmega1284 ATmega2560 AM* SoC SoC* Unit

Program memory 128 256 248 512 372 KiB

RAM 16.384 8 8 64 59.12 KiB

∗Bootloader and SD accounted for.

A direct comparison based on capacities given in the datasheets of the different systems

will not be an adequate comparison. The ATmega control systems offload the Bluetooth

operations to the dongle, meaning that these systems will have minimal storage overhead

for handling this communication. The SoC has to manage this communication itself, and

will thus need to hold a full BLE stack of drivers onboard (known as the SoftDevice). This

stack requires a significant amount of program memory, and some RAM as well. The AM

contains a bootloader, which occupies some program storage.

The memory capacities for the different platforms are compared in Figure 2.2, where

the bar chart has been normalized around the ATmega1284. Highlighted in blue is the

SoC with SoftDevice, which represents the configuration that will be used for the control

system. For the ATmega2560, the Arduino bootloader has been accounted for in the

comparison.

Program Memory RAM

0

1

2

3

4

ATmega2560 (AM)

ATmega1284

SoC+SD

Figure 2.2: Memory capacities available to the application developer on the different platforms.

The program memory and RAM layout of the SoC are shown in Figure 2.3. The values

12

CHAPTER 2. SPECIFICATIONS AND THEORY 2.1. SYSTEM-ON-CHIP

APP_CODE_BASE and APP_RAM_BASE parameters specifies the flash storage and memory

requirements, respectively. The RAM requirements depends on the Bluetooth application,

e.g., the number of services and characteristics.

Application

SoDevice

Program Memory RAM

Stack

Heap

Application

SoDevice
APP_CODE_BASE =

0x00000000

0x80000 (512KiB)

APP_RAM_BASE =

0x20000000

0x20010000 (64KiB)

0x00023000 (140 KiB)*
0x20001380 (4.88 KiB)*

*SoDevice s132 v5.1.0

Figure 2.3: Flash and memory layout on the SoC with SoftDevice.

2.1.3 Compute Performance

There is ongoing work to move more of the computational workload from a central server

to the robots themselves. As preliminary results have shown, the compute performance of

the 8-bit ATmegas is likely to be a limiting factor. [10] It is therefore of interest to assess

the compute performance of the SoC.

A brief comparison between the ATmegas currently used, and the processor part of

the SoC will be presented here. The processor part of the SoC is an ARM Cortex M4F.

It is important to stress that while both are RISC architectures, there are significant

architectural differences between the 8-bit AVR architecture the ATmegas are based on,

and the 32-bit Cortex. This architectural difference means that basing the comparison

solely on the performance metrics given in the datasheets, such as clock frequency, is

likely an inadequate basis for a comparison.

The ATmegas are based on the AVR architecture, while the Cortex on ARMv7E-M. Both

the AVR and ARMv7E-M instruction sets are considered RISC, where each architecture

features many instructions able to complete in a single clock cycle. [11] [12] The SoC

operates with a clock frequency of 64MHz, while the ATmegas operates at 16MHz. The

Cortex is a 32-bit architecture, while the AVR is an 8-bit architecture. Much simplified,

this means that the SoC perform its operations on words consisting of 32 bits, while the

13

2.1. SYSTEM-ON-CHIP CHAPTER 2. SPECIFICATIONS AND THEORY

ATmegas will be limited to 8 bits. This is not to say that the ATmegas do not support

wider data types, but this will incur the use of four more instructions unless the compiler

manages to optimize it.

Consider the unsigned multiplication instruction MULwhich both architectures implement.

Both can execute this instruction in one cycle (assuming no wait states), but in the same

cycle the Cortex can operate on operands in the range of 2
32 − 1 = 4294967295 while

the 8-bit architecture of the AVR will be limited to 2
8 − 1 = 255. Due to the differences

in clock frequency the cycle times are also different. For the Cortex a clock cycle takes

TM4 =
1

64·106
= 16ns, while for the AVR, TAVR =

1

16·106
= 63ns.

CoreMark is a benchmark designed for embedded systems. It is written in C and consists

of several algorithms aimed for assessing embedded processors pipeline, memory and

integer operations performance. The SoC’s Cortex-M4F implementation has a CoreMark

score of 215 according to its datasheet. This is compared with a score of 4.25 for the

ATMega2560 when operating with a clock frequency of 8MHz.
1
Unofficial results at

EEMBC is used for the ATmega, which means that this score may be unreliable.

A major difference between the Cortex and the ATmegas is the presence of a dedicated

floating point coprocessor (FPU) on the Cortex. This unit can handle single-precision

floating-point number operations directly in hardware. It also introduces several new

DSP instructions such as the Fast-Fourier-transform algorithm as well as some single

instruction multiple data (SIMD) instructions. In the ATmega microcontrollers, floating

point operations have to be implemented in software, as there is no hardware support for

these operations. It is thus generally best to avoid such instructions if possible. It was

mentioned in Eikeland’s thesis that better support for floating point operations would be

useful when moving more of the algorithmic work from the central server to the individual

SLAM robots. [10]

The author would like to stress that he is not in any way attempting to dismiss the AVR
architecture as being inferior or obsolete. Instead, the issue at hand here is its intended
application. For high volume productions of simpler control systems, the ATMega could be
more than sufficient at a lower price point with reduced system complexity. For the SLAM
project, especially considering that more of the algorithmic work is now being moved to the
robot, the simplicity of the ATMega seems to becomemore of a limiting, than enabling factor.

1
Unable to obtain a URL: navigate to eembc.org, Benchmarks → Processors → CoreMark → Scores → Search,

select Atmel as vendor, and the ATmega2560 should appear in the filtered list.

14

CHAPTER 2. SPECIFICATIONS AND THEORY 2.1. SYSTEM-ON-CHIP

2.1.4 Debugging

A concern that has been raised on several occasions is the lack of proper debugging

facilities in the SLAM project. The ATmega2560 control systems has generally been

limited to printing via UART. The ATmega1284 based robot uses the JTAG interface of the

microcontroller, which means that single stepping and halting is available. While this is

an improvement over printing via the UART peripheral, there are two major limitations to

this debugging as well: they lack any RTOS awareness, and they can break timing sensitive

systems due to their invasive nature. The goal of the debug system on the new control

system will thus be to provide real-time aware and non-invasive debugging facilities.

The nRF52 incorporates several debugging features, which are briefly summarized below:

In addition to halt debugging, the Cortex supports a second mode called Monitor Mode

Debugging (MMD). This is a special debug mode where debug events triggers a debug

exception handler. The implication of this is that the exception handler will execute at a

given priority, such that higher level priority exceptions will still be able to run. This less

intrusive debugging mode will not interfere with critical time-sensitive operations, such

as Bluetooth or motor control.

Serial Wire Debug (SWD) interface, Serial Wire Output (SWO) and Serial Wire Viewer

(SWV) are different but interacting technologies. SWD defines a two-wire interface for

debugging and flashing program memory. The SWO is an additional pin, which when

combined with SWD enables SWV operations. SWV can then be used for real-time trace

and system analysis without the need to halt the processor to extract the information. The

type of information can be event counters and notifications, timestamps and CPU cycle

information. For the control system it is used for transferring trace data to an external PC

running software to perform RTOS analysis.

Flash Patch and Breakpoint unit (FPB) enables hardware breakpoints. Hardware break-
points are as their name implies integrated into hardware (special registers), and as such

have a smaller overhead associated with them compared with software breakpoints. The

downside is that there is usually a very limited amount of these registers, meaning that

only a few hardware breakpoints (e.g., 6) can be set versus infinitely many software

breakpoints.

Data Watchpoint and Trace unit (DWT) enables data watchpoints and different tracing

functions. Data watchpoints are breakpoints that trigger when specific addresses are

accessed.

15

2.2. SYSTEM CONFIGURATION CHAPTER 2. SPECIFICATIONS AND THEORY

Instrumentation Trace Macrocell (ITM) enables communication via the SWO pin dis-

cussed in the first bullet point. An application can write directly to the ITM, which then

encapsulates these messages and attach timestamps such that external debugging software

could as an example analyze events generated over time. The printf() function may be

redirected to the ITM allowing for a real-time friendly debug print functionality as the

ITM output does not cause much delay such as the traditional UART peripheral does.

Embedded Trace Macrocell (ETM) provides full instruction traces, at the expensive of

additional pins that have to be used to support the potentially much higher transfer rates

required.

For the control system, most of the functionality mentioned above will be available, except

for the ETM. The reason for omitting the ETM is twofold, first of all, it will require

more GPIO pins than the control system can spare. Secondly, it will need much more

expensive debugging hardware (e.g., J-trace) than what is currently available. A strategy

for leveraging these debugging features of the SoC is presented in Section 2.6.

2.1.5 Summary

This section has presented the relevant peripherals available on the SoC, and described PPI

and DMA, two complementing technologies enhancing the complete peripheral system.

The storage capacities of the Soc has been detailed, and a thorough comparison with the

ATmegas has been presented, where bootloaders and SoftDevice has been accounted for.

An attempt to assess and compare the computational performance is presented. A brief

overview of the different debug features has been presented. In conclusion the SoC seems

to be a very promising candidate to replace the ATmegas; on paper it outperforms the

ATmegas in almost all aspects.

The new SoC with the Cortex-M4F is a complex architecture. Fortunately, official SDKs are

available, which should make development on the platform easier regardless of the under-

lying architecture. For more information on developing on the SoC, and its architecture,

the online resources Nordic Infocenter and Nordic Devzone are invaluable resources.

2.2 System Configuration

This section deals with the challenge of allocating the SoC’s resources in a manner such

that both new functionality and interoperability with current robots are ensured. The new

16

CHAPTER 2. SPECIFICATIONS AND THEORY 2.2. SYSTEM CONFIGURATION

features—getting slightly ahead of oneself—will also have to be considered here. As these

will be covered individually later in this chapter, it is sufficient to take note of their pin and

peripheral requirements for now. While the different components that form a complete

SLAM robot were briefly mentioned in Section 1.1, a more comprehensive review will

now be given.

As a minimum, the new control system must be able to interface with the sensors and

actuators currently used in the different robot configurations. Figure 2.4 is an overview

of the components associated with the current control systems, where the dashed lines

indicate that the surveying sensor can be either a set of 4 IR sensors or a single LIDAR.

The LIDAR has recently been introduced to the project to replace the currently used IR

sensors. The robots are likely to transition to LIDAR-only in the future, but as the SLAM

project is presently in this transition, the new control system will have to support both.

ATmega

Servotower

4 x IR

LIDAR

Compass

IMU

Motor ControllerEncoder

nRF Dongle

Baery-
status

Debug LEDs

4xAI

I2C

I2C

PWM

⁇ 2xPWM
4xGPIO

I2C or SPI
2xGPIO (optional)

3xGPIO

AI

UART

Figure 2.4: Components and peripheral usage of current control system.

Figure 2.4 lists the peripheral requirements for each of the components, such as ADC for

the IR sensors and PWM for servo control. In Table 2.3 all components part of the current

and new SLAM control system are listed. Their peripheral requirements, and how many

physical pins these requirements translate into are given.

An immediate problem looking at Table 2.3 is the sum of physical pins required, 38-40

in total. This is more pins than the 32 available on the SoC for peripherals. As a first

measure the debug LEDs are removed from the new system. With the introduction of a

display and much more advanced debug facilities, these are unlikely to be necessary.

The multi-drop feature of the I2C bus lends itself to the pin saving effort. While I2C may

17

2.2. SYSTEM CONFIGURATION CHAPTER 2. SPECIFICATIONS AND THEORY

Table 2.3: SLAM robot peripheral and pin requirements.

Component Peripheral Physical Pins On-board

Motor Controller

2xPWM∗

4xGPIO

6 No

IRs 4xADC∗ 4 No

LIDAR I2C 2 No

Encoders 2xGPIO 2 No

Battery Status ADC 1 –

Debug LEDs 3xGPIO 3 No

Sensortower PWM 1 No

IMU†
SPI + 4xGPIO

I2C + 4xGPIO

4 + 4

2 + 4

Yes

Reset Button 1xGPIO 1 Yes

Magnetometer I2C + 1xGPIO 3 Yes

Display SPI + 2xGPIO 5‡ Yes

microSD SPI 4 Yes

∗Shared channel is acceptable.

†GPIOs for IMU are interrupt pairs for acc. and gyro, i.e. optional.

‡MISO is not applicable for display, it only receives data.

handle more than 100 slave devices on a single bus, only the onboard components will

be set up on a shared I2C bus. Considering that the address and pull-up configuration

of external devices are unknown, it is safer to dedicate a new I2C bus for these devices.

If the pin shortage was more acute, adding these external devices to the same bus could

have been a viable option.

As both the display and microSD slot have each their chip select, the MOSI line can be

shared. As tempting as it may seem, even if they had separate data lines, merely pulling

the chip select active with a resistor is not an option. For SPI communication the chip

select is often part of the protocol definition. With the configuration and changes so far,

the pin usage has dropped to 34 pins.

The final change is reducing the number of interrupts from the IMU. It comes with four

interrupt lines, two for the integrated accelerometer, and two for the integrated gyroscopes.

According to the datasheet both the accelerometer and gyroscope are equippedwith several

18

CHAPTER 2. SPECIFICATIONS AND THEORY 2.2. SYSTEM CONFIGURATION

programmable interrupt engines (e.g., configuration of latching and timeout values), but

all interrupt events can be mapped to either of the two associated interrupt pins. For

efficiently obtaining sensor readings from the IMU, it is assumed that it is sufficient with

one interrupt line for each of the two sensors. With this final cutback, the 32 pins on the

SoC is now sufficient.

In case more pins would be necessary at a later point, there are still more cutbacks possible.

The external I2C bus can be connected to the internal, saving two pins. A jumper could be

introduced such that it could be selected in hardware whether the LIDAR or IRs should

be used. This jumper would save two or four more pins.

The final set-up can be seen in Figure 2.5.

SoC

Sensortower 4 x IR

LIDAR

Magnetometer

IMU

Motor ControllerEncoder

Baery-
status

4xAI I2C

I2C
SPI

2xGPIO
2xPWM
4xGPIO

AI

PWM

GPIO

2xGPIODisplay microSD

GPIO

Printed Circuit Board

Figure 2.5: Components and peripheral usage of new control system.

19

2.3. NEW FUNCTIONALITY CHAPTER 2. SPECIFICATIONS AND THEORY

2.3 New Functionality

While ensuring compatibility with existing robots in the design of the new control system

is important, it is also an excellent opportunity to introduce new features and functionality.

Since the components making up the new features will not be removable, and also shared

by all robots, thought has to be given to a feature’s applicability in current and future

SLAM projects.

2.3.1 Display

With the aforementioned applicability in mind, the first and most obvious feature will be

a display. While those robots using the default LEGO controllers are already equipped

with LCDs, none of the custom ATmega based designs are. Instead, they are limited to

a set of three LEDs. An LCD will facilitate easier and more informative debugging and

logging during live SLAM runs.

The display selected is a monochrome 1.3” 128 × 64 OLED. It measures 35mm by 35mm.

Despite its small form factor, a compact typeface will allow for several lines of information.

It comes packaged in a breakout board, and will therefore be mounted and soldered to the

main PCB via a header row. It may be necessary with a fixture to support it. Fortunately,

the resulting standoff-height also means that the surface area below the display will be

available for routing and low-profile SMT components.

While many displays come with a parallel interface, this display communicates over SPI.

2.3.2 Portable Storage

Among the most significant upgrades to the new control system is the new RTOS trace

functionality. It will be detailed at the end of the section, but the gist of it is logging of all

events and actions in the operating system. One mode of operation is where the trace

system continually stores the event data into RAM, and it can then be uploaded to a PC for

analysis afterward. The problem is that these traces may consume large amounts of RAM

depending on how long the tracing runs, which means that the limited RAM available on

the SoC can severely limit the trace duration.

By implementing a microSD slot, the trace data can be stored on a microSD-card. Unlike

the RAM that has less than a MiB of storage available, microSD cards come in capacities

of many gigabytes. They are also highly portable, making it easy to transfer the data

20

CHAPTER 2. SPECIFICATIONS AND THEORY 2.3. NEW FUNCTIONALITY

for analysis on a PC. Also, as part of the SoC’s SDK is a library for using SD cards. This

library supports a file system with individual file management.

The addition of portable storage means that traces can be run for hours, or even days,

without having to stop. Tracing over larger time spans is important to resolve heisenbugs,
which are bugs often associated with real-time systems. These are timing sensitive bugs

that rarely manifests into errors (e.g., only every thousandth time).

The SLAM application also involves a lot of sensor data. Since there is ongoing work to

move more of the SLAM algorithms over to the robots themselves, it could be of interest

to log data locally on the robot and dedicate the BLE transfers to mapping data only. Or

in some cases, the robot could generate larger maps entirely autonomously, and store all

log data as well as generated maps locally.

2.3.3 Connectors and Test Points

An additional—and highly desired—feature of the new control system will be the usage of

proper connectors and receptacles for most external components.

The picture of the current AVR robot in Figure 2.6 highlights an issue with the contempo-

rary design: much of the wiring is done in a fragile style, making the whole robot prone to

disconnects and shorts. The poor electrical wiring is especially unfortunate considering

there is no solder mask on the junction PCB that is mounted and connected on the top of

the AM.

The first set of new connectors will be power connectors connecting the battery to the

control system. The wires from the battery are 0.75mm
2
in cross section. The JST VH

series is one of the few wire-to-board connectors from JST that can directly crimp onto

wires with a cross section this large. The VH series is also designed for power supplies,

making it a good match. A comparison between the old battery connectors and the new

can be seen in Figure 2.7.

The IR-sensors wires are already connected using 3-pin JST PH connectors on the compo-

nent side. The same PH series 3-pin connectors are chosen for the control system board

to match the IR sensor component. The LIDAR also uses a JST connector, but a 6-pin GH

series type. Again, the control system board will match this setup exactly. Drawings of

both connectors can be seen in Figure 2.8.

Amsen suggests in his thesis that for further work the Bluetooth dongle should be properly

connected. He also specifically suggested improvements to the connectors for the battery

21

2.3. NEW FUNCTIONALITY CHAPTER 2. SPECIFICATIONS AND THEORY

Figure 2.6: Picture of control system of current ATmega robot, with emphasis on wiring issues.

and sensor tower. [13] The Bluetooth dongle is no longer an issue, as it is part of the

SoC integrated into the PCB. All IRs on the sensor-tower and battery connectors will be

upgraded with proper connectors as was outlined in this section.

Using proper connections makes for a more robust control system and robot, but it can also

make it more difficult to probe and perform electrical measurements. With the previous

control systems using headers and open traces, it was easy to probe with a multimeter

or oscilloscope, as there are many places with exposed copper. Alternatively one could

add a jumper wire to one of the headers for debugging purposes. Opting for more robust

connectors, this is one of the trade-offs: there will be fewer spots suitable for probing, and

the insertion of intermediate jumpers may not be a feasible option.

Dedicated test-points will be set up to facilitate debugging using multimeters and oscillo-

scope. These are through-hole components consisting of two parts: one conducting pin

that is connected to a track on the PCB, and one conducting metal loop for probing. The

loop structure makes it possible to use clip-on probes. These test points are then added

to central lines of the PCB. These test points can be seen both in the 3D-render of the

PCB in Appendix A, and the final picture of the PCB in Figure 6.1 in Chapter 6. The black

test-point is connected to GND, the red ones to 3V3 and 5V, and the blue ones to the I2C

22

CHAPTER 2. SPECIFICATIONS AND THEORY 2.4. POWER SUPPLY

(a) Previous connectors. (b) New connectors.

Figure 2.7: Comparison between previous and new power connectors.

2
3

4
5

6

(a) PH series. (b) GH series.

Figure 2.8: JST connectors for LIDAR and IR sensors. Drawings from datasheet.

serial buses.

2.4 Power Supply

All components on the robot operate at either 3.3V or 5V, while the battery has a nominal

supply voltage of 11.1V and a peak cut-off (after charge) voltage of maximum 13.05V.

This introduces the need for a two-stage voltage reduction scheme, as has been illustrated

in the power distribution in Figure 2.9.

The voltage regulation on the control system will consists of two stages. The first converts

the battery input voltage down to 5V, and the second regulator brings this 5V down to

3.3V. An implication with this architecture is that the first stage not only has a greater

23

2.4. POWER SUPPLY CHAPTER 2. SPECIFICATIONS AND THEORY

B
a

er
y

M
C
B

D
C
/D

C
12V

4x
IR

LI
D
A
R

SE
R
V
O

LDO

nR
F

IM
U

O
LED

m
SD

5V

3.3V

Figure 2.9: Power distribution scheme.

drop in voltage across it, but it also has to supply more current. This gives a significantly

increase in power throughput compared to the second stage regulator. Therefore the first

stage will consists of a buck-down (hereafter referred to as DC-DC) converter, and the

second stage a simpler low dropout (LDO) regulator.

Before selecting a voltage regulator, current consumption must be estimated. In Table 2.4,

a rough current consumption estimate is presented. Knowing the voltage down regulation

levels and estimated maximum current consumption, a suitable DC-DC and LDO regulator

can be selected for the two stages.

2.4.1 Component Selection

For the first stage a Murata OKL-T/1-W12 series DC-DC module is chosen. Besides

fulfilling the requirements on voltage regulation and current supply, it has several other

benefits. First and foremost it comes as a complete module containing both the inductor

and switcher, whichmeans that no time has to be spent designing the actual buck converter.

Furthermore it has built-in soft-start, short circuit and over current protection, and features

on/off control as well. The module’s primary specifications are given in Table 2.5, where

it can also be seen that it comes in an inspectable land grid array package, which will aid

24

CHAPTER 2. SPECIFICATIONS AND THEORY 2.4. POWER SUPPLY

Table 2.4: Control system current consumption estimates.

Component Current Consumption

3.3V

nRF 20mA

IMU 15mA

OLED 60mA

microSD 80mA∗

LEDs 16mA

SUBTOTAL 211mA

5V

4 × IR 120mA†

LIDAR 135mA†

Servo 500mA‡

TOTAL 846mA

∗Toshiba High Speed M102 microSD card specifications.

† For robot configurations, mutual exclusive.

‡ Highly dependent on torque. Stalling, i.e., worse case assumed here.

the soldering process.

For the second stage a Texas Instruments LM3940 LDO regulator is selected. It is designed

for an input voltage between 4.5V and 5.5V, and supplies a fixed output voltage of 3.3V.

Primary specifications are given in Table 2.6, where the small-outline-transistor-223 (SOT-

223) package it comes in can be seen as well. Since the voltage down regulation and

current draw is less for the second stage, using an LDO regulator is considered acceptable.

Table 2.5: DC-DC module used for the first stage.

Model Murata OKL-T/1-W12

Vin 2.9 − 14V

Vout 0.9 − 5.5V

Imax 1A

Features Short circuit protection, On/off control

Package Custom LGA (inspectable)

25

2.4. POWER SUPPLY CHAPTER 2. SPECIFICATIONS AND THEORY

Table 2.6: LDO used for the second stage.

Model Texas Instruments LM3940

Vin 4.5 − 5.5V

Vout 3.3V

Imax 1A

Features Short circuit protection, thermal protection

Package SOT-223

2.4.2 Performance

An inherent attribute of DC-DCs operating on the buck-down principle is ripple on the

output voltage. Since the working principle of a DC-DC converter involves high frequency

switching, there will be a ripple component on the output voltage. This ripple component

is usually measured by its peak-to-peak value, and will here be referred to as the VPkPk

voltage.

The manufacturer has included several measurements for different operating conditions in

the datasheet, where the closest match for the control system is the down regulation from

12V to 3.3V at 1A. The peak-to-peak ripple voltage is listed to beVPkPk = 27mV. It should

be mentioned that the manufacturer performed the ripple tests with an output capacitor

of Co = 10µF, while in the control system a capacitor with capacitance of Co = 22µF will

be used. Considering that the voltage down regulation is lower in the control system

(11V → 5V opposed to 12V → 3.3V in data sheet) and the output capacitor is larger, it

is likely that the actual peak-to-peak voltage will be significantly lower than the listed

27mV.

All LDO regulators have some degree of ripple rejection. This means that they will to some

extent reject the ripple on the input voltage, such that this ripple voltage is attenuated on

the regulated side.[14] The details of this rejection property will not be covered here, it

is suffice to say that it is a frequency dependent factor that is usually expressed as a dB

ratio, known as:

PSRR = 20 log

Vpkpk_input

Vpkpk_output
(2.1)

In Figure 2.10 the PSRR chart of the LM3940 LDO regulator is reproduced with the

frequency of the output of the DC-DC converter indicated. Unfortunately this seem to

be a resonant frequency for the LDO regulator, but it should still yield at least a 25dB

26

CHAPTER 2. SPECIFICATIONS AND THEORY 2.5. PCB FUNDAMENTALS

0

10

20

30

40

10 100 1k 10k 100k 1M
FREQUENCY (Hz)

dB

IL = 10mA

Figure 2.10: LDO Power Supply Rejection Ratio as a function of frequency.

rejection of the input ripple. The following calculation then gives the output (attenuated)

ripple voltage

Vpkpk_output =
Vpkpk_input

10

25

20

≈ 1.52mV (2.2)

According to a Nordic Semiconductor representative, the SoC supply voltage can have a

maximum ripple of 100mV.
2
Referring to the preceding calculations, this should not be

an issue. Since the calculations may deviate significantly from real-world performance,

proper testing and verification of the voltage regulation system will be performed when

operational.

2.5 PCB Fundamentals

This section will cover some printed circuit board (PCB) fundamentals. There are a few

basic concepts and associated terminology that the reader has to be familiar prior to any

PCB development.

Apart from the two external signal layers, a PCB can have any number of internal layers

as well. This is referred to a PCB’s board stack-up configuration. Among the simplest is

2
https://devzone.nordicsemi.com/f/nordic-q-a/15064/power-supplay-requierments-for-nrf52832

27

2.5. PCB FUNDAMENTALS CHAPTER 2. SPECIFICATIONS AND THEORY

the usage of one or two layers, i.e., bottom and top layer. Another common configuration

is a four-layer board stack-up, two internal, plus the top and bottom. Other than the

signal layers there is the solder-mask and silkscreen. The solder-masks facilitates easier

soldering as only copper pads that are to be soldered on are exposed. The silkscreen is an

annotation layer that usually contains the text with component designators and outlines

on the PCBs.

In the 4-layer configuration it is common to dedicate one of the internal layers as a pure

ground plane, and the other as a dedicated power plane. This design ensures low impedance

paths to ground. No signals are sent across the internal layers. This configuration can be

seen in Figure 2.11.

Top layer

GND plane

Power plane

Boom layer

Via

Track

Figure 2.11: Primary components of a PCB in four-layer configuration.

When components are placed on the PCB, tracks are placed in order to connect them.

Tracks are copper pathways on the PCB. Since the PCB consists of multiple layers, a

mechanism for inter-layer connections is needed. The solution is vias. Vias are holes that

are drilled, and chemically plated with copper. There are many types of vias, e.g., buried

vias where the drill cavity is internal, or blind vias, that extend from the surface to a set

distance into the board. The most common is through-hole vias, where a hole is drilled all

the way through and is then copper plated. Those layers that should not be connected to

a through-hole via removes copper where this via passes through them. An example is

given in Figure 2.11.

The components are supplied in two categories of packages—either surface mount or

through-hole mount. Surface mount components may have pins extending slightly from

the package, or may only have a set of pads. Through-hole components come with pins

that extend through the whole board and are soldered on the opposite side of where they

are inserted. The trend is for more smaller surface mount packages, reducing board space

requirements and exhibiting better noise and interference properties.[15]

28

CHAPTER 2. SPECIFICATIONS AND THEORY 2.6. DEVELOPMENT ENVIRONMENT

2.6 Development Environment

The development environment will in this thesis refer to the environment used for software

development, device programming and debugging. First, the underlying development

process is described, a process that will be common to any configuration of development

environment. Following this, software and tools are selected to achieve a modern and

powerful development environment.

2.6.1 Build Process

To get any code to run on the SoC, the code has to be preprocessed, compiled, linked and

flashed into the program memory of the SoC. This is a rather intricate multi-step process.

Fortunately, there are tools for each of these steps, and a collection of tools to perform all

of these tasks is referred to as a toolchain.

a.c, a.h

printf();
foo();

b.c, b.h

foo(){
return sin

Preprocessor

 {Options}

a.i

printf();

[stdio.h]

return 0;

b.i

Compiler

a.o

6c 36 00
c9 a0 90
02 25 32
84 35 48

02 25 32

b.o

68 a4 35
60 c6 34
f0 9f ca
d0 bb 85

f0 9f ca

#include
<stdio.h>

#include
<math.h>

 (x);
}

[math.h]

foo(){
return sin
 (x);
}

Linker

 {Options}

ab.hex

Figure 2.12: Steps involved in generating an executable for target.

Referring to Figure 2.12, the first step is to feed the source code to the preprocessor. The

preprocessor will expand all the #includes, and replace #define macros throughout the

source files. Following this, the compiler translates the source to the target architecture

assembly language, which in turn is fed to an assembler that emits the final machine code

that the target processor can execute.
3

As seen in Figure 2.12, the code has been split into two sets of files. This way, only the

modified set has to be recompiled. The compiler will then output separate machine code

files for each of the sets. The linker will go through the interactions between the files, and

link the separate files into one common executable. The final result is the .hex executable.

3
The compilation and assembly are two different processes, but are not distinguished here for simplicity.

29

2.6. DEVELOPMENT ENVIRONMENT CHAPTER 2. SPECIFICATIONS AND THEORY

The final step is shown in Figure 2.13. Here the previously compiled and linked .hex-file is
written to the program memory of the target. For this last step, specialized programming

hardware is necessary, usually designed for a specific family of target platforms.

ab.hex
nRF52832
QFAA

SEGGER J-l
ink

USB
IDC

Control System

DBG

Figure 2.13: Final process of transferring the program to the target.

Knowing this process and the tools involved will not only aid the developer in understand-

ing error message during compilation. Due to the existence of free and open software

making up the toolchain, it ensures that the developer will always be able to fall back on

these tools should the licensing terms or availability of an IDE change with time.

2.6.2 IDE and Flash Programmer

An integrated development environment usually comes with a text editor, toolchain,

debug support and possibly version control features as well. In this thesis, the choice of

IDE has fallen on Segger Embedded Studio (SES), which has all of these features. Among

the benefits of using this IDE are the following:

• Cross-platform, supporting Windows, Linux and even macOS.

• Free for non-commercial use, and a commercial license free of charge when used

with Nordic Semiconductor products.

• Nordic Semiconductor’s SDK comes bundled with examples containing fully config-

ured SES project files.

The equipment for flashing new programs to the SoC, and perform debugging will be the

nRF52 development kit. This development kit is equipped with an onboard J-link debug

probe, which can be used to program external devices. Compatibility with SES should

be ensured, as it is the same company that has developed both. As several development

kits are already available as part of the SLAM project, this means that there will be no

additional expenses associated with debug or program flashing hardware.

30

CHAPTER 2. SPECIFICATIONS AND THEORY 2.6. DEVELOPMENT ENVIRONMENT

2.6.3 Debugging Facilities

The topic of debugging was briefly mentioned in Section 2.1, where the debug support

of the ARM Cortex processor part of the SoC was listed. In this section, the strategy for

implementing and leveraging some of these supported mechanisms will be described.

The company behind SES, Segger, is also the developer of the hardware used for flashing

and debugging the control system. The result of this is that three debug facilities should

be available immediately as part of SES: traditional halt-mode debugging and monitor

mode debugging (MMD).

Real-Time Transfer (RTT) is a technology for high-speed communication with a Cortex-M

debuggee while maintaining the target’s real-time performance. It uses the SWD described

previously, in combination with ARM’s semihosting functionality which is a mechanism

that makes it possible for the Cortex to use the host PC’s I/O facilities. In other words, it

will mainly be used for setting up a virtual terminal on the host PC. It has support for

several channels, which could, e.g., be set up for standard output and error output. As

will be seen in Chapter 5, Nordic Semiconductor’s logging library part of the SoC’s SDK

can easily be configured to use this RTT technology as its back-end.

The trace features of the SoC will be leveraged using Percepio’s Tracealyzer. Tracealyzer

is a software package dedicated to RTOS trace visualization and analysis and will give

complete insight into scheduling, synchronization mechanisms and many different types

of operating system events. While the software package originally costs about 1700USD,

the company supplies licenses free of charge for educational purposes.

31

2.6. DEVELOPMENT ENVIRONMENT CHAPTER 2. SPECIFICATIONS AND THEORY

32

Chapter 3
Schematics and Layout

Both the electrical schematics and the PCB layout are made in Altium Designer, an

electronic design automation software designed for PCB development. The chapter starts

with an brief introduction to AD, before covering details regarding the component library.

Following this the schematic capture is described, which forms the foundation for the

four-layer PCB layout design detailed in the subsequent section.

The complete development cycle can be seen in Figure 3.1, where the stages relevant for

this chapter are highlighted.

3.1 Altium Designer

Altium Designer (AD) is a complete software package for library management, schematic

capture, PCB layout, component design, bill-of-material, andmanymore advanced features

such as electrical simulations. All of the electrical schematics, and the PCB layout designed

in this chapter, are made within the integrated AD environment.

The workflow used in this project is to first develop and set up a components library with

all components used in the control system. A detailed guide for the development of such

33

3.1. ALTIUM DESIGNER CHAPTER 3. SCHEMATICS AND LAYOUT

Component Library

Schematic Capture

PCB Layout

Specifications

Design Rule Check

Manufacturing files
(Order from Fab.)

Soldering and
Verification

design rule
violations

layout issues

DFM issues

layout issue
(e.g. thermal
or noise)

logical error

Figure 3.1: Flowchart illustrating the complete PCB development cycle.

a component library is outlined in the media attachment, as described in Appendix A.

Figure 3.2 illustrates the different parts that composes a component.

nRF52832
QFAA

Component

=

Footprint 3D-model

U1

1 VDD

2 GND

3 P0.01

9 XTL

8 ANT

4
P0

.0
1

5
P0

.0
2

6
P0

.0
3

7 P0.04

12
 A

IN
2

11
 A

IN
1

10
 A

IN
0

Schematic Symbol Parameters

Type:
TxRx+MCU

Frequency:
2.4GHz

++ +

Figure 3.2: Parts constituting an AD component.

The component library is then used when developing the schematics in the schematics

environment of AD. When the schematics are done, work continues in the PCB editor

environment. In the PCB editor environment the board layer stackup and dimensions are

set. The components and net list are imported from the schematics, and the complete PCB

layout is made. The net list associate the different pins of the components with each-other,

such that AD can guide the designer when making connections between pins. In this PCB

34

CHAPTER 3. SCHEMATICS AND LAYOUT 3.2. COMPONENT LIBRARY

environment the footprint and 3D-model of the component is used.

In reality the workflow can be far more complex. For example, operations can be performed

across the footprint editor affecting components in the PCB environment, and vice versa.
A whole book could be written on the usage AD, something which the countless pages of

bundled documentation proves. Since the topic of this thesis is not AD itself, the reader

is encouraged to refer to one of the many great resources available on the Internet for

guides on its usage. A good starting point would be Altium’s own hands-on-tutorial. [16]

The balance between writing for reproduction and brevity has been a concern for this

chapter. A compromise is selected, where only the function used in AD is specified, and

the reader can then consult the official documentation for details on its usage. A great

feature of Altium is that basically all functions are available via a set of context aware

keyboard shortcuts (i.e., changes based on which environment is currently active in AD).

This feature will be taken advantage of when referring to the functions in this chapter.

These keyboard combinations make for a compact form, for which an example comparison

can be seen here:

Tools → Convert → Explode Component to Free Primitives

is instead expressed in the more succinct form:

t → v → c

The key combination given will then be valid for the environment currently discussed

in that section. E.g., in the schematics capture section it will be the schematics editor

environment, while in the PCB section it is the PCB editor environment.

3.2 Component Library

A library containing all the components used in the control system is set up in AD.

This section briefly the details of some component requiring special considerations. The

component definition was given in the previous section, and is summarized in Figure 3.2.

As stated in that section, a guide to creating components efficiently is part of the media

attachment, described in Appendix A.

35

3.2. COMPONENT LIBRARY CHAPTER 3. SCHEMATICS AND LAYOUT

3.2.1 Low Drop-out Regulator Heatsinking

The LDO’s datasheet specifies that heatsinking may be necessary, depending on the

amount of power it has to dissipate, which is a function of voltage drop and current. The

current flow was estimated to be ≈ 211mA for the 3.3V regulator in Chapter 2. The total

amount of power dissipated is given by the formula in Eq. 3.1, where IG is the ground

current. The ground current is assumed equal to the quiescent current, which is current

consumed for operating the LDO. [17] It is estimated to be IG = IQ ≈ 35mA based on

values given in the datasheet.

This results in PD = 533.7mW being dissipated. Next Eq. 3.2 is used to calculate the

maximum allowable temperature rise TR (max). Here TJ (max) is the maximum allowable

junction temperature, which is 125
◦
C for commercial grade parts, and therefore also

assumed valid for the control system. TA(max) is the maximum ambient temperature,

which is assumed to be 25
◦
C for the SLAM robots. This results in TR (max) = 100

◦
C.

The final formula given in Eq. 3.3 calculates the maximum allowable junction-to-ambient

thermal resistance, i.e. the environments resistance to conduct heat away from the LDO.

This resulting maximum resistance is Rθ (JA) ≈ 188
◦
C/W. As this value is greater than

59.3◦C/W, the SOT-223 package will not require a heatsink in the current set-up according

to the datasheet.

PD = (VI N −VOUT)IOUT +VI N IG (3.1)

TR (max) = TJ (max) −TA(max) (3.2)

Rθ (JA) = TR (max)/PD (3.3)

The thermal reliefs on the LDO’s ground pads are omitted. This effectively makes the

PCB function as a heatsink for the LDO, ensuring good thermal performance and enables

support for larger currents. The difference between thermal relief connections, and no

thermal relief connection is shown in Figure 3.3.

Thermal relief connections are useful to ease the soldering process, as less heat will have

to be applied during the soldering process. This means that hand-soldering the LDOmight

be challenging, but using a reflow oven should still work well, as in this oven everything

36

CHAPTER 3. SCHEMATICS AND LAYOUT 3.2. COMPONENT LIBRARY

is heated to the reflow temperature.

GND

G
N
D

5V 3V
3

GND

G
N
D

5V 3V
3

Figure 3.3: Thermal relief on left side vs no thermal relief on right side.

3.2.2 System-on-Chip Vias

The SoC comes in a quad flat no-leads (QFN) package, with a ground pad in center. To

ensure both proper thermal conductivity and grounding, there must be an array of vias

on the PCB where this pad is soldered. These vias can be problematic during soldering

though.

During the soldering process, when sufficient heat is applied, the solder paste may exhibit

capillary action. If a significant amount of solder paste is drawn into the vias, voids in

the solder joint occurs. Even smaller voids will degrade the radio frequency performance

of the chip. Ideally, these vias should be plugged (i.e. filled), but this makes fabrication

expensive. Instead solder mask will cover the vias on the bottom side (tenting), reducing

the solder paste wicking. While tenting on the top side would be more effective in reducing

voids, this may cause issues with solder paste dispensing. [18] [19] Figure 3.4 illustrates

the different solutions.

Open

QFN IC

CappedTenting

QFN IC QFN IC

Figure 3.4: Different solutions for solving the via wicking issue.

37

3.3. SCHEMATIC CAPTURE CHAPTER 3. SCHEMATICS AND LAYOUT

3.3 Schematic Capture

With the component library set up, the schematic capture can begin. In terms of AD usage,

there are essentially two commands that are necessary in the process of schematic capture,

these are listed below. Other than this, careful reading of all datasheets is necessary,

especially the application sections as these usually includes suggested circuitry and PCB

layout.

• p → p places a component from library.

• t → a → a brings up the annotation tool.

3.3.1 Power Supply

The DC-DC regulator selected requires three external components for proper functioning,

as per the data sheet. These are two filtering capacitors, one on the input side and the

second on the regulated side. The manufacturer’s recommendations are followed, a 22µF

25V capacitor on the input and a 22µF capacitor on the output. Only during testing and

verification of the voltage regulation the optimal values for the capacitors may be found.

The final external component is a trim resistor for configuring the output voltage. The

resistor value is calculated according to the formula:

RTRIM (kΩ) =
10

Vout
0.895 − 1

= 2.18kΩ (3.4)

The DC-DC regulator and the external components can be seen in Figure 3.5. Test points

for GND, 12V and 5V can also be seen in the schematic. The battery is connected to the

P1, PWR connector, and filtered through shunt capacitor C11 before entering the DC-DC

regulator. At the regulated 5V output, a second shunt capacitor, C12 is located. The DC-DC

regulator has been designed such that the trim resistor value aligns with standard values

for 5V, which means that this resistor is available as a chip resistor with the recommended

±0.5% accuracy and a temperature coefficient of ±100ppm/◦C.

As it features On/Off control, a switch for power control will be connected to the relevant

pin. This will be the main power switch of the control system, shutting down the supply

to all circuits except an additional 12V connector.

The LDO performs the final voltage regulation step, converting the 5V from the DC-DC

regulator down to 3.3V. According to the application notes in the data sheet it requires an

38

CHAPTER 3. SCHEMATICS AND LAYOUT 3.3. SCHEMATIC CAPTURE

1
2

P1

PWR TPGND

VDD12V

TP12V

22µF
CIN

VDD5VTP5V

22µF
COUT

OKL-T/1-W12P-C

DC-DC

2.18k
RTRIM

NCF
NCF
NCF
NCF
NCF

GND
GND
GND

Trim

VIN On/Off

VOUT

Switch

Figure 3.5: DC-DC regulator with surrounding circuitry.

input capacitor if battery power is to be used, and an output capacitor with low equivalent

series resistance (ESR) over a large temperature span is critical for regulator stability.

Figure 3.6 is taken from the data sheet, where the graph indicates acceptable range of ESR

values for different output currents.

It is not unlikely that the control system will consume less than 200mA from the LDO

regulator, and it will therefore be necessary to maintain an ESR within the narrowest

region of the graph, ≈ 0.1Ω to ≈ 0.8Ω. The capacitor selected is a tantalum capacitor with

an ESR rating of 500mΩ. These capacitors features improved temperature characteristics

compared with the cheaper aluminum electrolytic capacitors, at the cost of a couple of

NOK.

This selection reflects a general philosophy used throughout the project: as only a very few

of these PCBs are to be developed—as compared to, say several thousand—performance is

weighted far more than price when selecting components.

The LDO regulator and the external components can be seen in Figure 3.7. A test point

is connected to the output voltage, VDD, and a power indicator LED is connected at the

output.

The company that had developed the LDO, Texas Instruments, was contacted in order to

get some feedback on the current set-up of the voltage regulator. It was there mentioned

that it could be problematic feeding the LDO from a DC-DC regulator due to poor ripple

rejection in LDOs in general.

39

3.3. SCHEMATIC CAPTURE CHAPTER 3. SCHEMATICS AND LAYOUT

Figure 3.6: ESR requirements for LDO regulator output capacitor.

3.3.2 System-on-Chip

The SoC can be set up in several different configurations, as outlined in the reference

circuitry part of the datasheet. There is the optional external low-frequency clock, as

well as the option to set the SoC up using an internal DC-DC converter or an internal

LDO regulator. In addition, some components from the reference circuitry are in a sense

optional, and will be omitted for the control system.

While the 32MHz external crystal is required for the functioning of the radio in the

SoC, the 32.768kHz suggested in the reference schematics is optional. The SoC actually

has a corresponding crystal integrated, but this internal oscillator requires continuous

calibration, and as a result the system will draw more current. The savings with the

external LF oscillator is in the order of a few µA, which in the grand schemes of things in

the SLAM system is negligible.
1
For this reason this circuitry is omitted in this control

system design. This means that there are three fewer components to care about. More

importantly this frees two pins, which also support AI.

Setting up the SoC using either an internal DC-DC converter or an internal LDO regulator

is again a compromise between components and power savings. While these are both

internal voltage regulators, they require some external components to operate. The DC-

DC converter will require three extra components, a capacitor and two coils. By using

the internal LDO regulator only a single capacitor is needed. Implementing efficient coils

1
https://devzone.nordicsemi.com/f/nordic-q-a/19/what-s-the-benefit-of-having-an-external-32-khz-crystal

40

CHAPTER 3. SCHEMATICS AND LAYOUT 3.3. SCHEMATIC CAPTURE

+
VDD5V

LM3940IMP-3.3

VDD3V3
TP3V3

GND

IN OUT

GND

LDO

150
R1

47µF
COUT

Green
E1

0.47µF
CIN

Figure 3.7: LDO regulator with surrounding circuitry.

in silicone and having them as part of ICs is difficult[20], and it is reasonable to believe

that implementing the capacitors in silicone would waste a lot of space. As with the

low-frequency clock, the internal LDO is opted for as it results in fewer components. The

current draw from the SoC is unlikely to be problematic.

The antenna section of the circuitry is copied directly from the reference circuitry. The

topic of antenna performance is complicated, and as per Nordic Semiconductor’s recom-

mendation their reference schematics should be used without modification. It is difficult

to properly perform simulations to assess antenna performance in advance. Instead the

suggested approach is to use a vector network analyzer and perform tuning by length of

the PCB antenna. This process and more details regarding the design of the antenna is

covered in a set of white papers. [21] [22]

As the SoC is to be programmed and debugged using the SWD interface, a two-row

1.24mm polarized semi-shrugged header is connected to the appropriate debug pins on

SoC. By also exposing the reset-line via the header it will be possible for the external

debugger to perform hardware resets of the SoC. In addition to the SWD interface, an

optional pin, SWO, is connected to the programming header. This pin is part of the

Cortex-M debug interface, and it enables real-time output from the CPU, meaning that

instead of using a full peripheral module such as UART, this can be used. It also helps

to ensure that the real time capabilities of the system is maintained when performing

debugging as well.

41

3.3. SCHEMATIC CAPTURE CHAPTER 3. SCHEMATICS AND LAYOUT

Schematics with SoC and surrounding circuitry can be found as part of the complete

electrical schematics in in Appendix B.

3.3.3 Analog-to-Digital Conversion

In order to monitor the battery voltage and obtain the IR-sensor measurements, the SoC’s

ADC must be used to convert the voltages to a digital representation. Internally, multiple

channels are connected to a single ADC, which performs scan cycles converting the

voltages on the different channels. These channels are then connected to a set of pins on

the SoC, and only these can be used for ADC operations. The conversion process involves

a sample-and-hold circuit, where successive approximation is used to estimate the voltage.

The set-up is illustrated in Figure 3.8

During the PCB layout process, connections were re-arranged with regard to ease of placing
tracks, and not on the AI support of the SoC’s pins. As a consequence battery monitoring is
broken. It has been corrected in the second revision, as described in Section 3.5.

IR

R1
2M

R2
3.3M

Cext
10nF

Csample

SoC

Figure 3.8: The voltage dividers and internal structure of the SoC’s ADC sample-and-hold circuit.

The ADC will be configured in single-ended mode using VDD as reference. This results

in a supported input voltage range of 0 − 3.3V. As an example, the IR-sensor maximum

output voltage is 5.03V. A voltage divider with a capacitor on the input is set up in order

to match the output voltage of the IR-sensor with the input range of the ADC. The resistor

values chosen are 2MΩ and 3.3MΩ.

42

CHAPTER 3. SCHEMATICS AND LAYOUT 3.3. SCHEMATIC CAPTURE

Selecting large resistors reduce the leakage current, with the side effect of causing a

significant voltage drop in case the load draws any current. This latter issue is mitigated

by the capacitor, which acts as an accumulator, supplying the sample-and-hold circuit

internally on the SoC. This setup can be seen in Figure 3.8. By using the 10nF capacitor,

the minimum ADC acquisition time of 3µs can be used.
2
With five ADC channels active

(battery, four IR-sensors), this will allow for the following maximum sample rate:

fs <
1

5(tacq + tconv)
=

1

5(3ms + 2ms)
= 40kHz (3.5)

3.3.4 Bus Devices

There will in total be three separate bus systems connected to the SoC. One dedicated

I2C bus for the external LIDAR device. A shared I2C bus for the onboard IMU and

magnetometer. An SPI bus semi-shared between the microSD slot and the display.

The LIDAR communicates using transistor-transistor logic (TTL) levels, that is 5V, while

the SoC only supports communication over CMOS logic levels of 3.3V. To enable commu-

nication between the two devices, a bi-directional level shifter will be set up. Based on

application notes on bi-directional level shifters from NXP Semiconductors and Philips

Semiconductors the circuit in Figure 3.9a is set up. [23] [24]

3V3 5V

uLOW(t) uHIGH(t)

R2
10k

R1
10k Q1

BSS138L

(a) Complete circuit.

(S)ource (D)rain

(G)ate

Body diode

VGS

(b) MOSFET terminology.

Figure 3.9: Bi-directional level shifter circuit.

2
https://devzone.nordicsemi.com/b/blog/posts/measuring-lithium-battery-voltage-with-nrf52

43

3.4. PRINTED CIRCUIT BOARD CHAPTER 3. SCHEMATICS AND LAYOUT

As described in the application notes, there are three different scenarios that have to be

accounted for in order to verify that this will function as a bi-directional level shifter:

1. Neither device pulls down the bus line: the MOSFET stays closed, and the two

pull-up resistors causes HIGH level on both sides.

2. 3V pulls down: gate-source voltage reaches the threshold voltage which opens the

MOSFET, causing both sides to be pulled LOW.

3. 5V pulls down: body diode of MOSFET starts conducting, the voltage on the low

level side starts drooping, until it opens the MOSFET which now causes both sides

to go LOW.

The electrical characteristics required for the power MOSFET is detailed in the application

notes, where the most important factors are to ensure that the breakdown voltage is

rated with a minimum value of 0.1V and a maximum of 2V, and the switching delay

tontof f ≤ 50ns.

3.4 Printed Circuit Board

This section covers the process of realizing the previously defined schematics into a

four-layer PCB design. It will involve components positioning, and the actual copper

tracks and vias creating the connections between the components. It will also describe

some of the more subtle aspects in an attempt to adhere to industry best practices and

design for manufacturability.

While presented in a linear fashion here, the actual design process is more of an iterative

process. Before positioning a component, one has to think carefully ahead to ensure

that the choice will not result in conflicts later on. The design of a PCB layout is not a

hard science with a definitively single correct solution. During the layout for the control

system, David L. Jones’s introduction to PCB design has served as the primary source for

guidelines and best practices. [25] More detailed guidelines about radio frequency design

can be found in Texas Instrument’s application notes. [26] [27]

3.4.1 Dimensions and Layers

Board dimensions may not exceed 100mm in either direction, as this will significantly

increase the production cost. The AM has a width of 101.6mm, so selecting a width of

44

CHAPTER 3. SCHEMATICS AND LAYOUT 3.4. PRINTED CIRCUIT BOARD

100mm seems natural for the new control system. The height of the AM card is 53.34mm,

so an initial height of presumably ample 60mm is used for the control system.

Paste (stencil)

Silk screen

Solder mask

Core
(Dieletric)

Pre-preg

Top layer

GND plane

Power plane

Boom layer

Figure 3.10: PCB layer stackup legend.

A 4-layer board stackup is opted for, primarily due to two main concerns: ease of track

routing and good grounding and shielding with regard to EMC noise. The setup can be

seen in Figure 3.10. While it is stated that a 2-layer board stackup should be able to achieve

comparable performance with regard to EMI, considering the author’s lack of experience

in the field the increase in price was deemed worth it in order to give some leeway in the

design details. [26] [27] This will also create for a PCB that is easier to extend and modify

in the future.

An attempt is made to position components into functional groups. For the control

system the main groups are the voltage regulation circuitry, SoC with antenna and

crystal oscillators, and connectors for sensors and actuators. Figure 3.11 shows a sketch

illustrating this planned layout of functional groups. The voltage regulator group and

SoC group has been separated as much as possible. An attempt has been made to isolate

the magnetometer at the bottom right, and the IMU has been position in center in order

to limit offset calculations.

45

3.4. PRINTED CIRCUIT BOARD CHAPTER 3. SCHEMATICS AND LAYOUT

Voltage
Distribution

OLED

Encoders mSD Mag.

C
hi

p
an

te
nn

a
(k

ee
po

ut
)

DBG

SoC

Servotower, LIDAR, Motor and IRs

IMU

℄

100mm

60
m

m12V 5V

3.3V

Figure 3.11: Planned board positioning of sections and components.

3.4.2 Initial Configuration

Based on the manufacturer’s capabilities
3
, a rule-set is configured in AD d → r . This

way AD can perform a verification of the design, automatically ensuring that all tolerances

are met, e.g. track widths and via diameters.

Next the board layer stack-up is configured from within the Layer Stack Manager, d → k .

The layer configuration in AD can be seen in Table 3.1. The dedicated layer type of Power
has not been used, as this locks the fabrication output to be inverted for the power planes.

Many of the low-cost fabricators are unable to handle inverted designs, and for this reason

the default signal-layer type is used for the power planes as well.

The board dimensions are set up from within board planning mode v → 1 . The board

shape is redefined d → r . A coarse grid g → 2.5mm is set up, and the with the origin

in the left lower corner, the board outline is drawn using d → r such that it measures

3
JLCPCB is used as manufacturer for the control system. Their capabilities list is available at

https://jlcpcb.com/capabilities/Capabilities

46

CHAPTER 3. SCHEMATICS AND LAYOUT 3.4. PRINTED CIRCUIT BOARD

Table 3.1: Layer stack configuration in AD.

Layer Number Layer Name Type Orientation

Top Overlay Overlay

Top Solder Solder Mask/Coverlay

1 Component Side Signal Top

Dielectric 1 Dielectric

2 Ground Signal Not Allowed

Dielectric 2 Dielectric

3 Power Signal Not Allowed

Dielectric 4 Dielectric

4 Solder Side Signal Bottom

Bottom Solder Solder Mask/Coverlay

Bottom Overlay Overlay

100mm in the x dimension and 60mm in the y dimension. The board outline is drawn on the

keep-out layer, which will be the layer specifying the board dimensions in the fabrication

data. This is generated from the previously defined board shape using d → s → p . The

width is set to match the manufacturer’s requirement, and the keep-out layer is selected

as target layer.

Finalizing the initial configuration, a grid used for positioning components is set up. It

will be measured in mils, which is the unit for one thousandth of an inch. Imperial units

are –unfortunately– still the most common system used in PCB design. The component

positioning strategy used, is to first select the imperial grid q , and then start with the

most coarse grid g → 100mil and cycle downwards until component positioning is

feasible. Consistently aligning components with a coarse grid aids in the development of

a systematic and tidy layout. For this strategy to work, a fixed origin is positioned at the

PCB’s lower left corner.

This covers the initial configuration. The result is an empty canvas similar to what is

shown in Figure 3.12, with the layer stack-up configured as in Table 3.1. All manufacturer’s

rules are also implemented at this point.

47

3.4. PRINTED CIRCUIT BOARD CHAPTER 3. SCHEMATICS AND LAYOUT

Origin

Board outline in keep-out layer (0.6mm)

Coarse grid for initial positioning

Figure 3.12: Board set up and ready for layout design.

3.4.3 Design Process

With the initial configurations set up, the schematics design with all its components, nets

and labels are imported d → i . All components are then positioned based on the sketch

in Figure 3.11. The final components positioning is shown in Figure 3.13. Deviations

in component positions are mainly due to priority given to ease of routing tracks. This

process of components positioning is part of an iterative process, mainly due to track

routing challenges, but for brevity it is here described as a linear process.

While it was stated that component positioning was based on logical grouping, there

are other aspects to consider as well. The voltage regulation circuitry with the DC-DC

converter (U4) has been placed on the left side of the board, while the SoC (U1) with

antenna has been placed on the right side. DC-DC converters are known to be a source

of electromagnetic interference, and the SoC with antenna is likely to be the part of the

circuit susceptible to this noise. This problem is then mitigated by positioning these two

systems as far apart as feasible.

Another component susceptible to noise in general is the magnetometer. As can be seen

in Figure 3.16 and Figure 3.17, all four layers have been cleared within a given distance of

the magnetometer. The noise emission from the display may be problematic, in which

case moving it to the lower right into the antenna section could be a viable solution.

48

CHAPTER 3. SCHEMATICS AND LAYOUT 3.4. PRINTED CIRCUIT BOARD

PAC101

PAC102

COC1
PAC201

PAC202

COC2

PAC301

PAC302

COC3

PAC402 PAC401
COC4

PAC502 PAC501
COC5

PAC702 PAC701 COC7

PAC802

PAC801

COC8

PAC901 PAC902
COC9

PAC1002 PAC1001

COC10

PAC1502

PAC1501

COC15

PAJ102
PAJ103 PAJ101

COJ1

PAL102 PAL101

COL1

PAP101

PAP102

COP1

PAP2010 PAP208 PAP206 PAP204 PAP202

PAP209 PAP207 PAP205 PAP203 PAP201

COP2

PAP302 PAP301 PAP303

COP3

PAP403 PAP401 PAP402

COP4

PAP502 PAP501 PAP503

COP5

PAP603 PAP601 PAP602

COP6

PAP701

PAP702

PAP703

PAP704

PAP705

PAP706

PAP707

PAP708

COP7

PAP80
PAP801 PAP802 PAP803 PAP804 PAP805 PAP806

COP8

PAP902

PAP903

PAP901

COP9

PAP1001

PAP1003

PAP1002

COP10

PAP1102

PAP1101
COP11

PAP1201

PAP1203

PAP1202

COP12

PASW102

PASW101 PASW202

PASW201 PASW203

COSW2

PAU1048 PAU1047 PAU1046 PAU1045 PAU1044 PAU1043 PAU1042 PAU1041 PAU1040 PAU1039 PAU1038 PAU1037
PAU1036

PAU1035
PAU1034
PAU1033

PAU1032

PAU1031

PAU1030
PAU1029
PAU1028

PAU1027

PAU1026

PAU1025

PAU1024 PAU1023 PAU1022 PAU1021 PAU1020 PAU1019 PAU1018 PAU1017 PAU1016 PAU1015 PAU1014 PAU1013
PAU1012

PAU1011

PAU1010

PAU109
PAU108
PAU107

PAU106

PAU105

PAU104
PAU103
PAU102

PAU101

PAU1049
COU1

PAU20 PAU201 PAU202 PAU203 PAU204 PAU205 PAU206 PAU207 PAU208

COU2

PAU30

PAU305 PAU301 PAU308 PAU307 PAU306 PAU304 PAU303 PAU302

COU3

PAU404 PAU406

PAU409

PAU408

PAU4012

PAU407

PAU4010

PAU4011 PAU405

PAU401

PAU403
PAU402

COU4

PAU504
PAU503 PAU502 PAU501

COU5

PAU606
PAU607
PAU608
PAU609
PAU6010 PAU601

PAU602
PAU603
PAU604
PAU605

COU6

PAU701 PAU706 PAU705 PAU704 PAU703 PAU702 PAU707

PAU7015 PAU7014 PAU7013 PAU7012 PAU7011 PAU7010 PAU709

PAU708 PAU7016

COU7

PAX102
PAX101 PAX104

PAX103

COX1

Figure 3.13: PCB layout with primary components placed.

With all primary components positioned, the passives such as resistors and capacitors

are positioned. The majority of passives are decoupling capacitors and are thus placed

in the vicinity of the integrated circuits. Primarily components no less than 0603 have

been selected to ease the assembly process. The SoC circuitry is copied directly from the

reference design without modification, and it includes components for antenna impedance

matching. The antenna is extended a couple of millimeters in length to allow for antenna

tuning later on. In Figure 3.14, the layout with passives positioned can be seen.

Tracks are laid out on the top and bottom layer to create the electrical connections between

components. Tracks are never routed along the the internal layers, they strictly pass

through, or connect, using vias. This is especially important for the GND layer, as it is

undesirable to have this layer split due to noise considerations. The final top layer with

tracks can be seen in Figure 3.15. Via stitching is added to minimize impedance caused by

long ground return loops.

All bends part of a track are 45°. While the electrical performance aspect to this is disputed,

it is broadly accepted as making for a more tidy design. [25] [28] Track widths are also

variable throughout the whole design. The primary factor when selecting track width

is the current carrying capabilities. A clear sign of this consideration can be seen by

comparing the track widths in the voltage regulation section with those surrounding the

49

3.4. PRINTED CIRCUIT BOARD CHAPTER 3. SCHEMATICS AND LAYOUT

PAC101

PAC102

COC1
PAC201

PAC202

COC2

PAC301

PAC302

COC3

PAC402 PAC401
COC4

PAC502 PAC501
COC5

PAC702 PAC701 COC7

PAC802

PAC801

COC8

PAC901 PAC902
COC9

PAC1002 PAC1001

COC10

PAC1101

PAC1102

COC11

PAC1202

PAC1201

COC12

PAC1302 PAC1301 COC13

PAC1401

PAC1402

COC14

PAC1502

PAC1501

COC15

PAC1602

PAC1601

COC16
PAC1701

PAC1702

COC17

PAC1802 PAC1801

COC18

PAC1901 PAC1902

COC19

PAC2002 PAC2001
COC20

PAC2101 PAC2102
COC21

PAC2202 PAC2201 COC22

PAC2301

PAC2302 COC23

PAC2402

PAC2401

COC24

PAC2501 PAC2502
COC25

PAC2601 PAC2602
COC26

PAC2702 PAC2701

COC27

PAC2801 PAC2802

COC28

PAC2902 PAC2901

COC29

PAC3001 PAC3002

COC30

PAC3102 PAC3101

COC31

PAC3201 PAC3202

COC32

PAC3302
PAC3301

COC33

PAE101 PAE102 COE1

PAE202 PAE201
COE2

PAJ102
PAJ103 PAJ101

COJ1

PAL102 PAL101

COL1

PAP101

PAP102

COP1

PAP2010 PAP208 PAP206 PAP204 PAP202

PAP209 PAP207 PAP205 PAP203 PAP201

COP2

PAP302 PAP301 PAP303

COP3

PAP403 PAP401 PAP402

COP4

PAP502 PAP501 PAP503

COP5

PAP603 PAP601 PAP602

COP6

PAP701

PAP702

PAP703

PAP704

PAP705

PAP706

PAP707

PAP708

COP7

PAP80
PAP801 PAP802 PAP803 PAP804 PAP805 PAP806

COP8

PAP902

PAP903

PAP901

COP9

PAP1001

PAP1003

PAP1002

COP10

PAP1102

PAP1101
COP11

PAP1201

PAP1203

PAP1202

COP12

PAQ103

PAQ102 PAQ101
COQ1

PAQ201 PAQ202

PAQ203
COQ2

PAQ301 PAQ302

PAQ303
COQ3

PAQ403

PAQ402 PAQ401

COQ4

PAQ501 PAQ502

PAQ503 COQ5

PAR102 PAR101 COR1

PAR202

PAR201 COR2

PAR302 PAR301 COR3

PAR401 PAR402 COR4

PAR501

PAR502 COR5

PAR602 PAR601
COR6

PAR701 PAR702
COR7

PAR801 PAR802
COR8

PAR902 PAR901
COR9

PAR1002 PAR1001
COR10

PAR1101 PAR1102
COR11

PAR1201 PAR1202 COR12

PAR1302 PAR1301
COR13

PAR1401 PAR1402
COR14

PAR1502

PAR1501

COR15

PAR1601

PAR1602

COR16

PAR1701
PAR1702

COR17

PAR1802

PAR1801

COR18

PAR1901

PAR1902

COR19

PAR2002

PAR2001
COR20

PAR2101

PAR2102 COR21 PAR2202

PAR2201 COR22

PAR2301

PAR2302

COR23
PAR2402

PAR2401
COR24

PAR2501

PAR2502 PAR2602

PAR2601
COR26

PAR2701 PAR2702

COR27

PAR2802 PAR2801 COR28

PAR2902 PAR2901
COR29

PAR3001

PAR3002

COR30 PAR3102
PAR3101 COR31

PAR3202
PAR3201

COR32

PAR3301 PAR3302

COR33

PASW102

PASW101 PASW202

PASW201 PASW203

COSW2

PATP101
COTP1

PATP201
COTP2

PATP301
COTP3

PATP401 COTP4

PATP501
COTP5

PATP601 COTP6
PATP901

COTP9

PATP1001
COTP10

PAU1048 PAU1047 PAU1046 PAU1045 PAU1044 PAU1043 PAU1042 PAU1041 PAU1040 PAU1039 PAU1038 PAU1037
PAU1036

PAU1035
PAU1034
PAU1033

PAU1032

PAU1031

PAU1030
PAU1029
PAU1028

PAU1027

PAU1026

PAU1025

PAU1024 PAU1023 PAU1022 PAU1021 PAU1020 PAU1019 PAU1018 PAU1017 PAU1016 PAU1015 PAU1014 PAU1013
PAU1012

PAU1011

PAU1010

PAU109
PAU108
PAU107

PAU106

PAU105

PAU104
PAU103
PAU102

PAU101

PAU1049
COU1

PAU20 PAU201 PAU202 PAU203 PAU204 PAU205 PAU206 PAU207 PAU208

COU2

PAU30

PAU305 PAU301 PAU308 PAU307 PAU306 PAU304 PAU303 PAU302

COU3

PAU404 PAU406

PAU409

PAU408

PAU4012

PAU407

PAU4010

PAU4011 PAU405

PAU401

PAU403
PAU402

COU4

PAU504
PAU503 PAU502 PAU501

COU5

PAU606
PAU607
PAU608
PAU609
PAU6010 PAU601

PAU602
PAU603
PAU604
PAU605

COU6

PAU701 PAU706 PAU705 PAU704 PAU703 PAU702 PAU707

PAU7015 PAU7014 PAU7013 PAU7012 PAU7011 PAU7010 PAU709

PAU708 PAU7016

COU7

PAX102
PAX101 PAX104

PAX103

COX1

Figure 3.14: PCB layout with primary and passive components.

SoC. Due to the fine pitch of the SoC’s pads, some of the tracks actually narrows/widens

midway in this area.

All tracks and vias connected to passives are kept as symmetric as feasible. This way the

design will be less prone to the phenomena of tombstoning, where thermal asymmetry

causes one side of the chip to raise during reflow soldering. The pad with the least copper

heats faster, and as a result reflowing will occur earlier at this pad, raising the chip like a

tombstone.

The internal power plane is divided into a 3.3V section and a 5V section. This power

plane segmentation can be seen in Figure 3.16. Internally on the PCB all components are

3.3V-compatible, but many the sensors and actuators are 5V components, as that matches

the voltage of the ATmega systems. The narrow 5V peninsula is there to supply the level

shifters discussed in Section 3.3.

The final step of the design is to perform design rule checks in AD t → d . In this process,

AD will ensure that all aspects of the PCB design is fully supported by the manufacturer’s

capabilities. It uses the rules that were set up initially to perform this test, so it is important

that the rule-set has been set up correctly according to the manufacturer’s specifications.

The final PCB layout for the top layer can be seen in Figure 3.17. A ground fill (copper

pour) is added to the top layer. This may improve noise and performance by creating

50

CHAPTER 3. SCHEMATICS AND LAYOUT 3.4. PRINTED CIRCUIT BOARD

PAC101

PAC102

COC1
PAC201

PAC202

COC2

PAC301

PAC302

COC3

PAC402 PAC401
COC4

PAC502 PAC501
COC5

PAC702 PAC701 COC7

PAC802

PAC801

COC8

PAC901 PAC902
COC9

PAC1002 PAC1001

COC10

PAC1101

PAC1102

COC11

PAC1202

PAC1201

COC12

PAC1302 PAC1301 COC13

PAC1401

PAC1402

COC14

PAC1502

PAC1501

COC15

PAC1602

PAC1601

COC16
PAC1701

PAC1702

COC17

PAC1802 PAC1801

COC18

PAC1901 PAC1902

COC19

PAC2002 PAC2001
COC20

PAC2101 PAC2102
COC21

PAC2202 PAC2201 COC22

PAC2301

PAC2302 COC23

PAC2402

PAC2401

COC24

PAC2501 PAC2502
COC25

PAC2601 PAC2602
COC26

PAC2702 PAC2701

COC27

PAC2801 PAC2802

COC28

PAC2902 PAC2901

COC29

PAC3001 PAC3002

COC30

PAC3102 PAC3101

COC31

PAC3201 PAC3202

COC32

PAC3302
PAC3301

COC33

PAE101 PAE102 COE1

PAE202 PAE201
COE2

PAJ102
PAJ103 PAJ101

COJ1

PAL102 PAL101

COL1

PAP101

PAP102

COP1

PAP2010 PAP208 PAP206 PAP204 PAP202

PAP209 PAP207 PAP205 PAP203 PAP201

COP2

PAP302 PAP301 PAP303

COP3

PAP403 PAP401 PAP402

COP4

PAP502 PAP501 PAP503

COP5

PAP603 PAP601 PAP602

COP6

PAP701

PAP702

PAP703

PAP704

PAP705

PAP706

PAP707

PAP708

COP7

PAP80
PAP801 PAP802 PAP803 PAP804 PAP805 PAP806

COP8

PAP902

PAP903

PAP901

COP9

PAP1001

PAP1003

PAP1002

COP10

PAP1102

PAP1101
COP11

PAP1201

PAP1203

PAP1202

COP12

PAQ103

PAQ102 PAQ101
COQ1

PAQ201 PAQ202

PAQ203
COQ2

PAQ301 PAQ302

PAQ303
COQ3

PAQ403

PAQ402 PAQ401

COQ4

PAQ501 PAQ502

PAQ503 COQ5

PAR102 PAR101 COR1

PAR202

PAR201 COR2

PAR302 PAR301 COR3

PAR401 PAR402 COR4

PAR501

PAR502 COR5

PAR602 PAR601
COR6

PAR701 PAR702
COR7

PAR801 PAR802
COR8

PAR902 PAR901
COR9

PAR1002 PAR1001
COR10

PAR1101 PAR1102
COR11

PAR1201 PAR1202 COR12

PAR1302 PAR1301
COR13

PAR1401 PAR1402
COR14

PAR1502

PAR1501

COR15

PAR1601

PAR1602

COR16

PAR1701
PAR1702

COR17

PAR1802

PAR1801

COR18

PAR1901

PAR1902

COR19

PAR2002

PAR2001
COR20

PAR2101

PAR2102 COR21 PAR2202

PAR2201 COR22

PAR2301

PAR2302

COR23
PAR2402

PAR2401
COR24

PAR2501

PAR2502 PAR2602

PAR2601
COR26

PAR2701 PAR2702

COR27

PAR2802 PAR2801 COR28

PAR2902 PAR2901
COR29

PAR3001

PAR3002

COR30 PAR3102
PAR3101 COR31

PAR3202
PAR3201

COR32

PAR3301 PAR3302

COR33

PASW102

PASW101 PASW202

PASW201 PASW203

COSW2

PATP101
COTP1

PATP201
COTP2

PATP301
COTP3

PATP401 COTP4

PATP501
COTP5

PATP601 COTP6
PATP901

COTP9

PATP1001
COTP10

PAU1048 PAU1047 PAU1046 PAU1045 PAU1044 PAU1043 PAU1042 PAU1041 PAU1040 PAU1039 PAU1038 PAU1037
PAU1036

PAU1035
PAU1034
PAU1033

PAU1032

PAU1031

PAU1030
PAU1029
PAU1028

PAU1027

PAU1026

PAU1025

PAU1024 PAU1023 PAU1022 PAU1021 PAU1020 PAU1019 PAU1018 PAU1017 PAU1016 PAU1015 PAU1014 PAU1013
PAU1012

PAU1011

PAU1010

PAU109
PAU108
PAU107

PAU106

PAU105

PAU104
PAU103
PAU102

PAU101

PAU1049
COU1

PAU20 PAU201 PAU202 PAU203 PAU204 PAU205 PAU206 PAU207 PAU208

COU2

PAU30

PAU305 PAU301 PAU308 PAU307 PAU306 PAU304 PAU303 PAU302

COU3

PAU404 PAU406

PAU409

PAU408

PAU4012

PAU407

PAU4010

PAU4011 PAU405

PAU401

PAU403
PAU402

COU4

PAU504
PAU503 PAU502 PAU501

COU5

PAU606
PAU607
PAU608
PAU609
PAU6010 PAU601

PAU602
PAU603
PAU604
PAU605

COU6

PAU701 PAU706 PAU705 PAU704 PAU703 PAU702 PAU707

PAU7015 PAU7014 PAU7013 PAU7012 PAU7011 PAU7010 PAU709

PAU708 PAU7016

COU7

PAX102
PAX101 PAX104

PAX103

COX1

Figure 3.15: PCB layout with components and tracks.

shorter paths to ground, but reading on different forums this seems to be a disputed

claim. As the Nordic Semiconductor’s reference design also features a top ground layer,

mimicking this set-up as closely as possible is desirable. The top ground fill does impact

the antenna performance.

As with the magnetometer, a keep-out section has been introduced on all layers for the

antenna section. This way antenna signals are not attenuated by copper on any of the

layers, which should increase receive sensitivity and transmit power.

A 3D-model and fabrication output can be seen in Appendix B.

51

5V

3.3V

Figure 3.16: Internal power layer has been split into one 3.3V segment, and one 5V segment.

PAC101

PAC102

COC1
PAC201

PAC202

COC2

PAC301

PAC302

COC3

PAC402 PAC401

COC4

PAC501 PAC502
COC5

PAC602 PAC601 COC6

PAC702 PAC701 COC7

PAC801

PAC802

COC8

PAC901 PAC902

COC9 PAC1002 PAC1001

COC10

PAC1101

PAC1102

COC11

PAC1202

PAC1201

COC12

PAC1302 PAC1301 COC13

PAC1401

PAC1402

COC14

PAC1502

PAC1501

COC15

PAC1602

PAC1601

COC16
PAC1701

PAC1702

COC17

PAC1802 PAC1801

COC18

PAC1901 PAC1902

COC19

PAC2002 PAC2001
COC20

PAC2101 PAC2102
COC21

PAC2202 PAC2201 COC22

PAC2301

PAC2302 COC23

PAC2402

PAC2401

COC24

PAC2501 PAC2502

COC25

PAC2601 PAC2602
COC26

PAC2702 PAC2701

COC27

PAC2801 PAC2802

COC28

PAC2902 PAC2901

COC29

PAC3001 PAC3002

COC30

PAC3102 PAC3101

COC31

PAC3201 PAC3202

COC32

PAC3302
PAC3301

COC33

PAE101 PAE102 COE1

PAE202 PAE201
COE2

PAJ102
PAJ103 PAJ101

COJ1

PAL102 PAL101

COL1

PAP101

PAP102

COP1

PAP2010 PAP208 PAP206 PAP204 PAP202

PAP209 PAP207 PAP205 PAP203 PAP201

COP2

PAP302 PAP301 PAP303

COP3

PAP403 PAP401 PAP402

COP4

PAP502 PAP501 PAP503

COP5

PAP603 PAP601 PAP602

COP6

PAP701

PAP702

PAP703

PAP704

PAP705

PAP706

PAP707

PAP708

COP7

PAP80
PAP801 PAP802 PAP803 PAP804 PAP805 PAP806

COP8

PAP902

PAP903

PAP901

COP9

PAP1001

PAP1003

PAP1002

COP10

PAP1102

PAP1101

COP11

PAP1201

PAP1203

PAP1202

COP12

PAQ103

PAQ102 PAQ101
COQ1

PAQ201 PAQ202

PAQ203
COQ2

PAQ301 PAQ302

PAQ303
COQ3

PAQ403

PAQ402 PAQ401

COQ4

PAQ501 PAQ502

PAQ503 COQ5

PAR102 PAR101 COR1

PAR202

PAR201 COR2

PAR302 PAR301 COR3

PAR401 PAR402 COR4

PAR501

PAR502 COR5

PAR602 PAR601
COR6

PAR701 PAR702
COR7

PAR801 PAR802
COR8

PAR902 PAR901
COR9

PAR1002 PAR1001
COR10

PAR1101 PAR1102
COR11

PAR1201 PAR1202 COR12

PAR1302 PAR1301

COR13

PAR1401 PAR1402
COR14

PAR1502

PAR1501

COR15

PAR1601

PAR1602

COR16

PAR1701
PAR1702

COR17

PAR1802

PAR1801

COR18

PAR1901

PAR1902

COR19

PAR2002

PAR2001
COR20

PAR2101

PAR2102
COR21 PAR2202

PAR2201 COR22

PAR2301

PAR2302

COR23
PAR2402

PAR2401
COR24

PAR2501

PAR2502
COR25 PAR2602

PAR2601 COR26

PAR2701 PAR2702

COR27

PAR2802 PAR2801 COR28

PAR2902 PAR2901
COR29

PAR3001

PAR3002

COR30 PAR3102
PAR3101 COR31

PAR3202
PAR3201

COR32

PAR3301 PAR3302

COR33

PASW102

PASW101

COSW1

PASW202

PASW201 PASW203

COSW2

PATP101
COTP1

PATP201
COTP2

PATP301
COTP3

PATP401 COTP4

PATP501
COTP5

PATP601 COTP6
PATP901

COTP9

PATP1001
COTP10

PAU1048 PAU1047 PAU1046 PAU1045 PAU1044 PAU1043 PAU1042 PAU1041 PAU1040 PAU1039 PAU1038 PAU1037
PAU1036
PAU1035
PAU1034
PAU1033
PAU1032
PAU1031
PAU1030
PAU1029
PAU1028
PAU1027

PAU1026

PAU1025

PAU1024 PAU1023 PAU1022 PAU1021 PAU1020 PAU1019 PAU1018 PAU1017 PAU1016 PAU1015 PAU1014 PAU1013
PAU1012

PAU1011

PAU1010

PAU109
PAU108
PAU107
PAU106
PAU105
PAU104
PAU103
PAU102
PAU101

PAU1049
COU1

PAU20 PAU201 PAU202 PAU203 PAU204 PAU205 PAU206 PAU207 PAU208

COU2

PAU30

PAU305 PAU301 PAU308 PAU307 PAU306 PAU304 PAU303 PAU302

COU3

PAU404 PAU406

PAU409

PAU408

PAU4012

PAU407

PAU4010

PAU4011 PAU405

PAU401

PAU403
PAU402

COU4

PAU504
PAU503 PAU502 PAU501

COU5

PAU606
PAU607
PAU608
PAU609
PAU6010 PAU601

PAU602
PAU603
PAU604
PAU605

COU6

PAU701 PAU706 PAU705 PAU704 PAU703 PAU702 PAU707

PAU7015 PAU7014 PAU7013 PAU7012 PAU7011 PAU7010 PAU709

PAU708 PAU7016

COU7

PAX102
PAX101 PAX104

PAX103

COX1

PAC1502 PAJ103

PAC402 PAU101

PAC601

PAU1032

PAC701

PAU1033

PAC1002

PAU1046

PAP703

PAU104

PAP706

PAU107

PAP1001

PAR3101

PAU1014

PAP1201

PAR3201

PAU1015

PAC101

PAC202

PAC301

PAC401

PAC501

PAC602

PAC702

PAC801

PAC901
PAC1001

PAC1101

PAC1201

PAC1301

PAC1401

PAC1501

PAC1602

PAC1701

PAC1801

PAC1901

PAC2001

PAC2101 PAC2201

PAC2301

PAC2401

PAC2501

PAC2601 PAC2701 PAC3201

PAC3301

PAE102

PAE202

PAJ102 PAP102

PAP203 PAP205 PAP209

PAP302 PAP402

PAP502 PAP602

PAP701
PAP806

PAP903

PAP1003

PAP1102

PAP1203

PAR201

PAR401
PAR1901 PAR2001

PAR2101
PAR2201

PASW102

PASW202

PATP101

PAU1031

PAU1045

PAU1049

PAU206

PAU308
PAU403 PAU407

PAU4011

PAU502

PAU504

PAU605

PAU6010

PAU702 PAU704 PAU706

PAU7010 PAU7015

PAX104

PAU1038

PAU7016

PAU1029

PAU7012 PAR1701

PATP601

PAU108

PAU607

PAU708

PAR1801
PATP501

PAU109

PAU606

PAU709

PAP702

PAU105

PAP704

PAU106

PAP705

PAU103

PAP707

PAU102

PAC3302

PAR2202

PAR2601

PAU1043

PAC3202

PAR2102

PAR2501

PAU1041

PAC2702

PAR2002

PAR2401

PAU1042

PAC2602

PAR1902

PAR2301

PAU1040

PAQ202

PAR801

PAU1018

PAP803

PAQ203
PAR901

PAQ102

PAR601

PAU1019

PAP802

PAQ103
PAR701

PAQ302

PAR1001

PAU1017

PAP804

PAQ303
PAR1101

PATP901

PAQ402

PAR1201

PAU1016

PAP805

PAQ403
PAR2901

PATP1001

PAU1037

PAU609

PAC302 PAL101 PAU1030

PAC1402

PAU601

PAC2002
PAU604

PAC2801

PAP603

PAC2901

PAP503

PAC3001

PAP403

PAC3101

PAP303

PAE101

PAR1301

PAE201

PAR1401

PAP301
PAR2602

PAP401
PAR2502

PAP501

PAR2402

PAP601

PAR2302

PAR2701

PAU208

PAR2801

PAU201

PAR3001

PASW203 PASW201

PAU401 PAP2010

PAR101

PASW101

PAU1024

PAR501 PAU1027

PAU305
PAU1011

PAU303
PAU1010

PAU304
PAJ101 PAL102

PAR3301

PAU1028

PAU202

PAU1020

PAU207

PAU1022

PAU203

PAU301
PAU1023

PAU205

PAU302

PAQ502
PAR1501

PAU1039

PAP901
PAQ503

PAR1601

PAP204

PAU1025

PAP202

PAU1026

PAP206

PAR1402

PAU1021

PAR202

PAU406

PAC1802

PAR301

PAR402

PAU1012

PAC502

PAC802
PAC902

PAC1302

PAC1601

PAC2102 PAC2202

PAC2302

PAC2402

PAC2502

PAP201

PAP1002 PAP1202

PAQ101 PAQ201 PAQ301 PAQ401

PAQ501

PAR102

PAR502

PAR602 PAR802 PAR1002 PAR1202
PAR1302

PAR1502

PAR1702

PAR1802

PAR2702 PAR2802

PAR3102

PAR3202

PAR3302

PATP401

PAU1013

PAU1036

PAU1048

PAU204

PAU307

PAU503

PAU602
PAU608

PAU703 PAU707

PAU7011

PAC1202

PAC1702

PAC1902 PAC2802 PAC2902
PAC3002 PAC3102 PAP801 PAP902

PAR702 PAR902 PAR1102

PAR1602

PAR2902

PATP301

PAU404

PAU501

PAC1102

PAP101

PAP1101

PAR302

PAR3002

PATP201

PAU402

PAC102

PAU1034

PAX103 PAC201

PAU1035

PAX101

Figure 3.17: Final PCB layout with top ground plane and components mechanical outline.

CHAPTER 3. SCHEMATICS AND LAYOUT 3.5. SECOND REVISION

3.5 Second Revision

A second revision of the schematics and layout has been made. This second revision

includes a set of corrections and improvements based on experiences made with the first

revision. This section also includes some suggestions that has not been included, but

should be considered before manufacturing of a new revision.

3.5.1 Corrections and Improvements

The following corrections have been made in the second revision:

• Reset-button: The reset-button footprint was incorrect. The result is a short to

ground when the button is soldered on, resulting in constantly repeating resets.

• IR decoupling capacitors: The decoupling capacitors ended up in series with the

supply voltage, not in parallel as they should have been. They must be shorted on

the first revision. On the second revision this has been fixed.

• Battery monitor: During the PCB layout design, pin assignment was changed to

facilitate tracks, but not with regard to actual pin functionality. An ADC enabled

pin must be used to measure the battery voltage, but this was not maintained during

the rearrangement. This has been fixed in the second edition.

The following improvements have been made in the second revision:

• Sensor-tower servo: The servo header has been moved away from the antenna

section, and has been connected to the 680µF capacitor that was previously dedicated

to the LIDAR. The large capacitance of this capacitor is mainly due to limitations

in USB power supplies used on Arduinos, usually rated for 500mA. As such, this

sharing of the capacitor should be acceptable.

• QFN footprint: based on feedback from the staff at the electronics and prototype-

laboratory at NTNU, the center vias in the QFN footprint has been removed. Also

bottom tenting of vias has been added, which had been forgotten in the first revision.

• Via tenting: several top via tents have been removed, such that they can easily be

probed with a multimeter. This is especially useful when for example checking ICs

for soldering short circuits.

53

3.5. SECOND REVISION CHAPTER 3. SCHEMATICS AND LAYOUT

3.5.2 Ease of Manufacturing

The author has inquired Nordic Semiconductor about positioning and dimensioning of

decoupling capacitors and inductor part of the antenna impedance balancing components.

According to them the strict requirements given in the reference layout guidelines are there

to ensure optimal range, and to ensure that there will be no issues during conformance

testing of the product.

Since it is not problematic with a slight loss of range, and conformance testing for licensing

is not relevant for the control system, more leeway is given for chip dimensions and

positioning. In Nordic Semiconductor’s response it was suggested that replacing all 0402

chip components with 0603 or bigger components is unlikely to cause any issues. The

spacing may also be increased in order to facilitate easier soldering. Implementing these

changes are recommended if an assembly line is not setup at the manufacturer for the

development of the next revision.

3.5.3 Inrush Current

While it has not been a problem during testing of the first revision, inrush current could

become an issue with the amount of capacitance in the system. Inrush current is a high

initial current that occurs during power-on as the capacitors charge up. The DC-DC

converter includes a soft-start mechanism that can automatically reduce the slew rate

in case of large inrush current. Too large of an inrush current can potentially damage

PCB traces and connectors. If this built-in soft-start should be insufficient in handling the

inrush current on the final system, a load-switch should be implemented. An alternative

is to simply put a resistor in series with the capacitor, but this this will reduce system

efficiency. [29] [30]

54

Chapter 4
Hardware

In this chapter, the process of generating the manufacturing files for the PCB layout is

described. The production of the PCB itself is out-sourced to an external manufacturer,

but the soldering and assembly of components onto the PCB are performed as part of the

thesis work. Parts of this process, involving precision- and reflow-soldering, is detailed in

this chapter. For brevity, only the most complex solder job is described in detail. The final

section describes the electrical testing and verification of the power supply.

The whole development process can be seen in Figure 4.1, where the stages relevant for

this chapter have been highlighted.

4.1 Equipment

Table 4.1 below lists tools and equipment for precision soldering, crimping of connectors,

and equipment for electrical testing and verification.

4.2 PCB Fabrication

This section primarily details the process of exporting the PCB design from AD to a format

parseable by manufacturers. While the design rule check performed in AD should suffice,

the exported PCB design is submitted for further design-for-manufacturing (DFM) analysis.

55

Table 4.1: Equipment used during soldering, assembly and verification.

Equipment Model/Make Function

Basics

Precision pliers ATG 27/08 Manual pick-and-place

Microscope MS-OPT-2280 Tiny components

Cleaning agent Isopropyl Alcohol Cleaning of pads

Cotton swabs Lint free Cleaning of pads

Flux Kingbo RMA-218 Improve wetting properties

Solder wire 60/40 Rosin core 0.5mm Precision hand soldering

Solder paste Lodestar L309050 Reflow soldering

Soldering Iron

Soldering station Metcal MX-5200 (MX-PS5200) Temperature control

Soldering iron MX-H2-UF Precision hand soldering

Solder iron tip Metcal STTC Chisel and Bevel Precision hand soldering

Reflowing Soldering

Hot-air rework station Metcal HCT-900-21 Component level reflow

Reflow oven SEF 548.04 G Board level reflow

Heating jig Metcal PCT-100 Pre-heating of PCB

Testing & Verification

Power supply Oltronix B202 Stable power supply

Multimeter Fluke 87V Electrical verification

Oscilloscope Agilent MSO-X 2024A Time domain signal analysis

Connectors

Unofficial crimper N/A Crimp JST connectors

Official JST crimper YRS-1590 Crimp JST connectors

CHAPTER 4. HARDWARE 4.2. PCB FABRICATION

Component Library

Schematic Capture

PCB Layout

Specifications

Design Rule Check

Manufacturing files
(Order from Fab.)

Soldering and
Verification

design rule
violations

layout issues

DFM issues

layout issue
(e.g. thermal
or noise)

logical error

Figure 4.1: Flowchart illustrating the complete PCB development cycle.

This DFM analysis is automated and may catch issues caused by misunderstanding rules

or incomplete rule sets given by the manufacturer. The section ends with a short visual

inspection of the received PCB.

First, the fabrication outputs are generated. These are translations of the PCB design into

a common format that the manufacturer can parse and use during fabrication. The most

common format used for this purpose is the vector Gerber format. There will be a Gerber

file for each of the four layers in the PCB. Drill holes are exported to the IPC-NC-349 (NC

Drill) format. To export the design to these formats in AD enter f → f and select either

Gerber Files or NC Drill Files.

The layers that are exported (plotted) are in relation to Figure 3.10: GTO (Top Overlay)

Silkscreen; GTS (Top Solder) Solder mask; GTL (Component Side) Top layer; G1 (GND)

GND plane; G2 (Power) Power plane; GBL (Solder side) Bottom layer; GBS (Bottom solder)

Bottom solder mask; GBO (Bottom Overlay) Bottom silkscreen, GKO (Keep-Out layer)

Board outline. A simple text file describing how the Gerber files relate to the board layer

stack-up is included in the fabrication files.

57

4.2. PCB FABRICATION CHAPTER 4. HARDWARE

If the internal layers are set to power planes, something which is the default for the generated
board stack-up in AD, these planes will be exported as negatives in the Gerber format. Not
all manufacturers can parse and use inverted Gerber files, and there is no option in AD to
invert back. If non-negatives are needed, the best option is to change the internal layers from
Power layer to Signal layer, and redraw them.

The exported Gerber files are submitted to FreeDFM (http://my4pcb.com) which is an

automated DFM service that can verify the manufacturability of the design. A report is

generated indicating two categories of errors: "Potential Show Stoppers" and "Problems

Automatically Fixed." The former is reviewed thoroughly before sending off to production,

while the latter is likely to be handled by the manufacturer automatically.
1
An example

of an error during the first run in this project can be seen below. This error should have

been caught in the DFM check of AD, but the rule configurations in AD were incorrectly

set up.

Insufficient Annular Ring: Requirements: a minimum of .005” annular ring

for vias, a minimum of .007” for component holes. Resolution: all layout

packages provide this as a DFM check.

Finally, the order is submitted to JCLPCB
2
with the default manufacturing configuration.

It is worth noting that the default green colored solder-mask can be beneficial for visually

distinguishing the traces and features on the circuit board.

The final PCB can be seen in Figure 4.2. A visual inspection highlights some interesting

features of the manufacturing capabilities of JCLPCB:

1. There is solder mask between the fine pitch pads for the SoC. These solder mask

slivers are beyond their listed capabilities, which is impressive.

2. The silk layer annotations for the passive components are smaller than the minimum

recommendations given by the manufacturer, yet still they are for the most part

legible.

3. The layer stack indicator is slightly broken, but this is due to a design error intro-

duced in the process of changing the inner power layers to AD signal layers. This

error is not visible in the figure.

1
The manufacturers will frequently make small design changes to improve manufacturability. In other cases,

they may contact the customer, something which will incur a delay to the production.

2
JLCPCB (Shenzhen JIALICHUANG Electronic Technology Development Co., Ltd.), available at

https://jlcpcb.com

58

CHAPTER 4. HARDWARE 4.3. SYSTEM-ON-CHIP

Figure 4.2: Visual inspection of the received PCB.

4.3 System-on-Chip

The most challenging part of the soldering process is to get the SoC soldered correctly.

The fine pitch (0.4mm) of the QFN package makes it prone to both solder-bridges and pad

misalignment. While a technique for fixing exterior bridges is presented here, there is

no guaranteed fix for any hidden bridge below the chip itself. Making matters worse is

the surrounding array of passives in miniature 0402 packages. This section presents a

procedure using techniques that have proven to work adequately.

To solder the SoC a combination of hot air flow and usage of traditional solder iron is used.

Initially, both the pads on the PCB and the SoC are cleaned using lint-free cotton swabs

soaked in isopropyl alcohol. A thin line of flux is applied along the pads on the PCB, and

a small amount onto the ground pad. A solder paste dispenser is used to dispense a thin

line of solder paste on top of the flux. Applying too much solder paste can be problematic.

Along the pads, it may cause solder bridges, while for the ground pad it may end up

lifting the SoC such that its pads and the PCB’s pads end up too far apart. The picture in

Figure 4.3a shows a suggested amount of flux and solder paste.

With arms resting firmly on the tabletop, the SoC is positioned to the best of one’s ability

using a set of precision pliers and a microscope. The initial placement is not critical, and

readjustments of a couple of millimeters is not itself problematic. The SoC is moved until

59

4.3. SYSTEM-ON-CHIP CHAPTER 4. HARDWARE

(a) Flux and solder paste applied. (30X) (b) Chip properly aligned. (30X)

Figure 4.3: Solder paste and flux application, and the final SoC alignment.

it is aligned with the silkscreen. While the SoC will align with pads during the reflow

process, if the initial alignment is poor, the pads may be completely shifted by a row of

pads. There is no easy way to fix such misalignment, apart from removing the SoC and

repeating this whole process. Proper alignment is shown in Figure 4.3b.

A pre-heating station and a hot-air rework station is used to perform the reflow soldering.

The pre-heating station is given a minute to pre-heat the PCB. Then more heat is gradually

applied using a hot-air gun until the solder paste reflows. Applying too much heat, too

quickly, may damage the SoC internally. The solder joint at the ground pad below is not

of concern, as the whole board will be sent through a reflow oven at a later stage, where

proper reflow is assured.

Correct alignment and solder joints are verified using a microscope. In case of misalign-

ment, it is possible to apply generous amounts of flux around the SoC, reflow as in the

previous step, and attempt to carefully push it into position. This realignment process

is difficult and may result in pads flaking off the PCB. Solder-bridges, or lack of visible

solder, are fixed using a soldering iron with a fine beveled tip. For solder bridges, flux is

applied, and a clean soldering iron is swept over. This is repeated until the bridge is gone.

For pads lacking visible solder, apply flux, and apply a minute amount of solder to a clean

solder iron, and sweep the soldering iron over the row. When this is done, flux residuals

may be removed using isopropyl alcohol. A solder bridge can be seen in Figure 4.4a, while

good solder joints can be seen in Figure 4.4b.

Before soldering the chip components surrounding the SoC, a final verification is per-

60

CHAPTER 4. HARDWARE 4.3. SYSTEM-ON-CHIP

(a) Solder bridge. (40X) (b) Bridge fixed and flux cleaned. (40X)

Figure 4.4: Difference between good and bad QFN soldering joints.

formed to verify that there are no shorts between any of the pins. The design is opened in

AD, where pairs of adjacent pins and attached tracks are highlighted. Then a multimeter

is used on the corresponding pads or pins to ensure that there is no continuity between

adjacent pairs of pins. There is one exception, and that is between pin 30 and 31. There is

a balun inside the SoC that has DC short to ground, so 2.8Ω is expected between this pair.

When satisfied with the result, flux residues are cleaned off using isopropyl alcohol.

The passives surrounding the SoC are soldered by dispensing solder paste on all the

pads. Following this the chips are positioned using a microscope and a set of very fine

tweezers. The reflow temperature graph for the solder paste is found in its datasheet.

The temperature profile is set up in the reflow oven, and the reflow process is performed.

More components can be soldered in this process. The SoC can sustain at least six reflow

processes, while the Murata DC-DC module is only capable of sustaining between two

and three such processes.
3
The performance of chip capacitors is degraded for every pass

in the reflow oven, so it is advisable to keep the number of passes to a minimum.

For the second revision, the use of stencil should be considered. The stencil can be

especially useful for the IMU which does not have any of its pads running along the side

such as is the case with the SoC. Stencils have been designed and ordered for the control

system. While these stencils are designed for the first revision, it should still be possible

to use it for the most critical components such as the IMU and SoC, as these have not

changed position. The stencil can be seen in Figure 4.5, where the SoC area is on the right

side.

3
This information was obtained by contacting both manufacturers directly.

61

4.4. REMAINING COMPONENTS CHAPTER 4. HARDWARE

Figure 4.5: Stencil that aids in dispensing solder paste correctly.

4.4 Remaining Components

With the SoC soldered successfully, there are two more components that may prove

challenging to solder. That is the magnetometer and the IMU. The magnetometer comes

in a package similar to the SoC, so the same procedure detailed in Section 4.3 should be

applicable. The IMU is more difficult, as the QFN pads do not extend to the outside of the

package at all. For this package, the best option is likely to set up and use the stencil.

For the remaining components all of the following methods should be applicable:

• Solder using a soldering iron: Difficult for smaller chip packages, and more prone

to oblique orientation of components; allows for a very delimited area of heating.

• Hot air gun: Easy to solder; not possible to follow the recommended temperature

curve for the solder paste; allows for a somewhat delimited area of heating.

• Reflow oven: Can solder the whole PCB in one pass; can be configured to follow

the temperature curve for the solder paste; no delimitation on area of heating.

Apart from the soldering process, the different JST connectors also have to be crimped.

All JST connectors consist of three components: the contact itself, that is crimped onto

the wire; the housing in which the wire with the crimped contact is locked into; a

62

CHAPTER 4. HARDWARE 4.4. REMAINING COMPONENTS

locking receptacle header mounted onto the PCB. As an example Figure 4.6 illustrates all

components for the VH-series JST connector.

Front view:

Side view:

Locking header Housing Contact

Wire

Insulation wing
Conducting wing

Figure 4.6: All components of a JST connector, using the VH-series as an example.

For the JST connectors, there are official crimping tools available, but they are costly. In

the following, a method using unofficial crimping tools will be described. The VH series

connector is used in the example, but the same approach applies to all series. The smaller

series are more difficult to get right, and some of the generic crimping tools may be too

big for the these.

A cable with cross section of 0.326–1.31mm
2
(AWG 22–16) should be selected, and about

5mm of insulation stripped. Referring to the contact in Figure 4.6, the following should

now be ensured:

1. insulation crimping wings are only in contact with wire insulation

2. conductor crimping wings are only in contact with conducting wire

3. no wire enters the locking mechanism section; this affects locking force

Next, a pair of flat nose pliers is used to slightly bend the two set of wings inwards. Then

the insulation wings are inserted into the crimping tool, and the crimping is performed

gradually while observing that the insulation is not penetrated. Then the conductor wings

are crimped onto the wire. Afterward, the nose pliers are used to ensure that the wings

are properly crimped.

The final step is optional, and somewhat controversial for Japanese Solderless Terminals—

solder the conduction wing. Generous amounts of flux are applied to the conducting

area. Then some solder is put on the soldering iron, before moving it in contact with the

fluxed area for no more than a second. The flux residues are properly cleaned off to avoid

corrosion. The cable with the contact is now ready to be pushed into the housing, where

it will click lock when fully inserted.

63

4.5. POWER SUPPLY VERIFICATION CHAPTER 4. HARDWARE

4.5 Power Supply Verification

In this section the verification and testing of the power supply is described.

Correctly measuring the ripple voltage has been performed using a set-up loosely based

on the one described in Analog Devices’ AN-1144. [31] The probing method used can

be seen in Figure 4.7, where all probing is done directly on the output capacitors of the

voltage regulators. A ground clip is used instead of the more common ground cables,

to reduce parasitic effects as much as possible. This detail is further described in the

application note.

(a) 3.3V LDO. (b) 5V DC-DC.

Figure 4.7: Probing method for voltage regulators.

The oscilloscope is configured to AC coupling to filter out the stationary DC component

that is not of interest, which also allows for greater sensitivity to display the AC component

of the signal.[32] The system is running with the SoC performing Bluetooth actions, and

the display performing simple operations. These operations should result in a current

draw of about 60mA. The final voltage ripple results can be seen in Figure 4.8.

Now referring to the oscilloscope readings shown in Figure 4.8, the peak-to-peak voltage

at the output of the the DC-DC converter shown in Figure 4.8a isVpkpk_DCDC ≈ 19mV. In

Section 2.4 it was mentioned that the datasheet specified an output ripple of 27mV. Due to

the differences between the test set-up specified in the datasheet, and the control system,

it was argued that it was reasonable to expect the ripple voltage to be significantly lower

than specified in the datasheet. This does indeed seem to be the case.

The peak-to-peak voltage at the output of the LDO regulator shown in Figure 4.8b is

Vpkpk_LDO ≈ 8mV. In Section 2.4 an estimate was calculated by accounting for the LDO’s

64

CHAPTER 4. HARDWARE 4.5. POWER SUPPLY VERIFICATION

PSRR. While the LDO certainly does attenuate the output ripple, it does not come close to

the earlier estimate of Vpkpk_LDO_est = 1.52mV. A contributing factor to this discrepancy

could be attributed to the specific set-up, which Texas Instruments warned could be

problematic. The calculations used were also very simple, giving little or no consideration

to the surrounding circuitry. Also, the PSRR graph in the datasheet listed the load current

as 10mA.

While far from achieving the desired estimate of 1.52mV, the output ripple at 8mV from

the LDO is well within the SoC’s requirement of Vpkpk_LDO < 100mV.

65

(a) Output voltage ripple from 5V from DC/DC converter.

(b) Output voltage ripple from 3.3V LDO regulator.

Figure 4.8: Oscilloscope measurements of voltage regulator output.

Chapter 5
Software

This chapter details the software aspects of the new control system, encompassing the

set-up of a development environment, driver development, and the development of a

RTOS template application.

5.1 Development Environment

This section describes the set-up and configuration of a complete development environ-

ment. The physical set-up between a host computer and the control system is described.

Nordic Semiconductor’s software development kit (SDK) is set-up such that it is compatible

with the control system. The RTOS tracing software Tracealyzer is implemented.

5.1.1 Host to Target Interface

The complete connection between host and SoC can be seen in Figure 5.1. For debugging

and programming the nRF development kit will be used. This kit has an onboard J-Link

that can be used for both the debugging and programming of an external device.

By default, the onboard J-Link is connected to the nRF SoC on the development kit. Once

the control system is connected to the debug header of the development kit, the J-link

automatically switches over to the external debug interface.

67

5.1. DEVELOPMENT ENVIRONMENT CHAPTER 5. SOFTWARE

ab.hex
SoC

USB

Control System

DBG

Development Kit

DBG

SoCOB J-Link

SWD+SWO

Figure 5.1: The connection between PC and control system.

5.1.2 Setting up a Minimal Example

The approach used for developing on the SoC is to use one of the example projects bundled

with the SDK as a starting point. This way the project configuration is mostly set up

correctly at the outset, meaning that less time has to be spent configuring the toolchain

and setting up include directories. As described in Section 2.6, the IDE Segger Embedded

Studio (SES) has been chosen, for which project files already exist in the SDK. For all

Bluetooth projects, there are large amounts of boilerplate code. When using one of the

examples as a starting point, all this code will already have been implemented correctly.

Still, as the examples are designed to run on the development kit, some configuration will

have to be done to make them compatible with the control system.

The example project used with the control system is the FreeRTOS example project,

ble_app_hrs_freertos_slam. It has been set up with a FreeRTOS version 10.0.0 port,

combined with Bluetooth functionality interfacing via a FreeRTOS task. It should be

ideally suited as a starting point for the control system. The heap size is statically defined

in the FreeRTOSConfig.h-file, and is by default set to a minimum only enough for a

single task. Both the heap and stack sizes should be adjusted according to the application

implemented, as shown in Listing 5.1. If the system runs out of heap memory, this can

easily be caught and handled. Stack overflow is a more problematic issue, requiring more

planning and techniques to handle correctly.
1 2

Listing 5.1: FreeRTOSConfig.h: Increase heap size for more tasks.

// Increasing heap to allow for spawning more tasks

#define configTOTAL_HEAP_SIZE (16384)

// Estimate stack size based on usage with uxTaskGetStackHighWaterMark()

#define configMINIMAL_STACK_SIZE ?

1
Stack size: https://www.freertos.org/FAQMem.html#StackSize

2
Stack overflow: https://www.freertos.org/Stacks-and-stack-overflow-checking.html

68

CHAPTER 5. SOFTWARE 5.1. DEVELOPMENT ENVIRONMENT

Unlike the development kit, the external low-frequency clock has been omitted in the

control system. Part of the SDK configuration is the specification of low-frequency clock

source. Either using the CMSIS Configurator
3
or editing the sdk_config.h file directly,

the low-frequency clock source have to be specified as the internal RC oscillator. The

correct configuration is given in Listing 5.2. As can be seen from the listing, the RC

oscillator requires periodic calibration, especially in case of fluctuating temperature.

Listing 5.2: sdk_config.h: SDK low-frequency clock source configuration.

// Legacy drivers should use internal RC oscillator as LF clock source

#define CLOCK_CONFIG_LF_SRC 0

// New drivers should use internal RC oscillator as LF clock source

#define NRFX_CLOCK_CONFIG_LF_SRC 0

// SoftDevice should use internal RC oscillator as LF clock source

#define NRF_SDH_CLOCK_LF_SRC 0

// SoftDevice calibration timer interval

#define NRF_SDH_CLOCK_LF_RC_CTIV 16

// SoftDevice calibration timer interval under constant temperature

#define NRF_SDH_CLOCK_LF_RC_TEMP_CTIV 4

Pin 11 on the SoC is by default set up with NFC functionality, and for this reason cannot

be used as GPIO, as is required on the control system. The project will compile without

error if it is used as a GPIO, but its output will remain HIGH at all time. This default

behavior was discovered after hours of debugging using an oscilloscope. The solution is

to add the symbol CONFIG_NFCT_PINS_AS_GPIOS in the list of preprocessor definitions in

SES.

At this point the FreeRTOS example runs correctly on the control system.

5.1.3 Debugging

Already at this point, there are debugging facilities more powerful than those available on

the ATmega-based control systems. Halt mode debugging is now available, meaning that

single-stepping can be executed, and breakpoints added either in the assembly or code

editor view. A shortcoming of this debugging quickly becomes apparent; if the application

is stalled for too long, the time-sensitive Bluetooth subsystem crashes the SoC resulting

in a hard-fault.

3
A GUI tool supporting the CMSIS configuration format used in the sdk_config.h SDK configuration file.

69

5.1. DEVELOPMENT ENVIRONMENT CHAPTER 5. SOFTWARE

Monitor mode debugging (MMD) is a less intrusive form of halt-mode debugging. Instead

of completely halting the processor, interrupts handlers with a higher priority than the

MMDare allowed to continue in the background. This way the Bluetooth system andmotor

control that have been assigned high priorities can continue to execute in the background

during debugging. The concept is illustrated in Figure 5.2. TheMMD libraries have been im-

plemented in the SLAM project, where MMD is enabled by adding SetMonModeDebugging

= 1 to Project Options → Debug → J-Link → Additional J-Link Options, and calling

NVIC_SetPriority(DebugMonitor_IRQn, 7ul) at the very start of the main()-function.

User read

FreeRTOS

SoDevice (BLE)

Halted

Bluetooth operational
Running

Figure 5.2: Monitor mode debugging principle.

As with the current ATmega control systems, debug printing is available. Instead of

dedicating a UART to transmit the text, the RTT technology described in Chapter 2 is

used. With the SDK, it is already implemented and combined with a complete library for

logging. Its configuration and example usage is given in Listing 5.3. Debug printing can

be useful for notifying about events, e.g., "robot scan complete." These can then be seen

either directly within SES via the Debug Terminal, or via one of the dedicated RTT tools

bundled with the J-link software package.

Listing 5.3: sdk_config.h,main.c: Enabling and using RTT.

// Configure RTT as back end for the nRF logging library

#define NRF_LOG_BACKEND_RTT_ENABLED 1

// Example function call to perform logging over RTT

NRF_LOG_INFO("Scan cycle %d completed \n", n_scan_cycles);

As long as the nRF logging library is redirected to RTT it will have superior performance

compared with traditional UART printing. RTT was designed to enable high-speed

transfers, with minimal impact on real-time performance.
4

The final—and by far the most sophisticated—debugging tool will be Tracealyzer. This

is software designed for FreeRTOS tracing and introduces RTOS aware debugging. The

software consists of two components: a trace recorder library running on the target, and

4
https://www.segger.com/products/debug-probes/j-link/technology/about-real-time-transfer/

70

CHAPTER 5. SOFTWARE 5.1. DEVELOPMENT ENVIRONMENT

a visualization and analysis tool running on a host computer. The tracing library can

operate in one of two modes: either in snapshot mode or in streaming mode. For the

former, trace data is stored in RAM and transferred to host PC for post-mortem analysis.

The latter continuously streams trace data to the external PC, allowing for live analysis

during run-time. The streaming mode will require debugging hardware connected to the

control systems at all time. The limited memory region holding the trace snapshot can

be regularly be dumped to an SD-card, which is necessary for tracing prolonged SLAM

sessions.

Tracealyzer is set up by running the installer after a free educational license has been ob-

tained from Percepio
5
. The tracing library for the target is located at Install_Dir/FreeRTOS/.

The three implementation files (.c), configuration files (.h) and include files (.h) are copied
to appropriate folders into the example project. Listing 5.4 lists all the configuration

necessary to set the trace library up for snapshot mode tracing, while Listing 5.5 lists all

the configurations necessary to enable event tracing in FreeRTOS.

Listing 5.4: trcConfig.h Trace library target configuration.

#define TRC_CFG_HARDWARE_PORT TRC_HARDWARE_PORT_ARM_Cortex_M

#define TRC_CFG_RECORDER_MODE TRC_RECORDER_MODE_SNAPSHOT

#define TRC_CFG_FREERTOS_VERSION TRC_FREERTOS_VERSION_10_0_0

Listing 5.5: FreeRTOSConfig.h: Enabling trace in FreeRTOS.

#define configUSE_TRACE_FACILITY 1

#if (configUSE_TRACE_FACILITY == 1)

#include "trcRecorder.h"

#endif

To begin tracing on the target the function vTraceEnable(startOption) is first called

with the parameter TRC_INIT to initialize the library, and then a second time with

TRC_START to begin the actual tracing. It is important that tracing is started before

any FreeRTOS function calls. There is a caveat with the current set-up though. As both

debug printing, and the trace library uses RTT, they fail when both are in use. This

caveat should not be much of a limitation considering that the user event support in

Tracealyer should eliminate the need for traditional printing. For convenience, this is

solved automatically in the project by using the preprocessor. Usage format can be seen

in Listing 5.6. The return value from xTraceGetLastError() should be checked before

proceeding.

5
https://percepio.com/licensing/

71

5.2. DRIVER DEVELOPMENT CHAPTER 5. SOFTWARE

Listing 5.6: main.c: RTT interlock and Tracealyzer usage.

#if !NRF_LOG_ENABLED || !NRF_LOG_BACKEND_RTT_ENABLED

vTraceEnable(TRC_INIT);

vTraceEnable(TRC_START);

error_msg = xTraceGetLastError();

#endif

// No FreeRTOS function calls prior to this line!

The trace data on the target is read out by supplying the software running on the host

PC with the address of the data in the target’s RAM. This address is obtained by pausing

the target, and reading the global variable RecorderDataPtr. Before importing the data,

Tracealyzer running on the PC has to be configured to use SWD and not JTAG. From

Settings → J-Link Settings, set the debug interface to SWD, and the J-Link speed to

4000kHz. The trace data is then imported and analyzed by pressing the "Read Snapshot

Trace" button from the right-hand panel within Tracealyzer.

At this point, all the debugging facilities are set up. These facilities include traditional

halt-mode debugging, the less intrusive monitor mode debugging, real-time printing and

RTOS aware trace functionality. These should all serve as a solid foundation for further

application development.

5.2 Driver Development

This section details the development of drivers for the different devices on the SLAM

robot and control system. The drivers include documentation in the form of comments

conforming to the Doxygen standard. This means that PDF, LaTeX or HTML based

documentation for the drivers can be generated.

All drivers have been successfully tested on relevant hardware, where they have performed
as specified in this section. All drivers are available in the media attachment as described in
Appendix A. They have all been implemented in the template FreeRTOS application set up
later in this chapter.

5.2.1 Display

The display driver performs initialization of the OLED and provides a clean interface with

drawing operations where all protocol and algorithms have been abstracted away.

72

CHAPTER 5. SOFTWARE 5.2. DRIVER DEVELOPMENT

Display Driver

SDK Graphics library

OLED
SPI

Application

Figure 5.3: Components of the display driver.

As part of the SDK, there already exists a graphics library for drawing objects and printing

text. This library is device agnostic and is only concerned with the algorithms for drawing

pixels in the correct positions. To implement this drawing library, the display driver

developed here has to supply the library with a set of basic functions, given in Table 5.1.

These functions are registered with the library via function pointers. The structure of the

display stack is illustrated in Figure 5.3

Table 5.1: OLED driver implementing basic functionality required by the graphics library.

Function Description

oled_init() Initialize the OLED.

oled_uninit() Deinitialize the OLED.

oled_draw_pixel(x ,y) Draw pixel at x ,y in display buffer.

oled_draw_rectangle(x ,y,w ,h) Draw rectangle at x , y in display buffer.

oled_display() Update OLED with display buffer content.

oled_clear() Clear the display.

These are callback functions for the graphics library.

The OLED driver handles all communication with the display over the SPI bus. As this

bus is shared with the microSD slot, care has to be taken when initializing the underlying

SPI driver. If the bus were not shared, it would be safe to initialize the driver once in

the oled_init(). Since the bus is shared it will instead check if the bus has already

been initialized, and if so, deinitialize it, and reinitialize it. The function sending new

display data to the OLED, oled_display() will have to perform the same procedure.

While a bit cumbersome, this does ensure that the SPI driver is never double-initialized,

double-deinitialized or otherwise left in a broken state. The SPI configuration is given in

Listing 5.7, and the initialization in Listing 5.8.

73

5.2. DRIVER DEVELOPMENT CHAPTER 5. SOFTWARE

Listing 5.7: oled_driver.c: Part of the SPI configuration used.

static nrf_drv_spi_config_t const spi_config = { [...] // snippet

.miso_pin = NRF_DRV_SPI_PIN_NOT_USED,

.frequency = NRF_DRV_SPI_FREQ_1M,

.mode = NRF_DRV_SPI_MODE_0,

.bit_order = NRF_DRV_SPI_BIT_ORDER_MSB_FIRST };

Listing 5.8: oled_driver.c: SPI initialization routine.

err_code = nrf_spi_mngr_init(&m_nrf_spi_mngr, &spi_config);

if (err_code == NRFX_ERROR_INVALID_STATE) {

nrf_spi_mngr_uninit(&m_nrf_spi_mngr);

nrf_spi_mngr_init(&m_nrf_spi_mngr, &spi_config);}

The initialization function performs the initial configuration of the OLED over the SPI bus.

Among other configurations, it sets the display height, pixel mapping configuration, power

supply settings and display contrast. Details about all the configurations are available in

the OLED’s datasheet. In the end, it performs a reset of the OLED, ensuring that it is in a

valid state with the new configuration after the initialization routine has finished.

The SDK graphics library requires two primitive drawing operations to perform the more

complex ones: drawing a single pixel and drawing a rectangle. The display drivermaintains

a display buffer on the SoC, where these drawing operations are performed locally. The

oled_display() function is used to transfer this buffer to the OLED. The rectangle draw-

ing function oled_draw_rectangle() simply uses the oled_draw_pixel() function to

draw a rectangle to this buffer. The challenge is to implement the oled_draw_pixel()-

function, such that the correct pixel in the display buffer is set.

logical row 0

row 0

…

logical row 1

logical row 8

… row 15

row 63

…

…

…

…

…

col 0 col 127

Display buffer

0x01, 0x02, 0x03, ... , 0x7E, 0x7F,
0x80, 0x81, 0x82, ... , 0xFE, 0xFF,
...
0xDE, 0xAD, 0xBE, ... , 0xEF, 0x03}

OLED

Figure 5.4: Mapping between display buffer and pixels on the display.

74

CHAPTER 5. SOFTWARE 5.2. DRIVER DEVELOPMENT

The display buffer is defined as static uint8_t display_buffer[64*128/8], and maps

to the display as illustrated in Figure 5.4. Each byte’s binary encoding corresponds to

the pixel configuration for a single column in a logical row. E.g., from the figure the first

byte’s binary encoding is 00000001, and thus the first pixel in the first column of the first

logical row is turned on. In this manner, the first 128 bytes of the display buffer describes

the first logical row, and the consecutive bytes the remaining logical rows. The function

for setting a single pixel is designed around the bit twiddling given in Listing 5.9.
6

Listing 5.9: oled_driver.c: Setting or resetting a single pixel.

if (set_pixel)

display_buffer[x + (y/8)*OLED_WIDTH] |= (1 << (y&7));

else

display[x + (y/8)*OLED_WIDTH] &= ~(1 << (y&7));

The functions defined in Table 5.1 are associatedwith the graphics library via an nrf_lcd_t

struct, which is passed as parameter to the graphics library when it is initialized using

nrf_gfx_init(nrf_lcd_t). At this point all the drawing operations in Table 5.2 are

available to the application developer.

Table 5.2: SDK graphics library drawing operations.

Function Drawing Operation, and Associated Options

nrf_gfx_point_draw(p) Pixel

nrf_gfx_line_draw(l) Line, thickness

nrf_gfx_circle_draw(c) Circle, fill

nrf_gfx_rect_draw(r) Rectangle, thickness, fill

nrf_gfx_bmp565_draw(bmp) Draw image from .BMP-file

nrf_gfx_print(t) Text

5.2.2 microSD

The microSD driver is essentially a restructuring of the FatFs example provided as part

of the SDK. FatFs is a File Allocation Table (FAT) filesystem library for interacting with

devices conforming to the FAT specifications. By using a filesystem on the microSD card,

6
Since the buffer is byte-addressable, not bit-addressable, the bitwise operators are used to leave the remaining

bits in the byte intact.

75

5.2. DRIVER DEVELOPMENT CHAPTER 5. SOFTWARE

files and folders can be used to contain and organize all types of logging and writing to the

microSD card. It also makes it very easy to transfer the data to a PC, as all PC operating

systems have native support for the FAT filesystem. For example, a task can write its

log-data to a.txt, while another task writes its log data to b.txt.

The driver interface consists of a single function, as given in Table 5.3. If the file does not

exist, it will be created and the content written to the newly created file. If the file does

exist, the content is appended to the already-existing file.

Table 5.3: microSD-card driver interface.

Function Description

microsd_write(f ,c) Write content c to file f . If f exists, c is appended to f .

The write function will initialize and re-mount the file-system on each invocation. This

makes the function stateless, making it easy to implement as part of a RTOS project safely.

The downside is the performance penalty associated with the initializations and mounting

operations.

As the microSD shares SPI bus with the display, double initialization or deinitialization

must be avoided. This is avoided by modifying the code part of the microSD card driver

that performs the SPI bus initialization (app_sdcard.c), in the same manner as was done

with the display driver.

5.2.3 Motors

The motor driver provides individual control of each of the two motors on the robot. This

control is achieved by controlling the H-bridge on the motor controller board. The driver

interface is given in Table 5.4. The driver uses the PWM library part of the SDK, and the

GPIOTE driver to configure the type of operation (e.g., forward, backward or brake).

The PWM library consumes one timer peripheral, and provides two channels. The duty

cycle can be configured individually for each of the two channels; only the PWM frequency

has to be identical. The result is full individual control of each of the two motors. Each

motor can thus be set off, stopped (brakes), turn forward or backward.

This driver supplies all the operations available from the motor controller board, for each

of the motors. It is expected that for the SLAM application, either a new layer is built on

76

CHAPTER 5. SOFTWARE 5.2. DRIVER DEVELOPMENT

Table 5.4: Motor driver interface.

Function Description

motor_dir_forward(p) Run left or right motor forward with p% power.

motor_forward(p) Run both motors forward with p% power.

motor_dir_backward(p) Run left or right motor backward with p% power.

motor_backward(p) Run both motors backward with p% power.

motor_dir_stop() Stop supplying power to left or right motor.

motor_stop() Stop supplying power to both motors.

motor_dir_brake() Actively brake left or right motor.

motor_brake() Actively brake both motors.

top of this driver, or it is refit for the new application. It would seem natural to include a

closed loop speed controller, using the encoder feedback.

5.2.4 Encoders

The encoder driver exposes two different models of interacting with an encoder. The

driver interface can be seen in Table 5.5.

Table 5.5: Encoder initialization functions.

Function Description

encoder_init_int(side, cb_fn) Interrupt driven encoder initialization.

encoder_init_ppi(side, timer) PPI and counter driven encoder initialization.

In the first model, the user supplies the driver with a callback function. Encoder actions

on that side are then set up to trigger interrupts on the GPIOTE system. These interrupts

will, through a trampoline callback function in the driver, call the user-supplied callback

function. This corresponds to the set-up that is used in the current robots, except that the

application developer supplies a normal callback function, and does not have to consider

the underlying interrupting structure. This model requires more time from the processor,

but it does not consume additional peripherals, which the PPI-based method described

below does.

The second model uses the PPI functionality to perform the counting autonomously in the

background, without using any of the processor’s time. This offloading of the processor is

77

5.2. DRIVER DEVELOPMENT CHAPTER 5. SOFTWARE

accomplished by setting up a PPI channel between the event generated in the GPIOTE

subsystem on the encoder pin, and a counting task on the supplied timer peripheral. As

the application developer provides the timer peripheral, the encoder count can be captured

and read on one’s convenience. The drawback is the consumption of possibly two timer

peripherals.

The encoders mounted on the robot are not quadrature encoders, which means that it is

not possible to establish direction based on the output signals they generate. This puts

the burden of maintaining directionality on the application developer.

5.2.5 IR

The functions making up the driver interface are given in Table 5.6. The initialization

function sets up the ADC with resolution r and sets up for DMA transfer of results. It

sets up the correct ADC reference voltage and scaling to match that of the IR’s output. It

also performs an initial calibration of the ADC peripheral. There is a static configuration,

N_SAMPLES that specifies how many samples to average before returning. The default has

been set to four samples.

The IR sensors output a voltage as a function of measured distance. The voltage-distance

relationship is given in the data sheet, and a look-up-table (LTU) with calibrated values

are used on the current Arduino robots. For the driver developed in this thesis, only the

functioning of the ADC system has been of interest, and thus no lookup table has been

implemented.

Table 5.6: IR driver interface functions.

Function Description

ir_init(resolution) Initializes and configures ADC with DMA.

ir_read(sensor, cb) Perform reading and transfer with DMA.

ir_read_blocking(sensor) Perform reading, and return value when done.

ir_calibrate() Performs calibration.

5.2.6 Sensor Tower Servo

This driver allows for control of the sensor tower angle. The driver interface is given in

Table 5.7.

78

CHAPTER 5. SOFTWARE 5.2. DRIVER DEVELOPMENT

As with the motor driver, a PWM peripheral will be used for controlling the servo. But

here PWM is used to encode a signal, and not as a technique for limiting the power

supplied as with the motor.
7

Table 5.7: Servo driver interface functions.

Function Description

servo_init(resolution) Initialize PWM on the servo pin.

servo_rotate(θ) Rotate to angle θ .

The driver has not been calibrated to ensure that the servo moves into the correct positions,

but it has verified that the servo moves when changing PWM value. Another issue is

the use of the PWM library. It has very coarse resolution on the PWM, resulting in large

increments in servo position. A solution that was tested was to use the PWM drivers

instead. That showed significant improvements, but the downside is that this driver has

been designed for controlling LEDs, and is therefore dead set on using sequences and

other unnecessary features making simple modifications to duty cycle overly complicated.

5.2.7 Magnetometer

The purpose of the drivers for the magnetometer is to output its direction, in the range of

±180°. The heading is calculated using an algorithm taken from SparkFun’s library for

the same device. In order to use the mag_heading()-function, the magnetometer first

has to be calibrated. This is done by calling mag_calibrate(), and then within a given

time-frame rotate the control system 360°. Table 5.8 lists the driver’s interface.

Table 5.8: Magnetometer driver interface functions.

Function Description

mag_init(os) Initialize magnetometer with oversampling os .

mag_calibrate() Perform calibration routine.

mag_heading() Returns the magnetometer heading, ±180°

7
It would be technically more correct to refer to this as pulse position modulation (PPM), but such pedantry

is more likely to confuse than anything else.

79

5.3. TEMPLATE APPLICATION CHAPTER 5. SOFTWARE

5.3 Template Application

A template FreeRTOS application is set up in this section, based on the example application

from the SDK that was configured to work with the new control system in Section 5.1. The

primary purpose of this template application is to integrate all the drivers into a single

RTOS. In doing so, the opportunity is also used to showcase some of the synchronization

mechanisms part of FreeRTOS.

5.3.1 Gatekeepers

There are primarily two shared resources in the control system: the display and the

microSD slot. All task should be able to use any of these resources in a thread-safe manner.

One method for solving this issue is to set up mutual exclusion on the resources, using

a mutex. This approach introduces mutex-related issues such as deadlocks and priority

inversion.

Instead thread-safe set-up for the display is set up according to the gatekeeper task princi-

ple. This involves a dedicated task managing the resource, resulting in a synchronization

scheme not prone to deadlocks or priority inversion. [33] This approach will be used to

ensure safe concurrent access to the display and microSD card. The implementation for

the display is described here, while the implementation for the microSD card is omitted

as it is principally identical.

A complete overview of the system can be seen in Figure 5.5. In the lower right the actual

display driver is situated, which was detailed in Section 5.2. Neither the display driver

nor this graphics library needs to be thread-safe, as only a single thread is ever allowed to

interact with them: the Display Task.

Task 1 Task 2 Task n

text() circle() line()

Display Task
FreeRTOS eue

Reentrant

op op op

Display Driver

SDK Library: nrf_gfx

OLED Display
SPI

read-safe 1.2.3.

Figure 5.5: Overview of system architecture with gatekeeper task for the shared display resource.

Associated with the Display Task is a FreeRTOS queue, which the Display Task will wait

on. Such a FreeRTOS queue is inherently thread-safe, and is one of many synchronization

80

CHAPTER 5. SOFTWARE 5.3. TEMPLATE APPLICATION

mechanisms provided by the RTOS. All display drawing operations in the system are

enqueued into this queue, ensuring that there will be no collision issues using the display

driver and graphics library.

The gatekeeping Display Task constructs a new queue with five slots for elements con-

taining display operations. It then enters a loop that starts out by waiting on the queue.

Once there is an element (display operation) in the queue, the element is removed from

the queue and handled by one of the several clauses in a switch statement. Pseudo-code

part of the Display Task is given in Listing 5.10.

Listing 5.10: task_display.c: Display Task structure.

display_queue = xQueueCreate(5, sizeof(display_operation_t));

for (;;)

xQueueReceive(display_queue, &display_operation, portMAX_DELAY);

switch (display_operation) { ... } // perform drawing operation

The drawing operations combined with the enqueueing operations are somewhat complex.

In order to hide this from the application developer, a thin abstraction layer consisting of

helper functions is set up. An important property of these helper functions is that they

only ever manipulate thread-local (stack) variables or variables in registers, and never

heap-allocated data. Such functions are reentrant, which means that they are thread-safe.

[33] For example, the display_point() helper function creates and configures a new

point draw operation, creates and configures a point display element and finally enqueues

the whole operation on the Display Task’s operation queue.

The same approach with a gatekeeping task is used for the microSD resource. A new queue

is created that stores write operations instead of drawing operations, and a dedicated

microSD Task is set up to handle all the operations enqueued.

5.3.2 System Architecture

FreeRTOS is set up with tasks for each of the drivers created, in addition to the preexisting

Bluetooth task that regularly polls the SoftDevice to check for new Bluetooth events that

need to be handled. As the example is based on the Bluetooth heart-rate monitor example,

this application is left intact and is fully functional when connected to over Bluetooth

81

5.3. TEMPLATE APPLICATION CHAPTER 5. SOFTWARE

with an Android smartphone running the nRF toolbox.
8
The architecture is illustrated in

Figure 5.6.

motor_task

motor driver

encoder_task

encoder driver

ir_task

ir driver

servo_task

servo driver

SPI driver

display_task

display driver

queue

mSD_task

FAT fs driver

queue

Mutex

SoDevice

ble_task

Figure 5.6: Architecture of template application with tasks, drivers and synchronization mecha-

nisms.

As can be seen in Figure 5.6, any of the tasks on the left may enqueue item into either of

the two queues. These queues belong to the gatekeeper tasks previously set up. mSD_task

for writing to a portable microSD card, and display_task for display operations

As both the microSD slot and OLED share a common SPI bus, a mutex has been set up to

synchronize access to the bus. Note that the SPI drivers supplied in the SDK had to be

modified to accommodate the sharing of the SPI bus between two slaves.

5.3.3 Autonomous Scan Cycle

A suggested solution where PPI and DMA are used to make the SLAM scan cycle au-

tonomous is now presented. As described in Chapter 1, this is the cycle where distance

measurements are taken to be used to generate a map. Due to time constraints, it has not

been implemented.

The flowchart in Figure 5.7 illustrates the scan cycle process, where it can be seen that

the processor only has to perform the initiation. All events and tasks part of the PPI

8
The nRF toolbox is an application for Android from Nordic Semiconductor that can interact with the SDK

examples. For this example, that includes generated heart-rate and battery-status.

82

CHAPTER 5. SOFTWARE 5.3. TEMPLATE APPLICATION

subsystem are indicated, as it is these that ensure the scan cycle’s progress.

Start scan

Move to start position

Perform ADC reading

sample

DONE

COMPARE

start

Start timerPWM step

Scan complete

stop

sample

nextstep

SEQEND

1. Processor initiates scan cycle

2. PPI and DMA performs 180 degree
scan cycle in background

3. Result immediately available in RAM

Figure 5.7: Flow chart describing an IR scan cycle. Event names in all upper case, tasks in all lower

case.

The PWM peripheral features a DMA decoder, which means that a duty-cycle sequence

can be put into memory, and this decoder can step through the sequence. Thus a simple

sequence of n increments is set up, where n effectively specifies the scan cycle radial

resolution.

Unfortunately, the PWM peripheral event system seems to lack an event indicating that it

has progressed to the next step in a sequence. Instead, there is only an event for sequence

completed. To ensure synchronization between the rotation and IR readings a more

pragmatic solution is opted for, using a timer. If the PPI initialization is chosen for the

encoders, this means there are no more TIMER peripherals available. Fortunately a slightly

lower-resolution timer running on the low-frequency clock is available from the RTC

(Real Time Counter) peripheral.

The timer must run for at least so long such that the servo and IR-sensor have reached

steady state before initiating an ADC conversion. As the ADC triggers an event when it

has finished the conversion, a second timer will not be necessary for the ADC conversion.

Peripherals for both the IR sensor and sensor-tower servo are now capable of performing

83

5.3. TEMPLATE APPLICATION CHAPTER 5. SOFTWARE

their tasks. What remains is to orchestrate the whole scan cycle using PPI, DMA and

the RTC peripheral as illustrated in Figure 5.7. There are three parts to setting up PPI

between peripherals. First, a channel has to be allocated. Then a peripheral event, and

one or more peripheral tasks are registered with the allocated PPI channel. The final step

is then to activate this channel.

84

Chapter 6
Results

This chapter presents the final state of the control system. The first section details the hard-

ware aspects, such as soldering and electrical functionality and performance. The second

section details the software aspects, including the status of the development environment,

drivers for the different systems as well as the template application developed.

6.1 Hardware

The first revision of the control system has been successfully built, with only the soldering

of the IMU remaining. The power supply circuit performs well, producing a stable supply

with a peak-to-peak voltage ripple of about 8mV. Bluetooth connectivity works and has

been verified using an Android smart-phone to connect to example applications from the

SDK. A picture of the final assembled control system can be seen in Figure 6.1. For the

SoC and magnetometer, continuity testing has been performed on all pins, ensuring that

there are no shorts due to, e.g., solder bridges.

A second revision of the schematics and PCB layout has been designed. Besides some

general improvements, this second revision fixes the broken battery status circuitry.

85

Figure 6.1: Assembled control system.

CHAPTER 6. RESULTS 6.2. SOFTWARE

6.2 Software

Drivers have been developed for all systems except the LIDAR, Bluetooth
1
and IMU. The

status is summarized in Figure 6.2. Red indicates that the system is malfunctioning, gray

indicates that the system has not been mounted or soldered, yellow indicates that the

system has been mounted or soldered, while green indicates that it is up and running

with drivers.

6.2.1 Development Environment

For debugging much of the basic functionality simply worked without modifications.

This functionality includes single-stepping and real-time printing functionality via RTT.

Monitor mode debugging has been enabled in the template application, albeit in a trial

version, where a trial pop-up appears.

As detailed later in this section, Percepio’s Tracealyzer has been successfully implemented

in a template application developed.

6.2.2 Drivers

The following drivers have been made:

• Display drivers have been developed and set up a graphics library part of the SDK.

• IR-sensors drivers have been set up, where reading works via ADC, but the trans-

lation to distance via, e.g., a lookup-table has not bee implemented. This driver uses

DMA.

• Encoder drivers have been set allowing for two different usage patterns: interrupt-

driven or using PPI.

• Magnetometer drivers have been developed, including calibration routine and

outputting of ±180°.

• Servo drivers for the sensor tower has been set up.

• microSD has been set up with FAT file system support using FatFs.

• Motor drivers have been developed for direction, speed and brake control.

1
Bluetooth is operational, but the SLAM protocol has not been implemented.

87

6.2. SOFTWARE CHAPTER 6. RESULTS

The following drivers are missing:

• IMU has not been mounted. Drivers have been published by Bosch, and they

including a porting guide.
2

• Lidar drivers have not been developed. The device can output distance measure-

ments directly over I2C, so only a very minimal layer to abstract away the I2C

operations should be necessary. I2C is already up and running with the magne-

tometer.

• Bluetooth works, but the SLAM protocol has not been implemented.

• Battery status is broken due to fault in PCB layout. No amount of drivers can fix

this.

SoC

Sensortower 4 x IR

LIDAR

Magnetometer

IMU

Motor ControllerEncoder

Baery-
status

4xAI I2C

I2C
SPI

2xGPIO
2xPWM
4xGPIO

AI

PWM

GPIO

2xGPIODisplay microSD

GPIO

Printed Circuit Board

Bluetooth

Figure 6.2: Status of driver and assembly of control system components.

2
https://github.com/BoschSensortec/BMA2x2_driver

88

CHAPTER 6. RESULTS 6.2. SOFTWARE

6.2.3 Template Application

A template application based on Nordic Semiconductor’s FreeRTOS port has been devel-

oped and set up. It features tasks for each of the drivers created. A gatekeeper synchro-

nization mechanism is set up for display and microSD operations. As the display and

microSD share a common bus, a mutex is set up to protect the bus.

Tracealyzer trace library has been successfully implemented in the template application,

enabling real-time operating system aware trace functionality. An example trace from the

template application can be seen in Figure 6.3 and Figure 6.4.

Figure 6.3 shows the trace view in the upper pane and the processor profiler in the bottom

pane. The trace view is vertical timeline clearly showing the scheduling action. Also, it

highlights all system events. In the figure the Display Task "DSP" in dark blue can be

seen blocking on the display-operations queue (red rectangle). The processor profiler has

been moved to the start-up sequence, where it can be seen it does not take long until the

microSD Task "SD" in yellow and Display Task "DSP" in dark blue occupy the processor

for most of the time.

Figure 6.4 shows the object history view in the top pane and the communication flow

view in the bottom pane. The object here is the mutex ensuring mutual access to the SPI

bus.
3
Both gatekeeper tasks, microSD "SD" in yellow and Display Task "DIS" in dark blue,

can be seen taking and releasing the mutex. The communication flow visualizes inter-task

communication flow. In the figure the User Task "USE" in orange requests a drawing

operation by enqueueing it. The Display Task "DIS" in dark blue receives the operation

via this queue, which will attempt to lock the mutex to safely perform the drawing on the

OLED over the SPI bus. Simultaneously it logs this operation by enqueueing it onto the

microSD Task’s queue. The Motor Task "MOT" in bright green requests logging to the

microSD card when the motor changes direction.

3
In FreeRTOS lingo, a mutex is a type of semaphore.

89

Figure 6.3: Tracealyzer used on the template application. Trace view and processor profiler shown.

Figure 6.4: Tracealyzer used on the template application. Object history and communication flow.

6.2. SOFTWARE CHAPTER 6. RESULTS

92

Chapter 7
Discussion and Further Work

This chapter starts off with a section discussing the problem statement, and the solution

developed and presented in this thesis. Experiences made during the execution are

discussed, and whether the approaches that have been taken during the development

were found to be appropriate. It finalizes in a statement regarding this project’s relevance

and contribution to the overall ongoing SLAM project.

The final section details further work such as preparation for robot implementation,

and a strategy for the development of a second edition. A starting point is given for

the development of the SLAM application itself, where references are made to current

implementations on the AVR robots and the project and mater theses available.

7.1 Discussion

The goal of this project has been to develop a new integrated control system for the

SLAM robots using the nRF52 SoC. The purpose of the migration is manifold. Some of

the primary reasons were to enhance robot computing power, simplify and unify the

on-robot electrical set-up and introduce proper RTOS aware debug capabilities. Also, the

opportunity was used to add new features such as an onboard display and a microSD slot

for extended portable flash storage.

A trait of the current robots was the disunite structure of the control system, and the

components and circuit boards part of it. This all attributes to a distrust in the electrical

93

7.1. DISCUSSION CHAPTER 7. DISCUSSION AND FURTHER WORK

system, where the application developer had to consider the hardware aspects when

bugs occur, perform visual verification and possibly start probing with an oscilloscope.

Students that had worked on the robot voiced concerns about the stability of the robot,

where it would work one day, just to malfunction the following day running the same

exact software. Alluding this to hardware does not seem unreasonable.

The merging of the SoC and all components into a single unified circuit board certainly

goes a long way to alleviate the issues with the previous design. As long as the soldering

is done properly—which is verifiable for the majority of components—it should now be

sufficient to ensure that the relevant systems operate correctly once. If a bug occurs now,

the application developer can spend time debugging the application, instead of worrying

about the hardware.

It is worth noting that the introduction of proper connectors, as opposed to standard

headers, does raise some concerns as to ease-of-prototyping with new hardware. The

dissuasive pricing and limited availability of the crimping equipment for the JST connec-

tors mean that more complicated unofficial methods will have to be used to create the

connectors. Proper connectors should be considered a matter of trade-off between ease

of prototyping and hardware reliability. Since the project has been ongoing for a long

time, the assumption has been made that hardware selection has stabilized, and therefore

secure connections have been prioritized.

While it was rather easy to see the improvements in storage capacity using the new SoC,

a single unambiguous measure of computing power across the AVR and SoC architec-

tures proved to be somewhat tricky to obtain. However, the significant difference in

clock frequency combined with the Cortex-M4F’s 32-bit architecture with DSP and FPU

capabilities goes in favor of the SoC.

The cost associated with this upgrade to a 32-bit platform is an increase in the architectural

complexity. The Cortex pipelines are deeper, and the number of special registers and

instructions have increased compared to the ATmegas. But the development methodology

seems to change with the 32-bit platforms. As a general rule, there will be drivers that

the application developer interacts with, meaning that tinkering with low-level registers

is no longer necessary. In the author’s experience, this works so well that it is easier to

develop on these platforms than on the AVRs, where the datasheet continually have to be

referred to find out precisely which registers that need to be configured. The abstractions

are there, and they seem to work well.

It is the real-time aspects of the new control system that are some of the most impres-

94

CHAPTER 7. DISCUSSION AND FURTHER WORK 7.1. DISCUSSION

sive. While the availability of zero-copy mechanisms via DMA and direct peripheral-to-

peripheral interaction via the PPI system is beneficial, it is in the domain of debugging the

most significant real-time improvements are made. The limited debugging facilities that

have been available this far in the SLAM project has been a major curb for the application

developers. With some of the current robots limited to printing via UART peripheral and

a set of three LEDs, the debugging of an RTOS system has at times been like searching for

a needle in a haystack.

With the introduction of Monitor Mode debugging, single-stepping can be performed

while motor control, BLE communication, and other higher priority tasks still run. RTOS

aware debugging is provided in the form of trace features and dedicated software for

analyzing the trace data. The software offers features such as visualization of thread

scheduling, usage patterns on synchronization mechanisms such as timers, semaphores,

and queues. These features could potentially be one of the most significant upgrades to the

whole SLAM project since its inception. While the other new features and improvements

are important, the new debugging functionality is likely to be the most appealing upgrade

for the application developers.

The new features introduced do come off as appealing at first. Especially the onboard

display was a feature highly desired by those working on the current robots. This desire

had likely arisen as a direct consequence of the limited debugging options available,

limited to printing over serial or encoding custom errors via a set of three LEDs. With

the powerful debugging facilities introduced in the new control system, the author is left

questioning the value of the display. It consumes a significant amount of board space and

requires several pins, of which there is already a shortage. Probably the most interesting

feature of the display—leveling it above a gimmicky feature—is the ability to read out

detailed debug information during SLAM operations, where it could be cumbersome to

have cables attached. Concerns have been raised as to how this is handled in current

robots, where such debug information is transmitted via the BLE dongle, something which

has shown to be a somewhat unreliable solution.

The microSD support is essential for logging RTOS trace data during live SLAM operations,

where a systemwithmany events can generate megabytes of trace data in a limited amount

of time. It also introduces the possibility for stable (as opposed to BLE) logging of vast

amounts of data (e.g., sensor, events, log), and the storage of bitmaps used for the display.

Some work remains before the new control system can be implemented on any of the

SLAM robots. But even so, the control system in its current state looks very promising,

and it seems to be able to create for a much more powerful platform for future develop-

95

7.2. FURTHER WORK CHAPTER 7. DISCUSSION AND FURTHER WORK

ment of SLAM applications. It is more computationally powerful, more robust and most

importantly of all: it features modern, sophisticated debugging facilities. The developers

will now have full insight into the running RTOS, which removes a lot of the guesswork

involved in the current debugging. Hopefully, this will accelerate development on future

projects, ensuring that the developers can spend more time on the SLAM challenge, and

less on debugging and fixing the hardware they are using.

7.2 Further Work

This section lists remaining and suggested future work on the new control system. The

first two subsections are concerned with the finalizing of the control system for robot

implementation, while the last subsection moves on to the actual SLAM application.

7.2.1 Completing the Control System

It is possible to integrate the control system developed in this thesis on the current robots,

but thought should be given to whether it would be a better idea to set up manufacturing

of the second revision as outlined below.

BLE is functional, but the protocol used between the PC running the Java server and the

robots is not implemented. Note that part of the protocol design is to ensure reliable UART

communication between the ATmega and the nRF dongle, and is therefore not necessary

on the new control system. For implementing the protocol, good starting points would be

Lien’s thesis where it was initially developed, and Iversen’s project thesis where it was

ported to a new platform.[34] [35]

The only remaining component to be mounted and developed drivers for—neglecting the

broken battery voltage measurement system—is the IMU. Bosch has published drivers for

the IMU that include guidelines for porting the drivers to new platforms.
1
These drivers

should serve as a good starting point for getting the IMU up and running.

While the control system is already running a template application with FreeRTOS, in its

current state it serves as a proof-of-concept. It showcases the usage of central platform

features such as synchronizationmechanisms, PPI, DMAand the functioning of peripherals

using the drivers developed.

1
Drivers and porting guides available at https://github.com/BoschSensortec/BMA2x2_driver for the ac-

celerometer, and https://github.com/BoschSensortec/BMG160_driver for the gyroscope.

96

CHAPTER 7. DISCUSSION AND FURTHER WORK 7.2. FURTHER WORK

7.2.2 Second Revision

Complete schematics and layout have been made for a second revision of the control

system, correcting some issues and introducing some improvements to the design. Having

discovered what works, and what works less well in the first revision, it could be a

worthwhile endeavor to set up a production line where not only the PCB is manufactured,

but also the component assembly and soldering are performed at the factory. This way

more effort can be spent on the development of the actual SLAM application, and less on

the hardware manufacturing aspects that have been covered in this thesis.

Alternatively—depending on the outcome of the project implementing a LIDAR that has

been ongoing this semester—a third design revision with LIDAR-support only could be

developed. Removing IR support will free up four pins with ADC support on the SoC, and

frees part of the PCB real estate.

7.2.3 SLAM Application

When the control system has been integrated with a robot, the development of the actual

SLAM application can begin. This development has never been within the scope of this

thesis. A good place to start is reviewing the source code currently used on the AVR

robots, as these are running the same RTOS. Besides the source code, all previous reports

in the SLAM project should be available, where the most central ones have been listed in

the introduction in Chapter 1

The mechanical state of the SLAM robot that was assigned in this project was not im-

pressive. For the implementation on a robot, it is strongly suggested that a new robot is

developed based on one of the more recent designs part of the SLAM project. In addition,

the encoders should be replaced with quadrature encoders, such that wheel direction can

correctly be accounted for.

97

7.2. FURTHER WORK CHAPTER 7. DISCUSSION AND FURTHER WORK

98

Bibliography

[1] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: Part i,”

IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99–110, Jun. 2006, issn:
1070-9932. doi: 10 . 1109 / MRA . 2006 . 1638022. [Online]. Available: http : / /

ieeexplore.ieee.org/document/1638022/.

[2] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and mapping (SLAM):

Part II,” IEEE Robotics & Automation Magazine, vol. 13, no. 3, pp. 108–117, Sep.
2006, issn: 1070-9932. doi: 10.1109/MRA.2006.1678144. [Online]. Available:

http://ieeexplore.ieee.org/document/1678144/.

[3] T. K. Homestad, Fjernstyring av Legorobot. 2013. [Online]. Available: https://
brage.bibsys.no/xmlui/handle/11250/260903.

[4] E. Ese, Sanntidsprogrammering på samarbeidande mobil-robotar. 2016. [Online].
Available: https://brage.bibsys.no/xmlui/handle/11250/2403570.

[5] H. Skjelten, Fjernnavigasjon av LEGO-robot. 2004.
[6] J. M. H. Bakken, Bygge og programmere ny Legorobot. 2008.
[7] J. Stüper, LEGO Mindstorms EV3 robot. 2015.
[8] T. E. S. Andersen and M. G. Rødseth, System for Self-Navigating Autonomous Robots.

2016. [Online]. Available: https://brage.bibsys.no/xmlui/handle/11250/

2403559.

[9] K. Z. Helders, Real-Time System Implementation on Autonomous Lego-Robot. 2017.
[Online]. Available: https://brage.bibsys.no/xmlui/handle/11250/2451636.

[10] G. H. Eikeland, Implementation of Mapping and Navigation on an Autonomous Robot.
2018.

99

https://doi.org/10.1109/MRA.2006.1638022
http://ieeexplore.ieee.org/document/1638022/
http://ieeexplore.ieee.org/document/1638022/
https://doi.org/10.1109/MRA.2006.1678144
http://ieeexplore.ieee.org/document/1678144/
https://brage.bibsys.no/xmlui/handle/11250/260903
https://brage.bibsys.no/xmlui/handle/11250/260903
https://brage.bibsys.no/xmlui/handle/11250/2403570
https://brage.bibsys.no/xmlui/handle/11250/2403559
https://brage.bibsys.no/xmlui/handle/11250/2403559
https://brage.bibsys.no/xmlui/handle/11250/2451636

[11] Atmel,AVR Instruction SetManual. 2016. [Online]. Available: http://ww1.microchip.
com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.

pdf.

[12] M. McDermott, “The ARM instruciton set architecture,” 2008, [Online]. Available:

http://users.ece.utexas.edu/~valvano/EE345M/Arm_EE382N_4.pdf.

[13] J. Ø. Amsen, Improving Navigation and Mapping with Arduino robot. 2007. [Online].
Available: https://brage.bibsys.no/xmlui/handle/11250/2451639.

[14] J. C. Teel, “Understanding power supply ripple rejection in linear regulators,” Texas
Instrument Analog Design Journal, 2005. [Online]. Available: http://www.ti.com/
lit/an/slyt202/slyt202.pdf.

[15] Catsoulis, John, Designing embedded hardware, 2nd ed. Sebastopol, CA: O’Reilly,

2005, 377 pp., isbn: 978-0-596-00755-3.

[16] P. Loughhead, Altium Tutorial - Gettin Started with PCB Design. 2016. [Online].
Available: https://www.altium.com/solution/pcb-layout-tutorial.

[17] B. S. Lee, Understanding the Terms and Definitions of LDO Voltage Regulators. 1999.
[Online]. Available: http://www.ti.com/lit/an/slva079/slva079.pdf.

[18] A. Syed and W. Kang, Board level assembly and reliability considerations for QFN
type packages. Amkor Technology Inc., 2003. [Online]. Available: http://www.

solder.net/images/qfn_assembly_reliability.pdf.

[19] NXP Semiconductors, Appl. Note 1902 Assembly guidelines for QFN (quad flat no-
lead) and SON (small outline no-lead) packages. 2018. [Online]. Available: https:
//www.nxp.com/docs/en/application-note/AN1902.pdf.

[20] C. L. Chua, D. K. Fork, K. Van Schuylenbergh, and J.-P. Lu, “High q rf coils on

silicon integrated circuits,” in MEMS Components and Applications for Industry,
Automobiles, Aerospace, and Communication II, International Society for Optics and
Photonics, vol. 4981, 2003, pp. 150–156.

[21] Nordic Semiconductor,White Paper nWP-017 Antenna Tuning. 2012. [Online]. Avail-
able: http://infocenter.nordicsemi.com/pdf/nwp_017.pdf.

[22] Nordic Semiconductor,Quarter lambda printed monopole antenna for 2.45GHz. 2005.
[Online]. Available: http://infocenter.nordicsemi.com/pdf/nwp_008.pdf.

[23] NXP Semiconductors, Appl. Note 10441 Level shifting techniques in I2C-bus design.
2007. [Online]. Available: https : / / www . nxp . com / docs / en / application -

note/AN10441.pdf.

[24] Philips Semiconductors, Appl. Note 97055 Bi-directional level shifter for I2C-bus and
other systems. 1997.

100

http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-manual.pdf
http://users.ece.utexas.edu/~valvano/EE345M/Arm_EE382N_4.pdf
https://brage.bibsys.no/xmlui/handle/11250/2451639
http://www.ti.com/lit/an/slyt202/slyt202.pdf
http://www.ti.com/lit/an/slyt202/slyt202.pdf
https://www.altium.com/solution/pcb-layout-tutorial
http://www.ti.com/lit/an/slva079/slva079.pdf
http://www.solder.net/images/qfn_assembly_reliability.pdf
http://www.solder.net/images/qfn_assembly_reliability.pdf
https://www.nxp.com/docs/en/application-note/AN1902.pdf
https://www.nxp.com/docs/en/application-note/AN1902.pdf
http://infocenter.nordicsemi.com/pdf/nwp_017.pdf
http://infocenter.nordicsemi.com/pdf/nwp_008.pdf
https://www.nxp.com/docs/en/application-note/AN10441.pdf
https://www.nxp.com/docs/en/application-note/AN10441.pdf

[25] D. L. Jones, PCB Design Tutorial. 2004. [Online]. Available: http://alternatezone.
com/electronics/files/PCBDesignTutorialRevA.pdf.

[26] Jain, Suyash, Appl. Note 098 Layout Review Techniques for Low Power RF Designs.
Texas Instruments, 2012. [Online]. Available: http://www.ti.com/lit/an/

swra367a/swra367a.pdf.

[27] Texas Instruments, Appl. Note SZZA009 PCB Design Guidelines For Reduced EMI.
1999. [Online]. Available: http://www.ti.com/lit/an/szza009/szza009.pdf.

[28] T. C. Lun, Designing for Board Level Electromagnetic Compatibility. 2005. [Online].
Available: https://www.nxp.com/docs/en/application-note/AN2321.pdf.

[29] A. Kaknevicius and A. Hoover, Managing Inrush Current. 2015. [Online]. Available:
http://www.ti.com/lit/an/slva670a/slva670a.pdf.

[30] A. Kaknevicius, Integrated Load Switches versus Discrete MOSFETs. 2015. [Online].
Available: http://www.ti.com/lit/an/slva716/slva716.pdf.

[31] S. Limjoco, Aldrick, Appl. Note 1144 Measuring Output Ripple and Switching Tran-
sients in Switching Regulators. 2014. [Online]. Available: https://bit.ly/2FERhvT.

[32] Agilent Technologies,Agilent InfiniiVision 2000 X-Series Oscilloscopes, Third edition.
Malaysia: Agilent Technologies, 2011. [Online]. Available: http://www.brown.

edu/Departments/Engineering/Courses/En163/2000_series_users_guide.

pdf.

[33] Barry, Richard, Mastering the FreeRTOS Real Time Kernel, 161204th ed. Real Time

Engineers Ltd., 2016, 371 pp. [Online]. Available: https://www.freertos.org/

Documentation/RTOS_book.html.

[34] K. Lien, Embedded utvikling på en fjernstyrt kartleggingsrobot. 2017. [Online]. Avail-
able: https://brage.bibsys.no/xmlui/handle/11250/2451065.

[35] B. B. Iversen, Integrating a Raspberry Pi into the LEGO-robot project. 2017.

101

http://alternatezone.com/electronics/files/PCBDesignTutorialRevA.pdf
http://alternatezone.com/electronics/files/PCBDesignTutorialRevA.pdf
http://www.ti.com/lit/an/swra367a/swra367a.pdf
http://www.ti.com/lit/an/swra367a/swra367a.pdf
http://www.ti.com/lit/an/szza009/szza009.pdf
https://www.nxp.com/docs/en/application-note/AN2321.pdf
http://www.ti.com/lit/an/slva670a/slva670a.pdf
http://www.ti.com/lit/an/slva716/slva716.pdf
https://bit.ly/2FERhvT
http://www.brown.edu/Departments/Engineering/Courses/En163/2000_series_users_guide.pdf
http://www.brown.edu/Departments/Engineering/Courses/En163/2000_series_users_guide.pdf
http://www.brown.edu/Departments/Engineering/Courses/En163/2000_series_users_guide.pdf
https://www.freertos.org/Documentation/RTOS_book.html
https://www.freertos.org/Documentation/RTOS_book.html
https://brage.bibsys.no/xmlui/handle/11250/2451065

102

Appendix A
Media Attachment

This appendix lists the structure and content of the companion media attachment.

A.1 Schematics and PCB Layout

Two revisions are included in the media attachment. The first revision of the control

system is included as it reflects the design that has been built in this thesis. The second

revision of the design includes includes improvements and fixes based on experiences

made with the first revision. All files are located in the folder pcb, and is structured as

given in Table A.1.

Table A.1: Description of the content in the pcb folder.

pcb AD project files.
3d_models 3D models common to both revisions.
datasheets Component datasheets.
nrf_ref nRF reference designs.

antenna Antenna section.
dk Development kit.

rev1 Design revision 1.
doc Schematics, fabrication outputs and BOM.

rev2 Design revision 2.

A-1

A.2 Software

The template project with all drivers have been included. This project is based on Nordic

Semiconductor’s SDK version 15.0.0, which can be downloaded directly from their website.

There was a bug in the 15.0.0 version of the SDK, which has been fixed by modifying one

of the drivers Nordic Semiconductor supplies in the SDK. This file has been included in

this media attachment, and should replace the original file when transferring to a new

SDK. All files are located in the folder sw, and is structured as given in Table A.2.

Table A.2: Description of the content in the sw folder.

sw Software folder.
config Tracealyzer and FreeRTOS config files.
drivers All drivers developed.
pca10040 Segger Embedded Studio project files.
TraceRecorder Tracealyzer source files.

include Tracealyzer include files.

In order to build the project, download Nordic Semiconductor’s SDK version 15.0.0, and

extract the content. Then move the slam_application folder into

SDK_ROOT/examples/ble_peripheral/. The fixed library file nrfx_ppi.c should re-

place SDK_ROOT/modules/nrfx/drivers/src/nrfx_ppi.c.1

A.3 Tutorials

Two tutorials are part of the media attachment. They can be found in the folder tutorials.

The two tutorials are:

• component_creation.pdf: Guide to creating new components in Altium Designer.

• ses_import.pdf: Guide to implementing additional SDK libraries and drivers into

a Segger Embedded Studio project.

1
A list over known issues in version 15.x.0 of the SDK is available at https://devzone.nordicsemi.com/f/nordic-

q-a/34155/what-are-sdk-15-x-0-known-issues

A-2

Appendix B
Schematics and PCB Layout

This Appendix contains electrical schematics, mechanical drawings and PCB layouts and

a layer stack legend for the control system developed in this thesis. It is important to

stress that this is the first revision. A second revision—as detailed in the thesis—has been

made, and should be used for the next production of the control system. The schematics

and drawings for the first revision are included as they reflect the system that was realized

and built in this thesis. All design data for the second revision is available in the media

attachment, as described in Appendix A.

Note that the electrical schematic is designed for A3 paper, but has been scaled down to

B5 in order to match the page setup of the thesis. It is completely in vector format though,

so on a PC it can easily be scaled up. Regardless, all the documentation is available in its

original form in the media attachment.

The following documents are included:

1. Electrical Schematics

2. Fabrication Drawings

3. Layer Stack Legend

4. PCB 3D-Render

B-1

11

22

33

44

55

66

77

88

D
D

C
C

B
B

A
A

T
it

le

N
u
m

b
er

R
ev

is
io

n
S

iz
e

A
3

D
at

e:
5
/3

1
/2

0
1
8

S
h
ee

t

 o

f
F

il
e:

C
:\

U
se

rs
\.

.\
sc

s.
S

ch
D

o
c

D
ra

w
n
 B

y
:

X
C

1
X

C
2

V
D

D

D
E

C
1

S
W

D
C

L
K

S
W

D
IO

R
F

V
D

D

V
D

D D
E

C
3

DEC4

D
E

C
2

D
E

C
1

1

P
0
.1

0
1
2

VDD
13

V
S

S
3
1

A
N

T
3
0

D
E

C
2

3
2

D
E

C
3

3
3

X
C

1
3
4

X
C

2
3
5

V
D

D
3
6

P0.25
37

P0.26
38

P
0
.0

0
/X

L
1

2

P
0
.0

1
/X

L
2

3

P
0
.0

2
/A

IN
0

4

P
0
.0

3
/A

IN
1

5

P
0
.0

4
/A

IN
2

6

P
0
.0

5
/A

IN
3

7

P
0
.0

6
8

P
0
.0

7
9

P
0
.0

8
1
0

P
0
.0

9
11

P0.11
14

P0.12
15

P0.13
16

P0.14
17

P0.27
39

P0.28/AIN4
40

P0.29/AIN5
41

P0.30/AIN6
42

P0.31/AIN7
43

N.C.
44

DEC4
46

VSS
45

VDD
48

DCC
47

S
W

D
C

L
K

2
5

S
W

D
IO

2
6

P
0
.2

2
2
7

P
0
.2

3
2
8

P
0
.2

4
2
9

P0.15
18

P0.16
19

P0.17
20

P0.18
21

P0.20
23

P0.21/RESET
24

P0.19
22

G
N

D
4
9

U
1

N
R

F
5
2
8
3
2
-Q

F
A

A
-R

V
IN

7
3
V

3
6

C
S

5
R

S
T

4

D
C

/S
A

0
3

D
0
/S

C
L

K
/S

C
K

2
D

1
/M

O
S

I/
S

D
A

1

G
N

D
8

U
3

1
2
8
x
6
4
 O

L
E

D

S
W

1

R
E

S
E

T

V
D

D

R
1

1
0
k

RF
ANT
GND

J1

M
M

8
1
3
0
-2

6
0
0
R

A
2 A
N

T

V
D

D
_
5
V

C
1
0

1
µ

F

IN
1

G
N

D
2

O
U

T
3

G
N

D
4

U
5

L
M

3
9
4
0
IM

P
-3

.3

V
D

D

1
2
3

P
3

IR
_
1

1
2
3

P
6

IR
_
4

1
2
3

P
5

IR
_
3

1
2
3

P
4

IR
_
2

V
D

D
_
5
V

C
11

2
2
u
F

C
1
2

2
2
u
F

T
R

IM

4
7
u
F

+

C
1
6

C
1
7

0
.4

7
u
F

V
o

lt
a

g
e

R
eg

u
la

ti
o

n
,

5
V

,
3

.3
V

V
D

D

O
L

E
D

_
R

E
S

E
T

M
o

to
r,

 L
ID

A
R

,
S

er
v

o
,

E
n

co
d

er
s V

B
A

T

R
4

1
.2

M
O

h
m

s

R
3

4
.0

2
O

h
m

s

1 2 3 4 5 6

P
8

L
ID

A
R

I2
C

 L
ev

el
 S

h
if

te
rs

Q
4

B
S

S
1
3
8
L

Q
3

B
S

S
1
3
8
L

Q
2

B
S

S
1
3
8
L

Q
1

B
S

S
1
3
8
L

V
D

D
V

D
D

_
5
V

LIDAR_PE_5V

LIDAR_MC_5V

LIDAR_SCL_5V

LIDAR_SDA_5V

LIDAR_PE_3V

LIDAR_MC_3V

LIDAR_SCL_3V

LIDAR_SDA_3V

V
D

D
_
5
V

L
ID

A
R

_
P

E
_
5
V

L
ID

A
R

_
M

C
_
5
V

L
ID

A
R

_
S

C
L

_
5
V

L
ID

A
R

_
S

D
A

_
5
V

O
L

E
D

_
D

C
S

D
_
O

L
E

D
_
S

C
L

K
S

D
_
O

L
E

D
_
M

O
S

I

LIDAR_PE_3V

LIDAR_SDA_3V
LIDAR_SCL_3V
LIDAR_MC_3V

V
D

D
_
1
2
V

C
o

m
p

a
ss

,
A

cc
,
G

y
ro

N
C

1

C
S

2

M
O

S
I

3

V
D

D
4

S
C

K
5

G
N

D
6

M
IS

O
7

R
S

V
8

U
2

M
ic

ro
S

D
 S

lo
t

V
D

D

O
L

E
D

,
M

ic
ro

S
D

IR
 C

o
n

n
ec

to
rs

n
R

F
 A

u
x

N
R

F
_
R

E
S

E
T

NRF_RESET

L
1

3
.9

n
H

1 2 3

P
9

S
er

v
o

V
D

D
_
5
V

SERVO_3V

+

C
1
9

6
8
0
u
F

1 2

P
11

P
W

R

1 2

P
1

P
W

R
T

P
1

T
P

2

T
P

3
T

P
4

V
D

D
_
1
2
V

IR_1

IR_4

IR_3
IR_2

1
2

3
4

5
6

7
8

P
7

M
o
to

r

IN
1

E
N

_
A

IN
2

IN
3

E
N

_
B

IN
4

IN
T

2
1

N
C

2

V
D

D
3

G
N

D
4

C
S

B
2

5

G
N

D
IO

6

P
S

7
S

C
L

8

S
D

A
9

S
D

O
2

1
0

V
D

D
IO

11

IN
T

3
1
2

IN
T

4
1
3

C
S

B
1

1
4

S
D

O
1

1
5

IN
T

1
1
6

U
7

B
M

I0
5
5

IM
U

_
S

C
L

IM
U

_
S

D
A

V
D

D
V

D
D

V
D

D
IM

U
_
IN

T
1

IM
U

_
IN

T
3

IMU_INT1

R
1
8

2
.2

k
R

1
7

2
.2

kV
D

D
V

D
D

V
D

D
V

D
D

_
5
V

Q
5

B
S

S
1
3
8
L

SERVO_3V

SERVO_5V

C
ap

-A
1

V
D

D
2

N
C

3
C

ap
-R

4

G
N

D
5

S
D

A
6

S
C

L
7

V
D

D
IO

8

IN
T

1
9

G
N

D
1
0

U
6

M
A

G
3
11

0
F

C
R

1

IM
U

_
S

D
A

IM
U

_
S

C
L

M
A

G
_
IN

T

MAG_INT

V
D

D

B
O

M
E

T
C

2

V
H

 H
o
u
si

n
g

E
T

C
3

P
H

 H
o
u
si

n
g

E
T

C
4

V
H

 C
o
n
ta

ct

E
T

C
1

P
H

 C
o
n
ta

ct

C
2
8

1
0
u
F

V
D

D
_
5
V

V
D

D
_
5
V

V
D

D
_
5
V

C
2
9

1
0
u
F

C
3
0

1
0
u
F

C
3
1

1
0
u
F

IR_4

IR_3

IR_2

IR_1

R
2
7

1
0
k

V
D

D

R
2
8

1
0
k

IM
U

_
IN

T
3

O
L

E
D

_
C

S

S
D

_
O

L
E

D
_
S

C
L

K
S

D
_
M

IS
O

S
D

_
O

L
E

D
_
M

O
S

I

S
D

_
C

S

S
D

_
C

S
O

L
E

D
_
C

S

D
S

:
if

 I
N

T
 i

s
n
o
t

u
se

d
,
d
o
 N

O
T

 c
o
n
n
ec

t
th

em R
5

1
0
k

V
D

D

SD_OLED_MOSI

SD_MISO

IN
4

IN
3

E
N

_
A

IN
1

IN
2

E
N

_
B

IM
U

_
S

C
L

IM
U

_
S

D
A

O
L

E
D

_
R

E
S

E
T

O
L

E
D

_
D

C
V

B
A

T

X
1

3
2
M

H
z

S
M

D

E
T

C
5 S

n
ap

 B
o
x

C
1
3

1
0
0
n
F

C
1
4

1
0
0
n
F

C
2
0

1
0
0
n
F

C
2
1

1
0
0
n
F

V
D

D

C
2
2

1
µ

F

C
2
4

1
0
0
n
F

C
2
3

1
0
0
n
F

T
P

5

T
P

6

T
P

9
T

P
1
0

R
2

2
.1

8
k

1
2

3
4

5
6

7
8

9
1
0

P
2

S
W

D
IO

S
W

D
C

L
K

V
D

D

N
R

F
_
R

E
S

E
T

SD_OLED_SCLK

SWO_LED

S
W

O
_
L

E
D

S
W

O
_
L

E
D

O
n
/O

ff
V

in

G
N

D

V
o
u
t

N
C

_
F

T
ri

m

G
N

D
N

C
_
F

N
C

_
F

N
C

_
F

G
N

D

N
C

_
F

U
4

O
K

L
-T

/1
-W

1
2
P

-C

R
1
3

1
5
0 E

1
G

re
en

R
1
4

1
5
0 E

2
G

re
en

1
32

S
W

2

P
W

R
 (

O
ff

)

V
D

D
_
1
2
V

R
3
0

2
0
k

R
2
3

2
M

R
2
4

2
M

R
2
5

2
M

R
2
6

2
M

R
1
9

3
.3

M
R

2
0

3
.3

M
R

2
1

3
.3

M
R

2
2

3
.3

M

E
T

C
6

G
H

 C
o
n
ta

ct

E
T

C
7

G
H

 H
o
u
si

n
g

C
4

1
0
0
n
F

C
9

4
.7

u
F

C
5

1
0
0
n
F

C
8

1
0
0
n
F

C
7

1
0
0
p
F

C
6

1
0
0
p
F

C
1
5

1
.2

p
F

C
3

0
.8

p
F

C
1

1
0
p
F

C
2

1
0
p
F

R
1
5

1
0
k

R
1
6

1
0
k

R
6

1
0
k

R
7

1
0
k

R
8

1
0
k

R
9

1
0
k

R
1
0

1
0
k

R
11

1
0
k

R
1
2

1
0
k

R
2
9

1
0
k

C
2
5

1
0
0
n
F

C
1
8

1
0
n
F

C
2
6

1
0
n
F

C
2
7

1
0
n
F

C
3
2

1
0
n
F

C
3
3

1
0
n
F

1
2
3

P
1
2

E
n
c.

 R
ig

h
t

1
2
3

P
1
0

E
n
c.

 L
ef

t

ENC_RIGHT

ENC_LEFT

V
D

D
V

D
D

ENC_RIGHT
ENC_LEFT

R
3
1

1
0
k

R
3
2

1
0
k

V
D

D
V

D
D

R
3
3

1
0
k

V
D

D

S
L

A
M

 C
o
n
tr

o
l

S
y
st

em
 (

S
C

S
)

1

1
1

Jo
h
an

 K
o
rs

n
es

U
S

E
 R

E
V

IS
IO

N
 2

 F
O

R
 F

U
T

U
R

E
 D

E
S

IG
N

S
!

C
ap

ac
it

o
rs

 m
u
st

 b
e

in
 p

ar
al

le
l,

 n
o
t

in
 s

er
ie

s
li

k
e

h
er

e!

h
tt

p
:/

/b
it

.l
y
/2

sN
p
W

X
v

A A

B B

C C

D D

E E

1
1

2
2

3
3

4
4

Vi
ew

 fr
om

 F
ro

nt
 s

id
e

(S
ca

le
 1

)

P1 P1
1

X1

L1
R2

R31

R32

R
29

R16 R15

R
12

R
10

R
8

R
6

R
11

R
9

R
7

R30

C
9

R
33

R5

R
28

R
27

C
27

C
26

C33

C
32

C
18

R26

R25
R24

R23

R22

R21
R20

R19

C
31

C
30

C
29

C
28

R18

R17

C3

C17

C15

C8

C
4

C
5

C
10

R
1

C
7

C
6

C1

C2 E2
E1

U
6

U1

U
7

R
14

R
13

R
4

R
3

C12

C11
Q

5

Q
2

Q
1

Q
3

Q
4

C
25

C24

C23

C
22

C
21

C
20

C14

C
13

U2

J1

U5 C16U4

P8

SW
1

P2P4

P5
P6

P3

SW
2

TP
4

TP3

TP
2

TP
1

U3

TP
10

TP
9

TP
6 TP

5

P12

P10

P9

P1 P1
1

P7

C19

Vi
ew

 fr
om

 T
op

 s
id

e
(S

ca
le

 1
)

C
om

po
ne

nt
 S

id
e

(S
ca

le
 1

:1
)

So
ld

er
 S

id
e

(S
ca

le
 1

:1
)

A A

B B

C C

D D

E E

1
1

2
2

3
3

4
4

M
at

er
ia

l
La

ye
r

Th
ic

kn
es

s
D

ie
le

ct
ric

 M
at

er
ia

l
Ty

pe
G

er
be

r
To

p
Pa

st
e

Pa
st

e
M

as
k

G
TP

To
p

O
ve

rla
y

Le
ge

nd
G

TO
Su

rfa
ce

 M
at

er
ia

l
To

p
So

ld
er

0.
01

m
m

So
ld

er
 R

es
is

t
So

ld
er

 M
as

k
G

TS
C

op
pe

r
C

om
po

ne
nt

 S
id

e
0.

04
m

m
Si

gn
al

G
TL

C
or
e

0.
32
m
m

FR
-4

D
ie
le
ct
ric

C
op

pe
r

G
N

D
0.

04
m

m
Si

gn
al

G
1

P
re
pr
eg

0.
13
m
m

D
ie
le
ct
ric

C
op

pe
r

N
EW

_P
O

W
ER

0.
04

m
m

Si
gn

al
G

2

C
or
e

0.
25
m
m

D
ie
le
ct
ric

C
op

pe
r

So
ld

er
 S

id
e

0.
04

m
m

Si
gn

al
G

B
L

Su
rfa

ce
 M

at
er

ia
l

Bo
tto

m
 S

ol
de

r
0.

01
m

m
So

ld
er

 R
es

is
t

So
ld

er
 M

as
k

G
BS

Bo
tto

m
 O

ve
rla

y
Le

ge
nd

G
BO

Bo
tto

m
 P

as
te

Pa
st

e
M

as
k

G
BP

To
ta

l t
hi

ck
ne

ss
: 0

.8
6m

m

La
ye

r S
ta

ck
 L

eg
en

d

	Problem Formulation
	Preface
	Summary
	Conclusion
	List of Tables, Figures an Acronyms
	Introduction
	Background
	Simultaneous Localization and Mapping
	Template Robot

	Previous Work
	Motivation
	Objective and Scope
	Outline

	Specifications and Theory
	System-on-Chip
	Peripherals
	Storage
	Compute Performance
	Debugging
	Summary

	System Configuration
	New Functionality
	Display
	Portable Storage
	Connectors and Test Points

	Power Supply
	Component Selection
	Performance

	PCB Fundamentals
	Development Environment
	Build Process
	IDE and Flash Programmer
	Debugging Facilities

	Schematics and Layout
	Altium Designer
	Component Library
	Low Drop-out Regulator Heatsinking
	System-on-Chip Vias

	Schematic Capture
	Power Supply
	System-on-Chip
	Analog-to-Digital Conversion
	Bus Devices

	Printed Circuit Board
	Dimensions and Layers
	Initial Configuration
	Design Process

	Second Revision
	Corrections and Improvements
	Ease of Manufacturing
	Inrush Current

	Hardware
	Equipment
	PCB Fabrication
	System-on-Chip
	Remaining Components
	Power Supply Verification

	Software
	Development Environment
	Host to Target Interface
	Setting up a Minimal Example
	Debugging

	Driver Development
	Display
	microSD
	Motors
	Encoders
	IR
	Sensor Tower Servo
	Magnetometer

	Template Application
	Gatekeepers
	System Architecture
	Autonomous Scan Cycle

	Results
	Hardware
	Software
	Development Environment
	Drivers
	Template Application

	Discussion and Further Work
	Discussion
	Further Work
	Completing the Control System
	Second Revision
	SLAM Application

	Bibliography
	Media Attachment
	Schematics and PCB Layout
	Software
	Tutorials

	Schematics and PCB Layout

